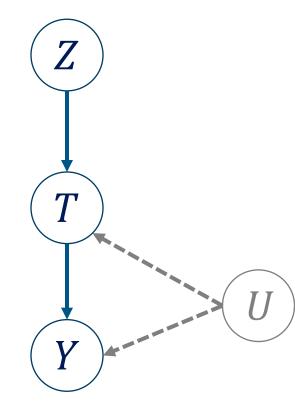
Instrumental Variable for Causal Effects

Paper review on Angrist & Imbens (1995), and Syrgkanis et al. (2019)

Presenters: Sakina Dhorajiwala (M. International Development Policy) Shota Miki (M.S. Economics & Computation)

Outline

- Angrist and Imbens (1995)
 - What is IV & When do we use it?
 - Example of American Charter Schools
 - Using IV to estimate LATE
- Syrgkanis et al. (2019)
 - Overview of DRIV
 - How it works
 - Demonstration



When do we Use IV?

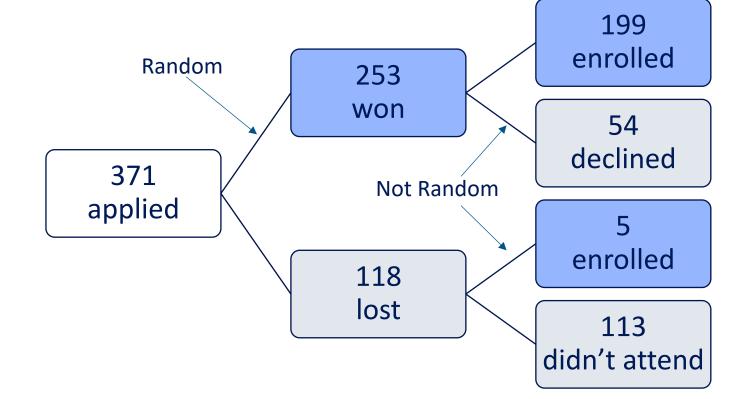
- Concerns of endogeneity i.e., when T is correlated with the error term (U)
- So, we find a variable (Z) that is correlated with the predictor variable of interest (T), but is not correlated with the error term (U)

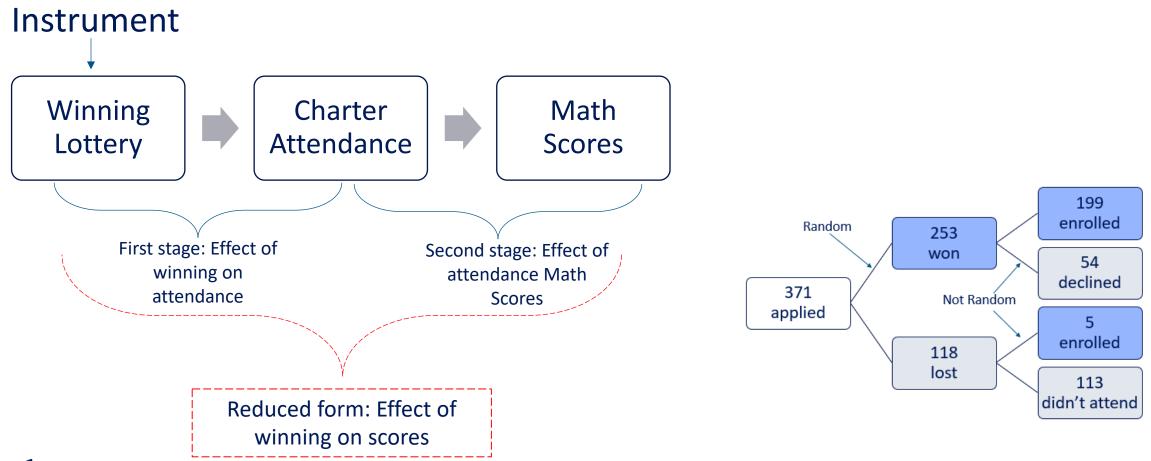
Simple IV estimation is like...

- Z: instrument
- *T* : treatment
- *Y*: outcome
- *U*: confounding variables (unobserved)

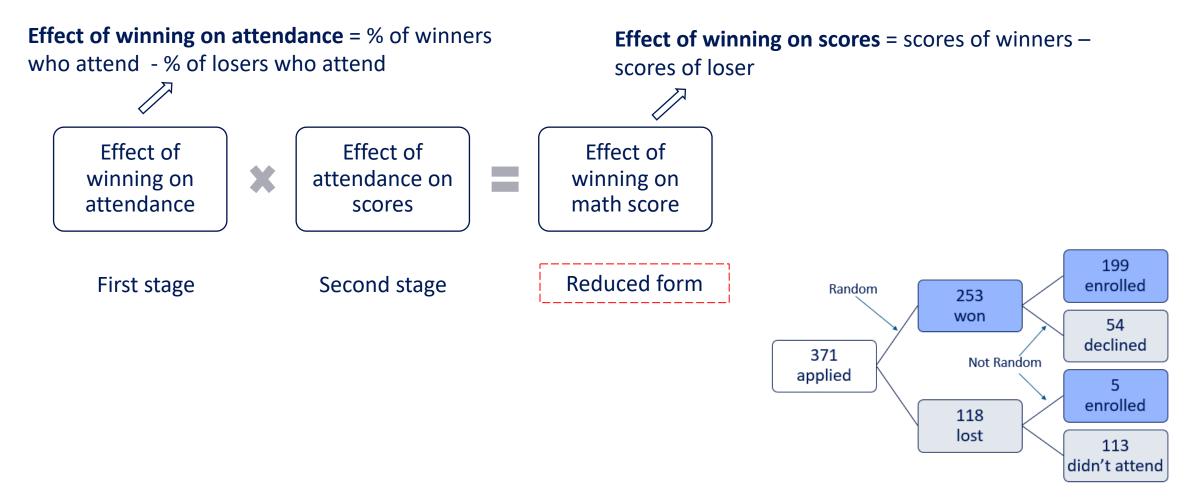
Example: Do Charter Schools students have better quality education?

Does *attending* a charter school lead to better educational outcomes?





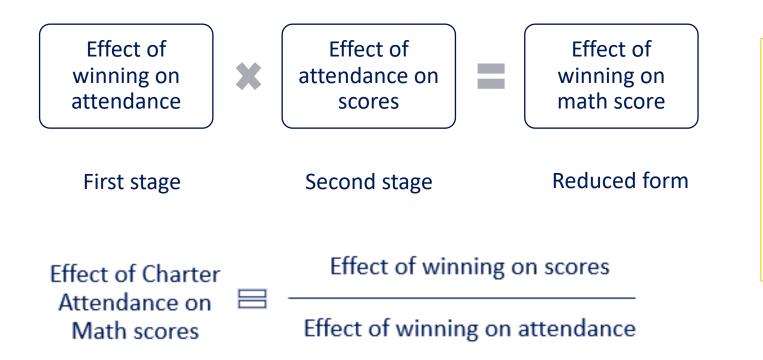
Duke



Duke

Effect of winning on attendance = % of winners Effect of winning on scores = scores of winners – who attend - % of losers who attend scores of loser 199 enrolled Random 253 Effect of Effect of Effect of won 54 X winning on attendance on winning on declined 371 Not Random attendance math score scores applied 5 enrolled 118 lost **Reduced form** First stage Second stage 113 didn't attend Effect of winning on scores 0.36*σ* (*given*) Effect of Charter 0.48σ Attendance on (199/253) - (5/118) = 0.74Math scores Effect of winning on attendance

Duke



These estimates are for kids opting into the lottery, whose enrollment status is changed by winning. That's not necessarily a random sample of all children

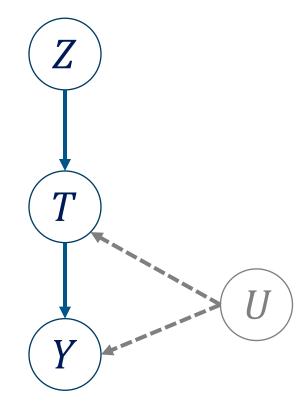
Angrist & Imbens (1991, NBER)

Later published in Econometrica (1995)

Angrist & Imbens (1995)

- Use of instrumental variables (IV) to estimate LATEs, i.e., average treatment effect for individuals who would only receive treatment if they complied with the treatment
- Helps in identifying the ATE when there is no group available for whom the probability of treatment is zero
- This is done for individuals whose treatment status is influenced by changing an exogeneous regressor that satisfies the exclusion restriction
- The incentives for participation are randomized, not the participation status itself

Condition 1: Existence of Instruments



- 1. Relevance: *Z* has a causal effect on *T*
- 2. Exclusion Restriction: The causal effect of Z on Y is only through T (no direct path from Z to T)
- 3. Instrumental Unconfoundedness: No unblockable paths from Z to Y
 - If there is a backdoor path (observed W), you can condition on it. Making Z a conditional instrument

Non parametric Identification of Local ATE

Y(T = 1) Y(T = 0) or Y(0) Y(1)

Potential Outcomes when treatment takes values 0 or 1

$$T(Z = 1) T(Z = 0) \text{ or } T(1) T(0)$$

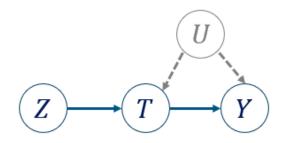
Y(Z = 1) Y(Z = 0)

Potential Treatments (under the instrument) when you intervene on instrument Z {0,1}

Potential Outcomes when we are intervening on the instrument (instead of the treatment)

Ζ

Principal Strata



T(Z = 1) = 1,	$T(\mathbf{Z}=0)=0$	Compliers : Who always take the treatment they are assigned (Z)
T(Z = 1) = 0,	T(Z = 0) = 1	Defiers : Who always take the treatment they are NOT assigned
T(Z = 1) = 1,	T(Z = 0) = 1	Always Takers : Who ALWAYS take the treatment irrespective of assignment
T(Z = 1) = 0,	$T(\mathbf{Z}=0)=0$	Never Takers : Who NEVER take the treatment irrespective of assignment

The Monotonicity Assumption (No Defiers)

Condition 2, according to Angrist and Imbens

For every individual i, the value of treatment they would $\forall_i, T_i(\mathbb{Z}=1) \geq T_i(\mathbb{Z}=0)$ take, given that they are given encouragement (Z=1), is greater than or equal to the value they would take if (Z=0) T(Z = 1) = 1, T(Z = 0) = 0**Compliers**: Who always take the treatment they are assigned (Z) Defiers: Who always take the treatment they are NOT assigned T(Z - 1) = 0T(Z = 0) = 1Always Takers: Who ALWAYS take the treatment irrespective of T(Z = 1) = 1, T(Z = 0) = 1assignment Never Takers: Who NEVER take the treatment irrespective of T(Z = 1) = 0, T(Z = 0) = 0assignment

•
$$\mathbb{E}[Y(Z=1) - Y(Z=0)] =$$

 $\mathbb{E}[Y(Z=1) - Y(Z=0)|T(1) = 1, T(0) = 0)P(T(1) = 1, T(0) = 0)$ Compliers
+ $\mathbb{E}[Y(Z=1) - Y(Z=0)|T(1) = 0, T(0) = 1)P(T(1) = 0, T(0) = 1)$ Defiers
+ $\mathbb{E}[Y(Z=1) - Y(Z=0)|T(1) = 1, T(0) = 1)P(T(1) = 1, T(0) = 1)$ Always Takers
+ $\mathbb{E}[Y(Z=1) - Y(Z=0)|T(1) = 0, T(0) = 0]P(T(1) = 0, T(0) = 0)$ Never Takers

$$= \mathbb{E}[Y(Z=1) - Y(Z=0)|T(1) = 1, T(0) = 0) * P(T(1) = 1, T(0) = 0)$$

$$\mathbb{E}[Y(Z=1) - Y(Z=0)|T(1) = 1, T(0) = 0) = \mathbb{E}[Y(Z=1) - Y(Z=0)]$$

$$P(T(1) = 1, T(0) = 0)$$

Treatment effect only for compliers

Duke

 $\mathbb{E}[Y(Z = 1) - Y(Z = 0)|T(1) = 1, T(0) = 0) \text{ can be written as}$ $\mathbb{E}[Y(T = 1) - Y(T = 0)|T(1) = 1, T(0) = 0)$

because we are considering only compliers. F or them when Z=1 => T=1 & when Z=0 => T=0

Therefore,

•
$$\mathbb{E}[Y(T=1) - Y(T=0)|T(1) = 1, T(0) = 0) =$$

Local Average Treatment (LATE) or Complier Average Causal Effect (CACE) $\mathbb{E}[Y(Z = 1) - Y(Z = 0)]$ P(T(1) = 1, T(0) = 0)

Duke

 $\mathbb{E}[Y(Z = 1) - Y(Z = 0)|T(1) = 1, T(0) = 0) \text{ can be written as}$ $\mathbb{E}[Y(T = 1) - Y(T = 0)|T(1) = 1, T(0) = 0)$

because we are considering only compliers. F or them when Z=1 => T=1 & when Z=0 => T=0

Therefore,

•
$$\mathbb{E}[Y(T=1) - Y(T=0)|T(1) = 1, T(0) = 0) =$$

Local Average Treatment (LATE) or Complier Average Causal Effect (CACE) Changed associational difference because of assumption of IV unconfoundedness

$$\mathbb{E}[Y|Z = 1] - \mathbb{E}[Y|Z = 0]$$

$$P[T(1) = 1, T(0) = 0)]$$

Probability of being a complier

Duke

 $\mathbb{E}[Y(Z = 1) - Y(Z = 0)|T(1) = 1, T(0) = 0) \text{ can be written as}$ $\mathbb{E}[Y(T = 1) - Y(T = 0)|T(1) = 1, T(0) = 0)$

because we are considering only compliers. F or them when Z=1 => T=1 & when Z=0 => T=0

Therefore,

•
$$\mathbb{E}[Y(T=1) - Y(T=0)|T(1) = 1, T(0) = 0) =$$

Local Average Treatment (LATE) or Complier Average Causal Effect (CACE) $\mathbb{E}[Y|Z = 1] - \mathbb{E}[Y|Z = 0]$ $\mathbb{E}[Y|T = 1] - \mathbb{E}[Y|T = 0]$

You can quantify this as the probability of (1- non compliers) & then use the monotonicity assumption to quantify from observational data

$$\mathbb{E}[Y(T=1) - Y(T=0)|T(1) = 1, T(0) = 0) \rightleftharpoons \mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]$$

$$\mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$
Wald's Estimand

Duke

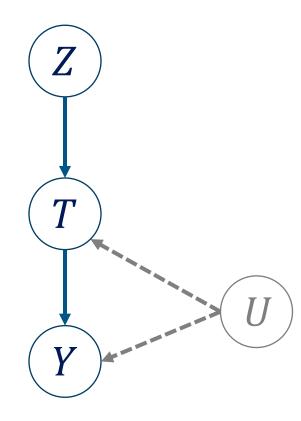
Content source: Brady Neal, Intro to Causal Inference

Limitations

- Condition of monotonicity is not always satisfied
- We get estimates only for compliers, we might be interested in the broader group
- We might not be sure who the compliers are then we cannot be sure of who the LATE affects

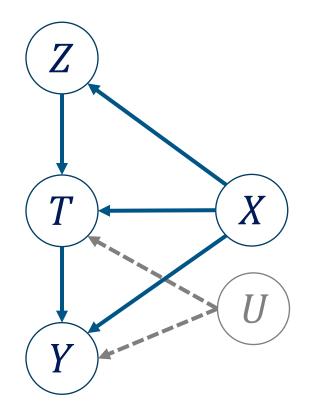
Syrgkanis et al. (2019)

"Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments," Advances in Neural Information Processing Systems, 32.



Simple IV estimation is like...

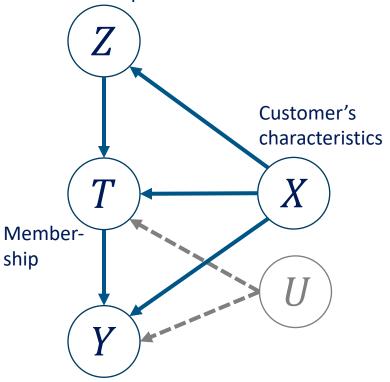
- Z: instrument
- *T*: treatment
- *Y*: outcome
- *U*: confounding variables (unobserved)



In this paper...

- Z: instrument
- *T*: treatment
- *Y*: outcome
- *U*: confounding variables (unobserved)
- X: confounding variables (observed) can affect Z, T, Y, and treatment effect

Offer easier sign-up form for membership or not



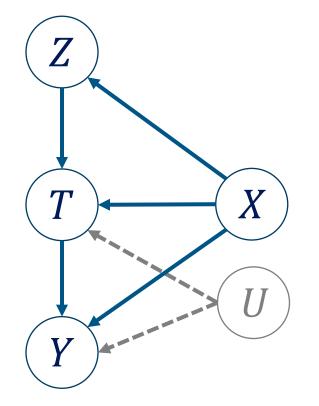
Time spent on website

Duke

• Want to estimate CATE = $E[Y_1 - Y_0|X]$.

e.g. If we want our customers to spend more time on our website, what kind of customers should we approach?

- How can we deal with *X*?
- How can we deal with *U*?
- Want to use flexible models.
- But we're afraid of estimation errors.
- Want to interpret the estimation.

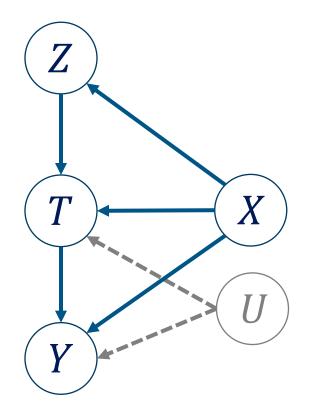


ike

- Want to estimate CATE = $E[Y_1 Y_0|X]$.
 - → DRIV (proposed in this paper): general algorithm to estimate CATE using IV.
- How can we deal with *X*?
 - \rightarrow Condition on X (block the path Z-X-Y).
- How can we deal with *U*?
 - \rightarrow IV estimation.
- Want to use flexible models.
 - \rightarrow DRIV can accommodate ML.
- But we're afraid of estimation errors.
 - \rightarrow DRIV is doubly robust.
- Want to interpret the estimation.
 - \rightarrow DRIV can incorporate interpretable models.

28

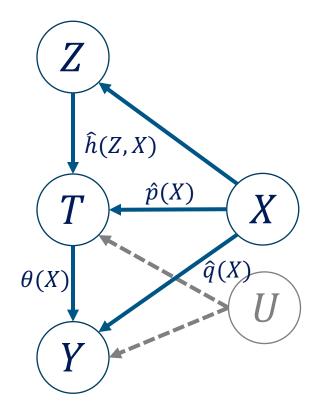
How it works



DRIV: two-step optimization

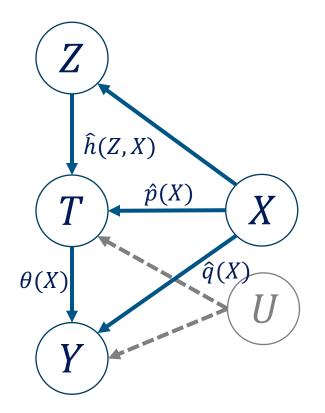
- 1. Make a preliminary estimate for CATE
- 2. Make it more robust to estimation errors

First step



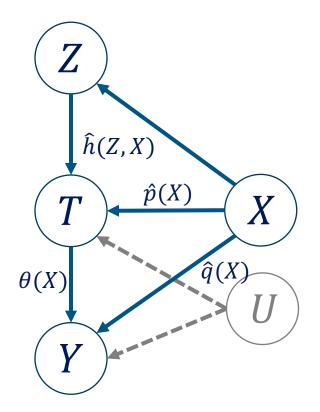
• Make a preliminary estimate for CATE θ_{pre} by minimizing the loss: $L^{1}(\theta) = E\left[\left(Y - \hat{q}(X) - \theta(X)\{\hat{h}(Z,X) - \hat{p}(X)\}\right)^{2}\right]$

First step



- Make a preliminary estimate for CATE θ_{pre} by minimizing the loss: $L^{1}(\theta) = E\left[\left(Y - \hat{q}(X) - \theta(X)\{\hat{h}(Z,X) - \hat{p}(X)\}\right)^{2}\right]$ $\hat{E}[Y|X]$ $\hat{E}[T|Z,X]$ $\hat{E}[T|X]$
- You can use ML to estimate these conditional means.

First step (cont'd)



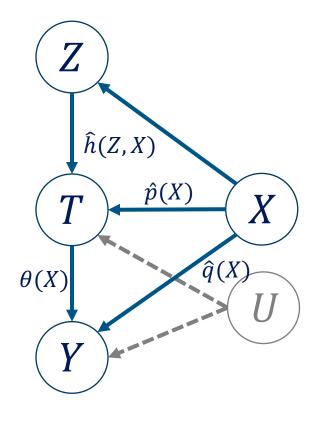
Where did $L^1(\theta)$ come from? \rightarrow Moment condition: E[e|Z,X] = 0

> Suppose the true model is: $Y = \theta_0(X)T + f_0(X) + e$ Let $h_0(Z,X) = E[T|Z,X]$

...

 $\theta(X)$ satisfying the moment condition is equivalent to the minimizer of $L^1(\theta)$

First step (cont'd)



uke

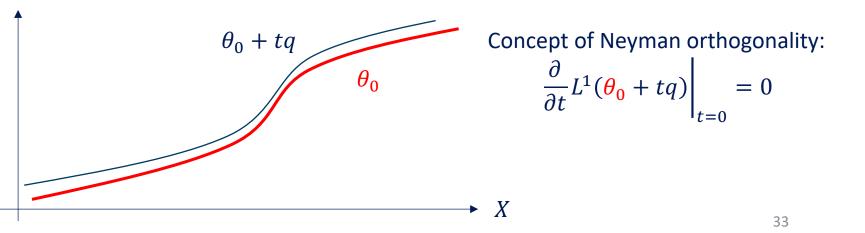
$$L^{1}(\theta) = E\left[\left(Y - \hat{q}(X) - \theta(X)\left\{\hat{h}(Z, X) - \hat{p}(X)\right\}\right)^{2}\right]$$

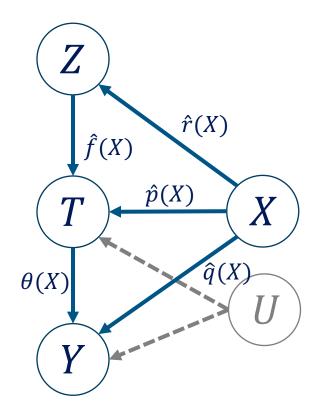
Pros:

- Robust to estimation errors in $\hat{q}(X)$ and $\hat{p}(X)$
- Easy to minimize because of convexity

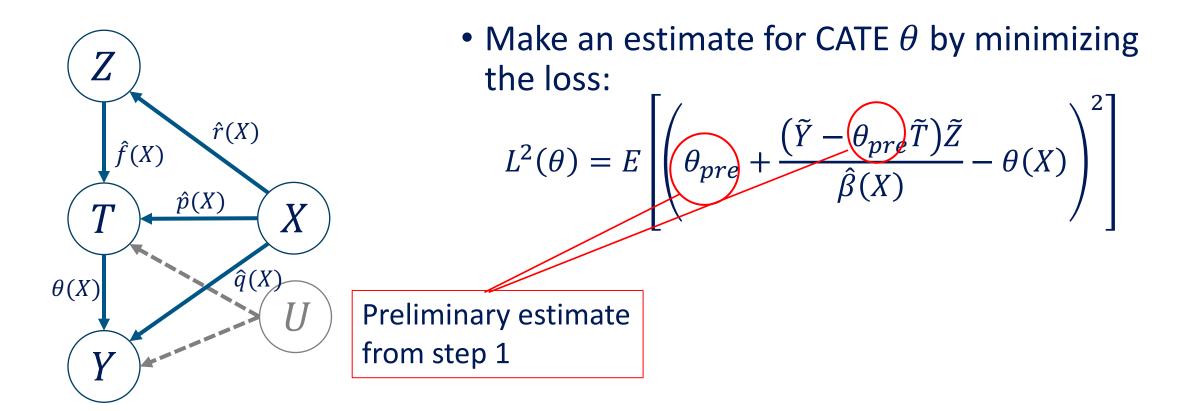
Cons:

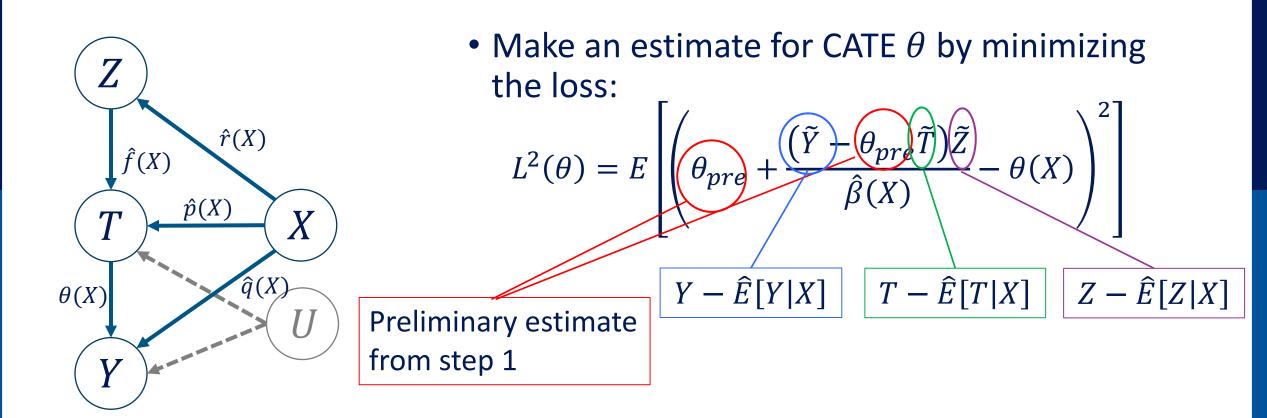
• NOT robust to estimation errors in $\hat{h}(Z, X) \rightarrow 2^{nd}$ step

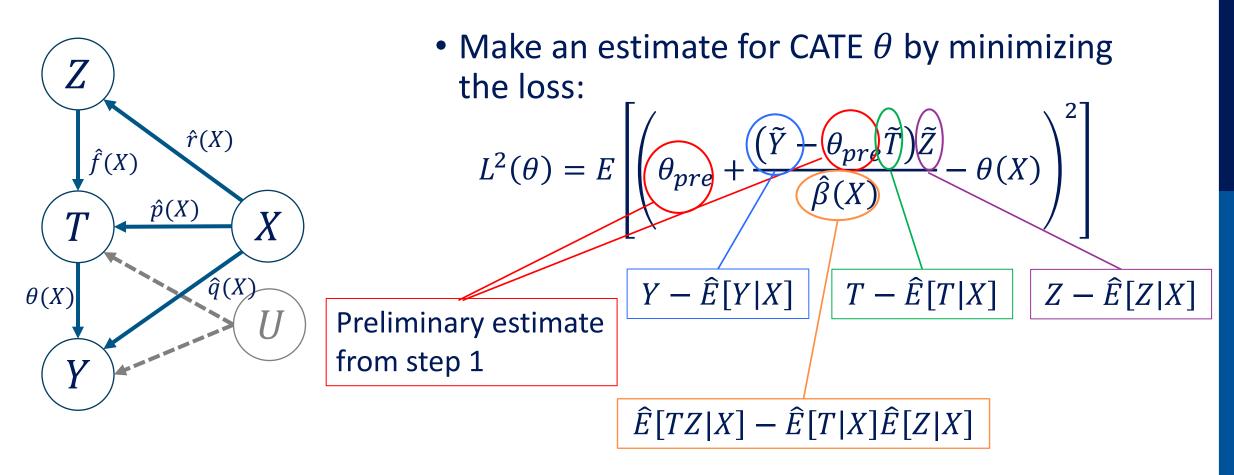


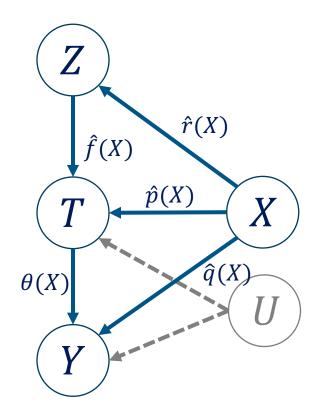


• Make an estimate for CATE θ by minimizing the loss: $L^{2}(\theta) = E\left[\left(\theta_{pre} + \frac{(\tilde{Y} - \theta_{pre}\tilde{T})\tilde{Z}}{\hat{\beta}(X)} - \theta(X)\right)^{2}\right]$









• Make an estimate for CATE θ by minimizing the loss: $L^{2}(\theta) = E\left[\left(\theta_{pre} + \frac{(\tilde{Y} - \theta_{pre}\tilde{T})\tilde{Z}}{\hat{\beta}(X)} - \theta(X)\right)^{2}\right]$

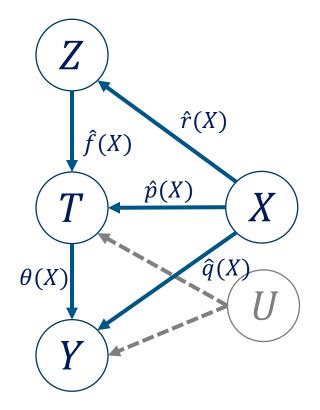
Doubly robust estimator

Doubly robust approach

- AIPW = Augmented Inverse-Propensity Weighting
- Combine two estimators:
 - 1. Inverse-Propensity Weighting: $E\left[\frac{TY}{e(X)} \frac{(1-T)Y}{1-e(X)}\right]$
 - 2. Regression-based: E[Y|T = 1, X] E[Y|T = 0, X]
- Consistent if either e(X) or E[Y|T = t, X] is correct \Longrightarrow Doubly robust

•
$$L^{2}(\theta) = E\left[\left(\theta_{pre} + \frac{(\tilde{Y} - \theta_{pre}\tilde{T})\tilde{Z}}{\hat{\beta}(X)} - \theta(X)\right)^{2}\right]$$
: robust to error in $\hat{\beta}(X)$
ake

Second step (cont'd)



$$L^{2}(\theta) = E\left[\left(\theta_{pre} + \frac{\left(\tilde{Y} - \theta_{pre}\tilde{T}\right)\tilde{Z}}{\hat{\beta}(X)} - \theta(X)\right)^{2}\right]$$

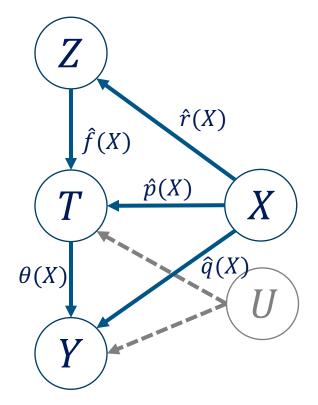
Pros:

- Robust to estimation errors in $\hat{p}(X)$, $\hat{q}(X)$, $\hat{r}(X)$, $\hat{\beta}(X)$, and θ_{pre}
- Easy to minimize because of convexity
- Enables interpretable $\theta(X)$

Cons:

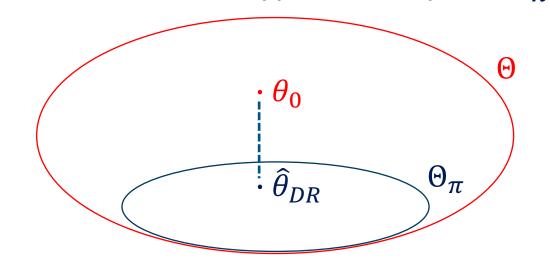
• Second order impact from θ_{pre} ?

Second step (cont'd)



$$L^{2}(\theta) = E\left[\left(\theta_{pre} + \frac{\left(\tilde{Y} - \theta_{pre}\tilde{T}\right)\tilde{Z}}{\hat{\beta}(X)} - \theta(X)\right)^{2}\right]$$

Why does this enable interpretable $\theta(X)$? \rightarrow We can choose hypothesis space Θ_{π}



Takeaways

- Proposed approach = DRIV (Doubly Robust IV?)
- Eliminate bias through IV estimation
- Utilize power of machine learning
- Doubly robust approach to fight against estimation errors
- Can produce interpretable results
- Two-step optimization
 - 1st step: preliminary estimate for CATE
 - 2nd step: make it more robust and interpretable

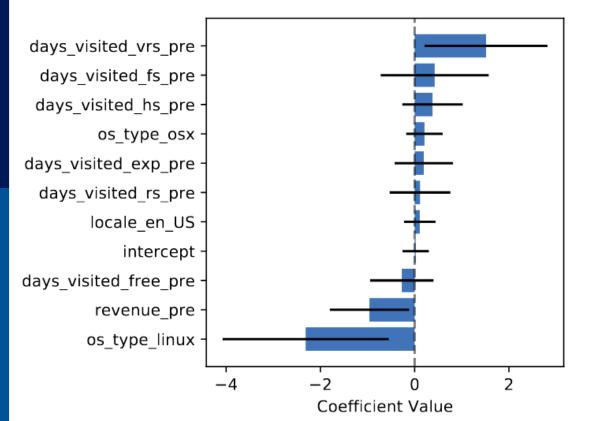
Demonstration

- Synthetic data:
 - DRIV correctly estimated ATE and CATE
 - Estimate by DMLATEIV (Chernozhukov et al. [2018]) is more biased

		Observational Data		Semi-Synthetic Data		
Nuisance	Method	ATE Est	95% CI	ATE Est	95% CI	Cover ‡
LM	DMLATEIV	0.137	[0.027, 0.248]	0.654	[0.621, 0.687]	10%
LM	DRIV	0.065	[-0.02, 0.151]	0.587	[0.521, 0.652]†	92%

Contains the true ATE (0.609)
 Coverage for 95% CI over 100 Monte Carlo simulations
 Table 2: NLSYM ATE Estimates for Observational and Semi-synthetic Data

Demonstration (cont'd)



From Figure 1 of Syrgkanis et al. (2019)

- TripAdvisor data
 - Z: A/B test assignment for membership sign-up process
 - *T*: becoming a member
 - *Y*: # of days a user visits TripAdvisor
 - X: 28-day pre-experiment summary about browsing and purchasing activity
- Θ_{π} : linear functions
- Implication:
 - More approach to users with high "days_visited_vrs_pre"
 - Improve approach to users with high "revenue_pre"

References

- Angrist, Joshua, and Guido Imbens. 1991. "Identification and Estimation of Local Average Treatment Effects." NBER Technical Working Paper Series 118.
- Angrist, Joshua. 2022. "Introduction to Instrumental Variables, Part One." Marginal Revolution University. Retrieved (https://mru.org/courses/mastering-econometrics/introductioninstrumental-variables-part-one).
- Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters.
- Glynn, A. N., & Quinn, K. M. (2010). An introduction to the augmented inverse propensity weighted estimator. *Political analysis*, 18(1), 36-56.
- Syrgkanis, V., Lei, V., Oprescu, M., Hei, M., Battocchi, K., & Lewis, G. (2019). Machine learning estimation of heterogeneous treatment effects with instruments. Advances in Neural Information Processing Systems, 32.
- Wager, Stefan, (2022). Average Treatment Effects. Double Robustness. YouTube. (<u>https://www.youtube.com/watch?v=IfZHUFFIsGc</u>)
- Neal, B (2020). Introduction to Causal Inference. https://www.bradyneal.com/causal-inferencecourse