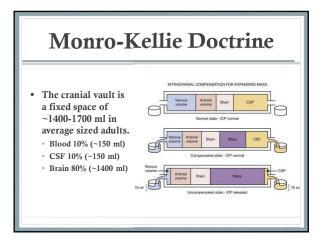
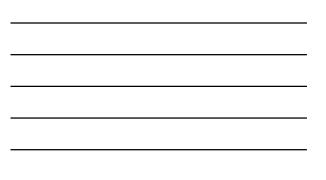
Management of Intracranial Pressure

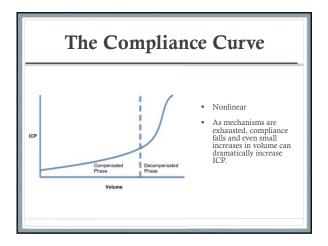
Stroke Conference December 13, 2018 Angela Spurgeon, DO



Disclosures

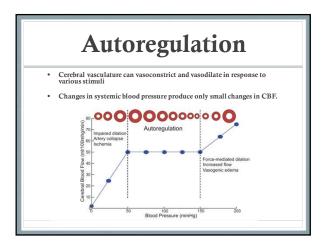
• No conflicts of interest.


Outline

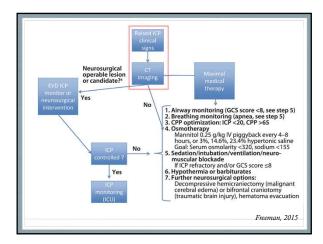

- Intracranial physiology and autoregulation
- Signs and symptoms of elevated ICP
- Initial evaluation and management
- ICP monitoring
- Medical management
- Decompressive craniectomy



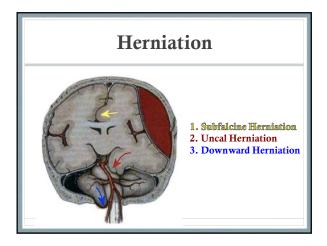
Normal ICP	
Age Group	Normal range (mmHg)
Adults and older children Young children	10-20 3-7
Term infants	1.5-6

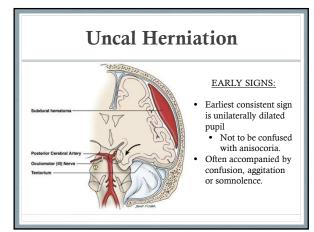


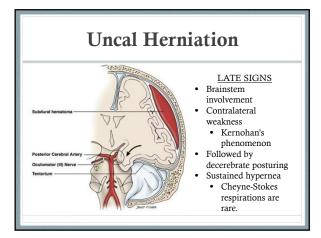
Cerebral Perfusion Pressure (CPP)


- The critical parameter for brain function and survival is not actually ICP.
 - Is there adequate cerebral blood flow to meet oxygen demands?
 - Cerebral blood flow depends on CPP, which depends on ICP (which is easily measured)
 - CPP = MAP-ICP
 - Normal >50 mmHg

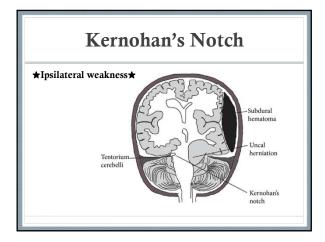
Causes of Elevated ICP		
intracranial (primary)	Extracranial (primary)	
Traumatic brain injury (cerebral contusions, epidural and subdural hematomas)	Hypoxia	
Brain tumor	Hypercarbia	
Intracranial hemorrhage (nontraumatic)	Hypertension	
Ischemic stroke	Hyponatremia	
Hydrocephalus	Hyperpyrexia	
Infection	Seizures	
Status epilepticus	Hepatic failure	
Idiopathic	Drugs and toxins	
Postoperative (hemorrhage, edema, CSF disturbances)	Jugular venous obstruction High-altitude cerebral edema	



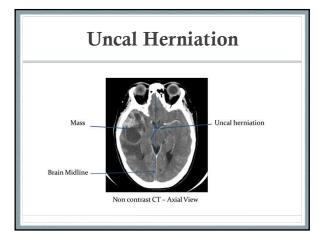


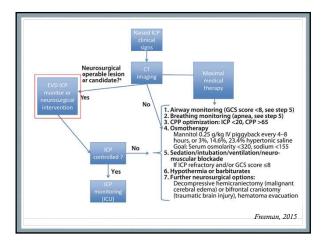

Signs and Symptoms of Elevated ICP

- Headache
- Nausea/vomiting
- Blurred vision
- Uneven or dilated pupils
- Diplopia
- Papilledema
- Altered level of consciousness
- Cushing triad: Hypertension, bradycardia, respiratory irregularity



Uncal Herniation uncal Hernin uncal Herniation </tr

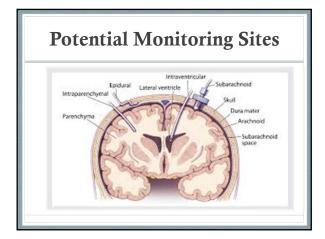


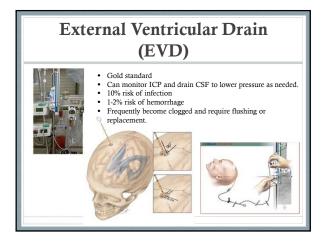


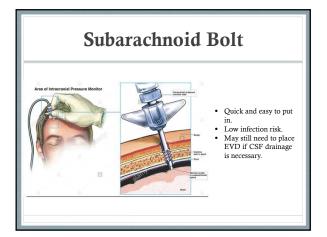
Initial Measures

- Elevate head of bed to 30-45°
 ♥ ICP by enhancing venous outflow
- Keep neck straight and avoid neck constrictions (tight trach tape, tight cervical collar)
 - Constriction of jugular venous outflow causes \bigstar ICP
- Avoid arterial hypotension (SBP <90 mmHg) • Hypotension reduces CBF
 - Normalize intravascular volume (isotonic fluids)
 - Pressors if needed

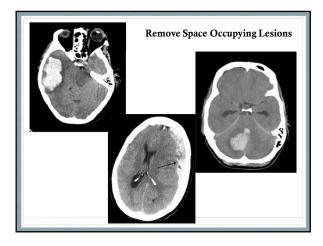
Initial Measures

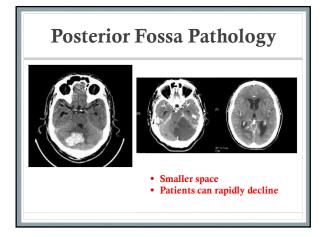

- Avoid hypoxia
 - May cause further ischemic brain injury • Intubate if GCS <8.
- Ventilate to normocarbia (avoid prophylactic hyperventilation)
- CT head without contrast to rule out surgical pathology

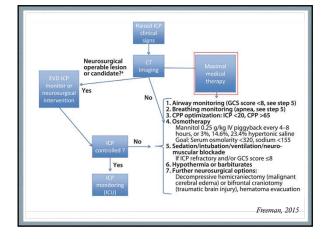

Indications for ICP Monitoring


- No level I evidence.
- Level II evidence: • GCS <8 and abnormal CT head
- Level III evidence: • Also indicated in severe TBI patients with normal CT if two of the following criteria are met...
 - Age >40

 - SBP<90 mmHg
 Decerebrate or decorticate posturing on motor exam
- Contraindications: awake patients, coagulopathy






8

Medical Management Mannitol

- Mannitol has been used for ICP reduction for nearly 100 years.
- Large molecule (similar to starch)
- Causes increase in serum osmolality leading to an osmotic gradient between the serum and intracranial compartment \circ Net effect is the removal of brain water to \clubsuit ICP
- Rheologic properties Decreases blood viscosity potentially improving cerebral perfusion

Medical Management Mannitol

- Dosage o Acute setting: 1.5g/kg IV bolus o Less acute settings: 0.25g/kg IV bolus o Interval dosing: 25g q6h
- · Simplify especially in the emergency setting with absolute doses 25g, 50g, 75g, or 100g.

Medical Management Mannitol

• Cautions

- $\circ\,$ Osmotic diuretic: must monitor for volume loss and prevent hypotension.
- o May require electrolyte replacement
- o E.g. Hypokalemia, hypophosphatemia
- Renal injury (serum osmolarity <320 mOsm/k)
- $\circ\,$ Especially for q6h dosing.
- Precipitates when cold, may need IV filter.
 Mannitol opens the blood brain barrier, and mannitol that's crosses the BBB may draw fluid into the CNS (minimized with bolus dosing)
 - o Must taper scheduled mannitol to prevent ICP rebound.

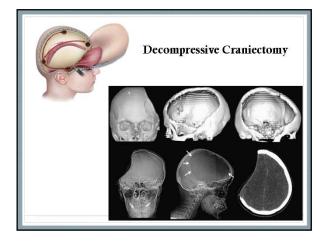
Medical Management Hypertonic Saline

- 1.5 %, 3%, or 23.4% solutions
- Provides hyperosmolar state and increased circulating blood volume compared to mannitol.
- May be preferable in patient populations where volume depletion may compromise cerebral perfusion.
- Subarachnoid hemorrhage
- Goal Na 145-155.

Medical Management Hypertonic Saline

- Cautions
- Risk of thrombophlebitis if ran through a peripheral IV.
- $\circ~$ Need for central access if administration required for >24h.
- $\circ~$ Overshoot causes hypernatremia and hyperchloremic acidosis
 - Q6h Na monitoring.

Medical Management Sedation


- Propofol, midazolam, fentanyl infusions
- Requires intubation if not already done.
- Reduces ICP by reducing Valsalva maneuver and jugular venous pressure elevation

Medical Management Neuromuscular Paralysis

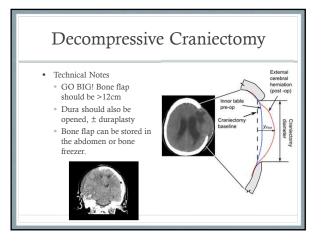
- Prevents coughing, which may cause ICP spikes.
- Requires intubation if not already done.
- Disadvantage:
- Loss of neurologic exam aside from pupillary reflexes.

Medical Management Barbituates

- Reduces brain metabolism and therefore oxygen demands leading to Ψ CBF.
- Anti-epileptic benefit.
- Cautions
 - Requires intubation and EEG monitoring to titrating to burst-suppression pattern.
 - Reduces cardiac output and may require vasopressor support
 - Contraindicated in patients with heart history.

Decompressive Craniectomy

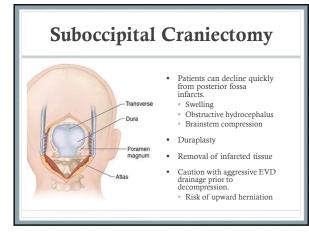
- Most commonly used in large MCA or ICA infarcts.
- Mortality rate in large MCA infarcts approaches 80%
 - Decompressive craniectomy may reduce mortality to as low as 32% in nondominant hemisphere strokes (37% in all comers)

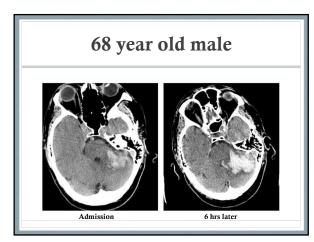

Decompressive Craniectomy

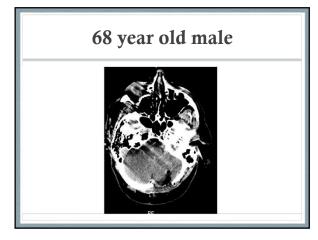
- Meta-analysis of 3 randomized controlled trials found that hemicraniectomy within 48 hrs after stroke onset:
 - Decreased mortality
 - Increased the number of patients with favorable functional outcomes.

Vahedi et al. 2007

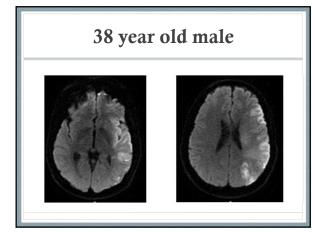
Decompressive Craniectomy


- Indications
 - Age <70
 - Usually more strongly considered in nondominant hemisphere infarcts
 - Clinical and CT evidence of acute, complete ICA or MCA infarcts and direct signs of impending swelling or herniation.



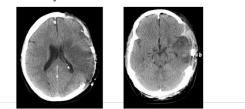

Decompressive Craniectomy

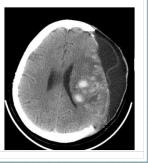
- Potential Complications
 - Bleeding
 - Herniation of the brain through the bone opening (can cause local ischemia, minimized by making a big craniectomy)
 - Post-op fluid collections (subdural hygromas)
 - Hydrocephalus


- Presented to the ER with severe headache, nausea and dizziness
- PMH: afib, hypertension, CAD, on Xarelto, ASA, and Plavix
- ICH score 1, NIH stroke score 4

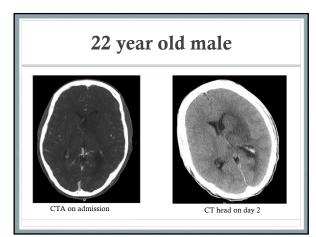


- 9 months post-op
 - Ambulating with a cane
 - No headaches

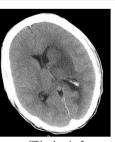

- Presented to outside ER with slurred speech and right sided weakness. CTA showed left common carotid thrombosis as well as left MCA occlusion
 Given tPA at outside hospital
- PMH: smoker
- Exam: lethargic, right hemiparesis, withdraws left side to pain.



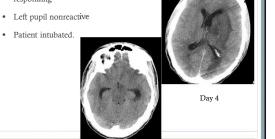
• Taken to OR for decompressive craniectomy and ICP monitor placement on stroke day 2.



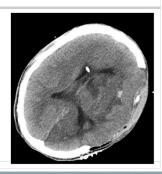
- Outcome (6 weeks out)
 - Bone flap replaced
 - Required shunt placement for extra-axial hygroma
 - Able to speak but still has considerable word finding difficulties, able to follow commands on the right.



22 yo male


- Presented to the ER with new right sided weakness and a couple week history of worsening headache.
- Exam: Answering some questions appropriately and intermittently following commands, right hemiparesis.

- Heparin gtt
- Mental status improved significantly on 3% and mannitol.
- Held off on mechanical thrombectomy


CT head on day 2

22 year old male

- Emergent EVD placement
- Decompressive craniectomy

22 yo male

- Outcome (almost 6 months out)
 - Trapped left ventricle, underwent shunt placement
 - LUE DVT
 - Shunt malfunction with post-op seizures
 - Bone flap replaced last month
 - Exam: can carry on a conversation, able to stand, RUE plegic.

References

- Dasenbrock HH et al. Timing of decompressive hemicraniectomy for stroke: A nationwide inpatient sample analysis. *Stroke* 2017; 48:704-711
- Freeman WD, Management of Intracranial Pressure. *Continuum* 2015;21(5):1299-1323.
- Greenberg MS, Handbood of Neurosurgery. 2016; 8th Ed. Thieme Medical Publishers, New York.
- Vahedi et. al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. *Lancet* 2007;6:215-222.