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Overview When do we Use IV?
• Concerns of endogeneity i.e., when 𝑇 is 

correlated with the error term (𝑈)
• So, we find a variable (𝑍) that is correlated with 

the predictor variable of interest (𝑇), but is not 
correlated with the error term (𝑈)

Simple IV estimation is like…
• 𝑍: instrument
• 𝑇: treatment
• 𝑌: outcome
• 𝑈: confounding variables (unobserved)

𝑍

𝑇

𝑌
𝑈
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Example: Do Charter Schools students have 
better quality education?

Does attending a 
charter school lead 
to better educational 
outcomes?
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Source: https://mru.org/courses/mastering-econometrics/introduction-instrumental-variables-part-one

371 
applied

253
won

199 
enrolled

54
declined

118
lost

5 
enrolled

113 
didn’t attend

Random

Not Random



Calculating the treatment effect

Winning 
Lottery

Charter 
Attendance

Math 
Scores
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Instrument

First stage: Effect of 
winning on 
attendance

Second stage: Effect of 
attendance Math 

Scores

Reduced form: Effect of 
winning on scores

Source: https://mru.org/courses/mastering-econometrics/introduction-instrumental-variables-part-one



Calculating the treatment effect

Effect of 
winning on 
attendance

Effect of 
attendance on 

scores

Effect of 
winning on 
math score
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First stage Second stage Reduced form

Effect of winning on scores = scores of winners –
scores of loser

Effect of winning on attendance = % of winners 
who attend  - % of losers who attend

Source: https://mru.org/courses/mastering-econometrics/introduction-instrumental-variables-part-one



Calculating the treatment effect

Effect of 
winning on 
attendance

Effect of 
attendance on 

scores

Effect of 
winning on 
math score
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First stage Second stage Reduced form

Effect of winning on scores = scores of winners –
scores of loser

Effect of winning on attendance = % of winners 
who attend  - % of losers who attend

Source: https://mru.org/courses/mastering-econometrics/introduction-instrumental-variables-part-one

0.36𝜎 𝑔𝑖𝑣𝑒𝑛

(199/253)	– (5/118)		=	0	.74
0.48𝜎



Calculating the treatment effect

Effect of 
winning on 
attendance

Effect of 
attendance on 

scores

Effect of 
winning on 
math score
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First stage Second stage Reduced form

Source: https://mru.org/courses/mastering-econometrics/introduction-instrumental-variables-part-one

These estimates are for kids 
opting into the lottery, 
whose enrollment status is 
changed by winning. That's 
not necessarily a random 
sample of all children



Angrist & Imbens (1991, NBER)
Later published in Econometrica (1995)
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Angrist & Imbens (1995)
• Use of instrumental variables (IV) to estimate LATEs, i.e., average 

treatment effect for individuals who would only receive treatment if 
they complied with the treatment
• Helps in identifying the ATE when there is no group available for 

whom the probability of treatment is zero
• This is done for individuals whose treatment status is influenced by 

changing an exogeneous regressor that satisfies the exclusion 
restriction
• The incentives for participation are randomized, not the participation 

status itself
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Condition 1:  Existence of Instruments

𝑍

𝑇

𝑌
𝑈
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1. Relevance: 𝑍 has a causal effect on 𝑇
2. Exclusion Restriction: The causal effect of 𝑍 on 

𝑌 is only through 𝑇 (no direct path from 𝑍 to 𝑇)
3. Instrumental Unconfoundedness: No 

unblockable paths from 𝑍 to 𝑌
• If there is a backdoor path (observed W), you can condition 

on it. Making 𝑍 a conditional instrument



Non parametric Identification of Local ATE

Potential Outcomes when 
treatment takes values 0 or 1
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Potential Treatments (under the 
instrument) when you intervene on 
instrument Z {0,1}

Potential Outcomes when we are 
intervening on the instrument 
(instead of the treatment)

Y T = 1 Y T = 0 or 𝑌 0 Y 1

𝑇 𝑍 = 1 𝑇 𝑍 = 0 𝑜𝑟 𝑇 1 𝑇(0)

Y Z = 1 Y Z = 0

Content source: Brady Neal, Intro to Causal Inference



Principal Strata

Compliers: Who always take the treatment they are assigned (Z)
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T Z = 1 = 1, 𝑇 Z = 0 = 0

Content source: Brady Neal, Intro to Causal Inference

T Z = 1 = 0, 𝑇 Z = 0 = 1

T Z = 1 = 1, 𝑇 Z = 0 = 1

T Z = 1 = 0, 𝑇 Z = 0 = 0

Defiers: Who always take the treatment they are NOT assigned

Always Takers: Who ALWAYS take the treatment irrespective of 
assignment

Never Takers: Who NEVER take the treatment irrespective of 
assignment



The Monotonicity Assumption (No Defiers)
Condition 2, according to Angrist and Imbens

For every individual i, the value of treatment they would 
take, given that they are given encouragement (Z=1), is 
greater than or equal to the value they would take if (Z=0)
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∀!, 𝑇! Z = 1 ≥ 𝑇! Z = 0

Content source: Brady Neal, Intro to Causal Inference



Derivation

• 𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 =
𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 1 , 𝑇 0 = 0 𝑃 𝑇 1 = 1, 𝑇 0 = 0

+ 𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 0 , 𝑇 0 = 1 𝑃 𝑇 1 = 0, 𝑇 0 = 1
+ 𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 1 , 𝑇 0 = 1 𝑃 𝑇 1 = 1, 𝑇 0 = 1
+ 𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 0 , 𝑇 0 = 0 ]𝑃(𝑇 1 = 0, 𝑇 0 = 0)

= 𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 1 , 𝑇 0 = 0 ∗ 𝑃(𝑇 1 = 1, 𝑇 0 = 0)
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Compliers
Defiers
Always Takers
Never Takers

Content source: Brady Neal, Intro to Causal Inference

Treatment effect only for compliers



Derivation

𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 1 , 𝑇 0 = 0 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠
𝔼 𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 𝑇 1 = 1 , 𝑇 0 = 0

because	we	are	considering	only	compliers.	F
or	them	when	Z=1	=>	T=1	&	when	Z=0		=>	T	=0

Therefore,	
• 𝔼 𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 𝑇 1 = 1 , 𝑇 0 = 0 = 

18Content source: Brady Neal, Intro to Causal Inference

𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0

𝑃(𝑇 1 = 1, 𝑇 0 = 0)

Local Average Treatment (LATE) or 
Complier Average Causal Effect (CACE)



Derivation

𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 1 , 𝑇 0 = 0 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠
𝔼 𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 𝑇 1 = 1 , 𝑇 0 = 0

because	we	are	considering	only	compliers.	F
or	them	when	Z=1	=>	T=1	&	when	Z=0		=>	T	=0

Therefore,	
• 𝔼 𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 𝑇 1 = 1 , 𝑇 0 = 0 = 

19Content source: Brady Neal, Intro to Causal Inference

𝔼 𝑌|𝑍 = 1] − 𝔼[𝑌|𝑍 = 0

𝑃[𝑇 1 = 1, 𝑇 0 = 0)]

Local Average Treatment (LATE) or 
Complier Average Causal Effect (CACE)

Changed 
associational 
difference because of 
assumption of IV 
unconfoundedness

Probability of being a 
complier



Derivation

𝔼 𝑌 𝑍 = 1 − 𝑌 𝑍 = 0 𝑇 1 = 1 , 𝑇 0 = 0 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠
𝔼 𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 𝑇 1 = 1 , 𝑇 0 = 0

because	we	are	considering	only	compliers.	F
or	them	when	Z=1	=>	T=1	&	when	Z=0		=>	T	=0

Therefore,	
• 𝔼 𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 𝑇 1 = 1 , 𝑇 0 = 0 = 

21Content source: Brady Neal, Intro to Causal Inference

𝔼 𝑌|𝑍 = 1] − 𝔼[𝑌|𝑍 = 0

Local Average Treatment (LATE) or 
Complier Average Causal Effect (CACE)

You can quantify this 
as the probability of 
(1- non compliers) & 
then use the 
monotonicity 
assumption to 
quantify from 
observational data

𝔼 𝑌|𝑇 = 1] − 𝔼[𝑌|𝑇 = 0



Derivation

22Content source: Brady Neal, Intro to Causal Inference

𝔼 𝑌|𝑍 = 1] − 𝔼[𝑌|𝑍 = 0

Local Average Treatment (LATE) 𝔼 𝑌|𝑇 = 1] − 𝔼[𝑌|𝑇 = 0
𝔼 𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 𝑇 1 = 1 , 𝑇 0 = 0

Wald’s Estimand



Limitations

• Condition of monotonicity is not always satisfied
• We get estimates only for compliers, we might be interested in the 

broader group
• We might not be sure who the compliers are – then we cannot be 

sure of who the LATE affects
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Syrgkanis et al. (2019)
“Machine Learning Estimation of Heterogeneous Treatment Effects with 
Instruments,” Advances in Neural Information Processing Systems, 32.
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Overview

Simple IV estimation is like…
• 𝑍: instrument
• 𝑇: treatment
• 𝑌: outcome
• 𝑈: confounding variables (unobserved)

𝑍

𝑇

𝑌
𝑈
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Overview

In this paper…
• 𝑍: instrument
• 𝑇: treatment
• 𝑌: outcome
• 𝑈: confounding variables (unobserved)
• 𝑋: confounding variables (observed) can 

affect 𝑍, 𝑇, 𝑌, and treatment effect

𝑍

𝑇

𝑌

𝑋

𝑈
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Overview

• Want to estimate CATE = 𝐸 𝑌5 − 𝑌6|𝑋 .
e.g. If we want our customers to spend more time 

on our website, what kind of customers 
should we approach?

• How can we deal with 𝑋?
• How can we deal with 𝑈?
• Want to use flexible models.
• But we’re afraid of estimation errors.
• Want to interpret the estimation.

𝑍

𝑇

𝑌

𝑋

𝑈
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Time spent on website

Member-
ship

Offer easier sign-up form
for membership or not

Customer’s
characteristics

Image source: https://www.tripadvisor.com/



Overview
• Want to estimate CATE = 𝐸 𝑌! − 𝑌"|𝑋 .

→ DRIV (proposed in this paper): general algorithm to 
estimate CATE using IV.

• How can we deal with 𝑋?
→ Condition on 𝑋 (block the path 𝑍- 𝑋- 𝑌).

• How can we deal with 𝑈?
→ IV estimation.

• Want to use flexible models.
→ DRIV can accommodate ML.

• But we’re afraid of estimation errors.
→ DRIV is doubly robust.

• Want to interpret the estimation.
→ DRIV can incorporate interpretable models.

𝑍

𝑇

𝑌

𝑋

𝑈
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How it works

DRIV: two-step optimization
1. Make a preliminary estimate for CATE
2. Make it more robust to estimation errors

𝑍

𝑇

𝑌

𝑋

𝑈
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First step

• Make a preliminary estimate for CATE 𝜃789
by minimizing the loss:
𝐿] 𝜃 = 𝐸 𝑌 − '𝑞 𝑋 − 𝜃 𝑋 *ℎ 𝑍, 𝑋 − �̂� 𝑋

^
𝑍

𝑇

𝑌

𝑋

𝑈

30

_𝑞(𝑋)

�̂�(𝑋)

dℎ(𝑍, 𝑋)

𝜃(𝑋)



First step

• Make a preliminary estimate for CATE 𝜃789
by minimizing the loss:
𝐿] 𝜃 = 𝐸 𝑌 − '𝑞 𝑋 − 𝜃 𝑋 *ℎ 𝑍, 𝑋 − �̂� 𝑋

^

• You can use ML to estimate these 
conditional means.

𝑍

𝑇

𝑌

𝑋

𝑈
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_𝑞(𝑋)

�̂�(𝑋)

dℎ(𝑍, 𝑋)

𝜃(𝑋)

*𝐸 𝑌 𝑋 *𝐸 𝑇 𝑍, 𝑋 *𝐸 𝑇 𝑋



First step (cont’d)

Where did 𝐿5 𝜃 come from?
→ Moment condition:

𝐸 𝑒|𝑍, 𝑋 = 0

Suppose the true model is:
𝑌 = 𝜃g 𝑋 𝑇 + 𝑓g 𝑋 + 𝑒

Let
ℎg 𝑍, 𝑋 = 𝐸 𝑇|𝑍, 𝑋

…
𝜃 𝑋 satisfying the moment condition is 
equivalent to the minimizer of 𝐿] 𝜃

𝑍

𝑇

𝑌

𝑋

𝑈
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_𝑞(𝑋)

�̂�(𝑋)

dℎ(𝑍, 𝑋)

𝜃(𝑋)



First step (cont’d)
𝐿] 𝜃 = 𝐸 𝑌 − '𝑞 𝑋 − 𝜃 𝑋 *ℎ 𝑍, 𝑋 − �̂� 𝑋

^

Pros:
• Robust to estimation errors in '𝑞 𝑋 and �̂� 𝑋
• Easy to minimize because of convexity

Cons:
• NOT robust to estimation errors in *ℎ 𝑍, 𝑋 → 2nd step

𝑍

𝑇

𝑌

𝑋

𝑈
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_𝑞(𝑋)

�̂�(𝑋)

dℎ(𝑍, 𝑋)

𝜃(𝑋)
Concept of Neyman orthogonality:

h
𝜕
𝜕𝑡 𝐿

! 𝜃" + 𝑡𝑞
#$"

= 0𝜃"

𝜃" + 𝑡𝑞

𝑋



Second step

• Make an estimate for CATE 𝜃 by minimizing 
the loss:

𝐿^ 𝜃 = 𝐸 𝜃mno +
6𝑌 − 𝜃mno 6𝑇 6𝑍

7𝛽 𝑋
− 𝜃 𝑋

^
𝑍

𝑇

𝑌

𝑋

𝑈

34

_𝑞(𝑋)

�̂�(𝑋)

p𝑓(𝑋)

𝜃(𝑋)

�̂�(𝑋)



Second step

• Make an estimate for CATE 𝜃 by minimizing 
the loss:

𝐿^ 𝜃 = 𝐸 𝜃mno +
6𝑌 − 𝜃mno 6𝑇 6𝑍

7𝛽 𝑋
− 𝜃 𝑋

^
𝑍

𝑇

𝑌

𝑋

𝑈
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_𝑞(𝑋)

�̂�(𝑋)

p𝑓(𝑋)

𝜃(𝑋)

�̂�(𝑋)

Preliminary estimate
from step 1



Second step

• Make an estimate for CATE 𝜃 by minimizing 
the loss:

𝐿^ 𝜃 = 𝐸 𝜃mno +
6𝑌 − 𝜃mno 6𝑇 6𝑍

7𝛽 𝑋
− 𝜃 𝑋

^
𝑍

𝑇

𝑌

𝑋

𝑈

36

_𝑞(𝑋)

�̂�(𝑋)

p𝑓(𝑋)

𝜃(𝑋)

�̂�(𝑋)

Preliminary estimate
from step 1

𝑌 − *𝐸 𝑌 𝑋 𝑇 − *𝐸 𝑇 𝑋 𝑍 − *𝐸 𝑍 𝑋



Second step

• Make an estimate for CATE 𝜃 by minimizing 
the loss:

𝐿^ 𝜃 = 𝐸 𝜃mno +
6𝑌 − 𝜃mno 6𝑇 6𝑍

7𝛽 𝑋
− 𝜃 𝑋

^
𝑍

𝑇

𝑌

𝑋

𝑈
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_𝑞(𝑋)

�̂�(𝑋)

p𝑓(𝑋)

𝜃(𝑋)

�̂�(𝑋)

Preliminary estimate
from step 1

𝑌 − *𝐸 𝑌 𝑋 𝑇 − *𝐸 𝑇 𝑋 𝑍 − *𝐸 𝑍 𝑋

*𝐸 𝑇𝑍|𝑋 − *𝐸 𝑇 𝑋 *𝐸 𝑍|𝑋



Second step

• Make an estimate for CATE 𝜃 by minimizing 
the loss:

𝐿^ 𝜃 = 𝐸 𝜃mno +
6𝑌 − 𝜃mno 6𝑇 6𝑍

7𝛽 𝑋
− 𝜃 𝑋

^
𝑍

𝑇

𝑌

𝑋

𝑈

38

_𝑞(𝑋)

�̂�(𝑋)

p𝑓(𝑋)

𝜃(𝑋)

�̂�(𝑋)

Doubly robust estimator



Doubly robust approach

• AIPW = Augmented Inverse-Propensity Weighting
• Combine two estimators:

1. Inverse-Propensity Weighting: 𝐸 rs
o t − ]ur s

]uo t
2. Regression-based: 𝐸 𝑌|𝑇 = 1, 𝑋 − 𝐸 𝑌|𝑇 = 0, 𝑋

• Consistent if either 𝑒 𝑋 or 𝐸 𝑌|𝑇 = 𝑡, 𝑋 is correct ⟹ Doubly robust

• 𝐿: 𝜃 = 𝐸 𝜃789 +
;<=>!"# ;? ;@
AB C

− 𝜃 𝑋
:

: robust to error in 3𝛽 𝑋

39

Regression IPW



Second step (cont’d)

𝐿^ 𝜃 = 𝐸 𝜃mno +
6𝑌 − 𝜃mno 6𝑇 6𝑍

7𝛽 𝑋
− 𝜃 𝑋

^

Pros:
• Robust to estimation errors in �̂�(𝑋), '𝑞 𝑋 , �̂�(𝑋), 
7𝛽 𝑋 , and 𝜃mno

• Easy to minimize because of convexity
• Enables interpretable 𝜃 𝑋

Cons:
• Second order impact from 𝜃mno?

𝑍

𝑇

𝑌

𝑋

𝑈
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_𝑞(𝑋)

�̂�(𝑋)

p𝑓(𝑋)

𝜃(𝑋)

�̂�(𝑋)



Second step (cont’d)

𝐿^ 𝜃 = 𝐸 𝜃mno +
6𝑌 − 𝜃mno 6𝑇 6𝑍

7𝛽 𝑋
− 𝜃 𝑋

^

Why does this enable interpretable 𝜃 𝑋 ?
→ We can choose hypothesis space ΘD

𝑍

𝑇

𝑌

𝑋

𝑈

41

_𝑞(𝑋)

�̂�(𝑋)

p𝑓(𝑋)

𝜃(𝑋)

�̂�(𝑋)

Θ

Θv? *𝜃wx

? 𝜃g



Takeaways

• Proposed approach = DRIV (Doubly Robust IV?)
• Eliminate bias through IV estimation
• Utilize power of machine learning
• Doubly robust approach to fight against estimation errors
• Can produce interpretable results
• Two-step optimization
• 1st step: preliminary estimate for CATE
• 2nd step: make it more robust and interpretable

42



Demonstration

• Synthetic data:
• DRIV correctly estimated ATE and CATE
• Estimate by DMLATEIV (Chernozhukov et al. [2018]) is more biased
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Demonstration (cont’d)
• TripAdvisor data
• 𝑍: A/B test assignment for membership 

sign-up process
• 𝑇: becoming a member
• 𝑌: # of days a user visits TripAdvisor
• 𝑋: 28-day pre-experiment summary 

about browsing and purchasing activity
• ΘD: linear functions
• Implication:
• More approach to users with high 

“days_visited_vrs_pre”
• Improve approach to users with high 

“revenue_pre”
44

From Figure 1 of Syrgkanis et al. (2019)

Image source: https://www.tripadvisor.com/
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