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Outline 

• Drag fundamentals 

• Ideal drag 

• Agglomerative drag 
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Dimensionless Particle Drag 

Single particle 
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Particle drag map 
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Fluidization close to minimum fluidization 
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Fluidization by M. Leva (1959) examined 
fluidization right above minimum 

 

 

• m = -1 for packed beds 

• Above fluidization: 
• m ≈ -1 for liquid-solid systems 

• m ≠ -1 for gas-solid systems, as function 
of particle size 

2

2 2 3 3
ln

200 (1 ) 1
Constlne

p f

G L
P

d
G m

  

   


  
   

 

A B D Geldart: 



Particulate and Agglomerative systems 

Particulate systems:   
• Spacing between particles remains roughly uniform as bed expands 

• Ergun’s equation remains valid up to 80% voidage (Leva, 1959) 

• Wen and Yu model is for particulate fluidization 

 

• Agglomerative systems: 
• Particles cluster into larger groups causing deviation from ideal, 

particulate drag 

• Can occur immediately upon fluidization 
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Drag for real systems 

Look for deviations from particulate drag 

• Could have multiple sources such as Van der Waals forces, 
static electricity, liquid bridging, etc. 

• Particle size dependence 

• Zero deviation at minimum fluidization or for single particle 
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Correlation for Ideal Particulate Drag 

• Requirements: 
• Satisfy both close pack and single particle extremes 

• Continuous function of voidage 

• Match experimental data 

 

• Popular models do not satisfy these requirements 
• Wen and Yu does not satisfy close pack 

• Ergun does not satisfy single particle drag 

• Wen-Yu/Ergun Blend (Gidaspow) is discontinuous at ε = 0.8 
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New drag forms for particulate fluidization 

Form A:  A Wen-Yu form ( power of voidage) is used with an 
exponent that is adjusted to match Ergun’s drag for all Re at 
minimum fluidization 

 

 

The expression can be further simplified by rearrangement 

 

 

 9 

 
  

 

ln
,Re)

l

(Re) / Re
( Re

n

mf sp

p sp

mf

F F
F F   


 

Form A   1( Re
l

ln
,Re) 1

n
p sp mf

mf

F FF
  

 


  



Comparison of Form A with expression of di Felice 

• The analysis of di Felice (1994) 
found a Reynolds number 
dependence for the exponent and 
proposed the following expression: 

 

 

• The di Felice expression does not 
guarantee close-pack drag, but the 
shape is similar 
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New drag forms for particulate fluidization 

Form B:  It was observed by Leva (1959) that the Ergun’s 
model is applicable up to voidages of 0.8 and this same cutoff 
is commonly used in the Gidaspow Wen Yu / Ergun blend.  
Logarithmic interpolation between Ergun’s drag and the 
Schiller-Nauman drag reproduces this observation well  
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Form B 
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Proposed models vs Existing models 
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Validation against experimental data 

Data sets used for validation: 

• Wen and Yu (1966):  Bed expansion data for 191 & 500 micron glass balls 
in water 

• Liu, Kwauk, and Li (1996):  Bed expansion data for 54 micron FCC catalyst 
in supercritical CO2 (8 and 9.4 MPa) 

• Jottrand (1952):  Bed expansion data for 20, 29, 43, 61, 86, and 113 
micron sand in water 

• Wilhelm and Kwauk (1948):  Bed expansion data for 373, 556, and 1000 
micron sea sand in water 

• Lewis, Gilliland, and Bauer (1949):  Settling of 100 and 150 micron glass 
in water 

13 



Analysis Approach 

• Bed expansion is generally comprised of data showing 
• Superficial velocity 
• Bed height or voidage 
• Pressure drop 

• Non-dimensional drag is related to the Archimedes number in a 
fluidized bed (di Felice, 1994)  

 

 

• Particle sphericity is estimated from close pack pressure drop data 
where possible 
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Correlations vs Measured Data 
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Drag Model Error Ergun Coeffs 

Form A 11.9% a = 180, b = 1.8 

Ergun* 20.5% a = 180, b = 1.8 

Gidaspow* 23.1% a = 150, b = 1.75 

Wen and Yu 26.0% 

Ergun* 26.1% a = 150, b = 1.75 

Form B 28.0% a = 180, b = 1.8 

Ergun 64.2% a = 180, b = 1.8 

Error Analysis of different drag models 
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*  Sphericity is assumed = 1, as is 
common practice for these models 
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Particulate Drag Error dependence on Re and Voidage 
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Close pack Single Particle 



US Bureau of Mines data for agglomerative systems 

• Bureau of Mines Bulletin 504 (Leva, 1951) contains a large 
set of bed expansion data for the fluidization of sand by 
different gases 

• Select data was analyzed as part of preliminary work: 
• 51 micron round sand in air ( X 2) 

• 51 micron round sand in helium 

• 88 micron round sand in air 

• 161 micron round sand in air 

• 381 micron round sand in air 
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Measured drag force vs Ideal prediction 

A comparison of measured 
drag force vs the ideal 
prediction shows: 

• Deviation between ideal 
and measured increases as 
particle sizes become 
smaller 

• Deviation approaches zero 
at minimum fluidization 
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Simple agglomeration model 

• The following simple agglomeration model is proposed 
which consists of: 
• The ideal model for particulate fluidization (Form A) 

• Correction term for agglomeration which includes “α”, an 
agglomeration constant with units of length 
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Estimating agglomeration constant 

The proposed agglomerative  
drag model correction:  

 

 

Constant α = 275 μm shows 

decent fit 
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Simple agglomeration model vs experimental  data 
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Symbols: experimental data;  dashed lines: model fit 

Close pack Single Particle 



Using the model in Barracuda 

Case from Bureau of Mines dataset: 

• Particle size: 0.00202” (51 μm) 

• Column diameter: 2.5” 

• Gas flow: 2.73 lb/hr air 

• Initial column height 33.8 cm 

• Fluidized height:  42.5 cm  
(25% expansion) 

23 



• Simple agglomeration 

produces the following 

improvements in simulation 

• Better agreement with bed 

expansion data (magenta 

line) 

• Fluidization behavior 

affected by drag model 

 

 

 

Using the model in  
Barracuda VR 
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Simple Agglomeration  
a = 275 um 

Wen - Yu 
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Conclusions 

• Particle drag is a fundamental calculation for CFD simulations 

• Agglomerative effects exist for gas-solid particles which cause the 
drag force to deviate from ideal. 

• A model for particulate fluidization was proposed and validated 
against data 

• Work in progress - A simple agglomeration model was proposed 
for gas-solid systems 

• Improvements to bed expansion and changes to fluidization 
patterns are observed with the simple agglomeration model 
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 α = 275 microns from UBM sand data 

Proposed drag model 
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