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This article surveys the linear temporal logic (LTL) literature and presents all the LTL theorems from the
survey, plus many new ones, in a calculational deductive system. Calculational deductive systems, devel-
oped by Dijkstra and Scholten and extended by Gries and Schneider, are based on only four inference rules—
Substitution, Leibniz, Equanimity, and Transitivity. Inference rules in the older Hilbert-style systems, notably
modus ponens, appear as theorems in this calculational deductive system. This article extends the calcula-
tional deductive system of Gries and Schneider to LTL, using only the same four inference rules. Although
space limitations preclude giving a proof of every theorem in this article, every theorem has been proved
with calculational logic.
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1 INTRODUCTION
Linear temporal logic (LTL) has application to proof of correctness for concurrent programs. Many
concurrent programs, such as operating systems and embedded systems that control physical
equipment, are nonterminating by design. Consequently, proof techniques that depend on proving
the correctness of postconditions on program termination do not apply. LTL, however, can be used
to prove desirable program traits such as freedom from deadlock.

Most treatments of LTL consist of cursory introductions in one or two chapters of graduate-
level textbooks [2, 20, 21, 24]. While many LTL theorems are common in the di"erent treatments,
each treatment has theorems that are unique to it. This survey is a comprehensive collection of
all the LTL theorems that we have found in the literature, together with many new theorems,
all of which are presented in an axiomatic logic system. It serves as an introduction to LTL and
should be accessible with a prerequisite only of the standard propositional and predicate logic at
the undergraduate level.
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linear temporal theorems described in the literature. Although space limitations preclude
giving a proof of every theorem in this paper, every theorem has been proved with E.

Section 2 describes the deductive axioms and the proof rules for E. It also defines the
syntax and semantics of linear temporal logic. Section 3 presents the equational deductive
system for linear temporal logic.

2 Background
The first section below summarizes the equational system E from Gries and Schneider
LADM [8]. The summary is minimal, and the remainder of the paper assumes familiar-
ity with E. The second section introduces temporal logic and assumes no prior familiarity
with it. The paper can serve as an introduction to temporal logic for those familiar with E.

2.1 Equational Deductive Systems
Propositional calculus

Expressions are the basis of propositional calculus in the equational system. Propositional
theorems are simply boolean expressions that are true in all states. The definition of an
expression has four parts:

• A constant or variable is an expression.

• If E is an expression, then (E) is an expression.

• If ! is a unary prefix operator and E is an expression, then !E is an expression with
operand E.

• If " is a binary infix operator and D and E are expressions, then D " E is an expression
with operands D and E.

By convention, upper-case letters (e.g. X , Y , . . .) represent expressions, and lower-case
letters (e.g. x, y, . . .) represent variables. In the propositional calculus, the constants are
true and false.

Here is the table of precedences.

[x := e] (textual substitution) Highest precedence
¬ ! ! "
U W

= (conjunctional)
∨ ∧
⇒ ⇐
≡ (associative) Lowest precedence
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E : ¬z

X : �(¬p  ¬q)
Y : �¬p  �¬q

The textual substitutions are

E[z := X] : ¬ �(¬p  ¬q)
E[z := Y ] : ¬ �(¬p  ¬q)

And the justification in the hint X = Y comes from the textual substitution of ¬p for p and ¬q for q in (4) as
follows

( �(p  q) � �p  �q)[p, q := ¬p,¬q] : �(¬p  ¬q) � �¬p  �¬q

Gries and Schneider [7] extend the proof format to incorporate implication using its transitive properties with
itself and with equivales. An example is a proof of (26), p ⌅ ⇥ p.

⇥ p

= ⌦(25) Expansion of ⇥ ↵
p  �⇥ p

⇤ ⌦Weakening p ⌅ p  q with q := �⇥ p↵
p

Because ⇥ p equivales p  �⇥ p, and p  �⇥ p follows from p, it follows by transitivity that ⇥ p follows
from p.

2.2 Temporal Logic
The operators of propositional calculus, ¬, =, �,  , ⌅, ⇤, and � are static. That is, they apply at a single
point in time. Each operator has a truth table that dictates how to evaluate the truth value of an expression. A
state is an assignment of a truth value to each variable in the expression. A given boolean expression may be
false in all states, true in some states and false in others, or true in all states, in which case the expression is
known as a theorem or validity or tautology.

The operators of temporal logic, �, ⇥ , � , U , and W are dynamic. That is, they do not apply at a single
point in time, but apply over an infinite sequence of states. Each state corresponds to a discrete point in time
that represents one point in the execution of a program, possibly having several threads running concurrently
but whose instruction executions have been serialized. As one instruction in the program executes, the state
changes, and hence the truth value of an expression may change as well.

A model � is an infinite sequence of the form

� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 ⇥ i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x < 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x < 10 T T F F F . . .

Definition of a model

A Calculational Deductive System for Linear Temporal Logic



Draft 4

And the justification in the hint X = Y comes from the textual substitution of ¬p for p and ¬q for q in (4) as
follows

( �(p ⌥ q) � �p ⌥ �q)[p, q := ¬p,¬q] : �(¬p ⌥ ¬q) � �¬p ⌥ �¬q

Gries and Schneider [7] extend the proof format to incorporate implication using its transitive properties with
itself and with equivales. An example is a proof of (35) from Section 3.3, p ⇧ ⇥ p.

⇥ p

= �(34) Expansion of ⇥  
p ⌥ �⇥ p

⌅ �(3.76a) Weakening p ⇧ p ⌥ q with q := �⇥ p 
p

Because ⇥ p equivales p ⌥ �⇥ p, and p ⌥ �⇥ p follows from p, it follows by transitivity that ⇥ p follows
from p.

2.2 Temporal Logic
The operators of propositional calculus, ¬, =, ⌃, ⌥, ⇧, ⌅, and � are static. That is, they apply at a single
point in time. Each operator has a truth table that dictates how to evaluate the truth value of an expression. A
state is an assignment of a truth value to each variable in the expression. A given boolean expression may be
false in all states, true in some states and false in others, or true in all states, in which case the expression is
known as a theorem or validity or tautology.

The operators of temporal logic, �, ⇥ , � , U , and W are dynamic. That is, they do not apply at a single
point in time, but apply over an infinite sequence of states. Each state corresponds to a discrete point in time
that represents one point in the execution of a program, possibly having several threads running concurrently
but whose instruction executions have been serialized. As one instruction in the program executes, the state
changes, and hence the truth value of an expression may change as well.

A model � is an infinite sequence of the form

� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 ⇥ i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x < 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇤ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇤ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

Example
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� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 � i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x ⇥ 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇥ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 3) |= x ⇥ 10

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⇥ 10”.
Or, using “holds”, the same expression is read as, “x ⇥ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator e
The semantics of the unary prefix operator e are

(�, j) |= ep iff (�, j + 1) |= p

That is, ep holds at position j iff p holds at position j + 1.

For example, in the following sequence e10 � x < 13 holds at state s1 because e10 � x < 13 holds at
state s2.

� s0 s1 s2 s3 s4 s5 s6 . . .
x 8 9 10 11 12 13 14 . . .

10 � x < 13 F F T T T F F . . .e10 � x < 13 F T T T F F F . . .

In other words,

(�, 1) |= e10 � x < 13 because (�, 2) |= 10 � x < 13

Furthermore, e10 � x < 13 does not hold at state s4 even though 10 � x < 13 does hold in that state,
because 10 � x < 13 does not hold in state s5.
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� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 � i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x ⇥ 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇥ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 3) |= x ⇥ 10

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⇥ 10”.
Or, using “holds”, the same expression is read as, “x ⇥ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator e
The semantics of the unary prefix operator e are

(�, j) |= ep iff (�, j + 1) |= p

That is, ep holds at position j iff p holds at position j + 1.

For example, in the following sequence e10 � x < 13 holds at state s1 because e10 � x < 13 holds at
state s2.

� s0 s1 s2 s3 s4 s5 s6 . . .
x 8 9 10 11 12 13 14 . . .

10 � x < 13 F F T T T F F . . .e10 � x < 13 F T T T F F F . . .

In other words,

(�, 1) |= e10 � x < 13 because (�, 2) |= 10 � x < 13

Furthermore, e10 � x < 13 does not hold at state s4 even though 10 � x < 13 does hold in that state,
because 10 � x < 13 does not hold in state s5.
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(�, 3) |= x ⌅ 10

the symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⌅ 10”.
Or, using “holds”, the same expression is read as, “x ⌅ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator �
The semantics of the unary prefix operator � is

(�, j) |= �p iff (�, j + 1) |= p

That is, �p holds at position j iff p holds at position j + 1.

For example, in the above sequence �x ⌅ 10 holds at state s1 because x ⌅ 10 holds at state s2. In other
words,

(�, 1) |= �x ⌅ 10 because (�, 2) |= x ⌅ 10

The until operator U

The semantics of the binary infix operator U is

(�, j) |= p U q iff (⌃k k ⌅ j : (�, k) |= q ⌥ (⇧i j ⇤ i < k : (�, i) |= p))

If p U q holds at state sj , then p holds at state sj and continues to hold at every state after sj until q holds at
some future state. p U q guarantees that q will eventually hold at some future state, and that p will continue
to hold until then. After the state in which q holds for the first time, there are no restrictions on either p or q.

For example, suppose x and y evolve in the computation as follows.

� s0 s1 s2 s3 s4 s5 s6 s7 s8 s8 . . .
x �1 0 1 2 3 4 5 6 7 8 . . .
y 9 8 7 6 5 4 3 2 1 0 . . .

0 < x < y F F T T T F F F F F . . .
2 ⇤ y < 5 F F F F F T T T F F . . .

(0 < x < y) U (2 ⇤ y < 5) F F T T T T T T F F . . .

The bottom row shows the evaluation of the expression p U q where p ⇥ 0 < x < y and q ⇥ 2 ⇤ y < 5. In
states s0 and s1, p U q is false because both p and q are false. Starting at state s2, p U q is true because in
that state p is true and will remain true until q eventually becomes true in state s5.

From the semantics of p U q, if q is true in any state, then p U q is true in that state regardless of p. For
example, not only is p U q true in state s5, before which p was true in several preceding states, it is also true
in states s6 and s7, because in those states q is true. This behavior of p U q comes from the empty range and
one-point rules [7] of the predicate calculus in the case that q holds in state sj and k = j.

(⌃k k ⌅ j : (�, k) |= q ⌥ (⇧i j ⇤ i < k : (�, i) |= p))
= �Case k = j 

(⌃k k = j : (�, k) |= q ⌥ (⇧i j ⇤ i < j : (�, i) |= p))
= �j ⇤ i < j ⇥ false 

(⌃k k = j : (�, k) |= q ⌥ (⇧i false : (�, i) |= p))
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� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 � i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x ⇥ 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇥ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 3) |= x ⇥ 10

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⇥ 10”.
Or, using “holds”, the same expression is read as, “x ⇥ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator e
The semantics of the unary prefix operator e are

(�, j) |= ep iff (�, j + 1) |= p

That is, ep holds at position j iff p holds at position j + 1.

For example, in the following sequence e10 � x < 13 holds at state s1 because e10 � x < 13 holds at
state s2.

� s0 s1 s2 s3 s4 s5 s6 . . .
x 8 9 10 11 12 13 14 . . .

10 � x < 13 F F T T T F F . . .e10 � x < 13 F T T T F F F . . .

In other words,

(�, 1) |= e10 � x < 13 because (�, 2) |= 10 � x < 13

Furthermore, e10 � x < 13 does not hold at state s4 even though 10 � x < 13 does hold in that state,
because 10 � x < 13 does not hold in state s5.
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The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x < 10 will always be false.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 1) |= x < 10

The symbol |= means “satisfies”, so the above expression is read as “State 1 of sequence � satisfies x < 10”.
Or, using “holds”, the same expression is read as, “x < 10 holds in state 1 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator �
The semantics of the unary prefix operator � is

(�, j) |= �p iff (�, j + 1) |= p

That is, �p holds at position j iff p holds at position j + 1.

For example, in the above sequence �x ⌅ 10 holds at state s1 because x ⌅ 10 holds at state s2. In other
words,

(�, 1) |= �x ⌅ 10 because (�, 2) |= x ⌅ 10

The until operator U

The semantics of the binary infix operator U is

(�, j) |= p U q iff (⌃k k ⌅ j : (�, k) |= q � (⇧i j ⇤ i < k : (�, i) |= p))

If p U q holds at state sj , then p holds at state sj and continues to hold at every state after sj until q holds at
some future state. p U q guarantees that q will eventually hold at some future state, and that p will continue
to hold until then. After the state in which q holds for the first time, there are no restrictions on either p or q.

For example, suppose x and y evolve in the computation as follows.

� s0 s1 s2 s3 s4 s5 s6 s7 s8 s8 . . .
x �1 0 1 2 3 4 5 6 7 8 . . .
y 9 8 7 6 5 4 3 2 1 0 . . .

0 < x < y F F T T T F F F F F . . .
2 ⇤ y < 5 F F F F F T T T F F . . .

(0 < x < y) U (2 ⇤ y < 5) F F T T T T T T F F . . .

The bottom row shows the evaluation of the expression p U q where p ⇥ 0 < x < y and q ⇥ 2 ⇤ y < 5. In
states s0 and s1, p U q is false because both p and q are false. Starting at state s2, p U q is true because in
that state p is true and will remain true until q eventually becomes true in state s5.
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� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 � i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x ⇥ 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇥ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 3) |= x ⇥ 10

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⇥ 10”.
Or, using “holds”, the same expression is read as, “x ⇥ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator e
The semantics of the unary prefix operator e are

(�, j) |= ep iff (�, j + 1) |= p

That is, ep holds at position j iff p holds at position j + 1.

For example, in the following sequence e10 � x < 13 holds at state s1 because e10 � x < 13 holds at
state s2.

� s0 s1 s2 s3 s4 s5 s6 . . .
x 8 9 10 11 12 13 14 . . .

10 � x < 13 F F T T T F F . . .e10 � x < 13 F T T T F F F . . .

In other words,

(�, 1) |= e10 � x < 13 because (�, 2) |= 10 � x < 13

Furthermore, e10 � x < 13 does not hold at state s4 even though 10 � x < 13 does hold in that state,
because 10 � x < 13 does not hold in state s5.
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� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 � i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x ⇥ 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇥ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 3) |= x ⇥ 10

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⇥ 10”.
Or, using “holds”, the same expression is read as, “x ⇥ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator e
The semantics of the unary prefix operator e are

(�, j) |= ep iff (�, j + 1) |= p

That is, ep holds at position j iff p holds at position j + 1.

For example, in the following sequence e10 � x < 13 holds at state s1 because e10 � x < 13 holds at
state s2.

� s0 s1 s2 s3 s4 s5 s6 . . .
x 8 9 10 11 12 13 14 . . .

10 � x < 13 F F T T T F F . . .e10 � x < 13 F T T T F F F . . .

In other words,

(�, 1) |= e10 � x < 13 because (�, 2) |= 10 � x < 13

Furthermore, e10 � x < 13 does not hold at state s4 even though 10 � x < 13 does hold in that state,
because 10 � x < 13 does not hold in state s5.
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� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 � i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x ⇥ 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇥ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 3) |= x ⇥ 10

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⇥ 10”.
Or, using “holds”, the same expression is read as, “x ⇥ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator e
The semantics of the unary prefix operator e are

(�, j) |= ep iff (�, j + 1) |= p

That is, ep holds at position j iff p holds at position j + 1.

For example, in the following sequence e10 � x < 13 holds at state s1 because e10 � x < 13 holds at
state s2.

� s0 s1 s2 s3 s4 s5 s6 . . .
x 8 9 10 11 12 13 14 . . .

10 � x < 13 F F T T T F F . . .e10 � x < 13 F T T T F F F . . .

In other words,

(�, 1) |= e10 � x < 13 because (�, 2) |= 10 � x < 13

Furthermore, e10 � x < 13 does not hold at state s4 even though 10 � x < 13 does hold in that state,
because 10 � x < 13 does not hold in state s5.
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� : s0, s1, s2, . . .

where s0 is the initial state and each state si, 0 � i is the state at time i. For example, suppose x is an integer
variable whose value varies at each step of the computation. Then x and the expression x ⇥ 10, known as a
state expression, might evolve as follows.

� s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ⇥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x ⇥ 10 will always be true.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 3) |= x ⇥ 10

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence � satisfies x ⇥ 10”.
Or, using “holds”, the same expression is read as, “x ⇥ 10 holds in state 3 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator e
The semantics of the unary prefix operator e are

(�, j) |= ep iff (�, j + 1) |= p

That is, ep holds at position j iff p holds at position j + 1.

For example, in the following sequence e10 � x < 13 holds at state s1 because e10 � x < 13 holds at
state s2.

� s0 s1 s2 s3 s4 s5 s6 . . .
x 8 9 10 11 12 13 14 . . .

10 � x < 13 F F T T T F F . . .e10 � x < 13 F T T T F F F . . .

In other words,

(�, 1) |= e10 � x < 13 because (�, 2) |= 10 � x < 13

Furthermore, e10 � x < 13 does not hold at state s4 even though 10 � x < 13 does hold in that state,
because 10 � x < 13 does not hold in state s5.
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The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x < 10 will always be false.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 1) |= x < 10

The symbol |= means “satisfies”, so the above expression is read as “State 1 of sequence � satisfies x < 10”.
Or, using “holds”, the same expression is read as, “x < 10 holds in state 1 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator �
The semantics of the unary prefix operator � is

(�, j) |= �p iff (�, j + 1) |= p

That is, �p holds at position j iff p holds at position j + 1.

For example, in the above sequence �x ⌅ 10 holds at state s1 because x ⌅ 10 holds at state s2. In other
words,

(�, 1) |= �x ⌅ 10 because (�, 2) |= x ⌅ 10

The until operator U

The semantics of the binary infix operator U is

(�, j) |= p U q iff (⌃k k ⌅ j : (�, k) |= q � (⇧i j ⇤ i < k : (�, i) |= p))

If p U q holds at state sj , then p holds at state sj and continues to hold at every state after sj until q holds at
some future state. p U q guarantees that q will eventually hold at some future state, and that p will continue
to hold until then. After the state in which q holds for the first time, there are no restrictions on either p or q.

For example, suppose x and y evolve in the computation as follows.

� s0 s1 s2 s3 s4 s5 s6 s7 s8 s8 . . .
x �1 0 1 2 3 4 5 6 7 8 . . .
y 9 8 7 6 5 4 3 2 1 0 . . .

0 < x < y F F T T T F F F F F . . .
2 ⇤ y < 5 F F F F F T T T F F . . .

(0 < x < y) U (2 ⇤ y < 5) F F T T T T T T F F . . .

The bottom row shows the evaluation of the expression p U q where p ⇥ 0 < x < y and q ⇥ 2 ⇤ y < 5. In
states s0 and s1, p U q is false because both p and q are false. Starting at state s2, p U q is true because in
that state p is true and will remain true until q eventually becomes true in state s5.
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sections use |= to formalize the interpretation of each temporal operator.

The next operator �
The semantics of the unary prefix operator � is

(�, j) |= �p iff (�, j + 1) |= p

That is, �p holds at position j iff p holds at position j + 1.

For example, in the above sequence �x ⌅ 10 holds at state s1 because x ⌅ 10 holds at state s2. In other
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The until operator U
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some future state. p U q guarantees that q will eventually hold at some future state, and that p will continue
to hold until then. After the state in which q holds for the first time, there are no restrictions on either p or q.

For example, suppose x and y evolve in the computation as follows.
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states s0 and s1, p U q is false because both p and q are false. Starting at state s2, p U q is true because in
that state p is true and will remain true until q eventually becomes true in state s5.
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?

What is pUq when k = j, q ≡ true, and p ≡ false?
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What is pUq when k = j, q ≡ true, and p ≡ false?

true false
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The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x < 10 will always be false.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 1) |= x < 10

The symbol |= means “satisfies”, so the above expression is read as “State 1 of sequence � satisfies x < 10”.
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sections use |= to formalize the interpretation of each temporal operator.

The next operator �
The semantics of the unary prefix operator � is

(�, j) |= �p iff (�, j + 1) |= p

That is, �p holds at position j iff p holds at position j + 1.
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For example, suppose x and y evolve in the computation as follows.
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The bottom row shows the evaluation of the expression p U q where p ⇥ 0 < x < y and q ⇥ 2 ⇤ y < 5. In
states s0 and s1, p U q is false because both p and q are false. Starting at state s2, p U q is true because in
that state p is true and will remain true until q eventually becomes true in state s5.
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false

The “empty range rule”
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The bottom row shows the evaluation of the expression p U q where p ⇥ 0 < x < y and q ⇥ 2 ⇤ y < 5. In
states s0 and s1, p U q is false because both p and q are false. Starting at state s2, p U q is true because in
that state p is true and will remain true until q eventually becomes true in state s5.
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The bottom row shows the evaluation of the state expression for each state in the sequence. Temporal logic
extends propositional logic by considering the evolution of expression evaluations in time. For example, if
you assume that x in the above sequence keeps increasing by one you can assert informally in English, “For
the sequence �, eventually x < 10 will always be false.”

The notation

(�, j) |= p

means that the expression p holds at position j in a sequence �. In the above example,

(�, 1) |= x < 10

The symbol |= means “satisfies”, so the above expression is read as “State 1 of sequence � satisfies x < 10”.
Or, using “holds”, the same expression is read as, “x < 10 holds in state 1 of sequence �”. The following
sections use |= to formalize the interpretation of each temporal operator.

The next operator �
The semantics of the unary prefix operator � is

(�, j) |= �p iff (�, j + 1) |= p

That is, �p holds at position j iff p holds at position j + 1.

For example, in the above sequence �x ⌅ 10 holds at state s1 because x ⌅ 10 holds at state s2. In other
words,
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The until operator U

The semantics of the binary infix operator U is

(�, j) |= p U q iff (⌃k k ⌅ j : (�, k) |= q � (⇧i j ⇤ i < k : (�, i) |= p))

If p U q holds at state sj , then p holds at state sj and continues to hold at every state after sj until q holds at
some future state. p U q guarantees that q will eventually hold at some future state, and that p will continue
to hold until then. After the state in which q holds for the first time, there are no restrictions on either p or q.

For example, suppose x and y evolve in the computation as follows.
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From the semantics of p U q, if q is true in any state, then p U q is true in that state regardless of p. For
example, not only is p U q true in state s5, before which p was true in several preceding states, it is also true
in states s6 and s7, because in those states q is true. This behavior of p U q comes from the empty range and
one-point rules [7] of the predicate calculus in the case that q holds in state sj and k = j.

(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : (�, i) |= p))
= �Case k = j 

(⇧k k = j : (�, k) |= q ⌥ (⌅i j ⇥ i < j : (�, i) |= p))
= �j ⇥ i < j � false 

(⇧k k = j : (�, k) |= q ⌥ (⌅i false : (�, i) |= p))
= �Empty range rule (⌅x false : P ) = u with true the identity of ⌥ 

(⇧k k = j : (�, k) |= q ⌥ true)
= �Identity of ⌥ and one-point rule (⌅x x = E : P ) = P [x := E] 

((�, k) |= q)[k := j]
= �Textual substitution 

(�, j) |= q

= �Case q holds in state sj 
true

This result is theorem (13) p U true � true proved in the next section. true is the right zero of the until
operator.

Exercise 1.

Fill in the blank entries in the table below.
� s0 s1 s2 s3 s4 . . .
p F T F T F . . .
q F F T F T . . .
r F F F F T . . .

q U r . . .
p U q . . .

p U (q U r) . . .
(p U q) U r . . .

From the table, do you believe the until operator U is associative?

The eventually operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⇧k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj or in any other state sk where k ⇤ j, that is, if p holds in the
current state or in any other future state.

For example, suppose x evolves in the computation as follows.
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� s0 s1 s2 s3 s4 s5 s6 . . .
x 1 2 3 4 5 6 7 . . .

3 ⇥ x < 6 F F T T T F F . . .
⇥ (3 ⇥ x < 6) T T T T T F F . . .

The bottom row shows the evaluation of the expression ⇥ p where p � 3 ⇥ x < 6. In states s0 and s1, ⇥ p
is true because there is a state, either now or in the future, in which p will hold.

If ⇥ p is ever false in any state si in a sequence �, it must be false in all subsequent states sj , j ⇤ i. If ⇥ p
is ever true in any state si in a sequence �, it must be true in all preceding states sj , j ⇥ i. For example,
suppose p and q evolve in the computation as follows.

� s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 . . .
p F F T F F T F F F F . . .
q F F T T F F T T F F . . .

⇥ p T T T T T T F F F F . . .
⇥ q T T T T T T T T T T . . .

The bottom two rows show the evaluation of the expressions ⇥ p and ⇥ q assuming that p remains false in-
definitely and q continues to switch between true and false indefinitely.

The eventually operator is a special case of the until operator. Namely, true U q is equivalent to ⇥ q as
follows.

(�, j) |= true U q

= �Semantics of p U q with p := true 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : (�, i) |= true))

= �true holds in all states 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : true))

= �Theorem (9.8) from [7], (⌅x R : true) � true 
(⇧k k ⇤ j : (�, k) |= q ⌥ true)

= �Identity of ⌥ 
(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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(�, j) |= � p iff (⇧k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj or in any other state sk where k ⇤ j, that is, if p holds in the
current state or in any other future state.

For example, suppose x evolves in the computation as follows.
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The bottom row shows the evaluation of the expression ⇥ p where p � 3 ⇥ x < 6. In states s0 and s1, ⇥ p
is true because there is a state, either now or in the future, in which p will hold.
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The eventually operator is a special case of the until operator. Namely, true U q is equivalent to ⇥ q as
follows.

(�, j) |= true U q
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= �Theorem (9.8) from [7], (⌅x R : true) � true 
(⇧k k ⇤ j : (�, k) |= q ⌥ true)

= �Identity of ⌥ 
(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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From the semantics of p U q, if q is true in any state, then p U q is true in that state regardless of p. For
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= �Identity of ⌥ and one-point rule (⌅x x = E : P ) = P [x := E] 

((�, k) |= q)[k := j]
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(�, j) |= q

= �Case q holds in state sj 
true

This result is theorem (13) p U true � true proved in the next section. true is the right zero of the until
operator.
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(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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The bottom row shows the evaluation of the expression ⇥ p where p � 3 ⇥ x < 6. In states s0 and s1, ⇥ p
is true because there is a state, either now or in the future, in which p will hold.

If ⇥ p is ever false in any state si in a sequence �, it must be false in all subsequent states sj , j ⇤ i. If ⇥ p
is ever true in any state si in a sequence �, it must be true in all preceding states sj , j ⇥ i. For example,
suppose p and q evolve in the computation as follows.
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The bottom two rows show the evaluation of the expressions ⇥ p and ⇥ q assuming that p remains false in-
definitely and q continues to switch between true and false indefinitely.

The eventually operator is a special case of the until operator. Namely, true U q is equivalent to ⇥ q as
follows.

(�, j) |= true U q

= �Semantics of p U q with p := true 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : (�, i) |= true))

= �true holds in all states 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : true))

= �Theorem (9.8) from [7], (⌅x R : true) � true 
(⇧k k ⇤ j : (�, k) |= q ⌥ true)

= �Identity of ⌥ 
(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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Algorithm 4.1: Third attempt
boolean wantp ⇥ false, wantq ⇥ false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section

p2: wantp ⇥ true q2: wantq ⇥ true

p3: await wantq = false q3: await wantp = false

p4: critical section q4: critical section

p5: wantp ⇥ false q5: wantq ⇥ false
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�A is a liveness property.

Example: p2 ⇥ � p4

1 The Equational Temporal System
This section presents an axiomatic deductive system of temporal logic whose theorems are proved with the
equational logic E of [?]. Theorems cited in a proof hint take two forms. A numbered reference enclosed in
parentheses witout a decimal point is a reference to an axiom or a previously-proved theorem in this paper.
A numbered reference enclosed in parentheses with a decimal point is a reference to an axiom or a theorem
from the propositional calculus in [?].

1.1 Next
The next operator � is defined by the following two axioms.

(1) Axiom, Self-dual: �¬p � ¬ �p

(2) Axiom, Distributivity of � over ⇥: �(p ⇥ q) � �p ⇥ �q

Linearity follows from self-dual and distributivity of � over ⇥.

(3) Linearity: �p � ¬ �¬p

Proof: �p � ¬ �¬p

= ⇧(3.11) with p, q := �¬p, �p⌃
¬ �p � �¬p

which is (1), Self-dual.

Here are proofs that � distributes over ⌅, ⇤, and �.

(4) Distributivity of � over ⌅: �(p ⌅ q) � �p ⌅ �q

Proof: �(p ⌅ q)
= ⇧(3.59) Implication⌃�(¬p ⇥ q)
= ⇧(2) Distributivity of � over ⇥⌃�¬p ⇥ �q

= ⇧(3.59) Implication⌃
¬ �¬p ⌅ �q

= ⇧(3) Linearity⌃�p ⌅ �q
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� s0 s1 s2 s3 s4 s5 s6 . . .
x 1 2 3 4 5 6 7 . . .

3 ⇥ x < 6 F F T T T F F . . .
⇥ (3 ⇥ x < 6) T T T T T F F . . .

The bottom row shows the evaluation of the expression ⇥ p where p � 3 ⇥ x < 6. In states s0 and s1, ⇥ p
is true because there is a state, either now or in the future, in which p will hold.

If ⇥ p is ever false in any state si in a sequence �, it must be false in all subsequent states sj , j ⇤ i. If ⇥ p
is ever true in any state si in a sequence �, it must be true in all preceding states sj , j ⇥ i. For example,
suppose p and q evolve in the computation as follows.

� s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 . . .
p F F T F F T F F F F . . .
q F F T T F F T T F F . . .

⇥ p T T T T T T F F F F . . .
⇥ q T T T T T T T T T T . . .

The bottom two rows show the evaluation of the expressions ⇥ p and ⇥ q assuming that p remains false in-
definitely and q continues to switch between true and false indefinitely.

The eventually operator is a special case of the until operator. Namely, true U q is equivalent to ⇥ q as
follows.

(�, j) |= true U q

= �Semantics of p U q with p := true 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : (�, i) |= true))

= �true holds in all states 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : true))

= �Theorem (9.8) from [7], (⌅x R : true) � true 
(⇧k k ⇤ j : (�, k) |= q ⌥ true)

= �Identity of ⌥ 
(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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� s0 s1 s2 s3 s4 s5 s6 . . .
x 1 2 3 4 5 6 7 . . .

x ⇤ 4 F F F T T T T . . .
� (x ⇤ 4) F F F T T T T . . .

The bottom row shows the evaluation of the expression � p where p � x ⇤ 4. In states s0, s1, and s2, � p
is false because p does not hold in those states. In states s3, s4, s5, s6, and subsequent states, � p is true
because p holds in in those states and in all future states as well.

If � p is ever true in any state si in a sequence �, it must be true in all subsequent states sj , j ⇤ i. If � p
is ever false in any state si in a sequence �, it must be false in all preceding states sj , j ⇥ i. For example,
suppose p and q evolve in the computation as follows.

� s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 . . .
p T T F T T F T T T T . . .
q T T F F T T F F T T . . .

� p F F F F F F T T T T . . .
� q F F F F F F F F F F . . .

The bottom two rows show the evaluation of the expressions � p and � q assuming that p remains true indef-
initely and q continues to switch between true and false indefinitely.

⇥ p is an existential operator, while � p is a universal operator. They are related through the generalized De
Morgan theorem [7] ¬(⌃x R : ¬P ) � (⇧x R : P ) as follows.

(�, j) |= � p

= ⌦Semantics of � p↵
(⇧k k ⇤ j : (�, k) |= p)

= ⌦Generalized De Morgan ¬(⌃x R : ¬P ) � (⇧x R : P )↵
¬(⌃k k ⇤ j : ¬((�, k) |= p))

= ⌦p does not hold in a state iff ¬p holds in that state↵
¬(⌃k k ⇤ j : (�, k) |= ¬p)

= ⌦Semantics of ⇥ q↵
¬((�, j) |= ⇥¬q)

= ⌦p does not hold in a state iff ¬p holds in that state↵
(�, j) |= ¬⇥¬q

This relationship is the basis of the definition of � p in equation (32) � p � ¬⇥¬p assumed in the next
section.

The above demonstration that (�, j) |= � p � (�, j) |= ¬⇥¬q depends on the rule, “p does not hold in a
state iff ¬p holds in that state”, written formally as

¬((�, j) |= p) iff (�, j) |= ¬p

The corresponding rules for the binary operators are

((�, j) |= p) � ((�, j) |= q) iff (�, j) |= p � q
((�, j) |= p)  ((�, j) |= q) iff (�, j) |= p  q
((�, j) |= p) ⌅ ((�, j) |= q) iff (�, j) |= p ⌅ q
((�, j) |= p) � ((�, j) |= q) iff (�, j) |= p � q
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is true because there is a state, either now or in the future, in which p will hold.
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The bottom two rows show the evaluation of the expressions ⇥ p and ⇥ q assuming that p remains false in-
definitely and q continues to switch between true and false indefinitely.

The eventually operator is a special case of the until operator. Namely, true U q is equivalent to ⇥ q as
follows.

(�, j) |= true U q

= �Semantics of p U q with p := true 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : (�, i) |= true))

= �true holds in all states 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : true))

= �Theorem (9.8) from [7], (⌅x R : true) � true 
(⇧k k ⇤ j : (�, k) |= q ⌥ true)

= �Identity of ⌥ 
(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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The bottom two rows show the evaluation of the expressions � p and � q assuming that p remains true indef-
initely and q continues to switch between true and false indefinitely.

⇥ p is an existential operator, while � p is a universal operator. They are related through the generalized De
Morgan theorem [7] ¬(⌃x R : ¬P ) � (⇧x R : P ) as follows.

(�, j) |= � p

= ⌦Semantics of � p↵
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= ⌦Generalized De Morgan ¬(⌃x R : ¬P ) � (⇧x R : P )↵
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¬(⌃k k ⇤ j : (�, k) |= ¬p)

= ⌦Semantics of ⇥ q↵
¬((�, j) |= ⇥¬q)

= ⌦p does not hold in a state iff ¬p holds in that state↵
(�, j) |= ¬⇥¬q

This relationship is the basis of the definition of � p in equation (32) � p � ¬⇥¬p assumed in the next
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The above demonstration that (�, j) |= � p � (�, j) |= ¬⇥¬q depends on the rule, “p does not hold in a
state iff ¬p holds in that state”, written formally as

¬((�, j) |= p) iff (�, j) |= ¬p
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The bottom row shows the evaluation of the expression ⇥ p where p � 3 ⇥ x < 6. In states s0 and s1, ⇥ p
is true because there is a state, either now or in the future, in which p will hold.
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The bottom two rows show the evaluation of the expressions ⇥ p and ⇥ q assuming that p remains false in-
definitely and q continues to switch between true and false indefinitely.

The eventually operator is a special case of the until operator. Namely, true U q is equivalent to ⇥ q as
follows.

(�, j) |= true U q

= �Semantics of p U q with p := true 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : (�, i) |= true))

= �true holds in all states 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : true))

= �Theorem (9.8) from [7], (⌅x R : true) � true 
(⇧k k ⇤ j : (�, k) |= q ⌥ true)

= �Identity of ⌥ 
(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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� (x ⇤ 4) F F F T T T T . . .

The bottom row shows the evaluation of the expression � p where p � x ⇤ 4. In states s0, s1, and s2, � p
is false because p does not hold in those states. In states s3, s4, s5, s6, and subsequent states, � p is true
because p holds in in those states and in all future states as well.

If � p is ever true in any state si in a sequence �, it must be true in all subsequent states sj , j ⇤ i. If � p
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The bottom two rows show the evaluation of the expressions � p and � q assuming that p remains true indef-
initely and q continues to switch between true and false indefinitely.

⇥ p is an existential operator, while � p is a universal operator. They are related through the generalized De
Morgan theorem [7] ¬(⌃x R : ¬P ) � (⇧x R : P ) as follows.
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¬(⌃k k ⇤ j : (�, k) |= ¬p)
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The above demonstration that (�, j) |= � p � (�, j) |= ¬⇥¬q depends on the rule, “p does not hold in a
state iff ¬p holds in that state”, written formally as

¬((�, j) |= p) iff (�, j) |= ¬p

The corresponding rules for the binary operators are
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((�, j) |= p)  ((�, j) |= q) iff (�, j) |= p  q
((�, j) |= p) ⌅ ((�, j) |= q) iff (�, j) |= p ⌅ q
((�, j) |= p) � ((�, j) |= q) iff (�, j) |= p � q

A Calculational Deductive System for Linear Temporal Logic



Draft 7

� s0 s1 s2 s3 s4 s5 s6 . . .
x 1 2 3 4 5 6 7 . . .

3 ⇥ x < 6 F F T T T F F . . .
⇥ (3 ⇥ x < 6) T T T T T F F . . .
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follows.
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(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : (�, i) |= true))

= �true holds in all states 
(⇧k k ⇤ j : (�, k) |= q ⌥ (⌅i j ⇥ i < k : true))

= �Theorem (9.8) from [7], (⌅x R : true) � true 
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⇥ p is an existential operator, while � p is a universal operator. They are related through the generalized De
Morgan theorem [7] ¬(⌃x R : ¬P ) � (⇧x R : P ) as follows.

(�, j) |= � p

= ⌦Semantics of � p↵
(⇧k k ⇤ j : (�, k) |= p)

= ⌦Generalized De Morgan ¬(⌃x R : ¬P ) � (⇧x R : P )↵
¬(⌃k k ⇤ j : ¬((�, k) |= p))

= ⌦p does not hold in a state iff ¬p holds in that state↵
¬(⌃k k ⇤ j : (�, k) |= ¬p)

= ⌦Semantics of ⇥ q↵
¬((�, j) |= ⇥¬q)

= ⌦p does not hold in a state iff ¬p holds in that state↵
(�, j) |= ¬⇥¬q

This relationship is the basis of the definition of � p in equation (32) � p � ¬⇥¬p assumed in the next
section.

The above demonstration that (�, j) |= � p � (�, j) |= ¬⇥¬q depends on the rule, “p does not hold in a
state iff ¬p holds in that state”, written formally as

¬((�, j) |= p) iff (�, j) |= ¬p

The corresponding rules for the binary operators are

((�, j) |= p) � ((�, j) |= q) iff (�, j) |= p � q
((�, j) |= p)  ((�, j) |= q) iff (�, j) |= p  q
((�, j) |= p) ⌅ ((�, j) |= q) iff (�, j) |= p ⌅ q
((�, j) |= p) � ((�, j) |= q) iff (�, j) |= p � q
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⇥ (3 ⇥ x < 6) T T T T T F F . . .

The bottom row shows the evaluation of the expression ⇥ p where p � 3 ⇥ x < 6. In states s0 and s1, ⇥ p
is true because there is a state, either now or in the future, in which p will hold.

If ⇥ p is ever false in any state si in a sequence �, it must be false in all subsequent states sj , j ⇤ i. If ⇥ p
is ever true in any state si in a sequence �, it must be true in all preceding states sj , j ⇥ i. For example,
suppose p and q evolve in the computation as follows.

� s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 . . .
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⇥ q T T T T T T T T T T . . .

The bottom two rows show the evaluation of the expressions ⇥ p and ⇥ q assuming that p remains false in-
definitely and q continues to switch between true and false indefinitely.

The eventually operator is a special case of the until operator. Namely, true U q is equivalent to ⇥ q as
follows.

(�, j) |= true U q

= �Semantics of p U q with p := true 
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= �Identity of ⌥ 
(⇧k k ⇤ j : (�, k) |= q)

= �Semantics of ⇥ q 
(�, j) |= ⇥ q

This relationship is the basis of the definition of ⇥ p in equation (21) ⇥ p � true U p assumed in the next
section.

The always operator �

The semantics of the unary prefix operator � is

(�, j) |= � p iff (⌅k k ⇤ j : (�, k) |= p)

So, � p holds in state sj if p holds in state sj and in all other states sk where k ⇤ j, that is, if p holds in the
current state and in all other future states. For example, suppose x evolves in the computation as follows.
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The above demonstration that (�, j) |= � p � (�, j) |= ¬⇥¬q depends on the rule, “p does not hold in a
state iff ¬p holds in that state”, written formally as
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The corresponding rules for the binary operators are
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� (x ⇤ 4) F F F T T T T . . .
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Algorithm 4.1: Third attempt
boolean wantp ⇥ false, wantq ⇥ false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section

p2: wantp ⇥ true q2: wantq ⇥ true

p3: await wantq = false q3: await wantp = false

p4: critical section q4: critical section

p5: wantp ⇥ false q5: wantq ⇥ false
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� A is a safety property.

Example: �¬(p4 ⇤ q4)

1 The Equational Temporal System
This section presents an axiomatic deductive system of temporal logic whose theorems are proved with the
equational logic E of [?]. Theorems cited in a proof hint take two forms. A numbered reference enclosed in
parentheses witout a decimal point is a reference to an axiom or a previously-proved theorem in this paper.
A numbered reference enclosed in parentheses with a decimal point is a reference to an axiom or a theorem
from the propositional calculus in [?].

1.1 Next
The next operator � is defined by the following two axioms.

(1) Axiom, Self-dual: �¬p � ¬ �p

(2) Axiom, Distributivity of � over ⇥: �(p ⇥ q) � �p ⇥ �q

Linearity follows from self-dual and distributivity of � over ⇥.

(3) Linearity: �p � ¬ �¬p

Proof: �p � ¬ �¬p

= ⇧(3.11) with p, q := �¬p, �p⌃
¬ �p � �¬p

which is (1), Self-dual.

Here are proofs that � distributes over ⌅, ⇤, and �.

(4) Distributivity of � over ⌅: �(p ⌅ q) � �p ⌅ �q

Proof: �(p ⌅ q)
= ⇧(3.59) Implication⌃�(¬p ⇥ q)
= ⇧(2) Distributivity of � over ⇥⌃�¬p ⇥ �q

= ⇧(3.59) Implication⌃
¬ �¬p ⌅ �q

= ⇧(3) Linearity⌃�p ⌅ �q
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True and False are constants
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2.2.1 Models

A model σ is an infinite anchored sequence [23] of the form

σ : s0,s1,s2, . . .

where s0 is the initial state and each state si,0 ≤ i is the state at time i.
For example, suppose x is an integer variable whose value varies at each step of the

computation. Then, x and the expression x ≥ 10, known as a state expression, might evolve
as follows.

σ s0 s1 s2 s3 s4 . . .
x 8 9 10 11 12 . . .

x ≥ 10 F F T T T . . .

The bottom row shows the evaluation of the state expression for each state in the sequence.
Temporal logic extends propositional logic by considering the evolution of expression eval-
uations in time. For example, if you assume that x in the above sequence keeps increasing
by one you can assert informally in English, “For the sequence σ , eventually x ≥ 10 will
always be true.”

The notation

(σ , j) |= p

means that the expression p holds at position j in a sequence σ . In the above example,

(σ ,3) |= x ≥ 10.

The symbol |= means “satisfies”, so the above expression is read as “State 3 of sequence σ
satisfies x ≥ 10.” Or, using “holds”, the same expression is read as, “x ≥ 10 holds in state
3 of sequence σ .” The following sections use |= to formalize the interpretation of each
temporal operator.

There is a distinction between the constant true and the truth value of an expression T in
a given state. The constant true is an expression that evaluates to T in every state. Similarly,
there is a distinction between the constant false and the truth value of an expression F in a
given state. The constant false is an expression that evaluates to F in every state.

σ s0 s1 s2 s3 s4 . . .
true T T T T T . . .
false F F F F F . . .

The propositional logic system of LADM [12] describes a case analysis metatheorem as
follows: If E[z := true] and E[z := false] are theorems, then so is E[z := p]. This metatheo-
rem does not hold in LTL because the two cases, z := true and z := false, only account for
two out of an infinite number of possible sequences of T’s and F’s in σ .

A Calculational Deductive System for Linear Temporal Logic
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The case analysis metatheorem is NOT valid 
in linear temporal logic!
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(4.6) Case analysis: (p ∨ q ∨ r) ∧ (p ⇒ s) ∧ (q ⇒ s) ∧ (r ⇒ s) ⇒ s

(4.7) Mutual implication: To prove P ≡ Q, prove P ⇒ Q and Q ⇒ P .
(4.7.1) Truth implication: To prove P , prove true ⇒ P .
(4.9) Proof by contradiction: To prove P , prove ¬P ⇒ false.
(4.12) Proof by contrapositive: To prove P ⇒ Q, prove ¬Q ⇒ ¬P .

Theorems of Linear Temporal Logic

Next !
(1) Axiom, Self-dual: !¬p ≡ ¬ !p
(2) Axiom, Distributivity of ! over ⇒: !(p ⇒ q) ≡ !p ⇒ !q
(3) Linearity: !p ≡ ¬ !¬p
(4) Distributivity of ! over ∨: !(p ∨ q) ≡ !p ∨ !q
(5) Distributivity of ! over ∧: !(p ∧ q) ≡ !p ∧ !q
(6) Distributivity of ! over ≡: !(p ≡ q) ≡ !p ≡ !q
(7) Truth of !: !true ≡ true

(8) Falsehood of !: !false ≡ false

Until U

(9) Axiom, Distributivity of ! over U : !(p U q) ≡ !p U !q
(10) Axiom, Expansion of U : p U q ≡ q ∨ (p ∧ !(p U q))

(11) Axiom, Right zero of U : p U false ≡ false

(12) Axiom, Left distributivity of U over ∨ : p U (q ∨ r) ≡ p U q ∨ p U r

(13) Axiom, Right distributivity of U over ∨ : p U r ∨ q U r ⇒ (p ∨ q) U r

(14) Axiom, Left distributivity of U over ∧ : p U (q ∧ r) ⇒ p U q ∧ p U r

(15) Axiom, Right distributivity of U over ∧ : (p ∧ q) U r ≡ p U r ∧ q U r

(16) Axiom, U implication ordering: p U q ∧ ¬q U r ⇒ p U r

(17) Axiom, Right U ∨ ordering: p U (q U r) ⇒ (p ∨ q) U r

(18) Axiom, Right ∧ U ordering: p U (q ∧ r) ⇒ (p U q) U r

(19) Right distributivity of U over ⇒: (p ⇒ q) U r ⇒ (p U r ⇒ q U r)

(20) Right zero of U : p U true ≡ true

(21) Left identity of U : false U q ≡ q

(22) Idempotency of U : p U p ≡ p

(23) U excluded middle: p U q ∨ p U ¬q
(24) ¬p U (q U r) ∧ p U r ⇒ q U r
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Here are proofs that ! distributes over ∨, ∧, and ≡.

(4) Distributivity of ! over ∨: !(p∨q) ≡ !p∨ !q

Proof :
!(p∨q)

= 〈(3.59) Implication p ⇒ q ≡ ¬p∨q〉!(¬p ⇒ q)
= 〈(2) Distributivity of ! over ⇒〉!¬p ⇒ !q
= 〈(3.59) Implication p ⇒ q ≡ ¬p∨q with p,q := !¬p, !q〉

¬ !¬p∨ !q
= 〈(3) Linearity〉!p∨ !q

(5) Distributivity of ! over ∧: !(p∧q) ≡ !p∧ !q

Proof :
!(p∧q)

= 〈(3.12) Double negation, ¬¬p ≡ p, twice〉!(¬¬p∧¬¬q)
= 〈(3.47b) De Morgan, ¬(p∨q) ≡ ¬p∧¬q〉!¬(¬p∨¬q)
= 〈(1) Self-dual with p := (¬p∨¬q)〉

¬ !(¬p∨¬q)
= 〈(4) Distributivity of ! over ∨ with p,q := ¬p,¬q〉

¬( !¬p∨ !¬q)
= 〈(1) Self-dual twice〉

¬(¬ !p∨¬ !q)
= 〈(3.47a) De Morgan ¬(p∧q) ≡ ¬p∨¬q〉

¬¬( !p∧ !q)
= 〈(3.12) Double negation, ¬¬p ≡ p〉!p∧ !q

(6) Distributivity of ! over ≡: !(p ≡ q) ≡ !p ≡ !q

Proof :
Exercise for the student. Hint: Start with mutual implication.

Now, true holds in the next state, and f alse does not hold in the next state. Theorems (7)
and (8) are unique to this system. In equational logic, true is theorem (3.4) and is equivalent
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(3) Linearity: !p ≡ ¬ !¬p

Proof :
!p ≡ ¬ !¬p

= 〈(3.11) ¬p ≡ q ≡ p ≡ ¬q with p,q := !¬p, !p〉
¬ !p ≡ !¬p —(1) Self-dual

The proof that ! distributes over ∨ uses the distributivity of ! over⇒. The proofs that
it also distributes over ∧ and ≡ are similar.
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= 〈(1) Self-dual with p := (¬p∨¬q)〉

¬ !(¬p∨¬q)
= 〈(4) Distributivity of ! over ∨ with p,q := ¬p,¬q〉

¬( !¬p∨ !¬q)
= 〈(3.47b) De Morgan, ¬(p∨q)≡ ¬p∧¬q〉
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�(p ⇧ q)
= ⌃(3.59) Implication⌥�(¬p ⇥ q)
= ⌃(2) Distributivity of � over ⇥⌥�¬p ⇥ �q

= ⌃(3.59) Implication⌥
¬ �¬p ⇧ �q

= ⌃(3) Linearity⌥�p ⇧ �q

(5) Distributivity of � over ⌅: �(p ⌅ q) � �p ⌅ �q

Proof: �(p ⌅ q)
= ⌃(3.12) Double Negation, twice⌥�(¬¬p ⌅ ¬¬q)
= ⌃(3.47b) De Morgan⌥�¬(¬p ⇧ ¬q)
= ⌃(1) with p := (¬p ⇧ ¬q)⌥
¬ �(¬p ⇧ ¬q)

= ⌃(4) with p, q := ¬p,¬q⌥
¬( �¬p ⇧ �¬q)

= ⌃(1) twice⌥
¬(¬ �p ⇧ ¬ �q)

= ⌃(3.47a) De Morgan⌥
¬¬( �p ⌅ �q)

= ⌃(3.12) Double Negation⌥�p ⌅ �q

(6) Distributivity of � over �: �(p � q) � �p � �q

Proof:
Exercise for the student. Hint: Start with mutual implication.

Now, true holds in the next state, and false does not hold in the next state.

(7) Truth: �true � true

Proof:
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e(p ⌅ ¬p)
= ⇧(4) Distributivty of e over ⌅⌃ep ⌅ e¬p
= ⇧(1) Self-dual⌃ep ⌅ ¬ ep
= ⇧(3.28) Excluded middle p ⌅ ¬p with p := ep⌃

true

(8) Falsehood of e: efalse � false

Proof:
Exercise for the student.

3.2 Until
This system defines the until operator U with the following eight axioms. The distributivity of next over
until (9) implies the distributivity of next over wait as Section (3.5) shows. Thus next distributes over all
binary operators, both propositional and temporal.

The until operator is unlike any propositional binary operator. Its right operand has an existential character-
istic and its left operand has a universal characteristic. Expansion (10) states that p U q is true iff q is true
in the current state, or p is true in the current state and p U q is true in the next state. Thus, q relates to the
definition through disjunction, which is existential, while p relates through conjunction, which is universal.
Consequently, the until operator is neither symmetric (i.e. commutative) nor associative. Axiom (12) shows
that the associativity holds in only one direction.

(9) Axiom, Distributivity of e over U : e(p U q) � ep U eq
(10) Axiom, Expansion of U : p U q � q ⌅ (p ⇤ e(p U q))

(11) Axiom, Right zero of U : p U false � false

(12) Axiom, Partial associativity of U : p U (q U r) ⇥ (p U q) U r

The following four axioms describe how the until operator distributes over conjunction and disjunction. Be-
cause U is not symmetric, this system requires separate axioms for left and right distributivity.

(13) Axiom, Left distributivity of U over ⌅ : p U (q ⌅ r) � (p U q) ⌅ (p U r)

(14) Axiom, Right distributivity of U over ⌅ : (p U r) ⌅ (q U r) ⇥ (p ⌅ q) U r

(15) Axiom, Left distributivity of U over ⇤ : p U (q ⇤ r) ⇥ (p U q) ⇤ (p U r)

(16) Axiom, Right distributivity of U over ⇤ : (p ⇤ q) U r � (p U r) ⇤ (q U r)

Theorem (17) shows that the until operator is idempotent. Theorem (18) shows that true is a right zero of
U , which is unusual because axiom (11) shows that false is also a right zero of U . Theorem (19) shows
that false is the left identity of U . Theorems (11), (18), and (19) cover three of the possibilities of constants
true and false on either side of U . None of these three theorems seem to appear in the temporal logic
literature. The fourth possibility with true as the left argument is the basis of the definition of the eventually
operator � in Section 3.3.

(17) Idempotency of U : p U p � p

Proof:
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Proof:
Exercise for the student. Hint: Start with mutual implication.

Now, true holds in the next state, and false does not hold in the next state. Theorems (7) and (8) are unique
to this system. In equational logic, true is theorem (3.4) and is equivalent to all other theorems. Theorem (7)
shows that all propositional logic theorems hold at the next state and, by induction, hold at all states.

(7) Truth of e: etrue � true

Proof: etrue
= ⇧(3.28) Excluded middle p ⌅ ¬p⌃
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The until operator is unlike any propositional binary operator. Its right operand has an existential character-
istic and its left operand has a universal characteristic. Expansion (10) states that p U q is true iff q is true
in the current state, or p is true in the current state and p U q is true in the next state. Thus, q relates to the
definition through disjunction, which is existential, while p relates through conjunction, which is universal.
Consequently, the until operator is neither symmetric (i.e. commutative) nor associative. Axiom (12) shows
that the associativity holds in only one direction.

(9) Axiom, Distributivity of e over U : e(p U q) � ep U eq
(10) Axiom, Expansion of U : p U q � q ⌅ (p ⇤ e(p U q))

(11) Axiom, Right zero of U : p U false � false

(12) Axiom, Partial associativity of U : p U (q U r) ⇥ (p U q) U r

The following four axioms describe how the until operator distributes over conjunction and disjunction. Be-
cause U is not symmetric, this system requires separate axioms for left and right distributivity.

(13) Axiom, Left distributivity of U over ⌅ : p U (q ⌅ r) � (p U q) ⌅ (p U r)
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(16) Axiom, Right distributivity of U over ⇤ : (p ⇤ q) U r � (p U r) ⇤ (q U r)

Theorem (17) shows that the until operator is idempotent. Theorem (18) shows that true is a right zero of
U , which is unusual because axiom (11) shows that false is also a right zero of U . Theorem (19) shows
that false is the left identity of U . Theorems (11), (18), and (19) cover three of the possibilities of constants
true and false on either side of U . None of these three theorems seem to appear in the temporal logic
literature. The fourth possibility with true as the left argument is the basis of the definition of the eventually
operator � in Section 3.3.

(17) Idempotency of U : p U p � p

Proof:
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Exercise for the student. Hint: Start with mutual implication.

Now, true holds in the next state, and false does not hold in the next state. Theorems (7) and (8) are unique
to this system. In equational logic, true is theorem (3.4) and is equivalent to all other theorems. Theorem (7)
shows that all propositional logic theorems hold at the next state and, by induction, hold at all states.

(7) Truth of e: etrue � true

Proof: etrue
= ⇧(3.28) Excluded middle p ⌅ ¬p⌃
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that false is the left identity of U . Theorems (11), (18), and (19) cover three of the possibilities of constants
true and false on either side of U . None of these three theorems seem to appear in the temporal logic
literature. The fourth possibility with true as the left argument is the basis of the definition of the eventually
operator � in Section 3.3.

(17) Idempotency of U : p U p � p

Proof:
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e(p ⌅ q)

= ⇧(3.59) Implication p ⇥ q � ¬p ⌅ q⌃e(¬p ⇥ q)

= ⇧(2) Distributivity of e over ⇥⌃e¬p ⇥ eq
= ⇧(3.59) Implication p ⇥ q � ¬p ⌅ q with p, q := e¬p, ep⌃

¬ e¬p ⌅ eq
= ⇧(3) Linearity and (3.12) Double negation ¬¬p � p⌃ep ⌅ eq
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Proof: e(p ⇤ q)
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= ⇧(3.47b) De Morgan ¬(p ⌅ q) � ¬p ⇤ ¬q⌃e¬(¬p ⌅ ¬q)
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Proof:
Exercise for the student. Hint: Start with mutual implication.

Now, true holds in the next state, and false does not hold in the next state. Theorems (7) and (8) are unique
to this system. In equational logic, true is theorem (3.4) and is equivalent to all other theorems. Theorem (7)
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(8) Falsehood of e: efalse � false

Proof:
Exercise for the student.

3.2 Until
This system defines the until operator U with the following eight axioms. The distributivity of next over
until (9) implies the distributivity of next over wait as Section (3.5) shows. Thus next distributes over all
binary operators, both propositional and temporal.

The until operator is unlike any propositional binary operator. Its right operand has an existential character-
istic and its left operand has a universal characteristic. Expansion (10) states that p U q is true iff q is true
in the current state, or p is true in the current state and p U q is true in the next state. Thus, q relates to the
definition through disjunction, which is existential, while p relates through conjunction, which is universal.
Consequently, the until operator is neither symmetric (i.e. commutative) nor associative. Axiom (12) shows
that the associativity holds in only one direction.

(9) Axiom, Distributivity of e over U : e(p U q) � ep U eq
(10) Axiom, Expansion of U : p U q � q ⌅ (p ⇤ e(p U q))

(11) Axiom, Right zero of U : p U false � false

(12) Axiom, Partial associativity of U : p U (q U r) ⇥ (p U q) U r

The following four axioms describe how the until operator distributes over conjunction and disjunction. Be-
cause U is not symmetric, this system requires separate axioms for left and right distributivity.

(13) Axiom, Left distributivity of U over ⌅ : p U (q ⌅ r) � (p U q) ⌅ (p U r)

(14) Axiom, Right distributivity of U over ⌅ : (p U r) ⌅ (q U r) ⇥ (p ⌅ q) U r

(15) Axiom, Left distributivity of U over ⇤ : p U (q ⇤ r) ⇥ (p U q) ⇤ (p U r)

(16) Axiom, Right distributivity of U over ⇤ : (p ⇤ q) U r � (p U r) ⇤ (q U r)
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that false is the left identity of U . Theorems (11), (18), and (19) cover three of the possibilities of constants
true and false on either side of U . None of these three theorems seem to appear in the temporal logic
literature. The fourth possibility with true as the left argument is the basis of the definition of the eventually
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(4.6) Case analysis: (p ∨ q ∨ r) ∧ (p ⇒ s) ∧ (q ⇒ s) ∧ (r ⇒ s) ⇒ s

(4.7) Mutual implication: To prove P ≡ Q, prove P ⇒ Q and Q ⇒ P .
(4.7.1) Truth implication: To prove P , prove true ⇒ P .
(4.9) Proof by contradiction: To prove P , prove ¬P ⇒ false.
(4.12) Proof by contrapositive: To prove P ⇒ Q, prove ¬Q ⇒ ¬P .

Theorems of Linear Temporal Logic

Next !
(1) Axiom, Self-dual: !¬p ≡ ¬ !p
(2) Axiom, Distributivity of ! over ⇒: !(p ⇒ q) ≡ !p ⇒ !q
(3) Linearity: !p ≡ ¬ !¬p
(4) Distributivity of ! over ∨: !(p ∨ q) ≡ !p ∨ !q
(5) Distributivity of ! over ∧: !(p ∧ q) ≡ !p ∧ !q
(6) Distributivity of ! over ≡: !(p ≡ q) ≡ !p ≡ !q
(7) Truth of !: !true ≡ true

(8) Falsehood of !: !false ≡ false

Until U

(9) Axiom, Distributivity of ! over U : !(p U q) ≡ !p U !q
(10) Axiom, Expansion of U : p U q ≡ q ∨ (p ∧ !(p U q))

(11) Axiom, Right zero of U : p U false ≡ false

(12) Axiom, Left distributivity of U over ∨ : p U (q ∨ r) ≡ p U q ∨ p U r

(13) Axiom, Right distributivity of U over ∨ : p U r ∨ q U r ⇒ (p ∨ q) U r

(14) Axiom, Left distributivity of U over ∧ : p U (q ∧ r) ⇒ p U q ∧ p U r

(15) Axiom, Right distributivity of U over ∧ : (p ∧ q) U r ≡ p U r ∧ q U r

(16) Axiom, U implication ordering: p U q ∧ ¬q U r ⇒ p U r

(17) Axiom, Right U ∨ ordering: p U (q U r) ⇒ (p ∨ q) U r

(18) Axiom, Right ∧ U ordering: p U (q ∧ r) ⇒ (p U q) U r

(19) Right distributivity of U over ⇒: (p ⇒ q) U r ⇒ (p U r ⇒ q U r)

(20) Right zero of U : p U true ≡ true

(21) Left identity of U : false U q ≡ q

(22) Idempotency of U : p U p ≡ p

(23) U excluded middle: p U q ∨ p U ¬q
(24) ¬p U (q U r) ∧ p U r ⇒ q U r
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with true as the left argument is the basis of the definition of the eventually operator ! in
Section 3.3.

(20) Right zero of U : p U true ≡ true

(21) Left identity of U : f alse U q ≡ q

Theorem (22) shows that the until operator is idempotent. Theorem (23) is the until
version of excluded middle. Theorem (28) is interesting because it relates the temporal
expression on the left hand side to the propositional expression on the right hand side.

(22) Idempotency of U : p U p ≡ p

Proof :

p U p
= 〈(10) Expansion of U 〉

p∨ (p∧ !(p U p))
= 〈(3.43b) Absorption, p∨ (p∧q)≡ p with q := !(p U p)〉

p

(23) U excluded middle: p U q∨ p U ¬q

Proof : (Ravi Mohan)

p U q∨ p U ¬q
= 〈(12) Left distributivity of U over ∨〉

p U (q∨¬q)
= 〈(3.28) Excluded middle, p∨¬p〉

p U true
= 〈(20) Right zero of U 〉

true

(24) ¬p U (q U r)∧ p U r ⇒ q U r

Proof : The proof is by (4.7.1) Truth implication.

true
⇒ 〈(17) Right U ∨ ordering with p := ¬p〉

¬p U (q U r)⇒ (¬p∨q) U r
= 〈(3.59) Implication, p ⇒ q ≡ ¬p∨q〉

¬p U (q U r)⇒ (p ⇒ q) U r
⇒ 〈(19) Right distributivity of U over ⇒ and (3.82a) Transitivity〉

¬p U (q U r)⇒ (p U r ⇒ q U r)
= 〈(3.65) Shunting, p∧q ⇒ r ≡ p ⇒ (q ⇒ r)〉

¬p U (q U r)∧ p U r ⇒ q U r
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(25) p U (¬q U r) ∧ q U r ⇒ p U r

(26) p U q ∧ ¬q U p ⇒ p

(27) p ∧ ¬p U q ⇒ q

(28) p U q ⇒ p ∨ q

(29) U insertion: q ⇒ p U q

(30) p ∧ q ⇒ p U q

(31) Absorption: p ∨ p U q ≡ p ∨ q

(32) Absorption: p U q ∨ q ≡ p U q

(33) Absorption: p U q ∧ q ≡ q

(34) Absorption: p U q ∨ (p ∧ q) ≡ p U q

(35) Absorption: p U q ∧ (p ∨ q) ≡ p U q

(36) Left absorption of U : p U (p U q) ≡ p U q

(37) Right absorption of U : (p U q) U q ≡ p U q

Eventually !
(38) Definition of ! : ! q ≡ true U q

(39) Absorption of ! into U : p U q ∧ ! q ≡ p U q

(40) Absorption of U into ! : p U ! q ≡ ! q

(41) Eventuality: p U q ⇒ ! q

(42) Truth of ! : ! true ≡ true

(43) Falsehood of ! : ! false ≡ false

(44) Expansion of ! : ! p ≡ p ∨ !! p

(45) Weakening of ! : p ⇒ ! p

(46) Weakening of ! : !p ⇒ ! p

(47) Absorption of ∨ into ! : p ∨ ! p ≡ ! p

(48) Absorption of ! into ∧: ! p ∧ p ≡ p

(49) Absorption of ! : ! ! p ≡ ! p

(50) Exchange of ! and ! : !! p ≡ ! !p
(51) Distributivity of ! over ∨: ! (p ∨ q) ≡ ! p ∨ ! q

(52) Distributivity of ! over ∧: ! (p ∧ q) ⇒ ! p ∧ ! q
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(29) U Insertion: q ⇒ p U q

Proof :

p U q
= 〈(10) Expansion of U 〉

q∨ (p∧ !(p U q))
⇐ 〈(3.76a) Weakening, p ⇒ p∨q〉

q

(30) p∧q ⇒ p U q

Proof :

p∧q
⇒ 〈(3.76b) Strengthening, p∧q ⇒ p〉

q
= 〈(29) U insertion〉

p U q

This system has the following five absorption properties that do not seem to appear in
the temporal logic literature.

(31) Absorption: p∨ p U q ≡ p∨q

Proof :

p∨ p U q
= 〈(10) Expansion of U 〉

p∨q∨ (p∧ !(p U q))
= 〈(3.43b) Absorption p∨ (p∧q)≡ p〉

p∨q

(32) Absorption: p U q∨q ≡ p U q

Proof :

p U q∨q ≡ p U q
= 〈(3.57) Definition of implication, p ⇒ q ≡ p∨q ≡ q〉

q ⇒ p U q
which is (29).

(33) Absorption: p U q∧q ≡ q

Proof :
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(25) p U (¬q U r) ∧ q U r ⇒ p U r

(26) p U q ∧ ¬q U p ⇒ p

(27) p ∧ ¬p U q ⇒ q

(28) p U q ⇒ p ∨ q

(29) U insertion: q ⇒ p U q

(30) p ∧ q ⇒ p U q

(31) Absorption: p ∨ p U q ≡ p ∨ q

(32) Absorption: p U q ∨ q ≡ p U q

(33) Absorption: p U q ∧ q ≡ q

(34) Absorption: p U q ∨ (p ∧ q) ≡ p U q

(35) Absorption: p U q ∧ (p ∨ q) ≡ p U q

(36) Left absorption of U : p U (p U q) ≡ p U q

(37) Right absorption of U : (p U q) U q ≡ p U q

Eventually !
(38) Definition of ! : ! q ≡ true U q

(39) Absorption of ! into U : p U q ∧ ! q ≡ p U q

(40) Absorption of U into ! : p U ! q ≡ ! q

(41) Eventuality: p U q ⇒ ! q

(42) Truth of ! : ! true ≡ true

(43) Falsehood of ! : ! false ≡ false

(44) Expansion of ! : ! p ≡ p ∨ !! p

(45) Weakening of ! : p ⇒ ! p

(46) Weakening of ! : !p ⇒ ! p

(47) Absorption of ∨ into ! : p ∨ ! p ≡ ! p

(48) Absorption of ! into ∧: ! p ∧ p ≡ p

(49) Absorption of ! : ! ! p ≡ ! p

(50) Exchange of ! and ! : !! p ≡ ! !p
(51) Distributivity of ! over ∨: ! (p ∨ q) ≡ ! p ∨ ! q

(52) Distributivity of ! over ∧: ! (p ∧ q) ⇒ ! p ∧ ! q
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(41) Absorption of U into ! : p U !q ≡ !q

(42) Eventuality: p U q ⇒ !q

(43) Truth of ! : ! true ≡ true

(44) Falsehood of ! : ! false ≡ false

Expansion of ! , like expansion of U , has two disjuncts. The first describes the current
state and the second contains the operation in the next state. The expansion of ! follows
directly from the expansion of U . The two weakening theorems (46) and (47) follow
directly from expansion of ! .

(45) Expansion of ! : ! p ≡ p∨ !! p

(46) Weakening of ! : p ⇒ ! p

Proof :

! p
= 〈(45) Expansion of !〉

p∨ !! p
⇐ 〈(3.76a) Weakening the consequent, p ⇒ p∨q〉

p

(47) Weakening of ! : !p ⇒ ! p

The two absorption theorems (48) and (49) do not seem to appear in the temporal logic
literature. The following four theorems (50), (51), (52), and (53) are common to all temporal
logic systems.

(48) Absorption of ∨ into ! : p∨! p ≡ ! p

(49) Absorption of ! into ∧: ! p∧ p ≡ p

(50) Absorption of ! : !! p ≡ ! p

(51) Exchange of ! and ! : !! p ≡ ! !p

(52) Distributivity of ! over ∨: !(p∨q)≡ ! p∨!q

(53) Distributivity of ! over ∧: !(p∧q)⇒ ! p∧!q
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Always !
(54) Definition of ! : ! p ≡ ¬"¬p
(55) Axiom, U Induction: ! (p ⇒ ( !p ∧ q) ∨ r) ⇒ (p ⇒ ! q ∨ q U r)

(56) Axiom, U Induction: ! (p ⇒ !(p ∨ q)) ⇒ (p ⇒ ! p ∨ p U q)

(57) ! Induction: ! (p ⇒ !p) ⇒ (p ⇒ ! p)

(58) " Induction: ! ( !p ⇒ p) ⇒ (" p ⇒ p)

(59) " p ≡ ¬!¬p

(60) Dual of ! : ¬! p ≡ "¬p

(61) Dual of " : ¬" p ≡ !¬p

(62) Dual of " ! : ¬" ! p ≡ !"¬p

(63) Dual of !" : ¬!" p ≡ " !¬p

(64) Truth of ! : ! true ≡ true

(65) Falsehood of ! : ! false ≡ false

(66) Expansion of ! : ! p ≡ p ∧ !! p

(67) Expansion of ! : ! p ≡ p ∧ !p ∧ !! p

(68) Absorption of ∧ into ! : p ∧ ! p ≡ ! p

(69) Absorption of ! into ∨: ! p ∨ p ≡ p

(70) Absorption of " into ! : " p ∧ ! p ≡ ! p

(71) Absorption of ! into " : ! p ∨ " p ≡ " p

(72) Absorption of ! : !! p ≡ ! p

(73) Exchange of ! and ! : !! p ≡ ! !p
(74) p ⇒ ! p ≡ p ⇒ !! p

(75) p ∧ "¬p ⇒ " (p ∧ !¬p)
(76) Strengthening of ! : ! p ⇒ p

(77) Strengthening of ! : ! p ⇒ " p

(78) Strengthening of ! : ! p ⇒ !p
(79) Strengthening of ! : ! p ⇒ !! p

(80) ! generalization: ! p ⇒ ! !p
(81) ! p ⇒ ¬(q U ¬p)
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The induction theorem (57) is common to many systems. It follows from (56) with
q := false. The negation of the dual of theorem (58) is equivalent to theorem (57). Theorem
(59) expresses ! p in terms of " p and is the dual of the defining equation (54).

(57) " Induction: "(p ⇒ !p)⇒ (p ⇒ " p)

(58) ! Induction: "( !p ⇒ p)⇒ (! p ⇒ p)

(59) ! p ≡ ¬"¬p

Whereas the next operator ! is its own dual, the eventually operator ! and the always
operator " are mutually dual, as are !" and "! . Each of the following four theorems
can be proved directly without invoking (2.3) Metatheorem Duality. However, with P and
Q defined as the expressions P : ¬" p and Q : !¬p, the dual expressions are PD : ¬! p
and QD : "¬p. Because theorem (60) is the expression P ≡ Q and theorem (61) is the
expression PD ≡ QD, the validity of (61) can be asserted by invoking (2.3b) Metatheorem
Duality with theorem (60). Similarly, the validity of (63) can be asserted by invoking duality
with theorem (62).

(60) Dual of " : ¬" p ≡ !¬p

(61) Dual of ! : ¬! p ≡ "¬p

Proof :

"¬p
= 〈(54) Definition of "〉

¬!¬¬p
= 〈(3.12) Double negation, ¬¬p ≡ p〉

¬! p

(62) Dual of !" : ¬!" p ≡ "!¬p

(63) Dual of "! : ¬"! p ≡ !"¬p

Theorems (64) and (65), Truth and Falsehood of " , are unique to this system.

(64) Truth of " : " true ≡ true

(65) Falsehood of " : " false ≡ false

While the expansions of U and ! have two disjuncts, the expansion of " has two con-
juncts. As usual, the first describes the current state and the second contains the operation
in the next state. Theorem (66) is the dual of (45) which can be used in its direct proof.

(66) Expansion of " : " p ≡ p∧ !" p

(67) Expansion of " : " p ≡ p∧ !p∧ !" p



Draft (October 31, 2018) 25

The induction theorem (57) is common to many systems. It follows from (56) with
q := false. The negation of the dual of theorem (58) is equivalent to theorem (57). Theorem
(59) expresses ! p in terms of " p and is the dual of the defining equation (54).

(57) " Induction: "(p ⇒ !p)⇒ (p ⇒ " p)

(58) ! Induction: "( !p ⇒ p)⇒ (! p ⇒ p)

(59) ! p ≡ ¬"¬p

Whereas the next operator ! is its own dual, the eventually operator ! and the always
operator " are mutually dual, as are !" and "! . Each of the following four theorems
can be proved directly without invoking (2.3) Metatheorem Duality. However, with P and
Q defined as the expressions P : ¬" p and Q : !¬p, the dual expressions are PD : ¬! p
and QD : "¬p. Because theorem (60) is the expression P ≡ Q and theorem (61) is the
expression PD ≡ QD, the validity of (61) can be asserted by invoking (2.3b) Metatheorem
Duality with theorem (60). Similarly, the validity of (63) can be asserted by invoking duality
with theorem (62).

(60) Dual of " : ¬" p ≡ !¬p

(61) Dual of ! : ¬! p ≡ "¬p

Proof :

"¬p
= 〈(54) Definition of "〉

¬!¬¬p
= 〈(3.12) Double negation, ¬¬p ≡ p〉

¬! p

(62) Dual of !" : ¬!" p ≡ "!¬p

(63) Dual of "! : ¬"! p ≡ !"¬p

Theorems (64) and (65), Truth and Falsehood of " , are unique to this system.

(64) Truth of " : " true ≡ true

(65) Falsehood of " : " false ≡ false

While the expansions of U and ! have two disjuncts, the expansion of " has two con-
juncts. As usual, the first describes the current state and the second contains the operation
in the next state. Theorem (66) is the dual of (45) which can be used in its direct proof.

(66) Expansion of " : " p ≡ p∧ !" p

(67) Expansion of " : " p ≡ p∧ !p∧ !" p

A Calculational Deductive System for Linear Temporal Logic



Draft (October 31, 2018) 25

The induction theorem (57) is common to many systems. It follows from (56) with
q := false. The negation of the dual of theorem (58) is equivalent to theorem (57). Theorem
(59) expresses ! p in terms of " p and is the dual of the defining equation (54).

(57) " Induction: "(p ⇒ !p)⇒ (p ⇒ " p)

(58) ! Induction: "( !p ⇒ p)⇒ (! p ⇒ p)

(59) ! p ≡ ¬"¬p

Whereas the next operator ! is its own dual, the eventually operator ! and the always
operator " are mutually dual, as are !" and "! . Each of the following four theorems
can be proved directly without invoking (2.3) Metatheorem Duality. However, with P and
Q defined as the expressions P : ¬" p and Q : !¬p, the dual expressions are PD : ¬! p
and QD : "¬p. Because theorem (60) is the expression P ≡ Q and theorem (61) is the
expression PD ≡ QD, the validity of (61) can be asserted by invoking (2.3b) Metatheorem
Duality with theorem (60). Similarly, the validity of (63) can be asserted by invoking duality
with theorem (62).

(60) Dual of " : ¬" p ≡ !¬p

(61) Dual of ! : ¬! p ≡ "¬p

Proof :

"¬p
= 〈(54) Definition of "〉

¬!¬¬p
= 〈(3.12) Double negation, ¬¬p ≡ p〉

¬! p

(62) Dual of !" : ¬!" p ≡ "!¬p

(63) Dual of "! : ¬"! p ≡ !"¬p

Theorems (64) and (65), Truth and Falsehood of " , are unique to this system.

(64) Truth of " : " true ≡ true

(65) Falsehood of " : " false ≡ false

While the expansions of U and ! have two disjuncts, the expansion of " has two con-
juncts. As usual, the first describes the current state and the second contains the operation
in the next state. Theorem (66) is the dual of (45) which can be used in its direct proof.

(66) Expansion of " : " p ≡ p∧ !" p

(67) Expansion of " : " p ≡ p∧ !p∧ !" p

A Calculational Deductive System for Linear Temporal Logic



Draft (October 31, 2018) 25

The induction theorem (57) is common to many systems. It follows from (56) with
q := false. The negation of the dual of theorem (58) is equivalent to theorem (57). Theorem
(59) expresses ! p in terms of " p and is the dual of the defining equation (54).

(57) " Induction: "(p ⇒ !p)⇒ (p ⇒ " p)

(58) ! Induction: "( !p ⇒ p)⇒ (! p ⇒ p)

(59) ! p ≡ ¬"¬p

Whereas the next operator ! is its own dual, the eventually operator ! and the always
operator " are mutually dual, as are !" and "! . Each of the following four theorems
can be proved directly without invoking (2.3) Metatheorem Duality. However, with P and
Q defined as the expressions P : ¬" p and Q : !¬p, the dual expressions are PD : ¬! p
and QD : "¬p. Because theorem (60) is the expression P ≡ Q and theorem (61) is the
expression PD ≡ QD, the validity of (61) can be asserted by invoking (2.3b) Metatheorem
Duality with theorem (60). Similarly, the validity of (63) can be asserted by invoking duality
with theorem (62).

(60) Dual of " : ¬" p ≡ !¬p

(61) Dual of ! : ¬! p ≡ "¬p

Proof :

"¬p
= 〈(54) Definition of "〉

¬!¬¬p
= 〈(3.12) Double negation, ¬¬p ≡ p〉

¬! p

(62) Dual of !" : ¬!" p ≡ "!¬p

(63) Dual of "! : ¬"! p ≡ !"¬p

Theorems (64) and (65), Truth and Falsehood of " , are unique to this system.

(64) Truth of " : " true ≡ true

(65) Falsehood of " : " false ≡ false

While the expansions of U and ! have two disjuncts, the expansion of " has two con-
juncts. As usual, the first describes the current state and the second contains the operation
in the next state. Theorem (66) is the dual of (45) which can be used in its direct proof.

(66) Expansion of " : " p ≡ p∧ !" p

(67) Expansion of " : " p ≡ p∧ !p∧ !" p

A Calculational Deductive System for Linear Temporal Logic



Draft (October 31, 2018) 25

The induction theorem (57) is common to many systems. It follows from (56) with
q := false. The negation of the dual of theorem (58) is equivalent to theorem (57). Theorem
(59) expresses ! p in terms of " p and is the dual of the defining equation (54).

(57) " Induction: "(p ⇒ !p)⇒ (p ⇒ " p)

(58) ! Induction: "( !p ⇒ p)⇒ (! p ⇒ p)

(59) ! p ≡ ¬"¬p

Whereas the next operator ! is its own dual, the eventually operator ! and the always
operator " are mutually dual, as are !" and "! . Each of the following four theorems
can be proved directly without invoking (2.3) Metatheorem Duality. However, with P and
Q defined as the expressions P : ¬" p and Q : !¬p, the dual expressions are PD : ¬! p
and QD : "¬p. Because theorem (60) is the expression P ≡ Q and theorem (61) is the
expression PD ≡ QD, the validity of (61) can be asserted by invoking (2.3b) Metatheorem
Duality with theorem (60). Similarly, the validity of (63) can be asserted by invoking duality
with theorem (62).

(60) Dual of " : ¬" p ≡ !¬p

(61) Dual of ! : ¬! p ≡ "¬p

Proof :

"¬p
= 〈(54) Definition of "〉

¬!¬¬p
= 〈(3.12) Double negation, ¬¬p ≡ p〉

¬! p

(62) Dual of !" : ¬!" p ≡ "!¬p

(63) Dual of "! : ¬"! p ≡ !"¬p

Theorems (64) and (65), Truth and Falsehood of " , are unique to this system.

(64) Truth of " : " true ≡ true

(65) Falsehood of " : " false ≡ false

While the expansions of U and ! have two disjuncts, the expansion of " has two con-
juncts. As usual, the first describes the current state and the second contains the operation
in the next state. Theorem (66) is the dual of (45) which can be used in its direct proof.

(66) Expansion of " : " p ≡ p∧ !" p

(67) Expansion of " : " p ≡ p∧ !p∧ !" p

A Calculational Deductive System for Linear Temporal Logic



Draft (October 31, 2018) 25

The induction theorem (57) is common to many systems. It follows from (56) with
q := false. The negation of the dual of theorem (58) is equivalent to theorem (57). Theorem
(59) expresses ! p in terms of " p and is the dual of the defining equation (54).

(57) " Induction: "(p ⇒ !p)⇒ (p ⇒ " p)

(58) ! Induction: "( !p ⇒ p)⇒ (! p ⇒ p)

(59) ! p ≡ ¬"¬p

Whereas the next operator ! is its own dual, the eventually operator ! and the always
operator " are mutually dual, as are !" and "! . Each of the following four theorems
can be proved directly without invoking (2.3) Metatheorem Duality. However, with P and
Q defined as the expressions P : ¬" p and Q : !¬p, the dual expressions are PD : ¬! p
and QD : "¬p. Because theorem (60) is the expression P ≡ Q and theorem (61) is the
expression PD ≡ QD, the validity of (61) can be asserted by invoking (2.3b) Metatheorem
Duality with theorem (60). Similarly, the validity of (63) can be asserted by invoking duality
with theorem (62).

(60) Dual of " : ¬" p ≡ !¬p

(61) Dual of ! : ¬! p ≡ "¬p

Proof :

"¬p
= 〈(54) Definition of "〉

¬!¬¬p
= 〈(3.12) Double negation, ¬¬p ≡ p〉

¬! p

(62) Dual of !" : ¬!" p ≡ "!¬p

(63) Dual of "! : ¬"! p ≡ !"¬p

Theorems (64) and (65), Truth and Falsehood of " , are unique to this system.

(64) Truth of " : " true ≡ true

(65) Falsehood of " : " false ≡ false

While the expansions of U and ! have two disjuncts, the expansion of " has two con-
juncts. As usual, the first describes the current state and the second contains the operation
in the next state. Theorem (66) is the dual of (45) which can be used in its direct proof.

(66) Expansion of " : " p ≡ p∧ !" p

(67) Expansion of " : " p ≡ p∧ !p∧ !" p

A Calculational Deductive System for Linear Temporal Logic



Duality: ¬�A

time ⇥

false

true

�
i

A

M. Ben-Ari. Principles of Concurrent and Distributed Programming, Second edition c� M. Ben-Ari 2006 Slide 4.5

Draft (October 31, 2018) 25

The induction theorem (57) is common to many systems. It follows from (56) with
q := false. The negation of the dual of theorem (58) is equivalent to theorem (57). Theorem
(59) expresses ! p in terms of " p and is the dual of the defining equation (54).
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can be proved directly without invoking (2.3) Metatheorem Duality. However, with P and
Q defined as the expressions P : ¬" p and Q : !¬p, the dual expressions are PD : ¬! p
and QD : "¬p. Because theorem (60) is the expression P ≡ Q and theorem (61) is the
expression PD ≡ QD, the validity of (61) can be asserted by invoking (2.3b) Metatheorem
Duality with theorem (60). Similarly, the validity of (63) can be asserted by invoking duality
with theorem (62).

(60) Dual of " : ¬" p ≡ !¬p

(61) Dual of ! : ¬! p ≡ "¬p

Proof :

"¬p
= 〈(54) Definition of "〉

¬!¬¬p
= 〈(3.12) Double negation, ¬¬p ≡ p〉

¬! p

(62) Dual of !" : ¬!" p ≡ "!¬p

(63) Dual of "! : ¬"! p ≡ !"¬p

Theorems (64) and (65), Truth and Falsehood of " , are unique to this system.

(64) Truth of " : " true ≡ true
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While the expansions of U and ! have two disjuncts, the expansion of " has two con-
juncts. As usual, the first describes the current state and the second contains the operation
in the next state. Theorem (66) is the dual of (45) which can be used in its direct proof.

(66) Expansion of " : " p ≡ p∧ !" p

(67) Expansion of " : " p ≡ p∧ !p∧ !" p
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Always !
(54) Definition of ! : ! p ≡ ¬"¬p
(55) Axiom, U Induction: ! (p ⇒ ( !p ∧ q) ∨ r) ⇒ (p ⇒ ! q ∨ q U r)

(56) Axiom, U Induction: ! (p ⇒ !(p ∨ q)) ⇒ (p ⇒ ! p ∨ p U q)

(57) ! Induction: ! (p ⇒ !p) ⇒ (p ⇒ ! p)

(58) " Induction: ! ( !p ⇒ p) ⇒ (" p ⇒ p)

(59) " p ≡ ¬!¬p

(60) Dual of ! : ¬! p ≡ "¬p

(61) Dual of " : ¬" p ≡ !¬p

(62) Dual of " ! : ¬" ! p ≡ !"¬p

(63) Dual of !" : ¬!" p ≡ " !¬p

(64) Truth of ! : ! true ≡ true

(65) Falsehood of ! : ! false ≡ false

(66) Expansion of ! : ! p ≡ p ∧ !! p

(67) Expansion of ! : ! p ≡ p ∧ !p ∧ !! p

(68) Absorption of ∧ into ! : p ∧ ! p ≡ ! p

(69) Absorption of ! into ∨: ! p ∨ p ≡ p

(70) Absorption of " into ! : " p ∧ ! p ≡ ! p

(71) Absorption of ! into " : ! p ∨ " p ≡ " p

(72) Absorption of ! : !! p ≡ ! p

(73) Exchange of ! and ! : !! p ≡ ! !p
(74) p ⇒ ! p ≡ p ⇒ !! p

(75) p ∧ "¬p ⇒ " (p ∧ !¬p)
(76) Strengthening of ! : ! p ⇒ p

(77) Strengthening of ! : ! p ⇒ " p

(78) Strengthening of ! : ! p ⇒ !p
(79) Strengthening of ! : ! p ⇒ !! p

(80) ! generalization: ! p ⇒ ! !p
(81) ! p ⇒ ¬(q U ¬p)
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Temporal deduction
(82) Temporal deduction:

To prove !P1 ∧ !P2 ⇒ Q, assume P1 and P2, and prove Q.
You cannot use textual substitution in P1 or P2.

Always, continued
(83) Distributivity of ∧ over U : ! p ∧ q U r ⇒ (p ∧ q) U (p ∧ r)
(84) U implication: ! p ∧ " q ⇒ p U q

(85) Right monotonicity of U : ! (p ⇒ q) ⇒ (r U p ⇒ r U q)

(86) Left monotonicity of U : ! (p ⇒ q) ⇒ (p U r ⇒ q U r)

(87) Distributivity of ¬ over ! : !¬p ⇒ ¬! p

(88) Distributivity of " over ∧: ! p ∧ " q ⇒ " (p ∧ q)

(89) " excluded middle: " p ∨ !¬p
(90) ! excluded middle: ! p ∨ "¬p
(91) Temporal excluded middle: " p ∨ "¬p
(92) " contradiction: " p ∧ !¬p ≡ false

(93) ! contradiction: ! p ∧ "¬p ≡ false

(94) Temporal contradiction: ! p ∧ !¬p ≡ false

(95) !" excluded middle: !" p ∨ " !¬p
(96) " ! excluded middle: " ! p ∨ !"¬p
(97) !" contradiction: !" p ∧ " !¬p ≡ false

(98) " ! contradiction: " ! p ∧ !"¬p ≡ false

(99) Distributivity of ! over ∧: ! (p ∧ q) ≡ ! p ∧ ! q

(100) Distributivity of ! over ∨: ! p ∨ ! q ⇒ ! (p ∨ q)

(101) Logical equivalence law of !: ! (p ≡ q) ⇒ ( !p ≡ !q)
(102) Logical equivalence law of " : ! (p ≡ q) ⇒ (" p ≡ " q)

(103) Logical equivalence law of ! : ! (p ≡ q) ⇒ (! p ≡ ! q)

(104) Distributivity of " over⇒: " (p ⇒ q) ≡ (! p ⇒ " q)

(105) Distributivity of " over⇒: (" p ⇒ " q) ⇒ " (p ⇒ q)

(106) ∧ frame law of !: ! p ⇒ ( !q ⇒ !(p ∧ q))

(107) ∧ frame law of " : ! p ⇒ (" q ⇒ " (p ∧ q))

(108) ∧ frame law of ! : ! p ⇒ (! q ⇒ ! (p ∧ q))

A Calculational Deductive System for Linear Temporal Logic



Draft October 31, 2018 9

Temporal deduction
(82) Temporal deduction:

To prove !P1 ∧ !P2 ⇒ Q, assume P1 and P2, and prove Q.
You cannot use textual substitution in P1 or P2.

Always, continued
(83) Distributivity of ∧ over U : ! p ∧ q U r ⇒ (p ∧ q) U (p ∧ r)
(84) U implication: ! p ∧ " q ⇒ p U q

(85) Right monotonicity of U : ! (p ⇒ q) ⇒ (r U p ⇒ r U q)

(86) Left monotonicity of U : ! (p ⇒ q) ⇒ (p U r ⇒ q U r)

(87) Distributivity of ¬ over ! : !¬p ⇒ ¬! p

(88) Distributivity of " over ∧: ! p ∧ " q ⇒ " (p ∧ q)

(89) " excluded middle: " p ∨ !¬p
(90) ! excluded middle: ! p ∨ "¬p
(91) Temporal excluded middle: " p ∨ "¬p
(92) " contradiction: " p ∧ !¬p ≡ false

(93) ! contradiction: ! p ∧ "¬p ≡ false

(94) Temporal contradiction: ! p ∧ !¬p ≡ false

(95) !" excluded middle: !" p ∨ " !¬p
(96) " ! excluded middle: " ! p ∨ !"¬p
(97) !" contradiction: !" p ∧ " !¬p ≡ false

(98) " ! contradiction: " ! p ∧ !"¬p ≡ false

(99) Distributivity of ! over ∧: ! (p ∧ q) ≡ ! p ∧ ! q

(100) Distributivity of ! over ∨: ! p ∨ ! q ⇒ ! (p ∨ q)

(101) Logical equivalence law of !: ! (p ≡ q) ⇒ ( !p ≡ !q)
(102) Logical equivalence law of " : ! (p ≡ q) ⇒ (" p ≡ " q)

(103) Logical equivalence law of ! : ! (p ≡ q) ⇒ (! p ≡ ! q)

(104) Distributivity of " over⇒: " (p ⇒ q) ≡ (! p ⇒ " q)

(105) Distributivity of " over⇒: (" p ⇒ " q) ⇒ " (p ⇒ q)

(106) ∧ frame law of !: ! p ⇒ ( !q ⇒ !(p ∧ q))

(107) ∧ frame law of " : ! p ⇒ (" q ⇒ " (p ∧ q))

(108) ∧ frame law of ! : ! p ⇒ (! q ⇒ ! (p ∧ q))

A Calculational Deductive System for Linear Temporal Logic



Draft October 31, 2018 9

Temporal deduction
(82) Temporal deduction:

To prove !P1 ∧ !P2 ⇒ Q, assume P1 and P2, and prove Q.
You cannot use textual substitution in P1 or P2.

Always, continued
(83) Distributivity of ∧ over U : ! p ∧ q U r ⇒ (p ∧ q) U (p ∧ r)
(84) U implication: ! p ∧ " q ⇒ p U q
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(93) ! contradiction: ! p ∧ "¬p ≡ false
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(103) Logical equivalence law of ! : ! (p ≡ q) ⇒ (! p ≡ ! q)
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(106) ∧ frame law of !: ! p ⇒ ( !q ⇒ !(p ∧ q))

(107) ∧ frame law of " : ! p ⇒ (" q ⇒ " (p ∧ q))

(108) ∧ frame law of ! : ! p ⇒ (! q ⇒ ! (p ∧ q))
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Proof metatheorems
(136) Metatheorem: P is a theorem iff !P is a theorem.
(137) Metatheorem !: If P ⇒ Q is a theorem then !P ⇒ !Q is a theorem.
(138) Metatheorem " : If P ⇒ Q is a theorem then "P ⇒ "Q is a theorem.
(139) Metatheorem ! : If P ⇒ Q is a theorem then !P ⇒ !Q is a theorem.

Always, continued
(140) U ! implication: p U ! q ⇒ ! (p U q)

(141) Absorption of U into ! : p U ! p ≡ ! p

(142) Right ∧ U strengthening: p U (q ∧ r) ⇒ p U (q U r)

(143) Left ∧ U strengthening: (p ∧ q) U r ⇒ (p U q) U r

(144) Left ∧ U ordering: (p ∧ q) U r ⇒ p U (q U r)

(145) " ! implication: " ! p ⇒ !" p

(146) !" excluded middle: !" p ∨ !"¬p
(147) " ! contradiction: " ! p ∧ " !¬p ≡ false

(148) U frame law of !: ! p ⇒ ( !q ⇒ !(p U q))

(149) U frame law of " : ! p ⇒ (" q ⇒ " (p U q))

(150) U frame law of ! : ! p ⇒ (! q ⇒ ! (p U q))

(151) Absorption of " into !" : " ! " p ≡ !" p

(152) Absorption of ! into " ! : !" ! p ≡ " ! p

(153) Absorption of !" : !" !" p ≡ !" p

(154) Absorption of " ! : " ! " ! p ≡ " ! p

(155) Absorption of ! into !" : !!" p ≡ !" p

(156) Absorption of ! into " ! : !" ! p ≡ " ! p

(157) Monotonicity of !" : ! (p ⇒ q) ⇒ (!" p ⇒ !" q)

(158) Monotonicity of " ! : ! (p ⇒ q) ⇒ (" ! p ⇒ " ! q)

(159) Distributivity of !" over ∧: !" (p ∧ q) ⇒ !" p ∧ !" q

(160) Distributivity of " ! over ∨: " ! p ∨ " ! q ⇒ " ! (p ∨ q)

(161) Distributivity of !" over ∨: !" (p ∨ q) ≡ !" p ∨ !" q

(162) Distributivity of " ! over ∧: " ! (p ∧ q) ≡ " ! p ∧ " ! q

(163) Eventual latching: " ! (p ⇒ ! q) ≡ " !¬p ∨ " ! q

(164) ! (!" p ⇒ " q) ≡ " !¬p ∨ !" q

(165) ! ((p ∨ ! q) ∧ (! p ∨ q)) ≡ ! p ∨ ! q

(166) " ! p ∧ !" q ⇒ !" (p ∧ q)

(167) ! ((! p ⇒ " q) ∧ (q ⇒ !r)) ⇒ (! p ⇒ !!" r)

(168) Progress proof rule: " ! p ∧ ! (! p ⇒ " q) ⇒ " q
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