Chapter 2: Operating-System
Structures

Operating System Concepts — 9th Edition Silberschatz, Galvin and Gagne ©2013

L. af

r &l Chapter2 Operating-System Structures

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Operating System Debugging

Operating System Generation

O O O O o 0o o o 0o a4

System Boot

__.. .._.-.-‘.:I Il‘\
I /5»“:; & |
'
Al Wy

Operating System Concepts — 9th Edition 2.2 Silberschatz, Galvin and Gagne ©2013

¥

=

Y

: A,_a_,ml_ . -
&1,./ Objectives

0 To describe the services an operating system provides to
users, processes, and other systems

0 To discuss the various ways of structuring an operating
system

0 To explain how operating systems are installed and
customized and how they boot

P
4l Ande

Operating System Concepts — 9th Edition 2.3 Silberschatz, Galvin and Gagne ©2013

P
4

PN

ot Operating System Services

0 Operating systems provide an environment for execution of programs
and services to programs and users

0 One set of operating-system services provides functions that are
helpful to the user:

0 User interface - Almost all operating systems have a user
interface (Ul).

» Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

0 Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

0 1/O operations - A running program may require I/O, which may
involve a file or an I/O device

Operating System Concepts — 9t Edition 24 Silberschatz, Galvin and Gagne ©2013

"G5 Operating System Services (Cont.)

0 One set of operating-system services provides functions that are helpful to
the user (Cont.):

0 File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

0 Communications — Processes may exchange information, on the same
computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

0 Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in I/O devices, in user
program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

)Y

3
1:': M

N
L8

AP

Operating System Concepts — 9th Edition 2.5 Silberschatz, Galvin and Gagne ©2013

>

.

"G5 Operating System Services (Cont.)

0 Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

0 Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - CPU cycles, main memory, file storage,
I/O devices.

0 Accounting - To keep track of which users use how much and what
kinds of computer resources

0 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts

B
- 2 _'. I\.
;-/"‘S,‘; S
T~

&>

W
$

AP

Operating System Concepts — 9t Edition 2.6 Silberschatz, Galvin and Gagne ©2013

I

=

>

/.

s,

&_,,“::i A View of Operating System Services

el

user and other system programs

GUI batch command line

user interfaces

system calls
program /0 e communication i e accountin
execution operations systems allocation 9
error pro;?]cc;;[lon
detection _ security
Services

operating system

hardware

Operating System Concepts — 9th Edition 2.7 Silberschatz, Galvin and Gagne ©2013

A
f?!

_om—
(@

7 User Operating System Interface - CLI

CLI or command interpreter allows direct command entry

0 Sometimes implemented in kernel, sometimes by systems
program

0 Sometimes multiple flavors implemented — shells
0 Primarily fetches a command from user and executes it

0 Sometimes commands built-in, sometimes just names of
programs

» If the latter, adding new features doesn’t require shell
modification

Operating System Concepts — 9th Edition 2.8 Silberschatz, Galvin and Gagne ©2013

N

<
)

&-,,- User Operating System Interface - GUI

0 User-friendly desktop metaphor interface
0 Usually mouse, keyboard, and monitor
0 lcons represent files, programs, actions, etc

0 Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

0 Invented at Xerox PARC
0 Many systems now include both CLI and GUI interfaces
0 Microsoft Windows is GUI with CLI “command” shell

0 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

0 Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

S0

£ /}:; S
e ’%-;’

gL

Operating System Concepts — 9th Edition 29 Silberschatz, Galvin and Gagne ©2013

s Touchscreen Interfaces

n Touchscreen devices require new
interfaces

| Mouse not possible or not desired

| Actions and selection based on
gestures

| Virtual keyboard for text entry

| Voice commands. ._-_

Calculator Pro

Operating System Concepts — 9t Edition 2.10 Silberschatz, Galvin and Gagne ©2013

A
?

G System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

O Three most common APIls are Windows API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

i)y
/"»:;\\1
sl)\l e

N

J—
o Example of System Calls

0 System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally)

.

sl

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 212

M{J—”ﬁ’ Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, wvoid *buf, size_t count)
| | | | | |
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:
* int fd—the file descriptor to be read
* void *buf—a buffer where the data will be read into
* size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

sl

=

(o

=377 System Call Implementation

0 Typically, a number associated with each system call

0 System-call interface maintains a table indexed according to
these numbers

0 The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

0 The caller need know nothing about how the system call is
implemented

0 Just needs to obey API and understand what OS will do as a
result call

0 Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built
into libraries included with compiler)

- 3 2 _;. \I'\.

£ /}:; S
‘e

gL

Operating System Concepts — 9t Edition 2.14 Silberschatz, Galvin and Gagne ©2013

5%/ API - System Call — OS Relationship

e
L\

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
Implementation
» Of open ()
: system call
return

g A’_‘?ml, :

Types of System Calls

0 Process control

d

O o o o o o o O

create process, terminate process

load, execute

get process attributes, set process attributes

wait for time

wait event, signal event

allocate and free memory

Dump memory if error

Debugger for determining bugs, single step execution

Locks for managing access to shared data between processes

o g\
—Y
e

f h <
“l Ay

Operating System Concepts — 9t" Edition 2.16 Silberschatz, Galvin and Gagne ©2013

=

(.y

o Types of System Calls

File management
0 create file, delete file
0 open, close file
0 read, write, reposition
0 get and set file attributes
0 Device management
request device, release device
read, write, reposition
get device attributes, set device attributes

O O O 0O

logically attach or detach devices

Operating System Concepts — 9t Edition 217

Silberschatz, Galvin and Gagne ©2013

=

g .y

=37 Types of System Calls (Cont.)

Information maintenance

get time or date, set time or date

get system data, set system data

get and set process, file, or device attributes
Communications

create, delete communication connection

send, receive messages if message passing model to host
name or process name

» From client to server

Shared-memory model create and gain access to memory
regions

0 transfer status information
0 attach and detach remote devices

& L
=)}
—

; h \

#l Al

Operating System Concepts — 9th Edition 2.18 Silberschatz, Galvin and Gagne ©2013

L
v
.

5>’ Types of System Calls (Cont.)

0 Protection
0 Control access to resources
0 Get and set permissions
0 Allow and deny user access

Operating System Concepts — 9t Edition 2.19 Silberschatz, Galvin and Gagne ©2013

3

A
g

gNT;;;j-?/f

o

Examples of Windows and Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts — 9t Edition

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

2.20

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown()

Silberschatz, Galvin and Gagne ©2013

=

‘f@?}’ - Standard C Library Example

£
L X

0 C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

printf (“"Greetings"); |-

return O;
}

user
mode ¥

standard C library —
kernel
mode

write {)
write ()
system call

e sl
e M

d : ““
“l Ay
Silberschatz, Galvin and Gagne ©2013

P

Operating System Concepts — 9t Edition 2.21

o \"’3""‘“-}
el

G S Operating System Design and Implementation

0 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

0 Internal structure of different Operating Systems can vary widely
0 Start the design by defining goals and specifications
0 Highest level: affected by choice of hardware, type of system

0 The requirements can be divided into User and System goals

0 User goals — operating system should be convenient to use,
easy to learn, reliable, safe, and fast

0 System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

=\
/}:; S
'
gL

BN

&{:ﬁ Operating System Design and Implementation (Cont.)

Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

0 Mechanisms determine how to do something, policies decide
what will be done

0 The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example — timer)

0 Specifying and designing an OS is highly creative task of
software engineering

Operating System Concepts — 9t Edition 2.23 Silberschatz, Galvin and Gagne ©2013

0 Much variation
0 Early OSes in assembly language
0 Then system programming languages like Algol, PL/1
Now C, C++
Actually usually a mix of languages
Lowest levels in assembly
Main body in C

Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

More high-level language easier to port to other hardware
But slower
Emulation can allow an OS to run on non-native hardware

=T
/"»:;\\1
gl “_f..'_’

Operating System Concepts — 9t Edition 2.24 Silberschatz, Galvin and Gagne ©2013

%ﬁ;;;fv Operating System Structure

0 General-purpose OS is very large program
0 Various ways to structure ones

0 Simple structure — MS-DOS

0 More complex -- UNIX

0 Layered — an abstrcation

0 Microkernel -Mach

Operating System Concepts — 9th Edition 2.25 Silberschatz, Galvin and Gagne ©2013

™

-

% Simple Structure -- MS-DOS

0 MS-DOS — written to provide the
most functionality in the least
space

0 Not divided into modules
0 Although MS-DOS has some
structure, its interfaces and

levels of functionality are not
well separated

Operating System Concepts — 9t Edition 2.26

application program

AT

resident system program

MS-DOS device drivers

ROM BIOS device drivers ’

Silberschatz, Galvin and Gagne ©2013

=

4% Non Simple Structure -- UNIX

UNIX — limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts

0 Systems programs
0 The kernel

» Consists of everything below the system-call interface
and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

\'J.' ';\ ..'.‘.___
sl)\l e

N
-
,.:m.l

«g%7 Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

c J handling swapping block /O page replacement

Q character |/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

o Layered Approach

0 The operating system is divided -
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.

user interface

layer O
hardware

0 With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

0 Simplifies debugging and
system verification

\'J.' ';\ ..'.‘.___
sl)\l e

A
f?!

PN

ot Microkernel System Structure

0 Moves as much from the kernel into user space
0 Mach example of microkernel
0 Mac OS X kernel (Darwin) partly based on Mach

0 Communication takes place between user modules using
message passing

0 Benefits:
0 Easier to extend a microkernel
0 Easier to port the operating system to new architectures
0 More reliable (less code is running in kernel mode)
0 More secure
0 Detriments:

0 Performance overhead of user space to kernel space
communication

Operating System Concepts — 9th Edition 2.30 Silberschatz, Galvin and Gagne ©2013

~“%»7 Microkernel System Structure

Application File Device user
Program System Driver mode
N N N N
E messages ' '. messages .']

CPU
scheduling

memory
managment

kernel
mode

Interprocess
Communication

4 microkernel A

hardware

=

. A,_a_,ml_ ’

0 Many modern operating systems implement loadable kernel
modules

0 Uses object-oriented approach

0 Each core component is separate

0 Each talks to the others over known interfaces
0 Each is loadable as needed within the kernel
0 Overall, similar to layers but with more flexible

0 Linux, Solaris, etc

L

e
A

Operating System Concepts — 9t Edition 2.32 Silberschatz, Galvin and Gagne ©2013

“$7/ Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel loadable

miscellaneous
modules

system calls

executable
formats

STREAMS
modules

Operating System Concepts — 9th Edition 2.33 Silberschatz, Galvin and Gagne ©2013

57 Hybrid Systems

0 Most modern operating systems are actually not one pure model

0 Hybrid combines multiple approaches to address
performance, security, usability needs

0 Linux and Solaris kernels in kernel address space, so
monolithic, plus modular for dynamic loading of functionality

0 Windows mostly monolithic, plus microkernel for different
subsystem

=y
/"»:;\\1
gl “_f..'_’

Operating System Concepts — 9t Edition 2.34 Silberschatz, Galvin and Gagne ©2013

N

-
AL

P Operating System Generation

n Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

n SYSGEN program obtains information concerning the specific
configuration of the hardware system

| Used to build system-specific compiled kernel or system-
tuned

| Can general more efficient code than one general kernel

Operating System Concepts — 9t Edition 2.35 Silberschatz, Galvin and Gagne ©2013

System Boot

When power initialized on system, execution starts at a fixed
memory location

0 Firmware ROM used to hold initial boot code

Operating system must be made available to hardware so hardware
can start it

0 Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

0 Sometimes two-step process where boot block at fixed
location loaded by ROM code, which loads bootstrap loader
from disk

Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

Kernel loads and system is then running

. ‘_J.. ';. I\
; 4’},’; S
L Ay

Operating System Concepts — 9th Edition 2.36 Silberschatz, Galvin and Gagne ©2013

End of Chapter 2

Operating System Concepts — 9th Edition Silberschatz, Galvin and Gagne ©2013

