The Hawking Energy on the Past Light Cone

Inhomogeneous Cosmologies IV

Dennis Stock

University of Bremen (ZARM)

July 19, 2019

Outline

- Definition and properties of the Hawking energy E_H
- The past light cone in cosmology & the cut locus
- Theorem & proof
- Comments on assumptions and applicability
- Summary and outlook

Definition of Hawking energy

- Given a spacetime (M,g), take a spacelike (topol.) 2-sphere S with area $A(S)=\int_S\,dS.$
- \exists past-directed outgoing and ingoing null direction $\perp S$, represented by tangent vectors l and n.
- The expansion of each geodesic congruence is given by $\theta_l \& \theta_n$.
- <u>Idea:</u> energy in 3-volume surrounded by S affects the light bending on S.

Def. Hawking Energy E_H :

Given a spacelike 2-sphere S, the Hawking energy E_H is defined as

$$E_H := \frac{A(S)}{(4\pi)^{3/2}} \left[2\pi - \int_S \rho \mu \, dS \right]$$
(1)

with
$$\rho := -\theta_l/2$$
 and $\mu := \theta_n/2$.

Dennis Stock

Theorem & Proof

Properties of E_H

- In the limit of S degenerating to a point, $E_H(S) \rightarrow 0$.
- For small sphere of radius r around $p \in M$ in the limit $r \to 0$:
 - non-vacuum: $E_H \sim r^3 T_{ab} t^a t^b$
 - vacuum: $E_H \sim r^5 B_{abcd} t^a t^b t^c t^d \ge 0$

 $T_{ab}:$ energy-momentum tensor, $B_{abcd}:$ Bel-Robinson tensor, $t^a:$ unit timelike vector

- For a metric 2-sphere in Minkowski: $E_H = 0$
- For Killing horizons: $E_H = M_{irr}$
- For large spheres near \mathcal{I}^+ : $E_H \to E_{\text{Bondi-Sachs}}$
- For large spheres near $i^0: E_H \to E_{ADM}$

Comments & Discussion

Monotonicity of E_H on a null hypersurface

Let (S_r) be a 1-param. family of (topol.) 2-spheres foliating the outgoing null hypersurface N. For a special class of foliations (Eardley 1978):

$$\frac{dE_H(S_r)}{dr} \ge 0$$

In more detail:

Dennis Stoo

- Start with a spacelike 2-sphere S obeying $\rho < 0$ & $\mu < 0$ everywhere.
- Define a constant r on S: $r := \sqrt{\frac{A(S)}{4\pi}}$
- Rescale l^a such that $\rho=-1/r$ [most general form: $\rho=-1/P(r)$ with P(r)>0]

• r extends to a distance along the outgoing past-directed null hypersurface $N\perp S,$ defining a 1-param. family of level surfaces in

The Past Light Cone in Cosmology

Motivation:

- Given an observer at $p \in M$ with 4-velocity t^a at p.
- Past light cone $C^{-}(p)$ at p can be uniquely constructed
- All (light) signals that can be received at p travel on $C^{-}(p)$.

Cosmological effects on the topology of the past light cone:

- In Minkowski: $C^-(p) \simeq S^2 \times \mathbb{R}$
- If only weak gravitational lensing present: no multiple images of sources, but image distortions \rightarrow still have $C^-(p) \simeq S^2 \times \mathbb{R}$
- Strong gravitational lensing: multiple images \Rightarrow self-intersections of $C^-(p) \Rightarrow$ topology changes!

Can be made more precise by referring to the cut locus

The Hawking Energy on the Past Light Cone

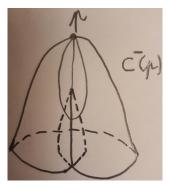
Dennis Stock

Cut Locus

- I⁻(p):={points in the past of p that can be reached by a timelike curve}
 I⁻(p):= boundary of I⁻(p)
- Can show: $\dot{I}^-(p)$ immersed, achronal, 3-dim., C^{1-} (i.e. Lipschitz continuous) submanifold [everywhere except at p & cut locus]
- Consider a past-oriented null geodesic $\gamma(\lambda)$ issued at p, $\gamma(\lambda)$ is confined to $I^-(p) \cup \dot{I}^-(p)$, but may leave $\dot{I}^-(p)$
- Cut point of γ := last point of γ, still ∈ İ⁻(p).
 In other words: points on γ beyond cut point can also be reached by a timelike curve
- Past cut locus $L^-(p) :=$ union of all cut points along past null geodesics from p
- In a globally hyperbolic spacetime, $L^-(p)$ is closed in M and has measure zero in $\dot{I}^-(p)$ [but might be dense in it].

Past light cone with spherical lens

- Thus, if $L^{-}(p) = \emptyset \Rightarrow$ no strong lensing
- For a globally hyperbolic spacetime: at a cut point, not being a conjugate point, two (globally) different null geodesics intersect
- The cut point comes always before or on a conjugate point



The Hawking Energy on the Past Light Cone

Dennis Stock

Positivity & monotonicity of E_H in cosmology

Theorem:

Let (M, g) be a globally hyperbolic spacetime satisfying the dominant energy condition and $p \in M$. Given a foliation (S_r) of $C^{-}(p) \cap \dot{I}^{-}(p)$ by 2-dim. level surfaces r = const. [i.e. $\bigcup_{r} S_{r} = C^{-}(p) \cap \dot{I}^{-}(p)$]. If (i) $S_r \simeq S^2 \quad \forall r$. (ii) $\rho < 0$ & $\mu \leq 0$ everywhere $\forall S_r$, (iii) The foliation (S_r) is constructed as by Eardley, then $E_H(S_r) \geq 0$ and $\frac{dE_H(S_r)}{dr} \geq 0$.

Intuitively clear, since matter can only leave $I^-(p)$ to the future but not enter!

Dennis Stock

Given the above set-up and assume that (i)-(iii) are true. Then:

$$\frac{dE_H(S_r)}{dr} = \frac{1}{4\pi} \int_{S_r} \left[\Phi_{11} + \frac{1}{8}R + |\alpha + \bar{\beta}|^2 - r\mu(|\sigma|^2 + \Phi_{00}) \right] dS_r$$

$$\ge 0$$

since because of the DEC $\Phi_{11} + \frac{1}{8}R \ge 0$ and $\Phi_{00} \ge 0$ $\Rightarrow \frac{dE_H(S_r)}{dr} \ge 0$.

In the limit $r \to 0$:

$$E_H(S_r) = \frac{4\pi}{3}r^3 T_{ab}t^a t^b \ge 0 \quad (\mathsf{DEC}) \qquad \Box$$

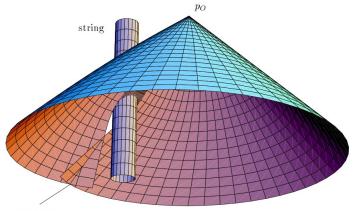
Dennis Stock

Foliation, Why $C^{-}(p) \cap \dot{I}^{-}(p)$, Expansion Scalars

- Foliation: only the ones by Eardley allowed, 'gauge freedom' encoded in function P(r) > 0, otherwise $E_H(S_r)$ not monotonous
- Why $C^{-}(p) \cap \dot{I}^{-}(p)$ and not just $C^{-}(p)$? \rightarrow In general, $C^{-}(p)$ has many self-intersections and a slice fails even to be a submanifold
- $\rho < 0 \ \& \ \mu \leq 0 \Leftrightarrow$ outgoing null congruence expanding, ingoing congruence contracting

Global Hyperbolicity

needed in order to exclude non-transparent lenses by cutting out its worldline/tube



cut locus

Picture credit: Volker Perlick

Dennis Stock

Topology of Slices $S_t \simeq S^2$ & Expansion Scalars

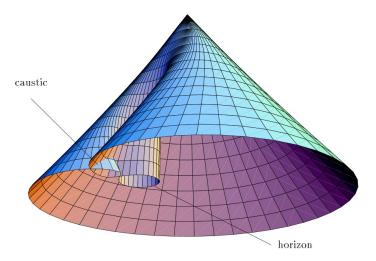
- 2-sphere needed in order to be able to define $E_H(S_t)$
- Taking $C^-(p) \cap \dot{I}^-(p) + \text{global hyperbolicity} + L^-(p) \cap S_t$ measure zero in $S_t \stackrel{?}{\Rightarrow} S_t \simeq S^2$

Dennis Stock

Theorem & Proof

(Comments & Discussion)

Schwarzschild: S_r can conist of two S^2 's



Picture credit: Volker Perlick

Dennis Stock

Summary

- Hawking Energy E_H has nice properties, however, positivity & monotonicity only given in special cases
- E_H is shown to be positive and monotonously increasing for certain foliations of the past light cone in a suitable spacetime \rightarrow how generic are the assumptions?

Thank You!

Dennis Stock