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Announcements

1 No class Wednesday April 11
] No office hours for Prof. H-W on Wednesday April 11

J Upcoming deadlines:
® Tuesday (4/10)
e PLHW 12

® Thursday (4/12)
* WA 5 due

® Monday (4/16)

° Mastering Engineering Tutorial 14



Chapter 10: Moments of Inertia




(Goals and Objectives

* Understand the term “moment” as used in this chapter

* Determine and know the differences between
* First/second moment of area
* Moment of inertia for an area
* Polar moment of inertia

* Mass moment of inertia
* Introduce the parallel—axis theorem.

* Be able to compute the moments of inertia of composite areas.
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Applications
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Manyv structural members like beams and columns have cross sectional
y

shapes like an I, H, C, etc..

Why do they usually not have solid rectangular, square, or circular

Cross sectional areas’

What primary property of these members influences design

decisions?



Applications

Many structural members are made of tubes

rather than solid squares or rounds. Why?

This section of the book covers some
parameters of the cross sectional area that

influence the designer’s selection.



Recap: First moment of an area (centroid
of an area)

e The first moment of the area A with respect to the x-axis is given by Q. = [, ydA
o The first moment of the area A with respect to the y-axis is given by @y = [, v dA

e The centroid of the area A 1s defined as the point C of coordinates and , which

satisfies the relation y
ey
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 In the case of a composite area, we divide the area A into parts |
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Terminology: the term moment in this module refers to the mathematical

sense of different “measures’ of an area or volume.

® The zeroth moment is the total mass.

® The first moment (a single power of position) gave us the centroid.
® The second moment will allow us to describe the “width.”

® An analogy that may help: in probability the first moment gives you the
mean (the center of the distribution), and the second is the standard
deviation (the width of the distribution).



Mass Moment of Inertia

* Mass moment of inertia is the mass property of a rigid body that
determines the torque T needed for a desired angular acceleration (@)
about an axis of rotation.

e A larger mass moment of inertia around a given axis requires more torque
to increase the rotation, or to stop the rotation, of a body about that axis

* Mass moment of inertia depends on the shape and density of the body and

is different around different axes of rotation.

Torque—acceleration relation:




Mass Moment of Inertia

Torque—acceleration relation:

where the mass moment of inertia is defined as

Mass moment of inertia for a disk:
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Second moment of area

Moment of inertia is the property of a deformable body that determines
the moment needed to obtain a desired curvature about an axis.
Moment of inertia depends on the shape of the body and may be different

around different axes of rotation. Moment-curvature relation:
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® The moment of inertia of the area A with Jte e
. . . ik “harac ‘1"i'/cs
respect to the x-axis is given by G
deformable body)

p: curvature
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® The moment of inertia of the area A with

respect to the y-axis is given by isss ; | S,

® The moment of inertia of the area A with

respect to the origin O is given by (Polar

moment of inertia)




Parallel axis theorem

* Often, the moment of inertia of an area is known for an axis passing
through the centroid; e.g., x and y':
® The moments around other axes can be computed from the known Iy and

I

dA

O

Note: the integral over y’
gives zero when done through
the centroid axis.
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Moment of inertia of composite

e [f individual bodies making up a Composite body have individual areas
A and moments of inertia I computed through their centroids, then the
Composite area and moment of inertia is a sum of the individual

component contributions.
e This requires the parallel axis theorem

e Remember:

e The position of the centroid of each component must be defined
with respect to the same origin.

e It is allowed to consider negative areas in these expressions.
Negative areas correspond to holes/ missing area. This 1s the one
occasion to have negative moment of inertia.



English units (inches)

Axis X-X Axis ¥-Y
Area Depth  Width — — — —
Diesipnation in® in. in. ILind  kin. Yon | Lmé ki ¥ in
¥ W18 x 76f 2.3 182 1.0 | 1330 7.73 152 2,61
W Shapes e | W16 % 57 16.8 164 712 | T8 6.72 43.1 1.60
(Wide-Flange Wid x 38 1.2 141 677 | 389 5.87 26.7 1.5
Shapes) X— W8 » 31 9.12 00 BOO | 110 3.47 aTl 2.02
Y
¥ 518 x 54.7% 16.0 180 600 | 801 7.07 AT 1.14
5 Shapes | s12xa1s 84l | 120  so00 | 217 4.5 833 L0
(American Standard [~ | 510x 254 745 | 100 466 123 4.07 873 0,950
Shapes) S6 % 12.5 3.66 B00  3.33 22,0 2,48 L8 0,702
I—t—x
fimil =
¥
Y C12 x 20.7f 608 | 120 284 | 129 4.61 86 0797 0.698
C Sha - Cl0x 183 448 | 100 260 B7.3 3.87 237 0711 0.634
{ American Standard + C8x 11.5 .37 800 2.95 2 3.11 131 0623 0572
Channels) CBx 8.2 2.30 GO0 182 12.1 2.4 0687 0536 0512
X—1—x
—— | — T
LT
Y L6 x 8 x 14 110 and i 186 | 354 179 186
. Lixdxl 3.75 582 L2l 1.18 582 L2l LIS
] Laxaxd 144 123 0926 0536 123 0926 0.836
I 1
Angles L6 xd x L 479 17.5 181 1.88 622 L4 088l
Loxdw L 3.75 243 LS8 1.74 255 0824 0.746
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Metric units (mm)

Axds X-X Axis ¥-¥
Area | Depth Width I, k7 I, K =
Designation mims mam mim 109 mm4 mm  mm 109 mmt mm mm
Y W40 = 1131 14400 [ 482 270 LTI 106 A2.3 6.3
W Shapes e—t{—— | W410 8% 0800 [ 417 181 218 171 170 406
(Wide-Flange WAas0 x 57.8 7230 | 38 172 160 1480 11.1 20,4
Shapes) X | W00 x 46.1 see0 | 203 eng 458 881 154 §1.3
P—
¥
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X
il e
¥
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C Shapes 250 x 23,8 2500 and f6.0 250 98,3 0048 181 161
(American Standard = Cann x 17.1 2170 ana N74 135 T0.0 O84S 188 140
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X
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