Deterministic Execution

e 02/27 Ni Kang, Taihai He —

DMP: deterministic shared memory multiprocessing

- Summary

- DMP Key Mechanisms
DMP-Serial
Deterministic Token and Quantum
DMP-ShTab
DMP-TM/DMP-TMFwd
Quantum Builders

- Hardware/Sofeware Implementaions
- Evaluations
- Discussions

Background

- Nondeterminism

- Same inputs can lead to different outputs

- Too many possible ways of instruction interleaving
“Defective software might execute correctly hundreds of times before a subtle
synchronization bug appears, and when it does, developers typically cannot
reproduce it during debugging.”

- Need to use logs to record every execution

- Still hard to replay

Summary

- Determinism
- Key: deterministic inter-thread communication
- Maintain a fixed order of load/store operations on shared data
- Rest of the instructions can still have different orders in exectuions
- “"Communication-equivalent interleavings”

- Use deterministic execution to improve reliability

- Easier to test and debug
- Avoid subtle multithread bugs
- Always able to reproduce previous execution results

- Acceptable performance loss
- Multiple co-existable mechanisms for different applications
- Complexity-performance trade-offs between hardware and software

implementations

Nondeterminism Quantification

, ocsan-contig
1.07Me Y 1.0 o o
) i
50.8— s .8
= 0.7 0.7
0.6 0.6+
T 0.5 2 0.5
& 04 2 0.4-
0.3 0.3
0.2 0.2
0.1 0.1
Y | T T 1 Y T T T T 1
° % % % % % ° 4 % % % %
Time (Inens.) Time (Inanz.)

Figure 3. Amount of nondeterminism over the execution
of barnes and ocean-contig. The x axis is the position in
the execution where each sample of 100,000 instructions
was taken. The y axis is ND (Eq. 1) computed for each
sample in the execution.

e Existregions where nondeterminism drops to nearly zero.
e Executions may never reach 100% nondeterminism.

DMP-Serial

PO P1 PO P1 PO P1

T
3 S
Pm=s 7 2
. i c Vv

Parallel Deterministic serialized Deterministic serialized
execution execution at a fine-grain execution at a coarse-grain

Figure 4. Deterministic serialization of memory opera-

tions. Dots are memory operations and dashed arrows are
happens-before synchronization.

- DMP-Serial

- Fully serialized accesses to data
- Allow only one preocessor at a time to access memeory in a deterministic order

Deterministic Token and Quantum

- Deterministic token
- Processor with the token can access memory. Otherwise, wait for it.
- One token passing around. Multiple tokens are also allowed with hardware
implementation if there are multiple deterministic processes at the same time
- Quantum
- Instruction segments invloving shared data load/store that require token
- QB-Count: count instructions and break when a deterministic, target number is reached
- Other smarter ways to divide quantum, will introduce later
- Parallelism?
- Serilization hurts performance a lot

DMP-ShTab

thread ¢ about to

- Not all load/store operations have conflicts e i

- Communication is the key
. Y Aowned by t? N
- Quantum = communication-free prefix + serial suffix @

- Only requires suffixies to be deterministic

: : 2]
- Sharing table for memory locations ©
its for token
- Datais either private or shared for a processor : tw:' E,?Q;" .
or all other threads
- Supports different granularities procsed el
Wi e
- Fe d t ures aCCEStS set A private and Y
- Token is only required for accessing shared data ket i
- If one thread wants to write data, it needs to wait for SetAeh - ’
all other threads to be blocked even if it has already
acquired the token. (Broadcast) Figure 6. Deterministic serialization of shared memory

- . . communication only.
- Block: finish execution of quantum or prefix y

DMP-TM / DMP-TMFwd

- Transactional Memory Support
- Allowing more concurrent executions with speculations and re-executions

- DMP-TM
- Speculation + Commit + Squash

- Correctness: no overlapping memory accesses
- May squash and re-execute quantum when deterministic serialization is violated

- DMP-TMFwd

- DMP-TM + Forward
- Quantum can fetch uncommitted data from other quantum
- Avoid some squashes, but all subsequent quantum need to be squashed if previous

speculations generated incorrect data

Quantum Builders

- Afixed number of instructions may not reflect the progress of a thread on
its critical path of execution
- QB-SyncFollow

- Ends a quantum when an unlock operation is performed
- Other threads may be waiting for the lock right now

- QB-Sharing
- Ends a quantum when a thread hasn't issued memory operations to shared locations in
some time, like after a number of instructions
- Other threads don't need to keep waiting if current thread has already finished all of its
memory-sensitive operations
- QB-SyncSharing

- QB-SyncFollow OR QB-Sharing, whenever either of their requirements are satisfied

Hardware / Software Implementation

- Hardware: more complex, better performance (less performance drop)

- Quantum Building: may need supports from compilers

- DMP-ShTab
- Uses MESI cache coherence protocol to represent private / shared status
- State changing requirements: no speculation, must have token, all threads blocked
- Similar to directory-based cache coherence

- DMP-TM / DMP-TMFwd
- Allowing commit only when token is held
- Data versioning
- Similar to Thread-Level Speculation (TLS)

- Software: simple, helpful at debugging-level

- Use compiler or binary writer
- Build quantum with CFG
- Token =lock

runtime normalized to
non-deterministic parallel execution

Evaluation: mechanisms

(mHw-DMP-TMFwd @ Hw-DMP-TM 7 Hw-DMP-ShTab @ Hw-DMP-Serial |

ofl= Al [efle
-‘N (s] Oof| <o

3.0
[? \Im -] ry o] |
=~ " e

S | aS E N o

oy
L9

L

L0}
v'e
9t

€0t

2.0

1074816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4816 4 816 4 816

barnes cholesky fft(P) fmm lu-nc ocean-c(P) radix(P) virend water-sp SPLASH blacksch bodyir fluid strmcl PARSEC
gmean gmean

Figure 9. Runtime overheads with 4, 8 and 16 threads. (P) indicates page-level conflict detection; line-level otherwise.

Evaluation: quantum size

B Hw-DMP-TMFwd |—
g 40% & Hw-DMP-TM
g Hw-DMP-ShTab
g 20% B Hw-DMP-Serial [
€ :
g 0% 1
8 00
B 1 :
3 -40% / ’
[=% 1
'§ -60% H
&
@ -80%
& .
1W00% 5 xXCc 2XC 2XC 2XC 2XC
lu-nc virend SPLASH strmcl PARSEC
gmean gmean

Figure 10. Performance of 2,000 (2), 10,000 (X) and
100,000 (C) instruction quanta, relative to 1,000 instruc-
tion quanta.

Evaluation: granularity

500%
450%
400%
350%
300%
250%
200%
150%
100%
50%
0% 0 A =T
-50% i L . E ‘H
'1 moé @

B HW-DMP-TMFwd [
O Hw-DMP-TM —
Hw-DMP-ShTab

AAAAammuduCull U LR SRR RR R LR R |

AN —

% speedup over word-granularity

Figure 11. Performance of page-granularity conflict de-
tection, relative to line-granularity.

Evaluation: quantum builders

1802
, B Hw-DMP-TMFwd
160°% O Hw-DMP-TM
T 140 Hw-DMP-ShTab
§ @ Hw-DMP-Serial
120%

s sf ss s sf ss s sf ss s sf ss s sf ss s sf ss i
bames radix(P) SPLASH bodytr strmcl PARSEC -40% s sf ss s sf ss s sf ss s sf ss s sf ss s sf ss
gmean gmean barnes radix(P) SPLASH bodytr strmcl PARSEC
gmean gmean

Figure 12. Performance of QB-Sharing (s). QB-
SyncFollow (sf) and QB-SyncSharing (ss) quantum
builders, relative to QB-Count, with 1,000-insn quanta.

Figure 13. Performance of quantum building schemes,
relative to QB-Count, with 10,000-insn quanta.

Evaluation

Hw-DMP Implementation — 1,000-insn quanta QB Strategy — 10.000-insn quantat
™ ShTab
Line Page Line Page SyncFollow [Sharing [[SyncSharing
RW [% |RIW|[% 9% Q % Q Avg. | % ||Avg.[% ||Ave.| %
set |conf.| set |conf.|[overlap| overlap Q |sync|| Q |shr|| Q | sync
Benchmark SZ. SZ. sz. |brk. || sz. |brk.|| sz. | brk.
barnes 27/9 | 37 [92 | 64 47 46 5929 | 42 [|4658| 67 ||5288| 54
cholesky 14/6 | 23 | 3/1 | 39 31 38 6972 | 30 [|3189] 94 ||6788| 35
fft 22/16(25 | 3/4 | 26 19 39 0822 | 1 [|3640| 62 ||4677| 49
fmm 30/6 | 51 [7/1 | 69 33 29 8677 | 15 [|4465| 65 ||5615| 50
lu-nc 47/33|1 71 | &4 | 77 14 16 7616 | 24 [[6822] 37 [|6060| 42
ocean-c 46/15| 28 [52 | 34 5 46 5396 | 49 ([3398| 73 [|3255]| 73
radix 1620 7 | 3/7| 13 31 42 8808 | 15 ([3346| 71 [|4837| 57
virend 27/8 | 38 [7/1 | 50 41 39 7506 | 28 ||7005| 45 ||6934| 38
water-sp 3219 19 | 5/1 | 45 40 37 7198 | 5 ||5617] 30 ||6336]| 20
[| SPLASH amean|[30/16] 31 [52] 44 || 29 | 35 [| 7209 | 27 [|4987] 57 [[5363| 48 ||
blacksch 2809 | 8 [14/1] 10 48 48 10006 <1 [[9163] 10 [[9488] 7
bodytr 11/4) 16 | 3/2 | 28 39 19 7979 | 25 [|7235(31 ||6519(37
fluid 41/8 1 76 | &2 | 75 43 40 871 | 98 [|2481]| 95 || 832 | 99
strmcl 36/5| 28 [10/2] 91 60 12 9893 | 1 |[|1747| 79 ||2998| 77
[TPARSEC amean|[29/6 | 36 | O/1 | 51 || 45 | 30 [7228] 19 ||5156] 54 [|3880] & ||

Table 1. Characterization of hardware-DMP results. § Same granularity as
used in Figure 9
S

NNNNN

NN ////////////////////

M 2 threads
[4 threads
8 threads

|

water-sp SPLASH

OO

NNNNN

SNNNNNNNNNN

[OO0

i

[NN

ONNNNN

3 SN NN NN

NN

NODONNNNNNN

ﬂ/ﬂ-//v NNNNNNNNN

112 |

S v o
w I~

0
r~ ©

8.5

S & 1 O
o O -t

(3]
uonnoaxa |gered onsius)apu

[

<
< ©
ou

0} pszjjewou swuni ge Lys-dina-ms

Evaluation
software implmentation

o o o
o N o

1.0~

i.

radix

lu-c

barnes

gmean

Figure 14. Runtime of Sw-DMP-ShTab

relative to nondeterministic execution.

Discussions

e A system can have DMP-TM(Fwd) / DMP-ShTab / DMP-Serial at the same
time and switch to each other for different tasks

e Hardware and software implmentations can be used together to have
fliexiblity

e Supports deployment with modification and standardization

Grace: Safe Multithreaded Programming for C/C++

Motivation

e Concurrency bugs

Concurrency Error Cause Prevention by Grace

Deadlock cyclic lock acquisition locks converted to no-ops

Race condition unguarded updates all updates committed deterministically
Atomicity violation unguarded, interleaved updates threads run atomically

Order violation threads scheduled in unexpected order threads execute in program order

Table 1. The concurrency errors that Grace addresses, their causes, and how Grace eliminates them.

Motivation

e Transactional memory system is not working here
- Compatibility with C/C++ and commodity hardware
- Support for long-lived transactions

- Isolation of updates from other threads

- Support for irrevocable actions (i.e. I/0)

- Low runtime and space overhead

Introduction

e Treating threads as processes
- Use memory mapped files to share the heap and globals across processes
- Version numbers

Introduction

Globals

Heap Organization
Fixed size heap
Sub-heap

Execution -- Initialization

void atomicBegin (wvoid) {
// Roll back to here on abort.
// Saves PC, registers, stack.
context.commit () ;
// Reset pages seen (for signal handler).
pages.clear();
// Reset global and heap protection.
globals.begin();
heap.begin();

Figure 4. Pseudo-code for atomic begin.

Execution

committed (shared) pages & version numbers uncommitted (private) pages T

SEENEEEE g
EEEEE o ¢

protected .
read-only [--EI.- a0
mmoE. o

unprotected .

(copy-on-write) -
Vv E

L R ——
------------- enda--.---..----

Execution -- Committing

e Locks are needed (mapping files)

e |f version numbers for every page in the read set match the committed
versions — Commit

e FElse — Rollback

Sequential Commit

e Post-order traversal

© OO O

Postorder Traversal: 4526731

Evaluation -- Concurrency Errors

Deadlocks

// Deadlock.
threadl () {

}

lock (A);

// usleep();

lock (B);

// ...do something
unlock (B);

unlock (A);

thread2 () {

lock (B);

// usleep/();

lock (A);

// ...do something
unlock (A);

unlock (B);

Evaluation -- Concurrency Errors

Race conditions

// Race condition.
int counter = 0;

increment () {
print (counter);
int temp = counter;
temp++;
// usleep();
counter = temp;
print (counter);

}

threadl() { increment(); }
thread2 () { increment(); }

}

Evaluation -- Concurrency Errors

e Atomicity violations

// Atomicity violation.
// threadl
Sl: if (thd->proc_info) {
// usleep();
52: fputs (thd->proc_info,..)
}

// thread2
S3: thd->proc_info = NULL;

Evaluation -- Concurrency Errors

e Order violations

// Order violation.
char * proc_info;

threadl () {
Vi -
// usleep();
proc_info = malloc (256);

}

thread2 () {
1r = sw
strcpy (proc_info, "abec");

}

main () {
spawn threadl ();
spawn thread2();
}

// Order violation.
int foo;

threadl () {
foo = 0;

}

main () {
S1l: spawn threadl ();
// usleep();
S2: foo = 1;
A

assert (foo == 0);

Evaluation -- Real Applications

(average per atomic region)

Benchmark Description Commits Rollbacks Pages Read Pages Written Runtime (ms)
histogram Analyzes images’ RGB components 9 0 b 5.9 1512.3
kmeans Iterative clustering of 3-D points 6273 4887 404.5 2.3 8.7
linear_regression Computes best fit line for set of points 9 0 5.6 4.8 1024.0
matmul Recursive matrix-multiply 11 0 4100 1865 2359.4
pca Principal component analysis on matrix 22 0 3.1 22 0.204
string_match Searches file for encrypted word 11 0 5.9 4.3 191.1

Table 2. CPU-intensive multithreaded benchmark suite and detailed characteristics (see Section 5.1).

Evaluation -- Real application

e Thread-creation hoisting / argument padding
e Page-size base case
e Changed concurrency structure

Evaluation -- Real application

CPU-intensive benchmarks

m pthreads o Grace

Evaluation -- Application Characteristics

e Grainsize

(a) Impact of grain size (speedup) (b) Impact of grain size (normalized to pthread)
10 T T T T T T T T T T T T T T T T T T
Grace —+— 14 Grace —+— _|
S pthread ---x--- pthread ---x---
3
3 12 -
: £
2 s 1 % ¥ e -
= 2 1 el
a :
08 -
g 3
2 g osf 4
8 4
o E oaf .
=z
i 02 .
»
0 L 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024
Thread length (ms) Thread Execution Length (ms)

Figure 10. Impact of thread running time on performance: (a) speedup over a sequential version (higher is better), (b)
normalized execution time with respect to pthreads (lower is better).

Evaluation -- Application Characteristics

e Footprint

(a) Impact of footprint (speedup) (b) Impact of footprint (normalized to pthread)
9 T T v - 4 v v r
: 3 ' : Grace: thread size (10ms) - '

S sl o | 35 L Grace: thread size (50ms) ---x--- d
=1 Thread Size: 200ms : Grace: thread size (200ms) ---%:--
e 7 g pthread ---8---
B g 3r
S
£ 6 § 25
5 5
3 5 8
g 8 =
< 4 Thread Size: 10ms *.
2 * ¥ ke ; X) § 15 F
© 3L = &
& Grace (10ms) —+— g)
3 2 pthread (10ms) --- 5 18 CCTTI TR | L SR |

B Grace (50ms) - Z
i pthread: (50ms) - 05 L N
o BT Grace: (200ms) --m-— -

pthread: (200ms) ---©--
0 n 1 " 1 n 1 n 1 L 0 1 1 n 1 n 1 n 1 n
1 4 16 64 256 1024 1 4 16 64 256 1024
Number of pages dirtied (in logscale) Number of pages dirtied (in logscale)

Figure 11. Impact of thread running time on performance: (a) speedup over a sequential version (higher is better), (b)
normalized execution time with respect to pthreads (lower is better).

Evaluation -- Application Characteristics

Impact of Conflict Rate

e Conflict rate

Speedup

1 1] 1
0 20 40 60 80 100

Conflict Rate (%)

Figure 12. Impact of conflict rate (the likelihood of con-
flicting updates, which force rollbacks), versusapthreads
baseline that never rolls back (higher is better).

Thank you!

