
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System Structures

� Operating System Services
� User Operating System Interface
� System Calls
� Types of System Calls
� System Programs
� Operating System Design and Implementation
� Operating System Structure
� Operating System Debugging
� Operating System Generation
� System Boot

2.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

� To describe the services an operating system provides to
users, processes, and other systems

� To discuss the various ways of structuring an operating
system

� To explain how operating systems are installed and
customized and how they boot

2.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

� Operating systems provide an environment for execution of programs
and services to programs and users

� One set of operating-system services provides functions that are
helpful to the user:
� User interface - Almost all operating systems have a user

interface (UI).
 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch
� Program execution - The system must be able to load a

program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

� I/O operations - A running program may require I/O, which may
involve a file or an I/O device

2.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

� One set of operating-system services provides functions that are helpful to
the user (Cont.):
� File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

� Communications – Processes may exchange information, on the same
computer or between computers over a network
 Communications may be via shared memory or through message

passing (packets moved by the OS)
� Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user
program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

� Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing
� Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
 Many types of resources - CPU cycles, main memory, file storage,

I/O devices.
� Accounting - To keep track of which users use how much and what

kinds of computer resources
� Protection and security - The owners of information stored in a

multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access
attempts

2.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry
� Sometimes implemented in kernel, sometimes by systems

program
� Sometimes multiple flavors implemented – shells
� Primarily fetches a command from user and executes it
� Sometimes commands built-in, sometimes just names of

programs
 If the latter, adding new features doesn’t require shell

modification

2.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - GUI

� User-friendly desktop metaphor interface
� Usually mouse, keyboard, and monitor
� Icons represent files, programs, actions, etc
� Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute function,
open directory (known as a folder)

� Invented at Xerox PARC
� Many systems now include both CLI and GUI interfaces

� Microsoft Windows is GUI with CLI “command” shell
� Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

underneath and shells available
� Unix and Linux have CLI with optional GUI interfaces (CDE,

KDE, GNOME)

2.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Touchscreen Interfaces

n Touchscreen devices require new
interfaces
l Mouse not possible or not desired
l Actions and selection based on

gestures
l Virtual keyboard for text entry

l Voice commands.

2.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

� Programming interface to the services provided by the OS
� Typically written in a high-level language (C or C++)
� Mostly accessed by programs via a high-level

Application Programming Interface (API) rather than
direct system call use

� Three most common APIs are Windows API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

2.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of System Calls

� System call sequence to copy the contents of one file to another file

2.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Standard API

2.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

� Typically, a number associated with each system call
� System-call interface maintains a table indexed according to

these numbers
� The system call interface invokes the intended system call in OS

kernel and returns status of the system call and any return values
� The caller need know nothing about how the system call is

implemented
� Just needs to obey API and understand what OS will do as a

result call
� Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built
into libraries included with compiler)

2.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

2.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

� Process control
� create process, terminate process
� load, execute
� get process attributes, set process attributes
� wait for time
� wait event, signal event
� allocate and free memory
� Dump memory if error
� Debugger for determining bugs, single step execution
� Locks for managing access to shared data between processes

2.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

� File management
� create file, delete file
� open, close file
� read, write, reposition
� get and set file attributes

� Device management
� request device, release device
� read, write, reposition
� get device attributes, set device attributes
� logically attach or detach devices

2.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

� Information maintenance
� get time or date, set time or date
� get system data, set system data
� get and set process, file, or device attributes

� Communications
� create, delete communication connection
� send, receive messages if message passing model to host

name or process name
 From client to server

� Shared-memory model create and gain access to memory
regions

� transfer status information
� attach and detach remote devices

2.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

� Protection
� Control access to resources
� Get and set permissions
� Allow and deny user access

2.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Windows and Unix System Calls

2.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Standard C Library Example

� C program invoking printf() library call, which calls write() system call

2.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

� Design and Implementation of OS not “solvable”, but some
approaches have proven successful

� Internal structure of different Operating Systems can vary widely

� Start the design by defining goals and specifications

� Highest level: affected by choice of hardware, type of system

� The requirements can be divided into User and System goals
� User goals – operating system should be convenient to use,

easy to learn, reliable, safe, and fast
� System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,
and efficient

2.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

� Important principle to separate
Policy: What will be done?
Mechanism: How to do it?

� Mechanisms determine how to do something, policies decide
what will be done

� The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example – timer)

� Specifying and designing an OS is highly creative task of
software engineering

2.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

� Much variation
� Early OSes in assembly language
� Then system programming languages like Algol, PL/1
� Now C, C++

� Actually usually a mix of languages
� Lowest levels in assembly
� Main body in C
� Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts
� More high-level language easier to port to other hardware

� But slower
� Emulation can allow an OS to run on non-native hardware

2.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

� General-purpose OS is very large program
� Various ways to structure ones

� Simple structure – MS-DOS
� More complex -- UNIX
� Layered – an abstrcation
� Microkernel -Mach

2.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simple Structure -- MS-DOS

� MS-DOS – written to provide the
most functionality in the least
space
� Not divided into modules
� Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated

2.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Non Simple Structure -- UNIX

UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts
� Systems programs
� The kernel

 Consists of everything below the system-call interface
and above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

2.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach

� The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.

� With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

� Simplifies debugging and
system verification

2.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

� Moves as much from the kernel into user space
� Mach example of microkernel

� Mac OS X kernel (Darwin) partly based on Mach
� Communication takes place between user modules using

message passing
� Benefits:

� Easier to extend a microkernel
� Easier to port the operating system to new architectures
� More reliable (less code is running in kernel mode)
� More secure

� Detriments:
� Performance overhead of user space to kernel space

communication

2.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modules

� Many modern operating systems implement loadable kernel
modules
� Uses object-oriented approach
� Each core component is separate
� Each talks to the others over known interfaces
� Each is loadable as needed within the kernel

� Overall, similar to layers but with more flexible
� Linux, Solaris, etc

2.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Modular Approach

2.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hybrid Systems

� Most modern operating systems are actually not one pure model
� Hybrid combines multiple approaches to address

performance, security, usability needs
� Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality
� Windows mostly monolithic, plus microkernel for different

subsystem

2.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Generation

n Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

n SYSGEN program obtains information concerning the specific
configuration of the hardware system
l Used to build system-specific compiled kernel or system-

tuned
l Can general more efficient code than one general kernel

2.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Boot

� When power initialized on system, execution starts at a fixed
memory location
� Firmware ROM used to hold initial boot code

� Operating system must be made available to hardware so hardware
can start it
� Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it
� Sometimes two-step process where boot block at fixed

location loaded by ROM code, which loads bootstrap loader
from disk

� Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

� Kernel loads and system is then running

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 2

