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Learned expectations and uncertainty facilitate
pain during classical conditioning
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Abstract
Pain spontaneously activates adaptive and dynamic learning processes affecting the anticipation of, and the responses to, future
pain. Computational models of associative learning effectively capture the production and ongoing changes in conditioned
anticipatory responses (eg, skin conductance response), but the impact of this dynamic process on unconditional pain responses
remains poorly understood. Here, we investigated the dynamic modulation of pain and the nociceptive flexion reflex by fear learning
in healthy human adult participants undergoing a classical conditioning procedure involving an acquisition, reversal and extinction
phase. Conditioned visual stimuli (CS1) coterminated with a noxious transcutaneous stimulation applied to the sural nerve on 50%
of trials (unconditioned stimuli). Expected pain probabilities and cue associability were estimated using computational modeling by
fitting a hybrid learningmodel to skin conductance response elicited by theCS1. Multilevel linear regression analyses confirmed that
trial-by-trial changes in expected pain and associability positively predict ongoing fluctuations in pain outcomes. Mediation analysis
further demonstrated that both expected probability and associability affect pain perception through a direct effect and an indirect
effect mediated by descending modulatory mechanisms affecting spinal nociceptive activity. Moderation analyses further showed
that hyperalgesic effects of associability were larger in individuals reporting more harm vigilance and less emotional detachment.
Higher harm vigilance was also associated with a stronger mediation of hyperalgesic effects by spinal processes. These results
demonstrate how dynamic changes in pain can be explained by associative learning theory and that resilient attitudes towards fear/
pain can attenuate the adverse impact of adaptive aversive learning processes on pain.

Keywords: Fear conditioning, Reinforcement learning models, Pain, Nociceptive flexion reflex, Nociception, Expectations,
Uncertainty

1. Introduction

Pain has an important teaching function: past pain episodes shape
our current reactions to pain, which in turn influences our future
responses to painful events. The influence of learning on pain
perception may be particularly important when individuals are
subjected to successive episodes of acute pain, as observed in
many chronic pain syndromes.6,10,15 Unfortunately, we still know
very little of the dynamic influence that learning continuously exerts
on pain perception during repeated exposure to painful stimuli.

Previous studies using conditioned cues to manipulate
expectations about pain20,25 have shown that pain perception

generally increases following cues that predict the occurrence of
noxious stimuli or signal more intense stimulation (ie, “conditioned
hyperalgesia”). However, these studies examined averaged pain
responses after an initial conditioning phase during which
participants are assumed to have acquired stable cue-pain
associations, thereby treating learning as a static process. Here,
by contrast, we opted to examine the dynamic influence of
learning over pain as associations are formed and updated at
every trial. More specifically, we used computational methods to
extract trial-by-trial values of latent variables reflecting core
associative learning processes. We predicted that these latent
learning variables would explain trial-by-trial fluctuations in pain
ratings and spinal nociceptive flexion reflexes (NFRs) induced by
noxious electrical stimulations during classical conditioning.

In their simplest form, computational models posit that
associative learning is driven entirely by prediction errors, ie, the
difference between expected and experienced outcomes. In
typical conditioning paradigms, expectations about outcomes, or
the valuation processes underlying the assessment of upcoming
reward/punishment magnitude and probability,23 can be inferred
from indirect measures (eg, anticipatory skin conductance
responses [SCRs]). By fitting the model to the data, the values
of the latent variable (eg, expectations) that best predict the
indirect indexes of learning (eg, anticipatory SCRs), can be
estimated for each trial. However, in many conditions, simple
models based solely on prediction errors provide an incomplete
account of associative learning. Recent studies have shown that
hybrid models comprising an associability term provide a better
account of anticipatory SCRs24 and self-reported pain expect-
ations9 than standard learning models relying only on prediction
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Canada, b Centre de recherche de l‘Institut universitaire de gériatrie de Montréal
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errors/expectations. Hybrid models posit that the rate at which
expectations are updated after outcomes (ie, the “learning rate”)
varies as a function of each trial’s informational value. This
additional variable, called “associability,” increases when pre-
dictions are unreliable (ie, there is more to learn when outcomes
are difficult to predict), and has been suggested to involve
increased attentional demands associatedwith uncertainty about
the outcomes.23 Recent brain imaging studies have shown that
these 2 fundamental learning variables—associability and
expectations—are associated with activity in different brain
networks, confirming that they may reflect at least partly distinct
neural processes.9,24 Here, we predicted that the dynamic
influence of associability and expectations would provide a more
comprehensive account of ongoing effects of aversive learning on
pain responses.

In this study, participants underwent a classical delay-
conditioning task during which one of the 2 predictive cues
(CS1) was associated with a 50%probability of being followed by
a painful electric shock (unconditioned stimulus [US]). Anticipa-
tory SCRs to the predictive cues were used to extract trial-by-trial
estimates of associability and expected shock probability
(henceforth referred to as EShock). Because associability
normally decreases as participants gradually learn the fixed
probability of pain during acquisition, cue-outcome associations
were reversed during the experiment to transiently decouple pain
predictions and associability. Moreover, to examine how learning
exerts its effects at various levels of nociceptive processing, we
recorded spinal NFRs in addition to pain ratings in response to the
painful electric shocks.28–30 We then examined the relationship
between learning variables derived from SCRs to predictive cues,
and pain ratings and NFRs in response to subsequent electric
shocks. Finally, we explored the influence of several relevant
personality traits on the relationship between learning variables
and pain responses to identify individual factors affecting the
magnitude of conditioned hyperalgesia.

2. Methods

2.1. Participants

The sample consisted of 47 healthy young adults between 19 and
32 years of age (25 male, 22 female) recruited from advertise-
ments in local University settings (Université de Montréal as well
as McGill and Concordia Universities). Ethical approval for the
study was obtained by the ethics research committee of the
Centre de Recherche de l’Institut Universitaire de Gériatrie de
Montréal (CRIUGM).

Potential participants were considered eligible to take part in
the study on meeting the following criteria: no pregnancy, no
psychological/psychiatric condition (such as major depressive
disorder and substance abuse), no medication intake (except for
oral contraceptives), no pain-related diseases (such as chronic
pain or neuropathic pain), and no regular use of anti-inflammatory
or analgesic medications. Potential participants were invited to
visit the Laboratory of the Neuropsychophysiology of Pain (UdeM,
Canada) for a screening and familiarization session to assess their
pain thresholds and physiological signals (skin conductance and
NFR) and for a second visit to complete the experimental
paradigm. Nine participants were not retained after the familiar-
ization session for one of the following reasons: extreme pain
thresholds, excessive use of alcohol, drugs, or analgesic
medication, discomfort with the nature of the noxious stimuli
(electrical stimulations), or absent/unstable skin conductance or
NFRs to the painful stimuli. Fifty participants participated in the

experimental session, but 3 subjects were excluded from data
analysis because of poor electrodermal signal or very inconsistent
NFRs. Finally, computational learning model fits were extremely
deviant for 2 participants (with predicted SCR values below or
over 10 SDs from the mean), yielding a remaining total of 47
participants included in the analyses.

2.2. Stimuli

Visual stimuli were presented on a computer screen monitor with
E-Prime2 Professional (Psychology Software Tools, Sharpsburg,
PA). TheCSs (cue1 and cue2) consisted in coloured fractal images
(circles filledwith computerized randomcolors and shape patterns)
presented for 2 seconds on a black background. The USs
coterminated with CS presentation, and consisted of a 30 ms
transcutaneous electrical stimulation (trains of 10 1-millisecond
pulses at 333 Hz) delivered with an isolated DS7A constant current
stimulator (Digitimer Ltd, Welwyn Garden City, United Kingdom)
triggered by a train generator (Grass Medical Instruments, Quincy,
MA) and controlled by a computer running E-Prime2 Professional.
Stimulation electrodes were positioned on degreased skin on the
retromalleolar path of the right sural nerve. Nociceptive flexion
reflex thresholds were assessed based on the NFR staircase
thresholding method previously described.3 The value corre-
sponding to 135% of the threshold intensity was calculated to be
administered as the US intensity in the fear-conditioning paradigm.

2.3. Measures and dependent variables

Physiological measures were recorded using BIOPAC Systems
Inc. and AcqKnowledge data acquisition software (version 4.2).

2.3.1. Subjective pain ratings

A visual analog scale (VAS) was used to indicate the pain level
elicited by each electrical stimulation (0: no pain to 100: extremely
painful). The VAS consisted in a graduated horizontal bar shown
on the computer screen with a cursor moved using a computer
keyboard response pad. Subjective pain ratings were normalized
across trials for each participant before data analysis.

2.3.2. Electromyographic recording

Electromyography was recorded using 2 pregelled electrodes on
degreased (and shaved if necessary) skin at the level of the right
biceps femoris. A ground electrode was placed on the right tibial
bone. The electromyographic signal was amplified 1000 times,
and sampled at 1000 Hz and band-passed filtered (100-500 Hz).
The electromyographic signal was transformed online using the
root mean square (RMS) transform (computed over 20 consec-
utive samples). Finally, the RMS was integrated offline over 90 to
180 milliseconds postshock onset and was defined as the raw
NFR scores. RawNFR scoreswere then normalized into z-scores
across all trials of the conditioning task for each participant.

2.3.3. Electrodermal recording

Electrodermal activity was recorded using 2 electrodes placed on
the palmar surface of the left hand. The signal was amplified (5ms/
volt) and bandpass filtered (1-5 Hz). The signal was temporally
smoothed offline at 500 milliseconds. Using SCRalyze,4 the SCR
was assessed to CS2 and CS1 unpaired. Skin conductance
responses were determined using a general-linear model–based
approach, by convolving a standard canonical SCR basis
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function to event onsets. This function was then regressed onto
the acquired data, and beta values estimating the goodness of fit
of the model onto the data were computed. To obtain an SCR
estimate for each CS trial, one model per trial was conducted,
a procedure shown to be effective in estimating trial-by-trial
responses in time series data.26 For each model, a regressor was
entered with the event onset for the trial of interest, and another
regressor with all other CSs onsets was included. Shock onsets
and pain rating periods were also entered as regressors of
noninterest to account for residual variance in the data. Thus,
these analyses yielded an estimate of SCR amplitude for each trial
(henceforth referred to simply as “SCR” for the sake of
conciseness).

2.4. Testing procedure

For their initial screening session, participants provided informed
consent and were asked a series of questions concerning
demographic variables. They were then prepared for electro-
physiological recordings after which they were submitted to the
NFR thresholding procedure. Finally, they were given a battery of
self-report questionnaires to fill out. Trait anxiety was assessed
using the State-Trait Anxiety Inventory (STAI).33 Dispositional
mindfulness was assessed using the Five Factor Mindfulness
Questionnaire5 because of its inverse relationship with pain
catastrophizing,32 and because of the role of mindfulness
meditation in attenuating pain perception and developing
resilience in the management of chronic pain.17,21,38 This 39-
item questionnaire is composed of 5 subscales assessing
different dimensions of dispositional mindfulness: “Observe”
(ability to observe inner experiences), “Describe” (ability to
describe inner experiences), “Aware” (acting with awareness),
“Non-judgment” of and “Non-reactivity” to experiences. Dispo-
sitional mindfulness was also assessed using the 15-itemMindful
Attention Awareness Scale “designed to assess a core charac-
teristic of dispositional mindfulness, namely, open or receptive
awareness of and attention to what is taking place in the
present.”11 In addition, the Pain Catastrophizing Scale34 was
administered, which is a 13-item questionnaire assessing the
degree to which individuals catastrophize about their pain with 3
subscales: pain magnification, pain rumination, and helplessness
towards pain. Depressive symptoms were assessed using the
Beck Depression Inventory,8 and punishment sensitivity was
assessed using the Behavioral Inhibition/Activation Scale.12

Finally, the Temperament and Character Inventory (TCI)1 was
administered to assess several different personality facets, and our
focus was on its following subscales because of their relevance to
fear/pain processing and trait mindfulness: harm avoidance (sum
of scores on the subscales of “Anticipatory worry & Pessimism vs
Uninhibited optimism,” “Fear of Uncertainty,” “Shyness with
strangers,” and “Fatigability & asthenia”), self-transcendence
(sum of scores on “Self-forgetful vs Self-Conscious Experience,”
“Transpersonal Identification vs Self-Differentiation,” and “Spiritual
Acceptance vs Rational Materialism”), and self-directedness (sum
of scores on “Responsibility vs blaming,” “Purposefulness vs lack
of goal-direction,” “Resourcefulness,” “Self-acceptance vs Self-
striving,” and “Enlightened Second Nature”).

Participants were invited to return a few days later for a second
visit to complete the experiment. After being prepped for
electrophysiological recordings, the procedure for NFR thresh-
olding was conducted to determine the intensity of electro-
cutaneous stimulation administered during the task. Before the
start of the task, 2 trials of each CS (without any shocks) were
presented, and a “baseline” block of 10 stimulations at the

individually determined intensity. Participants then underwent the
fear-conditioning paradigm (Fig. 1), which was adapted from
previous work31 and included phases of acquisition (Blocks 1 and
2), reversal (Blocks 1 and 2, in which stimuli assigned as CS1
/CS2 in the acquisition phase were reversed), and extinction
(presentation of CSs alone). In the acquisition and reversal blocks,
one image was paired and coterminated with the shock at
a contingency rate of 50% (CS1), and the other was never paired
with the shock (CS2). Each US was followed with an interval
(jittered between 4 and 8 seconds; to allow the recording of
a SCR to the US) and the VAS. The intertrial intervals consisted of
a white cross centered on a black background (duration jittered
between 9, 10, 11, and 12 seconds).

Acquisition and reversal blocks consisted of 40 trials (20 CS2,
10 CS1 unpaired, and 10 CS1 paired) and lasted 13 minutes
each. Trials were presented in a pseudorandom order, with the
constraint that there were no more than 2 consecutive
presentations of the same trial type. Also, the first trial of each
block always consisted of a paired CS1, and the second always
consisted of a CS2 to instantiate learning contingencies at the
onset of the block. The assignment of the CS1 in the acquisition

Figure 1. Experimental paradigm. (A) In the initial acquisition stage (trials 1-40),
one cue was associated with a 50% chance of being followed by an electric
shock (CS1), whereas the other cue was associated with a 0% chance of
shock (CS2). In the reversal stage, the reinforcement contingencies between
the 2 cues were reversed, such that the previous CS1 became the new CS2
and the previous CS2 became the new CS1. In the extinction phase, both
cues were associated with a 0% chance of shock. (B) Example of each type of
trial (CS2, CS1, and CS1 paired). Each trial began with the presentation of
one of the 2 cues. On reinforced (CS1 paired) trials, the presentation of the cue
coterminated with an electric shock (30 ms) to the right sural nerve and
participants were asked to rate their pain after a jittered interval of 4-8 seconds.
Then, after another jittered intertrial interval (ITI) of 9 to 12 seconds, the
following cue was presented. During unreinforced (CS2 or CS1 unpaired)
trials, there were no pain ratings, and fear-conditioned responses to visual
cues were assessed by examining skin conductance responses (SCRs; with
a typical latency between 0.5 and 2 seconds) from electrodermal activity
recordings. (C) Electromyographic activity was recorded using electrodes
placed on the biceps femoris. The NFR was observable at a latency of 90 to
180 milliseconds poststimulation onset.
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phase (stimulus A or B) was counter-balanced across subjects.
The extinction block lasted 10 minutes and consisted of 40 trials
of unreinforced CSs (20 trials for each image). The assignment of
the CS1 in the acquisition phase (stimulus A or B) was counter-
balanced across subjects. A final block of 10 stimulations without
any CS was then administered to account for nonspecific
changes in the NFR as a function of time.

At the end of the experiment, electrodes were removed and
participants completed a postexperimental interview assessing
their awareness of CS–US pairings adapted from previous
studies.7,22 They were then debriefed and remunerated 15
$/hour for their time.

2.5. Data analyses

2.5.1. Self-report questionnaire analyses

To reduce the number of individual trait dimensions, a principal
component analysis using an oblique rotation method was
conducted on the different self-report questionnaire data scales
using SPSS Version 21.0. Data included in the analyses were BDI
scores (square root transformed to correct for a positively skewed
distribution), Mindful Awareness Attention Scale scores, Pain
Catastrophizing Scale scores (sum of scores on the magnifica-
tion, rumination, and helplessness towards pain), Behavioural
Inhibition Scale (BIS) scores, scores on each Five-Factor
Mindfulness Questionnaire subscale, trait anxiety scale scores,
as well as the TCI subscales of harm avoidance, self-
transcendence, and self-directedness.

The first 3 components extracted explaining a total of 62%of the
variance in the datawere retained to use asmoderators of the fear-
conditioning–inducedmodulation of pain. Factor loadingsonto the
questionnaire dimensions are illustrated in Table 1. The first factor
loaded positively onto pain catastrophizing, trait anxiety, harm
avoidance, punishment sensitivity (BIS), depressive symptoms,
and negatively onto “Non-reactivity to inner experiences.” This
factor was labeled as “Harm vigilance,” because it combines
attributes specific to catastrophizing pain attitudes, avoidance
behaviors, anxiety, and emotional volatility. The second factor
loaded (positively onto FFMQ “Describing experiences,”

“Observing experiences,” and self-transcendence. This factor
was labeled as “Emotional Detachment,” because it combined the
dimensions of trait mindfulness oriented towards cultivating
separation between the self and emotional experiences. The last
factor loaded positively onto “Acting with Awareness,” “Non-
judgment of experiences,” self-directedness, present-moment
awareness, and negatively onto depressive symptoms. This factor
was labeled as “Acceptance/positive affect,” because it combined
aspects related to trait mindfulness involved in emotional
acceptance and living in the present moment, low negative affect,
and tendencies to avoid harm.

2.6. Computational modeling

Different computational learning models (Rescorla–Wagner and
Pearce–Hall hybrid) were23 fitted to trial-by-trial SCR data to
unreinforced cues (CS2 and CS1 unpaired), from which fear
learning parameters to CS1 paired trials were estimated. The
following models were tested: a Rescorla–Wagner model (RW
model; driven by prediction errors), and a RW/Pearce-Hall hybrid
model (RW/PH hybrid), in which the expected value or probability of
shockat each trial is computedas a functionof prediction errorsAND
inwhich the learning rate is dynamicallymodulated by associability at
each trial. Finally, an intercue-dependent RW/PH hybrid model was
conducted, whichwas a variant of the RW/PHhybridmodel in which
EShock and associability were updated for the cue presented at
each trial, as well as for the unpresented cue. In this model, a cue-
dependency term was added reflecting the fact that prediction error
signals from the US may also allow learning about the cue to which
participants had been previously exposed to, but which was not part
of a current trial. For example, on thepresentationof acuepairedwith
a US, an assumption could potentially be made that the other cue
was not associated with the US.

2.6.1. Learning model selection

Model fit indices to SCR data were extracted for each subject:
Aikake Information Criteria (AIC), and Bayesian Information
Criteria (BIC). Nonparametric paired samples comparisons
(Wilcoxon test) were conducted on AIC and BIC to compare
model fit indices between the RW/PH hybrid, the intercue-
dependent RW/PH hybrid, and the RWmodels. Model fits were
superior for the intercue-dependent RW/PH hybrid model
compared with the other 2 models (Ps , 0.05, AIC and BIC
indices were smaller for the RW/PH hybrid model vs the RW
model, and AIC/BIC indices were significantly or marginally
significantly smaller for the intercue-dependent RW/PH hybrid

Table 1

Individual trait dimensions and their loadings onto factors

obtained from the principal component analysis.

Principal component analysis factors

Harm
vigilance

Emotional
detachment

Acceptance/
positive affect

Individual Trait Dimensions

Pain Catastrophizing (PCS) 0.64

Describing Experience (FFMQ) 0.66

Observing Experience (FFMQ) 0.77

Acting with Awareness (FFMQ) 0.78

Non-judgmental (FFMQ) 0.68

Non-reactivity (FFMQ) 20.64

Trait Anxiety (STAI) 0.70

Self-Transcendence (TCI) 0.73

Self-Directedness (TCI) 0.68

Harm Avoidance (TCI) 0.90

Present Moment Awareness

(MAAS)

0.74

Depressive Symptoms (BDI) 20.68

Punishment Sensitivity (BIS) 0.89

BDI, Beck Depression Inventory; BIS, Behavioral Inhibition Scale; FFMQ, Five-Factor Mindfulness

Questionnaire; MAAS, Mindful Awareness Attention Scale; PCS, Pain Catastrophizing Scale; TCI,

Temperament and Character Inventory.

Table 2

Wilcoxon signed rank test statistics for comparison of

computational model AIC/BIC fit indices.

RW model RW/Pearce-Hall (PH)
hybrid

AIC BIC AIC BIC

RW/Pearce-Hall

(PH) Hybrid

Z524.61** Z525.97** — —

Inter-cue

dependent

RW/PH Hybrid

Z 5 22.30* Z525.78** Z 5 21.76# Z525.78**

Significant effects of predictors are indicated on the graph with asterisks. *P , 0.05, **P , 0.001, #P 5
0.079.

PH, Pearce-Hall; RW, Rescorla-Wagner.
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vs the RW/PH hybrid models, see Table 2). The fact that the
RW/PH hybrid models had a superior fit to our data than the RW
model indicates that learning was better modeled as a function
of both associability and prediction error, and that learning was
accelerated following enhanced prediction errors and de-
celerated following smaller errors. In addition, the superior fit to
our data of an intercue-dependent RW/PH hybrid model
compared with a RW/PH hybrid model indicates that learning
about the cue that was not presented on a given trial occurred
based on information obtained from the cue that was present
on that trial.

2.6.2. Model descriptions

For the Rescorla–Wagner model (Equations 1, 2), expected
shock probabilities (denoted as V in the following equations) on
a given trial (t) were updated as a function of the prediction error (d)
obtained on the preceding trial. The prediction error—
discrepancy between the actual outcome (l) administered on
a given trial and the expected outcome—was modulated by
a constant learning rate (a). Pain administration was coded as 1
and absence of pain as 0.

Vt1 1 ¼ Vt 1a3 dt (1)

dt ¼ lt 2Vt (2)

For the RW/PH hybrid model (Equations 3–5), expected
shock probabilities were modeled in the same way as in the RW
model, but the learning rates were dynamically modulated by an
associability term (a). The associability term was updated as
a function of the prediction error’s absolute value (the surprising
quality of the outcome, whether it be unexpected pain or
unexpected pain omissions), and modulated by a constant
term (g).

Vt1 1 ¼ Vt 1 at 3a3 dt (3)

dt ¼ lt 2Vt (4)

at1 1 ¼ Y3 jdtj1 ð12YÞ3 at (5)

More specifically, the RW/PH hybrid intercue-dependent
model depicted the nature of our fear-conditioning paradigm
involving 2 distinct CSs, ie, the CS1 paired with the US, whereas
the other cue (CS2) predicted the absence of pain in a given
learning phase. Thus, fear learning parameters were not
necessarily updated independently from one another. In other
words, the unpresented cue at each trial would be updated
according to a prediction error computed by attributing the
“opposite” outcome. Therefore, the RW/PH hybrid intercue-
dependent model consisted of a variant of the RW/PH hybrid
model by attributing specific parameters to the cue presented on
each trial (c_pres) and the cue that was not presented on that trial
(c_unpres).

Vc prest1 1 ¼ Vc prest 1 ac prest 3ac pres3 dc prest (6)

dc prest ¼ lt 2Vc prest (7)

ac prest1 1 ¼ Yc pres3 jdc prestj1
�
12Yc pres

�

3 ac prest (8)

In the same way, associability and expected pain on each
trial were updated for the cue that had not been presented
(c_unpres) by attributing it the opposite outcome, denoted by
|12lt|.

Vc unprest11 ¼ Vc unprest 1 ac prest

3ac unpres3 dc unprest
(9)

dc unprest ¼ j12 ltj2Vc unprest (10)

ac unprest1 1 ¼ Yc unpres3 jdc unprestj
1 ð12Yc unpresÞ3 ac unprest

(11)

Following previous recommendations,2 expected shock prob-
abilities and associability values at each trial for each subject were
computed from the model’s fixed parameters averaged across
subjects: ac_pres 5 0.19, ac_unpres 5 0.22, gc_pres 5 0.21,
gc_unpres5 0.33, X05 18.23, X15213.21, X25218.17, V0
5 0.35, a0 5 0.49.

Figure 2 shows skin conductance data to unreinforced cues
(CS2 and CS1 unpaired) averaged per learning phase (A) and
trial-by-trial (B). Figure 2B also shows predicted SCR estimations
to reinforced and unreinforced cues from the intercue-dependent
RW/PH hybrid model. Expected shock probabilities (C) and
associability (D) related to each cue are also shown in Figure 2.

3. Results

3.1. Effects of conditioning on anticipatory SCRs

Todemonstrate theefficacy of our paradigm toelicit conditioned fear
responses, we first examined anticipatory SCRs in response to the 2
predictive cues, averaged within the first (early) and second (late)
halves of the acquisition, reversal and extinction phases of the
experiment.31 As expected, results of a 2 (cue 1, cue 2) 3 6
(acquisition-early/late, reversal-early/late, extinction-early/late) anal-
ysis of variance revealed a significant Cue X Phase interaction
(F(1.47,71.86) 5 11.36, P , 0.0001 with Greenhouse-Geisser
Correction; Fig. 2A). Follow-up paired t-tests revealed that SCRs
to the CS1 were higher than SCRs to CS2 during conditioning
(acquisition-early, t(46) 5 3.15, P 5 0.003; acquisition-late, t(46) 5
3.41,P50.001; reversal-early, t(46)52.46,P50.018; reversal-late,
t(46) 5 2.97, P 5 0.005). Moreover, conditioned SCRs decreased
significantly at reversal and extinction when cues stopped to be
paired with shocks (cue 1 acquisition-late vs reversal-early: t(46) 5
3.07, P5 0.004; cue 2 reversal-late vs extinction-early: t(46)5 3.55,
P 5 0.001). Skin conductance responses were also significantly
higher for cue 1 than cue 2 during early-extinction (t(46) 5 3.42, P5
0.001), suggesting that participants may have expected another
reversal at the onset of the extinction phase.

The conventional demonstration of the conditioned fear-
responses shown in Figure 2A was further expanded to a trial-
by-trial analysis, allowing for the estimation of EShock and
Associability, the 2 key parameters of the hybrid learning model.
Estimates of each parameter were optimized using computa-
tional modeling. The global pattern of CS1/CS2 discriminative
learning was clearly captured by the model in the acquisition and
reversal phases as shown by the time course of the predicted
SCR (Fig. 2B). Learning parameters were then extracted from the
optimized model for each trial and each subject according to the
individual time series of CS1/CS2 andUS (see group averages in
Fig. 2C, D). EShock and Associability for the reinforced trials (ie,
paired CS1), reproduced in Figure 3A, provided learning-related
predictors of responses to the noxious electrical stimulation.

3.2. Effects of conditioning on responses to electric shocks

The time course of mean shock-evoked pain and NFR responses
displayed in Figure 3B did not reveal a global pattern of
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modulation across the early vs late parts of the acquisition and
reversal phases using a conventional analysis based on trial and
group averaging (analysis of variance, P’s . 0.05). However, both
responses seemed to be consistently lowest on the first trials of the
acquisition and reversal phases, as compared to their immediate
neighboring trials (first vs second acquisition trial: F(1,46)5 6.72,P5
0.013; last acquisition trial vs first reversal trial: F(1,46) 5 12.97, P5
0.001; and first vs second reversal trial: F(1,46)5 18.74, P, 0.001).
Not surprisingly, computational modeling also indicates that these
key learning trials show very large shifts in EShock probability and
associability (Fig. 3A). Notably, these shifts are visible in the group
averages because learning starts or contingencies change
consistently in all subjects in those specific trials. This implies
that trial and group averaging maymask dynamic effects and that
the individual pattern of trial-by-trial fluctuations in pain responses
may relate to immediate adjustments in the ongoing learning
processes.

The effects of EShock and associability on pain responses
were examined using multilevel regression analyses in which fear
learning parameters at each trial were entered at the first level and
subjects at the second level. Specifically, we predicted self-
reported pain and NFR scores at each trial from EShock and
Associability to shock-predicting cue (CS1 paired) using
multilevel regressions as implemented in Hierarchical Linear
Modelling (HLM) software. Results are shown in Table 3 and
confirmed that both EShock (Beta 5 0.68, t 5 4.16, SE 5 0.16,
R2 5 0.28, P , 0.001) and Associability (Beta 5 1.18, t 5 4.23,
SE5 0.28,R25 0.29,P, 0.001) positively predicted pain ratings
and NFRs (Beta 5 0.82, t 5 4.52, SE 5 0.18, R2 5 0.32, P ,
0.001;Beta5 1.60, t5 4.75,SE5 0.34,R25 0.34,P, 0.001 for
effects of EShock and Associability, respectively). As can be
observed in Figure 3, the combined contribution of EShock and

Associability derived from the learning model allows making
a prediction that explains a significant amount of the trial-by-trial
variance in pain and the NFR (Fig. 3C, D, respectively).

Moreover, although EShock was relatively low in the first few
trials of the acquisition and reversal phases, associability rapidly
peaked after the surprising first cue-shock pairings of both
phases. The combined influence of EShock and associability
therefore paints a very dynamic and complex portrait of learning
effects on pain. Indeed, pain seems to be increased when shocks
are either expected with a high probability or when uncertainty is
high. In contrast, participants experienced less pain when they
were most certain that they would not receive an electric shock;
ie, at the first reinforced trials of the reversal phases (see dip at
reversal in Fig. 3B). Average effects of expected P (shock) (A) and
Associability (B) on pain ratings and NFRs are illustrated in
Figure 4.

Learning processes affected both pain perception and the
spinal nociceptive response and the possible relation between
those modulatory effects was further assessed in multilevel
mediation analyses. Given that the modulation of pain perception
is often assumed to reflect at least in part the involvement of
cerebrospinal mechanisms affecting spinal nociception,36 we
tested the hypothesis that pain modulation by learning variables
(EShock or associability) was mediated by the corresponding
changes in the NFR (implemented with custom code written in
Matlab, http://wagerlab.colorado.edu/tools, see Fig. 5). More-
over, to account for the significant negative relationship between
EShock and associability (Beta521.05, SE5 0.02, t5261.72,
P , 0.001), each variable was regressed onto the other and the
residuals (ie, EShock controlling for associability and vice-versa)
were entered as predictors in the 2 mediation models tested.
Results showed that the NFR was a significant mediator of the

Figure 2. Anticipatory skin conductance responses (SCRs) and associability and expected probability of shock (expected P [shock]) estimates throughout the
acquisition, reversal, and extinction phases of the experiment. (A) Anticipatory SCRs for all unreinforced (CS2 and CS1 unpaired) trials of the experiment,
averaged (1SEM) across thewhole group for the early (first half) and late (second half) phases of acquisition, reversal, and extinction (*P, 0.05, **P, 0.01, paired
t-tests). (B) SCRs predicted from the computational learning model (lines) and observed SCRs (dots). Note that while anticipatory SCRs cannot be measured for
reinforced trials (CS1 paired) because of the temporal contiguity between the CS and the US, computational estimates can be derived from these trials, and used
to predict pain responses (see Fig. 3C, D) (C, D) Trial-by-trial expected P (shock) (C) and associability (D) estimates, averaged over the whole group. CS,
conditioned stimulus; US, unconditioned stimulus.
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effects of both learning variables on pain ratings (c5 1.44, SE5
0.28, P, 0.001, ab5 0.11, SE5 0.04, P5 0.012, for the effect
of EShock on ratings and its mediation by NFRs; c5 2.34, SE5
0.43,P, 0.001, ab5 0.28,SE5 0.08,P5 0.001 for the effect of
associability on ratings and its mediation by NFRs). However, the
c path remained significant after accounting for the NFR
mediation (c9 in Fig. 5) indicating that effects of both learning
processes on pain perception could be explained in part, but not
entirely, by the descending modulation of spinal nociception.

Finally, to examine the influence of personality traits on learning-
induced pain modulation, we first performed a PCA on scores of
several psychological questionnaires (listed inTable 1). This allowed
reducing the dimensionality of the data to 3 personality compo-
nents: harm vigilance, emotional detachment, and acceptance (see

Methods). These 3 variables were then tested as second-level
moderators in our mediation models. Results showed that harm
vigilance significantly increased 1—the effects of associability on
NFRs (path a, Fig. 5), as well as 2—the NFR mediation between
associability and pain ratings (path ab, Fig. 5), and 3—the NFR
mediation between EShock and pain ratings (path ab, Fig. 5).
Moreover, emotional detachment also decreased the strength of
the relation between associability andNFRs (path a,Fig. 5). None of
the personality components were significantly correlated with the
fixed parameters of the learning model (all Ps . 0.05) suggesting
that the effects of personality factors on pain processing could not
be explained simply by underlying interindividual differences in
associative learning. This indicates that personality traits influence
how learning affects pain processing.

Figure 3.Relationship between expected shock probabilities (expected P [shock]), associability, pain ratings, and nociceptive flexion reflexes (NFRs) for reinforced
(CS1 paired) trials. (A) Average associability and expected P (shock) estimates. (B) Average pain ratings and NFR amplitudes (lines), with shaded areas
representing SEs of the mean. (C, D) Relationship between pain ratings, NFR amplitudes and associability/expected P (shock) estimates for 2 individual subjects.
Trial-by-trial associability and expected P (shock) estimates were weighted by their regression coefficients to illustrate themultilevel regressions effects reported in
Table 3. For parcimony, the intercepts of the regression models predicting pain ratings and NFRs from expected P (shock) and associability estimates (Table 3)
were removed from observed pain ratings and NFRs. Pain responses were consistently lowest on the first trials of the acquisition and reversal phases, as
compared to their immediate neighboring trials (first vs second acquisition trial; last acquisition trial vs first reversal trial; first reversal trial vs second reversal trial).
***P , 0.001, *P , 0.05. CS, conditioned stimulus.

Table 3

Multilevel regression analysis on pain ratings and NFR scores predicted by fear learning parameters.

Beta SE t R2 P

Dependent variable: pain ratings to US

LEVEL-1 predictors

Intercept 21.09 0.24 24.66 — ,0.001***

Expected shock (US) probabilities 0.68 0.16 4.16 0.28 ,0.001***

Associability 1.18 0.28 4.23 0.29 ,0.001***

Dependent variable: NFR scores to US

LEVEL-1 predictors

Intercept 21.19 0.21 25.64 — ,0.001***

Expected shock (US) probabilities 0.82 0.18 4.52 0.32 ,0.001***

Associability 1.60 0.34 4.75 0.34 ,0.001***

Significant effects of predictors are indicated on the graph with asterisks (***P , 0.001).

NFR, nociceptive flexion reflex; US, unconditioned stimulus.
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The only personality trait that differed with respect to sex was
harm vigilance, with males reporting less harm vigilance (M 5
20.37, SD5 0.18) than females (M5 0.36, SD5 0.22). Females
exhibited an enhanced mediation effect (albeit marginally
significant) of the NFRs on the relationship between Associability
and pain ratings (Beta5 0.31, STE5 0.16, z5 1.92, P5 0.06).
No other sex differences were found to moderate any other path
between fear learning parameters and NFRs/pain ratings.

4. Discussion

Pain plays an important role in teaching us about potential
sources of harm in our environment. Pain-evoking stimuli further
trigger associative learningmechanisms that constantly refine our
predictions about what is most likely to cause us pain. Here, we
used computational modeling to demonstrate that associative
learning produces transient states of conditioned hyperalgesia
that are paradoxically induced by both pain predictability and
uncertainty. Indeed, the only moment when participants did not
seem to suffer from hyperalgesic effects is when they were the
most certain that they would not receive a painful electric shock.

Effect sizes were large,35 suggesting that the influence of learning
on pain processing is considerable and may potentially have an
important impact on pain perception in our day-to-day lives.

When only considering the averaged effects of trial number on
pain processing, the hyperalgesic effects of conditioning could
only be observed as the difference between the relatively low pain
ratings and NFRs in response to the first shocks of the acquisition
and reversal phases of the experiment, and the higher pain
indexes observed throughout the rest of the experiment.
However, results from computational modeling revealed that
the apparent lack of learning effects after the first cue-pain
pairings was in fact caused by opposing effects of expected pain
(EShock)—which steadily rises as participants are exposed to
repeated cue-pain associations—and associability—which tends
to decrease as predictions become more accurate. Because
these 2 parameters were estimated by fitting the learning models
to anticipatory SCRs, and not to unconditioned responses to
electric shocks, the opponency between EShock and associ-
ability effects cannot be because of over fitting of the learning
model, and therefore likely reflects the workings of learning
mechanisms that are affecting both anticipatory SCRs and pain
responses to electric shocks. For the same reason, the strong
and significant relationship between our computational estimates
of associability/EShock and both measures of pain processing
provide a convincing additional validation of the selected hybrid
learning model.

Figure 4. Average effect of expected probability of shock (expected P [shock])
(A) and Associability (B) on pain ratings and nociceptive flexion reflex (NFR)
scores. The shaded gray area shows the 95% confidence interval for the
regression slopes. Variability in the intercept values across participants has
been removed for display purposes. ***P , 0.001, *P , 0.05.

Figure 5.Multilevel mediation models of the effects of expected probability of
shock (expected P [shock]) and associability on pain ratings. Path coefficients
are shown for each path (a, b, c, and c9) and mediation effects (a3 b) with SEs
in parentheses. (A) Nociceptive flexion reflex (NFR) scores partially mediated
the effect of expected probability of shock (expected P [shock]) on pain ratings.
Harm vigilance increased NFRs mediating effects (mediation term a 3 b). (B)
NFRs partially mediated the effect of associability on pain ratings. Harm
vigilance increased the effects of associability on NFRs (path a) and NFRs
mediating effects (mediation term a 3 b). Emotional detachment decreased
the effects of associability on NFRs (path a). Average effect of expected
P (shock)/Associability on pain ratings and NFRs are shown in Figure 4. ***P,
0.001, *P , 0.05.
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According to reinforcement learning theories, EShock and
associability reflect qualitatively different learning processes.
Expected probability of shock simply refers here to the subjective
probability of receiving an electric shock, and therefore broadly
reflects the learning process that is generally implied in most fear-
conditioning studies.20 However, in contrast with more traditional
analyses splitting acquisition and reversal phases in early and late
phases (see Fig. 2A), EShock is estimated on a trial-by-trial basis.
Thus, rather than considering the overall reinforcement rate (eg,
50%) across blocks of pseudorandom trials, modern implemen-
tations of learning models consider the effective and unique
sequence of reinforcement experienced by the subject on a trial-
by-trial basis. Computational modeling, therefore, provides
EShock estimates that are better tailored to the unique sequence
of reinforcement that is experienced by each subject.

In contrast with EShock, the associability term used in our
learning model reflects the informational value of the outcome
with respect to reinforcement contingencies. Associability is
therefore expected to go down as predictions become more and
more accurate (ie, reduced prediction error), and to rise when
participants have recently been surprised by an unexpected
outcome (ie, on trials that follow a large prediction error). Indeed,
after having been surprised, attention towards the outcome of the
following trial is increased because it may confirm or disconfirm
a potential change in contingencies. Recent brain imaging
studies have reported that different brain regions may encode
EShock (ventral striatum) and associability (amygdala and baso-
lateral amygdala)9,24 during the presentation of the outcome
during aversive conditioning. In addition, animal studies have
shown the involvement of the central nucleus of the amygdala
and its interplay with other brain systems (including striatal
circuitry) in attentional changes related to associability.16,18,19 Our
data suggest that the output of these 2 systems may ultimately
converge onto a single effector system responsible for allocating
attentional resources to the processing of the US. The pain
facilitating effects of associability found here are also in line with
previous work37 demonstrating that vicariously learned uncer-
tainty (estimated using a Bayesian framework) about the intensity
of impending pain had hyperalgesic effects.

In contexts in which cue-outcome probabilistic relationships are
subject to frequent change, Bayesian modelling frameworks used
to estimate different levels of uncertainty have explained amygdala
activity27 and autonomic arousal responses to US14 during fear
learning. Therefore, future work should extend our study in tasks in
which cue/outcomeassociationsare highly volatile, usingBayesian
frameworks to estimate subjects’ uncertainty with respect to
outcomes and the stability of cue-outcome states, to model
ensuing fluctuations in pain responses to the US.

Finally, this study demonstrated that learning effects on pain
were partly mediated by spinal nociceptive processes, indicating
that conditioned hyperalgesia at least partly relies on descending
cerebrospinal modulatory pathways that gate the transmission of
ascending nociceptive signals at the spinal level. Still, a significant
part of learning effects on pain was not mediated by spinal
nociceptive processes, and could therefore reflect higher-order
(ie, supraspinal) processes affecting pain perception as a function
of its predictability. Interestingly, interindividual differences in
harm vigilance and emotional detachment specifically affected
the portion of learning effects that was mediated by spinal
nociceptive processes. Indeed, participants that weremore harm
vigilant and/or less emotionally detached displayed stronger
spinal facilitation, which in turn contributed more to the hyper-
algesic effects observed in pain perception. Thus, the parsing of
learning effects into EShock/associability and spinally mediated/

unmediated effects allowed us to reveal the precise mechanisms
by which predisposing personality traits may influence condi-
tioned hyperalgesia.

By contrast, the facilitatory effects of associability on pain
responses was reduced in individuals with elevated dispositions
to adopt detached and nonreactive attitudes towards their inner
and emotional experiences. However, here the moderating effect
was only found on the NFR, suggesting that in the context of
learning, emotional detachment may reduce the reactivity to the
noxious stimulus without having indirect consequences on pain
perception. Previous studies have suggested that trait mindful-
ness is inversely related to pain catastrophizing in a chronic
pain–patient sample and that it moderates the relationship
between catastrophizing and reported pain intensity.32 The
present findings should motivate further investigation of the
impact of emotional regulation training on aversive learning
processes to unravel potential benefits in preventing learning-
induced pain facilitation.13

In conclusion, this study demonstrates that pain perception is
under the constant influence of learning processes that dynam-
ically control the sensory gating of painful stimuli as a function of
each individual’s unique reinforcement history. This suggests that
when an individual is submitted to repeated episodes of pain,
a significant proportion of the pain perceived may become rapidly
facilitated by learning and attentional factors. A better un-
derstanding of the psychological and neural mechanisms un-
derlying learning effects on pain could therefore provide important
insights into the sequence of psychological and neural events that
lead to pain chronicity, and hopefully indicate novel ways of
breaking the vicious circle by which expected and/or uncertain
pain causes more pain.
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