On the Cosmological Interpretation of Non-Linear Scales in BOSS and Beyond

Johannes U. Lange Santa Cruz-Stanford Cosmology Fellow

Collaborators:

Alexie Leauthaud, Andrew Hearin, Joe DeRose, Sukhdeep Singh, Rongpu Zhou, Hong Guo, Frank van den Bosch, Tristan Smith, Francis-Yan Cyr-Racine

Different Scales in Large-Scale Structure

Johannes Ulf Lange

Berkeley Cosmology Seminar

Non-Linear Scales: A Skeptic's View

"The skeptic's [...] suggestion was that precision measurements of cosmological parameters should perhaps be left to clean probes such as acoustic oscillation baryon experiments or CMB experiments [...], while small scale structure probes [...] are excellent tools for discovery [...]. It highlighted the importance of demonstrating the resilience of small scale probes to uncertainties in galaxy formation physics."

Discovery Space: Cosmological Tensions

Johannes Ulf Lange

Berkeley Cosmology Seminar

Outline

- Introduction to Non-Linear Scales
- Recent Advancements in Modeling
- Growth-Rate Constraints from RSDs in BOSS LOWZ
- Lensing is Low: A cosmological Tension?
- Future Directions: Combined Probes, DESI and more

Advancements in Modeling

Background: The Halo Model

- Dark matter collapses into dark matter halos
- Galaxies live (only) in dark matter halos

The statistical properties of the galaxy field arise from properties of the halo distribution (cosmology) and how galaxies occupy halos (galaxy physics).

Berkeley Cosmology Seminar

Johannes Ulf Lange

Evolution of Modeling Non-Linear Scales

Analytic Halo Model

 $\xi_{mm}(r) + n_h(M_h) + b_h(M_h) + c(M_h) + \dots + N_g(M_h)$ \downarrow Observables

× Accuracy

x Assembly Bias

Johann<u>es Ulf Lange</u>

~ Cosmology

Mock Population

Observables

- Accuracy
- Assembly Bias
- **x** Cosmology

Multi-Cosmology Mock Population

The Naive Approach

Johannes Ulf Lange

Emulator or Surrogate Modeling

Johannes Ulf Lange

Berkeley Cosmology Seminar

Cosmological Evidence Approach

Johannes Ulf Lange

Application to Mock Data

Our new approach allows for more complex galaxy models while reducing modeling uncertainties by a factor of a few.

Johannes Ulf Lange

Growth Rate Constraints from Non-Linear Anisotropic Clustering

Redshift-Space Distortions (RSDs)

- small r_p: virialized motions of satellites (Fingers of God effect)
- medium to large r_p: coherent infall motions (Kaiser effect)
- Kaiser effect can be used to infer structure growth rate (and test gravity)

16

Johannes Ulf Lange

BOSS LOWZ Samples

Number of Galaxies: 2 x ~70,000 = 140,000 (~14% of BOSS)

Johannes Ulf Lange

Berkeley Cosmology Seminar

Johannes Ulf Lange

Velocity and Spatial Bias

- satellites follow analytical NFW profile, concentration can vary wrt dark matter: c_{sat} / c_{dm} = η
- satellite velocity dispersion calculated from Jeans equation
- additional central and satellite velocity bias: α_c , α_s

Halo Occupation Distribution

- standard HOD parametrization: $M_{min}, M_1, M_0, \sigma_{logM}, \alpha$
- central incompleteness f_{Γ} $\langle N_{\text{cen}} | M \rangle = \frac{f_{\Gamma}}{2} \left(1 + \operatorname{erf} \left[\frac{\log M - \log M_{\min}}{\sigma_{\log M}} \right] \right)$

$$\langle N_{\rm sat} | M \rangle = \left(\frac{M - M_0}{M_1}\right)^{\alpha}$$

• galaxy assembly bias via decorated HOD (Hearin et al., 2016): A_{cen}, A_{sat}

Velocity and Spatial Bias

- satellites follow analytical NFW profile, concentration can vary wrt dark matter: c_{sat} / c_{dm} = η
- satellite velocity dispersion calculated from Jeans equation
- additional central and satellite velocity bias: α_c , α_s

Mock Tests with SubHalo Abundance Matching²²

Berkeley Cosmology Seminar

Johannes Ulf Lange

Mock Cosmology Recovery

Johannes Ulf Lange

Application to BOSS Data

Johannes Ulf Lange

Growth Rate Constraints

Johannes Ulf Lange

Lensing is Low: A cosmological Tension?

S_{s} Tension: A Problem for Λ CDM?

Universe appears to have less structure than predicted by CMB+ Λ CDM. However, this finding is not statistically conclusive on large scales.

Johannes Ulf Lange

Berkeley Cosmology Seminar

S₈ Tension Manifestation: Lensing appears Low

Galaxy clustering + CMB+ Λ CDM makes precise predictions for lensing. Predictions do not agree with observations.

Johannes Ulf Lange

Berkeley Cosmology Seminar

Analyzing Lensing-is-Low with LOWZ

Johannes Ulf Lange

Berkeley Cosmology Seminar

Mass-Dependent Clustering

Johannes Ulf Lange

Berkeley Cosmology Seminar

Mass and Radial Scale Dependence

Lange+(in prep.)

32

We find the measured lensing amplitude to be consistently low on all scales and for all masses. Difficult to explain by modeling or observational systematics.

Johannes Ulf Lange

Future Directions: Combined Probes, DESI and more

Constraints on Gas Dynamics from SZ ³⁴

Johannes Ulf Lange

SZ Tightly Constrains Baryonic Feedback ³⁵

Johannes Ulf Lange

Putting it all Together

<u>Small-Scale RSD+Lensing+SZ</u>

- Cosmology, breaking $\Omega_m^ \sigma_8^-$ degeneracy
- Baryonic feedback, including impact on shear
 - General Relativity
 - Galaxy-Halo Connection

36

Johannes Ulf Lange

Galaxy-Galaxy Lensing in DESI

 ΔΣ physical quantity → same for different imaging surveys → empirical tests for lensing systematics

37

 Tests with BOSS compatible with no unknown systematics

Johannes Ulf Lange

Galaxy-Galaxy Lensing in DESI

- DESI will have more overlap, HSC/DES/KiDS more data → factor few better S/N
- Framework for unified
 - lensing analysis
- C3 lensing mock challenge

Johannes Ulf Lange

Summary

- We're in a new stage of fully simulation-based analysis of non-linear scales.
- Coming soon: High-precision growth rate constraints from BOSS LOWZ (Lange in prep.) and BOSS CMASS (Aemulus in prep.).
- Non-linear scales support idea that S_8 tension is a genuine cosmological tension. Future work could distinguish between σ_8 vs. Ω_m tension.
- Combined analysis of SZ+RSD+Lensing will probe baryonic feedback, gravity, cosmology and galaxy physics.
- For DESI, we will have higher S/N and more robust lensing measurements. Cosmological constraints from non-linear scales will be further tested.