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This Day In History (May 9th, 1694)

Johann Bernoulli wrote Leibniz, introducing the method of
”separation of variables” or ”separation of indeterminates.” He
would publish the method in Acta eruditorum in November of
1694.



New Classroom!

• EIT 1015 from now on WITH EXCEPTIONS:

• Thursday May 25th (STC 0010 with Alain)

• Tuesday May 30th (STC 0010 with Alain)

• Tuesday June 6th and July 25th Quizzes will be in M3 1006!



Announcements

• Course Project Proposal due next Tuesday (Watch for a
Crowdmark link on Thursday evening!)

• Assignment 1 due a week Thursday (Again watch for a
Crowdmark link on Thursday!)

• Please submit the correct file to the correct link!

• Add this course! Add to Piazza as well.

• Added restriction to Project: Alain Gamache is doing Édouard
Lucas



Diophantus of Alexandria

This week, we’ll be discussing Diophantus of Alexandria. We will
be talking about Alexandria, its foundation, the Library of
Alexandria and problems in Diophantine Equations.



Where Are We This Week?

∼ 350BCE − 350AD in Macedon

https://commons.wikimedia.org/wiki/File:Map_Macedonia_336_BC-en.svg

https://commons.wikimedia.org/wiki/File:Map_Macedonia_336_BC-en.svg


History of Alexander the Great

• Battle of Chaeronea (won by
Philip II of Macedon) in 338
BCE

• Marked the end of the
golden age of Greek
mathematics.

• Philip was succeeded by his
son Alexander the Great.

https://commons.wikimedia.org/wiki/File:Filip_II_Macedonia.jpg

https://commons.wikimedia.org/wiki/File:Filip_II_Macedonia.jpg


Alexander the Great

• Lived from 356 until 323
BCE (died at age 33)

• Conquered much of the
world between 334 BCE to
323 BCE

• Spread Greek culture around
the world (his armies were
usually Greek)

• Tutored by Aristotle (343
BCE)

https://en.wikipedia.org/wiki/File:Alexander1256.jpg

https://en.wikipedia.org/wiki/File:Alexander1256.jpg


Alexander the Conqueror (334 BCE-323 BCE)

Courtesy:
http://www.ancient.eu/timeline/Alexander_the_Great/

• 334 BCE - Invaded Persian Empire; liberated Ephesos,
Baalbek (renamed Heliopolis)

• 333 BCE - Conquered Sidon, Aleppo

• 332 BCE - Conquers Tyre (injures shoulder), Syria (turns to
Egypt)

• 331 BCE - Egypt is conquered by Alexander with little
resistance including Susa

• 331 BCE - Founds Alexandria at port town of Rhakotis.

http://www.ancient.eu/timeline/Alexander_the_Great/


Map of Conquered Areas



Alexandria After Alexander

• Once Alexander left Egypt (shortly after creating Alexandria
say 331-330 BCE), control passed to his viceroy Cleomenes
(died 322 BCE)

• Upon Alexander’s death in 323 BCE, Cleomenes remained as
a satrap (political leader) in Alexandria under viceroy Ptolemy
who then ordered him to be killed on the suspicion of the
embezzlement of 8000 talents. (see Pollard and Reid 2007,
enough to pay for 66000 years for one labourer)

• Note: Talent is a unit of weight; usually for gold or silver.
One talent of gold currently is worth $1.25 million USD.

• Note: Some references rumour the execution was for spying
for Perdiccas.



Ptolemy I Soter

• Lived from 367 BCE - 283
BCE (or 282 BCE)

• One of Alexander’s most
trusted guards and greatest
generals [McLeod]

• Defended from a siege of
Perdiccas in 321 BCE (his
own men betrayed
Peridiccas)

• Ptolemic rule until ∼ 80BCE

• As Ptolemic rule progressed,
Alexandria began to
deteriorate

https://commons.wikimedia.org/wiki/File:Ptolemy_I_Soter_Louvre_Ma849.jpg

https://commons.wikimedia.org/wiki/File:Ptolemy_I_Soter_Louvre_Ma849.jpg


Roman Annexation

• Rome annexed Alexandria around 80 BCE.

• Brought back a revitalization of Alexandria.

• Alexandria was under Roman rule until 616AD when it was
seized by the Persians.

• During this period is when Diophantus lived in Alexandria



Musaeum

• The Ptolomies wanted Alexandria to be a cornerstone of
education.

• Began and finished construction of the Musaeum or Mouseion
or Museion at Alexandria (Institution of the Muses).

• Where our ‘museum’ comes from.

• Arts of the muses included science, philosophy, drama, music,
fine art, and mathematics.

• (I couldn’t find even an artist’s rendition of a picture of the
Musaeum!)



Muses

• Goddesses of science,
literature and arts in Greek
mythology

• Clio - Goddess of history.

• Nine Muses (according to
greek poet Hesiod
∼ 750− 650 BCE)

• History, Epic Poetry, Love
Poetry, Lyric Poetry (music,
song), Tragedy, Hymns,
Dance, Comedy, Astronomy

https://en.wikipedia.org/wiki/File:Car_of_history.jpg

https://en.wikipedia.org/wiki/File:Car_of_history.jpg


Books

• If Alexandria was to become a great intellectual centre,
scholars would need books (back then manuscripts).

• Adjacent to the Musaeum was the great Library of Alexandria.

• Books were stored in the biblion (place of books) in the library.

• Library also consisted of other smaller libraries and shrines.



Alexandria (The Library of Alexandria - McLeod)
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Library at Alexandria

https://en.wikipedia.org/wiki/File:

Ancientlibraryalex.jpg

https://en.wikipedia.org/wiki/File:Ancientlibraryalex.jpg
https://en.wikipedia.org/wiki/File:Ancientlibraryalex.jpg


Library of Alexandria

• Most workers were translators called scribblers (charakitai)
[McLeod].

• Wrote on papyrus.

• Was a place not just for study but for all forms of artistic
display.

• Further, was not just a collection of scrolls but rather a
research centre full of life and exuberance.

• Library had little consideration for intellectual property or even
property rights (see next slide)



Books

• Ptolemy III (246-221BCE) is
said to have written across
the world asking to borrow
books for copying.

• Athens obliged and
Alexandria copied the books
but kept the originals
forfeiting fifteen talents
deposited as a bond https://commons.wikimedia.org/wiki/File:

Octadrachm_Ptolemy_III_BM_CMBMC103.jpg

• Ships coming into Alexandria also had all their books
confiscated and if travelers were lucky, would be given copies
of the originals. (Galen - Roman writer)

• 310-240 BCE - library contained 400,000 mixed scrolls and
90,000 single scrolls!

https://commons.wikimedia.org/wiki/File:Octadrachm_Ptolemy_III_BM_CMBMC103.jpg
https://commons.wikimedia.org/wiki/File:Octadrachm_Ptolemy_III_BM_CMBMC103.jpg


Great Fire of Alexandria

http:

//www.ancient-origins.net/sites/default/files/field/image/library-alexandria-destruction.jpg

http://www.ancient-origins.net/sites/default/files/field/image/library-alexandria-destruction.jpg 
http://www.ancient-origins.net/sites/default/files/field/image/library-alexandria-destruction.jpg 


Great Fire of Alexandria

• Great Fire occurred in Alexandria in 48 BCE (Julius Caesar).

• Burned down docks and storehouses of grains.

• “Dio Cassius says that the Great Library was burned as well
but Caesar himself says in his account of the Civil War that he
burned all the vessels in the harbour which had come to
support Pompey plus 22 warships which had usually been on
guard at Alexandria.” [McLeod p. 50]

• Highly contested if and how many times the library had
burned down.

• Accounts by Plutarch, Aulus Gellius, Ammianus Marcellinus,
and Orosius suggest that troops ‘accidentally’ burnt the library
down during the Siege of Alexandria. [Pollard and Reid]

• Also may have burnt down between 270 and 275AD during an
Egyptian revolt...

• ... and again in 391AD when Theodosius I ordered that pagan
temples should be destroyed.



A Brief Digression

https://www.youtube.com/watch?v=sIMu2FmLtdM

https://www.youtube.com/watch?v=sIMu2FmLtdM


Famous people to have worked in Alexandria

• Archimedes of Syracuse (“Eureka”, area, volumes, basics of
calculus)

• Erathostenes (sieve for prime numbers, geometry)

• Euclid (geometry)

• Hypsicles

• Heron

• Menelaus

• Ptolemy (Claudius Ptolemaeus)

• Diophantus of Alexandria

• Pappus

• Theon and daughter Hypatia



Diophantus of Alexandria

• Alexandrian Greek
mathematician known as the
“father of Algebra”.

• Probably born sometime
between 201 and 215 AD
and died sometime probably
between 285 AD and 299
AD.



Diophantus of Alexandria

• Probably born sometime between 201 and 215 AD and died
sometime probably between 285 AD and 299 AD.

• Heath claims that “He was later than Hypsicles... and earlier
of Theon of Alexandria” which limits the range of dates
certainly to between 150 BCE and 350 AD.

• A letter of Michael Psellus in the 11th century reports that
Anatolius, Bishop of Laodicea since 280 AD [Heath p.545],
dedicated a treatise on Egyptian computation to his friend
Diophantus [Tannery p. 27-42] [Heath p.545]

• Mention of friend ‘Dionysius’ who was probably St. Dionysius,
lead a Christian school in Alexandria beginning in 231AD and
eventually in 247AD became bishop of Alexandria [Heath
(Arithmetica) p. 129][Tannery, in his Mèmoires scientifiques,
II, 536 ff.]



Epigram of Diophantus (dated back to 4th century [Burton
p.217])

From the “Greek Anthology” (see [Tannery p. 60] or [Heath
(Arithmetica) p. 113)

His boyhood lasted for 1/6 of his life; his beard grew
after 1/12 more; after 1/7 more, he married and his son
was born 5 years later; the son lived to half his father’s
age and the father died 4 years after his son.

Letting x be Diophantus’ age at death. We see that...

x

6
+

x

12
+

x

7
+ 5 +

x

2
+ 4 = x

Solving gives... x = 84.
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Diophantus of Alexandria

Four major contributions:

• Arithmetica (we will discuss later)

• Moriastica (computations with fractions)

• On Polygonal Numbers (only a fragment survives today - see
assignment 2 for a sample problem. not original work but
used geometric proofs)

• Porisms (completely lost - only know of its existence from
references made in Arithmetica)



Arithmetica



Arithmetica

• A series of 13 books (as mentioned in the introduction of
Arithmetica).

• Six have survived due to efforts by the Greeks

• The other 7 were believed to have been lost however recently,
four more have been found due to efforts by the Arabs. This
was the doctoral thesis work of Jacques Sesiano in 1975 at
Brown University.

• Sesiano found 4 more books bringing the total to 10/13 books
found.

• Note in Burton p. 219 didn’t know of the existence of the 4
arabic books that Sesiano did.



Controversy of the Numbering of Books in Arithmetica

• The numbering of the books has recently been brought to
question from the work of Jacques Sesiano.

• Heath claims to have books I to VI however, Book IV must
come right after I-III as is confirmed by the Arabic sources.

• Heath’s book IV-VI in all likelihood come after the books
IV-VII from Sesiano based on the fact that the four books
seem to be sequential.

• Thus, we believe to have all of books I-VII and three of the
books from VIII-XIII. (I won’t speculate as to which books we
have from that list).



Language of Arithmetica - Variable powers

• Greek. Bachet translated to Latin in 1621.

• Diophantus used ϛ for unknown linear quantities.

• ∆Υ represented unknown squares.

• KΥ represented cube. (Kappa, not ‘K’)

• ∆Υ∆, ∆KΥ and KΥK for fourth, fifth and sixth powers
respectively.

• Also has a notation for fractions (won’t discuss here)

• See [Heath p.458]



Language of Arithmetica

Alpha Beta Gamma Delta Epsilon Digamma Zeta Eta Theta
α β γ δ ε ϝ ζ η θ
1 2 3 4 5 6 7 8 9

Iota Kappa Lambda Mu Nu Xi Omicron Pi Koppa
ι κ λ μ ν ξ o π ϟ

10 20 30 40 50 60 70 80 90

Rho Sigma Tau Upsilon Phi Chi Psi Omega Sampi
ρ σ τ υ ϕ χ ψ ω ϡ

100 200 300 400 500 600 700 800 900



How to Translate

• For example, α = 1, β = 2, γ = 3, δ = 4,

• KΥλε meant 35x3 and Mα would be +1. (Abbreviation of
monades, Greek for units).

• Subtraction was ΛI (upside-down psi) and positive terms
appeared before negative terms.

• For example, x3 − 2x2 + 3x − 4 was

KΥαϛγΛI∆ΥβMδ
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Try some conversions to/from Greek

1. x3 + 13x2 + 5x + 2

2. ∆Υ∆ϡϟϝMξΛIKΥιε

3. −x2 + 2x − 3



This Day In History (May 11th, 1610)

Matteo Ricci died in Peking, China. An Italian Jesuit who studied
with Christopher Clavius in Rome during the 1570s, he translated
The First Six Books of Euclid into Chinese in 1607.



Announcements

• Reminder that the Tutte Road naming ceremony is tomorrow!
Come to get a perspective on the history of William Tutte!
Check the CO 480 webpage for more information.

• Crowdmark Links will be posted today. Check your inboxes
tomorrow if you do not have two links from Crowdmark (One
for the Project Proposal and one for Assignment 1) Please
email me immediately with which one you’re missing!

• Everyone must submit the Project Proposal and groups should
each submit the same one!

• Posted history assignment question rubric.



Problems and What a Solution Was In Arithmetica

• Entire world consists of positive rational solutions to problems.

• A solution was considered solved when a single solution was
found (either integer or rational).

• There were no negative solutions. For example, in (Greek)
Book V Problem 2, we find the equation

4x + 20 = 4

which he labels as “absurd because the 4 ought to be some
number greater than 20” [Heath (Arithmetica) p.200] [Burton
p. 220]



Typical Question in Diophantus’ Arithmetica

Book I Problem VII

From the same (required) number to subtract two given
numbers so as to make the remainders have to one
another a given ratio.



Modern Day Solution

From the same (required) number to subtract two given
numbers so as to make the remainders have to one
another a given ratio.

Let a, b be the first two given numbers and let the ratio be c : d
(or c/d). Then:

x − a

x − b
=

c

d

d(x − a) = c(x − b)

(d − c)x = ad − bc

x =
ad − bc

d − c



What Diophantus Did [Heath (Arithmetica) p.132]

From the same (required) number to subtract two given
numbers so as to make the remainders have to one
another a given ratio.

Given numbers 100, 20 given ratio 3 : 1. Required number x .
Therefore x − 20 = 3(x − 100) and x = 140.



Major Differences

• Diophantus was pleased with solving a specific instance of a
problem

• Came up with algorithms for solving these types of problems.

• Often wrote down a ‘necessary’ condition to make the
problem work.



Definition

Diophantine Equations

A Diophantine Equation is a polynomial equation over the integers
in n variables where we want to classify all integer (or rational)
solutions to the problem.

In Diophantus’ case, he required only one positive rational solution
to exist. We however often want to show such equations either
have no solutions, finitely many (then enumerate them) or to find
a parameterization for infinitely many (like Linear Diophantine
Equations in Math 135).



Rough Contents

• Book I: All Linear Diophantine Equations

• Books II onward: Introduces quadratic terms

• Book IV (arabic) and beyond: Introduces cubic and higher
terms.



Interesting Implicit Results in Diophantus’ Arithmetica

I will discuss two results in Arithmetica that aren’t formally proven.

• Quadratic Equations. It is clear that Diophantus knew of a
way to solve quadratic equations (though it is likely not he
who knew of these methods first)

• Integers as the sum of two squares. Again it is unclear that he
knew the result we will prove but he seemed to avoid it very
mindfully.



Quadratic Equations

• ax2 + bx = c Greek Book VI Problem 6 (or VI.6)

• ax2 = bx + c Greek Book IV Problem 39 (or IV.31)

• ax2 + c = bx Greek Book V Problem 10 (or IV.22)

Notice that Diophantus has 3 cases because he does not have a
notion of negative numbers. Diophantus never was explicit in
solving this generally but he knew the general method as was
manifest in Book V Problem 30



224 THE ARITHMETICA

29. To find three squares such that the sum of their squares is

a square.

Let the squares be ;r
2
, 4, 9 respectively

1
.

Therefore x* + 97 = a square = (x*
-

io)
2

, say ;

whence x* = ^.
If the ratio of 3 to 20 were the ratio of a square to a

square, the problem would be solved
;
but it is not.

Therefore / have to find two squares (/
2
, q

z
, say) and a

number (m, say) such t/iat m- p* q
4 Jias to 2m the

ratio of a square to a square.

Let J? = z*,f = 4. and m = z* + 4.

Therefore w2 -/4 -
q
4 - O2 + 4)

2 - 2* - 1 6 = 8-z
2

.

Hence 8z2

/(22* + 8), or 4^
2

/(-
s

'2 + 4). must be the ratio of a

square to a square.

Put <sr
2 + 4 = (+i)2

, say;

therefore z= \\, and the squares are p*=2\, q*
=

4, while

m = 6\;

or, if we take 4 times each,/
2 =

9, q*= 16, m =
2$.

Starting again, we put for the squares x*, 9, 16;

then the sum of the squares = ;r
4 + 337 = (-** 25)

2
, and

*=V-
The required squares are

, g, 16.

30. [The enunciation of this problem is in the form of an

epigram, the meaning of which is as follows.]

A man buys a certain number of measures (%oe<?) of wine, some

at 8 drachmas, some at 5 drachmas each. He pays for them a

square number of drachmas
;
and if we add 60 to this number, the

result is a square, the side of which is equal to the whole number
of measures. Find how many he bought at each price.

Let x= the whole number of measures
; therefore x* 60

was the price paid, which is a square (xmf, say.

If now 2
, fl, m2

represent three numbers satisfying the conditions of the present

problem of Diophantus, put for the second of the required numbers ik* +/ 2
, for the third

2/JT + /2 , and for the fourth 2//w+/ 2
. These satisfy three conditions, since each of the

last three numbers added to the first (x
2 + a) less the number a gives a square. The

remaining three conditions give a triple-equation.
i "Why," says Fermat, "does not Diophantus seek two fourth powers such that

their sum is a square ? This problem is in fact impossible, as by my method I am in

a position to prove with all rigour." It is probable that Diophantus knew the fact

without being able to prove it generally. That neither the sum nor the difference of

two fourth powers can be a square was proved by Euler (Commentatioms arithmeticae, j.

pp. 24sqq., and Algebra, Part II. c. xm.).

BOOK V 225

Now of the price of the five-drachma measures + of

the price of the eight-drachma measures =x\
so that xz

60, the total price, has to be divided into

two parts such that of one + of the other = x.

We cannot have a real solution of this unless

x > i
(x"-

-
60) and < \ (x*

-
60).

Therefore $x < x'2 60 < &r.

(1) Since x z > 5^ + 60,

x'i =t
>x+ a number greater than 60,

whence x is
1 not less than 1 1.

(2) x'*<8x+ 6o

or -r
2 = &r -t- some number less than 60,

whence x is
1 not greater than 12.

Therefore 11 <x< 12.

Now (from above) x (m
2 + 6o)/2w;

therefore 22 / < m* + 60 < 247/2.

Thus (i) 22m = m'2 + (some number less than 60),

and therefore m is
2 not less than 19.

(2) 24# = w2 + (some number greater than 60),

and therefore m is
2
less than 21.

Hence we put w = 20, and

x*-6o = (x- 2o)
2

,

so that*= \\%,x*= 132^, and * a - 60 = 72$.

Thus we have to divide 72^ into two parts such that

of one partptus | of the other = 1 1.

Let the first part be 5*.

Therefore (second part)
= 1 1|

-
.#,

or second part = 92 82
;

therefore 5* + 92 8^ = 72^,

Therefore the number of five-drachma %oe?

eight-drachma

1 For an explanation of these limits see p. 60, ante.

2 See p. 62, ante.



The Equation a2x + bx = c

In Book VI Problem 6, Diophantus mentions that 6x2 + 3x = 7
cannot be solved because “(half the coefficient of x) squared plus a
product of the coefficient of x2 and the absolute term should be a
square”

This algebraically would be (b/2)2 + ac = (1/4)(b2 − 4a(−c)) and
rearranging this in the abstract equation, we see that Diophantus
was speaking of the discriminant being a positive rational square.

Thus, since (3/2)2 + 6 · 7 is not a square, he claims the above
equation has no solution.



Sum of Two Squares

Diophantus seemed to have known the following theorem (see
discussions [Heath p.482-483]).

Theorem

If a number when subtracted by 3 is divisible by 4, then the
number cannot be written as the sum of two squares.

or reworded

Theorem

If n ∈ Z satisfies n ≡ 3 mod 4, then there do not exist integers x
and y satisfying x2 + y2 = n.



Arithmetica (Greek) Book V Problem 9 [Heath p. 206]

2o6 THE ARITHMETICA

Squares 4, 9, 16.

First numbers, so that the others are 4/ar, 9/^5 and 36/^=16.
Therefore -f =f, and the numbers are (i^, 2|, 6).

We observe that x \, where 6 is the product of 2 and 3,

and 4 is the side of 16.

Hence the following rule. Take the product of two sides

(2, 3), divide by the side of the third square 4 [the

result is the first number] ;
divide 4, 9 respectively

by the result, and we have the second and third

numbers.

8. To find three numbers such that the product of any two +

the sum of the three gives a square.

As in Lemma II to the 7th problem, we find three right-

angled triangles with equal areas
;

the squares of

their hypotenuses are 3364, 5476, 12769.

Now find, as in the last Lemma, three numbers such that

the products of the three pairs are equal to these

squares respectively, which we take because each

+ 4 . (area) or 3360 gives a square ;
the three numbers

then are

Affix, z-iy-x ^Ull^x Tannery],
4
it1;tr [

&
lial &;tr Tannery].

It remains that the sum of the three = 3360^.

Therefore ^ffffflr^ [**$$$** Tannery] = 3360;^.

TViprpfnrf* r 3282 4 80 6 f 131299224 /-> 781543 Tannprwli iicrciui c ji
-ftfTSTj-Gg-fG LT3T958~(>55tf U1 W5W20 -idiiiieryj,

and the numbers are ly^ ,

i^gf^ ^ST]

9. To divide unity into two parts such that, if the same given

number be added to either part, the result will be a square.

Necessary condition. The given number must not be odd and

the double of it + i must not be divisible by any prime number

which, when increased by i, is divisible by 4 \i.e. any prime number

of the form 4 i ]
1
.

Given number 6. Therefore 13 must be divided into two

squares each of which >6. If then we divide 13 into

two squares the difference of which < i, we solve the

problem.

1 For a discussion of the text of this condition see pp. 107-8, ante.



Proof

n ∈ Z∧ n ≡ 3 mod 4⇒ ¬∃x , y ∈ Z, x2 + y2 = n

Proof: Assume towards a contradiction that there exists integers x
and y such that x2 + y2 = n. Since this holds over the integers, it
must hold in Z4, that is,

x2 + y2 ≡ 3 mod 4

Now, squaring each of 0, 1, 2, 3 modulo 4 yields 0, 1, 0, 1
respectively. Since each of x , y ∈ {0, 1, 2, 3} modulo 4, we see
that x2 + y2 modulo 4 must be one of 0 + 0, 0 + 1, 1 + 0 or 1 + 1.
These numbers are 0, 1, 2, none of which give you 3 modulo 4, a
contradiction.



Arithmetica (Greek) Book V Problem 11 [Heath p. 206]

ao8 THE ARITHMETICA

Therefore, if we can make x* lie between these, we shall

solve the problem.
We must have x> || and < -ff.

Hence, in making 9^ a square, we must find

x>ft and < if.

Put 9 xz =
(3 mxf, say, whence x = 6mf(m

2 + i
).

17 6m , 10
Therefore < - < .

12 W2 +I 12

The first inequality gives Jim > iym
z + 17 ;

and

36
2 -

17. 17= 1007,

the square root of which 1
is not greater than 31 ;

therefore m $
3I+36

, i.e.m^.
17 ^17

Similarly from the inequality igm*+ I9>?2m we find 2
'

Let m =
3^. Therefore 9 ;r

2= (3 3|^)
2
,
and ^=

Therefore *2=
fiHf,

and the segments of i are

ii. To divide unity into three parts such that, if we add the

same number to each of the parts, the results are all squares.

Necessary condition*. The given number must not be 2 or any

multiple of 8 increased by 2.

Given number 3. Thus 10 is to be divided into three

squares such that each > 3.

Take of 10, or 3^, and find x so that -

2
-f 3| may be a

square, or 3cur
2 + i =a square = ($x+ i)

2
, say.

Therefore ^=2,^ =
4, i jx*

=
,
and

3V + 3i =W = a square.

Therefore we have to divide 10 into three squares each of

which is as near as possible to -1^1
-.

Now 10 = 3
2 + i

2 = the sum of the three squares 9, ^f , -f^.

Comparing the sides 3, |, | with
-y-,

or (multiplying by 30) 90, 24, 18 with 55, we must

make each side approach 55.

1 I.e. the integral part of the root is ~t> 31. The limits taken in each case are afortiori
limits as explained above, pp. 61-3.

2 See p. 6 1, ante.

3 See pp. 108-9, ante -

In other words, a number of the form 24n+ 7 for any n ∈ N cannot
be written as the sum of three integer squares. (See assignment 1)



What about...

... numbers as the sum of four squares?



Arithmetica (Greek) Book IV Problem 29 [Heath p. 200]
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Therefore x = \\ ,

and (W' i) is a solution -

Otherwise thus.

If any square number is divided into two parts one of

which is its side, the product of the parts added to

their sum gives a cube.

[That is, x (x*
-
x) -f x* - x + x = a cube.]

Let the square be xz
,
and be divided into the parts x> x*x.

Then, by the second condition of the problem,
x^ x* x* = x3 2x* = a cube (less than x3

)
=
(^x)

3
, say.

Therefore Sx3 - i6x2 = x9
,
so that x = ^ ,

and f
1

-,
J

is a solution.

29. To find four square numbers such that their sum added to

the sum of their sides makes a given number 1
.

Given number 12.

Now xs +x + \ = a. square.

Therefore the sum of four squares + the sum of their sides

+ i =the sum of four other squares= 1 3, by hypothesis.

Therefore we have to divide 13 into four squares; then, if

we subtract from each of their sides, we shall have

the sides of the required squares.

1 On this problem Bachet observes that Diophantus appears to assume, here

and in some problems of Book v., that any number not itself a square is the sum of

two or three or four squares. He adds that he has verified this statement for all

numbers up to 325, but would like to see a scientific proof of the theorem. These

remarks of Bachet's are the occasion for another of Fermat's famous notes :
" I have

been the first to discover a most beautiful theorem of the greatest generality, namely this :

Every number is either a triangular number or the sum of two or three triangular

numbers ; every number is a square or the sum of two, three, or four squares; every
number is a pentagonal number or the sum of two, three, four or five pentagonal

numbers; and so on ad infinitum, for hexagons, heptagons and any polygons whatever,

the enunciation of this general and wonderful theorem being varied according to the

number of the angles. The proof of it, which depends on many various and abstruse

mysteries of numbers, I cannot give here ; for I have decided to devote a separate and

complete work to this matter and thereby to advance arithmetic in this region of inquiry

to an extraordinary extent beyond its ancient and known limits."

Unfortunately the promised separate work did not appear. The theorem so far as it

relates to squares was first proved by Lagrange (Nottv. Memoires de FAcad. de Berlin,

annee 1770, Berlin 1772, pp. 123-133; Oeuvres, in. pp. 189-201), who followed up
results obtained by Euler. Cf. also Legendre, Zahlentheorie, tr. Maser, I. pp. 212 sqq.

Lagrange's proof is set out as shortly as possible in Wertheim's Diophantus, pp. 324-330.

The theorem of Fermat in all its generality was proved by Cauchy (Oeuvres, ile serie,

Vol. VI. pp. 320-353) ; cf. Legendre, Zahlentheorie, tr. Maser, II. pp. 332 sqq.
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What’s missing from this one?



Lagrange’s Four Square Theorem

Lagrange’s Four Square Theorem

Any non-negative integer can be expressed as the sum of four
[integer] perfect squares.



Problems in Diophantus’ Arithmetica

Let’s look at a few more problems.



Book I Problem 17

To find four numbers such that the sums of all sets of three are
given numbers.

Let’s say the sums of three are 20, 22, 24 and 27 respectively.
Let x be the sum of all four numbers.
Then the numbers are x − 22, x − 24, x − 27, x − 20. Therefore,
4x − 93 = x and so x = 31. Thus, the numbers are 4, 7, 9 and 11.



Book I Problem 17

To find four numbers such that the sums of all sets of three are
given numbers.
Let’s say the sums of three are 20, 22, 24 and 27 respectively.

Let x be the sum of all four numbers.
Then the numbers are x − 22, x − 24, x − 27, x − 20. Therefore,
4x − 93 = x and so x = 31. Thus, the numbers are 4, 7, 9 and 11.



Book I Problem 17

To find four numbers such that the sums of all sets of three are
given numbers.
Let’s say the sums of three are 20, 22, 24 and 27 respectively.
Let x be the sum of all four numbers.

Then the numbers are x − 22, x − 24, x − 27, x − 20. Therefore,
4x − 93 = x and so x = 31. Thus, the numbers are 4, 7, 9 and 11.



Book I Problem 17

To find four numbers such that the sums of all sets of three are
given numbers.
Let’s say the sums of three are 20, 22, 24 and 27 respectively.
Let x be the sum of all four numbers.
Then the numbers are x − 22, x − 24, x − 27, x − 20. Therefore,
4x − 93 = x and so x = 31. Thus, the numbers are 4, 7, 9 and 11.



Book I Problem 18

To find three numbers such that the sum of any pair exceeds the
third by a given number.

Given excesses 20, 30 and 40.
Let x1, x2 and x3 be the three numbers. So x1 + x2 = x3 + 20,
x2 + x3 = x1 + 30 and x3 + x1 = x2 + 40. Summing these gives

2(x1 + x2 + x3) = (x1 + x2 + x3) + 90

and so x1 + x2 + x3 = 90. Thus, 2x3 = 70 or x3 = 35 and 2x1 = 60
or x1 = 30 and 2x2 = 50 and so x2 = 25.
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To find three numbers such that the sum of any pair exceeds the
third by a given number.
Given excesses 20, 30 and 40.
Let x1, x2 and x3 be the three numbers. So x1 + x2 = x3 + 20,
x2 + x3 = x1 + 30 and x3 + x1 = x2 + 40. Summing these gives

2(x1 + x2 + x3) = (x1 + x2 + x3) + 90

and so x1 + x2 + x3 = 90. Thus, 2x3 = 70 or x3 = 35 and 2x1 = 60
or x1 = 30 and 2x2 = 50 and so x2 = 25.



Note about Book I Problem 18

Usually Diophantus solves problems using one variable when he
can. In this problem, we see that he wasn’t able to and did use
multiple variables to help.



Book II Problem 8

To divide a given square number into two squares. (Recall:
Rational Squares) Perhaps the most famous of Diophantus’
problems
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3. To find two numbers such that their product is to their sum
or their difference in a given ratio [cf. I. 34].

4. To find two numbers such that the sum of their squares is to

their difference in a given ratio [cf. I. 32].

5. To find two numbers such that the difference of their squares
is to their sum in a given ratio [cf. I. 33].

6 1
. To find two numbers having a given difference and such

that the difference of their squares exceeds their difference by a

given number.

Necessary condition. The square of their difference must be

less than the sum of the said difference and the given excess

of the difference of the squares over the difference of the

numbers.

Difference of numbers 2, the other given number 20.

Lesser number x. Therefore x + 2 is the greater, and

4^+4 = 22.

Therefore x = 4^, and

the numbers are 4^, 6.

7
1

. To find two numbers such that the difference of their

squares is greater by a given number than a given ratio of

their difference-. [Difference assumed.]

Necessary condition. The given ratio being 3:1, the square of

the difference of the numbers must be less than the sum of three

times that difference and the given number.

Given number 10, difference of required numbers 2.

Lesser number x. Therefore the greater is x+ 2, and

4^ + 4 = 3.2+ 10.

Therefore x = 3, and

the numbers are 3, 5.

8. To divide a given square number into two squares
3
.

1 The problems n. 6, 7 also are considered by Tannery to be interpolated from some

ancient commentary.
2 Here we have the identical phrase used in Euclid's Data (cf. note on p. 132 above) :

the difference of the squares is rfjs vTrepoxw avr&v doOtvTi. apid/nf /j.flfai> rj ev \6yif,

literally "greater than their difference by a given number (more) than in a (given) ratio,"

by which is meant "greater by a given number than a given proportion or fraction

of their difference."

3 It is to this proposition that Fermat appended his famous note in which he

enunciates what is known as. the "great theorem" of Fermat. The text of the note is

as follows :

"On the other hand it is impossible to separate a cube into two cubes, or a

BOOK II 145

Given square number 16.

x* one of the required squares. Therefore \6-x* must

be equal to a square.

Take a square of the form 1
(inx 4)*, m being any

integer and 4 the number which is the square root

of 1 6, e.g. take (2^ 4)*, and equate it to 16 x*.

Therefore 4x*\6x+i6=\(:>x\
or 5** = \6x, and x =

g-.

The required squares are therefore
y-, ^.

9. To divide a given number which is the sum of two squares
into two other squares

2
.

biquadrate into two biquadrates, or generally any power except a square into two pcnvers
with the same exponent. I have discovered a truly marvellous proof of this, which

however the margin is not large enough to contain."

Did Fermat really possess a proof of the general proposition that xm+ym= z l* cannot

be solved in rational numbers where m is any number >2? As Wertheim says, one

is tempted to doubt this, seeing that, in spite of the labours of Euler, Lejeune-Dirichlet,
Kummer and others, a general proof has not even yet been discovered. Euler proved
the theorem for m= $ and / =

4, Dirichlet for *w = 5, and Kummer, by means of the

higher theory of numbers, produced a proof which only excludes certain particular

values of m, which values are rare, at all events among the smaller values of m ; thus

there is no value of m below 100 for which Kummer's proof does not serve. (I take

these facts from Weber and Wellstein's Encyclopddie der Elementar-Mathematik, I2 ,

p. 284, where a proof of the formula for m= + is given.)

It appears that the Gottingen Academy of Sciences has recently awarded a prize

to Dr A. Wieferich, of Miinster, for a proof that the equation xp +yp= gp cannot be

solved in terms of positive integers not multiples of p, if 2P - 2 is not divisible by p*.
" This surprisingly simple result represents the first advance, since the time of Kummer,
in the proof of the last Fermat theorem

"
(Bulletin of the American Mathematical Society,

February 1910).

Fermat says ("Relation des nouvelles decouvertes en la science des nombres,"

August 1659, Oeuvres, II. p. 433) that he proved that no cube is divisible into two cutesby

a variety of his method of infinite diminution (descente infinie or indefinie) different from

that which he employed for other negative or positive theorems ; as to the other cases, see

Supplement, sections I., n.
1
Diophantus' words are: "I form the square from any number of dp<.0/j.oi minus

as many units as there are in the side of 16." It is implied throughout that m must

be so chosen that the result may be rational in Diophantus' sense, i.e. rational and

positive.
2
Diophantus' solution is substantially the same as Euler's (Algebra, tr. Hewlett,

Part n. Art. 219), though the latter is expressed more generally.

Required to find x, y such that

If x /, then y $ g.

Put therefore -r=/+/te, y=g-qz.

H. D.



Book II Problem 8

To divide a given square number into two squares.
Given square number 16.

Let x2 be one of the required squares. Therefore 16− x2 must be
equal to a square.
Take a square of the form (mx − 4)2, m being any integer and 4
the number which is the square root of 16, e.g. take (2x − 4)2 and
equate it to 16− x2.
Therefore 4x2 − 16x + 16 = 16− x2 or 5x2 = 16x and x = 16/5.
The required squares are therefore 256/25 and 144/25.
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Given square number 16.
Let x2 be one of the required squares. Therefore 16− x2 must be
equal to a square.
Take a square of the form (mx − 4)2, m being any integer and 4
the number which is the square root of 16, e.g. take (2x − 4)2 and
equate it to 16− x2.
Therefore 4x2 − 16x + 16 = 16− x2 or 5x2 = 16x and x = 16/5.
The required squares are therefore 256/25 and 144/25.



Geometric Interpretation

Set y = mx − 4. Plug this into x2 + y2 = 16. We know one root of
the corresponding quadratic is rational, namely (0,−4). In fact,

16 = x2 + (mx − 4)2 = (1 + m2)x2 − 8mx + 16

and so, x = 0 or x = 8m/(1 + m2) which is also rational so long as
m is. Hence, infinitely many rational points can be found and in
fact, given a rational point, joining the line from (0,−4) to that
point gives a unique m value.



Geometric Interpretation

https://en.wikipedia.org/wiki/Diophantus_II.VIII#/media/File:Diophantus_1_jpg.jpg

https://en.wikipedia.org/wiki/Diophantus_II.VIII#/media/File:Diophantus_1_jpg.jpg


Byzantine scholar - John Chortasmenos (1370-1437)

Famous margin notes beside this problem [Herrin p.322]

Thy soul, Diophantus, be with Satan because of the
difficulty of your other theorems and particularly of the
present theorem



Pierre de Fermat’s Margin Note

A more famous margin quote:

If an integer n is greater than 2, then an + bn = cn has
no solutions in non-zero integers a, b and c. I have a
truly marvelous proof of this proposition which this
margin is too narrow to contain.

Original version of book is lost but Fermat’s son edited the next
edition in Diophantus published in 1670 to include the annotation.



https://en.wikipedia.org/wiki/File:Diophantus-II-8-Fermat.jpg

https://en.wikipedia.org/wiki/File:Diophantus-II-8-Fermat.jpg


Book II Problem 13

From the same (required) number to subtract two given numbers
so as to make both remainders squares.

Given the numbers 6 and 7.
Seek a number which exceeds a square by 6, say x2 + 6.
Thus, x2 + 6− 7 = x2 − 1 must also be a square.
Say this is equal to (x − 2)2.
Solving gives x = 5/4 and so the required number is

x2 + 6 =
25

16
+ 6 =

121

16

(Diophantus actually gives two ways to solve this problem!)
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Book II Problem 20

To find two numbers such that the square of either added to the
other gives a square.

Let x and 2x + 1 be the numbers so that they satisfy one condition
(x2 + 2x + 1 is a square).
The other condition gives 4x2 + 5x + 1. This is a square, say
(2x − 2)2. Therefore, x = 3/13 and 2x + 1 = 19/13.
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Book III Problem 21

To divide a given number into two parts and to find a square
which, when added to either of the parts, gives a square. We will
give the number 20 and the square x2 + 2x + 1.

What polynomials can be added to x2 + 2x + 1 to give another
square?
Let 2x + 3 and 4x + 8 be the squares. Then 6x + 11 = 20 and so
x = 3/2 whence 6 and 14 are the parts and the square is 25/4.
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Arabic Book IV Problem 26

We wish to find two numbers one cubic and the other square such
that the difference of their squares is a square number.

Let x3 be the cube and 4x2 be the square.
Set x6 − 16x4 to be (3x2)2.
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Greek Book IV Problem 18

To find two numbers such that the cube of the first added to the
second gives a cube and the square of the second added to the first
gives a square.

Diophantus shows some of the discovery:
Let x be the first number. therefore the second is a cube number
minus x3, say 8− x3. Then

(8− x3)2 + x = x6 − 16x3 + x + 64 = a square, say = (x3 + 8)2

This gives 32x3 = x or 32x2 = 1 which gives an irrational result.
However, if 32 were a square, this would be rational. This 32
comes from 4 times 8 and so we need to substitute 8 with a
number that when multiplied by 4 gives a square. This could be
say 43 = 64.



Greek Book IV Problem 18

To find two numbers such that the cube of the first added to the
second gives a cube and the square of the second added to the first
gives a square.
Diophantus shows some of the discovery:
Let x be the first number. therefore the second is a cube number
minus x3, say 8− x3. Then

(8− x3)2 + x = x6 − 16x3 + x + 64 = a square, say = (x3 + 8)2

This gives 32x3 = x or 32x2 = 1 which gives an irrational result.
However, if 32 were a square, this would be rational. This 32
comes from 4 times 8 and so we need to substitute 8 with a
number that when multiplied by 4 gives a square. This could be
say 43 = 64.



Greek Book IV Problem 18

To find two numbers such that the cube of the first added to the
second gives a cube and the square of the second added to the first
gives a square.

So assume x and 64− x3 are the numbers. Therefore,

(64− x3)2 +x = x6− 128x3 +4096+x = a square, say = (x3 +64)2

whence 256x3 = x and x = 1/16. Hence, the numbers are 1/16
and 64− x3 = 262143/4096.
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