ECE 486: Control Systems

Lecture 25B: Linearization




Key Takeaways

This lecture presents a method to approximate a nonlinear
state-space model by a linear state-space model.

This process is known as Jacobian linearization and involves:

1. Compute an equilibrium point. This is essentially a
constant solution to the nonlinear system. This is known as
trimming the system.

2. Approximate the nonlinear dynamics near the equilibrium
point using a Taylor series expansion.

A nonlinear system can have many equilibrium points and each
one can have a different linear state-space approximation.



Taylor Series Approximation

Jacobian linearization relies on a Taylor series expansion.
Consider a scalar function f: R — R.
The Taylor series of f at a point X € R is:

f(x) = f(Z) + —(Z) - (x — T) + Higher Order Terms (Quadratic, etc)

If x is near X then the higher order terms can be neglected.
This yields a linear function that approximates f:

d Line with slope 4 (z
f(m) ~ f(f) + é(i) ' (33 _ j) passingtthrouz;h %wff f)(f))

The error in making this linear approximation is on the order
of (x — X)?. This error is “small” if x is near X.



Example

The wind drag on a car is given by:

N 52
m2

f(v) = epv? where v is the velocity (m/s) and c¢p = 0.4
The Taylor series approximation near v = 29? is:
f(v) = cpv? + (2cpv) - (v —0) = 336.4N + (23.2805¢) . (y — 291 )
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Multivariable Taylor Series

Consider a multivariable function f: R™ - R™.

ofi
]

Let - af —denote the m-by-n matrix whose (i,j) entry is -

This is called the Jacobian matrix.

The Taylor series of f at a point X € R" is

LY

d — (%) - (r — ¥) + Higher Order Terms (Quadratic, etc)
T

If x is near X then the higher order terms can be neglected.
This yields a linear function that approximates f:




Example

Consider a multivariable function f: R® - R?:

f(x):[ 322 — sin(x,) ]

T3 + br1we — 971173

The 2-by-3 Jacobian matrix of partial derivatives is:

g(x) B 61 — cos(x2) 0
dgj o 555‘2 — 9213':2)) 5331 1 — 18371373

The Taylor series of f atx = [—2,0, 7] is:
I —2
121 [-12 -1 o0
f(x) =~ — | [x2| — ] O
] (2 [))
If x = [—2.1,0.2,6.8]" then

« f(x) =[13.03,878.64]" The approximation is
* Linear Taylor Series = [13.00, 880.5]" accurate if x = x



Equilibrium (Trim) Points

Consider an nt"-order, nonlinear, SISO state-space model:
z(t) = f(x(t),u(t))
y(t) = h(z(t), u(t))

An equilibrium point consists of constant values x € R™, i € R,
and ¥ € R such that:

0= f(z,u)
y = h(z,u)

IC: z2(0) = xg

Ifu(t) =ufort >0and x(0) = xthenx(t) =xandy(t) =y
solves the nonlinear state-space model.

Finding an equilibrium is called “trimming” the system. There
are n+1 equations and n+2 unknowns. Hence the equilibrium
point is typically not unique. (Matlab function: trim)



Example

Consider the following model for a car:
0(t) = 5085 (Fret(t) — 0.40%(t) — 228) := f(v(t), Fret(t)) IC: v(0) = vy
y(t) = ()

An equilibrium point (7, F, ;) satisfies f (7, F,,.;) = 0 and y = 7.

e Equilibrium Point A: (7, F,e¢) = (20.7,400)

e Equilibrium Point B: (7, F,,,;) = (29,564)
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Jacobian Linearization

Consider an nt"-order, nonlinear, SISO state-space model:
z(t) = f(x(t), u(t)) IC: z(0) = g
y(t) = h(x(t), u(t))

Assume (X, U, y) is an equilibrium point: f(x,u) = 0,y = h(x, u).

Jacobian linearization is used to approximate the solution
(x(t), y(t)) to the nonlinear state-space model when x(0) is
slightly different from X and/or the input u(t) is slightly

different from u. (Matlab function: 1inearize)




Jacobian Linearization

Consider an nt"-order, nonlinear, SISO state-space model:
#() = F@(0)u0) 10, 200 o
y(t) = h(z(t), u(?))
Assume (X, U, y) is an equilibrium point: f(x,u) = 0,y = h(x, u).
1. Define deviations from the equilibrium point:
0z(t) :=a(t) =&,  Oult) :=ult)—u, 0oy(t):=y(t) -y
2. Re-write nonlinear state-space model using deviations:
dz(t) = f(Z 4+ 0x(t), uw+ 0,(2))
6y (t) = M@ + 6,(1), U+ 5, () — 7
3. Use linear Taylor series approximation:

gi(,@,a) 5 +g£(‘ )by = Ady(t) + Bou(t)
%(x,U) Oz ZZ( ) - 0u =g+ Cby(t) + Ddy(t)




Jacobian Linearization

Consider an nt"-order, nonlinear, SISO state-space model:
#() = F@(0)u0) 10, 200 o
y(t) = h(z(t), u(t))
Assume (X, U, y) is an equilibrium point: f(x,u) = 0,y = h(x, u).

Linear state-space approximation is:
05 (t) = Ay (t) + Boy,(t)
5, (t) = CO,(t) + Db, (t)
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Validating the Linearization

To verify that you have correctly constructed the linear state-space
approximation:

1. Let (x(t),y(t)) be a solution of the nonlinear system with:
Initial condition x(0) = x, near X
Input u(t) that remains near .
2. Let (6,(t),6,(t)) be asolution of the linear approximation with:
Initial condition 6,.(0) = xy — X
Input 6,(t) =u(t) —u
3. Shift linear solution from deviation coordinates (6, (t), 6, (t))
back to original coordinates:

(xLin(t): yLin(t)) — (5x(t) + X, 5y(t) + 37)
The solutions (x(t), y(t)) and (xLin(t),yL,-n(t)) should be close (at

least over a short time-horizon'.



Example

Consider the following model for a car:
i%t)::Qﬁgg(Iﬁﬁﬂi)—41402UJ——228)::lfﬁmtxlﬂwtﬁj) IC: v(0) = vg
y(t) = v(t)

with equilibrium point (7, F,er) = (20.7,400).

Partial derivatives are:

of - —2-0.4v 1
(0, Fret) = = —U. —
Ov (9, Frct) 2085 |5 7.0 0.008 sec
of 1 L1
U, Fret) = —— =48 x 107" —
ey O Fnet) = 555 5.F) T kg

Linearization is:

Oy (t) = —0.0085,(t) + (4.8 x 107%) 5p(¢)
5y(t) _ 5U(t) ~ s+0.008



Example

Consider the following model for a car:
8(t) = o= (Fuea(t) = 0407 (1) = 228) 1= f(0(t), Fuea())  1C: v(0) = o
y(t) = v(t)

with equilibrium point (7, F,,.;) = (20.7,400).

Simulation Input: F_.,(t)=400-140sin(2t) (N)

Initial Conditions: v(O) 19. 7m/s(|eft) and v(O) 10. 74m/s(r|ght)
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Jacobian Linearization

e |If the solution of a nonlinear state-space model remains
“near" an equilibrium point then the dynamics can be
approximated by a linear state-space model.

* The linear state-space model can then be converted to a
linear ODE / transfer function representation.

 This is useful because:

Standard control design methods make use of linear ODE
models and their corresponding transfer functions.

Many controllers are designed to keep a system near a
particular equilibrium point. Hence, the controller will
ensure the linear approximation is valid.





