Molekulargenetische Analyse von Biogeographie, Speziation und Biodiversität der Asellota (Crustacea: Isopoda) der antarktischen Tiefsee

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie der Ruhr-Universität Bochum

angefertigt am Lehrstuhl für Spezielle Zoologie

vorgelegt von

Michael Jürgen Raupach aus Herten

Bochum, 2004

ERKLÄRUNG

Hiermit erkläre ich, dass ich die Arbeit selbständig verfasst und bei keiner anderen Fakultät eingereicht habe und dass es sich bei der heute von mir eingereichten Dissertation um fünf in Wort und Bild völlig übereinstimmende Exemplare handelt.

Weiterhin erkläre ich, dass digitale Abbildungen als solche gekennzeichnet sind, nur originale Daten enthalten und in keinem Fall inhaltsverändernde Bildbearbeitung vorgenommen wurde.

Michael J. Raupach

Bochum, den 14.10.2004

Für meine Eltern

Inhaltsverzeichnis

1. Einleitung

1. Einleitung	1
1.1 Die Erforschung des Abyssals	1
1.2 Klimageschichte der Antarktis	2
1.3 Allgemeine Biogeographie der Antarktis	3
1.4 Vertikale Zonierung	4
1.5 Lebensraum Tiefsee	4
1.6 Herkunft der Fauna und Speziation in der Tiefsee	6
1.7 Diversität der Isopoden der Tiefsee	7
1.8 Isopoda der antarktischen Tiefsee	. 8
1.9 Molekulare Systematik	9
1.10 Fragestellungen	12
2. Material und Methoden	14
2.1 Herkunft des verwendeten Tiermaterials	. 14
2.2 Methoden	22
2.2.1 Fixierung des Tiermaterials	22
2.2.2 Präparation und DNA-Isolierung	22
2.2.3 Elektrophoretische Auftrennung von DNA-Fragmenten in Agarosegelen .	23
2.2.4 Die Polymerase-Kettenreaktion	23
2.2.5 Aufreinigung der PCR-Produkte	27
2.2.6 Ligation und Transformation der PCR-Produkte	27
2.2.6.1 Ligation	27
2.2.6.2 Transformation der Ligationsprodukte mittels Hitzeschock	28
2.2.7 Selektion rekombinanter Bakterienkolonien mittels α -Komplementation	28
2.2.8 Präparation von Plasmid-DNA aus 5-ml-Bakterienkulturen	28
2.2.9 DNA-Sequenzierung nach Sanger et al. (1977)	. 29
2.2.9.1 Zyklus-Sequenzierung ("thermal cycle sequencing")	30
2.2.9.2 Wahl der Sequenzierprimer	31
2.2.9.3 Reaktionsprofile der Sequenzierreaktion	32
2.2.9.4 Sequenziergelaufbau und Laufbedingungen	33

Ι

	2.2.10 Generierung der Konsensussequenz	34
	2.2.11 Überprüfung des DNA-Sequenzabschnittes	34
2.3 P	Phylogenetische Analyse der molekularen Daten	35
	2.3.1 Alinierung der DNA Sequenzen	35
	2.3.2 Methoden zur Stammbaumrekonstruktion	36
	2.3.2.1 Distanzmethoden	36
	2.3.2.2 "Maximum Likelihood"-Verfahren	38
	2.3.2.3 "Maximum Parsimony"-Verfahren	38
	2.3.2.4 Heuristische Suchalgorithmen	40
	2.3.2.5 Bayessche Analyse	41
	2.3.3 Statistische Verfahren	42
	2.3.3.1 Analyse der Basenzusammensetzung	42
	2.3.3.2 Test der relativen Substitutionsraten	43
	2.3.3.3 Berechnung der Substitutionssättigung	44
	2.3.3.4 "bootstrap"-Test	45
	2.3.3.5 "Likelihood Ratio"-Test	45
3 Б	rgahnissa	47
3 1 A	Anglusa das 185 rDNA Datansatzas	47
3.1 A	Analyse des 18S rDNA Datensatzes	47 47
3.1 A	Analyse des 18S rDNA Datensatzes	47 47 47
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51 52
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51 52
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51 52 53
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51 52 53 55
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51 52 53 55 55
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51 52 53 55 55 57
3.1 A 3.2 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 50 51 52 53 55 55 57 59 50
3.1 A 3.2 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 51 52 53 55 55 57 59 60 61
3.1 A 3.2 A	 Analyse des 18S rDNA Datensatzes	47 47 50 51 52 53 55 55 57 59 60 61
3.1 A	 Analyse des 18S rDNA Datensatzes	47 47 50 50 50 51 52 52 53 55 55 57 59 60 61 61 62

3.2.2 Analyse der partiellen 16S rDNA Sequenzen der Haploniscidae	65
3.2.2.1 Statistische Tests	66
3.2.2.2 Berechnung und Vergleich der p-Distanzen	66
3.2.1.3 Stammbaumrekonstruktionen	67
4. Diskussion	71
4.1. Diskussion der Ergebnisse des 18S rDNA Datensatzes	71
4.1.1 Auswahl der untersuchten Taxa	71
4.1.2 Längenvariationen der 18S rDNA und Homologisierung der	
Sequenzpositionen	72
4.1.3 Diskussion der "Maximum Parsimoy"-Methode	73
4.1.4 Der "bootstrap"-Test	74
4.1.5 Diskussion der "Maximum Likelihood"-Methode	74
4.1.6 Diskussion des Bayesschen Verfahrens	75
4.1.7 Die Stellung der Taxa	75
4.1.7.1 Die Asellota	75
4.1.7.2 Die Aselloidea	76
4.1.7.3 Die Stenetriidae	76
4.1.7.4 Die Acanthaspidiidae	76
4.1.7.5 Die Desmosomatidae	78
4.1.7.6 Die Haploniscidae	78
4.1.7.7 Die Ischnomesidae	79
4.1.7.8 Die "Janiridae"	79
4.1.7.9 Die Joeropsididae	80
4.1.7.10 Die Macrostylidae	80
4.1.7.11 Die Munnopsididae	80
4.1.7.12 Die Dendrotiidae, Haplomunnidae, Janirellidae, Mesosigni	dae
und Nannoniscidae	81
4.1.8 Das Großgruppentaxon Janiroidea und die Besiedlung der Tiefsee	81
4.2 Diskussion der Ergebnisse der 16s rDNA Datensätze	87
4.2.1 Acanthaspidia drygalskii: eine zirkumantarktische Art?	87
4.2.2 Genetische Variabilität innerhalb der Gattung Haploniscus	89

5. Zusammenfassung 92)
6. Literaturverzeichnis 94	ŀ
7. Abkürzungen und Symbole 10	8
8. Anhang 11	.0
8.1 Material11	0
8.1.1 Chemikalien11	0
8.1.2 Eingesetzte Lösungen und Puffer11	0
8.1.3 Eingesetzte Bakterienstämme11	1
8.1.4 Eingesetzte Plasmide11	1
8.1.5 Nährmedien11	1
8.1.6 DNA-Längenstandard11	2
8.1.7 Enzyme	2
8.1.8 Kits11	2
8.1.9 Geräte	2
8.1.10 Verbrauchsmaterialien u. ä11	3
8.2 Sequenzdaten	3
8.2.1 Noch nicht veröffentliche vollständige 18s rRNA Gensequenzen11	3
8.2.2 Ergebnisse des Tests der relativen Substitutionsraten11	8
8.2.3 Ergebnisse der Analyse der Substitutionssättigung12	6
8.2.4 p-Distanzen der partiellen 16S rDNA Sequenzen der untersuchten	
Individuen der Familie Acanthaspidiidae13	5
8.2.5 p-Distanzen der partiellen 16S rDNA Sequenzen der untersuchten	
Individuen der Familie Haploniscidae13	6
9. Lebenslauf 13	7
10. Danksagung 13	9

1. Einleitung

1.1 Die Erforschung des Abyssals

Die Rückkehr der *HMS Challenger* nach England im Jahre 1876 nach ihrer mehr als drei Jahre dauernden Reise rund um die Welt kann vermutlich als die Geburtsstunde der Tiefseebiologie angesehen werden. Bis dahin hatte man geglaubt, dass auf Grund der harschen Bedingungen in der Tiefsee Leben dort nicht existieren kann. Doch die Wissenschaftler der "Challenger" kamen mit über 400 neuen Arten zurück, einschließlich des ersten Anglerfisches. Die Expedition setzte Maßstäbe für die Erforschung der Tiefsee, und weitere Expeditionen folgten, wie beispielsweise die erste deutsche Tiefseeexpedition in den Jahren 1898 bis 1899 mit der "Valdivia". In den nachfolgenden Jahrzehnten wuchs das Wissen über die Tiefsee stetig, und modernste Technologie ermöglicht mittlerweile den Einsatz von bemannten Unterseebooten in großen Tiefen. Alle Expeditionen und Tauchgänge bestätigten jedoch die Erkenntnis der "Challenger"-Fahrt: die Tiefsee ist wesentlich reicher an Leben, als man es je erwartet hätte.

Doch nicht die "Monster" der Tiefsee wie Anglerfisch, Drachenfisch, Pelikanaal oder Riesenkalmar sind für den Artenreichtum der Tiefsee verantwortlich. Vielmehr sind es die mitunter winzigen Organismen des Tiefseebodens, die diesen in großer Anzahl bewohnen und in ihren bizarren Körpergestalten den "großen Monstern" nicht nachstehen. Eines der bedeutendsten Elemente der Crustaceenfauna des Abyssals sind die Isopoden, wobei vor allem die Asellota dort mit einer großen morphologischen Vielfalt und Artenzahl auftreten (Menzies 1962, Wolff 1962, Hessler & Sanders 1967). Über die Biologie dieser Tiere ist kaum etwas bekannt. Die meisten der wenigen phylogenetischen Untersuchungen basieren auf morphologischen Merkmalen (Wägele 1989, Wilson 1989, Brandt 1991a) und die einzige molekulargenetische Arbeit (Wägele *et al.* 2003) umfasst eine kleine und nicht repräsentative Anzahl an Taxa. Bedingt durch die Klimageschichte der Antarktis sind vor allem die Asellota des Südpolarmeeres für die Besiedlung der Tiefsee von höchstem Interesse (u. a. Hessler & Thistle 1975, Wägele 1989, Brandt 1991a) und bieten sich auf Grund ihres Arten- und Individuenreichtums für molekulargenetische Untersuchungen der Phylogenie und Speziation an.

1.2 Klimageschichte der Antarktis

Die Fauna des Südpolarmeeres wurde maßgeblich durch die geologische Entwicklung der Antarktis und deren Klimageschichte geprägt. Hierbei sind insbesondere die Vereisung des Kontinents sowie die Abkühlung des Südpolarmeeres hervorzuheben, wodurch die Klimageschichte des gesamten Planeten einen tiefgreifenden und dauerhaften Wandel erfuhr (u.a. Stanley 1998). Die erste Vereisung der Antarktis im Tertiär vor ca. 35-37 Millionen Jahren steht in einem engen Zusammenhang mit der Trennung des Kontinents von Australien (Kennett 1977). Eine deutliche Senkung des atmosphärischen CO₂-Gehaltes vor ca. 35 Millionen Jahren hatte zusätzlich entscheidenden Einfluss auf den Vereisungsprozess (DeConto & Pollard 2003, Barrett 2003, Barker & Thomas 2004).

Abb. 1.1: Schelfeiskante der Atka-Bucht in der Antarktis. Der antarktische Kontinent ist fast vollständig von einer bis zu 4 Kilometer dicken Eisdecke bedeckt, die rund ³⁄₄ der Süßwasserreserven der Erde beherbergt. Das Schelfeis entsteht aus den Gletscherzungen der mächtigen Inlandgletscher, die sich auf das Meer hinausschieben. Bricht das Schelfeis ab, bilden sich die für das Südpolarmeer typischen Tafeleisberge.

Durch die Trennung der beiden Bruchstücke des Superkontinents Gondwana entstand eine kalte Ozeanströmung, die die warme Strömung ablenkte, welche zuvor noch die Antarktis erreicht hatte. Die Öffnung der Drake Passage vor ca. 30 Millionen Jahren (Lawver & Gahagan 2003) führte schließlich zur vollständigen Isolierung der Antarktis von allen anderen umgebenden Kontinenten, was die Entstehung des Zirkumpolarstroms, die Ausbildung der Antarktischen Konvergenz und der Polarfront (Kennett 1977, Barker & Thomas 2004)

ermöglichte. Eine weitere Auswirkung der Klimaverschlechterung in der Südpolgegend war die Entstehung der Psychrosphäre. Diese kalte Tiefseewasserschicht der Ozeane speist sich größtenteils aus dem an den Polen absinkenden eiskalten und somit dichteren Wasser (Mantyla & Reid 1983). Veränderungen in der Zusammensetzung von Ostracodenfaunen der Tiefsee datieren die Entstehung der Psychrosphäre im Eozän-Oligozän-Übergangsbereich, also zum Zeitpunkt der Trennung Australiens von der Antarktis (Benson 1975, Kennett & Shackleton 1976).

All diese Prozesse führten im Laufe der Zeit zur Entstehung einer einmaligen antarktischen Tierwelt, die durch Anpassungen an die extremen Umweltbedingungen und durch reduzierten Genaustausch mit benachbarten Regionen geprägt ist (z.B. Watling & Thurston 1989, Eastman 1993). Einige der im Südpolarmeer entstandenen Taxa haben sich in der Tiefsee nordwärts ausgebreitet (Watling & Thurston 1989, Brandt 1991a). Somit kann die nordwärts gerichtete Ausbreitung ursprünglich antarktischer Taxa mit dem antarktischen Bodenwasser erheblichen Einfluss auf die globale Zusammensetzung der Fauna der Tiefsee gehabt haben (z.B. Mironov 1982), was allerdings sicher nicht für alle Taxa gilt (Keller & Pasternak 1996). Die Klimaveränderung im Tertiär verursachte eine langsame, aber drastische Veränderung der Zusammensetzung der antarktischen Schelf- und Tiefseefaunen. Das Aussterben sehr vieler Tiergruppen und die Evolution neuer, polarer Arten war die Folge. Die Artbildungsrate scheint offenbar nicht verlangsamt zu sein, was sich unter anderem aus dem Vergleich von fossil erhaltenen Mollusken ergibt (Crame 1997). Eine Verlangsamung der Evolutionsrate auf molekularer Ebene ist ebenfalls nicht feststellbar (Held 2001). Die extremen Umweltbedingungen führten auf dem antarktischen Schelf zur Entstehung zahlreicher Arten bestimmter Taxa. Beispielsweise zeichnen sich innerhalb der Crustaceen die Seroliden und Arcturiden (beide Isopoda, Wägele 1994, Brandt 1999) oder die Iphimediidae (Amphipoda, Watling & Thurston 1989) durch eine hohe Diversität aus, während andere Taxa im Vergleich zum Schelf benachbarter Kontinente fehlen (z. B. Brachyuren) oder artenarm (z. B. Garnelen) sind (Gorny 1999). Der Einfluss der Klimaänderung auf die Lebensgemeinschaften der Tiefsee ist bislang nicht untersucht.

1.3 Allgemeine Biogeographie der Antarktis

Die rezente antarktische Tierwelt unterscheidet sich von benachbarten Regionen sowohl faunistisch (z.B. Dell 1972) als auch physiologisch (z.B. Thiel *et al.* 1996, Chen *et al.* 1997a, 1997b). Diese Erkenntnisse betreffen allerdings bisher nur die Schelffauna. Meist wird das Südpolarmeer als biogeographische Einheit betrachtet, wenngleich eine Untergliederung der

Antarktis und der sie umgebenden Inseln in bestimmte Subregionen erkennbar ist (z. B. Hedgpeth 1969, Lipps & Hickman 1983). Insbesondere gilt die Eigenständigkeit der Schelffauna, bedingt durch den charakteristischen Wasserkörper und den Ringstrom der Westwinddrift als allgemein anerkannt (z.B. Knox 1960, Hedgpeth 1969). Das Verbreitungsgebiet nur weniger Arten überschreitet die antarktische Konvergenz, wobei oft die Frage offen ist, ob es sich wirklich immer um dieselbe Art handelt. Eine besondere Bedeutung für den Faunenaustausch zwischen Patagonien und der Antarktischen Halbinsel wird dem Scotia-Bogen zugemessen (z.B. Dell 1972, Knox 1977, Clark & Crame 1989, Brandt 1991a, Thatje & Arntz 2004).

1.4 Vertikale Zonierung

Im Bereich des Kontinentalhangs trifft die Tiefseefauna auf die andersartige Schelffauna, wobei es jedoch unmöglich ist, eine allgemeine Grenze zwischen Tiefsee- und Schelfbenthos in den Weltmeeren anzugeben. Diese Grenze liegt laut Lipps und Hickman (1982) meist bei 200-400 m, allerdings gibt es fließende Übergänge und lokale Besonderheiten.

In der Antarktis ist diese Grenze auf Grund der größeren Tiefe des Schelfs und einem hohen Anteil von Flachwasserarten in größeren Tiefen (u.a. Menzies *et al.* 1973) bzw. der Präsenz von Tiefseetaxa auf dem Schelf (z.B. Gutt 1991) sicherlich tiefer anzusiedeln. Auch ist die vertikale Ausbreitungsfähigkeit der Tiergruppen sehr unterschiedlich (s. Gage & Tyler 1991). Beispielsweise ändert sich in der Arktis die Diversität in ca. 1000 m Tiefe (Svavarsson 1997). Quantitative Analysen auf Artniveau der diesbezüglichen Änderung der Gemeinschaftszusammensetzung entlang von vertikalen Transekten, die bis in abyssale Regionen reichen, gibt es für die Antarktis nicht.

1.5 Lebensraum Tiefsee

Die Tiefsee ist der mit Abstand größte Lebensraum auf der Erde. Fast 80 Prozent des Meeresbodens liegen tiefer als 3000 Meter. Lange Zeit ging man davon aus, dass die Tiefsee weitgehend verödet sei. Diese Vorstellung wurde durch die "Challenger"-Expedition widerlegt. Trotz widrigster Umweltbedingungen (Fehlen von Licht, Wassertemperaturen nahe dem Gefrierpunkt, Nahrungsknappheit, hoher Druck) findet sich in der Tiefsee eine Fülle mitunter bizarrer Organismen. Besonders das Tiefseesediment (siehe Abb. 1.2) beherbergt eine Vielzahl an Organismen der verschiedensten Tiergruppen, wie zum Beispiel Foraminiferen, Nematoden, Polychaeten, Tanaidaceen, Isopoden, Amphipoden, Holothurien, Ophiuroiden, Echinoiden und Bivalven (u. a. Sanders *et al.* 1965, Hessler & Sanders 1967,

Menzies *et al.* 1973, Gage & Tyler 1991). Innerhalb der Isopoden sind es vor allem die Asellota, die in der Tiefsee eine enorme Arten- und Formenvielfalt aufweisen (Menzies 1962, Wolff 1962, Hessler *et al.* 1979).

Abb. 1.2: Tiefseesedimentaufnahme aus 3975 Metern Tiefe. Die Aufnahme stammt aus dem Südpolarmeer und entstand während der ANDEEP II-Expedition (Station 139). In weiten Bereichen ist der Tiefseeboden der Ozeane flach und scheinbar unbelebt. Dieser Eindruck täuscht, da ein Großteil der mitunter winzigen Organismen nicht auf sondern *im* Sediment lebt (mit freundlicher Genehmigung von R. Diaz).

1.6 Herkunft der Fauna und Speziation in der Tiefsee

Allgemein gilt für die Tiefsee, dass die Fauna bezüglich des Alters und der Herkunft heterogen zusammengesetzt ist. So wird für einige Taxa vermutet, dass sie schon zu Beginn des Tertiärs oder früher in der Tiefsee lebten und die heutigen Vertreter aus einer langen Evolution *in situ* hervorgingen (Lipps & Hickman 1982). Andere Gruppen haben noch heute nahe Verwandte im Flachwasser und repräsentieren Einwanderer aus jüngerer Zeit (Wägele 1989, Brandt 1991a). Es besteht allerdings kein Zweifel, dass die Einwanderung von Vertretern einzelner Taxa in die Tiefsee immer wieder erfolgte, was für Isopoden (Brandt 1991a) und Mollusken (Clarke 1962) gut belegt ist.

1.7 Diversität der Isopoden der Tiefsee

Die Isopoda sind sowohl in der Antarktis als auch in der Tiefsee durch hohe Artenzahl und Abundanz viel auffälliger als in anderen Meeren. Auf dem antarktischen Schelf fallen besonders die Vertreter der Serolidae und Arcturidae auf (Brandt 1991a). Die Asellota sind dagegen kleiner und werden entsprechend weniger beachtet, obwohl die bekannte Artenzahl deutlich höher ist als für die Serolidae oder Arcturidae. Vor allem in der Tiefsee gehören die Asellota zu den weltweit verbreitetsten Taxa, was besonders in oligotrophen Hochseeregionen auffällt (Gage & Tyler 1991). Die ungemeine Arten- und Formenvielfalt der Asellota dokumentierten bereits erste Tiefseeexpeditionen (Menzies 1962, Wolff 1962, Hessler & Sanders 1967). Allein in der DISCOL-Region (Südostpazifik vor Peru) fand Park (1999) auf einer Fläche von 10 km² 120 verschiedene Arten der Asellota, vor Kalifornien sind sogar in einzelnen Proben über 100 Arten gezählt worden (Hessler *et al.* 1979). Gerade die hohe Artenzahl der Asellota war der Anlass zur Ausarbeitung von Theorien über die Faktoren, die eine hohe Diversität ermöglichen. Es entstehen allerdings Widersprüche, wenn zwei Betrachtungsebenen nicht unterschieden werden:

a) Diversität entsteht durch Evolution großräumig und über lange Zeitspannen unter klimatisch stabilen Bedingungen, wobei Stabilität auch eine langfristige Vorhersagbarkeit von Störungen oder von saisonalen Effekten bedeuten kann.

b) Kleinräumig und über kurze Zeit lässt sich der Einfluss ökologischer Faktoren (Habitatheterogenität und Bioturbation, Saisonalität, Nahrungszufuhr) auf die Diversität und Abundanz studieren, die nicht durch Evolution, sondern durch Reproduktion, Rekrutierung, biologische Interaktionen etc. entsteht.

Ein weiterer Faktor ist die Verbreitungsfähigkeit. Wie alle anderen Peracarida haben die Isopoda keine Larven und sind überwiegend wenig beweglich. Dieses reduziert den Genfluss und fördert sehr wahrscheinlich die Artbildung. Die Formenvielfalt besteht auch zum Teil intraspezifisch, wobei die Morphologie nicht immer eine eindeutige Erkennung der Artgrenzen zulässt (Wilson 1983a).

Die hohe Diversität der Asellota in der Tiefsee beruht wahrscheinlich auch auf der geringen Größe der Tiere, die ein Überleben bei geringer Nahrungszufuhr ermöglicht (s. Gage & Tyler 1991). Das Alter dieses Taxons wird auf Grund von phylogenetischen Analysen und Fossilfunden verwandter Taxa (Phreatoicidea) auf über 100 Millionen Jahre geschätzt (Wägele 1989). Insgesamt sind 29 Familien der Asellota bekannt, von denen 26 marin vorkommen und 16 als typische Tiefseefamilien zu betrachten sind. Eine Folge dieser langen Phase der Spezialisierung ist eine bemerkenswert große morphologische Vielfalt (siehe Abb. 1.3). Einige Formen sind lang gestreckt (Ischnomesidae), andere bizarr bedornt oder gelappt (Dendrotiidae, Mesosignidae), oder kompakt und muskulös (schwimmende Munnopsididae). Für das hohe Alter vieler Tiefseetaxa spricht die weltweite Verbreitung auf Niveau der Gattungen. Von 143 Gattungen der Tiefseeisopoden des Pazifiks fehlen lediglich 9 im Atlantik (Hessler & Wilson 1983), was auch für eine relative Homogenität von Tiefseebiotopen spricht. Nach Wägele (1989) fand die Evolution der Asellota der Tiefsee überwiegend in situ statt, da große Gattungsgruppen, die ausschließlich Tiefseearten enthalten, vermutlich monophyletisch sind. Detaillierte Analysen zur Phylogenese innerhalb von Gattungen, die Aufschluss über Speziationsmechanismen und Verbreitungswege geben, liegen bislang nicht vor.

Abb. 1.3: Tiefseebewohner der Asellota. A: Haploniscidae: *Haploniscus sp.*. B: Acanthaspidiidae: *Acanthaspidia drygalskii* Vanhöffen, 1914. C: Janirellidae: *Janirella sp.*. D: Mesosignidae: *Mesosignum sp.*. E: Ischnomesidae. F: Desmosomatidae. G: Munnopsididae: *Eurycope sp.*. Der Maßstabsbalken entspricht 1 mm.

1.8 Isopoda der antarktischen Tiefsee

Die abyssale Fauna der Antarktis ist bisher kaum untersucht worden, eine aktuelle Zusammenfassung bekannter Fakten fehlt. Es existieren wenige erratische Meldungen, die belegen, dass es grundsätzlich Tiefseearten gibt, die teils zu kosmopolitischen Gattungen (z.T. *Desmosoma, Acanthomunna, Eurycope, Disconectes, Ilyarachna, Echinozone, Haploniscus, Leptanthura*, u.a.), teils zu Taxa gehören, die nur aus dem Südpolarmeer bekannt sind (*Rectarcturus, Furcarcturus, Echinomunna, Lionectes, Euneognathia*, u.a.). Nächste Verwandte blinder Tiefseearten sind zum Teil augentragende Arten, die zu Schelfgattungen

gehören und endemisch für die Antarktis sind. Die Arcturidae z.B. kommen mit blinden Arten bis in Tiefen von > 6000 m vor (Kussakin & Vasina 1995). In diesen Fällen muss man vermuten, dass die Tiefseearten durch Einwanderung vom antarktischen Schelf aus entstanden sind (Submergenz). Eine Inventarisierung der lokalen Fauna fehlt und daher ist nicht bekannt, welchen Anteil die Faunenelemente verschiedener Herkunft haben.

Die Asellota der Tiefsee der Antarktis sind auch als Besiedler des Schelfs interessant (Emergenz), da nirgendwo sonst so viele typische Tiefseegattungen im Benthos flacherer Meere vertreten sind. Emergenz ist in der Antarktis z.B. von Munnopsididae, Nannoniscidae, Desmosomatidae und Ischnomesidae bekannt (Brandt 1991a, 1992). Andererseits können auch Asellota, die weltweit betrachtet ihre Hauptverbreitung in oberen Schelfregionen haben, in antarktischen Tiefgewässern gefunden werden (Submergenz der Janiridae, Joeropsididae, Paramunnidae (bis 2680 m), Stenetriidae (bis 3400 m), Munnidae (bis 6110 m), Acanthaspidiidae (bis 7720 m)), was der Beobachtung entspricht, dass viele, aber nicht alle antarktische Benthostaxa eurybath sind (Brey *et al.* 1996). In der Antarktis sind also Emergenz und Submergenz simultan zu beobachten. Nur die Emergenz für das wichtigste Phänomen zu halten (Zenkevitch & Birstein 1960, Hessler & Thistle 1975 etc.) oder nur die Submergenz hervorzuheben (Dahl 1954, Wolff 1960, Kussakin 1973, Menzies *et al.* 1973) ist somit einseitig und unrealistisch. Dies konnte Brandt (1991a, 1992) am Beispiel der Isopoda zeigen. Die Migrationen belegen, dass die Evolution der Schelffauna nicht isoliert von der benachbarten Tiefsee betrachtet werden kann.

1.9 Molekulare Systematik

In den letzten 30 Jahren hat sich zur Klärung stammesgeschichtlicher Fragestellungen neben der klassischen Morphologie die Analyse von DNA-Sequenzen etabliert. Einen vielmals genutzten DNA-Abschnitt stellt das 18S rRNA Gen dar (z. B. Spears *et al.* 1994, Canapa *et al.* 1999, Crandall *et al.* 2000, Martin 2001, Dreyer & Wägele 2002, Englisch *et al.* 2003). Dieses Gen, welches sich für die Kodierung der kleinen Untereinheit der Ribosomen verantwortlich zeigt, liegt homolog in allen Vertretern der Metazoa vor. Ein Vorteil dieses Gens ist die Existenz von einigen konservierten Sequenzabschnitten, die eine sichere Homologisierung der Basen ermöglichen. Zusätzlich gibt es aber auch variable Regionen, die, sofern sie nicht verrauscht sind, ein hohes Maß an phylogenetischer Information tragen (u. a. Gerbi *et al.* 1982, Vawter & Brown 1993). Es existieren keine unterschiedlichen Allele des 18S rRNA Gens in einem Individuum: Alle in einem Organismus vorliegenden Kopien sind in ihrer Sequenz fast identisch. Das Vorhandensein verschiedener Allele und die damit

verbundene Problematik für phylogenetische Analysen ist insbesondere bei der Verwendung von proteinkodierenden Genen zu beachten (u. a. Raupach 2001). Ergänzende Studien konnten weiterhin zeigen, dass die Sequenz eines Tieres als Merkmal für eine bestimmte Art verwendet werden kann, da die wenigen Abweichungen in der Basenabfolge der 18S rDNA innerhalb einer Art zu vernachlässigen sind (Tautz *et al.* 1988). Mittlerweile kennt man die Basensequenzen der kleinen ribosomalen Untereinheit aus Tausenden von Organismen.

Das 18S rRNA Gen liegt in den Zellkernen eines Organismus als Bestandteil sogenannter Transkriptionseinheiten in einer hohen Kopienzahl (mehr als 100) vor. Eine einzelne Transkriptionseinheit besteht neben den drei RNA Genen (18S, 5,8S und 28S), die am Aufbau der Ribosomen beteiligt sind, aus flankierenden Abschnitten (,,spacern"), welche jedoch im Verlauf der rRNA-Reifung aus dem primären RNA-Transkript herausgeschnitten werden. Ein besonderes Kennzeichen ribosomaler RNA ist die Fähigkeit zur Ausbildung ausgedehnter intramolekularer Doppelhelix-Bereiche, die sich wiederum zu komplexen dreidimensionalen Strukturen falten können. Die Kenntnis der Sekundärstruktur der ribosomalen RNA ist für phylogenetische Untersuchungen sehr wichtig, da sie die Identifizierung hypervariabler Sequenzabschnitte ermöglicht, in denen eine Homologisierung der beteiligten Basen insbesondere bei nicht sehr nahe verwandten Taxa meist unmöglich ist.

Neben der 18S rDNA wird häufig ein Teilbereich der mitochondrialen 16S rDNA, welche die große ribosomale Untereinheit der Mitochondrien kodiert, zur Analyse phylogenetischer Fragestellungen verwendet. Für die mitochondrialen Genome der Tiere gilt, dass in den meisten Fällen die Mitochondrien über die weibliche Keimbahn vererbt werden und männliche Mitochondrien nicht in die Zygote aufgenommen werden. Es sind nur wenige Ausnahmen von der Regel der maternalen Vererbung bekannt (z. B. Geller 1994, Liu & Mitton 1996). Es entstehen somit maternal transmittierte Klone. Für die Rekonstruktion der Phylogenese der Träger der Mitochondrien sind die im Vergleich zum 18S rRNA Gen schneller evolvierenden mitochondrialen Gene sehr gut geeignet, ebenso aber auch für Populationsstudien, mit denen zum Beispiel die Ausbreitungswege weiblicher Tiere analysiert werden sollen (Wägele 2000). Auf Grund der hohen Variabilität der 5'-Hälfte (z. B. Pashley & Ke 1992) wird im Rahmen von 16S rDNA Analysen klassischerweise die 3'-Hälfte untersucht (z.B. France & Kocher 1996b, Schubart et al. 2000, Quattro et al. 2001). Zur Rekonstruktion der Phylogenie der Großgruppen der Isopoda eignet sich dieses Gen allerdings nicht (Wetzer 2001, 2002). Für Isopoden liegen bislang nur sehr wenige Arbeiten vor, die sich zur Lösung phylogenetischer Fragestellungen des 18S rRNA Gens bedienen (Dreyer 1999, Held 2000a, Dreyer & Wägele 2001, Mattern & Schlegel 2001, Dreyer & Wägele 2002, Wägele *et al.* 2003) oder das mitochondriale 16S rRNA Gen verwenden (Baltzer *et al.* 2000, Held 2000b, Michel-Salzat & Bouchon 2000, Held 2001, Wetzer 2001, Wetzer 2002, Held 2003, Hidding *et al.* 2003, Baratti *et al.* 2004, Held 2004).

Es existieren bis heute kaum populationsgenetische oder molekularsystematische Studien über polare Arten oder Tiefseeorganismen. Pawloski et al. (2002) untersuchten Vertreter der Allogromiina (Foraminifera) des McMurdo Sunds und entdeckten, dass die 27 untersuchten Morphotypen sich aus 49 unterschiedlichen Genotypen zusammensetzen. Bargelloni et al. (1994, 2000) rekonstruierten die Radiationen der Notothenioidei und Euphausiaceen mit Hilfe der 12S und 16S rDNA und berechneten, dass diese vor 10-15 bzw. 20 Millionen Jahren einsetzten, sofern die angenommenen Substitutionsraten stimmen. Isopoden waren bislang lediglich Gegenstand einiger Arbeiten von Held (2000a, 2000b, 2003, 2004). Phylogenetische Studien an Tiefseetaxa führten z.B. Féral et al. (1994) für die Polychaeten von Hydrothermalquellen durch. Sie wiesen nach, dass die Alvinellidae monophyletisch und mit den Terebellidae verwandt sind. Populationsanalysen vollzogen Chase et al. (1998) an der Tiefseemuschel Deminucula atacellana. Es zeigte sich, dass die genetische Variabilität vor der Ostküste der USA kleinräumig nachweisbar war und Populationen oberhalb 2500 m sich deutlich von tieferen unterschieden und Standorte, die nur 134 km auseinander lagen, eigene Charakteristika aufwiesen. Die Untersuchung weiterer Mollusken (Etter et al. 1999) ergab eine große genetische Variabilität innerhalb einer Art, vergleichbar den Unterschieden zwischen Arten oder gar Gattungen bei Flachwasserpopulationen. Ein Beispiel für Crustaceen ist die Arbeit von France & Kocher (1996) über den Tiefsee-Flohkrebs Eurythenes gryllus, einer scheinbar kosmopolitischen Art. Hier sind Populationen gleicher Tiefenzonen eines Ozeanbeckens homogen, Populationen verschiedener Tiefenzonen jedoch so unähnlich, dass es sich um kryptische Arten handeln könnte.

Mittels Enzymelektrophoresen konnte bereits bei Schnecken, Stachelhäutern und Flohkrebsen eine hohe genetische Variabilität nachgewiesen werden (Doyle 1972, Ayala & Valentine 1974, Ayala *et al.* 1975, Siebenaller 1978, France *et al.* 1992, France 1994, Vrijenhoek *et al.* 1994). Die genetische Diversität ist also bei einigen der bisher untersuchten Arten höher als es die Morphologie erkennen lässt, die ökologischen Ursachen für diese Differenzierung sind noch unbekannt.

1.10 Fragestellungen

Trotz ihrer herausragenden Stellung in der Tiefsee wurde der Phylogenie der Asellota bislang wenig Beachtung geschenkt. Arbeiten von Kussakin (1973), Hessler *et al.* (1979) oder Fresi *et al.* (1980) berücksichtigen nicht die Kriterien der phylogenetischen Systematik nach Hennig (1982), was ihren Nutzen erheblich einschränkt. Wilson (1987) analysierte die Evolution und Phylogenie einiger Familien der Asellota an Hand morphologischer Charakteristika, ging jedoch nicht auf die verwandtschaftlichen Beziehungen innerhalb der Janiroidea ein. Die bislang einzige umfassende Rekonstruktion der Phylogenie der Asellota unter Verwendung morphologischer Merkmale gab Wägele (1989). Nachfolgende Arbeiten beschränkten sich auf ausgewählte Familien (Munnopsididae: Wilson 1989, Acanthaspidiidae: Brandt 1991a, Janiridae: Wilson 1994). Eine erste molekulargenetische Arbeit (Wägele *et al.* 2003) umfasste lediglich eine kleine und nicht repräsentative Anzahl an Taxa, da Vertreter vieler typischer Tiefseefamilien fehlen.

In der vorliegenden Arbeit wurde die Phylogenie der marinen Asellota molekulargenetisch unter der Verwendung von 18S rDNA Sequenzen untersucht. Ein besonderes Augenmerk galt hierbei den Janiroidea. Das Verständnis der Phylogenie dieses Taxons, in dem alle typischen Tiefseefamilien der Asellota sowie verschiedene Flachwassergruppen zusammengefasst werden, ermöglicht Rückschlüsse auf die Besiedlung der Tiefsee.

Ein weiterer Aspekt der Arbeit beschäftigte sich mit der genetischen Variabilität ausgewählter Taxa der Asellota. Viele Organismen sind auf dem antarktischen Schelf weitverbreitet und zahlreiche Taxa werden als zirkumantarktische Formen angesehen (Sieg & Wägele 1990). Held (2000a, 2003, 2004) konnte jedoch innerhalb der auf dem Schelf häufig zu findenden Asseln *Ceratoserolis trilobitoides* und *Glyptonotus antarcticus* kryptische Arten identifizieren. Setzen sich auch weitverbreitete Arten der Asellota aus kryptischen Arten zusammen? Hierzu wurden Bereiche der 16S rDNA Sequenzen verschiedener Individuen der zirkumantarktischen Art *Acanthaspidia drygalskii* Vanhöffen 1914 (Acanthaspidiidae, siehe Abb.1.3 B) aus der westlichen und östlichen Weddell See untersucht.

Im Rahmen der ANDEEP-Expeditionen wurden für die vorliegende Arbeit vom Autor mehrere Individuen der Gattung *Haploniscus sp.* 1 nahe der sogenannten "Shackleton Fracture Zone", dem "South Scotia Ridge" nahe Elephant Island sowie der westlichen Weddell See in unterschiedlichen Tiefen gefangen. Die gefangenen Individuen sind sich sehr ähnlich, unterscheiden sich jedoch insbesondere durch eine auffällig variable Rostrumform voneinander (siehe Abb. 1.4). Weiterhin liegen Variationen in der Form des Pleotelsons sowie der Beborstung der Beine vor. Kennzeichnen die geringen morphologischen Unterschiede tatsächlich verschiedene Arten oder handelt es sich um klinale Variationen von lokalen Populationen innerhalb einer Art? Zur Klärung dieser Fragen wurde ebenfalls ein Abschnitt des 16S rRNA Gens analysiert.

Abb. 1.4: Dorsale und laterale Ansicht eines Vertreters des *Haploniscus sp.* 1-Komplexes. Auffallend ist das markante und mit Sinneshaaren besetzte Rostrum (schwarze Pfeile) der Tiere (mit freundlicher Genehmigung von Wiebke Brökeland).

Zusammenfassend ergaben sich für diese Arbeit somit folgende Fragestellungen:

- Welche Verwandtschaftshypothesen ergeben sich für die marinen Asellota, insbesondere der Janiroidea, bei der Analyse der 18S rDNA Sequenzen?
- Sind die Ergebnisse der Analyse der 18S rDNA Sequenzen mit den Erkenntnissen morphologischer Analysen kompatibel?
- Welche Rückschlüsse können aus den molekulargenetischen Daten für die Besiedlung der Tiefsee durch die Asellota gezogen werden?
- Repräsentiert die zirkumantarktisch verbreitete Art *Acanthaspidia drygalskii* wirklich eine Art oder setzt sie sich aus kryptischen Arten zusammen?
- Kennzeichnen geringe morphologische Variationen innerhalb der Gattung Haploniscus tatsächlich verschiedene Arten oder handelt es sich um klinale Variationen von lokalen Populationen innerhalb einer Art?

2. Material und Methoden

2.1 Herkunft des verwendeten Tiermaterials

Das antarktische Tiermaterial für die molekulargenetischen Untersuchungen wurde fast ausschließlich im Rahmen der ANDEEP I und ANDEEP II Expeditionen (ANT XIX/3-4) sowie der BENDEX-Expedition (ANT XXI/2) an Bord des deutschen Forschungsschiffes "Polarstern" vom Autor gesammelt. Ziel der beiden ANDEEP-Expeditionen war erstmalig eine gezielte Sammlung von Tiefseeorganismen des Südpolarmeeres, wobei gefangene Tiefseeisopoden ebenfalls erstmalig für molekulargenetische Analysen konserviert wurden. Die Auswirkungen von Eisbergkratzern auf die benthischen Lebensgemeinschaften des Schelfs sowie die Wiederbesiedlung der gestörten Areale war Forschungsschwerpunkt der BENDEX-Expedition. Die Untersuchungsgebiete der Expeditionen sind in Abbildung 2.1 farbig gekennzeichnet.

Abb. 2.1: Stationskarte der ANDEEP- und BENDEX-Expeditionen. Die Probengebiete von ANDEEP I (hellblaue Fläche) konzentrierten sich auf den südlichen Bereich der Drake Passage sowie die Gewässer um die Süd-Shetland-Inseln. Neben der Beprobung der Tiefsee erfolgte in Küstennähe der Einsatz zahlreicher Grundschleppnetze mit fischereibiologischem Hintergrund. Das abyssale Becken der Weddell See und der Tiefseegraben östlich der Süd-Sandwich-Inseln waren Ziele von ANDEEP II (dunkelblaue Flächen). Das Probengebiet der BENDEX-Expedition lag im küstennahen Gebiet der östlichen Weddell See nahe der deutschen Forschungsstation "Neumayer" (rote Fläche) sowie um Bouvet Island (nicht eingezeichnet). Die Karte wurde mit *PanMap*, Version 0.9.6 (1996, 1997), einem Bestandteil des *PANGAEA*-Programms (Diepenbroek *et al.* 2002), erstellt.

Der Großteil der in dieser Arbeit bearbeiteten Tiere stammt aus den Fängen des Epibenthosschlittens sowie vereinzelt aus den Fängen des Agassiz Trawls oder des Grundschleppnetzes. Eine vollständige Liste aller während der ANDEEP-Fahrten beprobten Stationen geben Fütterer et al. (2003). Der Fahrtbericht der BENDEX-Fahrt befindet sich in Vorbereitung. Tabelle 2.1 gibt Auskunft über die systematische Stellung und Herkunft der Asellota, von denen im Rahmen dieser Arbeit die vollständigen 18S rDNA Sequenzen amplifiziert und sequenziert werden konnten. Von bereits in der Gendatenbank des "National Information" (http://www.ncbi.nlm.nih.gov) hinterlegten Center for Biotechnology Sequenzen sind die "accession numbers" angegeben. Bislang unveröffentlichte Sequenzen können dem Anhang entnommen werden (siehe 8.2.1). Die verwendeten systematischen Bezeichnungen der übergeordneten Taxagruppierungen beruhen auf dem von Martin & Davis (2001) verwendeten System.

Tab. 2.1: Systematische Stellung und Herkunft der untersuchten Taxa der Asellota, für die die vollständige 18S rDNA doppelsträngig sequenziert werden konnte. Von bereits in der NCBI-Gendatenbank hinterlegten Sequenzen sind ergänzend die "accession numbers" angegeben:

Überfamilie Stenetrioidea Hansen, 1905

Stenetriidae Hansen, 1905

Stenetrium sp.

AY461453

ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m

Tenupedunculus acutum (Vanhöffen, 1914)

BENDEX, Station 326-1: 72°51,43' S/ 19° 38,67' O - 72°51,33' S/ 19°38,44' O; 616-606 m

Überfamilie Janiroidea Sars, 1897

Acanthaspidiidae Menzies, 1962

Acanthaspidia bifurcatoides Vasina & Kussakin, 1982	AY461457
ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3	680 m
Acanthaspidia drygalskii Vanhöffen, 1914	AY461458
ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122	-1119 m
Acanthaspidia pleuronotus (Menzies & Schultz, 1967)	AY461459
ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122	-1119 m
Acanthaspidia rostratus (Menzies & Schultz, 1967)	AY461456
ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122	-1119 m
Acanthaspidia sp.	AY461455
ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122	-1119 m
Ianthopsis multispinosa Vanhöffen, 1914	
BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-90	0 m

Ianthopsis nasicornis Vanhöffen, 1914 BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-900 m Ianthopsis ruseri Vanhöffen, 1914 BENDEX, Station 19-1 (Bouvet Island): 54°30,06' S/ 3°14,13' O - 54° 30,1' S/ 3°13,97' O; 247-259 m Dendrotiidae Vanhöffen, 1914 Dendromunna sp. AY461464 ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m **Desmosomatidae** Sars. 1899 Chelator sp. AY461460 ANDEEP I, Station 46-7: 60°38,35' S/ 53°57,36' W - 60°38,12' S/ 53°57,49' W; 2894-2893 m AY461463 Eugerda sp. ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m Eugerdella natator (Hansen, 1916) AY461462 ANDEEP II, Station 129-2: 59°52,21' S/ 59°58,75' W - 59°52,15' S/ 59°59,03' W; 3643-3622 m Mirabilicoxa sp. AY461461 ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m Haplomunnidae Wilson, 1976 Thylakogaster sp. AY461470 ANDEEP II, Station 114-4: 61°43,54' S/ 60°44,20' W - 61°43,54' S/ 60°44,55' W; 2914-2920 m Haploniscidae Hansen, 1916 Antennuloniscus armatus Menzies, 1962 AY461468 ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m Haploniscus sp. 1 AY461465 ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m Haploniscus sp. 6 AY461466 ANDEEP I, Station 46-7: 60°38,35' S/ 53°57,36' W - 60°38,12' S/ 53°57,49' W; 2894-2893 m Haploniscus sp. 8 AY461467 ANDEEP II, Station 134-4: 65°19,20' S/ 48°03,81' W - 65°19,15' S/ 48°3,34' W; 4066-4067 m Mastigoniscus sp. 1 AY461469 ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m Ischnomesidae Hansen, 1916 Haplomesus sp. 1 AY461474 ANDEEP I, Station 46-7: 60°38,35' S/ 53°57,36' W - 60°38,12' S/ 53°57,49' W; 2894-2893 m AY461473 Haplomesus sp. 2 ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m Ischnomesus sp. AY461472 ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m Stylomesus sp. Y461471 ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m

Janirellidae Menzies, 1956	
Janirella sp. AY46	51475
ANDEEP I, Station 43-8: 60°27,12' S/ 56°05,10' W - 60°27,24' S/ 56°05,25' W; 3961-3962 m	
Janiridae sensu Wolff 1962	
Iais pubescens (Dana, 1853)	
Ushuaia (Argentinien), Supralitoral	
Iathrippa sarsi (Pfeffer, 1887)	
BENDEX, Station 280-1: 71°07,20' S/ 11°26,47' O - 71°07,15' S/ 11°26,23' O; 191-228 m	
Neojaera antarctica (Pfeffer, 1887) AY46	51454
ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m	
Neojaera sp. 1	
BENDEX, Station 145-1: 70°56,99' S/ 10°48,26' O - 70°56,97' S/ 10°47,71' O; 401-405 m	
Neojaera sp. 2	
BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-900 m	
Joeropsididae Nordenstam, 1933	
Joeropsis sp.	
BENDEX 276-1: 71°06,44' S/ 11°27,76' O - 71°06,64' S/ 11°27,28' O; 277-268 m	
Macrostylidae Hansen, 1916	
Macrostylis sp. 1 AY46	51476
ANDEEP II, Station 140-8: 58°15,98' S/ 24°53,72' W - 58°16,13' S/ 24°53,87' W; 2947-2970 m	-
Macrostylis sp. 2 AY46	51477
ANDEEP II, Station 138-6: 62°58,09' S/ 27°54,54' W - 62°58,02' S/ 27°54,25' W; 4543-4541 m	
Mesosignidae Schultz, 1969	
Mesosignum sp. AY46	51478
ANDEEP I, Station 114-4: 61°43,54' S/ 60°44,20' W - 61°43,54' S /60°44,55' W; 2914-2920 m	
Munnopsididae Sars, 1869	
Betamorpha identifrons (Menzies, 1962)	
BENDEX, Station 284-1: 72°29,12' S/ 17°50,84' O - 72°29,26' S/ 17°50,54' O; 805-754 m	
Coperonus sp.	
BENDEX, Station 19-1: 54°30,06' S/ 3°14,13' O - 54°30,01' S/ 3°13,97' O; 247-259 m	
Echinozone sp. AY46	51480
ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m	-
<i>Eurycope sarsi</i> Beddard, 1885 AY46	51479
ANDEEP I, Station 43-8: 60°27,12' S/ 56°05,10' W - 60°27,24' S/ 56°05,25' W; 3961-3962 m	
Eurycope sp. 1	
BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-900 m	
Eurycope sp. 2	
ANDEEP I, Station 114-4: 61°43,54' S/ 60°44,20' W - 61°43,54' S /60°44,55' W; 2914-2920 m	

Ilyarachna antarctica (Vanhöffen, 1914)

AY461481

ANDEEP I, Station 43-8: 60°27,12' S/ 56°05,10' W - 60°27,24' S/ 56°05,25' W; 3961-3962 m

Storthyngurella triplospinosa (Menzies, 1962) AY461482

ANDEEP I, Station 46-7: 60°38,35' S/ 53°57,36' W - 60°38,12' S/ 53°57,49' W; 2894-2893 m

Sursumura robustissima (Monod, 1925)

BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-900 m

Nannoniscidae Hansen, 1916

Austroniscus sp.

BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-900 m

Tabelle 2.2 fasst die systematische Stellung und Herkunft der Asellota, von denen die partielle 16S rDNA amplifiziert und sequenziert werden konnten, zusammen.

Tab. 2.2: Systematische Stellung, Herkunft und Anzahl der untersuchten Taxa der Asellota, für die die partielle 16S rDNA doppelsträngig sequenziert werden konnte. Neben der individuellen Kennung ist die entsprechende "accession number" aufgeführt:

Überfamilie Janiroidea Sars, 1897

Acanthaspidiidae Menzies, 1962

Acanthaspidia bifurcatoides Vasina & Kussakin, 1982

ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m: 1 Individuum AC4: AY691345 ANDEEP I, Station 46-7: 60°38,35' S/ 53°57,36' W - 60°38,12' S/ 53°57,49' W; 2894-2893 m: 2 Individuen AC1: AY691343 AC3: AY691344 ANDEEP II, Station 132-2: 65°17,75' S/ 53°22,82' W - 65°17,56' S/ 53°22,83' W; 2086-2086 m: 1 Individuum AC6: AY691346

Acanthaspidia drygalskii Vanhöffen, 1914

ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m: 9 Individuen AC10: AY691353 AC12: AY691354 AC14: AY691356 AC15: AY691355 AC17: AY691357 AC19: AY691358 AC22: AY691359 AC24: AY691360 AC27: AY691361 BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-900 m: 6 Individuen BAC17: AY691362 BAC18: AY691363 BAC19: AY691364 BAC20: AY691365 BAC21: AY691366 BAC24: AY691367

BENDEX, Station 297-1: 72°48,50' S/ 19°31,60' O - 72°48,65' S/ 19°31,85' O; 668-630 m: BAC45: AY691368	2 Individuen
BAC46: AY691369	
nthaspidia pleuronotus (Menzies & Schultz, 1967)	
ANDEEP II, Station 134-4: 65°19,20' S/ 48°03,81' W - 65°19,15' S/ 48°03,34' W; 4066-4067 m: AC7: AY691347 AC9: AY691348	2 Individuen
nthaspidia sp.	
ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,06' S/ 54°14,51' W; 1122-1119 m: AC13: AY691349 AC18: AY691350 AC21: AY691351 AC23: AY691352	4 Individuen
honsis multispinosa Vanhöffen, 1914	
BENDEX, Station 232-1: 71°18,61' S/ 13°56,12' O - 71°18,73' S/ 13°56,57' O; 910-900 m: BAC10: AY691340 BAC11: AY691341 BAC12: AY691342	3 Individuen
hopsis ruseri Vanhöffen, 1914	
BENDEX, Station 19-1: 54°30,06' S/ 3°14,13' O - 54° 30,01' S/ 3°13,97' O; 247-259 m: BAC1: AY691334	1 Individuum
BENDEX, Station 90-1: 70°56,14' S/ 10°31,70' O - 70°55,92' S/ 10°32,37' O; 274-288 m: BAC5: AY691335	1 Individuum
BENDEX, Station 283-1: 72°32,39' S/ 17°59,34' O - 72°32,45' S/ 17°59,37' O; 554-542 m: BAC37: AY691336	1 Individuum
BENDEX, Station 297-1: 72°48,50' S/ 19°31,60' O - 72°48,65' S/ 19°31,85' O; 668-630 m: BAC51: AY691337	2 Individuen
BAC52: AY691338 BENDEX, Station 326-1: 72°51,43' S/ 19°38,67' O - 72°51,33' S/ 19°38,44' O; 616-606 m: BAC54: AY691339	1 Individuum
dae Hansen, 1916	
ennuloniscus armatus Menzies, 1962	
ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m: HA55: AY693397	1 Individuum
oloniscus sp. 1	
ANDEEP I, Station 41-3: 59°22,24' S/ 60°04,06' W - 59°22,40' S/ 60°03,99' W; 2375-2372 m: HA63: AY693412	1 Individuum
ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m: HA24: AY693401	5 Individuen

Aca

Aca

Iant

Iant

BENDEX, Station 19-1: 54°30,06' S/ 3°14,13' O - 54° 30,01' S/ 3°13,97' O; 247-259 m:	1 Individuum
BAC1: AY691334	
BENDEX, Station 90-1: 70°56,14' S/ 10°31,70' O - 70°55,92' S/ 10°32,37' O; 274-288 m:	1 Individuum
BAC5: AY691335	
BENDEX, Station 283-1: 72°32,39' S/ 17°59,34' O - 72°32,45' S/ 17°59,37' O; 554-542 m:	1 Individuum
BAC37: AY691336	
BENDEX, Station 297-1: 72°48,50' S/ 19°31,60' O - 72°48,65' S/ 19°31,85' O; 668-630 m:	2 Individuen
BAC51: AY691337	
BAC52: AY691338	
BENDEX, Station 326-1: 72°51,43' S/ 19°38,67' O - 72°51,33' S/ 19°38,44' O; 616-606 m:	1 Individuum
BAC54: AY691339	

Haplonisci

Ante

Нар

HA26: AY693402 HA27: AY693403 HA28: AY693404 HA56: AY693411 ANDEEP I, Station 43-8: 60°27,12' S/ 56°05,10' W - 60°27,24' S/ 56°05,25' W; 3961-3962 m: 3 Individuen HA39: AY693410 HA68: AY693413 HA70: AY693414

```
ANDEEP I, Station 46-7: 60°38,35' S/ 53°57,36' W - 60°38,12' S/ 53°57,49' W; 2894-2893 m:
                                                                                              6 Individuen
                  HA2: AY693400
                  HA34: AY693405
                  HA35: AY693406
                  HA36: AY693407
                  HA37: AY693408
                  HA38: AY693409
         ANDEEP II, Station 133-3: 65°20,15' S/ 54°14,35' W - 65°20,6' S/ 54°14,51' W; 1122-1119 m:
                                                                                              4 Individuen
                  HA73: AY693415
                  HA78: AY693416
                  HA79: AY693417
                  HA80: AY693418
Haploniscus sp. 8
         ANDEEP II, Station 134-4: 65°19,20' S/ 48°03,81' W - 65°19,15' S/ 48°03,34' W; 4066-4067 m: 1 Individuum
                  HA450: AY693421
Haploniscus sp. 7
         ANDEEP II, Station 129-2: 59°52,21' S/ 59°58,75' W - 59°52,15' S/ 59°59,03' W; 3643-3622 m: 1 Individuum
                  HA402: AY693419
Haploniscus sp. 4
         ANDEEP II, Station 129-2: 59°52,21' S/ 59°58,75' W - 59°52,15' S/ 59°59,03' W; 3643-3622 m: 1 Individuum
                  HA403: AY693420
Mastigoniscus sp. 1
         ANDEEP I, Station 42-2: 59°40,29' S/ 57°35,43' W - 59°40,42' S/ 57°35,27' W; 3683-3680 m:
                                                                                              2 Individuen
                  HA51: AY693398
                  HA57: AY693399
```

Tabelle 2.3 listet die der NCBI-Genbank entnommenen Sequenzen weiterer Taxa der Asellota und der Crustacea auf, die in dieser Arbeit Verwendung fanden. Hierunter befinden sich mit *Asellus aquaticus, Lirceus fontinalis, Proasellus slavus* und *Stenasellus slavus* auch vier limnische Asellota.

Tab. 2.3: Vollständige 18S rDNA sowie partielle 16S rDNA Sequenzen aus der NCBI-Gendatenbank, die in dieser Arbeit verwendet wurden:

18S rDNA Sequenzen:

Ordnung Decapoda Latreille, 1802

Überfamilie Astacoidea Latreille, 1802

Astacidae Latreille, 1802

Astacus astacus (Linnaeus, 1758)

AF235959

Ordnung Isopoda Latreille, 1817

Überfamilie Aselloidea Latreille, 1802

Asellidae Latreille,	1802
----------------------	------

Asellus aquaticus (Linnaeus, 1758)	AF255701
Lirceus fontinalis Rafinesque-Schmaltz, 1820	AF255702
Proasellus slavus (Remy, 1848)	AF496662
Stenasellidae Dudich, 1924	
Stenasellus racovitzai Razzauti, 1925	AF453248
Ü berfamilie Janiroidea Sars, 1897	
Janiridae Sars, 1897	
Iathrippa trilobatus (Richardson, 1910)	AF279606
Janira maculosa Leach, 1814	AF255700
Joeropsididae Nordenstam, 1933	
Joeropsis coralicola Schultz & McCloskey, 1967	AF279608
Munnopsididae Sars, 1869	
Acanthocope galathea Wolff, 1962	AF496656
Echinozone spinosa Hodgson, 1910	AF496658
Eurycope inermis Hansen, 1916	AF279607
Munnopsis typica Sars, 1861	AF496661
Sursumura falcata (George & Menzies, 1968)	AF498908

16S rDNA Sequenzen:

Ordnung Isopoda Latreille, 1817	
Überfamilie Janiroidea Sars, 1897	
Joeropsididae Nordenstam, 1933	
Joeropsis dubia Menzies, 1951	AF260860

Drei weitere in der Genbank hinterlegte 18S rDNA Sequenzen der Asellota fanden in dieser Arbeit keine Verwendung. Hierbei handelt es sich um die Sequenzen von Carpias nereus (AF496657), Jaera albifrons (AF279606) und Jaera nordmanni (AF279610), die der Familie Janiridae angehören. Bei diesen extrem abgeleiteten Sequenzen ist eine sichere Basenhomologisierung mit anderen Sequenzen in vielen Positionen nicht gewährleistet, was artifiziellen Gruppierungen führt und den Nutzen dieser Daten zu bei Stammbaumrekonstruktion maßgeblich einschränkt (Dreyer 1999).

2.2 Methoden

2.2.1 Fixierung des Tiermaterials

Die Fixierung von Material früherer Expeditionen für taxonomische oder histologische Studien erfolgte überwiegend in Formalin, welches sich auf Grund der einfachen Handhabung an Bord und geringer Kosten lange Zeit empfahl. Dieses Material ist für molekulargenetische Arbeiten jedoch ungeeignet, da Formalin zwar das Gewebe fixiert, allerdings auch die DNA auf Grund zahlreicher komplexer und meist noch unbekannter Reaktionen abbaut (Schander & Halanych 2003). PCR-Amplifikate aus formalinfixiertem Material beschränken sich auf sehr kurze Genabschnitte von wenigen hundert Basenpaaren Länge (France & Kocher 1996b, Chase *et al.* 1998b), sofern eine Amplifikation überhaupt möglich ist. Daher ist eine geeignete Fixierung des Tiermaterials für molekulargenetische Arbeiten unerlässlich.

Für Isopoden und andere Peracarida hat sich die Verwendung von vorgekühltem 96% igen Ethanol etabliert, das eine gute Fixierung der DNA ermöglicht (Dreyer 1999, Held 2000a, Englisch & Koenemann 2001, Englisch *et al.* 2003, Haye *et al.* 2004). Hierzu wurden die Tiere umgehend nach dem Fang und möglichst lebend in das vorgekühlte Ethanol überführt und für mindestens 48 Stunden bei +4°C gelagert. Mit dieser Vorgehensweise werden die bei Isopoden nachgewiesenen hochaktiven DNA-Nukleasen inhibiert (Dreyer 1999). Das rasche Eindringen des Ethanols in das Gewebe und die niedrige Temperatur schränken die Aktivität der temperaturabhängigen Nukleasen ein und ermöglichen die Extraktion weitgehend hochmolekularer DNA. Alle verwendeten Tiere wurden einzeln in Kunststoffviolen gelagert.

2.2.2 Präparation und DNA-Isolierung

Die Extraktion von DNA erfolgte aus präparierten Peraeopoden der Asseln, die restlichen Bestandteile des Tieres konnten zur Identifizierung genutzt werden. Die Präparation wurde unter einem Binokular mit sterilen Pinzetten durchgeführt. In einigen Fällen lagen mehrere Exemplare einer Art vor, was die Verwendung vollständiger Tiere für die DNA-Extraktion ermöglichte. Ergänzend wurden die Tiere mit einer Digitalkamera mehrfach photographiert. Zur Vermeidung einer Kontamination mit Fremd-DNA erfolgte die Extraktion der genomischen DNA unter weitgehend sterilen Bedingungen. Die Extraktion der DNA wurde bei fast allen Tieren bereits an Bord der "Polarstern" durchgeführt. Vorversuche zeigten, dass eine rasche Extraktion nach der Fixierung der Tiere zu einer deutlich höheren Ausbeute an hochmolekularer DNA führt. Zur DNA-Isolierung wurde das *Blood & Tissue-Kit* der Firma Qiagen sowie das *NucleoSpin®-Tissue Kit* der Firma Macherey-Nagel laut Protokoll verwendet, die Lagerung der im Puffer gelösten DNA erfolgte bei +4°C.

2.2.3 Elektrophoretische Auftrennung von DNA-Fragmenten in

Agarosegelen

Die Elektrophorese stellt eine vielseitige Methode zur Charakterisierung geladener Makromoleküle und zur Überprüfung ihrer Reinheit dar. Elektrisch geladene, gelöste Teilchen werden hierbei auf Grund ihrer unterschiedlichen Wanderungsgeschwindigkeit in einem elektrischen Feld getrennt.

Zur Kontrolle von Qualität und Quantität der isolierten DNA wurde ein Aliquot des DNA-Isolats (2 µl) mit DNA-Probenpuffer (vgl. 8.1.2) im Verhältnis 1:1 vermischt, auf ein Horizontalgel aufgetragen und elektrophoretisch aufgetrennt. Zur Herstellung des Agarosegels wurde die Agarose in 1x TBE-Puffer (vgl. 8.1.2) durch Erhitzen in einer Mikrowelle vollständig gelöst. Die Lösung wurde in die Elektrophoreseapparatur gegossen, wobei ein eingesetzter Kamm die notwendigen Probentaschen erzeugte. Nach dem Abkühlen und der Gelierung des Gels erfolgte die Zugabe des Laufpuffers (1x TBE-Puffer, vgl. 8.1.2) und die Herausnahme des Kammes. Das Befüllen der Kammern mit den vorbereiteten Proben stellte den nächsten Arbeitsschritt dar. Die angelegte Spannung betrug 130 Volt, die Stromstärke 2 Ampere und die Laufzeit 10 Minuten (bzw. bei der Kontrolle von PCR-Produkten (siehe 2.2.4) und aufgereinigten Plasmiden (siehe 2.2.8) 20 Minuten). Der im Probenpuffer enthaltene Farbstoff wanderte mit der DNA zur Anode (Bromphenolblau wandert ungefähr so schnell wie ein 300 bp großes DNA-Fragment) und bot so eine Möglichkeit, das Fortschreiten der DNA-Wanderung zu verfolgen. Zur Detektion der DNA wurde das Agarosegel in ein mit dem Farbstoff Ethidiumbromid (vgl. 8.1.2) versetztes Wasserbad mit einer Konzentration von 2 mg Ethidiumbromid in 150 ml 1x TBE-Puffer für 1 Minute überführt. Ethidiumbromid interkaliert mit DNA-Molekülen und emittiert bei Anregung mit UV-Licht (254-366 nm) orange-rotes Licht (590 nm). Entsprechend erfolgte die Auswertung und Photographie der Gele nach Ablauf der Laufzeit unter ultraviolettem Licht. Zur Charakterisierung der Fragmentgrößen wurde die DNA-Längenstandards VIII (0,019-1,11 kpb) und VII (0.37-8,0 kbp) der Firma Invitrogen verwendet (vgl. 8.1.6).

2.2.4 Die Polymerase-Kettenreaktion

Das Grundprinzip der Polymerase-Kettenreaktion entwickelte Kary B. Mullis (1986), eine Verfahrensoptimierung erfolgte durch Saiki *et al.* (1988). Die Vorgänge bei der Vervielfältigung einer Nukleinsäure mittels PCR sind dem Reaktionsablauf der natürlichen Replikation sehr ähnlich. Dabei synthetisiert eine DNA-Polymerase, ausgehend von Startermolekülen, einen neuen DNA-Strang an einer einzelsträngingen Nukleinsäure-Matrize.

Bei der PCR werden als Startermoleküle synthetische DNA-Oligonukleotide (Primer) verwendet, die an die Matrizen-DNA hybridisieren. Von deren 3'-Ende aus synthetisiert eine hitzestabile DNA-Polymerase den neuen DNA-Doppelstrang. Durch die Wahl eines gegenläufig orientierten Oligonukleotid-Primerpaares kann gezielt die DNA-Sequenz zwischen den beiden Primern vervielfältigt werden. Das entscheidende Prinzip der PCR ist die zyklische Wiederholung der einzelnen Reaktionsschritte (Denaturierung, Primer-Annealing und Primer-Extension), wodurch die Matrize exponentiell amplifiziert wird (siehe Abb. 2.2).

Abb. 2.2: Schematischer Ablauf einer Polymerase-Kettenreaktion. Im ersten Schritt wird die Matrizen-DNA durch thermische Denaturierung in einzelsträngige DNA überführt. An diese hybridisieren im folgenden Schritt die Oligonukleotid-Primer. Davon ausgehend synthetisiert die DNA-Polymerase im anschließenden Schritt die komplementären Stränge. Durch mehrfache Wiederholung dieses aus drei Schritten bestehenden Zyklus erfolgt eine exponentielle Amplifikation (verändert nach Gassen & Schrimpf, 1999).

Zur Amplifikation wurden die *Taq*-Polymerasen der Firma Böhringer und Qiagen verwendet, die PCR-Protokolle orientierten sich an dem entsprechenden Standardprotokoll. Für die PCR zur Amplifizierung des vollständigen 18S rRNA-Gens wurde folgender Ansatz mit einem Gesamtvolumen von 50 µl gewählt:

5 μl 10x PCR-Puffer (Böhringer oder Qiagen)
5 μl dNTP-Mix (2 mmol/μl (0,2 mM von jedem der 4 dNTPs))
0,3 μl sense-Primer (50 pmol/μl)
0,3 μl antisense-Primer (50 pmol/μl)
0,2 μl Taq-Polymerase (Böhringer oder Qiagen) (5 U/μl)
1,0 – 2,5 μl DNA (Konzentration nicht ermittelt)
38,2 – 36,7 μl autoklaviertes Wasser (reinst)

Etwas modifiziert gestaltete sich der Reaktionsansatz für die Amplifizierung des mitochondrialen 16S rRNA-Gens, wozu ausschließlich die Polymerase der Firma Qiagen verwendet wurde. Die Zugabe der mitgelieferten *Q-Solution*, welche aus verschiedenen anionischen Detergentien besteht., bewirkte eine deutliche Erhöhung der Ausbeute an PCR-Produkten. Die Zusammensetzung eines PCR-Ansatzes zur Amplifizierung des partiellen 16S rRNA-Gens mit einem Gesamtvolumen von 25 µl ist im Folgenden zusammengefasst:

2,5 μl 10x PCR-Puffer (Qiagen)
2,5 μl dNTP-Mix (2 mmol/μl (0,2 mM von jedem der 4 dNTPs))
5 μl *Q-Solution*0,3 μl *sense*-Primer (50 pmol/μl)
0,3 μl *antisense*-Primer (50 pmol/μl)
0,2 μl *Taq*-Polymerase (Qiagen) (5 U/μl)
1,0 – 2,5 μl DNA (Konzentration nicht ermittelt)
11,7 – 13,2 μl autoklaviertes Wasser (reinst)

Sowohl bei der Amplifizierung des 18S rRNA-Gens als auch des 16S rRNA-Gens konnte eine erhebliche Verbesserung durch eine sogenannte "*hot start*" PCR erreicht werden. Hierbei wird die *Taq*-Polymerase erst nach dem ersten Denaturierungsschritt (Initialdenaturierung) zugegeben.

Die Vervielfältigung der gewünschten Genabschnitte erfolgte mit Hilfe der folgenden PCR-Primer.

Tab. 2.4: Auflistung der verwendeten Primer zur Amplifizierung des 18S rRNA- und 16S rRNA Gens. Die Basenabkürzungen entsprechen dem IUPAC-Code für Nukleinsäuren:

Genabschnitt	Primer	Sequenz	Quelle
18S rRNA	18A1 neu	5'- CCT AYC TGG TTG ATC CTG CCA GT -3'	Dreyer (1999)
	1800 neu	5'- GAT CCT TCC GCA GGT TCA CCT ACG -3'	Dreyer (1999)
16S rRNA	16a	5'- CGC CTG TTT ATC AAA AAC AT -3'	Palumbi et al. (1991)
	16b	5'- CCG GTC TGA ACT CAG ATC ACG -3'	Palumbi et al. (1991)

Tabelle 2.5 stellt die verwendeten PCR-Temperaturprofile dar. Vor dem ersten Zyklus führt man üblicherweise eine längere Denaturierung von 3-5 min durch, um zu gewährleisten, dass alle Matrizenmoleküle einsträngig vorliegen. Nach dem letzten Zyklus wird häufig ein mehrminütiger Polymerisationsschritt angeschlossen, um der Taq-Polymerase zu ermöglichen, alle synthetisierten DNA-Stränge zu vervollständigen. Dies ist besonders dann empfehlenswert, wenn die Produkte kloniert werden sollen. Die zu wählende Zyklenzahl hängt von der Menge der Matrizen-DNA ab, die im PCR-Experiment eingesetzt wird. Je nach Komplexität der Matrize sind 25–40 Zyklen in den meisten Fällen geeignet, die optimale Zyklenzahl wurde empirisch ermittelt.

Tab. 2.5: Schematische Darstellung der verwendeten PCR-Temperaturprofile:

Reaktionsprofil:	18S rDNA	16S rDNA
Initialdenaturierung	94° C für 5 min	94° C für 5 min
Amplifizierung	94° C für 30 s	94° C für 45 s
	52° C für 50 s > 36x	44° C für 45 s → 38x
	72° C für 3 min 20 s	72° C für 1 min 20 s
Abschlusszyklus	72° C für 10 min	72° C für 7 min
	$15^{\circ} \mathrm{C}$ für ∞	$15^{\circ} \mathrm{C}$ für ∞

Von den so gewonnenen PCR-Produkten wurde ein Aliquot (3 μ l) zur analytischen Kontrolle auf ein Agarose-Gel (siehe 2.2.3) aufgetragen, das übrige Produkt bei +4°C bis zur weiteren Verwendung gelagert.

2.2.5 Aufreinigung der PCR-Produkte

Der nächste Arbeitsschritt sah die Aufreinigung der PCR-Fragmente vor. Hierzu wurden das *QIAquick PCR Purification Kit* der Firma Qiagen, das *NucleoSpin[®]-Extract Kit* der Firma Macherey-Nagel sowie das *Perfectprep[®] Gel Cleanup Kit* der Firma Eppendorf AG laut Protokoll verwendet. Die genutzten Säulen der Kits tragen eine Membran, welche bei einer gegebenen Salzkonzentration einen Durchfluss von DNA-Fragmenten unter 100 bp Länge erlaubt, während alle größeren Fragmente an die Membran anbinden. Über Waschschritte werden überschüssige Primer, Primerdimere, Polymerasen, Salze und noch vorliegende Nukleotide, die sich gegebenenfalls inhibitorisch auf nachfolgende Reaktionen wirken können, entfernt.

Eine Kontrolle der PCR-Aufreinigung erfolgte elektrophoretisch (siehe 2.2.3). Die aufgereinigte DNA wurde bis zur Weiterverarbeitung bei +4°C aufbewahrt. In den meisten Fällen schloss sich eine direkte Sequenzierung der PCR-Produkte an. Lagen dagegen die Amplifikate lediglich in einer geringen Konzentration vor, so wurden diese zwecks Vervielfältigung in ein Plasmid kloniert.

2.2.6 Ligation und Transformation der PCR-Produkte

2.2.6.1 Ligation

Durch die Ligation der PCR-Fragmente in ein linearisiertes Plasmid, der anschließenden Transformation des rekombinanten Vektors in Bakterienzellen und deren Anzucht können PCR-Produkte beliebig vervielfältigt werden. Weiterhin ermöglicht die Klonierung den Gebrauch zweier spezifischer Sequenzierprimer (M13*Universe* bzw. M13*Reverse*, siehe 2.2.9.2), die am 5'- und 3'- Ende der Polylinkerstelle des *LacZ*-Gens von pUC18 Vektorderivaten binden (Messing *et al.*, 1982). Für die Ligation wurde das *Original TA Cloning*[®] *Kit Version N* der Firma Invitrogen verwendet.

Die Rezeptur der Ligationsansätze lautete wie folgt:

1.0 μl PCR-Produkt (aufgereinigt) (siehe 2.2.5)
+ 1.0 μl autoklaviertes H₂O (dest.)
+ 0.5 μl TOPO-Vektor-Mix
= 2.5 μl Ligationsansatz

Der Ansatz wurde gemischt, 5 min bei RT inkubiert und anschließend auf Eis gestellt.

2.2.6.2 Transformation der Ligationsprodukte mittels Hitzeschock

Nach dem Auftauen der bei -80° C tiefgefrorenen kompetenten *E. coli*-Zellen erfolgte die Zugabe von 2 µl des Ligationsansatzes zu 25 µl der Bakterien. Der so gewonnene Ansatz wurde zunächst für 30 min auf Eis, anschließend für 30 s bei 42°C in einem Wasserbad (Transformation) und wiederholt für 2 min auf Eis aufbewahrt. Die nachfolgende Zugabe von 125 µl SOC-Medium zu dem Ansatz der Transformanten zog eine Inkubation von 30 min bei 37° C im Schüttelbrutschrank nach sich. 50 µl des Ansatzes wurden auf eine mit IPTG, X-Gal und Ampicillin versehenen Agarplatte (vgl. 8.1.5) ausplattiert und über Nacht bei 37° C mit der Agar-Seite nach oben im Brutschrank inkubiert.

2.2.7 Selektion rekombinanter Bakterienkolonien mittels

α-Komplementation

Zur Überprüfung (*screening*), ob das aufgenommene Plasmid einer Bakterienkolonie ein PCR-Fragment-Insert enthält, befindet sich die Schnittstelle des Plasmidvektors im β -Galaktosidase-Gen. In Kolonien mit intaktem Gen wird durch die β -Galaktosidase die farblose Chemikalie X-Gal in Galaktose und ein Indoxylderivat gespalten, das an der Luft ein blau gefärbtes Dimer bildet und so zu einer Blaufärbung der Kolonie führt. Bei einer Unterbrechung des β -Galaktosidase-Gens durch ein DNA-Insert kann das Enzym nicht mehr synthetisiert werden, die betreffenden Kolonien sind daher weiß (blau/weiß-Selektion). Somit sind lediglich weiße Kolonien für die nachfolgenden Arbeitsschritte von Interesse.

2.2.8 Präparation von Plasmid-DNA aus 5-ml-Bakterienkulturen

Die 5-ml-Übernachtkulturen wurden durch Überführung einer vereinzelt gewachsenen weißen Bakterienkolonie in ein Reagenzglas mit 5 ml LB-Medium (vgl. 8.1.5) hergestellt. Weiterhin wurde zur Vermeidung von Kontaminationen und Aufrechterhaltung des Selektionsdruckes, der eine weitere Replikation des aufgenommenen Plasmids bewirkt, Ampicillin (100 μ g/ml) dem Medium zugegeben; eine Inkubation der 5-ml-Bakterienkulturen erfolgte bei 37°C für 14-16 h in einem Schüttelbrutschrank. Zur weiteren Aufarbeitung und Isolierung der Plasmid-DNA wurde das *FastPlasmidTM Mini Kit* der Firma Eppendorf AG laut Protokoll verwendet. 1 μ l des Eluats wird zur Qualitätsbestimmung auf ein Agarosegel aufgetragen (siehe 2.2.3), die Lagerung des restlichen Eluats erfolgte bei +4°C.

2.2.9 DNA-Sequenzierung nach Sanger et al. (1977)

Die DNA-Sequenzierung nach Sanger et al. (1977) wird auch als Kettenabbruch- oder Didesoxynukleotidverfahren bezeichnet. Dabei wird die DNA zuerst in eine einzelsträngige Form überführt, die nun mit einem Sequenzierprimer hybridisiert. Ausgehend von diesem Primer erfolgt die enzymatische Synthese des komplementären DNA-Strangs. Die DNA-Synthese findet hierbei in vier Mikroreaktionsgefäßen statt. Jedes Gefäß enthält DNA, Sequenzierprimer, Polymerase, alle vier 2'-Desoxynukleotidtriphosphate (dNTP) sowie zusätzlich jeweils ein 2',3'-Didesoxynukleotidtriphosphat (ddNTP). In jedem der vier parallel durchgeführten Reaktionsansätze laufen gleichzeitig zahlreiche Primeranlagerungen ab. Die Polymerase akzeptiert dabei sowohl die dNTPs als auch das jeweilige ddNTP als Substrat zur Kettenverlängerung. Erfolgt allerdings der Einbau eines ddNTPs, so bricht die Reaktion danach ab (Kettenabbruch), da auf Grund der fehlenden 3'-Hydroxygruppe kann kein weiteres Nukleotid mehr angefügt werden kann. Man erhält somit in jedem der vier Reaktionsansätze eine Mischung aus DNA-Fragmenten unterschiedlichster Kettenlänge (siehe Abb. 2.3). Das 5'-Ende eines jeden Fragmentes wird vom Sequenzierprimer gebildet, während das 3'-Ende aus dem Didesoxynukleotid besteht. Wird jeder neu synthetisierte DNA-Strang mit einer Markierung versehen, zum Beispiel durch eine radioaktive Markierung der α -Phosphatgruppe (³²P, ³³P oder ³⁵S) eines der dNTPs oder der Anlagerung von Farbstoffmolekülen (Fluoreszenzmarker) am Sequenzierprimer, können die DNA-Fragmente in einem Polyacrylamidgel nach ihrer Größe aufgetrennt und durch Gebrauch eines entsprechenden Detektorsystems sichtbar gemacht werden. Das Auftragen der vier Reaktionsansätze nebeneinander ermöglicht eine Zuordnung der fortlaufenden Nukleotidsequenz gemäß dem Bandenmuster (siehe Abb. 2.3).

Abb. 2.3: Schema zur Sequenzierung von DNA nach Sanger. In einer geprimten, durch eine Polymerase katalysierten DNA-Synthesereaktion werden basenspezifisch terminierte DNA-Fragmente unterschiedlicher Länge synthetisiert. Diese Fragmente erzeugen in der Gelelektrophorese ein spezifisches Bandenmuster, das zur Rekonstruktion der Basenabfolge dient (verändert nach Lottspeich & Zorbas 1998).

2.2.9.1 Zyklus-Sequenzierung (,,thermal cycle sequencing")

Bei der in dieser Arbeit verwendeten Methode der Zyklus-Sequenzierung ("thermal cycle sequencing", Sears *et al.*, 1992) wird eine geringe Menge an Matrizen-DNA mit einem großen Überschuß an Sequenzierprimern, dNTPs, ddNTPs und einer thermostabilen DNA-Polymerase inkubiert. Dieser Reaktionsansatz wird anschließend 20-30 Zyklen von Denaturierung, Primer-Hybridisierung und DNA-Synthese unterworfen. Der Vorteil der Zyklus-Sequenzierung liegt neben der geringen Menge an benötigter Matrizen-DNA in der Automatisierbarkeit. Es entfallen separate Denaturierungs- und Hybridiesierungsschritte,

weiterhin wird die parallele Durchführung mehrerer Sequenzierreaktionen ermöglicht. Für die Sequenzierreaktion wurde das *Thermo Sequenase fluorescent labelled primer cycle sequencing kit* der Firma Amersham verwendet, welches bereits vier "Vormixe" (A, C, G und T) enthält. Mit Ausnahme der zu sequenzierenden DNA und dem Sequenzierprimer liegen sämtliche weiteren Komponenten für eine Sequenzierreaktion (Polymerase, ...) in diesen Vormixen bereits vor, was die Erstellung der Reaktionsansätze wesentlich erleichterte. Die Rezeptur einer Sequenzierreaktion, die in 0,2 ml Reaktionsgefäßen auf Eis zusammen-gestellt wurde und 13 µl Gesamtvolumen besaß, gestaltete sich wie folgt:

1-2 μl DNA (aufgereinigte PCR-Produkte bzw. Plasmid-DNA (siehe 2.2.8))
1-2 μl Sequenzierprimer (fluoreszenzmarkiert, 2 pmol/μl)
9-11 μl autoklaviertes Wasser (reinst)

Je 3 μ l dieses Reaktionsansatzes wurden in ein 0.2 ml Reaktionsgefäß gefüllt, in dem sich bereits 1 μ l des entsprechenden Amersham-Vorgemisches (A, C, G oder T) befand. Im Anschluss wurde jeder Ansatz mit einem Tropfen Paraffinöl überschichtet und in einem

Thermocycler bei einem definierten Reaktionsprofil inkubiert (siehe 2.2.9.3).

2.2.9.2 Wahl der Sequenzierprimer

Tabelle 2.6 zeigt eine Übersicht über die für die Sequenzierung genutzten Oligonukleotid-Primer. Da die untersuchte 18S rRNA-Gensequenz mit einer Länge von bis zu 2500 Basenpaaren (siehe 3.2.1) zu lang für eine einzelne, vollständig verlaufende Sequenzierreaktion durch die Oligonukleotide 18A1 und 1800 beziehungsweise M13Universe und M13Reverse (siehe 2.2.6.2) war und daher nur Teilfragmente analysiert werden konnten, wurde zur vollständigen Analyse auf das Prinzip des "primer walking" zurückgegriffen. Hierbei wird in einem ersten Schritt das zu sequenzierende DNA-Fragment von beiden Enden in je einer Reaktion sequenziert. Ausgehend von dieser Information wird an jedem Ende des zu sequenzierenden Abschnittes ein neuer Primer in gleicher Leserichtung platziert, wobei sich die Sequenz des neuen Primers bei möglichst vielen der zu untersuchenden Taxa identisch gestalten sollte. Auf diese Weise kann ein längerer Sequenzabschnitt bestimmt werden. Für die Sequenzierung des partiellen 16S rRNA Gens, welches bei den untersuchten Taxa eine Länge von etwa 500 Basenpaaren hat (siehe 3.2), wurden lediglich das Sequenzierprimerpaar 16a Seq und 16b Seq benötigt. **Tab. 2.6:** Auflistung der zur Sequenzierung genutzten Oligonukleotid-Primer. Die Basenabkürzungen entsprechen dem IUPAC-Code für Nukleinsäuren. Die Zahlen in der Primerbezeichnung geben die ungefähre Lage dieses Sequenzabschnittes im untersuchten Genbereich an, während die Buchstaben F bzw. R die Orientierung des Primers kennzeichnen: F(orward) in Leserichtung des codierenden Strangs, R(everse) in Leserichtung des komplementären Strangs (und somit Gegenrichtung des kodierenden Strangs):

Genabschnitt	Primer	Sequenz	Quelle
18S rRNA	18A1	5'- CCT AYC TGG TTG ATC CTG CCA GT -3'	Dreyer (1999)
18S rRNA	400 F	5'- ACG GGT AAC GGG GAA TCA GGG -3'	Dreyer (1999)
18S rRNA	470 F	5'- CAG CAG GCA CGC AAA TTA CCC -3'	Dreyer (1999)
18S rRNA	700 F	5'- GTC TGG TGC CAG CAG CCG CG -3'	Dreyer (1999)
18S rRNA	1000 F	5'- CGA TCA GAT ACC GCC CTA GTT C -3'	Dreyer (1999)
18S rRNA	1155 F	5'- CTG AAA CTT AAA GGA ATT GAC GG -3'	Dreyer (1999)
18S rRNA	1250 FN	5'- GGC CGT TCT TAG TTG GTG GAG -3'	Dreyer (1999)
18S rRNA	1600 F	5'- CGT CCC TGC CCT TTG TAC ACA CC -3'	Dreyer (1999)
18S rRNA	1800	5'- GAT CCT TCC GCA GGT TCA CCT ACG -3'	Dreyer (1999)
18S rRNA	400 R	5'- CCC TGA TTC CCC GTT ACC CGT -3'	Dreyer (1999)
18S rRNA	700 R	5'- CGC GGC TGC TGG CAC CAG AC -3'	Dreyer (1999)
18S rRNA	1000 R	5'- GAA CTA GGG CGG TAT CTG ATC G -3'	Dreyer (1999)
18S rRNA	1155 R	5'- CCG TCA ATT CCT TTA AGT TTC AG -3'	Dreyer (1999)
18S rRNA	1500 R	5'- CAT CTA GGG CAT CAC AGA CC -3'	Dreyer (1999)
16S rRNA	16a Seq	5'- CGC CTG TTT ATC AAA AAC AT -3'	Palumbi et al. (1991)
16S rRNA	16b Seq	5'- CCG GTC TGA ACT CAG ATC ACG -3'	Palumbi et al. (1991)
Vektor	M13Uni.	5'- GCC CAG GGG TTT TCC CAG TCA CGA C -3'	Messing et al. 1981
Vektor	M13Rev.	5'- TCA CAC AGG AAA CAG CTA TGA C -3'	Messing et al. 1981

Alle Oligonukleotide wurden von der Firma MWG-Biotech AG synthetisiert und am 5´-Ende mit einem Fluoreszenzfarbstoff (IRD 800) markiert.

2.2.9.3 Reaktionsprofile der Sequenzierreaktion

Jede Sequenzierreaktion durchlief ein Reaktionsprofil, das sich aus einer Initialdenaturierung, den Amplifizierungszyklen und dem Abschlusszyklus zusammensetzte. Die Auswahl eines Reaktionsprofils wurde durch die Qualität der vorausgegangenen Sequenzierreaktionen bestimmt, da unterschiedliche Annealingtemperaturen großen Einfluss auf die Spezifität der Bindung der Sequenzierprimer an die zu sequenzierende DNA und somit auf die Qualität der Sequenzierreaktion haben (siehe 2.2.4). Tabelle 2.7 fasst die verwendeten Reaktionsprofile für die Sequenzierreaktionen zusammen.

Reaktionsprofil:	18S rDNA	16S rDNA
Initialdenaturierung	94° C für 2 min	94° C für 2 min
Amplifizierung	94° C für 25 s	94° C für 25 s
	54° C für 25 s * > 30x	58° C für 25 s * > 30x
	70° C für 35 s	70° C für 35 s
Abschlusszyklus	4° C für ∞	4° C für ∞

Tab 2.7: Schematische Darstellung der Reaktionsprofile, die im Zuge der Sequenzierreaktionen verwendet wurden:

* in vereinzelten Fällen war eine Veränderung der Temperatur um +/- 4°C bei der Sequenzierung von 18S rDNA-Amplifikaten notwendig, um eine Verbesserung der Sequenzierreaktion zu erhalten.

Nach Abschluss der Sequenzierreaktion wurde jeder Reaktionsansatz mit 3 μ l einer im Amersham-Kit enthaltenen Stop-Lösung gemischt und für 30 s einer Temperatur von 95°C ausgesetzt, was zu einer Denaturierung der doppelsträngigen DNA führte. Bis zur weiteren Verwendung erfolgte eine Aufbewahrung der Proben bei –20°C.

2.2.9.4 Sequenziergelaufbau und Laufbedingungen

Für die automatische Sequenzierung der Produkte der Zyklus-Sequenzierung (siehe 2.2.9.1) wurden die Sequenziersysteme LI-COR 4000 und LI-COR 4200 verwendet. Die Detektion der elektrophoretisch in einem Polyacrylamid-Gel nach Größe aufgetrennten DNA-Fragmente erfolgt bei diesem System durch Anregung des Fluorophors mittels eines Lasers im Infrarotbereich (785 nm) (Middendorf *et al.* 1992). Das verwendete Polyacrylamid-Gel mit einem Gesamtvolumen von 30.25 ml setzte sich aus folgende Komponenten (vgl. 8.1.1, 8.1.2) zusammen:

24 ml SequagelTM XR 6 %
+ 6 ml SequagelTM Complete Buffer Reagent
+ 250 μl Ammoniumpersulfat (10 %)

Nach Durchmischung der Komponenten wurde die Acrylamid-Lösung vorsichtig zwischen die nach Herstellerangaben vorbereiteten, erst schräg, dann waagerecht gelagerten Glasplatten mit einer Schichtdicke von 0.25 mm gegossen. Anschließend erfolgte die Inserierung des Vorkammes. Die Polymerisationszeit für das Gel betrug mindestens eine Stunde. Im Anschluss erfolgte der Einbau des Glasplattensystems in die Sequenzierkammer des LI-COR-Systems und die Befüllung der oberen und unteren Pufferkammer mit 1x TBE-Puffer (vgl. 8.1.2). Der Vorkamm wurde vorsichtig senkrecht nach oben aus dem Gel gezogen und die Geltaschen mit Hilfe einer Spritze vorsichtig mit Puffer ausgespült, um so bei der

Polymerisation entstandene Harnstoffverunreinigungen oder Gelreste zu entfernen. Anschließend wurde das Gel auf 50°C vorgeheizt und die Probentaschen erneut gereinigt. Nach der Positionierung des Probenkamms erfolgte das Auftragen der Proben, wobei 1.5 μ l der Sequenzierproben hierzu verwendet wurden. Der Computer des Sequenziersystems zeichnete die anschließende Auftrennung der DNA-Fragmente auf; die Laufbedingungen betrugen 50°C, 1500 Volt und 31 Watt während der mindestens 12 Stunden langen Signalaufnahme.

2.2.10 Generierung der Konsensussequenz

Die weitere Verarbeitung der vom Laser detektierten DNA-Fragmente erfolgte mittels der Rechnereinheit des Sequenziersystems, wobei auf das systemeigene *BaseImageIR*-Programm zurückgegriffen wurde. Dieses Programm erzeugt einen Sequenziervorschlag für jede Probe und bei Berücksichtigung der vier parallel verlaufenden Proben entsprechend einen Entwurf für die vollständigen Sequenzierreaktion. Nicht eindeutig identifizierte Basen wurden mit der komplementären Base des Gegenstranges verglichen und gegebenenfalls manuell korrigiert. Die einzelnen Sequenzfragmente wurden unter Verwendung des *AlignIR* Vers. 1.2.20 Programms der Firma LI-COR zu einer Konsensussequenz zusammengefügt, was ein vollständig doppelsträngiges Endprodukt ergab.

2.2.11 Überprüfung des DNA-Sequenzabschnittes

Ein Vergleich der gelesenen Sequenz mit bereits veröffentlichten Sequenzdaten der frei zugänglichen Gendatenbank des "National Center for Biotechnology Information" (NCBI) (http://www.ncbi.nlm.gov/BLAST/) gab Aufschluss, ob es sich bei der gelesenen Sequenz *de facto* um die gesuchte Isopoden-Gensequenz handelte. Hierfür wurde der am NCBI entwickelte *BLAST 2.0*-Suchalgorithmus (Altschul *et al.* 1990) verwendet. Die Identität der Sequenz wurde als gesichert angesehen, wenn die größten Übereinstimmungen mit bereits veröffentlichten Sequenzen der Asellota bestanden.

2.3 Phylogenetische Analyse der molekularen Daten

2.3.1 Alinierung der DNA Sequenzen

Zur weiteren phylogenetischen Bearbeitung der gewonnenen Sequenzdaten (siehe 2.2.11) war die Alinierung homologer Abschnitte der vorliegenden Sequenzen unumgänglich. Besitzen längere Genabschnitte oder Sequenzen dieselbe Nukleotidabfolge, so können sie mit großer Wahrscheinlichkeit gemäß dem Homologiekriterium der Komplexität als homolog betrachtet werden. Diese Positionshomologie der Basenabfolge kann mit Hilfe von Alinierungsprogrammen bestimmt werden, wobei die einzelnen Sequenzen untereinander geschrieben werden und homologe Positionen in einer Spalte stehen (siehe Abb. 2.4).

	1			520						$[\cdots]$				1	• • • • • •		1	1	-
Actacuic actacuic	AND FACE	520	TC. 7	200	रतत.	140	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			acatar	57	CICIENTE	eccu	80	arcen a	rara	DATE AT		
Asiatus asiatus	ATTAC	CCACT	CC - 0	GGCCCGGGGG	GG-	TAGT	GACGAAAAA	TAACGA	R	GCGGGGAC	TCTT	CCGAG	GCCT	CGCA	TCGGA	TGAG	TTCAG	TTTAA	
Tenunedunculus acutum	ATTAC-	CCACT	cc-c	GGCACGGGG	GG-	TAGT	GACGAAAAA	TAACGA	n	GTGAGAC	TCTT	CCGAG	GCCT	TACA	TCGGA	TGAG	TCCAA	TCTAA	
Acanthaspidia pleuronotus	ATTAC-	CCACT	cc-c	AGCTCGGGG	GG-	TAGT	GACGAAAAA	TAACGA	- 11	GTGAGAC	тстт	CCGAG	GCCT	CACAI	TCGGA	TGAG	TCCAT	TCTAA	
lanthopsis nasicornis	ATTAC-	CCACT	cc-c	AGTICGGGG	GG-	TAGT	GACGAAAAA	TAACGA	- 11	GTGAGAC	тстт	CCGAG	GCCT	CACAI	TCGGA	TGAG	TCCAT	TCTAA	
Dendromunna sp.	ATTAC-	CCACT	cc-c	CAGCCCGGGGG	GG-	TAGT	GACGAAAA	TAACGA	- 11	GTGAGAC	TCTT	CCGAG	GCCT	CACAI	TCGGA	TGAG	TCCAT	TCTAA	
Mirabilicoxa sp.	ATTAC-	CCACT	CC-0	CAGCCCGGGGG	GG-	TAGT	GACGAAAA	TAACGA	- 11	GCGAGAC	TCTT	CCGAG	GCCT	CGCAI	TCGGA	TGAG	TCCAG	TTTAA	
Thylakogaster sp.	ATTAC-	CCATT	CC - C	CAGCTCGGGG	IGG -	TAGT	GACGAAAAI	TAACGA	- 1	GTGAGAC	TCTT	CCGAG	GCCT	CACAI	ATCGGA	TGAG	TTCAG	TTTAA	
Antennuloniscus armatus	ATTAC-	CCACT	CC-C	CAGCICGGGG	GG -	TAGT	GACGAAAA/	TAACGA	- 🔳	G <mark>cgagac</mark>	TCTT	CCGAG	GCCT	CGCA	ATCGGA	TGAG	TCCAG	TTTAA	
Haploniscus sp. 1	ATTAC-	CCACT	C C - C	CAGCCCGGGGG	IGG-	TAGT	GACGAAAAA	TAACGA	- 🚺	GCGAGAC	TCTT	CCGAG	GCCT	CGCAI	ATCGGA	TGAG	TCCAT	TCTAA	
lathrippa sarsi	ATTAC -	CCACT	C C - C	CAGCCCGGGGG	IGG -	TAGT	GACGAAAA <i>I</i>	TAACGA	- 1	GAGAGAC	TCTT	CCGA6	GCCT	CTCA	ATCGGA	TGAG	TCCAT	TCTAA	
lathrippa trilobatus	ATTACG	CCACT	cciid	CAGCCCGGGGG	AGG -	TAGT	GACGAAAAA	TAACGA	GTO	GCGAGAC	TCTT	CCGAG	GCCT	CGCAI	ATCGGA	TGAG	TCCAT	TCTAA	
Betamorpha identifrons	ATTAC-	CCACT	CC - C	AGCCCGGGGG	IGG -	TAGT	GACGAAAA/	TAACGA	- 🛙	GCGAGAC	TCTT	CCGAG	GCCT	CGCA	ATCGGA	TGAG	TCCAT	TTTAA	
Janira maculosa	ATTAC-	CCACT	CC - C	CAGC TCGGGGG	IGG -	TAGT	GACGAAAA/	TAACGA	- 11	GCGAGAC	TCTT	CCGAG	GCCT	CGCA	A TC GGA	TGAG	TCCAG	TTTAA	
Joeropsis coralicola	ATTAC -	CCACT	CC - C	CAG <mark>TTC</mark> GGGG	IGG -	TAGT	GACGAAAAA	TAACGA	- 14	GTAAGAC	тстт	CCGAG	GCCT	TACAI	A TC GGA	TGAG	CTCAT	TCTAA	
lais pubescens	ATTAC-	CCACI	CC - 0	GGCACGGGG	GG-	AGT	GACGAAAAI	TAACGA	- 14	GCGAGAC	TCIT	CCGAG	GCCT	CGCA	ATCGGA	TGAG	тссаа	TCTAA	
Ilyarachna antarctica	ATTAC-	CCACI		AGCCCGGGG	66-	AGT	GACGAAAA <i>I</i>	AACGA	- 4	GCGAGAC	ICII	CCGAG	GCCI	CGCAI	GGA	GAG	ICCAT	I I I AA	
Haplomesus sp. 1	ATTAC -	CCACI	CC - 0	AGC CGGGG	66-	AGI	GACGAAAAA	TAACGA	- 11	GC GAGAC	ICII	CCGAG	GCC I	CGCAI	A CGGA	GAG	TCCAT		

Abb. 2.4. Ausschnitt aus der Alinierung der 18S rDNA Sequenzen. Gemäß dem Homologiekriterium der Komplexität können längere Sequenzabschnitte derselben Nukleotidabfolge mit hoher Wahrscheinlichkeit als homolog betrachtet werden.

Es ist ersichtlich, dass die Alinierung einen entscheidenden Schritt in der Verwandtschaftsanalyse mittels Sequenzen darstellt und der Homologiebestimmung in der vergleichenden Morphologie entspricht (Wägele 2000). Zur Alinierung der Sequenzen wurde das Computerprogramm Clustal X (Thompson et al. 1997) verwendet, wobei die Alinierparameter den Grundeinstellungen entsprachen. Die Computeralinierung erwies sich jedoch in einigen variablen Sequenzbereichen als fehlerhaft. Eine Ursache hierfür liegt in dem Umstand, dass das Ergebnis der Alinierung mitunter stark von der Reihenfolge der in die Berechnung eingelesenen Sequenzen abhängig ist. Auch werden konservierte und variable Bereiche nicht unterschieden. Entsprechend erfolgten geringfügige manuelle Korrekturen (zum Beispiel unnötige Lücken oder verschobene Sequenzabschnitte) mit Hilfe des **BioEdit** 6.0.5 Programms Sequence Alignment Editor Vers. (Hall 1999; http://www.mbio.nscu.edu/RnaseP/info/programs /BIOEDIT/bioedit.html).

2.3.2 Methoden zur Stammbaumrekonstruktion

Es können drei populäre Gruppen von Strategien zur molekularen Stammbaumrekonstruktion unterschieden werden: Distanzmethoden, "Maximum Likelihood"- (ML) und "Maximum Parsimony"- (MP) Verfahren. Eine weitere, in jüngster Zeit sehr populär gewordene Variante des "Maximum Likelihood"-Verfahrens basiert auf der Anwendung des Bayes-Theorems zur Analyse phylogenetischer Fragestellungen. Während Distanzmethoden die alinierten Sequenzen zuerst in eine Distanzmatrix übertragen und diese zur Stammbaumrekonstruktion verwenden, stützen sich die anderen verwendeten Methoden direkt auf die Sequenzdaten zur Generierung einer Topologie. Grundlegende Voraussetzung für eine Analyse ist die korrekte Alinierung der Sequenzen (siehe 2.3.1). Die vier Vorgehensweisen sollen im Folgenden kurz dargestellt werden.

2.3.2.1 Distanzmethoden

Die einfachste Methode zur Feststellung der Distanz zweier alinierter Nukleotidsequenzen ist das Zählen derjenigen Nukleotidpositionen, an welchen sich beide Sequenzen unterscheiden. Diese sichtbare genetische Distanz wird als p-Distanz bezeichnet. Liegen innerhalb dieser variablen Positionen jedoch Mehrfachsubstitutionen vor und erfolgen die Substitutionen bei allen Sequenzen nicht in durchschnittlich gleichen Zeitabständen, so kann die beobachtete p-Distanz nicht als evolutionäre d-Distanz betrachtet werden. Daher sind Distanzkorrekturen notwendig, um die verfälschenden Effekte, die eine Abweichung der p-Distanz von der evolutionären d-Distanz hervorrufen, zu kompensieren. Die einfachste Korrektur ist die Schätzung der statistisch zu erwartende Zahl multipler Substitutionen, wenn vorausgesetzt wird, dass das Basenverhältnis 1:1:1:1 beträgt und nur eine konstante Substitutionsrate für alle Positionen der (korrekten) Alinierung existiert (Jukes-Cantor-Modell, vgl. Tab. 2.8). Da jedoch Substitutionen nicht gleichförmig erfolgen und Transitionen zahlreicher als Transversionen auftreten (u. a. Gojobori *et al.* 1982, Kondo *et al.* 1993), können in derselben Weise entsprechend komplexe Modelle einsetzt werden (siehe Tab. 2.8). Abbildung 2.5 stellt die möglichen Mutationen einer Sequenzposition dar.

Abb. 2.5: Mögliche Mutationen einer Sequenzposition. Bei Transitionen (b und e) bleibt die chemische Stoffklasse erhalten, während Transversionen (a. c. d und f) mit einer Änderung der Stoffklasse verbunden sind.

Die unterschiedlich komplexen Modelle zur Sequenzevolution sind in Tabelle 2.8 zusammengefasst.

Tab. 2.8: Verschiedene Modelle zur Sequenzevolution. Einige der Modelle haben keine Referenz (TN kF, K81 uF, TIM kF, TIM, TVM kF, TVM); hierbei handelt es sich lediglich Varianten von bereits existierenden Modellen und einer entsprechenden Benennung. Die einzelnen Substitutionsmöglichkeiten a bis f sind in Abbildung 2.4 dargestellt:

Modell	Name	Basenfrequenz	Substitutionsraten
JC	Jukes-Cantor-Modell (Jukes & Cantor 1969)	konstant	a=b=c=d=e=f
F81	Felsenstein 81 (Felsenstein 1981)	ungleich	a=b=c=d=e=f
K2P	Zwei-Parameter-Modell (Kimura 1980)	konstant	a=c=d=f, b=e
HKY	Hasegawa, Kishino, Yano 85 (Hasegawa, Kishino and Yano 1985)	ungleich	a=c=d=f, b=e
TN kB	Tamura-Nei-Modell mit konstanter Basenfrequenz	konstant	a=c=d=f, b, e
TN	Tamura-Nei-Modell (Tamura & Nei 1993)	ungleich	a=c=d=f, b, e
K81	2-Transversion-Parameter-Modell (Kimura 1981)	konstant	a=f, c=d, b=e
K81 uB	2-Transversion-Parameter-Modell mit ungleicher Basenfrequenz	ungleich	a=f, c=d, b=e
TIM kB	Transitionsmodell mit konstanter Basenfrequenz	konstant	a=f, c=d, b, e
TIM	Transitionsmodell	ungleich	a=f, c=d, b, e
TVM kB	Transversionsmodell mit konstanter Basenfrequenz	konstant	a, c, d, f, b=e
TVM	Transversionsmodell	ungleich	a, c, d, f, b=e
SYM	Symmetrisches Modell (Zharkikh 1994)	konstant	a, c, d, f, b, e
GTR	General time reversible (=REV) (Tavaré 1986)	ungleich	a, c, d, f, b, e

Distanzverfahren sind trotz gegenteiliger Behauptungen (Page & Holmes 1998) als phänetische Verfahren zu betrachten, da sie auf allen Hierachie-Ebenen grundsätzlich nicht zwischen Merkmalsklassen unterscheiden und selbst Autapomorphien, also triviale Merkmale, die berechneten Distanzen beeinflussen (Wägele 2000). Ein grundsätzlicher Nachteil der Distanzanalysen liegt weiterhin in dem Informationsverlust, den die Transformation der Sequenzdaten in eine Datenmatrix mit sich bringt. Die Rekonstruktion der ursprünglichen Daten ist aus einer Distanzmatrix nicht möglich. Aus diesen Gründen wurde auf die Stammbaumrekonstruktion mit Hilfe von Distanzverfahren verzichtet.

Die Berechnungen der p-Distanzen im Rahmen der 16S rDNA Analysen wurden mit dem Programm *PAUP** Version 4.0b10 durchgeführt.

2.3.2.2 "Maximum Likelihood"-Verfahren

Das beliebte Optimalitätskriterium "Maximum Likelihood" versucht unter allen möglichen Dendrogrammen, die durch den gegebenen Datensatz generiert werden können, jene Topologie zu finden, welche mit der höchsten Wahrscheinlichkeit die vorliegende Merkmalsstruktur erklärt (Felsenstein 1973, 1981, Yang 1994a, 1994b). Genaugenommen wird die Wahrscheinlichkeit berechnet, mit der eine Sequenz in eine andere evolvieren kann. Als Grundlage für sämtliche Berechnungen ist ein geeignetes Modell zur Sequenzevolution zu wählen (siehe 2.3.2.1). Hierzu wird angenommen, dass jede Nukleotidposition getrennt evolviert. Entsprechend muss für jede Sequenzposition j einer Alinierung eine Wahrscheinlichkeitsberechnung L_j durchgeführt werden. Die Gesamtwahrscheinlichkeit L_T einer Topologie mit n Positionen kann durch folgende Formel zum Ausdruck gebracht werden:

$$L_T = \prod_{j=1}^n Lj$$
 (Gleichung 1)

Häufig ist dieser Wert sehr klein, so dass für eine weitere Verwendung der Logarithmus der Gesamtwahrscheinlichkeit L_T benutzt wird, der wie folgt berechnet wird:

$$\ln L_T = \sum_{j=1}^n L_j$$
 (Gleichung 2)

Dieser Prozess wird für alle möglichen dichotomen, ungewurzelten Stammbäume durchgeführt; der Baum mit dem höchsten *log likelihood* (ln L_T) ist somit der "Maximum Likelihood"-Baum.

2.3.2.3 "Maximum Parsimony"-Verfahren

Die Grundlage des "Maximum Parsimony"-Verfahrens ist das Prinzip der sparsamsten Erklärung. Es besagt, dass, bezogen auf die Biosystematik, zur Erklärung der Merkmalsverteilung nicht unnötig komplizierte Hypothesen verwendet werden sollten, sondern einfache Erklärungen diesen vorzuziehen sind. Das MP-Verfahren sucht demnach nach Verwandtschaftshypothesen, welche die wenigsten evolutionären Veränderungen voraussetzen. Bei der Erstellung von Stammbäumen basierend auf molekularen Daten sind daher Topologien mit der geringsten Anzahl an Merkmalsänderungen zu favorisieren. Jede Merkmalsänderung wird als 1 Schritt gezählt. Die Summe aller evolutionären Veränderungen eines Baums, die sogenannte Baumlänge L, ist eine einfache Addition aller Veränderungen an sämtlichen Positionen. Sie kann durch folgende Formel berechnet werden, wobei k die Anzahl der Positionen und l deren Länge ausdrückt:

$$L = \sum_{i=1}^{k} l_i$$
 (Gleichung 3)

Primär ist die Topologie von "Maximum Parsimony"-Bäumen ungewurzelt, so dass zwischen ursprünglichen und abgeleiteten Merkmalszuständen nicht zu unterscheiden ist. Eine Polarisierung kann durch die Zunahme einer der Innengruppe nahestehenden Außengruppe erfolgen.

Zu Widersprüchen hinsichtlich der Verwandtschaftshypothesen können Homoplasien führen. Der Begriff Homoplasie bezeichnet ein Merkmal, dessen Vorkommen in einem Stammbaum nicht mit anderen Merkmalen kompatibel ist (siehe Abb. 2.6). Solange nicht entschieden ist, welches Dendrogramm als sparsamste Topologie angesehen werden kann, ist das inkompatibel Merkmal weder als Homologie noch als Analogie zu bezeichnen, weshalb ein eigener Begriff für diesen Sachverhalt verwendet wird. Oft gibt es auf Grund der Präsenz von Homoplasien zwei oder mehr gleich sparsame Topologien.

Abb. 2.6: Schematische Darstellung von Homoplasien. Die Mehrzahl der Merkmale (1, 2 und 3) unterstützt die abgebildete Topologien und gelten als Synapomorphien der Taxa B und C. Die Merkmale 6 und 7 sind mit der Topologie nicht kompatibel. Solange nicht bekannt ist, welche dieser Merkmale mit größerer Wahrscheinlichkeit homolog sind, bezeichnet man die inkongruenten Merkmale neutral als Homoplasien und nicht als Analogien oder Konvergenzen (verändert nach Wägele 2000).

Die Verwendung verschiedener Indizes ermöglicht eine Aussage über das Verhältnis von potentiellen Apomorphien zu vorliegenden Homoplasien. Der Konsistenzindex CI bewertet die Anzahl der Homoplasien als Anteil aller in einer Topologie auftretenden Merkmalsänderungen. Liegen in einer Topologie keine Homoplasien vor, so ist CI = 1. Je näher der Konsistenzindex bei 1 liegt, desto besser stimmen Topologie und Datensatz überein. Der Konsistenzindex ist jedoch bei gleicher Zahl von Homoplasien ebenfalls von der Anzahl der Taxa und der Merkmale wie auch von Autapomorphien abhängig, was den Nutzen dieses Wertes einschränkt. Der Homoplasie-Index HI verhält sich komplementär zum Konsistenzindex (HI = 1 - CI) und kennzeichnet den durch Homoplasien verursachten Anteil an Merkmalsänderungen. Da sich der Homoplasie-Index direkt auf den Konsistenzindex bezieht, besitzt er somit dieselben Nachteile. Der Konservierungsindex RI wird als ein Maß für die Menge an potentiellen Synapomorphien in einer Topologie für einen vorliegenden Datensatz angesehen, wobei Analogien den Index senken. Da alle Indizes keine Aussagen über die Qualität einzelner Merkmale und von Monophyliehypothesen erlauben, ist ihr praktischer Nutzen von geringer Bedeutung.

2.3.2.4 Heuristische Suchalgorithmen

Für "Maximum Likelihood"- und "Maximum Parsimony"-Verfahren ist die Kombination terminaler Taxa zu allen möglichen Topologien notwendig. Exakte Methoden berechnen für einen gegebenen Datensatz gemäß dem verwendeten Optimierungskriterium jeden möglichen Baum. Solche Verfahren bieten sich jedoch nur für Datensätze mit einer geringen Zahl an Taxa (<10) an, da die Summe B_n aller möglichen dichotomen und ungewurzelten Topologien für *n* Taxa durch folgende Formel charakterisiert wird (Felsenstein 1978):

$$B_{(n)} = \prod_{n=3}^{n} (2 \text{ n} - 5)$$
 (Gleichung 4)

Für große Datensätze mit einer Vielzahl von Sequenzen wird auf heuristische Suchalgorithmen zurückgegriffen, die nur einen Teil der möglichen Bäume rekonstruieren und analysieren. Bei jeder Addition von Taxa werden diejenigen Topologien nicht weiter beachtet, die länger sind als andere derselben Taxaauswahl. Im einfachsten Fall arbeitet man nur mit der kürzesten Topologie weiter und addiert das nächste, zufällige gewählte Taxon.

Eine weit verbreitete Methode zur heuristischen Generierung von Bäumen ist die schrittweise Addition ("stepwise addition"). Bei diesem Algorithmus werden die Taxa schrittweise zu einem Gesamt-Baum hinzugefügt. Zu Beginn werden drei Taxa ausgewählt, mit denen nur ein ungewurzelter Baum berechnet werden kann. Ein nächstes Taxon wird daraufhin hinzugefügt. Dies kann theoretisch an allen Zweigen des bisherigen Stammbaumes geschehen, so dass an dieser Stelle die entsprechend möglichen Topologien berechnet werden müssen. Von den möglichen Bäumen wird der Kürzeste ausgewählt und für die weiteren Additionen der Taxa verwendet. Programme zur phylogenetischen Rekonstruktion bieten hierfür in der Regel verschiedene Optionen an.

Die Nutzung heuristischer Analyseverfahren führt zu dem Problem, ob die errechneten Bäume tatsächlich die optimale Topologie und somit das globale Optimum darstellen, oder nur ein lokales Optimum, bedingt durch den ausgewählten Weg, gefunden wurde. Es gibt bei Näherungsverfahren daher keine Sicherheit für das Auffinden der optimalen Lösung. Jedoch kann die Gefahr der Auswahl lokaler Optima mittels Verfahren zur Umlagerung von Ästen ("branch swapping") minimiert werden (Swofford 2002). Sollte tatsächlich ein besserer Baum als der bisher berechnete existieren, so ist es wahrscheinlich, diesen durch genügend viele Umgestaltungen zu finden.

Oft können mit demselben Verfahren für einen Datensatz mehrere gleich gut begründetet Topologien gefunden werden. Die Visualisierung der Daten kann in diesen Fällen mit Hilfe eines Konsensusdendrogramms erfolgen. Hierunter versteht man eine graphische Darstellung von Taxagruppen, die mit einer vorgegebenen Häufigkeit in den alternativen Topologien zu finden sind. Während beispielsweise ein striktes Konsensusverfahren nur jene Gruppierungen übernimmt, die in allen alternativen Topologien vorkommen, beinhaltet ein 50% Konsensusverfahren ("50% majority rule") nur Gruppen, die in mehr als 50% der Topologien vorkommen.

Die Rekonstruktion sämtlicher in dieser Arbeit erstellten Stammbäume, die auf ML- oder MP-Verfahren basieren, erfolgte unter Verwendung des Computerprogramms *PAUP** Vers. 4.0b10 (Swofford 2002). Zur graphischen Darstellung der generierten Topologien wurde das Programm *TreeView* Vers.1.6.6 (Page 2001; http://taxonomy.zoology.gla.ac.uk/rod/rod.html) genutzt.

2.3.2.5 Bayessche Analyse

Das Ziel des "Maximum Likelihood"-Verfahrens ist es, unter allen alternativen Dendrogrammen, die für einen Datensatz konstruierbar sind, dasjenige zu finden, das mit größter Wahrscheinlichkeit die Entstehung der terminalen Sequenzen erklärt, wenn man einen bestimmten Prozess der Sequenzevolution voraussetzt (siehe 2.3.2.2). Eine andere Möglichkeit stellt die Berechnung der Wahrscheinlichkeit eines Baums *auf Grundlage* des Datensatzes dar. Dies ist mit Hilfe des "Bayes`schen Theorems" möglich, welches von dem Mathematiker Thomas Bayes im 18. Jahrhundert entwickelt wurde. Ausgangspunkt dieses Verfahrens ist die Konvertierung von Likelihood-Werten in a-posteriori Wahrscheinlichkeiten ("posterior probabilities"). Eine der ersten praktischen Anwendungen des Bayesschen Theorems in der molekularen Phylogenie erfolgte 2001 durch Huelsenbeck und Ronquist. Grundlage ist die Berechnung der a-posteriori Wahrscheinlichkeiten aus Zufallstichproben von Bäumen, in denen die Bäume proportional zu ihrer Likelihood vertreten sind. Die hierzu verwendete statistische Methode basiert auf einer "Markov Chain Monte Carlo"-Simulation. Das Ergebnis der Bayesschen Analyse wird in einem Mehrheitsregel-Konsensusbaum dargestellt. Die a-posteriori Wahrscheinlichkeiten geben an jedem Knotenpunkt die Häufigkeit dieses Knotens in sämtlichen rekonstruierten Stammbäumen an, wobei ein hoher Wert als gutes phylogenetisches Signal interpretiert wird. Bayessche Analysen zeichnen sich insbesondere durch ihre Schnelligkeit und der Berechnung von Baum und a-posteriori Wahrscheinlichkeiten in einem Arbeitsgang aus.

Die Rekonstruktionen sämtlicher in dieser Arbeit vorliegenden Stammbäume basierend auf dem Bayes-Theorem erfolgte mit den Softwareprogramm *MrBayes* (Huelsenbeck & Ronquist 2001) durchgeführt. Zur Visualisierung der generierten Topologien wurde das Programm *TreeView* Vers.1.6.6 (Page 2001; http://taxonomy.zoology.gla.ac.uk/rod/rod.html) verwendet.

2.3.3 Statistische Verfahren

Zur Bewertung der verwendeten Datensätze stehen unterschiedliche statistische Verfahren zur Verfügung, von denen einige im Folgenden kurz vorgestellt werden:

2.3.3.1 Analyse der Basenzusammensetzung

Da DNA Sequenzen nur 4 Merkmale aufweisen, entstehen Ähnlichkeiten zwischen Sequenzen sehr oft durch zufällige Kongruenz. Liegen bei den untersuchten Taxa unterschiedliche Nukleotidfrequenzen vor, so erhöht sich die Zahl zufälliger Übereinstimmungen. Dies kann als Folge künstliche Gruppierungen von Taxa haben (Steel *et al.* 1993, Hasegawa & Hashimoto 1993, Forster & Hickey 1999). Die Homogenität der Basenzusammensetzung im Vergleich der einzelnen Sequenzen innerhalb einer Alinierung kann mit einem χ^2 -Test untersucht werden.

In dieser Arbeit wurde zur Untersuchung der Basenhomogenität der im Computerprogramm *PAUP** Vers. 4.0b10 (Swofford 2002) implementierte χ^2 -Test genutzt.

2.3.3.2 Test der relativen Substitutionsraten

Die Anwendung dieser Methode gestattet einen Vergleich der Substitutionsraten zweier nahe verwandter Taxa A und B. Es wird angenommen, dass bei beiden Taxa seit dem Zeitpunkt der Divergenz 0 eine annähernd gleiche Menge an Substitutionen in den beobachteten Sequenzbereichen stattfand. Demnach ist die Distanz von 0 zu A (d_{0A}) gleich der Distanz d_{0B} und die Differenz beider Distanzen ist gleich Null. Die Anzahl der jeweiligen Substitutionen wird aus den Distanzen zu einer weiteren, dritten Sequenz C berechnet: sind die Distanzen d_{0A} und d_{0B} gleich, so sollten auch d_{CA} und d_{CB} gleich sein: $d_{0A} - d_{0B} = d_{CA} - d_{CB}$. Liegen indes unterschiedliche Substitutionsraten vor, ist der Wert für die Differenz $d = d_{CA} - d_{CB}$ ungleich Null. Eine schematische Darstellung der Wechselbeziehungen zwischen den Distanzen ist in Abbildung 2.7 wiedergegeben.

Abb. 2.7: Schematische Darstellung des Prinzips des Tests der relativen Substitutionsraten. Haben die Sequenzbereiche A und B seit ihrer Aufspaltung aus ihrer Ursprungssequenz 0 eine gleiche Anzahl an Substitutionen erfahren, so gilt: $d_{0A} = d_{0B} = 0$. Somit sind die Distanzen von Taxon A bzw. B zu Taxon C ebenfalls gleich, was eine Berechnung der jeweiligen Substitutionen ermöglicht: $d_{0A} - d_{0B} = d_{CA} - d_{CB}$.

Wird die Differenz $d = d_{CA} - d_{CB}$ in Bezug zur Standardabweichung *SD* der Differenz gesetzt (Li, 1997), ist eine Berechnung des sogenannten *Z*-Wertes möglich:

$$Z = \frac{d}{SD}$$
 (Gleichung 5)

Ist die Differenz d um das 1,96fache höher als die Standardabweichung SD, so kann angenommen werden, dass unterschiedliche Substitutionsraten vorliegen. Zur Berechnung der Distanzen können verschiedene Modelle zur Sequenzevolution (siehe 2.3.2.1) verwendet werden.

Die Analyse der relativen Substitutionsraten erfolgte mit Hilfe des Computerprogramms *K2WuLi* Vers. 1.0 (Jermiin 1997; http://jcsmt.anu.edu.au/dmm/humgen/lars/k2wulisub.htm), dessen Verfahren Wu und Li (1985) entwickelten und auf dem Zwei-Parameter-Modell (Kimura 1980) basiert (siehe Tab. 2.8).

2.3.3.3 Berechnung der Substitutionssättigung

Transitionen, bei denen die chemische Stoffklasse der Nukleotide erhalten bleibt, werden weniger selektiert oder entstehen in der Zelle leichter als Transversionen (siehe 2.3.2.1). Wird die Anzahl an Transitionen und Transversionen gegenüber der korrigierten p-Distanz, die als Maß der Divergenz gilt, aufgetragen, kann ein Anstieg beider Substitutionsformen mit zunehmender Divergenzzeit beobachtet werden. Mit Zunahme der Divergenzzeit werden Transitionen durch multiple Substitutionen schneller überlagert als Transversionen, somit treten Transversionen bei einer entsprechend langen Divergenzzeit zahlenmäßig häufiger als Transitionen auf (siehe Abb. 2.8). Tritt dieser Fall ein, liegt eine Substitutionssättigung vor (Yang & Yoder 1999, Xia 2000). Ein Genabschnitt mit einem hohen Maß an Sättigung eignet sich daher nicht zur Rekonstruktion der Phylogenie der untersuchten Taxa. Auch sollten Taxa, die einen hohen Sättigungsgrad aufweisen, bei der Verwandtschaftsanalyse besondere Beachtung und gegebenenfalls keine Verwendung finden.

Abb. 2.8: Schmatische Darstellung der Verhältnisses von Transitionen und Transversionen in Abhängigkeit der Divergenzzeit. Lediglich Transversionen (Tv) akkumulieren linear mit der Divergenzzeit, Transitionen (Ts) sind schnell

gesättigt, was sich auf die gesamte Divergenz auswirkt.

Zur Berechnung der Substitutionssättigung wurde das Computerprogramm *PAUP** Version 4.0b10 (Swofford 2002) verwendet.

2.3.3.4 "bootstrap"-Test

Der von Efron (1979) entwickelte "bootstrap"-Test fand Mitte der achtziger Jahre des letzten Jahrhunderts erstmals in der Phylogenie Anwendung (Felsenstein 1985). Grundlage dieses Wiederfindungstestes ist die zufällige Auswahl von Merkmalen (Spalten, bei DNA-Sequenzen somit Nukleotidpositionen; siehe 2.3.1) eines Datensatzes, die zur Erzeugung eines neuen Datensatzes gleicher Länge verwendet werden. Gemäß dieser Konvention liegen in diesem neu erzeugten Datensatz manche Nukleotidpositionen gar nicht, andere dagegen mehrfach vor. Aus diesem Datensatz wird anschließend mit einem gewählten Rekonstruktionsverfahren, zum Beispiel mit dem "Maximum Parsimony"-Verfahren, ein Stammbaum berechnet. Durch die Wiederholung dieses Verfahrens, in der Regel 100 bis 1000mal, entstehen eine Vielzahl von Dendrogrammen, die in einem Mehrheitsregel-Konsensusbaum dargestellt werden können. Die eigentlichen "bootstrap-Werte" geben an jedem Knotenpunkt die prozentuale Häufigkeit dieses Knotens in sämtlichen rekonstruierten Dendrogrammen an. Die Rechenzeit für "bootstrap"-Analysen steht in Abhängigkeit zu der Größe des Datensatzes. Besonders die Überprüfung von ML-Berechnungen ist bei umfangreichen Datensätzen sehr zeitaufwendig. Es ist wichtig festzuhalten, dass "bootstrap"-Werte und a-posteriori Wahrscheinlichkeiten (siehe 2.3.2.5) sich zwar ähneln, aber auf Grund der unterschiedlichen Methodik nicht gleichzusetzen sind.

Für sämtliche "bootstrap"-Berechnungen wurde das Computerprogramm *PAUP** Version 4.0b10 (Swofford 2002) verwendet.

2.3.3.5 "Likelihood Ratio"-Test

Bei der Verwendung von Distanz- oder "Maximum Likelihood"-Verfahren steht der Anwender vor der Wahl des "richtigen" Sequenzevolutionsmodells (siehe 2.3.2.1). So kann ein zu simples Modell zu einer Unterstützung einer falschen Topologie führen. Komplexe Modelle der Sequenzevolution können dagegen derart spezifisch und vielschichtig gestaltet werden, dass mit einem derartigen Modell für einen Datensatz die Wahrscheinlichkeit einer bestimmten Topologie gleich 1 ist. Jedoch könnte für denselben Datensatz mit einem anderen Modell eine andere Topologie mit demselben Wahrscheinlichkeitswert erreicht werden. Mit einem Modell, das "zu komplex" ist, können ebenfalls falsche Verwandtschaftshypothesen begründet werden. Entsprechend kommt auch hier das Prinzip der sparsamsten Erklärung zur Anwendung, denn je mehr Annahmen vorausgesetzt werden, desto geringer ist vermutlich die Wahrscheinlichkeit, dass die Hypothese dem realen Ablauf der Sequenzevolution entspricht. Mit dem "Likelihood Ratio"-Test (Goldman 1993a, 1993b) kann überprüft werden, ob die Wahl zusätzlicher Modellparameter eine signifikante Verbesserung der Wahrscheinlichkeit für eine Topologie bewirkt. Ist die Verbesserung nicht signifikant, kann man das einfachere Modell beibehalten.

Für die Berechnungen der Wahrscheinlichkeiten der unterschiedlichen Modelle zur Sequenzevolution wurde das Computerprogramm *Modeltest* 3.5 (Posada & Crandall 1998) verwendet.

3. Ergebnisse

3.1 Analyse des 18S rDNA Datensatzes

3.1.1 Sequenzlängen und Basenzusammensetzung der Alinierung 1

Es wurden für alle in Tabelle 2.1 aufgeführten 45 Taxa der Asellota die vollständigen DNA-Sequenzen der kleinen ribosomalen Untereinheit amplifiziert und doppelsträngig sequenziert. In Alinierung 1 wurden neben den im Rahmen dieser Arbeit ermittelten 18S rDNA Sequenzen 12 bereits veröffentlichte Sequenzen der Asellota berücksichtigt. Zusätzlich ging die 18S rDNA Sequenz des Decapoden Astacus astacus in den Datensatz ein (siehe Tab. 2.3). Die vollständige Alinierung 1 aller 58 Taxa umfasst 2656 bp, wobei die Sequenz von Acanthocope galathea (Munnopsididae) mit einer Länge von 1776 bp die mit Abstand kürzeste Sequenz ist. Mit 2529 bp stellt Iathrippa sarsi (Janiridae sensu Wolff) die längste Sequenz der Alinierung. Die durchschnittliche Sequenzlänge beträgt 2139 bp. Der χ^2 Test zur interspezifischen Homogenität der Basenzusammensetzung (siehe 2.3.3.1) nimmt einen Wert von 92,398592 (df = 171) ein, was einem Signifikanzniveau P = 0.99 entspricht. In den untersuchten Sequenzen liegen somit keine signifikanten Unterschiede in der Basenzusammensetzung (P = 0.99) vor.

Die zum Teil sehr großen Längenvariationen innerhalb der Sequenzen der Asellota werden fast ausschließlich durch Insertionen bzw. Deletionen in den Bereichen der sogenannten Expansionssegmente, insbesondere der V4- und V7-Segmente, verursacht. Besonders im Bereich der Helices E23_1 und E23_2 des Expansionssegmentes V4 können Insertionen zu enormen Verlängerungen führen (Crease & Colbourne 1998, Crease & Taylor 1998, Choe *et al.* 1999), was eine Homologisierung der beteiligten Basen insbesondere bei nicht sehr nahe verwandten Taxa nahezu unmöglich gestaltet (siehe Abb. 3.1).

Abb. 3.1: Ausschnitt der Alinierung 1 im Bereich der Helices E23_1 und E23_2 des 18s rDNA Datensatzes. Die mitunter enormen Längenunterschiede dieser hypervariablen Sequenzabschnitte verhindern eine korrekte Basenhomologisierung.

Die Identifizierung der Expansionssegmente innerhalb Alinierung 1 gelang durch einen Vergleich mit der bekannten 18S rRNA Sekundärstruktur von *Astacus astacus* (siehe Abb. 3.2).

Abb. 3.2: Schematische Darstellung der Sekundärstruktur der 18S rRNA von Astacus astacus. Die Helices und Expansionssegmente sind gemäß ihrem Erscheinen vom 5'-Terminus zum 3'-Terminus nummeriert. Das Expansionssegment V4 ist blau markiert, das Expansionssegment V7 rot. Schwarze Pfeile kennzeichnen die Lage der mitunter hypervariablen Helices E23_1 und E23_2 innerhalb der V4-Region (verändert nach Wuyts *et al.* 2002).

Die Längen der hochvariablen Helices E23_1 und E23_2 der V4 Region sowie des gesamten Expansionssegments V7 der untersuchten Taxa gibt Tabelle 3.1 wieder. Auffällig hohe (rot) bzw. niedrige Werte (blau) der Asellota sind farbig gekennzeichnet.

Familie	Art	Länge E23_1 / E23_2 [in bp]	Länge V7 [in bp]
Astacidae	Astacus astacus	49	62
Asellidae	Asellus aquaticus	177	171
11001110000	Lirceus fontinalis	181	172
	Proasellus slavus	178	171
Stenasellidae	Stenasellus racovitzai	282	152
Stenetriidae	Stenetrium sp.	130	198
	Tenupedunculus acutum	131	197
Acanthaspidiidae	Acanthaspidia bifurcatoides	217	188
	Acanthaspidia drygalskii	252	198
	Acanthaspidia pleuronotus	217	188
	Acanthaspidia rostratus	233	219
	Acanthaspiaia sp.	215	188
	Ianthopsis multispinosa	284	217
	Ianthopsis rusari	208	200
Dendrotiidae	Dendromunna sp	179	183
Desmosomatidae	Chelator sp.	152	210
Desmosoniatione	Eugerda sn	223	262
	Eugerdella natator	158	212
	Mirabilicoxa sp.	169	222
Haplomunnidae	Thylakogaster sp.	244	240
Haploniscidae	Antennuloniscus armatus	216	188
1	Haploniscus sp. 1	237	227
	Haploniscus sp. 6	192	219
	Haploniscus sp. 8	240	225
	Mastigoniscus sp. 1	214	184
Ischnomesidae	Haplomesus sp. 1	197	213
	Haplomesus sp. 2	197	213
	Ischnomesus sp.	135	263
	Stylomesus sp.	156	211
Janirellidae	Janirella sp.	154	209
Janiridae sensu Wolff	Tais pubescens	205	250
	Tathrippa sarsi	4/6	301
	Tathrippa trilobatus	247	215
	Naojaara antarotica	213	145
	Neojaera sp. 1	215	233
	Neojaera sp. 1 Neojaera sp. 2	219	236
Joeropsididae	Joeropsis coralicola	210	206
voeropolaidae	Joeropsis sp.	262	308
Macrostylidae	Macrostylis sp. 1	220	220
5	Macrostylis sp. 2	203	223
Mesosignidae	Mesosignum sp.	177	212
Munnopsididae	Acanthocope galathea	13	73
	Betamorpha identifrons	224	230
	Coperonus sp.	163	215
	Echinozone spinosa	180	211
	Echinozone sp.	174	211
	Eurycope inermis	164	220
	Eurycope sarsi	160	226
	Eurycope sp. 1	175	240
	Eurycope sp. 2	1/0	228
	nyaracnna antarctica Mumonsis tunica	210	248 249
	Storthynguralla triplospinosa	192	240 233
	Sursumura falcata	155	233 737
	Sursumura rabustissima	151	232
Nannoniscidae	Austroniscus sp.	150	232

Die durchschnittlichen Längen der Helices E23_1 und E23_2 betragen für die untersuchten Asellota 197 bp, während das Expansionssegment V7 im Mittel 214 bp umfasst. Die mit Abstand kürzesten Expansionssegmente besitzt die Sequenz von *Acanthocope galathea* (Munnopsididae). In dieser Sequenz umfassen die Helices E23_1 und E23_2 lediglich 13 bp, während das Expansionssegment V7 eine Länge von 219 bp hat. Eine kurze V7-Region liegt weiterhin mit 145 bp bei *Janira maculosa* (Janiridae) vor. Die längsten Insertionen finden sich in der Sequenz von *Iathrippa sarsi* (Janiridae). Mit 476 bp sind die Helices E23_1 und E23_2 deutlich länger als bei allen anderen Sequenzen des Datensatzes. Die Länge des Expansionssegments V7 beträgt 301 bp.

3.1.2 Sequenzlängen und Basenzusammensetzung der Alinierung 2

Mittels der 18S rRNA Sekundärstruktur von *Astacus astacus* (siehe Abb. 3.1) konnten die hochvariablen Bereiche E23_1 und E23_2 (484 bp) der V4-Region sowie das Expansionssegment V7 (312 bp) innerhalb der Alinierung 1 (2656 bp) (siehe 3.1.1) identifiziert werden. Auf Grund der mitunter zahlreichen Insertionen bzw. Deletionen in diesen Regionen und der damit verbundenen Problematik der Basenhomologisierung wurden die entsprechenden Bereiche aus der Alinierung entfernt.

Der verbliebene Datensatz, Alinierung 2 genannt, umfasst 1860 bp. Die Sequenzlängen liegen zwischen 1690 bp (*Acanthocope galathea*) und 1757 bp (*Janira maculosa*), die durchschnittliche Länge beträgt 1733 bp. Der χ^2 Test zur interspezifischen Homogenität der Basenzusammensetzung (siehe 2.3.3.1) für Alinierung 2 ergibt einen Wert von 25,461692 (df=171). Das Signifikanzniveau P beträgt 1,00, signifikante Unterschiede in der Basenzusammensetzung des Datensatzes liegen somit nicht vor. Von den 1860 Positionen der Alinierung sind 1215 Positionen konstant, 204 nicht parsimonieinformativ und 441 Positionen parsimonieinformativ. Für sämtliche weiteren phylogenetischen Analysen wird ausschließlich Alinierung 2 verwendet.

3.1.3 Ergebnisse des Tests der relativen Substitutionsraten

Der für Alinierung 2 durchgeführte Test der relativen Substitutionsraten nach Wu und Li (1985) soll überprüfen, ob alle im Datensatz enthaltenen rDNA Sequenzen mit einer gleichen Substitutionsrate evolvieren (siehe 2.3.3.2). Grundlage hierfür ist die Erstellung einer Distanzmatrix gemäß dem Zwei-Parameter-Modell (Kimura 1980) (siehe 2.3.2.1). Eine Annahme dieses Modells ist allerdings eine gleichmäßige Basenzusammensetzung (1:1:1:1), die beim untersuchten Datensatz nicht vorliegt (siehe 3.1.2) und möglicherweise die

Zuverlässigkeit des Tests beeinträchtigt. Die Verwendung komplexerer Modelle zur Sequenzevolution ist bislang nicht möglich. Für den Test sind sowohl Transitionen als auch Transversionen berücksichtigt worden. Als Außengruppentaxon wurde *Astacus astacus* verwendet. Der Test ergab, dass im Vergleich zu den limnischen Asellota für die marinen Taxa eine leicht erhöhte Substitutionsrate vorliegt. Besonders auffällige Sequenzen enthält der Datensatz allerdings nicht. Die vollständige Auflistung der Ergebnisse findet sich im Anhang (siehe 8.2.2).

3.1.4 Analyse der Substitutionssättigung

Für Alinierung 2 erfolgte eine Analyse der Substitutionssättigung (siehe 2.3.3.3). Abbildung 3.3 ist die graphische Darstellung der Ergebnisse, wobei Transitionen und Transversionen gegen die korrigierte genetische Distanz aufgetragen wurden. Das zur Berechnung der genetischen Distanz verwendete Modell sowie die entsprechenden Parameter ermittelte ein "Likelihood Ratio"-Test (siehe 3.1.3.1). Eine Substitutionssättigung liegt bei dem verwendeten Datensatz nicht vor, da die Anzahl an Transversionen deutlich unter den ermittelten Transitionen liegt. Die Auflistung sämtlicher Einzelwerte kann dem Anhang entnommen werden (siehe 8.2.3).

Abb. 3.3: Darstellung der Substituionssättigung der Alinierung der 18S rDNA Sequenzen in Bezug zur korrigierten genetischen Distanz. Hellblaue Dreiecke kennzeichnen Transitionen, schwarze Quadrate Transversionen. Eine Sättigung liegt noch nicht vor, da Transitionen gegenüber Transversionen überwiegen.

3.1.5 "Maximum Parsimony" Stammbaumrekonstruktionen

Für Alinierung 2 wurde gemäß dem Parsimonie Kriterium (siehe 2.3.2.3) eine heuristische Suche durchgeführt (siehe 2.3.2.4). Die Suche ergab 438 gleich kurze Bäume mit einer Baumlänge von 1817 Schritten. Aus diesen 438 Dendrogrammen wurde ein strikter Konsensusbaum berechnet (siehe Abb. 3.4). Die Topologien wurden mit dem Außengruppentaxon *Astacus astacus* gewurzelt.

Der Konsensusbaum zeigt innerhalb der Acanthaspidiidae, Munnopsididae und Desmosomatidae keine vollständige dichotome Auflösung. Eine weitere Polytomie bilden die Macrostylidae, Ischnomesidae, *Janirella sp.* und ein Ast, der die Munnopsididae, Desmosomatidae und Nannoniscidae einschließt. Alle anderen Bereiche des Dendrogramms sind dichotom verzeigt.

Sowohl die limnischen (Aselloidea) als auch marinen Asellota bilden Monophyla. Innerhalb der marinen Formen stellen die zwei Vertreter der Stenetriidae die basalste Gruppe. Auf diese beiden Taxa folgt am nächsten Ast Janira maculosa, ein Vertreter der "Janiridae". Die übrigen Taxa teilen sich auf die beiden folgenden Äste auf. Am ersten Ast finden sich weitere Taxa der "Janiridae", die jedoch nicht an einem gemeinsamen Ast gefunden werden. Beispielsweise steht *Iais pubescens* in einem Schwestergruppenverhältnis zu Dendromunna *sp.* (Dendrotiidae) und *Thylakogaster sp.* (Haplomunnidae). Diese drei Taxa bilden wiederum die Schwestergruppe der Haploniscidae. Die Janiridae sensu Wolff sind somit ein polyphyletisches Taxon. Dagegen bilden die Haploniscidae, Joeropsididae und Acanthaspidiidae monophyletische Gruppen. Innerhalb der Acanthaspidiidae sind die Gattungen Ianthopsis als auch Acanthaspidia polyphyletisch. Am zweiten Ast zweigt Mesosignum sp. als erstes Taxon ab. Die polytomische Schwestergruppe zu dem Vertreter der Mesosignidae bilden die Macrostylidae, Ischnomesidae, Janirella sp. und ein Ast, der die Munnopsididae, Desmosomatidae und Nannoniscidae einschließt. An diesem Ast bilden die Desmosomatidae die Schwestergruppe zu den nur partiell aufgelösten Munnopsididae. In der gleichen Gruppierung findet sich mit Austroniscus sp. auch der berücksichtigte Vertreter der Nannoniscidae. Die Monophylie der Gattung *Eurycope* wird nicht bestätigt. Die Vertreter der Macrostylidae, Ischnomesidae und Desmosomatidae sind monophyletisch.

Abb. 3.4. Strikter Konsensusbaum einer "Maximum Parsimony"-Analyse der Alinierung 2. Für die heuristische Suche galten folgende Parameter: "stepwise addition = closest", "branchswapping = tbr". Der Konsensusbaum wurde aus 438 Bäumen mit einer Länge von 1817 Schritten errechnet. Folgende Indices konnten ermittelt werden: CI = 0,5206, HI = 0,4794 und RI = 0,7089.

3.1.5.1 Überprüfung des MP-Dendrogramms mit einer "bootstrap"-Analyse

Für Alinierung 2 wurde eine "bootstrap"-Analyse (siehe 2.3.3.4) unter dem "Maximum Parsimony"-Kriterium durchgeführt, wobei die verwendeten Suchparameter denen der heuristischen Suche (siehe 3.1.2) entsprachen. Der errechnete Konsensusbaum setzt sich lediglich aus solchen Verzweigungen zusammen, die in mindestens 50% der berechneten

Topologien gefunden wurden (50% "majority rule"). Die einzelnen "bootstrap"-Werte finden sich an den Knoten der Topologie wieder.

Abb. 3.5: Ergebnisse der "Maximum Parsimony bootstrap"-Analyse der Alinierung 2. Für die heuristische Suche galten folgende Parameter: "stepwise addition = closest", "branchswapping = tbr". Der 50% "majority rule" Konsensusbaum hat eine Länge von 1873 Schritten. Es wurden 1000 Replikationen berechnet, die einzelnen "bootstrap"-Werte finden sich an den jeweiligen Knoten wieder. Folgende Indices wurden ermittelt: CI = 0,5051, HI = 0,4949 und RI = 0,6902.

Die Ergebnisse unterstützten die Vorstellung der Monophylie der limnischen und marinen Asellota, wobei die Stenetriidae erneut als ursprünglichste marine Asellota anzusehen sind (99%). Im Gegensatz zu der heuristischen Suche ist die Auflösung innerhalb der Janiroidea deutlich geringer, da basale Verzweigungen nicht aufgelöst werden und eine Polytomie die Folge ist. Mit Ausnahme der "Janiridae" sind alle weiteren Familien, die mit mehr als einem Taxon vertreten sind, monophyletisch. Sehr hohe "bootstrap"-Werte stützen die Haploniscidae (100%), Joeropsididae (99%), Ischnomesidae (99%) sowie den Neojaera-Artenkomplex (100%). Geringere Werte finden sich für die zwei Taxa der Gattung Iathrippa (88%) sowie für die Acanthaspidiidae (84%), Desmosomatidae (80%), Macrostylidae (75%) und Munnopsididae (74%). Mit 100% wird das Schwestergruppenverhältnis von Dendromunna sp. (Dendrotiidae) und Thylakogaster sp. (Haplomunnidae) ebenfalls gut gestützt. Ein niedrigerer Wert (69%) ist für das Schwestergruppenverhältnis der Joeropsididae und Acanthaspidiidae zu beobachten. Beiden Familien stehen wiederum die zwei Iathrippa-Arten als Schwestertaxon gegenüber (64%). Mit 96% unterstützt ein weiterer hoher "bootstrap"-Wert eine Gruppierung, die sich aus Janirella sp. (Janirellidae), Austroniscus sp. (Nannoniscidae), Mesosignum sp. (Mesosignidae), den Ischnomesidae, Desmosomatidae und Munnopsididae zusammensetzt. Im Gegensatz zu der heuritischen MP-Analyse liegt Austroniscus sp. (Nannoniscidae) außerhalb der Munnopsididae.

3.1.6 "Maximum Likelihood" Stammbaumrekonstruktionen

3.1.6.1 "Maximum Likelihood" Stammbaumrekonstruktion

Weitere Topologien sind mit dem "Maximum Likelihood"-Verfahren (siehe 2.3.2.2) berechnet worden. Mit Hilfe eines "Likelihood Ratio"-Tests (siehe 2.3.3.5) wurde folgendes Sequenzevolutionsmodell ausgewählt: TN (Tamura-Nei), 6 Substitutionstypen (A \rightarrow C: 1,00; A \rightarrow G: 2,08; A \rightarrow T: 1,00; C \rightarrow G: 1,00; C \rightarrow T: 4,46; G \rightarrow T: 1,00), eine Gamma-Verteilung der Substitutionsraten (0,4251) sowie ein Anteil an invarianten Positionen (0,4251). Die Ergebnisse werden in Abbildung 3.6 dargestellt.

Abb. 3.6: "Maximum Likelihood" Stammbaum der Alinierung 2. Das Substitutionsmodell und seine Parameter wurden durch einen "Likelihood Ratio"-Test ermittelt (siehe 3.1.3.1). Für die heuristische Suche galten folgende Parameter: "stepwise addition = closest", "branchswapping = tbr". Die errechnete Likelihood beträgt –In = 12044,95040.

Bis auf wenige Ausnahmen wird die ML-Topologie dichotom aufgelöst. Wie in den MP-Analysen sind die limnischen als auch marinen Asellota jeweils monophyletisch. Ebenso stellen die Stenetriidae die basalsten marinen Formen. Ihnen gegenüber stehen alle anderen Taxa, die sich auf drei Äste verteilen. Der erste Ast umfasst die beiden *Iathrippa*-Arten ("Janiridae"), der zweite die im Schwesterverhältnis zueinanderstehenden Joeropsididae und Acanthaspidiidae. Innerhalb der Acanthaspidiidae ist weder die Gattung Ianthopsis noch Acanthaspidia monophyletisch. Alle übrigen Taxa finden sich in am dritten Ast, der sich wiederum aus zwei Gruppierungen zusammensetzt. Die erste Gruppe enthält die Haploniscidae, Iais pubescens ("Janiridae"), Dendromunna sp. (Dendrotiidae) und Thylakogaster sp. (Haplomunnidae), wobei die beiden letztgenannten erneut Schwestertaxa sind. Die Schwestergruppe dieser beiden ist wie in den MP-Analysen Iais pubescens. Allen drei Taxa stehen die Haploniscidae gegenüber. In der zweiten Gruppe zweigen zuerst die drei Neojaera-Arten mit Janira maculosa, nun nicht mehr der ursprünglichste Vertreter der Janiroidea, ab. Der verbliebene Ast enthält mit Mesosignum sp. (Mesosignidae), Janirella sp. (Janirellidae), Austroniscus sp. (Nannonicidae), den Macrostylidae, Ischnomesidae, Desmosomatidae und Munnopsididae einen Taxakomplex, der bereits in den MP-Analysen identifiziert werden konnte. In diesem Komplex stellt Mesosignum sp. das basalste Taxon, dessen Schwestergruppe eine aus drei Ästen bestehende polytome Gruppe ist. Am ersten Ast befinden sich die Macrostylidae, am zweiten Janirella sp. und die Vertreter der Ischnomesidae. Der dritte Ast trägt die Desmosomatidae, Munnopsididae und Austroniscus sp. (Nannoniscidae). Die Munnopsididae stehen dabei in einem Schwestergruppenverhältnis zu dem Taxon der Nannoniscidae. Die Monophylie der Gattung Eurycope wird nicht bestätigt. Somit werden auch im Rahmen der ML-Analyse die Janiridae sensu Wolff als Polyphylum erkannt, während alle anderen Familien mit mehr als zwei Taxa weiterhin monophyletisch sind.

Die Größe des Datensatzes erlaubte keine Überprüfung der ML-Berechnungen mittels eines "bootstrap"-Tests (vgl. 2.3.3.4), da die benötigte Rechenzeit mehrere Wochen in Anspruch genommen hätte. Eine Alternative ist die Verwendung des Bayesschen Theorems zur Analyse des Datensatzes (siehe 2.3.2.5).

3.1.6.2 Bayessche Stammbaumrekonstruktion

Neben der "klassischen" ML-Analyse erfolgte für Alinierung 2 eine Topologierekonstruktion mit der Bayesschen Methode nach Huelsenbeck und Ronquist (2001) (siehe 2.3.2.5). Das gewählte Modell zur Sequenzevolution sowie dessen Parameter ist dasselbe, das bereits im Vorfeld mit dem "Likelihood Ratio"-Test optimiert wurde (siehe 3.1.3.1). Die Ergebnisse der Bayes Analyse stellt Abbildung 3.7 dar.

Abb. 3.7: 50 % "majority rule" Konsensusbaum der Bayes Analyse der Alinierung 2. Das Substitutionsmodell und seine Parameter wurden durch einen "Likelihood Ratio"-Test ermittelt (siehe 3.1.3.1). Die Parameter der "Markov Chain Monte Carlo"-Simulationen entsprachen den Grundeinstellungen, der "burnin value" wurde auf 750 gesetzt. Die Zahlen geben die a-posteriori Wahrscheinlichkeiten des entsprechenden Knotens an.

Der Bayessche Stammbaum unterscheidet sich von der ML-Topologie nur geringfügig. Wie auch bei der ML-Analyse werden basale Verzweigungen innerhalb der Janiroidea dichotom aufgelöst, wenngleich für die gesamte Topologie keine vollständige Dichotomie erzielt wird. So konnte das Schwestergruppenverhältnis der Haploniscidae mit *Iais pubescens* ("Janiridae"), *Dendromunna sp.* (Dendrotiidae) und *Thylakogaster sp.* (Haplomunnidae) nicht

aufgelöst werden. Diese drei Taxa gehören mit den Haploniscidae und allen anderen Janiroidea außer den Acanthaspidiidae, Joeropsididae und den zwei Iathrippa-Arten (Janiridae) einer Polytomie an. Dagegen stehen die zwei Iathrippa-Arten nun in einem wenn auch nur mäßig unterstütztem Schwestergruppenverhältnis zu den Joeropsididae und Acanthaspidiidae (0.69). Innerhalb der Munnopsididae liegt keine vollständig dichotome Die meisten Familien werden durch Auflösung vor. sehr hohe a-posteriori Wahrscheinlichkeiten gestützt, und auch für viele basale Knoten innerhalb der Janiroidea finden sich hohe Werte.

3.2 Analyse der 16S rDNA Datensätze

Es wurden für 61 Individuen der Asellota, von denen 36 den Acanthaspidiidae und 25 den Haploniscidae angehören, die partiellen 16S rDNA Sequenzen amplifiziert und doppelsträngig sequenziert (siehe Tab. 2.2). In den Datensatz der Acanthaspidiidae wurde zusätzlich die in der Genbank hinterlegte Sequenz von *Joeropsis dubia* als Außengruppe aufgenommen (siehe Tab. 2.3). Beide Alinierungen wurden mit dem Sekundärstrukturmodell des homologen Gens für *Drosophila melanogaster* ("accession number": X53506) verglichen (siehe Abb. 3.8). Für den 16S rDNA Datensatz der Haploniscidae konnten alle gepaarten Bereiche ("stems") der Sekundärstruktur identifiziert und homologisiert werden. Eine Ausnahme bildet ein hochvariabler, 39 Basen umfassender Bereich, der mit Hilfe des vorliegenden Sekundärstrukturmodells der Helix 75 zugeordnet werden. Der Abschnitt wurde aus der Alinierung entfernt. Eine erhöhte Variabilität dieser Helix ist auch bei Insekten (u. a. Flook & Rowell 1997, Buckley *et al.* 2000) und anderen Tiergruppen (z. B. Orti *et al.* 1996) zu beobachten. Neben der hochvariablen Helix 75 (43 bp) wurde zusätzlich ein 29 bp umfassender Abschnitt der Helix 63 aus dem Datensatz der Acanthaspidiidae entfernt und von den folgenden Analysen ausgeschlossen.

Abb. 3.8: Schematische Darstellung der 3'-Hälfte der mitochondrialen 16S rRNA von Drosophila melanogaster. Der amplifizierte Abschnitt ist gelb gekennzeichnet. Blau ist die Lage des Primers 16a, grün die des Primers 16b markiert. Watson-Crick-Basenpaare werden durch einen Strich (-) gekennzeichnet, G/U-Paare durch einen kleinen Punkt (·), G/A-Paare durch einen großen offenen Punkt (○) und U/U-Paare durch einen großen gefüllten Punkt (●). Die Helices sind gemäß ihrem Erscheinen innerhalb der bakteriellen 23S rRNA vom 5'-Terminus zum 3'-Terminus nummeriert, wobei die hochvariable Helix 75 rot umrandet wurde. Schwarze Linien kennzeichnen Interaktionen von Nukleotiden in der Tertiärstruktur des Ribosoms (verändert nach de Rijk *et al.* 1997).

3.2.1 Analyse der partiellen 16S rDNA Sequenzen der Acanthaspidiidae

Zur Klärung der Fragestellung, ob A*canthaspidia drygalskii* eine einzige, zirkumantarktisch verbreitete Spezies ist, wurde von 17 Exemplaren dieser Art, von denen 9 aus der westlichen und 8 aus der östlichen Weddell See stammen, die partielle 16S rDNA amplifiziert und sequenziert. Zusätzlich fanden die Sequenzen von 19 weiteren Individuen anderer Arten der Acanthaspidiidae Verwendung. Als Außengruppentaxon wurde mit *Joeropsis dubia*

(Joeropsididae) ein Vertreter der Schwestergruppe der Acanthaspidiidae ausgewählt (siehe 3.12, 3.13).

3.2.1.1 Statistische Tests

Die vollständige Alinierung der Sequenzen umfasst 437 bp, wobei die Gesamtlängen der Sequenzen zwischen 413 bp (*Joeropsis dubia*) und 425 bp (*Ianthopsis multispinosa* BAC12) liegt. Die durchschnittliche Sequenzlänge beträgt 419 bp. Der χ^2 Test zur interspezifischen Homogenität der Basenzusammensetzung (siehe 2.3.3.1) ergab einen Wert von 39,068694 (df = 108). Dies entspricht einem Signifikanzniveau P = 1,00 und somit einer homogenen Basenzusammensetzung des Datensatzes. Von den 437 Positionen der Alinierung sind 222 Positionen konstant, 38 nicht parsimonieinformativ und 177 Positionen parsimonieinformativ. Die Analyse der relativen Substitutionsraten (siehe 2.3.3.2) fand keine nennenswert erhöhten Substitutionsraten innerhalb der untersuchten Taxa. Ebenso ergab die Untersuchung der Substitutionssättigung (siehe 2.3.3.3) keine auffälligen Ergebnisse. Auf eine Darstellung der Daten wird verzichtet.

3.2.1.2. Berechnung und Vergleich der p-Distanzen

Im Rahmen der weiteren Datenanalyse erfolgte die Berechnung der p-Distanzen der untersuchten Sequenzen zur Ermittlung der zwischenartlichen Variabilität des untersuchten Gens. Tabelle 3.2 fasst die ermittelten p-Distanzen der Individuen einer Art zusammen, eine vollständige Liste aller Einzelwerte findet sich im Anhang (siehe 8.2.4). Die beobachtete zwischenartliche Variabilität des 16S rRNA Gens beträgt mindestens 4,5 Prozent. Innerhalb der untersuchten Individuen von *Acanthaspidia drygalskii* können drei unterschiedliche Gruppen von Haplotypen (A, B und C) festgestellt werden. Die Haplotypgruppen A und B treten sympatrisch innerhalb der untersuchten Populationen der westlichen Weddell See auf, wobei Haplotypgruppe B in lediglich 2 Individuen nachgewiesen werden konnte. Haplotypgruppe C liegt dagegen ausschließlich in den Individuen aus der östlichen Weddell See vor.

	lanthopsis ruseri [n = 6]	Ianthopsis multispinosa [n = 3]	Acanthaspidia bifurcatoides [n = 4]	Acanthaspidia pleuronotus [n = 2]	Acanthaspidia sp. [n = 4]	Acanthaspidia drygalskii A [n = 7]	Acanthaspidia drygalski B [n = 2]	Acanthaspidia drygalskii C [n = 8]
Ianthopsis ruseri [n = 6]	0-4,6							
Ianthopsis multispinosa [n = 3]	23,2 - 25,4	1,9 – 2,9						
Acanthaspidia bifurcatoides [n = 4]	19,2 - 21,8	21,8 - 22,8	0-2,1					
Acanthaspidia pleuronotus [n = 2]	18,5 – 19,7	19,8 - 20,9	4,5 - 5,0	0,2				
Acanthaspidia sp. [n = 4]	21,5 - 22,8	22,3 - 23,3	17,7 – 17,9	17,8 – 18,0	0			
Acanthaspidia drygalskii A [n = 7]	21,1 - 23,1	22,6 - 23,7	18,4 – 19,9	17,2 – 17,7	24,6 - 25,1	0 – 1,0		
Acanthaspidia drygalskii B [n = 2]	20,0-22,2	23,1 - 23,7	19,0 - 20,2	18,2 – 18,5	23,7 - 24,0	7,4 – 8,0	0,2	
Acanthaspidia drygalskii C [n = 8]	19,9 – 23,1	23,8 - 25,0	20,8 - 21,8	19,9 – 20,4	24,2 - 24,5	7,7 – 8,7	8,4 - 9,1	0 – 0,5

Tab. 3.2: p-Distanzen der untersuchten Taxa der Acanthaspidiidae. In den hellgrau unterlegten diagonalen Feldern sind die Variationen der p-Distanzen innerhalb einer Art wiedergegeben, die Anzahl der untersuchten Individuen gibt *n* an. Die drei getrennten Haplotypgruppen der Art *Acanthaspidia drygalskii* sind dunkelgrau markiert, die Distanzwerte hervorgehoben:

3.2.1.3 Stammbaumrekonstruktionen

Für den 16S rDNA Datensatz der Acanthaspidiidae wurde gemäß dem Parsimonie Kriterium (siehe 2.3.2.3) eine heuristische Suche sowie eine "bootstrap"-Analyse (siehe 2.3.3.4) durchgeführt. Die Ergebnisse dieser Analysen werden in Abbildung 3.9 zusammengefasst. Zusätzlich erfolgte eine Topologierekonstruktion mit der Bayesschen Methode nach Huelsenbeck und Ronquist (2001) (siehe 2.3.2.5), das berechnete Dendrogramm wird in Abbildung 3.10 dargestellt. Das verwendete Sequenzevolutionsmodell wurde mit einem "Likelihood Ratio"-Test ermittelt (siehe 2.3.3.5).

Abb. 3.9: Strikter Konsensusbaum einer "Maximum Parsimony"-Analyse. Für die heuristische Suche galten folgende Parameter: "stepwise addition = closest", "branchswapping = tbr". Der Konsensusbaum wurde aus 48 Bäumen mit einer Länge von 443 Schritten errechnet. CI = 0,6817, HI = 0,3183 und RI = 0,9141. Die Zahlen geben die "bootstrap"-Unterstützung des jeweiligen Knotens an, die in einer separaten Analyse (1000 Replikationen, "stepwise addition = closest", "branchswapping = tbr") ermittelt wurden.

Abb. 3.10: 50 % "majority rule" Konsensusbaum einer Bayesschen Analyse der untersuchten partiellen 16S rDNA Sequenzen der Acanthaspidiidae. Das Substitutionsmodell und seine Parameter wurden durch einen "Likelihood Ratio"-Test ermittelt (siehe 3.2.1.3): TVM (Transversionsmodell), 6 Substitutionstypen (A \rightarrow C: 1,71; A \rightarrow G: 17,35; A \rightarrow T: 3,07; C \rightarrow G: 0,01; C \rightarrow T: 17,35; G \rightarrow T: 1,00) sowie eine Gamma-Verteilung der Substitutionsraten (0,3120). Die Parameter der "Markov Chain Monte Carlo"-Simulationen entsprachen den Grundeinstellungen, der "burnin value" wurde auf 750 gesetzt. Die Zahlen geben die a-posteriori Wahrscheinlichkeiten des entsprechenden Knotens an.

Die Analysen des 16S rDNA Datensatzes der Acanthaspidiidae weisen eine Reihe gut gestützter Gruppen auf. Während alle untersuchten Arten als Monophyla erkannt und durch hohe a-posteriori Wahrscheinlichkeiten und "bootstrap"-Werte unterstützt werden, kann dies auf Gattungsebene nicht beobachtet werden: Weder die Gattung *Acanthaspidia* noch *Ianthopsis* ist monophyletisch. Dieses Ergebnis entspricht den Resultaten der Analysen des 18S rDNA Datensatzes (siehe 3.1.5, 3.1.6). Die Rekonstruktion der verwandtschaftlichen Beziehungen der einzelnen Gruppen gelingt nur zum Teil, die Unterschiede zwischen den Topologien sind mitunter gravierend. Lediglich das Schwestergruppenverhältnis von *Acanthaspidia pleuronotus* zu *Acanthaspidia bifurcatoides* wird in beiden Topologien gestützt. Innerhalb des monophyletischen *Acanthaspidia drygalskii*-Komplexes können drei deutlich voneinander getrennte Gruppen unterschieden werden, die den bereits im Vergleich der p-Distanzen ermittelten Gruppen von Haplotypen entsprechen (siehe Tab. 3.2). Die Resultate der Stammbaumrekonstruktionen bestätigen somit die Monophylie aller untersuchten Spezies, eine Aufklärung ihrer Verwandtschaftsverhältnisse gelingt mit Hilfe des 16S rRNA Gens indes kaum.

3.2.2 Analyse der partiellen 16S rDNA Sequenzen der Haploniscidae

Im Rahmen der Analyse des *Haploniscus sp.* 1-Komplexes wurde von 19 Individuen dieses Taxons die partielle 16s rDNA amplifiziert und sequenziert. Tabelle 3.3 gibt Auskunft über Herkunft und Anzahl der untersuchten Individuen. Sechs weitere Sequenzen verschiedener Taxa der Haploniscidae vervollständigten den Datensatz (siehe Tab. 2.2).

Stationsnummer und Tiefe	Anzahl der untersuchten Individuen des <i>Haploniscus sp.</i> 1-Komplexes
Station 41, "Shackleton Fracture Zone" (2375 – 2372 m)	1
Station 42, "Shackleton Fracture Zone" (3680 – 3685 m)	5
Station 43, "Shackleton Fracture Zone" (3961 – 3962 m)	3
Station 46, "South Scotia Ridge" (2893 – 2894 m)	6
Station 133, westliche Weddell See (1122 – 1119 m)	4

Tab. 3.3: Herkunft und Anzahl der Individuen der Spezies Haploniscus sp. 1, die in der Analyse der partiellen 16S rDNA Sequenzen Verwendung fanden (vgl. Tab. 2.2):
3.2.2.1 Statistische Tests

Die verwendete Alinierung hat eine Länge von 493 bp. Innerhalb der Alinierung sind die Sequenzen der Individuen *Haploniscus sp.* 1 HA73, HA78 und HA79 mit 464 bp am kürzesten, Die längsten Sequenzen finden sich bei *Antennuloniscus armatus* HA55 und *Mastigoniscus sp.* 1 HA57 (479 bp). Die durchschnittliche Sequenzlänge beträgt 473 bp. Der χ^2 Test zur interspezifischen Homogenität der Basenzusammensetzung (siehe 2.3.3.1) ergab einen Wert von 17,293574 (df = 72). Das Signifikanzniveau P nimmt einen Wert von 1,00 ein, was einer homogenen Basenzusammensetzung entspricht. Von den 493 Positionen der Alinierung sind 308 konstant, 43 nicht parsimonieinformativ und 142 Positionen parsimonieinformativ. Die Überprüfung der relativen Substitutionsraten (siehe 2.3.3.2) und Analyse der Substitutionssättigung (siehe 2.3.3.3) erbrachten keine auffälligen Resultate.

3.2.2.2 Berechnung und Vergleich der p-Distanzen

Tabelle 3.4 fasst die p-Distanzen der im Datensatz enthaltenen Individuen der Gattung *Haploniscus* zusammen. Eine vollständige Auflistung aller p-Distanzen (einschließlich der Exemplare von *Antennuloniscus armatus* (HA55) und *Mastigoniscus sp.* 1 (HA51, HA57), die hier aus Platzgründen nicht aufgeführt werden) ist im Anhang zu finden (siehe 8.2.5). Die beobachtete zwischenartliche Variabilität dieses Gens beträgt mindestens 6,6 Prozent. Es können vier deutlich unterschiedliche Gruppen von Haplotypen (A – D) innerhalb des *Haploniscus sp.* 1-Komplexes unterschieden werden. Diese verteilen sich wie folgt auf die untersuchten Individuen:

- Haplotypgruppe A liegt in den untersuchten Individuen der Stationen 42 und 43 vor.
- Haplotyp B wird für das Exemplar der Station 41 nachgewiesen.
- Haplotypgruppe C findet sich in den Individuen von Station 133.
- Haplotypgruppe D liegt in den 6 untersuchten Exemplaren der Station 46 vor.

Tab. 3.4: p-Distai	nzen der untersuch	iten T	axa der Hapl	onisc	idae. In den h	ellgra	u unterlegten	diagonale	n Felde	rn sind die
Variationen der p-	Distanzen innerhal	b eine	er Art wiederg	egeb	en, die Anzahl	der	untersuchten	Individuen	gibt n a	in. Die vier
unterschiedlichen hervorgehoben:	Haplotypgruppen	des	Haploniscus	sp.	1-Komplexes	sind	dunkelgrau	unterlegt,	die D	istanzwerte

	Haploniscus sp. $1\mathbf{A}$ [n = 8]	Haploniscus sp. 1 \mathbf{B} [n = 1]	Haploniscus sp. 1C [n = 4]	Haploniscus sp. 1 \mathbf{D} [n = 6]	Haploniscus $sp.4$ [n = 1]	Haploniscus sp. 7 $[n = 1]$	Haploniscus sp. 8 $[n = 1]$
Haploniscus sp. 1 \mathbf{A} [$n = 8$]	0,2 - 1,1						
Haploniscus sp. 1 \mathbf{B} [$n = 1$]	11,7 - 12,3	0					
Haploniscus sp. 1C $[n = 4]$	11,9 – 12,7	11,4 – 11,7	0 – 0,2				
Haploniscus sp. 1 \mathbf{D} [$n = 6$]	11,9 – 12,9	10,6 - 11,0	7,3 - 8,0	0 – 0,7			
Haploniscus sp. 4 $[n = 1]$	16,1 – 16,7	16,3	18,1 – 18,4	16,9 – 17,4	0		
Haploniscus sp. 7 $[n=1]$	9,1 - 9,8	11,3	12,6 - 12,8	11,9 – 12,4	15,1	0	
Haploniscus sp. 8 $[n=1]$	7,0-7,6	9,3	10,6 - 10,8	9,8 - 10,2	16,1	6,6	0

3.2.1.3 Stammbaumrekonstruktionen

Wie auch für die Acanthaspidiidae wurde für den 16S rDNA Datensatz der Haploniscidae eine heuristische Suche unter dem "Maximum Parsimony"-Kriterium (siehe 2.3.2.3) sowie eine "bootstrap"-Analyse (siehe 2.3.3.4) durchgeführt. Abbildung 3.11 fasst die Resultate der Analysen zusammen. Ergänzend erfolgte eine Stammbaumrekonstruktion mit der Bayesschen Methode nach Huelsenbeck und Ronquist (2001) (siehe 2.3.2.5), das verwendete Sequenzevolutionsmodell wurde mit einem "Likelihood Ratio"-Test ermittelt (siehe 2.3.3.5). Die so berechnete Topologie wird in Abbildung 3.12 wiedergegeben. Mit *Antennuloniscus armatus* HA55 wurde ein Vertreter der ursprünglichen Gattung der Haploniscidae als Außengruppe gewählt (siehe 3.1.2, 3.1.3).

Abb. 3.11: Strikter Konsensusbaum einer "Maximum Parsimony"-Analyse. Für die heuristische Suche galten folgende Parameter: "stepwise addition = closest", "branchswapping = tbr". Der Konsensusbaum wurde aus 84 Bäumen mit einer Länge von 345 Schritten errechnet. CI = 0,6933, HI = 0,3067 und RI = 0,8729. Die Zahlen geben die "bootstrap"-Unterstützung des jeweiligen Knotens an, die in einer separaten Analyse (1000 Replikationen, "stepwise addition = closest", "branchswapping = tbr") ermittelt wurden.

Abb. 3.12: 50 % "majority rule" Konsensusbaum einer Bayesschen Analyse der untersuchten partiellen 16S rDNA Sequenzen der Acanthaspidiidae. Das Substitutionsmodell und seine Parameter wurden durch einen "Likelihood Ratio"-Test ermittelt (siehe 3.2.1.3): HKY (Hasegawa, Kishino, Yano 85), ein Transitions-/Transversionsverhältnis von 2,4322 als Substitutionsmodell und sowie eine Gamma-Verteilung der Substitutionsraten (0,2756). Die Parameter der "Markov Chain Monte Carlo"-Simulationen entsprachen den Grundeinstellungen, der "burnin value" wurde auf 500 gesetzt. Die Zahlen geben die a-posteriori Wahrscheinlichkeiten des entsprechenden Knotens an.

Beide ermittelte Topologien sind weites gehend identisch. Der überwiegende Großteil der Verzweigungen wird durch hohe a-posteriori Wahrscheinlichkeiten und "bootstrap"-Werte gestützt. Beide Dendrogramme bestätigen die Monophylie der untersuchten Taxa der Gattung *Haploniscus*, wobei die ursprünglichste Form der untersuchten Vertreter *Haploniscus sp.* 4 ist. Innerhalb der Gattung *Haploniscus* bilden die Haplotypgruppen B, C und D der Spezies *Haploniscus sp.* 1 ein Monophylum. Diesem Monophylum stehen *Haploniscus sp.* 7, *Haploniscus sp.* 8 und sowie der Haplotyp A-Komplex des Taxons *Haploniscus sp.* 1 als Schwestertaxon gegenüber. Die vorliegenden Ergebnisse bestätigen die Polyphylie des Taxons *Haploniscus sp.* 1.

4. Diskussion

4.1. Diskussion der Ergebnisse des 18S rDNA Datensatzes

4.1.1 Auswahl der untersuchten Taxa

Bislang sind rund 2200 verschiedene Arten der Asellota bekannt und beschrieben, von denen etwa 80% in marinen Habitaten vorkommen (Quelle: World list of marine, freshwater, and terrestrial isopod crustacean, http://www.nmnh.si.edu/iz/isopod/). Man kann allerdings davon ausgehen, dass insbesondere die Tiefsee noch zahlreiche unentdeckte Arten beherbergt und die Artenzahl in Zukunft noch stark ansteigen wird. Aus finanziellen Gründen und praktischen Erwägungen war es unmöglich, innerhalb der für diese Arbeit zur Verfügung stehenden Zeit Vertreter von jeder der 29 bekannten Familien zu berücksichtigen. Viele Arten, insbesondere die Tiefseebewohner, sind selten und nur von einem oder wenigen Fundorten bekannt, wie beispielsweise Storthyngura kussakini (Munnopsididae) (Brandt & Malyutina 2002), Abyssoniscus ovalis (Haploniscidae) (Birstein 1971) oder Vemathambema elongata (Echinothambematidae) (Malyutina et al. 2001). Zudem ist eine Verwendung von Museumsmaterial so gut wie ausgeschlossen. Eine erfolgreiche DNA-Extraktion bei Isopoden setzt eine Fixierung der Tiere in hochprozentigem Ethanol voraus. Dies ist allerdings bei Museumsmaterial in der Regel nicht der Fall, und eine Nutzung des Tiermaterials für molekulargenetische Analysen daher ausgeschlossen (siehe 2.2.1). Im Rahmen der ANDEEP-Expeditionen wurden Tiefseeasseln erstmalig erfolgreich konserviert.

Für die vorliegende Arbeit wurden 57 Arten aus 16 Familien berücksichtigt, von denen 12 Familien als charakteristische Tiefseefamilien anzusehen sind. Zu den noch fehlenden Taxa gehören innerhalb der Flachwasserfamilien unter anderem die Pleurocopidae, Santiidae, Munnidae und Paramunnidae, während die Thambematidae, Echinothambematidae, Mictosomatidae und Katianiridae zu den fehlenden Tiefseefamilien zählen.

Der vorhandene Datensatz bildet eine umfangreiche Grundlage für künftige Studien, die in Zukunft durch die Aufnahme fehlender Taxa kontinuierlich erweitert werden soll.

4.1.2 Längenvariationen der 18S rDNA und Homologisierung der Sequenzpositionen

Es konnten für die 45 in Tabelle 2.1 aufgeführten Taxa der Asellota die vollständigen 18s rRNA Gensequenzen mit Längen von 1776 bis 2529 bp ermittelt werden, wobei die durchschnittliche Länge etwa 2140 bp beträgt. Mit Ausnahme der kürzesten Sequenz (*Acanthocope galathea*) sind alle 18S rDNA Sequenzen der Asellota deutlich länger als die anderer Arthropoden (u. a. Spears *et al.* 1994, Black *et al.* 1997, Edgecombe *et al.* 2002, Giribet *et al.* 2002, Edgecombe & Giribet 2004, Svenson & Whiting 2004).

Verursacht werden diese Längenvariationen durch auffällig lange Baseninsertionen in den sogenannten Expansionssegmenten. Diese Bezeichnungen charakterisieren Regionen in der Sekundärstruktur der 18S rRNA (siehe Abb. 3.1), in denen im Vergleich mit anderen Sequenzen eine hohe Variabilität in der Basenabfolge zu beobachten ist (Wuyts *et al.* 2002). Hierbei zeichnen sich vor allem die Expansionssegmente V4 und V7 durch eine hohe Variabilität aus. Expansionssegmente beschränken sich nicht nur auf die ribosomale DNA, sie kommen ebenfalls in der reifen RNA vor. Ihre Funktion konnte bislang nicht geklärt werden. Innerhalb der V4 Region sind es wiederum die Helices E23_1 und E23_2, die sich durch bemerkenswerte Längenunterschiede auszeichnen (Crease & Colbourne 1998, Crease & Taylor 1998, Choe *et al.* 1999). Dies kann auch bei den untersuchten Taxa der Asellota beobachtet werden: mit 13 bp ist diese Region bei *Acanthocope galathea* außergewöhnlich kurz, während bei *Iathrippa sarsi* die Helices E23_1 und E23_2 eine Länge von 476 bp haben (siehe Tab. 3.2). Die Längendifferenz für diese beiden Taxa beträgt somit 463 bp.

Vergleichbare Längenvariationen dieser hypervariablen Bereiche wurden auch bei anderen Gruppen der Isopoden (Choe *et al.* 1999, Held 2000a, Dreyer & Wägele 2001), Amphipoden (Englisch 2001), einigen Branchiopoden (Crease & Colbourne 1998, Crease and Taylor 1998, Spears & Abele 2000) und verschiedenen Insektentaxa (Choe *et al.* 1999, Hancock & Vogler 1998, Hancock & Vogler 2000) festgestellt.

Eine mögliche Ursache der mitunter enormen Verlängerungen sind sogenannter "slippage" Ereignisse, bei denen sich Motive von Tri- und Tetranukleotiden (z.B. GGTG) wiederholen (Hancock & Dover 1990, Hancock 1995). Diesbezügliche detaillierte Untersuchungen liegen für die Expansionssegmente der Isopoden noch nicht vor.

Während in konservierten Sequenzabschnitten die Homologisierung der Basen keine Probleme bereitet, ist dies für die variablen Regionen nicht der Fall. Vor allem bei nicht sehr nahe verwandten Taxa ist die Homologie dieser Bereiche fraglich. Lediglich bei nah verwandten Arten innerhalb von Familien findet man, sofern überhaupt vorhanden, alinierbare Muster in der Basenabfolge (siehe Abb. 3.1). Aus diesem Grund wurden die hochvariablen Bereiche E23_1 und E23_2 der V4-Region sowie das Expansionssegment V7 aus der Alinierung 1 entfernt.

4.1.3 Diskussion der "Maximum Parsimoy"-Methode

Die Anwendung der MP-Methode setzt einige wichtige Annahmen voraus, die im Zuge der Suche nach dem "sparsamsten Baum" nicht überprüft werden können. Wird eine dieser Voraussetzungen nicht erfüllt, entstehen verfälschte Topologien (Wägele 2000). So wird vorausgesetzt, dass es sich bei allen Merkmalen um Positionshomologien, in diesem Fall Positionen der Alinierung, handelt. Durch die Entfernung der hypervariablen Bereiche E23_1 und E23_2 der V4-Region sowie des Expansionssegmentes V7 aus der Alinierung 1 wurde dieser Problematik Rechnung getragen. Weiterhin soll jedes Merkmal gemäß seiner Homologiewahrscheinlichkeit gewichtet werden. Werden keine Merkmalsgewichtungen vorgenommen, kann die Topologie eines Dendrogramms durch wenige bedeutungslose Merkmale drastisch verändert werden. Die Beurteilung von Merkmalen als "wertvoll" oder "weniger wertvoll" ist jedoch häufig subjektiv und daher kritisch zu beurteilen. Für DNA-Sequenzen gestaltet sich eine Gewichtung von Alinierungspositionen in der Regel recht schwierig, entsprechend wurde in der vorliegenden Arbeit auf eine Gewichtung verzichtet. Allerdings ist festzuhalten, dass auch eine gleiche Bewertung aller Alinierungspositionen einer Gewichtung entspricht.

Eine wichtige Annahme des MP-Verfahrens ist jedoch die Vorstellung, dass evolutionäre Veränderungen nur selten auftreten. Ist dies indes nicht der Fall, und Sequenzen erfahren häufig Substitutionen, können mögliche Apomorphien im Zuge multipler Substitutionen an einer Position wieder verloren gehen. Entsprechend können zufällige Übereinstimmungen zwischen nicht näher verwandten Taxa auftreten. Dieses Phänomen der molekularen Analogie und Konvergenz wird als "long branch"-Effekt bezeichnet (Hendy & Penny 1989). "Lange Äste" sind Stammlinien, die eine große Zahl an Substitutionen aufweisen, so dass Apomorphien substituiert sind und mit größerer Wahrscheinlichkeit zufällige Übereinstimmungen zwischen zwei Taxa existieren, die nicht Schwestergruppen sind. Neben einer falschen Stützung von Gruppen durch "long branch"-Effekte können auch Plesiomorphien Ursache für die Postulierung unglaubhafter Hypothesen sein. Dieser Fall tritt ein, wenn eine falsche Gruppierung durch scheinbare Synapomorphien gestützt wird, die in

Wirklichkeit Symplesiomorphien sind und auf Grund multipler Substitutionen nicht als solche erkannt werden. Weitere Schwierigkeiten bereiten Homoplasien: Liegen inkompatible Merkmale vor, so gibt es mehrere dichotome Dendrogramme, die die Struktur des Datensatzes beschreiben. Im Gegensatz zu Distanzmethoden oder ML-Verfahren werden beim "Maximum Parsimony"-Verfahren keine besonderen Sequenzevolutionsmodelle benötigt, was ein bedeutender Vorteil dieses Konzeptes ist.

4.1.4 Der "bootstrap"-Test

Bei der Auswertung von "bootstrap"-Analysen ist es wichtig festzuhalten, dass ein "bootstrap"-Wert keine sichere Aussage zur Qualität des Datensatzes oder zur Verlässlichkeit der verwendeten Methode zur Rekonstruktion der Phylogenie ermöglicht. Der "bootstrap"-Wert hängt vielmehr von den Eigenarten des Rekonstruktionsverfahrens und von der Zahl und Verteilung der Merkmale in der Datenmatrix ab. Es wird lediglich gezeigt, wie gut das resultierende Dendrogramm zum Datensatz passt. Hohe "bootstrap"-Werte entstehen immer dann, wenn eine Gruppierung durch eine Vielzahl an Apomorphien, Plesiomorphien aber auch Analogien gestützt wird. Alternativ kann auch eine durch wenige Apomorphien gestützte Gruppe hohe "bootstrap"-Werte aufweisen, wenn für alternative Gruppierungen keine Merkmale vorliegen (Wägele 2000).

4.1.5 Diskussion der "Maximum Likelihood"-Methode

Die Ergebnisse von ML-Methoden sind im hohen Maße vom verwendeten Sequenzevolutionsmodell abhängig. Ist das Modell fehlerhaft, finden sich diese Fehler in der phylogenetischen Rekonstruktion wieder. Sehr einfache Modelle tragen dem realen Evolutionsgeschehen oft nur ungenügend Rechnung. Dagegen können bei der Verwendung von komplexen Modellen Ungenauigkeiten bei der Anschätzung der Parameter auftreten, was zu artifiziellen Gruppierungen bei der Stammbaumrekonstruktion führt.

Eine objektive Auswahl des Sequenzevolutionsmodells und entsprechender Parameter ermöglicht der von Goldman (Goldman 1993a, 1993b) entwickelte "Likelihood Ratio"-Test. Mit Hilfe dieses Tests kann überprüft werden, ob die Wahl zusätzlicher Modellparameter eine signifikante Verbesserung der Wahrscheinlichkeit für eine Topologie bewirkt. Ist die Verbesserung nicht signifikant, kann man das einfachere Modell beibehalten. Der "Likelihood Ratio"-Test ist ein recht strenges Kriterium, dessen Stärken notwendigerweise in der Zurückweisung von zu einfachen Modellen liegen. Er garantiert jedoch nicht die Wahl eines Modells zur Sequenzänderung, das dem tatsächlichen Verlauf der evolutiven Geschichte der Sequenzen entspricht. Da von der Wahl des Evolutionsmodells auch die rekonstruierte Topologie abhängt, ist es allerdings sinnvoll, diese Wahl von einem objektivierbaren Kriterium bestimmen zu lassen. Aus diesem Grunde wurde das in dieser Arbeit für die "Maximum Likelihood" und Bayesschen Analysen verwendete Modell zur Sequenzevolution sowie dessen Parameter unter Verwendung eines "Likelihood Ratio"-Tests ermittelt (siehe 3.1.3.1).

4.1.6 Diskussion des Bayesschen Verfahrens

Im Grunde handelt es sich bei dem Bayesschen Verfahren um nichts anderes als eine Sonderform des "Maximum Likelihood"-Verfahrens. Dementsprechend ist es auch mit denselben Nachteilen behaftet (Wahl eines Sequenzevolutionsmodells, …). Weiterhin liegen Hinweise vor, dass die ermittelten a-posteriori Wahrscheinlichkeiten unter Umständen zu hoch liegen können und eine geringere Glaubwürdigkeit als "bootstrap"-Werte haben (Suzuki *et al.* 2002, Huelsenbeck *et al.* 2002). Grundlegende Untersuchungen diesbezüglich stehen allerdings noch aus.

4.1.7 Die Stellung der Taxa

4.1.7.1 Die Asellota

Neben den Oniscidea oder Landasseln sind die Asellota die bekanntesten Isopoden. Insbesondere in der Tiefsee erreichen sie eine sehr hohe Artenzahl. Innerhalb der Isopoda zählen mit sie ihrer mutmaßlichen Schwestergruppe, den Calabozoidea, zu den basalen Taxa. Ihr Ursprung findet sich im oberen Sublitoral gemäßigter und warmer Ozeane (Wägele 1989). Mehrere komplexe Apomorphien kennzeichnen die Asellota als Monophylum, wie beispielsweise ein mit den Pleomeren 3 - 5 verwachsenes Pleotelson, einästige 2. Pleopoden bei den Weibchen und ein geknicktes Gonopodium. Die Monophylie der Asellota wurde bislang in morphologischen Analysen noch nie angezweifelt (Wägele 1989, Brusca & Wilson 1991). Jüngste molekulargenetische Untersuchungen bestätigen indes die Monophylie der limnischen als auch marinen Formen, jedoch nicht der Asellota (Wägele *et al.* 2003).

4.1.7.2 Die Aselloidea

Die Aselloidea setzen sich aus 4 Familien zusammen, zu denen die Asellidae, Stenasellidae, Atlantasellidae und Microcerberidae gezählt werden. Die rund 650 Arten sind weltweit verbreitet und überwiegend Süßwasserbewohner, von denen sehr viele in subterranen Gewässern auftreten (Gruner 1993). Die Aselloidea werden nur durch Symplesiomorphien charakterisiert (z. B. Pleopod 2 beim Weibchen nicht verwachsen, Pleopod 5 zweiästig).

Die im Datensatz vorliegenden 4 Arten werden bei allen durchgeführten Analysen als Monophylum erkannt.

4.1.7.3 Die Stenetriidae

Die Stenetriidae sind nach morphologischen Vorstellungen eine relativ ursprüngliche marine Familie, die an der Basis der janiroiden Line der Asellota steht (Wilson 1987, Wägele 1989). Als Apomorphie ist der eingliedrige Exopodit des 2. männlichen Pleopoden zu nennen (Wägele 1989).

Diese Hypothese wird durch die vorliegenden Ergebnisse unterstützt: in allen Analysen repräsentieren die untersuchten Taxa der Stenetriidae die monophyletische Schwestergruppe der Janiroidea.

4.1.7.4 Die Acanthaspidiidae

Die Acanthaspidiidae haben ihr Hauptverbreitungsgebiet in der südlichen Hemisphäre. Das Taxon wurde von Brandt im Jahre 1991 revidiert (Brandt 1991b), was dazu führte, das nur noch die Gattungen *Acanthaspidia, Ianthopsis* und seit kurzem *Mexicope* (Just 2001a) der Familie angehören. *Ianthopsis* und *Mexicope* sind augentragende Flachwasserbewohner, lediglich *Ianthopsis multispinosa* besitzt keine Augen mehr. Alle Tiere der Gattung *Acanthaspidia* sind dagegen blind und werden überwiegend in den Tiefseebecken der Südhalbkugel gefunden. Eine Ausnahme bildet *Acanthaspidia drygalskii*: Diese Spezies wurde in geringen Tiefen auf dem antarktischen Schelf nachgewiesen (Vanhöffen 1914, Brandt 1991b). Ein synapomorphes Merkmal der Acanthaspidiidae ist die Länge des Sympoditen des Uropoden. Auch die Beborstung des Exopoditen des dritten Pleopoden wird als Synapomorphie angesehen (Wägele 1989). Weiterhin zeichnen sich die Acanthaspidiidae durch einen besonderen Tergitaufbau aus, welcher ihnen einen charakteristischen Körperumriss verleiht: Die Peraeomere 2 - 4 besitzen paarige Fortsätze, die Peraeomere 1, 5, 6 und 7 dagegen unpaare laterale Tergitlappen (siehe Abb. 4.1). Zusätzlich liegen die Coxae der mittleren Peraeopoden in einer flachen Einbuchtung der lateralen Tergitränder. Vergleichbare Strukturen in unterschiedlich starker Ausprägung finden sich auch bei den Mesosignidae (siehe Abb. 1.3 D), Janirellidae (siehe 1.3 C) und einigen Gattungen der Janiridae *sensu* Wolff. Allerdings sprechen einige andere morphologische Merkmale gegen eine mögliche nähere Verwandtschaft dieser Taxa (Wägele 1989). Vorstellungen zur Verwandtschaft der Gattungen oder Arten der Acanthaspidiidae liegen kaum vor, da im speziellen die zahlreichen mangelhaften Artbeschreibungen ein großes Hindernis darstellen. Brandt konnte 1991 lediglich 4 "Artengruppen" unterscheiden: die "*Ianthopsis multispinosa* Gruppe", die "*Acanthaspidia typhlops* Gruppe" und die "*Acanthaspidia acanthonotus* Gruppe" (Brandt 1991a). Besonders interessant ist Stellung der bereits erwähnten Spezies *Acanthaspidia drygalskii*: Da diese Art nicht die für die Gattung *Acanthaspidia* apomorphen Merkmale besitzt, wird sie bisher als *incertae sedis* innerhalb der Acanthaspidiidae angesehen.

Abb. 4.1. Lateralansicht von *lanthopsis nasicornis* Vanhöffen, 1914. Die roten Pfeile die kennzeichnen die paarigen lateralen Tergitlappen der Peraeomere 2 - 4, hellblaue Pfeile die unpaaren Fortsätze der Peraeomere 1, 5, 6 und 7.

Die molekularen Ergebnisse bestätigen die Familie Acanthaspidiidae als Monophylum in allen Topologien, eine dichotome Auflösung innerhalb der Gruppe gelingt jedoch in keiner Analyse. Zusätzlich wird die Monophylie der zwei untersuchten Gattungen, *Acanthaspidia* und *Ianthopsis*, nicht unterstützt. Als besonders inkongruent entpuppt sich die Stellung von *Acanthaspidia drygalskii*. Während sich diese Art in den Resultaten der ML- und Bayesschen Analysen als Schwestertaxon von *Acanthaspidia rostratus* und *Ianthopsis nasicornis* wiederfindet, liegt in den MP-Analysen ein Schwestergruppenverhältnis zu *Ianthopsis ruseri* vor. Dagegen unterstützen sämtliche Analysen ein Schwestergruppenverhältnis von *Acanthaspidia pleuronotus* und *Acanthaspidia bifurcatoides*. Beide Taxa gehören der von Brandt erkannten "*Acanthaspidia acanthonotus* Gruppe" an (Brandt 1991a). Die molekularen Daten deuten an, dass möglicherweise auch *Acanthaspidia sp.* zu dieser Artengruppe zählt, da sich dieses Taxon stets im Schwestergruppenverhältnis zu den beiden erwähnten Taxa befindet. Eine notwendige Identifizierung dieser Art steht allerdings noch aus.

4.1.7.5 Die Desmosomatidae

Die meisten Merkmale, die charakteristisch für die Desmosomatidae (siehe Abb. 1.3 F) sein sollen (Hessler 1970), kommen auch bei den Nannoniscidae und zum Teil bei den Munnopsididae vor. Beide Familien werden zu der näheren Verwandtschaft der Desmosomatidae gezählt. Nach einem genauen Vergleich verbleiben als Synapomorphien der Desmosomatidae folgende Merkmale: ein mit großen Dornen besetzter Carpus des ersten Peraeopoden, die auch am Carpus und Propodus des zweiten Peraeopoden auftreten, sowie ein langes zweites Grundglied der 2. Antenne, auf dem sich lediglich zwei große Fiederborsten gegenüberstehen (Wägele 1989). Innerhalb der Desmosomatidae werden mit den Desmosomatinae und Eugerdellatinae zwei Unterfamilien unterschieden (Hessler 1970). Der untersuchte Datensatz beinhaltet mit *Eugerda sp.* und *Mirabilicoxa sp.* sowohl 2 Taxa der Desmosomatinae als auch mit *Chelator sp.* und *Eugerdella natator* zwei Vertreter der Eugerdellatinae.

Die Monophylie dieser Familie wird durch die 18S rDNA Daten gut unterstützt. Die molekularen Daten geben jedoch keinen Aufschluss über die Verwandtschaftsverhältnisse innerhalb der Desmosomatidae: Weder die Eugerdellatinae noch die Desmosomatinae stellen monophyletische Gruppen. Für eine sinnvolle Untersuchung der Verwandtschaft innerhalb der Desmosomatidae sind weitere Sequenzen dringend erforderlich.

4.1.7.6 Die Haploniscidae

Bei den Haploniscidae handelt es sich um eine typische Tiefseefamilie der Asellota (siehe Abb. 1.3 A, 1.4). Alle Vertreter der 7 bekannten Gattungen sind blind und unterscheiden sich nur in kleinen Details (Lincoln 1985). Als mögliche Apomorphien werden die lateral ausgezogenen Peraeomere und distal verbreitete Maxillipeden diskutiert (W. Brökeland, persönliche Mitteilung). Bislang haben morphologische Daten keinen Aufschluss über die Stellung der Haploniscidae innerhalb der Janiroidea geben können.

Die Resultate der 18S rDNA Analysen unterstützen die Monophylie der Haploniscidae. Unabhängig von der zur Stammbaumrekonstruktion verwendeten Methode kann die Familie in jeder Topologie identifiziert werden. Innerhalb der Haploniscidae wird die Gattung *Antennuloniscus* als ursprünglichste Gattung erkannt. Die vorliegenden Resultate weisen zusätzlich auf ein Schwestergruppenverhältnis der Haploniscidae zu einer Gruppe von Taxa hin, zu denen *Iais pubescens* ("Janiridae"), *Dendromunna sp.* (Dendrotiidae) und *Thylakogaster sp.* (Haplomunnidae) gehören.

4.1.7.7 Die Ischnomesidae

Die Ischnomesidae zeichnen sich insbesondere durch ihre bemerkenswerte Körperform aus (siehe Abb. 1.3 E): Ihr Körper ist sehr langgestreckt, wobei insbesondere die Peraeomere 4 und 5 deutlich länger als breit sind. Weiterhin ist der Cephalothorax vom ersten Peraeomer seitlich umfasst und mit diesem verschmolzen (Wolff 1962). Diese fragilen Tiefseetiere sind nur in seltenen Fällen vollständig erhalten, da Beine und Antennen leicht abbrechen. Nach morphologischen Aspekten wird die Gattung *Ischnomesus* als ursprünglichste Form angesehen.

Das Taxon Ischnomesidae wird durch die molekularen Daten sehr gut gestützt. Weiterhin tritt der untersuchte Vertreter der Gattung *Ischnomesus* in allen Topologien als ursprünglichstes Taxon der Familie auf.

4.1.7.8 Die "Janiridae"

Die morphologisch umstrittene Familie der Janiridae wurde 1899 von Sars begründet und war seitdem Gegenstand verschiedener phylogenetischer Untersuchungen (u. a. Wägele 1989, Wilson 1994, Wilson & Wägele 1994). Im Laufe der Zeit wurden zahlreiche Taxa aus den Janiridae anderen Familien zugeordnet bzw. zu eigenständigen Familien erhoben. Übrig blieb eine Artengruppe, bei denen eine systematische Zuordnung bislang nicht möglich war. Wolff fasste diese Taxa als Janiridae *sensu* Wolff (1962) zusammen. Die Definition der Familie enthält jedoch ausschließlich Plesiomorphien, wie zum Beispiel freie, nicht verwachsene Peraeomere oder einem carposubchelaten ersten Propodus.

Die Janiridae erscheinen in keiner durchgeführten Stammbaumrekonstruktion als monophyletische Gruppierung. Diese Ergebnisse werden zusätzlich durch vergleichende morphologische Untersuchungen gestützt (Wägele 1989, Wilson 1994, Wilson & Wägele 1994). Indes bestätigen die 18S rDNA Daten die Monophylie der Gattungen *Neojaera* und *Iathrippa* in allen berechneten Topologien.

4.1.7.9 Die Joeropsididae

Innerhalb der Joeropsididae werden mit *Joeropsis*, *Rugojoeropsis* und *Scaphojoeropsis* lediglich 3 Gattungen unterschieden, von denen *Rugojoeropsis* und *Scaphojoeropsis* erst im Jahre 2001 beschrieben wurden (Just 2001b). Ursprünglich wurde die Gattung *Joeropsis* zu den Janiridae gezählt, doch zahlreiche Apomorphien, wie zum Beispiel kurze Uropoden mit winzigen Rami oder ein verschmälertes 3. Glied des Maxillipedenpalpus rechtfertigen die Familiendefinition (Nordenstam, 1933).

Die 18S rDNA Daten bestätigen die Vorstellung der Monophylie der Joeropsididae in allen Analysen. Die Familie ist in allen Analysen das Schwestertaxon der Acanthaspidiidae.

4.1.7.10 Die Macrostylidae

Wie auch die Haploniscidae werden die Macrostylidae zu den blinden Tiefseeformen der Asellota gezählt. Zahlreiche komplexe Apomorphien deuten auf eine röhrenbewohnende Lebensweise hin (Wägele 1989). Hierzu zählen unter anderem einästige Uropoden mit sehr langen Sympoditen, verkürzte 1. Antennen sowie ein Statocystenpaar im Pleotelson. Die Monophylie der Macrostylidae ist daher sehr gut begründet. Bislang sind 47 Arten bekannt, die sich auf die zwei Gattungen *Macrostylis* und *Desmostylis* aufteilen (Brandt 2002).

Der vorliegende molekulare Datensatz beinhaltet lediglich zwei Taxa der Gattung *Macrostylis*. Alle durchgeführten Analysen bestätigen die Monophylie dieser Familie.

4.1.7.11 Die Munnopsididae

Die Munnopsididae sind eine typische und artenreiche Tiefseefamilie der Asellota. Bei allen Gattungen und Arten sind die Augen vollständig reduziert. Ihre Verbreitung ist weltweit, die meisten Gattungen sind in allen Ozeanen vertreten. In Tiefseeproben stellen sie häufig das individuenreichste und somit dominierende Taxon innerhalb der Asellota (u. a. Wilson & Hessler 1980, Harrison 1988, Brandt 2004). Die Monophylie der Familie wird durch mehrere komplexe Synapomorphien sehr gut gestützt, wie die Modifizierung der Peraeopoden 5 – 7 zu kräftigen Schwimmbeinen, die Umbildung des Hinterkörpers zum sogenannten Natatosoma, die rinnenförmigen Klauen der Peraeopoden und eine deutliche Verbreiterung des ersten Gliedes der 1. Antenne (Wilson 1989). Die Familie enthält mehrere Unterfamilien sowie einige bislang wenig erforschte Gattungen, deren Beziehungen zu den Unterfamilien noch nicht geklärt werden konnten (Wilson 1989).

Die 18S rDNA Daten bestätigen die Monophylie der Munnopsididae in den meisten Stammbaumrekonstruktionen. In der MP-Analyse ist lediglich die basale Aufspaltung zwischen Austroniscus sp. (Nannoniscidae) und den Munnopsididae nicht rekonstruierbar. Eine Analyse der Verwandtschaftsverhältnisse innerhalb der Munnopsididae auf Gattung- und Artebene ermöglichen lediglich die ML- und Bayessche Analyse. Bemerkenswert ist die Stellung von *Eurycope sarsi* innerhalb der ermittelten Topologien. Nach jüngsten Studien gehört diese Art nicht der Gattung *Eurycope* an (M. Malyutina, persönliche Mitteilung), was die 18S rDNA Analysen bestätigen. Stattdessen haben zukünftige Untersuchungen die systematische Stellung dieser Art und ihre Gattungszugehörigkeit innerhalb der Munnopsididae zu klären. Sämtliche molekularen Resultate stützen indes die Monophylie verschiedener Unterfamilien. Hierbei handelt es sich um die Eurycopinae mit *Eurycope sp.* 1, *Eurycope sp.* 2 und *Eurycope inermis*, die Ilyarachninae mit *Ilyarachna antarctica*, *Echinozone spinosa* und *Echinozone sp.*, sowie die Storthyngurinae mit den Arten *Storthyngurella triplospinosa*, *Sursumura falcata* und *Sursumura robustissima*.

4.1.7.12 Die Dendrotiidae, Haplomunnidae, Janirellidae, Mesosignidae und Nannoniscidae

Der vorliegende 18S rDNA Datensatz enthält jeweils nur eine Sequenz der Familien Dendrotiidae, Haplomunnidae, Janirellidae, Mesosignidae und Nannoniscidae. Die Ursache hierfür liegt in der Seltenheit der Tiere: Vertreter dieser Taxa liegen typischerweise, wenn überhaupt vorhanden, nur in einer sehr geringen Zahl in den Fangproben vor (z. B. Wolff 1962, Brandt 2004). Natürlich ist es nicht möglich, Aussagen über die Monophylie der einzelnen Familien zu treffen. Nichtsdestoweniger ermöglichen die untersuchten Sequenzen, wenn auch gering an Zahl, wichtige Einblicke in die Phylogenie der marinen Asellota: In allen ermittelten Topologien werden *Thylakogaster sp.* (Haplomunnidae) und *Dendromunna sp.* (Dendrotiidae) als Schwestertaxa identifiziert. Dieses Schwestergruppenverhältnis wird auch von morphologischer Seite her bestätigt, da sich beide Taxa durch eine besondere Form des Carpus auszeichnen (Wilson 1976, Wägele 1989). Für künftige Analysen sind Sequenzen weiterer Taxa dieser fünf Familien jedoch essentiell.

4.1.8 Das Großgruppentaxon Janiroidea und die Besiedlung der Tiefsee

Innerhalb der Janiroidea werden 22 Familien mit über 1500 Arten unterschieden. Es handelt sich fast ausschließlich um Meeresbewohner, nur sehr wenige Arten kommen in Brack- und Süßgewässern vor. Das Taxon beinhaltet neben verschiedenen augentragenden Flachwasserformen auch die typischen blinden Tiefseefamilien. Eine komplexe Apomorphie

des Taxons ist die aus der medianen Verwachsungsnaht der ersten männlichen Pleopoden gebildete Spermarinne, die im Endopoditen zu einem an beiden Enden offenen Rohr verwachsen ist (Wilson 1987, Wägele 1989). Die Monophylie der Janiroidea gilt daher als gut begründet. Jedoch geben morphologische Merkmale nur eingeschränkt Aufschluss über die Verwandtschaftsverhältnisse innerhalb der Janiroidea (siehe Abb. 4.2).

Abb. 4.2: Verwandtschaft der Familien der Janiroidea basierend auf morphologischen Merkmalen. In den punktierten Bereichen sind die Tiefseegruppen eingeschlossen. Sternchen (*) kennzeichnen Taxa, von denen 18S rDNA Sequenzen zur Rekonstruktion der Phylogenie ermittelt werden konnten (siehe Tab. 2.1). Die Kästchen kennzeichnen Synapomorphien, wobei wenig gewichtige Synapomorphien gestrichelt umrahmt sind. Das leere Kästchen symbolisiert die Synapomorphien der Janiroidea (siehe 4.1.7.4).
1: munnoider Habitus (schlanke Laufbeine, gestielte Augen, posterolateral inserierende Uropoden).
2: Peraeopod 1 subchelat.
3: Dactylus sekundär verlängert, 3. Klaue reduziert, dorsale Klaue deutlich länger als ventrale Klaue.
4: Augen reduziert.
5: Exopodit von Pleopod 3 stets schmaler als Endopodit (verändert nach Wägele 1989).

Die vorliegenden 18S rDNA Daten bestätigen die Monophylie der Janiroidea in allen ermittelten Topologien. Allerdings unterscheiden sich die Resultate der "Maximum Parsimony"-Analysen (siehe 3.1.2) deutlich von denen der "Maximum Likelihood"- und Bayes Untersuchungen (siehe 3.1.3), die sich wiederum nur durch geringfügige Unterschiede auszeichnen. Die größten Diskrepanzen treten in den basalen Verzweigungen der Janiroidea auf. Während die Topologien der ML- und Baves Analyse eine Reihe basaler Verzweigungen aufweisen, die durch hohe a-posteriori Wahrscheinlichkeiten bestätigt werden, erfahren diese Verzweigungen innerhalb der "bootstrap"-Analyse im MP-Verfahren keine ausreichende Unterstützung. Besonders auffällig ist die variable Stellung von Janira maculosa innerhalb der berechneten Topologien. In den MP-Analysen entspricht diese Art dem ursprünglichsten Vertreter der Janiroidea, deren Stellung durch einen hohen "bootstrap"-Wert (100%) unterstützt wird. Dagegen findet sich Janira maculosa in den Topologien der ML und Bayes Analyse in einem Schwestergruppenverhältnis zu den drei Vertretern der Gattung Neojaera wieder. Diese Gruppierung wird in der Bayes Analyse durch eine hohe a-posteriori Wahrscheinlichkeit (0.99) bestätigt. Die Position von Janira maculosa innerhalb der MP-Analysen wird möglicherweise durch einen "long branch"-Effekt verursacht (siehe 4.1.3). Besonders auffällig ist die schwächer werdende Unterstützung in den MP-Analysen für phylogenetisch ältere Verzweigungen innerhalb der Janiroidea. Eine Ursache hierfür könnte in der Existenz von Mehrfachsubstitutionen liegen. Die Herabgewichtung der Transitionen in Vergleich zu den selteneren Transversionen verbesserte die Auflösung nur unwesentlich (nicht dargestellt). Die bei einem Vergleich von Sequenzen zählbaren Unterschiede repräsentieren zwangsläufig nicht alle Substitutionen, die seit der Divergenz der dazugehörigen Ahnenserie eingetreten sind (Wägele 2000). Vielmehr nimmt die Wahrscheinlichkeit, dass multiple Substitutionen vorliegen, mit der Divergenzzeit zu, so dass insbesondere für ältere Verzweigungen das phylogenetische Signal "verrauscht". Im Gegensatz zu "Maximum Parsimony"-Analysen ermöglichen "Maximum Likelihood"-Verfahren in gewissen Grenzen eine Korrektur multipler Substitutionen, da ML-Verfahren Annahmen zur Natur einer Substitution erlauben (siehe 2.3.2.2). Allerdings ist die Zuverlässigkeit von ML-Analysen in einem hohen Maße von der Wahl des Sequenzevolutionsmodells abhängig (siehe 4.1.5). Eine objektive Auswahl des Evolutionsmodells kann jedoch durch einen "Likelihood Ratio" Test getroffen werden (siehe 2.3.3.5, 4.1.5). Zahlreiche Untersuchungen haben die Zuverlässigkeit und Robustheit der Ergebnisse von ML-Analysen bestätigt (z.B. Yang et al. 1994, Hillis et al. 1996, Huelsenbeck & Crandall 1997, Hülsenbeck & Rannala 1997, Cunningham et al. 1998, Zhang 1999). Daher

sind insbesondere für phylogenetisch ältere Verzweigungen die Resultate der ML-Verfahren glaubwürdiger und plausibler.

Eine Besiedlung der Tiefsee fand unter Berücksichtigung dieser Gesichtspunkte in mindestens vier Gruppen unabhängig voneinander statt (siehe Abb. 4.3): Gruppe A beinhaltet die Acanthaspidiidae, Gruppe B die Haploniscidae, Gruppe C Dendromunna sp. (Dendrotiidae) und Thylakogaster sp. (Haplomunnidae), und zu Gruppe D zählen Mesosignum sp. (Mesosignidae), Janirella sp. (Janirellidae), Austroniscus sp. (Nannoniscidae), die Macrostylidae, Ischnomesidae, Desmosomatidae und Munnopsididae. Auf eine nahe Verwandtschaft der Munnopsididae, Nannoniscidae, Macrostylidae und Desmosomatidae weisen auch morphologische Merkmale hin, allerdings stimmen die Vorstellungen zur Verwandtschaft dieser 4 Familien nicht mit den molekularen Ergebnissen überein. Sämtliche 18S rDNA Analysen bestätigen die Monophylie der Taxagruppe D, wenngleich eine Auflösung der Verwandtschaftsverhältnisse nur im Rahmen der ML- und Bayes Analysen gelingt (siehe Abb. 3.6, 3.7). Ein möglicher Grund für diesen Sachverhalt könnte eine zeitlich dicht aufeinander abfolgende Reihe von Aufspaltungsereignissen sein. Eine Überprüfung dieser Hypothese ist durch die Analyse anderer Genabschnitte möglich, da ein ähnliches Ergebnis auch dort zu erwarten ist. Tritt dieser Fall ein, deuten die Ergebnisse auf eine rasche Radiation der Arten in der Tiefsee hin. Dies würde auch im Einklang mit morphologischen Überlegungen stehen (Wägele 1989). Eine zeitliche Datierung eines solchen Ereignisses gestatten die molekularen Daten jedoch nicht. Auch ist der Nachweis der geographischen Herkunft dieser Taxa nicht mehr möglich, da für die meisten Familien und Gattungen eine weltweite Verbreitung vorliegt. Ein vergleichbares Vorkommen weisen auch die Haploniscidae (Taxagruppe B), Dendrotiidae und Haplomunnidae (Taxagruppe C) auf, deren geographische Herkunft ebenfalls unbekannt ist.

Abb. 4.3: Phylogenie der Familien der Janiroidea basierend auf 18S rDNA Daten (Bayes-Analyse). Die dargestellte Topologie entspricht dem 50 % "majority rule" Konsensusbaum der Bayes Analyse (siehe 3.7). An den Knoten sind die aposteriori Wahrscheinlichkeiten aufgelistet. Familien, deren Monophylie bestätigt wurde, werden durch ihren entsprechenden Familiennamen repräsentiert. Blinde Taxa werden durch schwarze Schrift, augentragende durch hellblaue gekennzeichnet. Innerhalb der Acanthaspidiidae finden sich sowohl augentragende als auch blinde Formen, jedoch ist ihre Phylogenie strittig (siehe 4.1.7.4). Die Familie wurde daher in dunkelblau gehalten. Die Buchstaben A – D kennzeichnen die Gruppen, in denen unabhängig voneinander die Besiedlung der Tiefsee stattfand.

Etwas komplizierter stellt sich die Situation für die Acanthaspidiidae (Gruppe A) dar. Die Acanthaspidiidae haben wahrscheinlich ihre Radiation in der Antarktis erfahren, wo ein Grossteil der bekannten Arten endemisch vorkommt (Brandt 1991a). Nur wenige Arten kommen auch in der Nordhemisphäre, überwiegend im Atlantik, vor. Bislang wurde vermutet, dass sich die blinde Gattung Acanthaspidia phylogenetisch von der "primitiveren" und augentragenden Gattung Ianthopsis ableitet (Brandt 1991a, 1991b). Diese Hypothese erfährt durch die Resultate der 18S rDNA und 16S rDNA Analysen keine Unterstützung, da keine der beiden Gattungen als Monophylum bestätigt wird und basale Verzweigungen innerhalb der Acanthaspidiidae nicht aufgelöst werden. Die verwendeten 18S rDNA Daten ermöglichen derzeit nur einen eingeschränkten Einblick in die Verwandtschaftsverhältnisse der untersuchten Acanthaspidiidae, weisen allerdings auf eine mehrfache und voneinander unabhängige Besiedlung der Tiefsee des Südpolarmeeres hin. Ein Ausgangspunkt für diese Entwicklung kann allein schon die in polaren Gewässern typische Eurybathie sein (Hessler & Wilson 1983). Eine umfassende morphologische Bearbeitung dieser Familie mit detaillierten Nachbeschreibungen der Arten ist dringend erforderlich. Auf Grund der mitunter mangelhaften Artbeschreibungen ist nicht auszuschließen, dass die Monophylie der Gattungen Ianthopsis und Acanthaspidia möglicherweise auch durch bislang noch nicht wahrgenommene morphologische Merkmale in Frage gestellt werden kann. Erste Hinweise hierfür finden sich in der zweifelhaften Gattungszugehörigkeit von Acanthaspidia drygalskii (Brandt 1991a), welche sich auch in den molekularen Ergebnissen wiederspiegelt. Für künftige 18S rDNA Studien könnte sich die Aufnahme weiterer Taxa in den Datensatz, insbesondere der Gattung Mexicope, die jüngst zu den Acanthaspidiidae gestellt wurde, als nützlich erweisen. Allerdings sollte auch die Verwendung anderer Gene zur Klärung der Phylogenie der Acanthaspidiidae in Betracht gezogen werden.

Im Vergleich zu der morphologischen Verwandtschaftshypothese (siehe Abb. 4.2) weisen die molekularen Ergebnisse zahlreiche Diskrepanzen auf. Zweifellos hat die Polyphylie der Janiridae *sensu* Wolff erheblichen Anteil an dieser Inkongruenz. Trotz der vermuteten Polyphylie dieses Taxon, die bereits im Rahmen morphologischer Analysen bestätigt wurde (Wägele 1989, Wilson 1994, Wilson & Wägele 1994), sind die verwandtschaftlichen Beziehungen der einzelnen Gattungen der Janiridae gegenüber den anderen Taxa der Janiroidae bislang unbekannt. Dies spiegelt sich auch im morphologischen Stammbaum in Form der nicht weiter aufgelösten "Janiridae"- bzw. "Janiralata"-Komplexe wieder (siehe Abb. 4.2). Es ist daher nicht überraschend, Taxa der Janiridae *sensu* Wolff an verschiedenen Positionen innerhalb der in dieser Arbeit ermittelten Topologien wiederzufinden. Ein weiteres

diskussionswürdiges Merkmal ist die Ausbildung paariger und unpaarer Tergitlappen sowie die Verlagerung der Coxae (siehe 4.1.7.4). Der erste Eindruck impliziert eine nähere Verwandtschaft jener Tiere, die sich durch den Besitz dieses Merkmals auszeichnen. Sie ist jedoch kaum mit anderen Merkmalen zu belegen, da die meisten Arten äußerst unvollständig beschrieben wurden und die Merkmale mosaikartig verteilt sind. In dem von Wägele (1989) vorgestellten Phylogeniekonzept der Janiroidea (siehe Abb. 4.2) fand die Ausbildung der Tergitfortsätze in Kombination mit der Verlagerung der Coxae nur einmal statt und gilt somit als Apomorphie dieser Gruppe. Die vorliegenden molekularen Ergebnisse unterstützen allerdings eine mehrfach konvergente Entstehung der Tergitlappen, denn in keiner gefundenen Topologie bilden *Mesosignum sp., Janirella sp.* und die bearbeiteten Acanthaspidiidae ein Monophylum. Die Existenz vergleichbarer Tergitlappen bei Vertretern der Storthyngurinae (Munnopsididae) kann als weiterer Beleg gewertet werden, dass laterale Tergitfortsätze offensichtlich mehrfach und unabhängig voneinander innerhalb der Janiroidea entstanden sind

4.2 Diskussion der Ergebnisse der 16s rDNA Datensätze

4.2.1 Acanthaspidia drygalskii: eine zirkumantarktische Art?

Die Spezies *Acanthaspidia drygalskii* zählt trotz ihrer geringen Größe von wenigen Millimetern zu den bekannteren antarktischen Asellota. Erste Exemplare dieser blinden Art wurden während der ersten deutschen Südpolar-Expedition in den Jahren 1901 - 1903 gefangen und 1914 von Vanhöffen beschrieben. Seitdem wurden Vertreter dieser Art in der Bellinghausen See, der Weddell See und der antarktischen Region des Indischen Ozeans gefunden (Brandt 1991b). Diese Funde deuten auf eine zirkumantarktische Verbreitung der Spezies auf dem antarktischen Kontinentalsockel hin, wobei die Besiedlung des antarktischen Schelfs von der Tiefsee aus stattfand (polare Emergenz) (Brandt 1991a). Zur Überprüfung der innerartlichen Variabilität der Spezies *Acanthaspidia drygalskii* wurde von 17 verschiedenen Exemplaren, von denen 9 aus der westlichen und 8 aus der östlichen Weddell See stammen, die partielle 16S rDNA amplifiziert und sequenziert.

Ähnlich wie bei morphologischen Merkmalen ist die Erwartung an die innerartliche Variabilität molekularer Daten nicht gleich Null. Die intraspezifischen Unterschiede sollten allerdings im Vergleich zu der Variabilität reproduktiv isolierter Arten klein sein. Innerhalb der Spezies *Acanthaspidia drygalskii* können drei verschiedene Gruppen von Haplotypen (A, B und C) unterschieden werden (siehe Tab. 3.2, Abb. 3.9, 3.10). Die Variabilität innerhalb der

Gruppen ist gering und liegt zwischen 0 und 1 Prozent. Auffallend höher sind die Unterschiede zwischen den gefundenen Gruppen: hier betragen die Differenzen in den p-Distanzen mindestens 7,4 Prozent (siehe Abb. 4.4). Sie liegen damit deutlich über der beobachteten zwischenartlichen Variabilität dieses Gens, welche für die morphologisch unstrittigen Arten *Acanthaspidia pleuronotus* und *Acanthaspidia bifurcatoides* zwischen 4,5 und 5,0 Prozent liegt. Fließende Übergänge zwischen ihnen existieren nicht. Erhöhte innerartliche Variationen sind auch bei den Spezies *Ianthopsis ruseri* (0 – 4,6 %), *Ianthopsis multispinosa* (1,9 – 2,9 %) und *Acanthaspidia bifurcatoides* (0 – 2,1 %) zu beobachten. Die geringe Anzahl untersuchter Exemplare erlaubt allerdings noch keine weiteren Aussagen.

Abb. 4.4: Herkunft der innerhalb der Spezies Acanthaspidia drygalskii gefundenen Haplotypgruppen A, B und C des 16S rRNA Gens sowie die Ergebnisse des p-Distanzvergleiches. Die Variabilität innerhalb der Gruppen der Haplotypen ist gering und liegt zwischen 0 und 0,5 Prozent. Auffallend höher sind die Unterschiede zwischen den drei gefundenen Haplotypen (> 9,2%). Sie liegen deutlich über die beobachtete zwischenartliche Variabilität dieses Gens (5,8 – 6,7 %). Die Karte wurde mit PanMap, Version 0.9.6 (1996, 1997), einem Bestandteil des PANGAEA-Programms (Diepenbroek *et al.* 2002), erstellt.

Held (2000a, 2003, 2004) erarbeitete verschiedene Kriterien, die eine Identifizierung kryptischer Arten innerhalb antarktischer Serolidae und Valvifera erlaubten: a) eine bimodale Verteilung paarweiser Distanzwerte der studierten Individuen ohne fließende Übergänge, b) eine bekannte zwischenartliche Variabilität des analysierten Gens für unstrittige Arten, die in die nähere Verwandtschaft der untersuchten Art fallen, und c) die Koexistenz zweier genetisch voneinander differenzierter Formen in Sympatrie. Die für *Acanthaspidia drygalskii*

vorliegenden Daten erfüllen alle drei aufgestellten Kriterien und erhärten die Vorstellung der Existenz kryptischer Arten, wenngleich eine Koexistenz zweier unterschiedlicher Haplotypgruppen (A und B) lediglich der westlichen Weddell See zu beobachten ist. Es ist allerdings nicht auszuschließen, dass Gruppe A und auch B zusätzlich in der östlichen Weddell See vorliegen bzw. Gruppe C gleichermaßen in den Gewässern nahe der antarktischen Halbinsel auftritt. Die Bestätigung der Existenz kryptischer Arten kann ergänzend zu dem untersuchten mitochondrialen Marker eine noch ausstehende Analyse von Kerngenen erbringen. Zusätzlich sind morphologische Untersuchungen an den bearbeiteten Tieren durchzuführen.

Weitere Aussagen können auf Grund der geringen Zahl der untersuchten Individuen bislang nicht getroffen werden. Im Gegensatz zu den von Held bearbeiten großen und auffälligen Isopoden, die in Trawlfängen mitunter in hohen Individuenzahlen vorliegen, werden die kleinen Vertreter der Asellota häufig übersehen oder wegen einer zu großen Maschenweite des Fangerätes gar nicht erst gefangen. Trotz der geringen Individuenzahl geben die molekularen Ergebnisse jedoch Hinweise auf die Existenz dreier reproduktiv isolierter Gruppen innerhalb des Taxons *Acanthaspidia drygalskii*.

4.2.2 Genetische Variabilität innerhalb der Gattung Haploniscus

Marine Arten können wie auch terrestrische Arten eine weite geographische Verbreitung haben. In vielen Fällen sind zwischen den sich im Raum ablösenden Populationen deutliche Merkmalsunterschiede ausgebildet. Dies bereitet insbesondere bei der morphologischen Klassifizierung von nah verwandten Tiefseeorganismen Probleme. Auf Grund der meist geringen Zahl an vorliegenden Individuen es schwierig, ein objektives Kriterium für die innerartliche Variabilität zu finden und die Grenze gegenüber anderen nah verwandten Arten zu ziehen. Stattdessen überwiegen häufig subjektive Eindrücke und Ansichten des Bearbeiters. Ein Beispiel innerhalb der Asellota ist die von Wolff (1962) beschriebene Spezies *Storthyngura pulchra*: Wolff unterscheidet drei Unterarten, um so den beobachteten morphologischen Variationen der 19 untersuchten Individuen aus dem östlichen Pazifik, der Karibischen See und dem Kermadecgraben Rechnung zu tragen. George und Menzies (1968) untersuchten die gleichen Individuen und erkannten drei verschiedene Arten. Vergleichbare Beispiele existieren auch für andere Tiergruppen der Tiefsee (z. B. Gebruck 1983). Von besonderem Interesse sind kontinuierliche Merkmalsgradienten entlang einer geographischen Achse, sogenannte Klinen. Eine Kline kann sich aus vielerlei Gründen bilden, unter anderem

auf Grund von Kreuzung zwischen zuvor isolierten Populationen oder einer geographischen Variation des Selektionsdrucks, der das Merkmal beeinflusst (Futuyma 1990). Merkmalsgradienten können sowohl in horizontaler als auch vertikaler Ebene vorliegen. Im Falle der Tiefseeasellota konnte Wilson (1983) für die Spezies *Eurycope iphtima* (Munnopsididae) für Individuen aus unterschiedlichen Tiefen klinale Variationen in Form und Länge des Rostrums feststellen, die offensichtlich mit der Körpergröße der Tiere korrelieren. Die möglichen Ursachen für diesen Merkmalsgradienten sind jedoch unbekannt, genetische Untersuchungen liegen nicht vor.

Trotz großer morphologischer Ähnlichkeit unterscheiden sich die untersuchten Exemplare des Taxons *Haploniscus sp.* 1 genetisch deutlich voneinander. Es können vier Gruppen von Haplotypen (A, B, C und D) unterschieden werden (siehe Tab. 3.7, Abb. 3.11 und 4.5). Die Variabilität innerhalb der Gruppen ist sehr gering und liegt zwischen 0 und 1,1 Prozent. Dagegen liegen die Unterschiede zwischen den verschiedenen Haplotypgruppen zum Teil erheblich über der beobachteten zwischenartlichen Variabilität dieses Gens (siehe Tab. 3.7). Diese beträgt für *Haploniscus sp.* 7 HA402 und *Haploniscus sp.* 8 HA450 6,6 Prozent. Beide Taxa sind an Hand zahlreicher morphologischer Merkmale unzweifelhaft als unterschiedliche Arten zu betrachten (W. Brökeland, persönliche Mitteilung). Der ermittelte Wert liegt etwas höher als die beobachtete zwischenartliche Variabilität bei den Acanthaspidiidae (4,5 – 5 %) (siehe 4.2.1).

Von hohem Interesse ist die Rekonstruktion der Phylogenie der bearbeiteten Taxa: Die analysierten partiellen 16S rDNA Sequenzen bestätigen die Polyphylie des Taxons *Haploniscus sp.* 1, da nur ein Monophylum besteht, wenn die beiden Arten Haploniscus sp. 7 und Haploniscus sp. 8 eingeschlossen werden. Die vorliegenden Ergebnisse unterstützen die Vorstellung, dass es sich bei der beobachteten morphologischen Variabilität nicht um intraspezifische Variationen handelt. Stattdessen können vier nah verwandte Arten (*Haploniscus sp.* 1A – 1D) unterschieden werden, von denen *Haploniscus sp.* 1B, *Haploniscus sp.* 1C und *Haploniscus sp.* 1D ein Monophylum bilden (siehe Abb. 3.11). Diese drei Arten werden in Tiefen zwischen 1100 und 2900 m gefunden, *Haploniscus sp.* 1A wird dagegen lediglich in einer Wassertiefe unter 3600 m gefunden. Wenn diese Haplotypgruppen nicht auch anderswo in der Antarktis nachgewiesen werden, liegt hier ein Fall einer kleinräumigen Radiation vor.

Abb. 4.5: Fundstellen der untersuchten Individuen des *Haploniscus sp.* 1–Komplexes (links) sowie die Darstellung verschiedener Rostrumformen (Haploniscus sp. 1A, 1C und 1D). Die Taxa *Haploniscus* 1B, 1C und 1D kommen in Tiefen von 1100 bis 2900 m vor, *Haploniscus sp.* 1A wird lediglich in Wassertiefen > 3600 m gefunden. Von *Haploniscus sp.* B liegt keine Zeichnung vor (mit freundlicher Genehmigung von Wiebke Brökeland). Die Karte wurde mit *PanMap*, Version 0.9.6 (1996, 1997), einem Bestandteil des *PANGAEA*-Programms (Diepenbroek *et al.* 2002), erstellt.

Wie auch im Falle der Acanthaspidiidae (siehe 4.2.1) setzt sich der untersuchte Datensatz aus verhältnismäßig wenigen Taxa zusammen. Auf Grund der Unzugänglichkeit der Tiefsee und der damit verbundenen Problematik der Probenentnahme ist die meist geringe Individuenzahl je Art ein grundlegendes Problem bei der Arbeit mit Tiefseeorganismen. Daher können zum jetzigen Zeitpunkt keine weiteren Aussagen zur Phylogenie dieser Taxa getroffen werden. Nichtsdestoweniger bestätigen die vorliegenden molekularen Ergebnisse eine hohe genetische Variabilität innerhalb morphologisch sehr ähnlicher Taxa. Die Hypothese einer tiefenabhängigen klinalen Variation der Rostrumform, wie Wilson (1983) sie für *Eurycope iphtima* nachweisen konnte, wird für *Haploniscus* nicht unterstützt.

5. Zusammenfassung

Für 45 Taxa aus 14 Familien der Asellota konnten 18S rDNA Sequenzen amplifiziert, kloniert und doppelsträngig sequenziert werden. Zusätzlich wurden für 61 Individuen der Acanthaspidiidae und Haploniscidae 16S rDNA Sequenzen amplifiziert und doppelsträngig sequenziert. Die Sequenzpositionen wurden homologisiert (aliniert), hochvariable Positionen wurden mit Hilfe von Sekundärstrukturmodellen identifiziert und aus den Alinierungen entfernt. Die Alinierungen wurden neben verschiedenen statistischen Tests "Maximum Parsimony"-, "Maximum Likelihood"-, Bayes- sowie "bootstrap"-Analysen unterzogen.

Dieser Arbeit lagen folgende Fragen zugrunde, die mit Hilfe der gewonnenen Daten beantwortet werden sollten:

Welche Verwandtschaftshypothesen ergeben sich für die marinen Asellota, insbesondere der Janiroidea, bei der Analyse der 18S rDNA Sequenzen?

- Die marinen Asellota werden in allen Topologien als monophyletische Gruppe erkannt.
- In allen Topologien repräsentieren die untersuchten Taxa der Stenetriidae die monophyletische Schwestergruppe der Janiroidea.
- Die vorliegenden Ergebnisse bestätigen die Monophylie der Janiroidea in allen ermittelten Topologien.
- Die Monophylie der Acanthaspidiidae, Desmosomatidae, Haploniscidae, Ischnomesidae, Joeropsididae, Macrostylidae und Munnopsididae wird durch die molekularen Daten bestätigt.
- Die "Janiridae" erscheinen in keiner Topologie als Monophylum.
- Die Joeropsididae stehen in allen Analysen in einem Schwestergruppenverhältnis zu den Acanthaspidiidae.
- Innerhalb der Acanthaspidiidae wird die Monophylie der Gattungen Acanthaspidia und Ianthopsis nicht bestätigt.
- In allen ermittelten Topologien werden *Thylakogaster sp.* (Haplomunnidae) und *Dendromunna sp.* (Dendrotiidae) als Schwestertaxa identifiziert.
- Sämtliche 18S rDNA Analysen bestätigen die Monophylie einer Gruppierung, zu der die Mesosignidae, Janirellidae, Nannoniscidae, Macrostylidae, Ischnomesidae, Desmosomatidae und Munnopsididae zählen.

Sind die Ergebnisse der Analyse der 18S rDNA Sequenzen mit den Erkenntnissen morphologischer Analysen kompatibel?

 Bereits bestehende morphologische Hypothesen zur Monophylie bzw. Polyphylie der untersuchten Familien werden durch die molekularen Daten unterstützt. Die bislang nur fragmentarisch bekannten Verwandtschaftshypothesen innerhalb der Janiroidea werden auf Grund der Polyphylie der "Janiridae" nur eingeschränkt bestätigt.

Welche Rückschlüsse können aus den molekulargenetischen Daten für die Besiedlung der Tiefsee durch die Asellota gezogen werden?

 Eine Besiedlung der Tiefsee fand in mindestens vier Gruppen unabhängig voneinander statt: Gruppe A beinhaltet die Acanthaspidiidae, Gruppe B die Haploniscidae, Gruppe C die Dendrotiidae und Haplomunnidae, und Gruppe D die Mesosignidae, Janirellidae, Nannoniscidae, Macrostylidae, Ischnomesidae, Desmosomatidae und Munnopsididae. Eine mehrfach unabhängige Besiedlung der Tiefsee innerhalb der Acanthaspidiidae ist sehr wahrscheinlich.

Repräsentiert die zirkumantarktisch verbreitete Art *Acanthaspidia drygalskii* wirklich eine Art oder setzt sie sich aus kryptischen Arten zusammen?

 Die Ergebnisse der partiellen 16S rDNA Analysen geben Hinweise auf die Existenz dreier reproduktiv isolierter Haplotypgruppen innerhalb des Taxons Acanthaspidia drygalskii. Zwei Haplotypgruppen treten sympatrisch in der westlichen Weddell See auf, die dritte Gruppe liegt in der östlichen Weddell See vor.

Kennzeichnen geringe morphologische Variationen innerhalb der Gattung *Haploniscus* tatsächlich verschiedene Arten oder handelt es sich um klinale Variationen von lokalen Populationen?

• Die vorliegenden molekularen Ergebnisse bestätigen eine hohe genetische Variabilität innerhalb morphologisch sehr ähnlicher Taxa der Gattung *Haploniscus*. Es können vier unterschiedliche Gruppen von Haplotypen innerhalb des polyphyletischen *Haploniscus sp.* 1-Komplexes unterschieden werden. Die Hypothese einer tiefenabhängigen klinalen Variation der Rostrumform wird für die untersuchten Individuen nicht unterstützt.

6. Literaturverzeichnis

Altschul S.F., Gish W., Myers W.M.E.W., Lipman D.J. (1990): Basic local alignment search tool. *Journal of Molecular Biology* **215**: 403-410.

Ayala F.J., Valentine J.W. (1974): Genetic variability in the cosmopolitan deep-water ophiuran *Ophiomusium lymani*. *Marine Biology* **27**: 51-57.

Ayala F.J., Valentine J.W., Hedgecock D., Barr L.G. (1975): Deep-sea asteroids: high genetic variability in a stable environment. *Evolution* **29**: 203-212.

Baltzer C., Held C., Wägele J.-W. (2000). *Furcarcturus polarsterni* gen. nov., sp. nov., a large deep-sea arcturid isopod from the Drake Passage, with a preliminary molecular characterization. *Polar Biology* **23**: 833-839.

Baratti M., Khebiza M.Y., Messana G. (2004): Microevolutionary processes in the stygobiont genus *Thyphlocirolana* (Isopoda Flabellifera Cirolanidae) as inferred by partial 12S and 16S rDNA sequences. *Journal of Zoological Systematics and Evolutionary Research* **42**: 27-32.

Bargelloni L., Ritchie P.A., Patarnello T., Battaglia B., Lambert D.M., Meyer A. (1994): Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. *Molecular Biology and Evolution* **11**: 854-863.

Bargelloni L., Zane L., Derome N., Lecointre G., Patarnello T. (2000): Molecular zoogeography of Antarctic euphausiids and notothenioids: from species phylogenies to intraspecific patterns of genetic variation. *Antarctic Science* **12**: 259-268.

Barker P.F., Thomas E. (2004): Origin, signature and palaeoclimatic influence of the Antarctic circumpolar current. *Earth Science Reviews* **66**: 143-162.

Barrett P. (2003): Cooling a continent. Nature 421: 221-223.

Benson R.H. (1975): The origin of the psychrosphere as recorded in changes of deep-sea ostracode assemblages. *Lethaia* **8**: 69-83.

Birstein J.A. (1971): Ergänzungen zur Fauna der Asseln (Crustacea Isopoda) des Kurilen-Kamtschatka-Grabens. Teil II Asellota-2. *Arbeiten des Instituts für Ozeanologie* **92**: 162-238 [in Russisch].

Black W.C., Klompen J.S.H., Keirans J.E. (1997): Phylogenetic relationships among tick subfamilies based on the 18S nuclear rDNA gene. *Molecular Phylogenetics and Evolution* **7**: 129-144.

Brandt A. (1991a): Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca). *Berichte zur Polarforschung* **98**: 1-240.

Brandt A. (1991b): A revision of the Acanthaspidiidae Menzies, 1962 (Isopoda: Asellota). *Zoological Journal of the Linnean Society* **102**: 203-252.

Brandt A. (1992): Origin of Antarctic Isopoda (Crustacea, Malacostraca). *Marine Biology* **113**: 415-423.

Brandt A. (1999): On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca). *Scientia Marina* **63**: 261-274.

Brandt A. (2002): *Desmostylis gerdesi*, a new species (Malacostraca: Isopoda) from Kapp Norwegia, Weddell Sea, Antarctica. *Proceedings of the Biological Society of Washington* **115**: 616-627.

Brandt A. (2004): Abundance, diversity, and community patterns of Isopoda (Crustacea) in the Weddell Sea and in the Bransfield Strait, Southern Ocean. *Antarctic Science* **16**: 5-10.

Brandt A., Malyutina M.V. (2002): *Storthyngura kussakini* sp. nov. from the Southern Ocean. *Mitteilungen des Museums für Naturkunde Berlin, Zoologische Reihe* **78**: 97-107

Brey T., Dahm C., Gorny M., Klages M., Stiller M., Arntz W.E. (1996): Do Antarctic benthic invertebrates show an extended level of eurybathy? *Antarctic Science* **8**: 3-6.

Brusca R.C., Wilson G.D.F. (1991): A phylogenetic analysis of the Isopoda with some classificatory recommendations. *Memoirs of the Queensland Museum* **31**: 143-204.

Buckley T.R., Simon C., Flook P.K., Misof B. (2000): Secondary structure and conserved motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene. *Insect Molecular Biology* **9**: 565-580.

Canapa A., Marota I., Rollo F., Olmo E. (1999): The small-subunit rRNA gene sequences of venerids and the phylogeny of Bivalvia. *Journal of Molecular Evolution* **48**: 463-468.

Chase M.R., Etter R.J., Rex M.A., Quattro J.M. (1998a): Bathymetric patterns of genetic variation in a deep-sea protobranch bivalve, *Deminucula atacellana*. *Marine Biology* **131**: 301-308.

Chase M.R., Etter R.J., Rex M.A., Quattro J.M. (1998b): Extraction and amplification of mitochondrial DNA from formalin-fixed deep-sea molluscs. *Biotechniques* **24**: 243-246.

Chen L., DeVries A.L., Cheng C.-H.C. (1997a): Evolution of antifreeze glycoprotein gene from trypsinogen gene in Antarctic fish. *Proceedings of the National Academy of Science of the United States of America* **94**: 3811-3816.

Chen L., DeVries A.L., Cheng C.-H.C. (1997b): Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. *Proceedings of the National Academy of Science of the United States of America* **94**: 3817-3822.

Choe C.P., Hwang U.W., Kim W. (1999): Putative secondary structures of unusually long strepsipteran SSU rRNAs and its phylogenetic implications. *Molecules and Cells* **9**: 191-199.

Choe C.P., Hancock J.M., Hwang U.W., Kim W. (1999): Analysis of the primary sequence and secondary structure of the unusually long SSU rRNA of the soil bug, *Armadillidium vulgare. Journal of Molecular Evolution* **49**: 798-805.

Clarke A. (1962): On the composition, zoogeography, origin and age of the deep-sea mollusc fauna. *Deep-Sea Research* **9**: 291-306.

Clarke A., Crame J.A. (1989): The origin of the Southern Ocean marine fauna. In: Crame J.A. (ed.): *Origins and Evolution of the Antarctic Biota*. Geological Society Special Publication **47**: 253-268.

Crame J.A. (1997): An evolutionary framework for the polar regions. *Journal of Biogeography* **24**: 1-9.

Crandall K.A., Harris D.J., Fetzner Jr.J.W (2000): The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. *Proceedings of the Royal Society of London Series B* 267: 1679-1686.

Crease T.J., Colbourne (1998): The unusually long small-subunit ribosomal RNA of the crustacean, *Daphnia pulex*: sequence and predicted secondary structure. *Journal of Molecular Evolution* **46**: 307-313.

Crease T.J., Taylor D.J. (1998): The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans. *Molecular Biology and Evolution* **15**: 1430-1446.

Cunningham C.W., Zhu H., Hillis D.M. (1998): Best-fit maximum likelihood models for phylogenetic inference: empirical tests with known phylogenies. *Evolution* **52**: 978-987.

Dahl E. (1954): The distribution of deep-sea Crustacea. *International Union of Biological Science Series B* 16: 43-48.

DeConto R.M., Pollard D. (2003): Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO₂. *Nature* **421**: 245-249.

Dell R.K. (1972): Antarctic Benthos. In: Russel F., Yonge M. (eds.): Advances in Marine Biology 10. Academic Press, London:1-216.

de Rijk P., Van de Peer Y., de Wachter R. (1997): Database on the structure of the large ribosomal RNA. *Nucleic Acids Research* **25**: 117-223.

Diepenbroek M., Grobe H., Reinke M., Schindler U., Schlitzer R., Sieger R., Wefer G. (2002): PANGAEA – an information system for environmental sciences. *Computers & Geosciences* **28**: 1201-1210.

Doyle R.W. (1972): Genetic variation in *Ophiomusium lymani* (Echinodermata) populations in the deep sea. *Deep-Sea Research* **19**: 661-664.

Dreyer H. (1999): Das phylogenetische System der Isopoda (Crustacea, Malacostraca) anhand molekularer Merkmale. Dissertation an der Fakultät für Biologie der Universität Bielefeld: 1-153.

Dreyer H., Wägele J.-W. (2001): Parasites of crustaceans (Isopoda: Bopyridae) evolved from fish parasites: molecular and morphological evidence. *Zoology* **103**: 157-178.

Dreyer H., Wägele J.-W. (2002): The Scutocoxifera tax. nov. and the information content of nuclear ssu rDNA sequences for reconstruction of isopod phylogeny (Peracarida: Isopoda). *Journal of Crustacean Biology* **22**: 217-234.

Eastman J. T. (1993): Antarctic Fish Biology. Academic Press Inc., San Diego: 1-150.

Edgecombe G.D., Giribet G., Wheeler W.C. (2002): Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci. *Systematic Entomology* **27**: 31-64.

Edgecombe G.D., Giribet G. (2004): Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subnunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci. *Journal of Zoological Systematics and Evolutionary Research* **42**: 89-134.

Efron B. (1979): Bootstrap methods: another look at the jacknife. Annual Statistics 7: 1-27.

Englisch U. (2001): Analyse der Phylogenie der Amphipoda (Crustacea, Malacostraca) mit Hilfe von Sequenzen des Gens der RNA der kleinen ribosomalen Untereinheit. Dissertation an der Fakultät für Biologie der Ruhr-Universität Bochum: 1-150.

Englisch U., Koenemann S. (2001): Preliminary phylogenetic analysis of selected subterranean amphipod crustaceans, using small subunit rDNA gene sequences. *Organisms, Diversity & Evolution* **1**: 139-145.

Englisch U., Coleman C.O., Wägele J.-W. (2003): First observations on the phylogeny of the families Gammaridae, Crangonyctidae, Meltitidae, Niphargidae, Megaluropidae and Oedicerotidae (Amphipoda, Crustacea), using small subnunit rDNA gene sequences. *Journal of Natural History* **37**: 2461-2486.

Etter R.J., Rex M.A., Chase M.C., Quattro J.M. (1999): A genetic dimension to deep-sea biodiversity. *Deep-Sea Research Part I* **46**: 1095-1099.

Felsenstein J. (1973): Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. *Systematic Biology* **22**: 240-249.

Felsenstein J. (1978): The number of evolutionary trees. Systematic Zoology 27: 27-33.

Felsenstein J. (1981): Evolutionary trees from DNA sequences: a maximum likelihood approach. *Journal of Molecular Biology* **17**: 368-376.

Felsenstein J. (1985): Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**: 783-791.

Féral J.P., Philippe H., Desbruyères D., Laubier L., Derelle E., Chenuil A. (1994): Phylogénie moléculaire de polychètes Alvinellidae des sources hydrothermales actives de l'océan Pacifique. *Comptes rendus de l'Académie des Sciences (Paris)* **317**: 771-779 [in Französisch].

Flook P.K., Rowell C.H.F. (1997): The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera). *Molecular Phylogenetics and Evolution* **8**: 177-192.

Forster P.G., Hickey D.A. (1999): Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. *Journal of Molecular Evolution* **48**: 284-290.

France S.C. (1994): Genetic population structure and gene flow among deep-sea amphipods, *Abyssochromene spp.*, from six California Continental Borderland basins. *Marine Biology* **118**: 67-77.

France S.C., Hessler R.R., Vrijenhoek R.C. (1992): Genetic differentiation between spatiallydisjunct populations of the deep-sea, hydrothermal vent-endemic amphipod *Ventiella sulfuris*. *Marine Biology* **114**: 551-559.

France S.C., Kocher T.D. (1996a): Geographic and bathymetric patterns of mitochondrial 16S rRNA sequence divergence among deep-sea amphipods, *Eurythenes gryllus*. *Marine Biology* **126**: 633-643.

France S.C., Kocher T.D. (1996b): DNA sequencing of formalin-fixed crustaceans from archival research collections. *Molecular Marine Biology and Biotechnology* **5**: 304-313.

Fresi E., Idato E., Scipione M.B. (1980): The Gnathostenetroidea and the evolution of primitive asellote isopoda. *Monitore Zoologico Italiano* 14: 119-136.

Fütterer D.K., Brandt A., Poore, G.C.B. (2003): The Expeditions ANTARKTIS-XIX/3-4 of the Research Vessel POLARSTERN in 2002 (ANDEEP I and II: <u>Antarctic benthic deep</u>-sea biodiversity – colonization history and recent community patterns). *Berichte zur Polar- und Meeresforschung* **470**: 1-174.

Futuyma D.J. (1990): Evolutionsbiologie. Birkhäuser Verlag, Basel · Boston · Berlin: 1-679.

Gage J.D., Tyler P.A. (1991): Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press: 1-504.

Gassen H.G., Schrimpf G. (Hrsg.) (1999): Gentechnische Methoden. Eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor. 2. Auflage, Spektrum Akademischer Verlag Heidelberg \cdot Berlin: 1-432.

Gebruck A.V. (1983): Abyssal holothurians of the genus *Scotoplanes* (Elasipoda, Elpidiidae). *Zoologicheskii Zhurnal* **62**: 1359-1370 [in Russisch].

Geller J.B. (1994): Sex-specific mitochondrial DNA haplotypes and heteroplasmy in *Mytilus* trossulus and *Mytilus* galloprovincialis populations. Molecular Marine Biology and Biotechnology **3**: 334-337.

George R.Y., Menzies R.J. (1969): Species of *Storthyngura* (Isopoda) from the Antarctic with descriptions of six new species. *Crustaceana* 14: 275-301.

Gerbi S.A., Gourse R.L., Clark C.G. (1982): Conserved regions within ribosomal DNA: locations and some possible function. In: Busch H., Rothblum L. (eds.): *The Cell Nucleus Volume X rDNA, Part A.* Academic Press, New York · London: 351-386.

Giribet G., Edgecombe G.D., Wheeler W.C., Babbitt C. (2002): Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. *Cladistics – The International Journal of the Willi Hennig Society* **18**: 5-70.

Gojobori T., Li W.-H., Grauer D. (1982): Patterns of nucleotide substitution in pseudogenes and functional genes. *Journal of Molecular Evolution* **18**: 360-369.

Goldman N. (1993a): Statistical test of models of DNA substitution. *Journal of Molecular Evolution* **36**: 182-198.

Goldman N. (1993b): Simple diagnostic statistical test of models for DNA substitution. *Journal of Molecular Evolution* **37**: 650-661.

Gorny M. (1999): On the biogeography and ecology of the Southern Ocean decapod fauna. *Scientia Marina* **63**: 367-382.

Gruner H.-E. (1993): 7. Ordnung Isopoda, Asseln. In: Gruner H.-E. (Hrsg): Lehrbuch der Speziellen Zoologie, begründet von Alfred Kaestner. Band I Teil 4. Wirbellose Tiere/Arthropoda (ohne Insecta). Gustav Fischer Verlag, Stuttgart · Jena · New York: 838-911.

Gutt J. (1991): Are Weddell Sea holothurians typical representatives of the Antarctic benthos? *Meeresforschung* **33**: 312-329.

Hall T.A. (1999): *BioEdit*: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* **41**: 95-98.

Hancock J.M., Dover G.A. (1990): "Compensatory slippage" in the evolution of ribosomal RNA genes. *Nucleic Acids Research* **18**: 5949-5954.

Hancock J.M. (1995): The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution. *Journal of Molecular Evolution* **40**: 629-639.

Hancock J.M., Vogler A.P. (1998): Modelling the secondary structures of slippage-prone hypervariable RNA regions: the example of the tiger beetle 18s rRNA variable region V4. *Nucleic Acids Research* **26**: 1689-1699.

Hancock J.M., Vogler A.P. (2000): How slippage-derived sequences are incorporated into rRNA variable-region secondary structure: implications for phylogeny reconstruction. *Molecular Phylogenetics and Evolution* **14**: 366-374.

Harrison K. (1988): Seasonal reproduction in the deep-sea Crustacea (Isopoda: Asellota). *Journal of Natural History* **22**: 175-197.

Hasegawa M., Kishino K., Yano T. (1985): Dating the human-ape splitting by a molecular clock of mitochondrial DNA. *Journal of Molecular Evolution* **22**: 160-174.

Hasegawa M., Haschimoto T. (1993): Ribosomal RNA trees misleading? Nature 361: 23.

Haye P.A., Kornfield I., Watling L. (2004): Molecular insights into Cumacean family relationships (Crustacea, Cumacea). *Molecular Phylogenetics and Evolution* **30**: 798-809.

Hedgpeth J.W. (1969): Introduction to Antarctic zoogeography. In: Bushnell V.C., Hedgpeth J.W. (eds.): *Antarctic Map Folio Series* **11**, American Geographic Society, Washington DC: 1-9.

Held C. (2000a): Speziation im Südpolarmeer. Systematik und Biogeographie der Serolidae and Arcturidae (Crustacea: Isopoda). Dissertation an der Fakultät für Biologie der Universität Bielefeld: 1-144.

Held C. (2000b): Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. *Molecular Phylogenetics and Evolution* **15**: 165-178.

Held C. (2001): No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae). *Polar Biology* **24**: 497-501.

Held C. (2003): Molecular evidence for cryptic speciation within the widespread Antarctic crustacean *Ceratoserolis trilobitoides* (Crustacea, Isopoda). In: Huiskes A.H.L., Gieskes W.W.C., Rozema J., Schorno R.M.L., van der Vies S.M., Wolff W.J. (eds.): *Antarctic Biology in a Global Context*. Backhuys Publishers, Leiden: 135-139.

Held C. (2004): Cryptic speciation in the giant Antarctic isopod *Glyptonotus antarcticus* (Isopoda, Valvifera, Chaetiliidae). *Sarsia*, im Druck

Hendy M.D., Penny D. (1989): A framework for the quantitative study of evolutionary trees. *Systematic Zoology* **38**: 297-309.

Hennig W. (1982): Phylogenetische Systematik. Verlag Paul Parey, Berlin und Hamburg: 1-246.

Hessler R.R. (1970): The Desmosomatidae (Isopda, Asellota) from the Gay Head – Bermuda transect. *Bulletin of the Scripps Institution of Oceanography* **15**: 1-185

Hessler R.R., Sanders H.L. (1967): Faunal diversity in the deep sea. *Deep-Sea Research* 14: 65-78.

Hessler R.R., Thistle D. (1975): On the place of origin of deep-sea isopods. *Marine Biology* **32**: 155-165.

Hessler R.R., Wilson G.D.F., Thistle D. (1979): The deep-sea isopods: a biogeographic and phylogenetic overview. *Sarsia* **64**: 67-76.

Hessler R.R., Wilson G.D.F. (1983): The origin and biogeography of malacostracan crustaceans in the deep sea. In: Sims R.W., Price J.H., Whalley P.E.S. (eds.): *Evolution in Time and Space: The Emergence of the Biosphere*. Academic Press, London & New York: 227-254.

Hidding B., Michel E., Natyaganova A.V., Sherbakov D.Y. (2003): Molecular evidence reveals a polyphyletic origin and chromosomal speciation of Lake Baikal's endemic asellid isopods. *Molecular Ecology* **12**: 1509-1514.

Hillis D.M., Mable B.K., Moritz C. (1996): Applications of molecular systematics: the state of the field and a look to the future. In: Hillis D.M., Moritz C., Mable B.K. (eds.): *Molecular systematics*. Sinauer, Sunderland, Massachusetts: 515-543.

Huelsenbeck J.P., Crandall K.A. (1997): Phylogeny estimation and hypothesis testing using maximum likelihood. *Annual Reviews in Ecology and Systematics* **28**: 437-466

Huelsenbeck J.P., Rannala B. (1997): Phylogenetic methods come of age: testing hypotheses in an evolutionary context. *Science* **276**: 227-232.

Huelsenbeck J.P., Ronquist F. (2001): MrBayes: Bayesian inference of phylogenetic trees. *Bioinformatics* **17**: 754-755.

Huelsenbeck J.P., Larget B., Miller R.E., Ronquist F. (2002): Potential applications and pitfalls of Bayesian inference of phylogeny. *Systematic Biology* **51**: 673-688.

Jukes T.H., Cantor C.R. (1969): Evolution of protein molecules. In: Munro H.N. (ed.): *Mammalian Protein Metabolism III*. Academic Press New York, NY: 21-132.

Just J. (2001a): New species of *Mexicope*, stat. nov. and *Ianthopsis* from Australia and a rediagnosis of Acanthaspidiidae (Isopoda: Asellota). *Invertebrate Taxonomy* **15**: 909-925.

Just J. (2001b): Bathyal Joeropsididae (Isopoda: Asellota) from South-Eastern Australia, with description of two new genera. *Memoirs of the Museum of Victoria* **58**: 297-333.

Keller N.B., Pasternak F.A. (1996): The fauna of Antarctic shelf and continental slope corals and the estimation of its role in the process of the formation of the present oceanic deep-water fauna. *Okeanologiya* **36**: 583-587.

Kennett J.P., Shackleton N.J. (1976): Oxygen isotopic evidence for the development of the psychrosphere 38 myr ago. *Nature* **260**: 513-515.

Kennett J.P. (1977): Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic Ocean, and their impact on global Paleoceanography. *Journal of Geophysical Research* **82**: 3843-3860.

Kimura M. (1980): A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution* **16**: 111-120.

Kimura M. (1981): Estimation of evolutionary distances between homologous nucleotide sequences. *Proceedings of the National Academy of Science of the United States of America* **78**: 454-458.

Knox G.A. (1960): Littoral ecology and biogeography of the Southern Oceans. *Proceedings* of the Royal Society of London Series B **152**: 577-624.
Knox G.A. (1977): The Antarctic polychaete fauna: its characteristics, distribution patterns, and evolution. In: Llano G.A. (ed.): *Adaptations within Antarctic Ecosystems. Proceedings of the 3rd SCAR Symposium of Antarctic Biology*. Gulf Publ. Co., Houston Texas: 1111-1126.

Kondo R., Horai S., Satta Y., Takahata N. (1993): Evolution of hominid mitochondrial DNA with special reference to the silent substitution rate over the genome. *Journal of Molecular Evolution* **36**: 517-531.

Kussakin O.G. (1973): Peculiarities of the geographical and vertical distribution of marine isopods and the problem of deep-sea fauna origin. *Marine Biology* **23**: 19-34.

Kussakin O.G., Vasina G.S. (1995): Antarctic hadal arcturids, with descriptions of a new genus and five new species (Isopoda: Valvifera: Arcturidae). *Zoosystematica Rossica* **3**: 207-228.

Lawver L.A., Gahagan L.M. (2003): Evolution of Cenozoic seaways in the circum-Antarctic region. *Palaeogeography, Palaeoclimatology, Palaeoecology* **198**: 11-37.

Li W.-H. (1997): Molecular Evolution. Sinauer Associates · Massachusetts: 1-487.

Lincoln R.J. (1985): The marine fauna of New Zealand: Deep-sea Isopoda Asellota, family Haploniscidae. *New Zealand Oceanographic Institute Memoir* **94**: 1-56.

Lipps J.H., Hickman C.S. (1982): Origin, age, and evolution of Antarctic and deep-sea faunas. In: Ernst W.G., Morin J.G. (eds.): *The Environment of the Deep Sea 2*. Englewood Cliffs: 324-354.

Liu H.P., Mitton J.B. (1996): Tissue-specific maternal and paternal mitochondrial DNA in the freshwater mussel, *Anodonta grandis grandis*. *Journal of Molluscan Studies* **63**: 393-394.

Lottspeich F., Zorbas H. (Hrsg.) (1998). Bioanalytik. Spektrum Akademischer Verlag Heidelberg · Berlin: 1-1035.

Malyutina M.V., Wägele J.-W., Brenke N. (2001): New records of little known deep-sea Echinothambematidae (Crustacea: Isopoda: Asellota) with redescription of *Vemathambema elongata* Menzies, 1962 and description of a new species from the Argentina Basin. *Organisms, Diversity and Evolution* **1** Electr. Suppl. **6**: 1-28.

Mantyla A.W., Reid J.L. (1983): Abyssal characteristics of the World Ocean waters. *Deep-Sea Research* **30**: 805-833.

Martin J.W., Davis G.E. (2001): An Updated Classification of the Recent Crustacea. *Science Series* **39**: 1-124.

Martin P. (2001): On the origin of the Hirudinea and the demise of the Oligochaeta. *Proceedings of the Royal Society of London Series B* **268**: 1089-1098.

Mattern D., Schlegel M. (2001): Molecular evolution of the small subunit ribosomal DNA in woodlice (Crustacea, Isopoda, Oniscidea) and implications for oniscidean phylogeny. *Molecular Phylogenetics and Evolution* **18**: 54-65.

Menzies R.J. (1962): The isopods of abyssal depths in the Atlantic Ocean. *Vema Research Series* **1**: 79-206.

Menzies R.J., George R.Y., Rowe G.T. (1973): Abyssal environment and ecology of the world oceans. John Wiley & Sons, New York · London · Sydney · Toronto: 1-488.

Messing J., Crea R., Seeburg P.H. (1981): A system for shotgun DNA sequencing. *Nucleic Acids Research* **9**: 309-321.

Michel-Salzat A., Bouchon D. (2000): Phylogenetic analysis of mitochondrial LSU rRNA in oniscids. *Comptes rendus de l'Académie des Sciences (Paris)* **323**: 827-837.

Middendorf L.R., Bruce J.C., Bruce R.C. Eckles R.D., Grone D.L., Roemer S.C., Sloniker G.D., Steffens D.L., Sutter S.L., Brumbaugh J.A., Patonay G. (1992): Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. *Electrophoresis* **13**: 487-494.

Mironov A.N. (1982): The role of Antarctica in the formation of the deep-sea fauna of the world. *Okeanologiya* **22**: 486-491.

Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. (1986): Specific Enzymatic amplification of DNA In Vitro: The Polymerase Chain Reaction. *Cold Spring Harbor Symposia on Quantitative Biology*, Vol. LI: 263-273.

Nordenstam Å. (1933): Marine Isopoda of the families Serolidae, Idotheidae, Pseudidotheidae, Arcturidae, Parasellidae and Stenetriidae mainly from the South Atlantic. In: *Swedish Antarctic Expedition 1901 – 1903, Further Zoological Results* **3**: 1-284.

Orti G., Petry P., Porto J.I.R., Jegu M., Myer A. (1996): Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas. *Journal of Molecular Evolution* **42**: 169-182.

Park J.Y. (1999): Taxonomy and diversity of the deep-sea isopods from the abyssal Southeast Pacific (Crustacea, Isopoda, Asellota): A study of environmental impact on the deep-sea community, resulting from large-scale physical disturbance experiments in the Peru Basin. Dissertation an der Fakultät für Biologie der Ruhr-Universität Bochum: 1- 239.

Page R.D.M., Holmes E.C. (1998): Molecular evolution: a phylogenetic approach. Blackwell Science · Oxford: 1-346.

Page R.D.M. (2001): *TreeView* Version 1.6.6. http://taxonomy.zoology.gla.ac.uk/rod/rod.html

Palumbi S.R., Martin A., Romano S., McMillan W.O., Stice L., Grabowski G. (1991): The Simple Fool's Guide to PCR, version 2. Hawaii: University of Hawaii Press, Honolulu: 1-43.

Pashley D.P., Ke L.D. (1992): Sequence evolution in the mitochondrial ribosomal and ND-1 genes in Lepidoptera: implications for phylogenetic analyses. *Molecular Biology and Evolution* **9**: 1061-1075.

Pawlowski J., Fahrni J.F., Brykczynska U., Habura A., Bowser S.S. (2002): Molecular data reveal high taxonomic diversity of allogromiid Foraminifera in Explorers Cove (McMurdo Sound, Antarctica). *Polar Biology* **25**: 96-105.

Posada D., Crandall K.A. (1998): MODELTEST: testing the model of DNA substitution. *Bioinformatics* 14: 817-818.

Quattro J.M., Chase M.R., Rex M.A., Greig T.W., Etter R.J. (2001): Extreme mitochondrial DNA divergence within populations of the deep-sea gastropod *Frigidoalvania brychia*. *Marine Biology* **139**: 1107-1113.

Raupach M.J. (2001): Molekularsystematische Untersuchungen an ausgewählten Taxa der Peracarida. Diplomarbeit an der Fakultät für Biologie der Ruhr-Universität Bochum: 1-123.

Sars G.O. (1899): An account of the Crustacea of Norway with short descriptions and figures of all species. 2. Isopoda. Bergen, Bergen Museum: 1-270.

Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. (1988): Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* **239**: 487-491.

Sanders H.L., Hessler R.R., Hampson G.R. (1965): An introduction to the study of the deepsea benthic faunal assemblages along the Gay Head-Bermuda transect. *Deep-Sea Research* **12**: 845-867.

Sanger F., Nicklen S., Coulson A.R. (1977): DNA sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Science of the United States of America* **74**: 5463-5467.

Schander C., Halanych K.M. (2003): DNA, PCR and formalinized animal tissue – a short review and protocols. *Organisms, Diversity & Evolution* **3**: 195-205.

Schubart C.D., Neigel J.E., Felder D.L. (2000): Use of the mitochondrial 16s rRNA gene for phylogenetic and population studies of Crustacea. In: von Paupel-Klein J.C., Schram F. (eds.): *The Biodiversity Crisis and Crustacea. Proceedings of the Fourth International Crustacean Congress, Amsterdam, Netherlands, 20.-24. July 1998.* Vol. 2: 817-830.

Sears L.E., Moran L.S., Kissinger C., Creasey T., Perry-O`Keefe H., Roskey M., Sunderland E., Slathko B.E. (1992): CircumVentTM thermal cycle sequencing and alternative manual and automated DNA sequencing protocols using the highly thermostable Vent_RTM(exo⁻)DNA-Polymerase. *Biotechniques* **13**: 626-633.

Siebenaller J. F. (1978): Genetic variation in deep-sea invertebrate populations: the bathyal gastropod *Bathybembix bairdii*. *Marine Biology* **47**: 265-275.

Sieg J., Wägele J.-W. (Hrsg.) (1990): Fauna der Antarktis. Verlag Paul Parey, Berlin und Hamburg: 1-197 und XVI Farbtafeln.

Spears T., Abele L.G., Applegate M.A. (1994): Phylogenetic study of cirripedes and selected relatives (Thecostraca) based on 18S rDNA sequence analysis. *Journal of Crustacean Biology* **14**: 641-656.

Spears T., Abele L.G. (2000): Branchiopod monophyly and interordinal phylogeny inferred from 18S ribosomal data. *Journal of Crustacean Biology* **20**: 1-24.

Stanley S.M. (1998): Wendemarken des Lebens: eine Zeitreise durch die Krisen der Evolution. Spektrum Akademischer Verlag: 1-246.

Steel M.A., Lockhardt P.J., Penny D. (1993): Confidence in evolutionary trees from biological sequence data. *Nature* **364**: 440-442.

Suzuki Y., Glazko G.V., Nei M. (2002): Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. *Proceedings of the National Academy of Science of the United States of America* **99**: 16138-16143.

Svavarsson J. (1997): Diversity of isopods (Crustacea): new data from the Arctic and Atlantic Oceans. *Biodiversity and Conservation* **6**: 1571-1579.

Svenson G.J., Whiting M.F. (2004): Phylogeny of Mantodea based on molecular data: evolution of a charismatic predator. *Systematic Entomology* **29**: 359-370.

Swofford D.L. (2002): *PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods)*. Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

Tamura K., Nei M. (1993): Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in human and chimpanzees. *Molecular Biology and Evolution* **10**: 512-526.

Tautz D., Hancock J.M., Webb D.A., Tautz C., Dover G.A. (1988): Complete sequences of the rRNA genes of *Drosophila melanogaster*. *Molecular Biology and Evolution* **5**: 366-376.

Tavaré S. (1986): Some probabilistic and statistical problems in the analysis of DNA sequences. In: R.M. Miura (ed.): *Some mathematical questions in Biology – DNA sequence analysis*. American Mathematical Society, Providence, RI.: 57-86.

Thatje S., Arntz W.E. (2004): Antarctic reptant decapods: more than a myth? *Polar Biology* **27**: 195-201

Thiel H., Pörtner H.O., Arntz W.E. (1996): Marine life at low temperatures – a comparison of polar and deep-sea characteristics. In: Uiblein F., Ott J., Stachowitsch M. (eds.): *Biosystematics and Ecology Series* **11**: 183-219.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997): The Clustal X window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Researchs* **24**: 86-91.

Vanhöffen E. (1914): Die Isopoden der deutschen Südpolar-Expedition 1901 – 1903. In: von Drygalski E. (Hrsg): *Deutsche Südpolar-Expedition 1901 – 1903. XV. Band, Zoologie VII. Band.* Druck und Verlag von Georg Reimer, Berlin: 448-598.

Vawter L., Brown W.M. (1993): Rates and patterns of base change in the small subunit ribosomal RNA gene. *Genetics* **134**: 597-608.

Vrijenhoek R.C., Schutz S.J., Gustafson R.G., Lutz R.A. (1994): Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. *Deep-Sea Research Part 1* **41**: 1171-1189.

Wägele J.-W. (1989): Evolution und phylogenetisches System der Isopoda: Stand der Forschung und neue Erkenntnisse. *Zoologica* **140**: 1-262.

Wägele J.-W. (1994): Notes on Antarctic and South American Serolidae (Crustacea, Isopoda) with remarks on the phylogenetic biogeography and a description of new genera. *Zoologische Jahrbücher der Systematik* **121**: 3-69.

Wägele J.-W. (2000): Grundlagen der Phylogenetischen Systematik. Verlag Dr. Friedrich Pfeil · München: 1-316.

Wägele J.-W., Holland B., Dreyer H., Hackethal B. (2003): Searching factors causing implausible non-monophyly: SSU rDNA phylogeny of Isopoda Asellota (Crustacea: Peracarida) and faster evolution in marine than in freshwater habitats. *Molecular Phylogenetics and Evolution* **28**: 536-551.

Watling L., Thurston M.H. (1989): Antarctica as an evolutionary incubator: evidence from the cladistic biogeography of the amphipod family Iphimediidae. In: Crame J.A. (ed.): *Origins and Evolution of the Antarctic Biota*. Geological Society Special Publication **47**: 297-313.

Wetzer R. (2001): Hierarchical analysis of mtDNA variation and the use of mtDNA for isopod (Crustacea: Peracarida: Isopoda) systematics. *Contributions to Zoology* **70**: 23-39.

Wetzer R. (2002): Mitochondrial genes and isopod phylogeny (Peracarida: Isopoda). *Journal of Crustacean Biology* **22**: 1-14.

Wilson G.D.F. (1976): The systematics and evolution of *Haplomunna* and its relatives (Isopoda, Haplomunnidae, new family). *Journal of Natural History* **10**: 569-580.

Wilson G.D.F. (1983a): An unusual species complex in the genus *Eurycope* (Crustacea: Isopoda: Asellota) from the deep North Atlantic Ocean. *Proceedings of the Biological Society of Washington* **96**: 452-467.

Wilson G.D.F. (1983b): Variation in the deep-sea isopod *Eurycope iphthima* (Asellota, Eurycopidae): depth related clines in rostral morphology and in population structure. *Journal of Crustacean Biology* **3**: 127-140.

Wilson G.D.F. (1987): The road to the Janiroidea: comparative morphology and evolution of the asellote isopod crustaceans. Zeitschrift für zoologische Systematik und Evolutionsforschung **25**: 257-280.

Wilson G.D.F. (1989): A systematic revision of the deep-sea subfamily Lipomerinae of the isopod crustacean family Munnopsidae. *Bulletin of the Scripps Institution of Oceanography of the University of California* **27**: 1-138.

Wilson G.D.F. (1994): A phylogenetic analysis of the isopod family Janiridae (Crustacea). *Invertebrate Taxonomy* **8**: 749-766.

Wilson G.D.F., Hessler R.R. (1980): Taxonomic characters in the morphology of the genus *Eurycope* (Crustacea, Isopoda) with a redescription of *E. cornuta* Sars, 1864. *Cahiers de Biologie Marine* **21**: 241-263.

Wilson G.D.F., Wägele J.-W. (1994): Review of the family Janiridae (Crustacea: Isopoda: Asellota). *Invertebrate Taxonomy* **8**: 683-747. Wolff T. (1960): The hadal community, an introduction. *Deep-Sea Research* **6**: 95-124.

Wolff T. (1962): The systematics and biology of bathyal and abyssal Isopoda Asellota. Scientific Results of the Danish Deep-Sea Expedition Round the World 1950-52. In: *Galathea Report Volume* **6**. Danish Science Press, Copenhagen: 1-320 and XIX plates.

Wu C.-I., Li W.-H. (1985): Evidence for higher rates of nucleotide substitution in rodents than in man. *Proceedings of the National Academy of Science of the United States of America* **82**: 1741-1745.

Wuyts J., Van de Peer Y., De Wachter R. (2001): Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. *Nucleic Acids Research* **29**: 5017-5028.

Wuyts J., Van de Peer Y., Winkelmans T., De Wachter R. (2002): The European database on small subunit ribosomal RNA. *Nucleic Acids Research* **30**: 183-185.

Xia X. (2000): Data analysis in molecular biology and evolution. Kluwer Academic Publishers \cdot Boston \cdot Dordrecht \cdot London: 1-277.

Yang Z. (1994a): Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. *Journal of Molecular Evolution* **39**: 306-314.

Yang Z. (1994b): Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods. *Systematic Biology* **43**: 329-342.

Yang Z., Goldman N., Friday A. (1994): Comparing models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. *Molecular Biology and Evolution* **11**: 316-324.

Yang Z., Yoder A.D. (1999): Estimation of the transition/transversion rate bias and species sampling. *Journal of Molecular Evolution* **48**: 274-283.

Zenkevitch L.A., Birstein J.A. (1960): On the problem of the antiquity of the deep-sea fauna. *Deep-Sea Research* **7**: 10-23.

Zhang J. (1999): Performances of likelihood ratio tests of evolutionary hypotheses under inadequate substitution models. *Molecular Biology and Evolution* **16**: 868-875.

Zharkikh A. (1994): Estimation of evolutionary distances between nucleotide sequences. *Journal of Molecular Evolution* **39**: 315-329.

7. Abkürzungen und Symbole

>	größer als
<	kleiner als
&	und
%	Prozent
∞	unendlich
0	Grad (topographisch)
°C	Grad Celsius
"	Sekunde (topographisch)
А	Adenin
Abb.	Abbildung
bp	Basenpaar(e)
BPH	Bromphenolblau (3',3'',5',5''-Tetrabromophenolsulfonphthalein)
bzw.	beziehungsweise
С	Cytosin
cm	Zentimeter
dATP	Desoxyadenosin-5´-triphosphat
dCTP	Desoxycytidin-5´-triphosphat
dest.	destilliert
ddNTP	2', 3'-Didesoxynukleotidtriphosphat
dNTP	2'-Desoxynukleotidtriphosphat
dGTP	Desoxyguanosin-5'-triphosphat
DNA	Desoxyribonukleinsäure ("desoxyribonucleid acid")
dTTP	Desoxythymidin-5 ⁻ -triphosphat
E. coli	Escherichia coli
EDTA	Ethylendiamintetraessigsäure
EthBr	Ethidiumbromid
et al.	und weitere (et alii)
F	"forward"
g	Gramm
G	Guanin
h	Stunde (,,hour'')
IPTG	Isopropyl-β-thiogalactopyranosid
kbp	Kilobasenpaare
1	Liter
LB	Luria-Bertani

Μ	Mol				
min	Minute(n)				
ml	Milliliter				
mm	Millimeter				
mM	Millimolar				
mmol	Millimol				
ML	"maximum likelihood"				
MP	"maximum parsimony"				
Ν	Nukleotid oder Nord(en) (je nach Zusammenhang)				
ng	Nanogramm				
nm	Nanometer				
0	Ost(en)				
pH	pars Hydrogenium				
Р	Phosphor				
PCR	Polymerase-Kettenreaktion ("polymerase chain reaction")				
pmol	Picomol				
R	"reverse"				
RNA	Ribonukleinsäure ("ribonucleic acid")				
RT	Raumtemperatur				
S	Sekunde(n)				
S	Schwefel oder Svedberg-Einheit oder Süd(en) (je nach Zusammenhang)				
Т	Thymin				
Tab.	Tabelle				
Taq	Thermuphilus aquaticus				
TAE	Tris/Natrium-Acetat-Puffer mit EDTA				
TBE	Tris/Borat-Puffer mit EDTA				
Ts	Transitionen				
Tv	Transversionen				
U	"unit" oder Uracil (je nach Zusammenhang)				
u. ä.	und ähnliches				
u. a.	unter anderem				
UV	Ultraviolett				
vgl.	vergleiche				
W	West(en)				
X-Gal	5-Brom-4-chlor-3-indolyl-β-D-galacto-pyranosid				
z. B.	zum Beispiel				

8. Anhang

8.1 Material

8.1.1 Chemikalien

Agar	Serva, Heidelberg
Agarose	Biozym, Hamburg
Ammoniumpersulfat	Serva, Heidelberg
Ampicillin	Serva, Heidelberg
Borsäure	J.T. Baker, Griesheim
Bromphenolblau	Serva, Heidelberg
dNTPs	Promega, Mannheim
EDTA	Merck, Darmstadt
Ethanol	Riedel-de-Haën, Seelze
Ethidiumbromid	Roth, Karlsruhe
Glycerol	Serva, Heidelberg
Hefe-Extrakt	Serva, Heidelberg
IPTG	Roth, Karlsruhe
Isopropanol	J.T. Baker, Griesheim
NaCl	Serva, Heidelberg
Natriumacetat	J.T. Baker, Griesheim
Sequagel TM XR 6%	National Diagnostics, Hess. Oldendorf
Sequagel TM Complete Buffer Reagent	National Diagnostics, Hess. Oldendorf
Tris-Acetat	AppliChem, Darmstadt
Tris-Base	Biomol, Hamburg
Tryptone Pepton	DIFCO, Hamburg
X-Gal	Roth, Karlsruhe

8.1.2 Eingesetzte Lösungen und Puffer

Ampicillin-Stammlösung (10%)	1,0 g in 10 ml H ₂ O (reinst)
Agarose-Gel (1%)	2,0 g Agarose in 200 ml TAE-Puffer (1x)
APS-Lösung (10%)	0,5 g Ammoniumpersulfat in 5 ml H_2O (reinst)
DNA-Probenpuffer	100 mM EDTA
	43% (v/v) Glycerol
	0,05% (w/v) BPB

dNTP-Mix	2 mM dATP
	2 mM dCTP
	2 mM dGTP
	2 mM dTTP
EthBr-Stammlösung (1%)	100 mg in 10 ml H ₂ O (reinst)
Polyacrylamid-Gel	24 ml Sequagel TM XR 6%
	6 ml Sequagel TM Complete Buffer Reagent
	250 µl Ammoniumpersulfat (10%)
TAE-Puffer (50x, pH 8,3)	2 M Tris-Base
	0,5 M Na-Acetat
	50 mM EDTA in H ₂ O (reinst)
TBE-Puffer (10x, pH 8,3)	1340 mM Tris-Base
	45 mM Borsäure
	25 mM EDTA in H ₂ O (reinst)

8.1.3 Eingesetzte Bakterienstämme

Tab. 8.1: Übersicht der in dieser Arbeit verwendeten Bakterienstämme:

Bakterienstamm	Genotyp	
Escherichia coli TOP10F´	$F'{lacI^q Tn10 (Tet^R)} mcrA \Delta(mrr-hsdRMS-mcrBC)$	
(Original TA Cloning [®] Kit Version N)	$Φ80lacZ\Delta M15 \Delta lacX74 recA1 araD139 \Delta (ara-leu) 7697 galU$	
	galK rpsL (Str ^R) endA1 nupG	

8.1.4 Eingesetzte Plasmide

pCR[®]2.1 Vektor

Invitrogen BV De Schelp, NL

8.1.5 Nährmedien

LB-Medium	10 g/l Tryptone Pepton
	5 g/l Hefe-Extrakt
	5 g/l NaCl in 1 l H_2O (reinst) gelöst und auto-klaviert;
	nach Ampicillinzugabe (100 $\mu g/ml)$ bei $+4^{\circ}C$ im
	Kühlschrank gelagert
LB-Agar-Ampicilin-Platten	15 g/l Agar in LB-Medium mit 100 μ g/ml Ampicillin,
	100 μ g/ml IPTG und 100 μ g/ml X-Gal steril
	gegossen, bei +4°C im Kühlschrank gelagert

8.1.6 DNA-Längenstandard

DNA-Längenstandards VII (0,37-8,0 kbp) DNA-Längenstandards VIII (0,019-1,11 kbp)

Roche Molecular Biochem., Mannheim Roche Molecular Biochem., Mannheim

8.1.7 Enzyme

Proteinase K	Sigma [®] , München
Taq DNA-Polymerase	Boehringer Mannheim; QIAGEN GmbH Hilden

8.1.8 Kits

Sämtliche verwendeten Kits enthielten Medien und Puffer, die einer firmeninternen Bezeichnung (zum Beispiel ATL-Puffer) unterlagen.

FastPlasmid ^{1M} Mini Kit
NucleoSpin [®] -Extract Kit
NucleoSpin [®] -Tissue Kit
Original TA Cloning [®] Kit Version N
Perfectprep [®] Gel Cleanup Kit
QIAquick PCR-Purification Kit
QIAamp Tissue Kit
Thermo-Sequenase fluorescent labelled
primer cycle sequencing kit

Eppendorf AG, Hamburg Macherey-Nagel, Düren Macherey-Nagel, Düren Invitrogen BV De Schelp, NL Eppendorf AG, Hamburg Qiagen GmbH, Hilden Qiagen GmbH, Hilden

Amersham Pharmacia Biotech, Freiburg

8.1.9 Geräte

Autoklaviergerät Brutschrank DNA-Sequenziergerät Dokumentationssysteme

Feinwaage Pipetten (2, 10, 20, 200 und 1000 µl) 8-Kanal Pipette Reinstwasseranlage

Spannungsregler

SANO Claw, Wolf
GFL 3032, Gesellschaft für Labortechnik mbH
DNA-Sequenzierer 4000 und 4200, LI-COR Inc.
Gel Print 1000i, BioPhotonics Corporation
Sony Black and White Monitor SSM-930 CE, Sony
FA-1500-2, Faust
ABIMED, Langenfeld
Gel Loading Syringe, Hamilton Bonaduz AG
Reinstwasser-System clear plus,
SG Wasseraufarbeitung und Regenerierstation GmbH

Power Pac 200, Bio-Rad Laboratories GmbH

Thermische Zykler	Primus96 ^{plus} Thermocycler, MWG-Biotech AG
	Progene Thermocycler, Techne Ltd.
	PTC-200 Peltier Thermal Cycler, MJ Reserach
UV-Leuchttisch	TFX-20.M UV-Leuchttisch, Vilber Lourmat
Vortexer	Vortex Genie 2, Scientific Industries
Wasserbad	Wasserbad Typ 1002,
	Gesellschaft für Labortechnik mbH
Zentrifuge	Biofuge pico, Heraeus Instruments GmbH

8.1.10 Verbrauchsmaterialien u. ä.

Kunststollwaren	
(Pipettenspitzen, Reaktionsgefäße,)	Biozym, Roth, Fischer Scientific
Glaswaren	
(Bechergläser, Messzylinder,)	Schott, Hirschmann

8.2 Sequenzdaten

8.2.1 Noch nicht veröffentliche vollständige 18s rRNA-Gensequenzen:

Tenupedunculus acutum (Vanhöffen, 1914); 2087 bp

GTGATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTGAGTACATACTAAACTAAAAGTGAAACCGCGAATGGCTCATTAAATCAGTCATGATTCCTTAGATGTTTA ${\tt CTTGAACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGGTAATTCCAGCTCCAATAGCGTATATTAAAGCTGTTGCGGTTAAAAAGCTCGTAGTTGGA$ ${\tt TTCATCCCGTCTACTGCCTATCAAACGGAGGTTTACTACCGGGTTATAAGGTCTATATAAAACGTCGACCCGCGATGGATTCTCTTTACCGAGTGTCCCGGAGCGGTCG$ AGCATTTGCCAAGAATGTTTTCATTAATCAAGAACGAAAGTTAGAGGATCGAAGGCGATCAGATACCGCCCTAGTTCTAACCATAAACGATGCTAACCAACGATCCG TCGGCGTCATTCCCACGACTCGGGCAGTACCTCGGGGAAACCAAAGCTCTTGGGGTTCCCGGGGGAAGTATGGCAAAGCTTGAAAACTTAAAGGAATTGACGGAAG GGCACCACCAGGAGTGGCACTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCGGACACTGGAAGGATTGACAGATTGAGAGCTCTTTCTCGATTCAG ${\tt AAGGGCTACTCGGAGTTGAGGCGAGGGCTCTCATTCTAGCGGCGAGTCCTTACGGGGGGCGTCTTCCGGCGGAGTTTGGTCGTGCGAGTTGAGATGTGCTTCT}$ ${\tt CGTTCTTTTTCCCGTAGATCCTAAAGGGGCGTTCGTCGTAGTATATAATCTTCTTAGAGGGATTAGCGGCGTCTAGCCGACGAGATGGAGCAATAACAGGTCTGTGAT$ ${\tt GCCCTTAGATGTTCTGGGCCGCACGCGCGCTACAATGAAAGGCGCAGCGTGCTGCTCCCCCTCCGAAAGGAGCGGGTAACCCCGATGAAACCCTTTCCCGATTGGGATT$ GGGGCTTGCAAATGTTTCCCATGAACGAGGAATTCCCAGTAAGCGCGAGTCATTAACTCGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC ACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCT

Ianthopsis multispinosa Vanhöffen, 1914; 2248 bp

 ${\tt GTCATATGCTTGTCTCAAAGATTAAGCCATGCATGCTTGAGTACAGACCGAATCTAAGGTGAAACCGCGAATGGCTCATTAAATCAGTCATAATTCCTTGGATAGTG$ ${\tt ACCGGCGTAATCTTTCGGGATGCGCCGCCTGTCAAACTTGATGACTCCGGATAACTTAGCCGAGCGCTACGGTCTTGGTACCGGCGCCGCTATCTTTCAAGTGTCTGC$ CTTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGTAACGGGGAATCAGGGTTCCGATTCCGGAGGAGGCCTGAGAAACGGCTACCACATCTTCTAAACATTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGGCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGCTGCGGGTTAAAAAAGCTCG AATTAAAATTTTGTCAGCTCACTCGGAGTGCTCTTTACCGAGTGTTCCCAGGGTGGCTGACACGTTCACTTTGAAAAAATTTAGAGTGCTTAAAGCGGGCCGAAATGTC ${\tt GCCTGAATGTTGCTGGAATGAAGGAACAGGAACCAGGACCTCGGTTCTGTTCTTTTTGCGGTTTTAATGAACCGAGGTAATGATTAAAAGGAACAGACGGTGGCATTAG$ TTCCGATAACGAACGAGACTCTACCCTACTAACTAGTCGGCGGATCGTAACCCTGAGATGGGTGAGACCGAAGCGACTGCGTATTGAAAGTTCCGCGGCGGCGTATCAAT

Ianthopsis nasicornis Vanhöffen, 1914; 2149 bp

GAAAAAACTTCCTCGGATAACTGTGGAAAAATCCAGAGCTAATACGTGCATAAGAGCTCTGGCCTTGGCGTGAGTTGAGGGAAGAGCGCATTTATTAGATTCAAAACT GACCGGTGTAATCTTTCGGGATGCGCCGCTTGTCAAACTTGATGACTCCGGATAACTAAGCCGAGCGCTACGGTCTTTGTACCGGCGCCGTATCTTTCAAGTGTCTG ${\tt CCTTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATTCCACATCCACATCCACATCCACATCCACATCCATCCACATCCACATCCACATCCACATCCA$ TAAGGAAGGCAGGCAGGCACGCAAATTACCCACTCCCAGTTCGGGGAGGTAGTGACGAAAAATAACGATGTGAGACTCTTCCGAGGCCTCACAATCGGAATGAGTCCA GTAGTTGGATCTCCTAGATCCAAATTCATGGGCGGGTCGCTCGTTGTACGCGCGGTTCTATGTCAGTTCCTCGGGGTTGTTCCTTCGAGCTTCTTCTACTCTTCTACTG GTCTCTGAGTATAGCCCGTCTGTGTTTGGTACAATTAAAATTTTGTCAGCTCACTCGGAGTGCTCTTTACCGAGTGTTCCAGGGTGGCTGACACGTTCACTTTGAAA TGCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCGGACATTAGAAGGATTGACAGATTGAGAGGCTCTTTCTCGATTAAATGGGTGGTGGTGGTGGCAGGCCG TGAGTAACTGAAGGTTTCGGGGGAGTAGTATCAATTTCGCTGGGGTTCCTCTATAGAGCTTTTGTGGGGGTTTACTCAGTCTCGTCAAACTGAATGCTTATCGTGAAAGTT ${\tt TCGCTTACTGGGGGCGTCCGTCGCAATGTATCTTCTTAGAGGGATCAGCGGCGTCTAGCCGCACGAGAAAGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTG$ GGCCGCACGCGCGCTACAATGTAGGGCTTAGCGTGCCTTCCCCCTCCCGAAAGGAGCGGGTAACCCCCATGAAACCCCCATGGGGATTGGGGCTTGTAAATAT TTCCCATAAACGAGGAATTCCCAGTAAGCGCGAGTCACTAGCTCGCGCGGATTAAGTCCCTGACCTTGTACACACCGCCCGTCGCTACTACCGATTGAATGATTCA GTGAGGGCATCGGACTGGCGCTTCGGTTGAAACATATCCTAGGCTGACGGAAAGATGTCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTA GGTGAACCG

Ianthopsis ruseri Vanhöffen, 1914; 2204 bp

CCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCCCGATGCATGTCTGAGTACAGACCGATCTAAGGTGAAACCGCGAATGGCTCATTAAATCAGTCATAATT ${\tt CCTTGGATAGTGAAAAAACTTCCTCGGATAACTGTGGAAAATCCAGAGCTAATACGTGCAACTGAGCTCAGACCTTGACGTGAGGTGAGGGAAGAGCGCATTTATTA$ GATTCAAAACTGACCGGCGTACTCTTTCGGGATGCGCCGCATGTCATAACTTGATGACTCCGGATAACTTAGCCGAGCGCTACGGTCTTGGTACCGGCGCCGTATCT TTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGGAGCCTGAGAAAC GGAATGAGTTCATTCTAAACATTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGCTGCG GTTAAAAAGCTCGTAGTTGGATCTACTAGATCCAATGCGTGGGCGTGGCGCGTCGTTGTACGCGCGCTTCTATGCGGGTCCCTCGGGGGTCTTTCCTTTGGGCTCTTCATC ${\tt TCATCGGTTTGTGTCTCCCGTGTGGGCGGTAGAGCGTAGAGCGTAGTCTCTGAGTATAGCCCGTCCGCGCTTGGTACGAATACAAATTTGTCGGCTCGGCGGAGTGCTCTTTA$ ${\tt TCGGTTCTGTTCTTTTTGTCGGTTTTAATGAACCGAGGTAATGATTAAAAGGAACAGACGGTGGCATTAGTATTGAGTCGCTAGAGGTGAAATTCTTGGACCGACTC$ AAGACTGACTACTGCGAAAAGCATTTGCCGAGAAAGTTTTCATTAATCAAGAACGAAAGTTAGAGGATCGAAGGCGATCAGATACCGCCCTAGTTCTAACCCTAAACT ATGCTAACTAGCGATCCGTCGGAGTCATTCCCACGACCCGGCGGGAAGCCCCAGGGAAACCAAAGTCTTTGAGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTT AAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCCGGACATCAGAAGGATTGACAGATTGAG ${\tt TCGTGTTGCTGGGGTTACATCGTTGGTGTGTGTGGTACTGATTAGCGTTTCGTCCAAGTTTCGCTTACTGGGGGCGTCCGCAATGTATCTTCTTAGAGGGATCAGCG$ GCGTCTAGCCGCACGAGAAAGGGCAATAACAGCGTCTCGCGCCCTTAGATGTTCTGCGCCCGCACGCGCCTCAGAGCGCTCAGCGTGCCTTCCCCTCTCCCGAA AGGAGCGGGTAACCCGTTGAAACCCCTACCCGATTGGGATTGGGGATTGCAAATGTTTCCCATAAACGAGGAATTCCCAGTAAGCGCGAGTCATTAGCTCGCGCTGA TTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGAATGATTCAGTGAGGGCATCGGACTGGCGCCTTCGGTTGCAACATACCTTAGGCTGACGG AAAGATGTCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGTGAACC

Neojaera sp. 1; 2229 bp

CTAATTCCTTGGATAGTGAAAAAAACTTCCTCGGATAACTGTGGAAAATCCAGAGCTAATACGTGCAACTGAGCTCCGACCTGGGCGCGAGCCTAGGGAAGAGCGCAA TTATTAGATTCAAAACTGACCGACGTACTCCTCCGGGATGCGCCGCTTGTCATACTTGATGACTCCGGGATAATTTAGCCGAGCGCTACGGTCTTCGTACCGGCCGCCG TATCTTTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGA GAAACGGCTACCACATCTAAGGAAGGCAGGCAGGCACGCAAATTACCCACTCCCAGCTCGGGGAGGTAGTGACGAAAAATAACGATGCGAGACTCTTCCCGAGGCCTCG $\texttt{CAATCGGAATGAGTCCATTCTAAATCCTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCGGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTG$ TTGCGGTTAAAAAGCTCGTAGTTGGATCTCCTAGATCCAACTCATGGGCGGGTGTCTCGTTGTACGTGCGTTTTTGAGCAGTCGCTCGGAAGGTCGGAGTGGCTTTTG ${\tt CTGTTATTTTGTCGGTTTTAATGAACCGAGGTAATGATTAAAAGGAACAGACGGTGGCATCAGTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACT$ AACTACTGCGAAAGCATTTGCCGAGAATGTTTTCATTAATCAAGAACGAAAGTTAGAGGATCGAAGGCGATCAGATACCGCCCTAGTTCTAACCCTAAACTATGCTA ${\tt AATTGAGGAGGCACCACCAGGAGTGGAACTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCGGACATTAGAAGGATTGACAGATTGAGAGGCTCTTT$ ${\tt TAGAGGGATCAGCGGCATCTAGCCGTACGAGAAAGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACAATGTAGGAACCAGCGTGT$ ${\tt GTTTTCCCTCTCCGAAAGGAGCGGGTAACCCGTTGAAACTCCTACGCGCTTGGGATTGGGATTGCAAATGTTTCCCATAAACGAGGAATTCCCCAGTAAGCGCGAAT$ CACCTTAGGCTGACGGAAAGATGTCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTCCGTAGTGAACCKGCGGAAGGA

Neojaera sp. 2; 2208 bp

GTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTGAGTACAGACCGATCTAAGGTGAAACCGCCGAATGGCTCATTAAATCAGTCCTTAGATAGTGA TTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGGAGCCTGAGAAACGGCTACCACATCTA ${\tt CTAAATCCTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCGGTTAAAAAGCTCGT$ ${\tt TCACTTTGAAAAAATTAGAGTGCTTAAAGCGGGCTGAGAAAATCGCCTGAATGTTGTTGCATGGAATGAAGGAACAGGAACCGGATTCTGTTATTTTTGTCGGTTTTA$ $\label{eq:constraint} a transformation of the transformation of transformati$ CGAGAATGTTTTCATTAAAGAAGAACGAAGGATCGAAGGCGATCAGATCAGATCCCCCTAGTTCTAACCCTAAACTAAGCTAAGCTAAGCGATCCGCCCGGAGTCA TTCCCACGACTCGGCGGGAAGCCCCCAGGGAAACCAAAGTCTTTGAGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCCACCAC ${\tt CAGGAGTGGAGCTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCGGACATTAGAAGGATTGACAGATTGAGAGCTCTTTCTCGATTTAATGGGTGGT$ GGTAACCCGTTGAAACTCCTACGCGCTTGGGGATTGGGGATTGCAAATGTTTCCCATAAACGAGGAATTCCCAGTAAGCGCGGAATCATTAGTTCGCGCGTGATTAAGTC TCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAAACCDGCGGAAGG

Iathrippa sarsi (Pfeffer, 1887); 2546 bp

GTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTGAGTACAGACCGATCTAAGGTGAAACCGCGAATGGCTCATTAAATCAGTCGTAATCCCTTGGATAGTGA AAAAACCTTCCCCGGATAACTGTGGAAAAATCCAGAGCTAATACGTGCGACTGAACTCCGACCTCGGCTCACGCTGAGGGAAGAGTGCATTTATTAGATTCAAAACTGA ${\tt CCGGTGTTGTGCTTTTCTATTCCTGCGGGGGTACGTTAACGCAATCGCCGCTTGTCAAAACTTGATGACTCCGGATAACTTAGCCGAGCGCTCCGGTCTTTTGTGCCG$ GCGCCGTATCCTTCGAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGTAACGGGGAATCAGGGTTCGATTCCGGGGGAAGGGGA ${\tt GCCTCTCAATCGGAATGAGTCCATTCTAAATCCTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCGGGTAATTCCAGCTCCAATAGCGTATATTA$ ${\tt AAGTTGCTGCGGTTAAAAAAGCTCGTAGTTGGATCTCCTGAATCCCAATTCGCTGGCGGGTAGCTCTTTGTACACGCGTTTTATGCGGTCTCTTTGGAGGTTTTCCCATGA$ GGTTAGTCGCAATTCAAAGGGAGTCGAAAGGTTCTTCCGAGATGAAAGAGGAGTTTTATAAAGTTCGCCGACGCGTTCCTTGTGATCTTCACCCTGCTCTCGGTTTC ${\tt TTCGTTCTCGTTGTCGATGTCTCGTTGGAACGGATTCATTGGCGTTCTTCCTCGTTTAGACGGTAAGATGCAGTCTTTGAGTATAGCCCGTCTTGCGATTGG$ TACAATTAAAAATTGGTCGGCTCGCTCGGAGTGCTCTTTACCGAGTGTTCCGGGGTGGCCGACACGTTCACTTTGAAAAAATTAGAGTGCTTAAAGCGGGCCGAAAA GTCGCCTGAATGTTGCATGGAATGAAGGAACAGGACCACGGTTCTGTTCTTTTTGTCGGTTTTAATGAACCGAGGTAATGATTAAAAGGAACAGACGGTGGCAT CGAAGGCGATCAGATACCGCCCTAGTTCTAACCCCTAAACTATGCTAACTAGCGATCCGTCGGAGTCATTCCCACGACCCGGCGGAAGCCCCAGGGAAACCCAAAGTC ${\tt TTTGAGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTKACGGAAGGGCACCACCAGGAGTGGACTGCGGCTTAATTKACTCAACACGGGAAACCT$ ${\tt TTCCGATAACGAACGAGACTCTACCTACTAACTAGTCGGCGGATCGTAACCCTGAGATGGGAGAAACCGAAGCGTAGGTGGTTCGGGGGCGAGATTCTTTGTCTTT$ GAGGGATCAGCGGCGTCTAGCGCACGAGAAAGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCCGCACGCGCGCTACAATGTAGGGCTCAGCGTGCTTT ${\tt CCCTCTCCGAAAGGAGCGGGTAACCCTTTGAAACCCCTACGCGATTGGGATTGGGATTGCAAATGTTTCCCATAAACGAGGAATTCCCAGTAAGCGCGAGTCATTA$ ${\tt ACTCGCGCTGATTTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGAATGATTTGGTGAAGGCATCGGACTGGCGCCTTCGGTTGCAACATACC$ TTAGGCTGACGGAAAGATGTCCGAACTGGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGGAACCTGCGGAAGG

Iais pubescens (Dana, 1853); 2197 bp

GTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTGAGTACAGACCGATCTAAGGTGAAACCGCGAATGGCTCATTAAATCAGTCATAATTCCTTGGATAGTGA TAAATCCTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATGCAAGTTGCTGCGGTTAAAAAGCTCGTA ${\tt GCGCGTCCGACTGTCGACAGGTGTTTTATCCTTAGACTATCGGCCGCGAACGACGTTTCGATTCCGCTTGTAGTGCTCCTCGTTTCGAACGGTCGAGCCGAGTCTCG$ GAGTATAGCCCGTCCGCGTTTGGTACAATTACAAATTTGTCGGCTCGGCTCGGAGTGCTCTTTACCGAGTGTTCCAGGGTGGCCGACACGTTCACTTTGAAAAAATTA ATTTGACTCAACACGGGAAACCTCACCAGGCCCGGACATCAGAAGGACTGACAGATTGAGAGCTCTTTCTCGATTCGATGGGTGGTGGTGGTGCATGGCCGTTCTTAGTT GGGAAGGAGCGTCGACGACGGCGATGGGTGTTGTCGAGGCGACTCTTACTGGGGGCGTCCGCCGCAATGTATCTTCTTAGAGGGATCAGCGGCGTCTAGCCGCACGA ${\tt TTGAAACCCCTACCCGATTGGGATTGGGGATTGCAAAATGTTTCCCATAAACGAGGAATTCCCAGTAAGCGCGAATCATTAATTCGCGCTGATTACGTCCCTGCCCTT$ TGTACACCCGCCCGTCGCTACCGACTGAATGATTCAGTGAGGGCATCGGACTGGCGCTTCGGTTGAAACATACCTTAGGCTGACGGAAAGATGTCCGAACTTG ATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGTGAACCTGCGGAAGGA

Joeropsis sp.; 2329 bp

TGAGTTCAATTTAAAACTTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGCTGCGGGTTA GATATCGCAGTTCTTTCCTTAGTGTTGTTGGCAATACAAGCGCCGCTCCGCTCTTGCAATTTACGTTTAGGCGTATTTGCTTAATTGCGTTCTTGCGACGTTGTCGAT ${\tt ACATGCAGGGGGGGGGGGGCTCTTCTGCCTTTGGGTTGATTACTGAGCAAGGACGGTAGGAGTGTAGTCTCGAAGCATAGCCCGTTCGTACTTGGTACAATTAAAATTTTG$ TCGGCGCGCCCCGAGTGCTCTTCATCGAGTGTTCCAGGGTGGCCGACACGTTCACTTTGAAAAAATTAGAGTGCTTAAAGCGGGCCGAAAGTTATGCCTGAATGTTG ${\tt TTGCATGGAATGAAGGAAGAGGACCTCGGTTCTGTTCTTTTTGTCGGTTTTAATGGACCGAGGTAATGATTAAAAGGAACAGACGGTGGCATTAGTATTACGACGCT$ ACCGCCCTAGTTCTAACCCTAAACTATGCTAACTAGCGATCCGTCGGAGTCATTCCCACGACCCCGGGGAAGCCCCAGGGAAACCAAAGTCTTTGAGTTCCCGGGGG AAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCGG $\label{eq:construct} accade construct accade construction according and a construct accade construction according accade accad$ GTGTGTGTGGGGGTTCTTGTTTGGATCGTTGTTCGGAGTCGTTGGCTTAACGTGTCCCGGAAGGCCACTCTTACTGGGGGCGCTCCGTCGCATTGTATCTTCTTAGAGGG ATCAGCGGCGTCTAGCCGCACGAGAAAGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCACAATGTAGGGCTCAGCGTGCCTTAATC ${\tt CCCCTCCGAAAGGAGCGGGTAACCACATGAAAACCCCTACACGATTGGGATTGGGATTGCGAAATATTTCCCATGAACGAGGAATTCCCAGTAAGCGCGAGTCATTAG$ ${\tt TAGGCTGACGGAAAGATGTCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGA$

Betamorpha identifrons (Menzies, 1962); 2223 bp

ATTAGATTCAAAACTGACCGTCGTACTCTTCGGGATGCGACGTTTGTCTCAAGTTTGATGACTCCGGATAACTTAGCCGAGCGCTACGGTCTTAGTACCGGCGCCGCG ATCTTTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGTTTAAACGCCTACAATGGCTGTAACGGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGAG AAACGGCTACCACATCTAAGGAAGGCAGGCAGGCACGCAAATTACCCACTCCCAGCCCGGGGAGGTAGTGACGAAAAATAACGATGCGAGACTCTTCCGAGGCCTCGC AATCGGAATGAGTCCATTTTAAATCCTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGC GTTCCAGGGTGGCCGACACGTTCACTTTGAAAAAATTAGAGTGCTTAAAGCGGGCTTATACGTGGCCTGAATGTCTGTGCATGGAATGAAGTAACAGGACCTCGATT CTGTTTTTTTTGTCGGTTTTATTGAACCGAGGTAATGATTAAAAGGGACAGACGGTGGCATTAGTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACTATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCGGACATCATAAGGATTGACAGGTTGAGAGCTCT ${\tt CAGCGGCGTATAGCCGCACGAGAAAAGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACAATGTAGAGACCAGCGTGCTTTCCCTCT$ ${\tt CCGAAAGGAGCGGGTAACCCGTTGAAACCCCTACCCGATTGGGATTGGGGATTGCAAATATTTCCCATAAACGAGGAATTCCCAGTAAGCGCGAATCATTAATTCGC$ GCTGATTACGTCCCTGCCCTTGTACACACCGCCCGTCGCTACCACTACCGATTGAATGATTCAGTGAGGGCATCGGCCTGGCCCCTTCGGTTTAGTAACACCTTAGACCCTTA GGCTGACGGAAAGATGTCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGG

Coperonus sp.; 2146 bp

 ${\tt TCATAATTCCTTGGATAAGTGATAAAATTTCCTCGGATAACTGTGGAAAAATCCAGAGCTAATACGTGCGACTGAGCCTCGGCGTGAGCCTTGGGAAGAGCGC$ ${\tt ATTTATTAGATTCAAAAACTGACCGTGGTACTCTTCGGGATGCTACGTTTGTCGATTGTTTGATGACTCCGGATAACTAAGCCGAGCGCTAAGGACTTTGAGCCGGCG$ ${\tt CTGGTACAATTAAAATTTTGTCGGCTCGCTCGGAGTGCTCTTTACCGAGTGTTTCCAGGGTGGCCGACACGTTCACTTTGAAAAAATTAGAGTGCTTAAAGCGGGCGC$ AATATAGCCTAAATGTCTGTGCATGGAATGAAGTAACAGGACCTCGATTCTGTTTTTTTGTCGGTTTTATTGAACCGAGGTAATGATTAAAAGGGACAGACGGTGG GATCGAAGGCGATCAGATACCGCCCTAGTTCTAACCCTAAACTATGCTAACTAGCGATCCGCCGGAGTCATTCCCCACGACCCCGGCGGGAAGCCCCAGGGAAACCAAA GTTTTTGAGTTCCGGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGCACCACCAGGAGTGGCCTGCGGCTTAATTTGACTCAACACGGGAAA TGTCATTACGTTAGCGACTTTTCTCATTAATTTGGGTTTAGCCGCGCGTTTTGGGGATGTTGCGGGCTTCTAAGATCGCCTTCCGAGAGCTGCTACACTGCTGGGGG CGTCCGTCGCAATGTATCTTCTTAGAGGGATCAGCGGCGTATAGCCGCACGAGAAAGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGC TACAATGTAAGGACCAGCGTGCGTTCCCTATCCGAAAGGATCGGGTAACCCGTTGAAAGCCCTACTCGATTGGGATTGGGGATTGCAAATATTTCCCCATAAACGAGG AATTCCCAGTAAGCGCGATTCATAAAATCGCGCTGATTACGTCCCTGCCCTTTGTACACACCGCCGGTCGCTACTACCGATTGAATGATTCAGTGAGGGCATCGGAC TGGCGCCTTCGGTCTTGTCAAAGAGACCATTGGCTGACGGAAAGATGTCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGTGAACCTGC GGAAGG

Eurycope sp. 1; 2190 bp

Eurycope sp. 2; 2142 bp

 ${\tt TAGTGATATGCTCTGTACAAAGATTAAGCCATGCATGCTGAGTACAGACCGATCTAAGGTGAAACCGCGAATGGCTCATTAAATCAGTCATAATTCCTTGGATAG$ TGATAAACTTCCTCGGATAACTGTGGAAAAATCCAGAGCTAATACGTGCAACTGAGTTCCGACCTCGGCGTGAGCCTTGGGAAGAACGCATTTATTAGATTCAAAACT ${\tt GACCGGCGTACTCCTCCGGGATGCGCCGTTCGTCAAATGTTTGATGACTCCGGATAACTTAGCCGAGCGCTACGGTCTTTAGTACCGGCGCCGTATCTTTCAAGTGT$ TTTCTCTTTCGGGGAGTTTGCTTATCGTTGTTTCACGTCGGCACGTACGGAGTCTAGCGGACGTCGAATCGTTGTCTTCGAGTATTGCTCGTCGTCGGCACGTACAAT ${\tt TAAAAATTTGTCGGCTCATTCGGAGTGCTCTTTACCGAGTGTTCCAGGATGGCTGACACGTTCACTTTGAAAAAATTAGAGTGCTCAAAGCGGGCTGAAACCAACGG$ ${\tt CCTGAATGTCTGTGCATGGAATGAAGTAACAGGACCTCGATTCTGTTTTTTTGTCGGTTTTATTGAACCGAGGTAATGATTAAAAGGGACAGACGGTGGCATTAGT$ GGCGATCAGATACCGCCCTAGTTCTAACCCTAAACTATGCTAACTAGCGATCCGCCGGAGTCATTCCCACGACCCGGCGGGAAGCCCCAGGGAAACCAAAGTTTTTG AGTTCCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAACCTC CACGCGCGCTACAATGTAAGGACCAGCGTGCTTTCCCCTTCCGAAAGGAACGGGTAACCCGTTGAAAGCCCTACCCGATAGGGATTGGGGATTGCAAATATTTCCCA GCATCGGACTGGCGCCTTCGGTTTAGTAACATAGACCTTAGGCTGACGGAAAGATGTCCCGAACTTGATCATTTAGAGGAAGTAAAAAGTCGTAACAAGGTTTCCGTAG ΤG

Sursumura robustissima (Monod, 1925); 2152 bp

TTATTAGATTCAAAACTGACCGGCGTACTCCTTCGGGATGCGTCGTTTGTCGAAAGTTTGATGACTCCGGATAACTTAGCCGAGCGCTCCGGTCCTTGAACCGGCGC ${\tt CGTATCTTTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCT$ ${\tt CGCAATCGGAATGAGTCCATTTTAAATCCTTGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCGCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGT$ ${\tt GGTTGGCTTCTCTTTCGGGAGGTCGTCTTCCGCCTCGGGATCTTGAGGACGGCGAGGAGTTGTCTTCGAGTATTGCTCGTTCGGCGTTTGGTACAATTAA$ ${\tt AATTTTGTCGGCTCGGCAGGAGTGCTCTTCACCGAGTGTTCCAGGGTGGCCGACACGTTCACTTGAAAAAATTAGAGTGCTTAAAGCGGGCCTTATACGTGGCCTGA$ CGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCACGGGTGGACTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGG ${\tt GCGCGCTACAATGTAGAGATCAGCGTGCTTTCCCCCTCCGAAAGGAGCGGGTAACCCGTTGAAACCCCGTTGCGGATTGGGGATTGCGAAATATTTCCCATAA$ ${\tt TCGGACTGGCGCCTTCGGTTTAGTAACATAGACCTTAGGCTGACGGAAAGATGTCCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGTGA$ ACCTGCGGAAGG

Austroniscus sp.; 2140 bp

ATAATTCCTTGGGTAGTGAAAAACTTTCCTCGGATAACTGTGGAAAAATCCAGAGCTAATACGTGCAACTGAGCTCCGACCTCGGCGTCAGCTGTGGGAAGAGCGCAT ${\tt TTATTAGATTCAAAACTGACCGGTGTACTCCTTCGGGATATGCCGTTTGTCAAATGTTTGATGACTCCGGATAACTAAGCCGAGCGCTACGGTCTTTAGTACCGGCG$ ${\tt CCGTATCTTTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTAAACGCCTACAATGGCTGTAACGGGGAATCAGGGTATCGGATTCCGGAGAGGGAGCC$ TGAGAAACGGCTACCACATCTAAGGAAGGCAGGCAGGCACGCAAATTACCCACTCCTAGCCCAGGGAGGTAGTGACGAAAAATAACGATGCGAGACTCTTCCGAGGCC ${\tt TCGCAATCGGAATGAGTCTATTATAAATTTATGGACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCGCGGGTAATTCCAGCTCCAATAGCGTATATTAAAG$ ATCTCTCTTTCGGTTTCTATCGATTGGGAGGTTTCCCCCGCGCACAGAATCTTGTGAACGGCGATTCGTTGTCATAGGGTATAGCTTGTCCGCGCGTTTGGTACAATTAA AATTTTGTCGGCTCGGCAGGGGCCCTTTAACGGAGTGTTCCAGGGTGGCCGACACGTTCAATTGAAAAAATTAGAGTGCTTAAAGCGGGCCCTGCAAAGGGCCCGG AATGTCTGTGCATGGAATGAAGTAACAGGACCTCGATTCTGTTGTTTTTTGTCGGTTTTAATGAACCGAGGTAATGATTAAAAGGGACAGACGGTGGCATTAGTATT GATCAGATACCGCCCTAGTTCTAACCCTAAACTATGCTAACTAGCGATCCGCCGGAGTCATTCCCACGACCCGGGGGAAGCCCCAGGGAAACCAAAGTCTTTGAGT TCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCACGAGGAGTGGACCTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCA GCGTCCGTCGCAATATATCTTCTTAGAAGGATCAACGGCGTATAGCCGTACGAGAAAGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCG ${\tt CTACAATGTAAGGACCAACGTGCTTTCCCCCTCCGAAAGGAGCGGGTAACCAGTTGAAAGCCCTACCCGATTGGGATTGGGATTGCAAATATTTCCCATAAACGAG$ GAATTCCCAGTAAGCGTGAGTCAACAACTCGCGCTGATTACGTCCCTGCCCTTTGTACACGCCCGTCGCTACCGGATTGAATGATTCAGTGAGGGGCATCGGA CTGGCGCCTTCGGTTTTGAAACATAGACCTTAGGCTGACGGAAAGATGTCCGAACTCGATCATTAGAGGAAGTCATAAAGTCGTAACAAGGTTTCCGTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCTTAGGTGAAACCCCTAGGTGAAACCCCTTAGGTGAAACCCCTTAGGTGAAACCCCGAACTCCGAACTCGATCATTAGAGGAAGTCATAAAGTCGTAACAAGGTTTCCGTAGGTGAAACCCTTAGGTGAAACCCCTTAGGTGAAACCCCGAACTCCGAACTCGATCATTAGAGGAAGTCATAAAGTCGTAACAAGGTTTCCGTAGGTGAAACCCCGTAACAAGTCTCCGTAACAAGTCCCGAACTCCGAACTCGAACTCCGAACTCGAACGTAACAAGTCGTAACAAGTCTCCGAACTCCGAACTTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTTCGAACTCCGAACTCGAACTCGAACTCGAACTCTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCCCCCTCCACTCCCCAACTCAACTCCACTCCCCTTCACTCCACTCCCACTCCCCCAACTCCCACTCCCCACTGCGGAAGGG

8.2.2 Ergebnisse des Tests der relativen Substitutionsraten

Im nachfolgenden finden sich die Ergebnisse des Tests der relativen Substitutionsraten (siehe 2.3.3.2) der Alinierung 2 (siehe 3.1.2, 3.1.3). Als Außengruppentaxon wurde die Sequenz des Decapoden *Astacus astacus* verwendet. Ist die Differenz d_{0A} - d_{0B} der Distanzen 1,96fach höher als ihre Standardabweichung SD, liegen signifikant unterschiedliche Substitutionsraten vor (siehe 2.3.3.2). Ein positiver Z-Wert weist auf eine höhere Evolutionsgeschwindigkeit bei Taxon A hin, während bei einem negativen Wert Taxon B gegenüber Taxon A eine höhere Substitutionsrate hat. Auf eine Auflistung der nach Kimura (1980) korrigierten Distanzwerte des Datensatzes wird verzichtet.

Die in der Tabelle aufgelisteten Kürzel entsprechen den folgenden Taxa:

ST1 = Stenetrium sp., BST28 = Tenupedunculus acutum, AC4 = Acanthaspidia bifurcatoides, AC22 = A. drygalskii, AC7 = A. pleuronotus, AC25 = A. rostratus, AC21 = A. sp., BAC10 = Ianthopsis multispinosa, BAC27 = I. nasicornis, DN1 = Dendromunna sp., DE1 = Chelator sp., DE7 = Eugerda sp., DE5 = Eugerdella natator, DE2 = Mirabilicoxa sp., HM1 = Thylakogaster sp., HA55 = Antennuloniscus armatus, HA56 = Haploniscus sp. 1, HA311 = H. sp. 6, HA450 = H. sp. 8, HA57 = Mastigoniscus sp. 1, IS3 = Haplomesus sp. 1, IS4 = H. sp. 2, IS14 = Ischnomesus sp., IS11 = Stylomesus sp., JL1 = Janirella sp., JA6BC = Iais pubescens, BJA32 = Iathrippa sarsi, JO3 = Neojaera antarctica, BJA9 18s = Neojaera sp. 1, BJA18 = N. sp. 2, BJO12 = Joeropsis sp., MA1 = Macrostylis sp. 1, MA2 = M. sp. 2, ME1 = Mesosignum sp., BMP55 = Betamorpha identifrons, BMP5 = Coperonus sp., MP1 = Eurycope sarsi, BMP38 = E. sp. 1, MP9 = E. sp. 2, MP12 = Echinozone sp., MP3 = Ilyarachna antarctica, MP5 = Storthyngurella triplospinosa, BMP42 = Sursumura robustissima, BJA14 = Austroniscus sp., Astacus = Astacus astacus, Asellus = Asellus aquaticus, Joerop = Joeropsis coralicola, Lirceus = Lirceus fontinalis, Munnops = Munnopsis typica, Sursumura = Sursumura falcata, Echino = Echinozone spinosa, Iathrip = Iathrippa trilobatus, Eurycope = Eurycope inermis, Acanth = Acanthocope galathea, Stenase = Stenasellus racovitzai, Janira = Janira maculosa und Proasell = Proasellus slavus.

Tab.	8.2:	Ergebnisse	des	Tests	der relativen	Substitutionsraten:
	·	Ligosinooo	400	10010	doi roidiron	ouboutation loratori.

Taxon 1 vs Taxon 2	$\mathbf{d}_{0A} - \mathbf{d}_{0B}$	SD	Z-Wert	Taxon 1 vs Taxon 2	$d_{0A} - d_{0B}$	SD	Z-Wert
Asellus vs Lirceus	0.008415	0.005817	1.446.526	DE7 vs MA1	-0.005183	0.003729	-1.390.012
Asellus vs Proasell	0.007019	0.005639	1.244.689	DE7 vs MA2	-0.002339	0.004068	-0.574829
Asellus vs Stenase	0.007793	0.005979	1.303.357	DE7 vs ME1	0.004278	0.003550	1.205.028
Asellus vs ST1	-0.025246	0.009282	-2.719.997	DE7 vs Acanth	-0.010277	0.004181	-2.457.841
Asellus vs BST28	-0.026007	0.009329	-2.787.743	DE7 vs BMP55	-0.000790	0.003186	-0.248033
Asellus vs AC4	-0.022667	0.008904	-2.545.534	DE7 vs BMP5	-0.017549	0.005348	-3.281.525
Asellus vs AC22	-0.033869	0.009218	-3.674.220	DE7 vs Echino	-0.003803	0.004259	-0.893010
Asellus vs AC7	-0.022715	0.008923	-2.545.564	DE7 vs MP12	-0.003049	0.004190	-0.727579
Asellus vs AC25	-0.022082	0.008843	-2.497.246	DE7 vs Eurycope	-0.008315	0.004693	-1.771.591
Asellus vs AC21	-0.023487	0.008959	-2.621.694	DE7 vs MP1	-0.007326	0.003726	-1.966.282
Asellus vs BAC10	-0.026585	0.008965	-2.965.271	DE7 vs BMP38	-0.012702	0.005133	-2.474.423
Asellus vs BAC27	-0.035357	0.009345	-3.783.533	DE7 vs MP9	-0.010681	0.004604	-2.319.729
Asellus vs BAC1	-0.019857	0.008703	-2.281.795	DE7 vs MP3	-0.005136	0.003539	-1.451.438
Asellus vs DN1	-0.048024	0.009762	-4.919.487	DE7 vs Munnops	-0.006834	0.004227	-1.616.810
Asellus vs DE1	-0.022294	0.008947	-2.491.676	DE7 vs MP5	-0.002254	0.003955	-0.569860
Asellus vs DE7	-0.022733	0.008858	-2.566.495	DE7 vs Sursumura	-0.005944	0.004146	-1.433.537
Asellus vs DE5	-0.022757	0.008738	-2.604.307	DE7 vs BMP42	-0.004477	0.004022	-1.113.135
Asellus vs DE2	-0.025682	0.009049	-2.838.192	DE7 vs BJA14	-0.009647	0.005066	-1.904.134
Asellus vs HM1	-0.043273	0.009666	-4.477.009	DE5 vs DE2	-0.002876	0.003939	-0.730201
Asellus vs HA55	-0.024932	0.008883	-2.806.613	DE5 vs HM1	-0.019661	0.007254	-2.710.471
Asellus vs HA56	-0.035325	0.009312	-3.793.407	DE5 vs HA55	-0.002760	0.005677	-0.486188
Asellus vs HA311	-0.036065	0.009399	-3.837.102	DE5 vs HA56	-0.013174	0.005966	-2.208.036
Asellus vs HA450	-0.033795	0.009314	-3.628.548	DE5 vs HA311	-0.013904	0.006057	-2.295.471
Asellus vs HA57	-0.030211	0.009314	-3.243.548	DE5 vs HA450	-0.011677	0.005990	-1.949.323
Asellus vs IS3	-0.034357	0.009255	-3.712.387	DE5 vs HA57	-0.008069	0.005959	-1.354.034
Asellus vs IS4	-0.035205	0.009313	-3.780.260	DE5 vs IS3	-0.010741	0.005494	-1.954.953
Asellus vs IS14	-0.027251	0.008950	-3.044.642	DE5 vs IS4	-0.011531	0.005561	-2.073.737
Asellus vs IS11	-0.031669	0.009157	-3.458.571	DE5 vs IS14	-0.003716	0.004273	-0.869602
Asellus vs JL1	-0.023408	0.008874	-2.637.715	DE5 vs IS11	-0.008837	0.004806	-1.838.613
Asellus vs JA6BC_18s	-0.017070	0.008405	-2.030.870	DE5 vs JL1	0.000121	0.004129	0.029302
Asellus vs lathrip	-0.015483	0.008694	-1.780.932	DE5 vs JA6BC_18s	0.004400	0.005321	0.826914
Asellus vs BJA32	-0.023721	0.008981	-2.641.237	DE5 vs lathrip	0.006692	0.005482	1.220.702
Asellus vs Janira	-0.044788	0.010335	-4.333.677	DE5 vs BJA32	-0.002969	0.006072	-0.488970
Asellus vs JO3	-0.023579	0.009101	-2.590.953	DE5 vs Janira	-0.021965	0.008105	-2.710.049
Asellus vs BJA9_18s	-0.021439	0.008968	-2.390.496	DE5 vs JO3	-0.002203	0.005904	-0.373186
Asellus vs JA18	-0.020647	0.008914	-2.316.214	DE5 vs BJA9_18s	0.000000	0.005688	0.000000
Asellus vs Joerop	-0.028998	0.009107	-3.184.026	DE5 vs JA18	0.000747	0.005625	0.132769
Asellus vs BJO12	-0.026248	0.008824	-2.974.751	DE5 vs Joerop	-0.007553	0.006477	-1.166.181
Asellus vs MA1	-0.027929	0.008976	-3.111.456	DE5 vs BJO12	-0.004852	0.006105	-0.794753
Asellus vs MA2	-0.025047	0.008942	-2.801.019	DE5 vs MA1	-0.004387	0.004338	-1.011.349
Asellus vs ME1	-0.018474	0.008722	-2.117.984	DE5 vs MA2	-0.001544	0.004351	-0.354991
Asellus vs Acanth	-0.027428	0.008799	-3.117.241	DE5 vs ME1	0.005060	0.003797	1.332.758
Asellus vs BMP55	-0.023484	0.008829	-2.659.881	DE5 vs Acanth	-0.009471	0.004700	-2.014.872
Asellus vs BMP5	-0.039572	0.009607	-4.119.001	DE5 vs BMP55	0.000041	0.004112	0.010038
Asellus vs Echino	-0.026537	0.009121	-2.909.563	DE5 vs BMP5	-0.016741	0.005800	-2.886.464
Asellus vs MP12	-0.025832	0.009091	-2.841.573	DE5 vs Echino	-0.002297	0.004885	-0.470240
Asellus vs Eurycope	-0.031047	0.009206	-3.372.427	DE5 vs MP12	-0.001546	0.004828	-0.320136
Asellus vs MP1	-0.029401	0.009002	-3.266.180	DE5 vs Eurycope	-0.007506	0.004942	-1.518.760
Asellus vs BMP38	-0.035512	0.009195	-3.862.194	DE5 vs MP1	-0.005149	0.004328	-1.189.563
Asellus vs MP9	-0.032749	0.009262	-3.535.849	DE5 vs BMP38	-0.011178	0.005143	-2.173.358
Asellus vs MP3	-0.027198	0.009036	-3.009.970	DE5 vs MP9	-0.009161	0.005032	-1.820.432
Asellus vs Munnops	-0.029587	0.009066	-3.263.315	DE5 vs MP3	-0.002922	0.004343	-0.672831
Asellus vs MP5	-0.025037	0.008938	-2.801.078	DE5 vs Munnops	-0.005367	0.004542	-1.181.652
Asellus vs Sursumura	-0.029428	0.009023	-3.261.563	DE5 vs MP5	-0.000751	0.004504	-0.166687
Asellus vs BMP42	-0.027290	0.009000	-3.032.062	DE5 vs Sursumura	-0.005146	0.004568	-1.126.565
Asellus vs BJA14	-0.032384	0.009372	-3.455.380	DE5 VS BMP42	-0.002971	0.004406	-0.674296

Lirceus vs Proasell	-0.000712	0.003881	-0.183535	DE5 vs BJA14	-0.008845	0.005104	-1.732.851
Lirceus vs Stenase	-0.000577	0.004911	-0.117398	DE2 vs HM1	-0.017565	0.007255	-2.421.082
Lirceus vs BST28	-0.032977	0.008968	-3.677.180	DE2 vs HA56	-0.010306	0.006239	-1.651.820
Lirceus vs AC4	-0.033249	0.008611	-3.861.386	DE2 vs HA311	-0.011034	0.006227	-1.772.047
Lirceus vs AC22	-0.044453	0.008927	-4.979.772	DE2 vs HA450 DE2 vs HA57	-0.008811	0.006261	-1.407.363
Lirceus vs AC25	-0.032682	0.008546	-3.824.153	DE2 vs IS3	-0.007865	0.005978	-1.315.648
Lirceus vs AC21	-0.034061	0.008659	-3.933.485	DE2 vs IS4	-0.008650	0.006044	-1.431.068
Lirceus vs BAC10	-0.037162	0.008606	-4.318.265	DE2 vs IS14	-0.000838	0.004642	-0.180581
Lirceus vs BAC1	-0.030444	0.008403	-3.623.014	DE2 vs ISTT DE2 vs JL1	0.003001	0.003414	0.725361
Lirceus vs DN1	-0.056492	0.009621	-5.871.710	DE2 vs JA6BC_18s	0.007292	0.005101	1.429.418
Lirceus vs DE1	-0.031525	0.008657	-3.641.421	DE2 vs lathrip	0.008866	0.005445	1.628.364
Lirceus vs DE7	-0.030502	0.008517	-3.599.551	DE2 vs BJA32 DE2 vs Janira	-0.019104	0.008079	-2.354.454
Lirceus vs DE2	-0.034190	0.008679	-3.939.251	DE2 vs JO3	0.000668	0.005929	0.112585
Lirceus vs HM1	-0.051694	0.009301	-5.557.638	DE2 vs BJA9_18s	0.002881	0.005713	0.504262
Lirceus vs HA55 Lirceus vs HA56	-0.035465	0.008589	-4.129.302 -5.059.527	DE2 vs JA18 DE2 vs Joerop	-0.003622	0.005651	0.640990
Lirceus vs HA311	-0.046648	0.009218	-5.060.359	DE2 vs BJO12	-0.001978	0.006431	-0.307595
Lirceus vs HA450	-0.044353	0.009044	-4.903.934	DE2 vs MA1	-0.001508	0.004299	-0.350849
Lirceus vs HA57	-0.040777	0.008955	-4.553.465	DE2 vs MA2 DE2 vs ME1	0.001335	0.004714	0.283230
Lirceus vs IS4	-0.042892	0.009139	-4.693.119	DE2 vs Acanth	-0.006635	0.004790	-1.385.256
Lirceus vs IS14	-0.034949	0.008714	-4.010.820	DE2 vs BMP55	0.002920	0.004138	0.705636
Lirceus vs IS11	-0.040108	0.008990	-4.461.345	DE2 vs BMP5	-0.013865	0.005803	-2.389.476
Lirceus vs JA6BC 18s	-0.031127	0.008043	-3.601.590	DE2 vs Echino DE2 vs MP12	0.000129	0.004610	0.027897
Lirceus vs lathrip	-0.026064	0.008461	-3.080.579	DE2 vs Eurycope	-0.005341	0.005186	-1.029.899
Lirceus vs BJA32	-0.034299	0.008764	-3.913.468	DE2 vs MP1	-0.002224	0.004341	-0.512378
Lirceus vs Janira	-0.054663	0.009800	-5.577.565	DE2 vs BMP38	-0.008305	0.005543	-1.498.315
Lirceus vs BJA9 18s	-0.034078	0.008636	-3.611.790	DE2 vs MP3	-0.000290	0.003213	-0.009956
Lirceus vs JA18	-0.031124	0.008617	-3.611.730	DE2 vs Munnops	-0.003155	0.004620	-0.682838
Lirceus vs Joerop	-0.038863	0.008754	-4.439.506	DE2 vs MP5	0.002132	0.004365	0.488332
Lirceus vs BJO12	-0.036084	0.008682	-4.156.317	DE2 vs Sursumura	-0.002977	0.004498	-0.661896
Lirceus vs MA2	-0.032838	0.008694	-3.777.198	DE2 vs BJA14	-0.005969	0.005335	-1.118.808
Lirceus vs ME1	-0.026206	0.008493	-3.085.773	HM1 vs HA55	0.016196	0.006996	2.315.174
Lirceus vs Acanth	-0.036672	0.008422	-4.354.323	HM1 vs HA56	0.005797	0.007475	0.775452
LICEUS VS BMP55	-0.031223	0.008610	-3.626.469	HM1 VS HA311 HM1 VS HA450	0.004308	0.007537	0.571646
Lirceus vs Echino	-0.033597	0.008906	-3.772.525	HM1 vs HA57	0.010917	0.007301	1.495.318
Lirceus vs MP12	-0.032814	0.008918	-3.679.459	HM1 vs IS3	0.008931	0.007760	1.150.851
Lirceus vs Eurycope	-0.038804	0.008875	-4.372.067	HM1 vs IS4	0.008958	0.007783	1.150.953
Lirceus vs IMP I	-0.036415	0.008723	-4.174.088	HM1 vs IS14	0.015943	0.007058	2.259.004
Lirceus vs MP9	-0.039789	0.008906	-4.467.688	HM1 vs JL1	0.019776	0.006971	2.837.019
Lirceus vs MP3	-0.034203	0.008788	-3.891.945	HM1 vs JA6BC_18s	0.024162	0.006259	3.860.239
Lirceus vs Munnops	-0.036617	0.008765	-4.177.436	HM1 vs lathrip	0.026453	0.006963	3.799.294
Lirceus vs Sursumura	-0.036464	0.008773	-4.156.354	HM1 vs Janira	-0.001549	0.008971	-0.172711
Lirceus vs BMP42	-0.034283	0.008677	-3.951.210	HM1 vs JO3	0.018152	0.007227	2.511.642
Lirceus vs BJA14	-0.040115	0.009170	-4.374.434	HM1 vs BJA9_18s	0.021152	0.007083	2.986.157
Proasell vs Stenase Proasell vs ST1	0.000101	0.005181	0.019537	HM1 vs JA18 HM1 vs Joerop	0.021852	0.007026	3.110.042
Proasell vs BST28	-0.033008	0.009108	-3.623.876	HM1 vs BJO12	0.012113	0.007437	2.071.300
Proasell vs AC4	-0.032540	0.008701	-3.739.781	HM1 vs MA1	0.015290	0.006958	2.197.450
Proasell vs AC22	-0.043765	0.009022	-4.851.035	HM1 vs MA2	0.017379	0.007102	2.447.203
Proasell vs AC7 Proasell vs AC25	-0.032586	0.008713	-3.739.823	HM1 VS ME1 HM1 vs Acanth	0.023962	0.006900	3.472.796
Proasell vs AC21	-0.033374	0.008756	-3.811.793	HM1 vs BMP55	0.019661	0.006863	2.864.647
Proasell vs BAC10	-0.036476	0.008794	-4.147.918	HM1 vs BMP5	0.003761	0.007631	0.492874
Proasell vs BAC27	-0.045244	0.009180	-4.928.593	HM1 vs Echino	0.017415	0.007466	2.332.386
Proasell vs DN1	-0.029737	0.008495	-5.889.476	HM1 vs Eurvcope	0.012878	0.007428	1.717.570
Proasell vs DE1	-0.031532	0.008670	-3.636.753	HM1 vs MP1	0.014573	0.007283	2.000.988
Proasell vs DE7	-0.030532	0.008505	-3.589.682	HM1 vs BMP38	0.008483	0.007619	1.113.325
Proasell vs DE5 Proasell vs DE2	-0.030551 -0.034194	0.008344	-3.661.529	HM1 VS MP9 HM1 VS MP3	0.010521	0.007631	1.378.615
Proasell vs HM1	-0.052433	0.009381	-5.589.482	HM1 vs Munnops	0.014341	0.007444	1.926.573
Proasell vs HA55	-0.034812	0.008733	-3.986.387	HM1 vs MP5	0.018207	0.007206	2.526.487
Proasell vs HA56	-0.045214	0.009096	-4.970.818	HIVI1 VS SURSUMURA	0.014577	0.007321	1.991.255
Proasell vs HA450	-0.043668	0.009220	-4.815.570	HM1 vs BJA14	0.010826	0.007568	1.430.616
Proasell vs HA57	-0.040095	0.009089	-4.411.457	HA55 vs HA56	-0.009683	0.004125	-2.347.538
Proasell vs IS3	-0.042796	0.009007	-4.751.206	HA55 vs HA311	-0.011133	0.003997	-2.785.337
Proasell vs IS4	-0.043666	0.009066	-4.816.487	HA55 VS HA450 HA55 vs HA57	-0.008906	0.004115	-2.164.302
Proasell vs IS11	-0.040109	0.008906	-4.503.325	HA55 vs IS3	-0.007989	0.006500	-1.229.114
Proasell vs JL1	-0.031156	0.008563	-3.638.619	HA55 vs IS4	-0.008764	0.006557	-1.336.553
Proasell vs JA6BC_18s	-0.026962	0.008249	-3.268.659	HA55 vs IS14	-0.000200	0.005997	-0.033304
Proasell vs B.IA32	-0.025360	0.008461	-2.997.276	HA55 vs. II 1	0.005322	0.006283	-0.847030
Proasell vs Janira	-0.054630	0.009875	-5.531.896	HA55 vs JA6BC_18s	0.007954	0.004785	1.662.129
Proasell vs JO3	-0.034114	0.008858	-3.851.125	HA55 vs lathrip	0.009475	0.005162	1.835.394
Proasell vs BJA9_18s Proasell vs IA18	-0.032002	0.008722	-3.669.039	HA55 vs BJA32 HA55 vs Janira	0.000549	0.005805	0.094623
Proasell vs Joerop	-0.038897	0.008869	-4.385.813	HA55 vs JO3	0.001301	0.005816	0.223777
Proasell vs BJO12	-0.036832	0.008643	-4.261.528	HA55 vs BJA9_18s	0.004265	0.005636	0.756810
Proasell vs MA1	-0.035686	0.008758	-4.074.880	HA55 vs JA18	0.005003	0.005573	0.897597
Proasell vs MA2 Proasell vs ME1	-0.032845	0.008691	-3.779.101	HA55 VS JOEROP	-0.004797	0.006360	-0.741031 -0 335959
Proasell vs Acanth	-0.036646	0.008542	-4.290.221	HA55 vs MA1	-0.000161	0.005519	-0.029094
Proasell vs BMP55	-0.031231	0.008546	-3.654.322	HA55 vs MA2	0.001218	0.005784	0.210678
Proasell vs BMP5	-0.047320	0.009335	-5.068.840	HA55 vs ME1	0.008566	0.005168	1.657.467
Proasell vs Echino Proasell vs MP12	-0.033583	0.008895	-3.700.997 -3.775.461	HA55 vs Acanth HA55 vs BMP55	-0.003102	0.005795	-0.535302 0.551209
Proasell vs Eurycope	-0.038806	0.008813	-4.403.242	HA55 vs BMP5	-0.013907	0.006391	-2.176.018
Proasell vs MP1	-0.037133	0.008717	-4.259.911	HA55 vs Echino	0.001259	0.005887	0.213846
Proasell vs BMP38 Proasell vs MP9	-0.043271 -0.040506	0.008974	-4.821.997 -4.520.423	HASS VS MP12 HASS vs Eurycope	0.001970	0.005794	0.340075 -0.645898
	5.0.0000				2.000000		5.5.5500

Proceedlive MP3	0.034047	0 009729	4 003 811		0.001585	0.005620	0 282070
Proasell vs Munnons	-0.037336	0.008760	-4.003.011	HASS VS INF T HASS VS BMP38	-0.001365	0.005020	-0.202070
Propoellive MDF	0.037330	0.000700	2 700 220		0.007000	0.0000000	0.015024
Propodly Surgemero	0.032700	0.0000001	4 244 042		-0.005597	0.000117	0.913034
Proasell vs Sursumura	-0.037183	0.008767	-4.241.013	HASS VS MP3	0.000593	0.005736	0.103380
Proasell vs BMP42	-0.035054	0.008683	-4.036.947	HA55 vs Munnops	-0.001800	0.005717	-0.314925
Proasell vs BJA14	-0.040144	0.009174	-4.375.932	HA55 VS MP5	0.002053	0.005602	0.366522
Stenase vs ST1	-0.033016	0.009144	-3.610.755	HA55 vs Sursumura	-0.001586	0.005561	-0.285201
Stenase vs BST28	-0.033794	0.009191	-3.676.749	HA55 vs BMP42	0.000593	0.005524	0.107269
Stenase vs AC4	-0.031910	0.008485	-3.760.916	HA55 vs BJA14	-0.005326	0.006143	-0.866970
Stenase vs AC22	-0.043127	0.008787	-4.908.266	HA56 vs HA311	-0.000722	0.003234	-0.223242
Stenase vs AC7	-0.031978	0.008502	-3.761.014	HA56 vs HA450	0.001482	0.001742	0.850540
Stenase vs AC25	-0.031339	0.008442	-3.712.124	HA56 vs HA57	0.005117	0.003682	1.389.625
Stenase vs AC21	-0 032743	0.008539	-3 834 337	HA56 vs IS3	0 002446	0.006761	0 361856
Stenase vs BAC10	-0.0358/1	0.008600	-1 167 523	HA56 vs 184	0.001687	0.006812	0.247686
Stoppop vo BAC27	0.033041	0.000000	4.107.323		0.001007	0.000012	1 502 177
Stenase vs BAC2/	-0.044003	0.000992	-4.900.300		0.010105	0.000397	0.000004
Stenase vs BACT	-0.029107	0.008298	-3.507.589	HA50 VS 1511	0.005827	0.006425	0.906664
Stenase vs DNT	-0.056603	0.009601	-5.695.562	HASO VS JLI	0.014017	0.005988	2.340.976
Stenase vs DE1	-0.032375	0.008710	-3.717.076	HA56 vs JA6BC_18s	0.018362	0.005574	3.294.276
Stenase vs DE7	-0.031375	0.008523	-3.681.225	HA56 vs lathrip	0.019886	0.005494	3.619.724
Stenase vs DE5	-0.032073	0.008488	-3.778.836	HA56 vs BJA32	0.010976	0.006072	1.807.544
Stenase vs DE2	-0.035032	0.008739	-4.008.589	HA56 vs Janira	-0.007267	0.008495	-0.855437
Stenase vs HM1	-0.052554	0.009285	-5.659.829	HA56 vs JO3	0.011692	0.006461	1.809.582
Stenase vs HA55	-0.034146	0.008398	-4.065.847	HA56 vs BJA9 18s	0.015438	0.006258	2.466.837
Stenase vs HA56	-0.044541	0.009022	-4.936.701	HA56 vs JA18	0.015404	0.006245	2,466,740
Stenase vs HA311	-0.045287	0.009081	-4 986 725	HA56 vs. Joerop	0.006372	0.006678	0 954163
Stenase vs HA450	-0.042007	0.008005	-4 780 150	HA56 vs BIO12	0.0000012	0.006512	1 382 501
Stenace vs HA430	0.042337	0.000393	4.700.100		0.009003	0.000012	1.502.591
	-0.039425	0.000000	-4.430.107		0.009519	0.000009	1.004.029
Stenase vs IS3	-0.043632	0.009032	-4.830.952	HA56 VS MAZ	0.011617	0.006048	1.920.718
Stenase vs IS4	-0.044503	0.009090	-4.895.526	HA56 VS ME1	0.018957	0.005749	3.297.149
Stenase vs IS14	-0.035131	0.008759	-4.011.068	HA56 vs Acanth	0.006652	0.006183	1.075.879
Stenase vs IS11	-0.040238	0.008984	-4.478.836	HA56 vs BMP55	0.013219	0.005680	2.327.176
Stenase vs JL1	-0.031285	0.008651	-3.616.455	HA56 vs BMP5	-0.003489	0.006580	-0.530268
Stenase vs JA6BC 18s	-0.026298	0.008027	-3.276.002	HA56 vs Echino	0.011654	0.006365	1.831.020
Stenase vs lathrip	-0.024732	0.008233	-3.004.109	HA56 vs MP12	0.012369	0.006325	1,955,509
Stenase vs B IA32	-0.033002	0.008590	-3 8/1 789	HA56 vs Eurycope	0.006409	0.006628	0.966961
Stongeo ve Janira	-0.053002	0.0000000	-5.541.002	HA56 vs MP1	0.000403	0.000020	1 221 255
Stenace vs Jania	0.034770	0.009004	2 0 5 6 0 1 2		0.000103	0.0000007	0.295700
	-0.033430	0.000073	-3.030.012		0.002744	0.007113	0.363700
Stenase vs BJA9_18s	-0.031338	0.008564	-3.659.076	HA56 VS MP9	0.004792	0.006583	0.728041
Stenase vs JA18	-0.030524	0.008510	-3.586.966	HA56 VS MP3	0.010273	0.006194	1.658.440
Stenase vs Joerop	-0.038273	0.008666	-4.416.641	HA56 vs Munnops	0.008598	0.006253	1.375.089
Stenase vs BJO12	-0.035499	0.008451	-4.200.604	HA56 vs MP5	0.012460	0.006119	2.036.280
Stenase vs MA1	-0.035815	0.008725	-4.104.978	HA56 vs Sursumura	0.008820	0.006167	1.430.194
Stenase vs MA2	-0.032975	0.008748	-3.769.291	HA56 vs BMP42	0.011006	0.006044	1.821.060
Stenase vs ME1	-0.026349	0.008525	-3.090.624	HA56 vs BJA14	0.005068	0.006463	0.784267
Stenase vs Acanth	-0.034596	0.008245	-4 195 971	HA311 vs HA450	0 002204	0.003065	0 719036
Stenase vs BMP55	-0.030681	0.008465	-3 624 290	HA311 vs HA57	0.005842	0.003623	1 612 728
Stenase vs BMP5	-0.048194	0.009365	-5 146 224	HA311 vs IS3	0.003170	0.006924	0 457838
Stonggo va Echino	0.024442	0.0000000	2 044 277		0.003116	0.000324	0.345771
Stenase vs Echino	-0.034412	0.000731	-3.941.377		0.002415	0.000900	1 705 000
Stenase vs MP12	-0.033711	0.008729	-3.861.906		0.010922	0.006402	1.705.902
Stenase vs Eurycope	-0.038935	0.008856	-4.396.484	HA311 VS IS11	0.005793	0.006670	0.868589
Stenase vs MP1	-0.037288	0.008668	-4.301.913	HA311 vs JL1	0.014748	0.006033	2.444.554
Stenase vs BMP38	-0.043398	0.009024	-4.809.026	HA311 vs JA6BC_18s	0.019099	0.005657	3.376.266
Stenase vs MP9	-0.041347	0.009001	-4.593.793	HA311 vs lathrip	0.020623	0.005721	3.604.687
Stenase vs MP3	-0.035073	0.008771	-3.998.887	HA311 vs BJA32	0.011716	0.006362	1.841.586
Stenase vs Munnops	-0.037464	0.008713	-4.299.837	HA311 vs Janira	-0.007277	0.008439	-0.862323
Stenase vs MP5	-0.032916	0.008512	-3.867.190	HA311 vs JO3	0.012422	0.006450	1.925.925
Stenase vs Sursumura	-0.037310	0.008622	-4.327.419	HA311 vs BJA9 18s	0.015424	0.006293	2.451.062
Stenase vs BMP42	-0.035182	0.008597	-4 092 128	HA311 vs. IA18	0.016138	0.006233	2 588 981
Stenase vs B IA1/	-0.040272	0.0000007	-/ 380 020	HA311 vs loeron	0.006337	0.006917	0.016132
	0.000704	0.000100	1 059 461		0.00000070	0.000317	1 227 024
	-0.000704	0.000000	-1.036.401		0.000979	0.000711	1.337.034
STI VS AC4	-0.000295	0.009223	-0.031951	HA311 VS MA1	0.010255	0.006032	1.699.938
ST1 vs AC22	-0.011462	0.009472	-1.210.098	HA311 VS MA2	0.012347	0.006183	1.996.863
ST1 vs AC7	-0.000294	0.009243	-0.031855	HA311 vs ME1	0.019692	0.005654	3.482.706
ST1 vs AC25	0.000333	0.009162	0.036321	HA311 vs Acanth	0.007382	0.006273	1.176.709
ST1 vs AC21	-0.001082	0.009246	-0.116983	HA311 vs BMP55	0.013960	0.005684	2.456.045
ST1 vs BAC10	-0.004886	0.009374	-0.521221	HA311 vs BMP5	-0.002774	0.006758	-0.410458
ST1 vs BAC27	-0.012978	0.009590	-1.353.265	HA311 vs Echino	0.012393	0.006283	1.972.537
ST1 vs BAC1	0.002537	0.009084	0 279259	HA311 vs MP12	0.013109	0.006243	2 099 930
ST1 vs DN1	-0 024240	0.009775	-2 479 676	HA311 vs Eurycope	0.007140	0.006758	1 056 514
	0.024240	0.000250	0.170660		0.000554	0.006107	1.660.014
	0.001390	0.009350	0.170009		0.009554	0.000127	0.400050
	0.001709	0.0093/3	0.10/034		0.003407	0.007075	0.430030
	0.001710	0.009410	0.102247		0.00001/	100000.0	0.02/449
STIVS DEZ	-0.001957	0.009465	-0.206790	TAJTI VS MP3	0.011/25	0.006146	1.907.000
	-0.018683	0.009761	-1.914.030	TRASTI VS MUNNOPS	0.009326	0.006163	1.513.093
511 VS HA55	-0.002505	0.009405	-0.266391	HA311 VS MP5	0.013192	0.006106	2.160.367
ST1 vs HA56	-0.012897	0.009718	-1.327.204	HA311 vs Sursumura	0.009549	0.006064	1.574.786
ST1 vs HA311	-0.013628	0.009895	-1.377.255	HA311 vs BMP42	0.011746	0.006035	1.946.351
ST1 vs HA450	-0.011398	0.009670	-1.178.756	HA311 vs BJA14	0.005798	0.006595	0.879039
ST1 vs HA57	-0.007785	0.009608	-0.810244	HA450 vs HA57	0.003627	0.003454	1.050.105
ST1 vs IS3	-0.009065	0.009483	-0.955920	HA450 vs IS3	0.000962	0.006739	0.142690
ST1 vs IS4	-0.009853	0.009541	-1.032.727	HA450 vs IS4	0.000203	0.006800	0.029796
ST1 vs IS14	-0.002706	0.000340	-0.280404		0.000200	0.006423	1 354 202
ST1 ve IS11	-0.002100	0.000040	-0.821002	HA450 vs 1914	0.000037	0.000420	0 555240
	0.001010	0.009000	0.021002		0.003001	0.000449	0.000248
	0.001088	0.009102	0.110/31		0.012010	0.000011	2.002.170
STI VS JA6BC_18S	0.006856	0.008/41	0.784321	HA450 VS JA6BC_18s	0.016865	0.005521	3.054.661
SI1 vs lathrip	0.007714	0.009221	0.836565	HA450 vs lathrip	0.018374	0.005521	3.328.284
ST1 vs BJA32	-0.001247	0.009327	-0.133653	HA450 vs BJA32	0.009482	0.006100	1.554.399
ST1 vs Janira	-0.021031	0.010366	-2.028.957	HA450 vs Janira	-0.009458	0.008445	-1.119.918
ST1 vs JO3	-0.001949	0.009350	-0.208479	HA450 vs JO3	0.010195	0.006439	1.583.306
ST1 vs BJA9 18s	0.000255	0.009339	0.027255	HA450 vs BJA9 18s	0.013184	0.006282	2.098.625
ST1 vs JA18		0.000005	0.107670	HA450 vs JA18	0.013901	0.006223	2,233,904
ST1 vs. loeron	0.001000	0.009285	5		0.004120	0.006701	
ST1 ve B IO12	0.001000	0.009285	-0 762270				0614/44
011 10 00012	0.001000 -0.007339 -0.003932	0.009285	-0.762279	HA450 VS 500100 HA450 VS B IO12	0.004120	0.000701	0.614744
ST1 ve MA1	0.001000 -0.007339 -0.003932	0.009285 0.009627 0.009286	-0.762279 -0.423387	HA450 vs BJ012	0.006760	0.006576	0.614744 1.027.919 1.323.146
ST1 vs MA1	0.001000 -0.007339 -0.003932 -0.003419	0.009285 0.009627 0.009286 0.009426	-0.762279 -0.423387 -0.362718	HA450 vs BJO12 HA450 vs MA1	0.006760	0.006576	0.614744 1.027.919 1.323.146
ST1 vs MA1 ST1 vs MA2	0.001000 -0.007339 -0.003932 -0.003419 -0.000576	0.009285 0.009627 0.009286 0.009426 0.009356	-0.762279 -0.423387 -0.362718 -0.061554	HA450 vs BJO12 HA450 vs MA1 HA450 vs MA2	0.006760 0.008031 0.010119	0.006576 0.006069 0.006072	0.614744 1.027.919 1.323.146 1.666.561
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1	0.001000 -0.007339 -0.003932 -0.003419 -0.000576 0.006029	0.009285 0.009627 0.009286 0.009426 0.009356 0.009105	-0.762279 -0.423387 -0.362718 -0.061554 0.662149	HA450 vs BJO12 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1	0.004120 0.006760 0.008031 0.010119 0.017449	0.006761 0.006576 0.006069 0.006072 0.005774	0.614744 1.027.919 1.323.146 1.666.561 3.021.930
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1 ST1 vs Acanth	0.001000 -0.007339 -0.003932 -0.003419 -0.000576 0.006029 -0.006340	0.009285 0.009627 0.009286 0.009426 0.009356 0.009105 0.008951	-0.762279 -0.423387 -0.362718 -0.061554 0.662149 -0.708281	HA450 vs BJO12 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1 HA450 vs Acanth	0.004120 0.006760 0.008031 0.010119 0.017449 0.005156	0.006576 0.006069 0.006072 0.005774 0.006207	0.614744 1.027.919 1.323.146 1.666.561 3.021.930 0.830793
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1 ST1 vs Acanth ST1 vs BMP55	0.001000 -0.007339 -0.003932 -0.003419 -0.000576 0.006029 -0.006340 0.001010	0.009285 0.009627 0.009286 0.009426 0.009356 0.009105 0.008951 0.009277	-0.762279 -0.423387 -0.362718 -0.061554 0.662149 -0.708281 0.108830	HA450 vs BJ012 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1 HA450 vs Acanth HA450 vs BMP55	0.006760 0.008031 0.010119 0.017449 0.005156 0.011730	0.006576 0.0060576 0.006069 0.006072 0.005774 0.006207 0.005711	0.614744 1.027.919 1.323.146 1.666.561 3.021.930 0.830793 2.053.998
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1 ST1 vs Acanth ST1 vs BMP55 ST1 vs BMP5	0.001000 -0.007339 -0.003932 -0.003419 -0.000576 0.006029 -0.006340 0.001010 -0.015778	0.009285 0.009627 0.009286 0.009426 0.009356 0.009105 0.008951 0.009277 0.009874	-0.762279 -0.423387 -0.362718 -0.061554 0.662149 -0.708281 0.108830 -1.597.908	HA450 vs BJO12 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1 HA450 vs Acanth HA450 vs BMP55 HA450 vs BMP5	0.004120 0.006760 0.008031 0.010119 0.017449 0.005156 0.011730 -0.004972	0.006576 0.006069 0.006072 0.005774 0.006207 0.005711 0.006695	0.614744 1.027.919 1.323.146 1.666.561 3.021.930 0.830793 2.053.998 -0.742727
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1 ST1 vs Acanth ST1 vs BMP55 ST1 vs BMP5 ST1 vs Echino	0.001000 -0.007339 -0.003932 -0.003419 -0.000576 0.006029 -0.006340 0.001010 -0.015778 -0.001284	0.009285 0.009286 0.009426 0.009356 0.009105 0.008951 0.009277 0.009874 0.009472	-0.762279 -0.423387 -0.362718 -0.061554 0.662149 -0.708281 0.108830 -1.597.908 -0.135573	HA450 vs BJO12 HA450 vs BJO12 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1 HA450 vs Acanth HA450 vs BMP55 HA450 vs BMP5 HA450 vs Echino	0.004720 0.008031 0.010119 0.017449 0.005156 0.011730 -0.004972 0.010164	0.006576 0.0060576 0.006072 0.005774 0.006207 0.005711 0.006695 0.006390	0.614744 1.027.919 1.323.146 1.666.561 3.021.930 0.830793 2.053.998 -0.742727 1.590.521
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1 ST1 vs Acanth ST1 vs BMP55 ST1 vs EMP5 ST1 vs Echino ST1 vs MP12	0.001000 -0.007339 -0.003932 -0.003419 -0.00629 -0.006340 0.001010 -0.015778 -0.001284 -0.000576	0.009285 0.009286 0.009426 0.009356 0.009105 0.00851 0.009277 0.009874 0.009472 0.009471	-0.762279 -0.423387 -0.362718 -0.061554 0.662149 -0.708281 0.108830 -1.597.908 -0.135573 -0.060836	HA450 vs BJ012 HA450 vs BJ012 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1 HA450 vs Acanth HA450 vs BMP55 HA450 vs BMP5 HA450 vs Chino HA450 vs MP12	0.006720 0.008031 0.010119 0.017449 0.005156 0.011730 -0.004972 0.010164 0.010877	0.006576 0.006069 0.006072 0.005774 0.005774 0.005711 0.006695 0.006390 0.006351	0.614744 1.027.919 1.323.146 1.666.561 3.021.930 0.830793 2.053.998 -0.742727 1.590.521 1.712.800
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1 ST1 vs Acanth ST1 vs BMP5 ST1 vs BMP5 ST1 vs Echino ST1 vs Echino ST1 vs MP12 ST1 vs Furycope	0.001000 -0.007339 -0.003932 -0.003419 -0.000576 0.006029 -0.006340 0.001010 -0.015778 -0.001284 -0.0005776 -0.005778	0.009285 0.009286 0.009426 0.009356 0.009105 0.008951 0.009277 0.009874 0.009472 0.009471 0.009471	-0.762279 -0.423387 -0.362718 -0.061554 0.662149 -0.708281 0.108830 -1.597.908 -0.135573 -0.060836 -0.593938	HA450 vs BJO12 HA450 vs BJO12 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1 HA450 vs Acanth HA450 vs BMP55 HA450 vs BMP55 HA450 vs Echino HA450 vs Erurone	0.006720 0.008760 0.008031 0.010119 0.017449 0.005156 0.011730 -0.004972 0.010164 0.010877 0.004923	0.006576 0.006072 0.006072 0.005774 0.006207 0.005711 0.006355 0.006351 0.006351	0.614744 1.027.919 1.323.146 1.666.561 3.021.930 0.830793 2.053.998 -0.742727 1.590.521 1.712.800 0 744736
ST1 vs MA1 ST1 vs MA2 ST1 vs ME1 ST1 vs Acanth ST1 vs BMP55 ST1 vs BMP5 ST1 vs Echino ST1 vs MP12 ST1 vs Eurycope ST1 vs MP1	0.001000 -0.007339 -0.003322 -0.003419 -0.000576 0.006029 -0.006340 0.001010 -0.015778 -0.001284 -0.000576 -0.005778 -0.005778	0.009265 0.009286 0.009426 0.009356 0.009105 0.008951 0.009277 0.009874 0.009472 0.009472 0.009477	-0.762279 -0.423387 -0.362718 -0.061554 0.662149 -0.708281 0.108830 -1.597.908 -0.135573 -0.060836 -0.593938 -0.46584	HA450 vs BJO12 HA450 vs BJO12 HA450 vs MA1 HA450 vs MA2 HA450 vs ME1 HA450 vs BMP55 HA450 vs BMP5 HA450 vs Echino HA450 vs Echino HA450 vs Eurycope HA450 vs Eurycope HA450 vs MP1	0.006760 0.008031 0.010119 0.017449 0.005156 0.011730 -0.004972 0.010164 0.010877 0.004923 0.004923	0.006576 0.006072 0.005774 0.006207 0.005771 0.006207 0.006395 0.006390 0.006351 0.006611 0.006611	0.614744 1.027.919 1.323.146 1.666.561 3.021.930 0.830793 2.053.998 -0.742727 1.590.521 1.590.521 1.712.800 0.744736 1.191.574

ST1 vs BMP38 ST1 vs MP9	-0.010962 -0.008947	0.009904	-1.106.786 -0.915232	HA450 vs BMP38 HA450 vs MP9	0.001259 0.003306	0.007130	0.176529 0.500708
ST1 vs MP3	-0.001957	0.009513	-0.205695	HA450 vs MP3	0.009496	0.006257	1.517.841
ST1 vs Munnops ST1 vs MP5	-0.004399 0.000218	0.009466 0.009418	-0.464703 0.023197	HA450 vs Munnops HA450 vs MP5	0.007104 0.010960	0.006244	1.137.755
ST1 vs Sursumura	-0.004931	0.009521	-0.517912	HA450 vs Sursumura	0.007325	0.006145	1.191.916
ST1 vs BMP42 ST1 vs BJA14	-0.002000 -0.007878	0.009478 0.009747	-0.211006 -0.808186	HA450 vs BMP42 HA450 vs BJA14	0.009514 0.003584	0.006026	1.578.658
BST28 vs AC4	0.000414	0.009271	0.044688	HA57 vs IS3	-0.002668	0.006726	-0.396622
BST28 vs AC22 BST28 vs AC7	-0.010049 0.000415	0.009455 0.009284	-1.062.808 0.044751	HA57 vs IS4 HA57 vs IS14	-0.003437 0.005079	0.006787	-0.506474 0.830805
BST28 vs AC25	0.001045	0.009210	0.113417	HA57 vs IS11	-0.000043	0.006494	-0.006617
BST28 vs AC21 BST28 vs BAC10	-0.000374 -0.004184	0.009288 0.009416	-0.040214 -0.444331	HA57 vs JL1 HA57 vs JA6BC 18s	0.008905 0.013251	0.005915 0.005056	1.505.439 2.620.987
BST28 vs BAC27	-0.012288	0.009631	-1.275.835	HA57 vs lathrip	0.014755	0.005326	2.770.181
BST28 vs BAC1 BST28 vs DN1	0.003253	0.009133 0.009824	0.356158 -2.400.698	HA57 vs BJA32 HA57 vs Janira	0.005853	0.006096	-1.587.662
BST28 vs DE1	0.002312	0.009399	0.246024	HA57 vs JO3	0.007331	0.006066	1.208.580
BST28 vs DE5	0.002472	0.009414 0.009464	0.256744	HA57 VS BJA9_188 HA57 VS JA18	0.010312	0.005852	1.762.144
BST28 vs DE2	-0.000539	0.009485	-0.056848	HA57 vs Joerop	0.000490	0.006628	0.073926
BST28 vs HM1 BST28 vs HA55	-0.018001 -0.001800	0.009802	-1.836.423 -0.190504	HA57 vs BJO12 HA57 vs MA1	0.003858	0.006539	0.589975
BST28 vs HA56	-0.012207	0.009759	-1.250.847	HA57 vs MA2	0.006502	0.005945	1.093.688
BST28 vs HA311 BST28 vs HA450	-0.012948	0.009943	-1.302.109	HA57 vs ME1 HA57 vs Acanth	0.013845	0.005446	2.542.289
BST28 vs HA57	-0.007087	0.009649	-0.734449	HA57 vs BMP55	0.008119	0.005463	1.486.099
BST28 vs IS3 BST28 vs IS4	-0.008373 -0.009149	0.009531 0.009576	-0.878521 -0.955414	HA57 vs BMP5 HA57 vs Echino	-0.008616 0.006541	0.006652	-1.295.161
BST28 vs IS14	-0.001999	0.009384	-0.212996	HA57 vs MP12	0.007259	0.006158	1.178.658
BST28 vs IS11 BST28 vs II 1	-0.007177	0.009634	-0.745031 0 195458	HA57 vs Eurycope	0.001298	0.006447	0.201256
BST28 vs JA6BC_18s	0.007572	0.008777	0.862694	HA57 vs BMP38	-0.002372	0.007022	-0.337755
BST28 vs lathrip	0.008436	0.009263	0.910695	HA57 vs MP9	-0.000318	0.006529	-0.048685
BST28 vs Janira	-0.020370	0.010387	-1.961.152	HA57 vs Munnops	0.003480	0.005906	0.589272
BST28 vs JO3	-0.000496	0.009364	-0.052951	HA57 vs MP5	0.007342	0.005898	1.244.814
BST28 vs JA18	0.002455	0.009312	0.264191	HA57 vs Sulsullula HA57 vs BMP42	0.005884	0.005945	1.010.984
BST28 vs Joerop	-0.006640	0.009640	-0.688856	HA57 vs BJA14	0.000716	0.006293	0.113734
BST28 vs BJ012 BST28 vs MA1	-0.003231	0.009305	-0.347185 -0.286688	IS3 VS IS4 IS3 VS IS14	0.007033	0.000740	-1.030.567
BST28 vs MA2	0.000133	0.009404	0.014161	IS3 vs IS11	0.002611	0.004519	0.577848
BST28 vs ME1 BST28 vs Acanth	0.006752	0.009153	0.737676	IS3 vs JL1 IS3 vs JA6BC 18s	0.010873	0.005303	2.050.466
BST28 vs BMP55	0.001722	0.009275	0.185639	IS3 vs lathrip	0.016715	0.006541	2.555.501
BST28 vs BMP5 BST28 vs Echino	-0.015090 -0.000576	0.009867 0.009464	-1.529.448 -0.060892	IS3 vs BJA32 IS3 vs Janira	0.007811	0.006865	1.137.743
BST28 vs MP12	0.000133	0.009456	0.014063	IS3 vs JO3	0.009223	0.006500	1.418.816
BST28 vs Eurycope BST28 vs MP1	-0.005077 -0.003519	0.009721 0.009468	-0.522284 -0.371694	IS3 vs BJA9_18s IS3 vs JA18	0.011460 0.012183	0.006348	1.805.349
BST28 vs BMP38	-0.010277	0.009904	-1.037.614	IS3 vs Joerop	0.003235	0.007216	0.448346
BST28 vs MP9 BST28 vs MP3	-0.008258 -0.001249	0.009775 0.009504	-0.844834 -0 131449	IS3 vs BJO12 IS3 vs MA1	0.005882	0.006895	0.853201
BST28 vs Munnops	-0.003696	0.009457	-0.390791	IS3 vs MA2	0.009209	0.005840	1.576.760
BST28 vs MP5 BST28 vs Sursumura	0.000929	0.009409 0.009562	0.098742	IS3 vs ME1 IS3 vs Acanth	0.015819 0.001234	0.005355 0.005943	2.954.158
BST28 vs BMP42	-0.001290	0.009456	-0.136420	IS3 vs BMP55	0.011497	0.005348	2.149.776
BST28 vs BJA14 AC4 vs AC22	-0.006418	0.009726	-0.659948 -2 248 723	IS3 vs BMP5 IS3 vs Echino	-0.005227	0.006453	-0.809879
AC4 vs AC7	0.000000	0.000000	Not deter.	IS3 vs MP12	0.009209	0.005952	1.547.243
AC4 vs AC25 AC4 vs AC21	0.000671	0.003139	0.213780	IS3 vs Eurycope IS3 vs MP1	0.003950	0.006131	0.644251
AC4 vs BAC10	-0.004593	0.003629	-1.265.660	IS3 vs BMP38	-0.000442	0.006466	-0.068409
AC4 vs BAC27	-0.012676	0.004874	-2.600.786	IS3 vs MP9 IS3 vs MP3	0.001565	0.006119	0.255726
AC4 vs DN1	-0.023979	0.006976	-3.437.183	IS3 vs Munnops	0.005420	0.005852	0.926154
AC4 vs DE1	0.001182	0.005664	0.208667	IS3 vs MP5 IS3 vs Sursumura	0.009296	0.005743	1.618.696
AC4 vs DE5	0.001260	0.005551	0.226969	IS3 vs BMP42	0.007842	0.005666	1.384.017
AC4 vs DE2	-0.001615	0.005859	-0.275616	IS3 vs BJA14	0.001897	0.006564	0.288927
AC4 vs HA55	-0.001498	0.005694	-0.263112	IS4 vs IS14	0.004145	0.004530	0.915041
AC4 vs HA56 AC4 vs HA311	-0.011886 -0.012616	0.006131	-1.938.855	IS4 vs JL1 IS4 vs JA6BC 18s	0.011656	0.005367	2.171.773
AC4 vs HA450	-0.010389	0.006109	-1.700.668	IS4 vs lathrip	0.017519	0.006603	2.653.252
AC4 vs HA57	-0.006777	0.005799	-1.168.667	IS4 vs BJA32	0.008585	0.006916	1.241.241
AC4 vs IS4	-0.010977	0.006686	-1.641.679	IS4 vs JO3	0.010008	0.006562	1.525.095
AC4 vs IS14	-0.002450	0.005833	-0.420052	IS4 vs BJA9_18s	0.012995	0.006360	2.043.025
AC4 vs JL1	0.001378	0.006240	0.242982	IS4 vs JA18 IS4 vs Joerop	0.012966	0.006347	0.659975
AC4 vs JA6BC_18s	0.005739	0.004455	1.288.414	IS4 vs BJO12	0.007410	0.006913	1.071.934
AC4 vs BJA32	-0.000956	0.004675	-0.184444	IS4 vs MA1 IS4 vs MA2	0.009998	0.005669	1.693.100
AC4 vs Janira	-0.019858	0.008180	-2.427.441	IS4 vs ME1	0.016623	0.005422	3.065.738
AC4 vs JU3 AC4 vs BJA9_18s	0.000551 0.002761	0.005592	0.098538 0.514906	IS4 vs Acanth IS4 vs BMP55	0.002000	0.006007	0.332983 2.269.405
AC4 vs JA18	0.003502	0.005298	0.660955	IS4 vs BMP5	-0.004470	0.006507	-0.686916
AC4 vs Juerop AC4 vs BJO12	-0.005589 -0.002883	0.005643	-0.904205 -0.510857	IS4 vs Echino IS4 vs MP12	0.009273	0.006008	1.543.543
AC4 vs MA1	-0.003122	0.005565	-0.561057	IS4 vs Eurycope	0.004723	0.006190	0.763120
AC4 VS MA2 AC4 VS ME1	-0.000283 0.005566	0.005688	-0.049779 1.023.337	IS4 VS MP1 IS4 VS BMP38	0.006427	0.005859	0.049412
AC4 vs Acanth	-0.004608	0.005558	-0.828993	IS4 vs MP9	0.002335	0.006182	0.377732
AC4 vs BMP55 AC4 vs BMP5	0.000553	0.005350 0.006452	0.103314 -2.502.421	IS4 vs MP3 IS4 vs Munnops	0.008610 0.006200	0.005754 0.005917	1.496.447 1.047 865
AC4 vs Echino	-0.001705	0.005957	-0.286160	IS4 vs MP5	0.010077	0.005804	1.736.272
AC4 vs MP12 AC4 vs Eurycope	-0.000993 -0.006236	0.005869 0.005854	-0.169212 -1.065 237	IS4 vs Sursumura IS4 vs BMP42	0.005707	0.005816 0.005724	0.981350 1.505 276
AC4 vs MP1	-0.004550	0.005656	-0.804486	IS4 vs BJA14	0.002665	0.006621	0.402524
AC4 vs BMP38 AC4 vs MP9	-0.010613 -0.008557	0.006431 0.006156	-1.650.289 -1.390.140	IS14 vs IS11 IS14 vs JL1	-0.005126 0.003837	0.004094 0.003766	-1.251.855 1.018.685
-							

AC4 vs MP3	-0.002367	0.005608	-0.422010	IS14 vs JA6BC_18s	0.008112	0.005326	1.522.990
AC4 vs Munnops	-0.004763	0.005930	-0.803206	IS14 vs lathrip	0.010413	0.005594	1.861.605
AC4 vs MP5	-0.000909	0.005659	-0.160529	IS14 vs BJA32	0.000755	0.006059	0.124569
AC4 vs Sursumura	-0.004546	0.005839	-0.778618	IS14 vs Janira	-0.018266	0.008337	-2.190.957
AC4 vs BMP42	-0.002374	0.005713	-0.415455	IS14 vs JO3	0.001503	0.005617	0.267499
AC4 VS BJA14	-0.007574	0.006023	-1.257.447	IS14 VS BJA9_18S	0.004464	0.005381	0.829660
AC22 VS AC7	0.010470	0.004927	2.123.137	IS14 VS JATO	0.004455	0.005370	0.629394
	0.011047	0.004739	2.499.599	1314 vs Juerop	-0.003634	0.006739	-0.307201
AC22 VS AC21	0.003073	0.004070	1.505.105	IS14 vs MA1	-0.000668	0.000320	-0.155634
AC22 vs BAC27	-0.007204	0.005266	-0 144964	IS14 vs MA2	0.002175	0.004233	0.133034
AC22 vs BAC1	0.014036	0.004624	3.035.303	IS14 vs ME1	0.008782	0.004094	2.145.227
AC22 vs DN1	-0.012830	0.007426	-1.727.765	IS14 vs Acanth	-0.005718	0.005019	-1.139.169
AC22 vs DE1	0.013169	0.006692	1.967.731	IS14 vs BMP55	0.003759	0.004352	0.863843
AC22 vs DE7	0.013989	0.006541	2.138.632	IS14 vs BMP5	-0.013020	0.005849	-2.225.829
AC22 vs DE5	0.013184	0.006430	2.050.560	IS14 vs Echino	0.001466	0.005086	0.288227
AC22 vs DE2	0.011066	0.006782	1.631.707	IS14 vs MP12	0.002174	0.004977	0.436771
AC22 vs HM1	-0.008003	0.007560	-1.058.508	IS14 vs Eurycope	-0.003791	0.005285	-0.717294
AC22 vs HA55	0.009714	0.006615	1.468.475	IS14 vs MP1	-0.001382	0.004563	-0.302919
AC22 VS HA56	0.000043	0.006855	0.006274	IS14 vs BMP38	-0.007466	0.005544	-1.346.707
AC22 VS HA311	-0.000678	0.007234	-0.093713	IS14 vs MP9	-0.005452	0.005318	-1.025.153
	0.001323	0.000020	0.223140	IS14 vs Mussons	0.000790	0.004431	0.179710
AC22 VS HAJ7 AC22 VS HAJ7	0.004435	0.000789	0.000270	IS14 vs Mulliops	0.001004	0.004975	0.322301
AC22 vs IS4	0.00173	0.007299	0.133346	IS14 vs Sursumura	-0.001426	0.004701	-0 287749
AC22 vs IS14	0.000070	0.006634	1 427 616	IS14 vs BMP42	0.000755	0.004799	0 157383
AC22 vs IS11	0.004350	0.006724	0.646974	IS14 vs BJA14	-0.005127	0.005503	-0.931661
AC22 vs JL1	0.013310	0.006524	2.040.016	IS11 vs JL1	0.008965	0.004741	1.890.995
AC22 vs JA6BC_18s	0.017692	0.005740	3.082.261	IS11 vs JA6BC_18s	0.012537	0.005826	2.151.821
AC22 vs lathrip	0.018431	0.005931	3.107.780	IS11 vs lathrip	0.015538	0.006093	2.550.147
AC22 vs BJA32	0.010250	0.006002	1.707.711	IS11 vs BJA32	0.005895	0.006484	0.909151
AC22 vs Janira	-0.008720	0.008677	-1.004.973	IS11 vs Janira	-0.013143	0.008285	-1.586.388
AC22 vs JO3	0.010964	0.006220	1.762.765	IS11 vs JO3	0.006614	0.006102	1.083.997
AC22 vs BJA9_18s	0.013957	0.006147	2.270.747	IS11 vs BJA9_18s	0.008845	0.005892	1.501.252
AC22 VS JA18	0.013927	0.006133	2.270.639	1511 VS JA18	0.009573	0.005830	1.641.943
AC22 vs Joerop	0.004080	0.006233	0.654658	IS11 vs Joerop	0.000532	0.006891	0.077240
AC22 VS BJO12	0.006770	0.006066	1.110.003		0.003223	0.006465	0.498502
AC22 VS MA1	0.008805	0.006353	1.300.092		0.004460	0.005195	0.808474
	0.017/87	0.000434	2 700 987	IS11 vs ME1	0.007302	0.003227	2 930 580
AC22 vs Acanth	0.017407	0.006423	0.579893	IS11 vs Acanth	-0.000630	0.004744	-0 113662
AC22 vs BMP55	0.012520	0.006438	1.944.825	IS11 vs BMP55	0.008123	0.004818	1.686.014
AC22 vs BMP5	-0.004210	0.007160	-0.588049	IS11 vs BMP5	-0.008604	0.005915	-1.454.581
AC22 vs Echino	0.009510	0.006865	1.385.219	IS11 vs Echino	0.005074	0.005688	0.892082
AC22 vs MP12	0.010935	0.006847	1.597.031	IS11 vs MP12	0.006591	0.005691	1.158.289
AC22 vs Eurycope	0.004973	0.006884	0.722448	IS11 vs Eurycope	0.000576	0.005666	0.101737
AC22 vs MP1	0.006669	0.006672	0.999611	IS11 vs MP1	0.003037	0.005430	0.559389
AC22 vs BMP38	0.001300	0.007169	0.181370	IS11 vs BMP38	-0.003051	0.006043	-0.504895
AC22 vs MP9	0.003349	0.007064	0.474088	IS11 vs MP9	-0.001046	0.005835	-0.179355
AC22 vs MP3	0.008841	0.006628	1.333.840	IS11 vs MP3	0.005211	0.005105	1.020.767
AC22 vs Munnops	0.006439	0.006675	0.964653	IS11 vs Munnops	0.002807	0.005537	0.506955
AC22 VS MP5	0.011028	0.006574	1.677.437	IS11 VS MP5	0.006678	0.005337	1.251.215
AC22 VS Sursumura	0.000005	0.006625	1.006.109	IS11 VS Sursumura	0.003035	0.005390	0.563089
	0.0000001	0.000407	0.640752	1311 VS DIVIF42	0.005222	0.005254	0.994027
ACZ VS AC25	0.004330	0.000095	0.049752	II 1 vs. IA6BC 18s	0.000000	0.003878	0.875458
AC7 vs AC21	-0.000788	0.001233	-0.639584	.II 1 vs lathrin	0.004202	0.005225	1 258 894
AC7 vs BAC10	-0.004604	0.003637	-1.265.836	JL1 vs BJA32	-0.003090	0.005739	-0.538352
AC7 vs BAC27	-0.012695	0.004881	-2.600.937	JL1 vs Janira	-0.022102	0.008019	-2.756.076
AC7 vs BAC1	0.002875	0.002978	0.965630	JL1 vs JO3	-0.002325	0.005134	-0.452902
AC7 vs DN1	-0.024033	0.006992	-3.437.393	JL1 vs BJA9_18s	-0.000121	0.004932	-0.024533
AC7 vs DE1	0.001184	0.005676	0.208576	JL1 vs JA18	0.000626	0.004865	0.128757
AC7 vs DE7	0.002761	0.005420	0.509438	JL1 vs Joerop	-0.007674	0.006507	-1.179.441
AC7 vs DE5	0.001262	0.005563	0.226909	JL1 vs BJO12	-0.005010	0.006175	-0.811311
AC7 vs DE2	-0.001619	0.005871	-0.275688	JL1 vs MA1	-0.004511	0.003450	-1.307.562
AC7 vs HM1	-0.019177	0.006840	-2.803.585	JL1 vs MA2	-0.001669	0.003815	-0.437477
AC7 VS HA55	-0.001499	0.005698	-0.263122		0.004940	0.003362	1.469.194
	-0.011192	0.006103	-1.033.730	JLT VS ACANIN	-0.009553	0.004488	-2.128.040
	-0.012044	0.000394	-1.377.433	IL 1 vo BMP5	-0.000001	0.005009	-0.022103
AC7 vs HA57	-0.006793	0.005812	-1 168 803	JI 1 vs Echino	-0.002382	0.004506	-0.528502
AC7 vs IS3	-0.010212	0.006638	-1.538.316	JL1 vs MP12	-0.001669	0.004389	-0.380206
AC7 vs IS4	-0.010993	0.006696	-1.641.741	JL1 vs Eurycope	-0.007634	0.004896	-1.559.240
AC7 vs IS14	-0.002454	0.005841	-0.420129	JL1 vs MP1	-0.005227	0.004046	-1.291.963
AC7 vs IS11	-0.007586	0.006254	-1.213.018	JL1 vs BMP38	-0.011307	0.005188	-2.179.548
AC7 vs JL1	0.001380	0.005679	0.242973	JL1 vs MP9	-0.009290	0.004821	-1.926.833
AC7 vs JA6BC_18s	0.005748	0.004461	1.288.439	JL1 vs MP3	-0.003043	0.003901	-0.779985
AC7 vs lathrip	0.007973	0.004685	1.701.848	JL1 vs Munnops	-0.005448	0.004503	-1.209.793
AC7 vs BJA32	-0.000958	0.005190	-0.184509	JL1 VS MP5	-0.000873	0.004098	-0.213141
AC7 vs Janira	-0.019903	0.008198	-2.427.706	JL1 VS Sursumura	-0.005271	0.004296	-1.226.983
	0.0000002	0.005004	0.090477		-0.003093	0.004120	-0.750756
AC7 vs 1018	0.002703	0.005306	0.514002	IAGRC 18s vs lathrin	0.000372	0.004934	0.3588/5
AC7 vs.loerop	-0.005598	0.005687	-0.984403	JA6BC 18s vs BJA32	-0.008178	0.004845	-1 687 844
AC7 vs BJO12	-0.002889	0.005655	-0.510875	JA6BC 18s vs Janira	-0.026424	0.007780	-3.396.389
AC7 vs MA1	-0.002417	0.005533	-0.436820	JA6BC_18s vs JO3	-0.005232	0.005093	-1.027.245
AC7 vs MA2	-0.000284	0.005700	-0.049884	JA6BC_18s vs BJA9_18s	-0.002280	0.004775	-0.477582
AC7 vs ME1	0.005577	0.005450	1.023.307	JA6BC_18s vs JA18	-0.002275	0.004765	-0.477522
AC7 vs Acanth	-0.004618	0.005570	-0.829116	JA6BC_18s vs Joerop	-0.011304	0.005851	-1.932.110
AC7 vs BMP55	0.000554	0.005361	0.103253	JA6BC_18s vs BJO12	-0.008598	0.005734	-1.499.529
AC7 vs BMP5	-0.016169	0.006461	-2.502.528	JA6BC_18s vs MA1	-0.008793	0.005142	-1.710.187
AC7 vs Echino	-0.001709	0.005969	-0.286261	JA6BC_18s vs MA2	-0.005950	0.005175	-1.149.870
AC7 vs MP12	-0.000995	0.005878	-0.169280	JA6BC_18s vs ME1	-0.000077	0.004699	-0.016349
	-0.006251	0.005867	-1.065.428	JAOBU_18S VS Acanth	-0.011059	0.005232	-2.113.861
	-0.004550	0.005050	-U.0U4480	JAODU_105 VS BIVIP35	-0.003691	0.004785	-0.771482
AC7 vs MP9	-0.010037	0.000440	-1 390 361	IA6BC 18s vs Echino	-0.021133	0.000200	-3.311.092
AC7 vs MP3	-0.002369	0.005612	-0.422040	JA6BC 18s vs MP12	-0.005941	0.005406	-1.099.053
AC7 vs Munnops	-0.004774	0.005943	-0.803381	JA6BC 18s vs Eurvcope	-0.011204	0.005593	-2.003.037
AC7 vs MP5	-0.000910	0.005668	-0.160578	JA6BC 18s vs MP1	-0.009513	0.005214	-1.824.410
AC7 vs Sursumura	-0.004557	0.005852	-0.778719	JA6BC_18s vs BMP38	-0.015586	0.006015	-2.591.306
AC7 vs BMP42	-0.002377	0.005721	-0.415514	JA6BC_18s vs MP9	-0.013517	0.005861	-2.306.449
AC7 vs BJA14	-0.007591	0.006036	-1.257.603	JA6BC_18s vs MP3	-0.007327	0.005166	-1.418.302

1005 1001	0.004.404	0 000070	0 475000		0.000700	0.005040	4 040 040
AC25 VS AC21	-0.001461	0.003073	-0.475383	JA6BC_18s vs Munnops	-0.009722	0.005343	-1.819.610
AC25 vs BAC10	-0.004515	0.002344	-2 916 833	JAGBC 18s vs Sursumur	-0.003803	0.005367	-1 772 842
AC25 vs BAC1	0.002202	0.001429	1.540.822	JA6BC 18s vs BMP42	-0.007332	0.005221	-1.404.297
AC25 vs DN1	-0.023894	0.006495	-3.679.054	JA6BC 18s vs BJA14	-0.013254	0.005728	-2.313.816
AC25 vs DE1	0.000549	0.005403	0.101615	lathrip vs BJA32	-0.008939	0.004243	-2.106.637
AC25 vs DE7	0.001420	0.005320	0.266894	lathrip vs Janira	-0.027848	0.008031	-3.467.678
AC25 vs DE5	0.000631	0.005435	0.116023	lathrip vs JO3	-0.006666	0.005276	-1.263.459
AC25 vs DE2	-0.001500	0.005558	-0.269963	lathrip vs BJA9_18s	-0.003726	0.005132	-0.726027
	-0.019855	0.006608	-3.004.571	lathrip vs JA18	-0.002972	0.005066	-0.586669
AC25 VS HA55 AC25 VS HA56	-0.001423	0.005366	-0.204000	lathrin vs B IO12	-0.013361	0.005397	-2.420.020
AC25 vs HA311	-0.012537	0.006145	-2 039 991	lathrip vs MA1	-0.011090	0.005366	-2.010.007
AC25 vs HA450	-0.010317	0.005823	-1.771.985	lathrip vs MA2	-0.008992	0.005345	-1.682.346
AC25 vs HA57	-0.006702	0.005594	-1.197.929	lathrip vs ME1	-0.002372	0.005078	-0.467109
AC25 vs IS3	-0.010844	0.006571	-1.650.259	lathrip vs Acanth	-0.011839	0.005212	-2.271.435
AC25 vs IS4	-0.012389	0.006591	-1.879.561	lathrip vs BMP55	-0.007365	0.005069	-1.452.717
AC25 vs IS14	-0.003086	0.005722	-0.539259	lathrip vs BMP5	-0.024150	0.006343	-3.807.081
AC25 vs IS11	-0.008213	0.006049	-1.357.788	lathrip vs Echino	-0.008955	0.005713	-1.567.537
AC25 VS JL1	0.000748	0.005313	0.140788	lathrip vs MP12	-0.008252	0.005673	-1.454.422
AC25 VS JAOBC_16S	0.005077	0.004234	1.198.950	lathrip vs Eurycope	-0.014198	0.005804	-2.440.372
AC25 vs BIA32	-0.001629	0.004304	-0 340228	lathrip vs BMP38	-0.017882	0.005405	-2.752.928
AC25 vs Janira	-0.020575	0.008139	-2.527.980	lathrip vs MP9	-0.015815	0.006017	-2.628.478
AC25 vs JO3	-0.000120	0.005437	-0.022104	lathrip vs MP3	-0.009625	0.005537	-1.738.474
AC25 vs BJA9_18s	0.002093	0.005199	0.402606	lathrip vs Munnops	-0.012013	0.005654	-2.124.630
AC25 vs JA18	0.002837	0.005133	0.552648	lathrip vs MP5	-0.008168	0.005539	-1.474.431
AC25 vs Joerop	-0.006229	0.005260	-1.184.148	lathrip vs Sursumura	-0.010378	0.005552	-1.869.066
AC25 vs BJO12	-0.003523	0.005381	-0.654681	lathrip vs BMP42	-0.009639	0.005556	-1.734.785
AC25 VS MA1	-0.003759	0.005298	-0.709600	lathrip vs BJA14	-0.014790	0.005946	-2.487.266
AC25 VS MA2	-0.000914	0.005427	-0.168326	BJA32 vs Janira	-0.018997	0.008522	-2.229.060
AC25 vs Acanth	-0.007468	0.005100	-1 380 103	B 1432 vs 503	0.001307	0.005757	0.2017.94
AC25 vs BMP55	-0.000079	0.005211	-0.015084	BJA32 vs JA18	0.004468	0.005562	0.803413
AC25 vs BMP5	-0.017562	0.006327	-2.775.986	BJA32 vs Joerop	-0.004653	0.006008	-0.774571
AC25 vs Echino	-0.003085	0.005740	-0.537440	BJA32 vs BJO12	-0.001939	0.005879	-0.329809
AC25 vs MP12	-0.001625	0.005699	-0.285052	BJA32 vs MA1	-0.001426	0.005695	-0.250429
AC25 vs Eurycope	-0.007626	0.005680	-1.342.507	BJA32 vs MA2	0.001423	0.005802	0.245296
AC25 vs MP1	-0.005190	0.005527	-0.938915	BJA32 vs ME1	0.007292	0.005607	1.300.458
AC25 vs BMP38	-0.011262	0.006276	-1.794.429	BJA32 vs Acanth	-0.005147	0.005822	-0.883988
AC25 VS MP9	-0.009199	0.005992	-1.535.057	BJA32 VS BMP55	0.002302	0.005679	0.405313
AC25 VS MIP3	-0.003005	0.005481	-0.546310	BJA32 VS BIMPS B IA32 vo Echino	-0.014493	0.006772	-2.140.113
AC25 vs MP5	-0.003400	0.005567	-0.276843	BJA32 vs Echillo BJA32 vs MP12	0.000713	0.000321	0.228510
AC25 vs Sursumura	-0.005186	0.005716	-0.907399	BJA32 vs Eurycope	-0.004556	0.006273	-0.726292
AC25 vs BMP42	-0.003010	0.005587	-0.538758	BJA32 vs MP1	-0.002143	0.006030	-0.355318
AC25 vs BJA14	-0.008219	0.005696	-1.442.911	BJA32 vs BMP38	-0.008239	0.006859	-1.201.293
AC21 vs BAC10	-0.003811	0.003572	-1.066.908	BJA32 vs MP9	-0.006176	0.006555	-0.942185
AC21 vs BAC27	-0.011898	0.004717	-2.522.494	BJA32 vs MP3	0.000042	0.006106	0.006904
AC21 vs BAC1	0.003662	0.002901	1.262.257	BJA32 vs Munnops	-0.002364	0.006309	-0.374683
AC21 vs DN1	-0.023227	0.006875	-3.378.492	BJA32 vs MP5	0.001509	0.006033	0.250194
	0.001974	0.005731	0.344438	BJA32 VS Sursumura	-0.001428	0.006093	-0.234391
AC21 VS DE7 AC21 VS DE5	0.003548	0.005476	0.04/04/	B A32 VS BIVIP42 B A32 VS B A14	-0.000043	0.006049	-0.925047
AC21 vs DE2	-0.000830	0.005923	-0 140196	Janira vs. JO3	0.018897	0.007857	2 405 086
AC21 vs HM1	-0.018375	0.006885	-2.668.948	Janira vs BJA9 18s	0.021166	0.007806	2.711.379
AC21 vs HA55	-0.000711	0.005751	-0.123576	Janira vs JA18	0.021865	0.007751	2.821.147
AC21 vs HA56	-0.011145	0.006106	-1.825.179	Janira vs Joerop	0.012841	0.008535	1.504.402
AC21 vs HA311	-0.011846	0.006442	-1.838.772	Janira vs BJO12	0.015503	0.008301	1.867.577
AC21 vs HA450	-0.009617	0.006172	-1.558.274	Janira vs MA1	0.017611	0.008112	2.171.075
AC21 vs HA57	-0.005999	0.005864	-1.022.995	Janira vs MA2	0.021204	0.008124	2.610.048
AC21 VS IS3	-0.009416	0.006684	-1.408.738	Janira vs ME1	0.027001	0.007721	3.496.998
AC21 VS 154 AC21 vs 151	-0.010946	0.006698	-1.034.338	Janira vs Acanin Janira vs BMP55	0.016791	0.007824	2.140.071
AC21 vs IS11	-0.001000	0.005055	-1 092 860	Janira vs BMP5	0.021303	0.007317	0 542278
AC21 vs JL1	0.002166	0.005733	0.377774	Janira vs Echino	0.019003	0.008251	2.303.200
AC21 vs JA6BC_18s	0.006532	0.004529	1.442.133	Janira vs MP12	0.020495	0.008339	2.457.687
AC21 vs lathrip	0.008756	0.004751	1.843.183	Janira vs Eurycope	0.014526	0.008231	1.764.680
AC21 vs BJA32	-0.000166	0.005145	-0.032221	Janira vs MP1	0.016955	0.008248	2.055.689
AC21 vs Janira	-0.019101	0.008201	-2.328.985	Janira vs BMP38	0.010858	0.008614	1.260.584
AC21 vs JO3	0.001340	0.005659	0.236721	Janira vs MP9	0.012842	0.008240	1.558.497
AC21 VS BJA9_18S	0.003553	0.005428	0.054607	Janira vs IVIP3	0.019062	0.008168	2.333.833
AC21 vs JATO	0.004292 -0 004804	0.000303	-0.851012	Janira vs MP5	0.010/08	0.000247	2.020.003
AC21 vs BJO12	-0.002098	0.005614	-0.373730	Janira vs Sursumura	0.016941	0.008220	2.058 654
AC21 vs MA1	-0.001627	0.005589	-0.291168	Janira vs BMP42	0.019147	0.008176	2.341.782
AC21 vs MA2	0.000504	0.005753	0.087615	Janira vs BJA14	0.013153	0.008496	1.548.218
AC21 vs ME1	0.006359	0.005506	1.154.947	JO3 vs BJA9_18s	0.002208	0.002048	1.078.474
AC21 vs Acanth	-0.004577	0.005574	-0.821146	JO3 vs JA18	0.002950	0.001908	1.545.930
AC21 vs BMP55	0.000591	0.005365	0.110169	JO3 vs Joerop	-0.006089	0.006533	-0.932049
AC21 vs BMP5	-0.016130	0.006468	-2.493.916	JO3 vs BJO12	-0.003434	0.006107	-0.562256
	-0.001668	0.005973	-0.279327		-0.002171	0.005424	-0.400227
	-0.000208	0.005930	-0.034616	JO3 VS IMAZ	0.000000	0.0052478	1 230 738
AC21 vs MP1	-0,003762	0.005714	-0.658457	JO3 vs Acanth	-0.004952	0.005785	-0.856057
AC21 vs BMP38	-0.009841	0.006492	-1.515.843	JO3 vs BMP55	0.002246	0.005240	0.428569
AC21 vs MP9	-0.007783	0.006219	-1.251.602	JO3 vs BMP5	-0.014373	0.006432	-2.234.585
AC21 vs MP3	-0.001581	0.005666	-0.278981	JO3 vs Echino	-0.001502	0.005902	-0.254416
AC21 vs Munnops	-0.003983	0.005994	-0.664483	JO3 vs MP12	-0.000043	0.005863	-0.007309
AC21 vs MP5	-0.000122	0.005721	-0.021268	JO3 vs Eurycope	-0.006033	0.006130	-0.984140
AC21 VS SURSUMURA	-0.003765	0.005904	-0.637735		-0.003594	0.005744	-0.625777
AC21 VS DIVIP42	-0.001587	0.005775	-U.2/4/43 -1 116 770	JUJ VS DIVIPJO	-0.009655 -0.007602	0.000505	-1.470.808
BAC10 vs BAC27	-0.008817	0.003774	-2.336.385	JO3 vs MP3	-0.001418	0.005823	-0 243506
BAC10 vs BAC1	0.006714	0.002766	2.427.252	JO3 vs Munnops	-0.004560	0.005795	-0,786935
BAC10 vs DN1	-0.020175	0.006739	-2.993.541	JO3 vs MP5	0.000042	0.005686	0.007408
BAC10 vs DE1	0.005796	0.005625	1.030.305	JO3 vs Sursumura	-0.004343	0.005688	-0.763437
BAC10 vs DE7	0.006645	0.005492	1.209.987	JO3 vs BMP42	-0.002171	0.005656	-0.383907
BAC10 vs DE5	0.005849	0.005622	1.040.310	JO3 vs BJA14	-0.006575	0.006230	-1.055.383
BAC10 vs DE2	0.002974	0.005728	0.519183	BJA9_18s vs JA18	0.000748	0.000729	1.025.694
	-0.014581	0.006843	-2.130.777	BJA9_18S VS Joerop	-0.008315	0.006289	-1.322.021
DAUTU VS HA55 BAC10 vs HA56	0.003099	0.005574	0.555947	BIA9_185 VS BJU12 BIA9_185 VS MA1	-0.004902	0.006125	-0.800367
	-0.000770	0.000001	-1.701.002		-0.003140	0.000100	-0.331031

BAC10 vs HA311	-0.008032	0.006317	-1.271.540	BJA9_18s vs MA2	-0.001546	0.005333	-0.289839
BAC10 vs HA50 BAC10 vs HA57	-0.005766	0.005853	-0.963755 -0.373856	BJA9_18s vs ME1 BJA9_18s vs Acanth	-0.007189	0.005053	-1.293.461
BAC10 vs IS3	-0.005608	0.006731	-0.833225	BJA9_18s vs BMP55	0.000041	0.004992	0.008281
BAC10 vs IS4 BAC10 vs IS14	-0.007139 0.002136	0.006743	-1.058.734 0.357382	BJA9_18s vs BMP5 BJA9_18s vs Echino	-0.017381 -0.003715	0.006362	-2.732.115
BAC10 vs IS11	-0.002988	0.006221	-0.480319	BJA9_18s vs MP12	-0.003003	0.005588	-0.537381
BAC10 vs JL1 BAC10 vs JA6BC 18s	0.005972	0.005634	1.059.941	BJA9_18s vs Eurycope	-0.008261	0.005968	-1.384.404
BAC10 vs lathrip	0.012567	0.004740	2.651.235	BJA9_18s vs BMP38	-0.011895	0.006413	-1.854.710
BAC10 vs BJA32	0.003654	0.005238	0.697637	BJA9_18s vs MP9	-0.009834	0.006047	-1.626.262
BAC10 vs Janira BAC10 vs JO3	-0.015296	0.008245	-1.855.154 0.794013	BJA9_18s vs MP3 BJA9_18s vs Munnops	-0.003631	0.005598	-0.648569
BAC10 vs BJA9_18s	0.007366	0.005243	1.404.895	BJA9_18s vs MP5	-0.002169	0.005456	-0.397488
BAC10 vs JA18	0.007349	0.005231	1.404.841	BJA9_18s vs Sursumura	-0.006565	0.005462	-1.201.969
BAC10 vs BJO12	0.000956	0.005382	0.177649	BJA9_18s vs BJA14	-0.009557	0.006022	-1.587.033
BAC10 vs MA1	0.001467	0.005617	0.261255	JA18 vs Joerop	-0.009043	0.006229	-1.451.787
BAC10 vs MA2 BAC10 vs ME1	0.004312	0.005744	0.750634	JA18 vs BJO12 JA18 vs MA1	-0.005639	0.006065	-0.929830
BAC10 vs Acanth	-0.002949	0.005653	-0.521628	JA18 vs MA2	-0.002290	0.005268	-0.434720
BAC10 vs BMP55	0.004428	0.005482	0.807832	JA18 vs ME1	0.003559	0.004987	0.713757
BAC10 vs Echino	0.002134	0.005905	0.361358	JA18 vs BMP55	-0.007926	0.003494	-0.143400
BAC10 vs MP12	0.003598	0.005861	0.613917	JA18 vs BMP5	-0.017343	0.006348	-2.732.041
BAC10 vs Eurycope BAC10 vs MP1	-0.002406	0.005844	-0.411754 0.007550	JA18 vs Echino JA18 vs MP12	-0.004454 -0.002996	0.005622	-0.792275
BAC10 vs BMP38	-0.006036	0.006386	-0.945238	JA18 vs Eurycope	-0.008990	0.005906	-1.522.070
BAC10 vs MP9	-0.003981	0.006015	-0.661793	JA18 vs MP1	-0.006550	0.005451	-1.201.569
BAC10 vs MP3 BAC10 vs Munnops	-0.0002221	0.005650	-0.030208	JA18 VS BMP38 JA18 vs MP9	-0.012616	0.005986	-1.985.556
BAC10 vs MP5	0.003686	0.005641	0.653463	JA18 vs MP3	-0.004370	0.005535	-0.789467
BAC10 vs Sursumura	0.000043	0.005787	0.007383	JA18 vs Munnops	-0.007513	0.005510	-1.363.559
BAC10 vs BJA14	-0.002224	0.006132	-0.487275	JA18 vs Sursumura	-0.002911	0.005392	-0.339953
BAC27 vs BAC1	0.014792	0.004198	3.523.623	JA18 vs BMP42	-0.005125	0.005359	-0.956312
BAC27 vs DN1 BAC27 vs DE1	-0.012060	0.007138	-1.689.457	JA18 vs BJA14 Joerop vs B IO12	-0.009536	0.006009	-1.586.955
BAC27 vs DE7	0.013927	0.006361	2.318.352	Joerop vs MA1	0.003171	0.006506	0.487440
BAC27 vs DE5	0.013932	0.006469	2.153.601	Joerop vs MA2	0.006771	0.006525	1.037.605
BAC27 vs DE2 BAC27 vs HM1	0.011071	0.006495	1.704.626	Joerop vs ME1 Joerop vs Acanth	0.011865	0.006128	1.936.218
BAC27 vs HA55	0.011190	0.006480	1.726.856	Joerop vs BMP55	0.008296	0.006243	1.328.893
BAC27 vs HA56	0.000043	0.006679	0.006449	Joerop vs BMP5	-0.009911	0.007090	-1.397.948
BAC27 vs HA450	0.002287	0.006999	0.341139	Joerop vs MP12	0.006056	0.006724	0.900636
BAC27 vs HA57	0.005919	0.006649	0.890309	Joerop vs Eurycope	0.000046	0.006388	0.007259
BAC27 vs IS3 BAC27 vs IS4	0.002492	0.007041	0.353979 0.137817	Joerop vs MP1	0.002502	0.006609	0.378642
BAC27 vs IS14	0.010224	0.006390	1.599.905	Joerop vs MP9	-0.003051	0.006582	-0.463589
BAC27 vs IS11	0.005109	0.006422	0.795670	Joerop vs MP3	0.004631	0.006517	0.710618
BAC27 vs JA6BC 18s	0.014048	0.005493	3.357.979	Joerop vs MP5	0.006140	0.006343	0.968065
BAC27 vs lathrip	0.020655	0.005852	3.529.888	Joerop vs Sursumura	0.002501	0.006396	0.391090
BAC27 vs BJA32 BAC27 vs Janira	0.011770	0.006063	1.941.262	Joerop vs BMP42	0.004685	0.006276	0.746455
BAC27 vs JO3	0.012476	0.006303	1.979.387	BJO12 vs MA1	0.000513	0.006004	0.085381
BAC27 vs BJA9_18s	0.014712	0.006096	2.413.214	BJO12 vs MA2	0.004104	0.006190	0.663028
BAC27 vs Joerop	0.006367	0.005972	1.066.085	BJO12 vs Acanth	-0.002383	0.006072	-0.392378
BAC27 vs BJO12	0.009047	0.006243	1.449.081	BJO12 vs BMP55	0.005593	0.005984	0.934576
BAC27 vs MA1 BAC27 vs MA2	0.009566	0.006470	1.478.434	BJO12 vs BMP5 BJO12 vs Echino	-0.012540	0.006615	-1.895.613
BAC27 vs ME1	0.018230	0.006284	2.900.919	BJO12 vs MP12	0.003351	0.006342	0.528395
BAC27 vs Acanth	0.004398	0.006461	0.680788	BJO12 vs Eurycope	-0.002593	0.006301	-0.411505
BAC27 vs BMP5	-0.004932	0.007173	-0.687484	BJO12 vs BMP38	-0.007740	0.006699	-1.155.409
BAC27 vs Echino	0.010218	0.006773	1.508.647	BJO12 vs MP9	-0.005686	0.006506	-0.873917
BAC27 vs MP12 BAC27 vs Eurocope	0.005689	0.006763	0.848023	BJO12 VS MP3 BJO12 VS Munnops	0.001935	0.006313	0.306534
BAC27 vs MP1	0.008139	0.006618	1.229.767	BJO12 vs MP5	0.003435	0.006222	0.552140
BAC27 vs BMP38 BAC27 vs MP9	0.002064	0.007114	0.290171	BJO12 vs Sursumura	-0.000201	0.006271	-0.031983
BAC27 vs MP3	0.010310	0.006577	1.567.450	BJO12 vs BJA14	-0.003940	0.006579	-0.598939
BAC27 vs Munnops	0.007916	0.006792	1.165.604	MA1 vs MA2	0.002843	0.003556	0.799381
BAC27 vs IVIPO BAC27 vs Sursumura	0.008140	0.006701	1.214.824	MA1 vs Acanth	-0.005049	0.003019	∠.415.743 -1.106.802
BAC27 vs BMP42	0.010325	0.006587	1.567.508	MA1 vs BMP55	0.004430	0.004098	1.080.864
BAC27 vs BJA14 BAC1 vs DN1	0.005113	0.006738	0.758889	MA1 vs BMP5 MA1 vs Echino	-0.012309	0.005634	-2.184.994
BAC1 vs DE1	-0.001663	0.005396	-0.308109	MA1 vs MP12	0.002845	0.004645	0.612455
BAC1 vs DE7	-0.000786	0.005314	-0.147957	MA1 vs Eurycope	-0.003125	0.004834	-0.646444
BACT VS DE5 BAC1 vs DE2	-0.001571	0.005429	-0.289337 -0.666583	MAT VS MPT MA1 vs BMP38	-0.001427	0.004393	-0.324768
BAC1 vs HM1	-0.022034	0.006601	-3.337.790	MA1 vs MP9	-0.004746	0.004805	-0.987570
BAC1 VS HA55 BAC1 VS HA56	-0.003624 -0.014751	0.005283	-0.685949 -2.589 782	MA1 VS MP3 MA1 vs Munnons	0.000755	0.003994	0.188940 -0.192658
BAC1 vs HA311	-0.014737	0.006055	-2.434.120	MA1 vs MP5	0.003643	0.004329	0.841628
BAC1 vs HA450	-0.012507	0.005724	-2.185.070	MA1 vs Sursumura	-0.000757	0.004392	-0.172359
BAC1 vs IS3	-0.008899	0.005492	-1.985.971	MA1 vs BJA14	-0.001426 -0.004461	0.004347	0.327974 -0.885414
BAC1 vs IS4	-0.014575	0.006581	-2.214.806	MA2 vs ME1	0.005903	0.003828	1.542.015
BAC1 vs IS14 BAC1 vs IS11	-0.005286 -0.010407	0.005717	-0.924630 -1.722 203	MA2 vs Acanth MA2 vs BMP55	-0.007937 0.001588	0.004294	-1.848.226 0.405993
BAC1 vs JL1	-0.001453	0.005307	-0.273887	MA2 vs BMP5	-0.015210	0.005785	-2.629.318
BAC1 vs JA6BC_18s	0.002867	0.004106	0.698227	MA2 vs Echino	-0.000754	0.004777	-0.157885
BACT vs lathrip BAC1 vs BJA32	0.005087	0.004238	-0.821460	MA2 vs IVIP 12 MA2 vs Eurycope	-0.000000	0.004718	-1.250.751
BAC1 vs Janira	-0.022760	0.008128	-2.800.054	MA2 vs MP1	-0.003561	0.004400	-0.809503
BAC1 vs JO3 BAC1 vs BJA9 18s	-0.002324	0.005332	-0.435831 -0.023413	MA2 vs BMP38 MA2 vs MP9	-0.009646 -0.007631	0.005073	-1.901.378
BAC1 vs JA18	0.000629	0.005023	0.125180	MA2 vs MP3	-0.001379	0.004326	-0.318730
BAC1 vs Joerop	-0.008434	0.005046	-1.671.423	MA2 vs Munnops	-0.003782	0.004709	-0.803230

BAC1 vs BJO12

BAC1 vs MA1 BAC1 vs MA2

DE1 vs BJA14 DE7 vs DE5

-0.008039 -0.000790

0.005059

-1.588.831 -0.217970

BMP38 vs BMP42 BMP38 vs BJA14

0.008237

0.004955 0.005460

1.662.392 0.428130

-0.005722

0.005173

-1.106.098

MA2 vs MP5

BAC1 vs MA1	-0.005959	0.005294	-1.125.676	MA2 vs Sursumura	-0.002890	0.004518	-0.639789
BAC1 vs MA2	-0.003117	0.005422	-0.574846	MA2 VS BMP42	-0.001424	0.004407	-0.323058
BAC1 vs Acanth	-0.002741	0.005105	-1 659 946	ME1 vs Acanth	-0.007308	0.004519	-2 904 949
BAC1 vs BMP55	-0.002277	0.005206	-0.437419	ME1 vs BMP55	-0.005020	0.003548	-1.414.916
BAC1 vs BMP5	-0.019745	0.006363	-3.102.867	ME1 vs BMP5	-0.021817	0.005483	-3.979.070
BAC1 vs Echino	-0.005282	0.005734	-0.921219	ME1 vs Echino	-0.007325	0.004585	-1.597.771
BAC1 vs MP12	-0.003827	0.005693	-0.672165	ME1 vs MP12	-0.006617	0.004532	-1.460.035
BAC1 vs Eurycope	-0.009820	0.005580	-1.760.004	ME1 vs Eurycope	-0.011864	0.004811	-2.466.148
BAC1 vs MP1	-0.007389	0.005522	-1.337.906	ME1 VS MP1	-0.010180	0.004139	-2.459.257
	-0.013453	0.006226	-2.100.000		-0.010034	0.005144	-3.019.933
BAC1 vs MP3	-0.011392	0.005942	-0.950307	MET VS MP3	-0.014229	0.004842	-2.930.010
BAC1 vs Munnops	-0.007598	0.005723	-1 327 615	ME1 vs Munnons	-0.010391	0.004404	-2 359 558
BAC1 vs MP5	-0.003743	0.005561	-0.673034	ME1 vs MP5	-0.005821	0.004057	-1.434.594
BAC1 vs Sursumura	-0.007384	0.005710	-1.293.159	ME1 vs Sursumura	-0.010218	0.004128	-2.475.530
BAC1 vs BMP42	-0.005213	0.005581	-0.934068	ME1 vs BMP42	-0.008049	0.003947	-2.039.265
BAC1 vs BJA14	-0.010415	0.005739	-1.814.719	ME1 vs BJA14	-0.013915	0.004825	-2.883.974
DN1 vs DE1	0.025961	0.007177	3.617.453	Acanth vs BMP55	0.009514	0.003618	2.629.302
DN1 vs DE7	0.026771	0.006973	3.639.239	Acanth vs Echino	-0.006459	0.004718	-1.309.149
DN1 vs DE2	0.023822	0.007303	3 297 831	Acanth vs MP12	0.005505	0.003751	1 736 554
DN1 vs HM1	0.005514	0.005885	0.937017	Acanth vs Eurycope	0.001974	0.003998	0.493692
DN1 vs HA55	0.023240	0.007156	3.247.463	Acanth vs MP1	0.004422	0.003451	1.281.434
DN1 vs HA56	0.012090	0.007474	1.617.634	Acanth vs BMP38	-0.001609	0.004692	-0.342993
DN1 vs HA311	0.011378	0.007614	1.494.305	Acanth vs MP9	0.000405	0.004276	0.094705
DN1 vs HA450	0.014326	0.007533	1.901.889	Acanth vs MP3	0.005883	0.003782	1.555.325
DN1 vs HA57	0.017973	0.007318	2.456.089	Acanth vs Munnops	0.003443	0.003791	0.908362
DN1 vs IS3	0.012080	0.007793	1.662.016	Acanth vs MP5	0.008060	0.003401	2.309.000
DN1 vs IS14	0.022231	0.007074	3.142 780	Acanth vs BMP42	0.006566	0.003487	1.882 650
DN1 vs IS11	0.017100	0.007360	2.323.454	Acanth vs BJA14	0.000631	0.005025	0.125646
DN1 vs JL1	0.026064	0.006898	3.778.403	BMP55 vs BMP5	-0.016729	0.004690	-3.567.013
DN1 vs JA6BC_18s	0.029006	0.006188	4.687.184	BMP55 vs Echino	-0.003715	0.003513	-1.057.457
DN1 vs lathrip	0.031908	0.006794	4.696.468	BMP55 vs MP12	-0.003008	0.003369	-0.892575
DN1 vs BJA32	0.023802	0.007021	3.389.936	BMP55 vs Eurycope	-0.007501	0.004351	-1.723.688
DN1 vs Janira	0.003227	0.009168	0.351995	BMP55 VS MP1	-0.005858	0.002951	-1.985.158
DNI VS JUJ DNI VS BIAQ 180	0.023727	0.007200	3.294.77U 3.701.894	DIVITUD VS DIVITUD BMP55 ve MP0	-0.011080 -0.000868	0.0040/9	-2.430.217
DN1 vs. JA18	0.026691	0.007024	3 831 150	BMP55 vs MP3	-0.003631	0.003159	-1 149 310
DN1 vs Joerop	0.016960	0.007428	2.283.205	BMP55 vs Munnops	-0.006075	0.003282	-1.851.066
DN1 vs BJO12	0.019618	0.007501	2.615.334	BMP55 vs MP5	-0.002211	0.003158	-0.700160
DN1 vs MA1	0.021573	0.007049	3.060.211	BMP55 vs Sursumura	-0.005898	0.003520	-1.675.313
DN1 vs MA2	0.024414	0.007151	3.414.238	BMP55 vs BMP42	-0.003724	0.003167	-1.175.856
DN1 vs ME1	0.030967	0.006954	4.452.992	BMP55 vs BJA14	-0.008890	0.004845	-1.834.758
DN1 VS Acanth	0.015606	0.007070	2.207.241	BMP5 VS ECNINO	0.013724	0.005167	2.656.168
DN1 vs BMP5	0.023222	0.000815	1 098 052	BMP5 vs Eurocope	0.014465	0.005113	1 816 795
DN1 vs Echino	0.022203	0.007371	3.012.398	BMP5 vs MP1	0.010927	0.004930	2.216.404
DN1 vs MP12	0.023701	0.007379	3.211.847	BMP5 vs BMP38	0.004829	0.005561	0.868337
DN1 vs Eurycope	0.017669	0.007699	2.294.994	BMP5 vs MP9	0.006831	0.005050	1.352.760
DN1 vs MP1	0.020156	0.007244	2.782.496	BMP5 vs MP3	0.013111	0.004960	2.643.336
DN1 vs BMP38	0.014046	0.007801	1.800.532	BMP5 vs Munnops	0.010700	0.005318	2.011.926
DN1 vs MP9 DN1 vs MP3	0.016080	0.007764	2.071.186	BMP5 vs MP5	0.015292	0.005030	3.040.056
DN1 vs Munnons	0.022314	0.007130	2 675 645	BMP5 vs BMP42	0.010087	0.005212	2.000.741
DN1 vs MP5	0.023788	0.007208	3 300 244	BMP5 vs BJA14	0.007126	0.005722	1 245 267
DN1 vs Sursumura	0.020144	0.007315	2.753.678	Echino vs MP12	0.000710	0.001378	0.515266
DN1 vs BMP42	0.022357	0.007255	3.081.548	Echino vs Eurycope	-0.004542	0.004752	-0.955814
DN1 vs BJA14	0.017873	0.007578	2.358.654	Echino vs MP1	-0.002849	0.003277	-0.869345
DE1 vs DE7	0.000881	0.002902	0.303424	Echino vs BMP38	-0.008934	0.005299	-1.686.110
DE1 vs DE5	0.000085	0.003600	0.023578	Echino vs MP9	-0.006923	0.004954	-1.397.489
	-0.002805	0.003450	-0.812983	Echino VS MP3	-0.000668	0.003481	-0.191765
DET VS HIVT DE1 VS HA55	-0.019077	0.007128	-0.340829	Echino vs MP5	0.003070	0.003624	-0.802962
DE1 vs HA56	-0.012395	0.006163	-2.011.250	Echino vs Sursumura	-0.002890	0.003986	-0.724954
DE1 vs HA311	-0.013128	0.006163	-2.130.004	Echino vs BMP42	-0.000711	0.003677	-0.193451
DE1 vs HA450	-0.010893	0.006185	-1.761.061	Echino vs BJA14	-0.005839	0.005518	-1.058.340
DE1 vs HA57	-0.007269	0.005895	-1.232.965	MP12 vs Eurycope	-0.005259	0.004649	-1.131.236
DE1 VS IS3	-0.010706	0.005658	-1.892.194	MP12 VS MP1	-0.003559	0.003117	-1.141.632
DET VS 104 DE1 vs IS14	-0.011502	0.005726	-2.000.722 -0.880/24	MP12 VS DIVIP38	-0.009646 -0.007631	0.005199	-1.000.100
DE1 vs IS11	-0.008796	0.005093	-1.726.980	MP12 vs MP3	-0.001378	0.003331	-0.413722
DE1 vs JL1	0.000210	0.003522	0.059513	MP12 vs Munnops	-0.003782	0.003836	-0.985928
DE1 vs JA6BC_18s	0.004508	0.004932	0.913940	MP12 vs MP5	0.000796	0.003383	0.235272
DE1 vs lathrip	0.007516	0.005271	1.425.791	MP12 vs Sursumura	-0.003604	0.003860	-0.933683
DE1 vs BJA32	-0.002185	0.005883	-0.371437	MP12 vs BMP42	-0.001422	0.003534	-0.402298
DE1 vs Janira	-0.021214	0.007918	-2.679.239	MP12 vs BJA14	-0.007308	0.005473	-1.335.482
DET VS JUJ DET VS BIAG 180	-0.002131 0.000084	0.005705	-U.3/35/8 0.015320	Eurycope vs MP1	0.001702	0.004365	0.389883
DF1 vs. JA18	0.000835	0.005413	0.0154203	Eurycope vs Divir 30	-0.004390	0.004205	-0.659685
DE1 vs Joerop	-0.007509	0.006585	-1.140.342	Eurycope vs MP3	0.003877	0.004183	0.926816
DE1 vs BJO12	-0.004791	0.006302	-0.760327	Eurycope vs Munnops	0.001472	0.004674	0.315014
DE1 vs MA1	-0.004322	0.003831	-1.128.245	Eurycope vs MP5	0.006056	0.004246	1.426.195
DE1 vs MA2	-0.001467	0.004186	-0.350458	Eurycope vs Sursumura	0.001655	0.004514	0.366541
DE1 vs ME1	0.005917	0.003448	1.715.912	Eurycope vs BMP42	0.003841	0.004307	0.891608
DET VS ACANTA DET VS RMP55	-0.009432 0.000120	0.004489	-2.101.409 0.0352/1	Eurycope vs BJA14 MP1 vs BMP38	-0.000578 -0.006003	0.005638	-0.102455
DE1 vs BMP5	-0.016692	0.005545	-3.010 225	MP1 vs MP9	-0.000093	0.004454	-0.916315
DE1 vs Echino	-0.002224	0.004447	-0.500190	MP1 vs MP3	0.002179	0.003379	0.644772
DE1 vs MP12	-0.001468	0.004384	-0.334924	MP1 vs Munnops	-0.000226	0.003095	-0.073046
DE1 vs Eurycope	-0.007459	0.004858	-1.535.407	MP1 vs MP5	0.004356	0.002888	1.508.016
DE1 vs MP1	-0.005043	0.003945	-1.278.298	MP1 vs Sursumura	-0.000044	0.003295	-0.013298
DE1 vs BMP38	-0.011149	0.005156	-2.162.167	MP1 vs BMP42	0.002141	0.002910	0.735573
	-0.009126	0.004722	-1.932.559	WPT VS BJA14	-0.003756	0.005292	-0.709864
DET VS MUDDODS	0 002952	0 000000	0 722245	BMD28 vc MD0	() () () () () () () () () () () () () (0 002200	0 606164
	-0.002852	0.003889	-0.733215 -1 203 721	BMP38 vs MP9 BMP38 vs MP3	0.002000	0.003299	0.606164 1 792 717
DE1 vs MP5	-0.002852 -0.005264 -0.001381	0.003889 0.004373 0.004034	-0.733215 -1.203.721 -0.342391	BMP38 vs MP9 BMP38 vs MP3 BMP38 vs Munnops	0.002000 0.008263 0.005859	0.003299 0.004609 0.005225	0.606164 1.792.717 1.121.360
DE1 vs MP5 DE1 vs Sursumura	-0.002852 -0.005264 -0.001381 -0.005041	0.003889 0.004373 0.004034 0.004231	-0.733215 -1.203.721 -0.342391 -1.191.468	BMP38 vs MP9 BMP38 vs MP3 BMP38 vs Munnops BMP38 vs MP5	0.002000 0.008263 0.005859 0.010442	0.003299 0.004609 0.005225 0.004896	0.606164 1.792.717 1.121.360 2.132.635

0.181657

0.000797

0.004385

DE7 vs DE2 DE7 vs HM1	-0.003671	0.003500	-1.048.968	MP9 vs MP3	0.006247	0.004463	1.399.677
DE7 vs HA55	-0.004259	0.005326	-0.799631	MP9 vs MP5	0.008425	0.004583	1.838.227
DE7 vs HA56	-0.013976	0.005778	-2.419.050	MP9 vs Sursumura	0.004034	0.004779	0.844068
DE7 vs HA311	-0.014719	0.005862	-2.511.000	MP9 vs BMP42	0.006221	0.004644	1.339.512
DE7 vs HA450	-0.012485	0.005886	-2.121.024	MP9 vs BJA14	-0.000430	0.005180	-0.083083
DE7 vs HA57	-0.008873	0.005583	-1.589.147	MP3 vs Munnops	-0.002401	0.003939	-0.609574
DE7 vs IS3	-0.012258	0.005534	-2.215.012	MP3 vs MP5	0.002173	0.003420	0.635359
DE7 vs IS4	-0.013044	0.005597	-2.330.722	MP3 vs Sursumura	-0.002224	0.003822	-0.581817
DE7 vs IS14	-0.004511	0.004118	-1.095.487	MP3 vs BMP42	-0.000043	0.003496	-0.012252
DE7 vs IS11	-0.009646	0.004899	-1.968.985	MP3 vs BJA14	-0.005932	0.004921	-1.205.427
DE7 vs JL1	-0.000668	0.003694	-0.180963	Munnops vs MP5	0.004578	0.003421	1.338.158
DE7 vs JA6BC_18s	0.002908	0.004794	0.606589	Munnops vs Sursumura	0.000181	0.003620	0.049983
DE7 vs lathrip	0.005913	0.005074	1.165.161	Munnops vs BMP42	0.002363	0.003277	0.721095
DE7 vs BJA32	-0.003762	0.005776	-0.651357	Munnops vs BJA14	-0.002765	0.005465	-0.505996
DE7 vs Janira	-0.022804	0.007911	-2.882.512	MP5 vs Sursumura	-0.003687	0.001856	-1.986.475
DE7 vs JO3	-0.002996	0.005528	-0.541984	MP5 vs BMP42	-0.002218	0.001239	-1.791.037
DE7 vs BJA9_18s	-0.000041	0.005241	-0.007761	MP5 vs BJA14	-0.008104	0.005341	-1.517.394
DE7 vs JA18	-0.000040	0.005229	-0.007744	Sursumura vs BMP42	0.001470	0.001382	1.063.265
DE7 vs Joerop	-0.008362	0.006350	-1.316.717	Sursumura vs BJA14	-0.003662	0.005453	-0.671535
DE7 vs BJO12	-0.005647	0.006223	-0.907371	BMP42 vs BJA14	-0.005130	0.005304	-0.967265

8.2.3 Ergebnisse der Analyse der Substitutionssättigung

Die verwendeten Kürzel entsprechen den Artkennungen, die bereits für die Auflistung der Ergebnisse des Tests der realtiven Substitutionsraten verwendet wurden (siehe 8.2.2). Die Resultate der Anaylse sind mit zunehmender d-Distanz aufgelistet.

Taxon 1	Taxon 2	d-Distanz	Transversionen	Transitionen	Taxon 1	Taxon 2	d-Distanz	Transversionen	Transitionen
AC7	AC4	0	0	0	MA1	HA311	0.05150648	0.0214956	0.02794029
JA18	BJA9 18s	0.00057806	0	0.0005767	Acanth	Joerop	0.05151401	0.01555202	0.03404793
IS4	IS3	0.00057876	0	0.00057537	JL1	HA311	0.05153902	0.02438473	0.02501998
BST28	ST1	0.00114559	0.00057368	0.00057078	MP1	BJA32	0.05154205	0.02151115	0.02796692
BMP42	Sursumura	0.0023178	0.00173919	0.0005798	Sursumura	HA311	0.05162534	0.02325513	0.02632008
BMP42	MP5	0,00289534	0,00115636	0,00173452	MP9	IS3	0,0517292	0,01849854	0,03126517
BAC1	AC25	0,00290012	0,00057842	0,00232281	MP9	AC4	0,05183165	0,01910193	0,03070234
AC21	AC4	0,00347836	0,00058034	0,00289277	JO3	DE5	0,05183879	0,01856414	0,03127234
AC21	AC7	0,00348042	0,00058078	0,00289566	MP9	AC7	0,05192648	0,01912191	0,03079826
JA18	JO3	0,00405079	0,00057637	0,00346706	lathrip	IS11	0,05196397	0,01974198	0,03020492
HA450	HA56	0,00406702	0,00173804	0,00231475	MP5	BJA32	0,05200698	0,0197541	0,03026356
BJA9 18s	JO3	0,00463892	0,00057794	0,00404857	JA18	AC22	0,05205936	0,02321587	0,02677336
MP12	Echino	0,00464913	0,00232116	0,00231585	MP5	HA56	0,05208544	0,02035551	0,029733
Sursumura	MP5	0,00522387	0,0028973	0,00231881	Sursumura	HA56	0,05208697	0,02034379	0,02976316
BMP42	BMP55	0,01168675	0,00520432	0,00637714	BJA14	HA55	0,05210224	0,02263051	0,02735376
BMP42	MP1	0,01169829	0,0057905	0,00579495	MP12	HA57	0,05214114	0,0209631	0,02913607
MP1	BMP55	0,01229387	0,00752357	0,00462943	BJA9 18s	AC22	0,05215351	0,02326451	0,02681682
MP5	BMP55	0,012853	0,00578271	0,00695223	MA2	BJO12	0,05217404	0,02042306	0,0296602
MP5	MP1	0,01287034	0,00694619	0,00578636	BMP42	BJO12	0,05230149	0,02045664	0,02979654
DE7	DE1	0,01291155	0,00641061	0,00641249	BJA14	JA18	0,05249482	0,01970476	0,03074483
MP3	BIMP55	0,01345829	0,00579477	0,00753941	MP9	154	0,05250683	0,0185605	0,03198785
MININI	MP1	0,01345983	0,00694054	0,0063635	HA450	AC4	0,05257756	0,02373926	0,02662454
MP9	BMP38	0,01397447	0,00517955	0,00864543	BJA14	BJA9 18S	0,05258945	0,01973704	0,03079546
MININOPS	BIMP55	0,01401777	0,00520073	0,00866843	BJA14	AC21	0,05259213	0,0214449	0,02901799
DIVIP42	Munnops	0,01402221	0,00577439	0,00808988	E IO12		0,05267404	0,02376249	0,0200994
RAC1		0,0140322	0,00570147	0,00809047	BJ012 HA56	1314	0,05269162	0,01034323	0,03433994
	HA311	0,01405209	0,00379147	0,00011903	103	AC22	0,05269079	0,02202020	0.0267685
Sursumura	BMP55	0.0146361	0,00750898	0,00320331	BIO12	11 1	0.05274574	0,0237300	0,0207000
Sursumura	MP1	0.0146592	0,00730898	0,00033730	Eurycone	HA55	0,05274574	0,01903070	0,0300302
MP1	MP12	0.01465989	0.00809468	0,00636206	Acanth	AC22	0.05276276	0.0231803	0.02734625
HA311	HA56	0.01468277	0.00522215	0.00929439	MP3	HA56	0.05277667	0.02039498	0.03031443
MP1	Echino	0.01469663	0.0092746	0.0052236	BJO12	BAC27	0.05285021	0.01984541	0.03089462
MP5	Acanth	0.01501198	0.00769781	0.0071253	Acanth	HA311	0.05286938	0.02265179	0.02808648
BMP42	Acanth	0,01502476	0,00711769	0,00773194	MP5	HA311	0,05287416	0,02327566	0,02746082
MP12	BMP55	0,01523081	0,00693932	0,00809841	MP1	HA311	0,05288332	0,02155436	0,02921022
MP1	Acanth	0,01563974	0,00889986	0,00652197	MP3	HA311	0,05292224	0,02273043	0,02805286
MA1	JL1	0,01579253	0,00692874	0,0086615	BJO12	AC22	0,05299028	0,02393721	0,02681289
BMP42	MP3	0,01582777	0,00578706	0,00987133	JO3	IS11	0,05319015	0,0225902	0,02838763
BAC1	AC4	0,01582872	0,00809397	0,00752545	MA1	AC22	0,05319959	0,02087758	0,03015393
BAC1	AC7	0,01585696	0,00811061	0,00754347	BJA32	DE5	0,05323953	0,01916279	0,03197392
BAC10	AC25	0,01585739	0,00638042	0,00929707	HA56	AC4	0,05324312	0,02317739	0,02781081
DE2	DE1	0,01587096	0,00754717	0,00812751	IS14	BAC27	0,05324342	0,02202211	0,0289801
BMP55	Acanth	0,01620526	0,00769251	0,00829254	HA450	DE5	0,05326034	0,02263325	0,02843525
MP5	Munnops	0,01638221	0,00692768	0,00924312	HA56	AC21	0,0532673	0,02204873	0,0290213
MP5	MP3	0,0163996	0,00578219	0,01043339	HA56	DE5	0,05330298	0,02207202	0,02904806
MP5	MP12	0,01640196	0,00692975	0,00925161	Eurycope	BJA32	0,05334974	0,02150453	0,02970653
BIMP42	MP12	0,01641206	0,00693712	0,00927236	MAZ	HA450	0,05334975	0,0243641	0,02670428
MP3	MP1	0,01642478	0,00809666	0,00809337	BMP55	AC22	0,05336446	0,02381431	0,02730905
MP5	Echino	0,01643064	0,00695221	0,00928974	MP3	HA450	0,05337902	0,02153503	0,02970287
IVIP3 Echino	DMDEE	0,01643265	0,00095313	0,00928328	DIVIP42	ACZZ	0,05336576	0,02200072	0,02851515
		0,01043438	0,00010014	0,00010039	RIO12	DES	0,05339234	0,02360977	0,02731331
AC25	AC7	0,01649440	0,00009731	0,00755188	Europpo	BIO12	0,05342024	0,02044107	0,03081037
MP12	Acanth	0.01685395	0.00890401	0.00771726	MPQ	AC21	0.05373906	0.01853417	0.0330000
ME1	II 1	0.01696835	0.00750875	0.00923876	BMP38	BAC1	0.05379665	0.0214534	0.03018257
Sursumura	Munnops	0.01697561	0.00808081	0.00866202	.103	BAC27	0.05380265	0.01975545	0.03202901
DE5	DE1	0.01702156	0.0040643	0.01278735	IS11	AC4	0.05380853	0.02315166	0.02834484
BAC1	AC21	0.01702606	0.00752437	0.00928219	IS11	AC21	0.05385443	0.02259653	0.02897689
ME1	DE1	0,01707333	0,00813597	0,00871338	HA450	AC21	0,05386831	0,02318112	0,02842421
Sursumura	Acanth	0,0174572	0,00947166	0,00773191	IS11	AC7	0,0539073	0,02318531	0,02842661
MP3	Acanth	0,017459	0,00771709	0,00951412	BJA32	DE2	0,05393101	0,02034532	0,03141297

Tab. 8.3: Ergebnisse der Analyse der Substitutionssättigung:

1	2	7
L	L	1

BMP42	Echino	0,01763983	0,00811186	0,00928966	BJA14	HA57	0,05395126	0,02207006	0,02966696
AC21	AC25 DE1	0,01765626	0,00812557	0,00929057	MP12 ME1	BJA32	0,05397559	0,02146702	0,0302476
DE2	DE7	0,01820704	0,0092432	0,00867449	HA311	BAC1	0,05401734	0,02491036	0,02675235
MA2	MA1	0,0187432	0,00749849	0,01095778	JA6BC 18s	DN1	0,05404531	0,02155227	0,03023437
BAC10	AC4	0,01878979	0,00694162	0,01156986	Echino	HA450 HA56	0,05407972	0,02271365	0,02914805
Sursumura	MP3	0,01880562	0,00810136	0,01046899	MP5	BJO12	0,0541539	0,02159358	0,03034539
BMP55	DE7	0,01881763	0,00982391	0,00870256	Sursumura	BJO12	0,05415713	0,02160434	0,03035451
BAC10	AC7	0,01882323	0,00695558	0,01160522	MP3 Fabina	BJO12	0,05418275	0,0204573	0,03151705
HA57 HA57	HA450	0.01884644	0.00984878	0.00869322	BMP38	JA18	0.05431776	0.01854797	0.03361651
Munnops	Acanth	0,01925593	0,00829335	0,01066714	Joerop	JA18	0,05446649	0,01342628	0,03908413
Echino	Acanth	0,01930181	0,01008935	0,00891437	Munnops	HA450	0,05452776	0,02149736	0,03079484
ME1 Sursumura	MA1 MP12	0,01932805	0,00692736	0,01210539	HA311 BMP55	BAC10 BAC27	0,05459978	0,02262281	0,0296503
DE5	DE7	0,01993234	0,00749581	0,01211694	HA311	DE5	0,05467898	0,02384018	0,02851078
MP9	Eurycope	0,01994253	0,00692841	0,01272589	Acanth	BAC27	0,05468235	0,02317516	0,02918673
BMP55	JL1 BAC10	0,01998715	0,01040087	0,00924989	BJA32 Munnons	HA311	0,054685	0,02206228	0,03033035
BMP55	DE1	0.02009602	0.00990731	0.00986419	HA450	DE1	0.05474922	0.02332055	0.02916933
Eurycope	Acanth	0,02047683	0,00770289	0,01249978	MP12	HA311	0,05477222	0,02271884	0,02976792
Proasell	Lirceus	0,0205074	0,00519606	0,01503213	HA56	DE1	0,05479329	0,02275218	0,02978223
JL1 ME1	DE5	0.02051365	0.00866427	0.01155284	BJO12 BJO12	DE7 DE1	0.05492263	0.02276945	0.03161288
BMP55	ME1	0,02056197	0,00982495	0,01039246	Echino	BJO12	0,05495171	0,02337146	0,02922511
Munnops	MP12	0,02056467	0,00808723	0,0121386	BJA14	JO3	0,05500016	0,02028745	0,03247389
Munnops	Echino	0,02059187	0,00924875	0,0109927	BMP38	BJA9 18s	0,0550385	0,01858051	0,03425206
MP3	DE7	0,02062399	0,00868209	0,01160065	MA1	BAC27 BAC27	0,05514499	0,02203469	0,03135881
MA1	DE1	0,02066636	0,00870245	0,01163	Eurycope	HA57	0,05516042	0,02091422	0,03199866
HA57	HA311	0,02069652	0,01102321	0,0092957	HA450	DE2	0,05516058	0,02263665	0,03019407
DE2	MAZ DE5	0,02111233	0,0075025	0,01326923	BMP38	AC25 B IA9 18s	0,05516244	0,02207027	0,03081707
Munnops	MP3	0,02115577	0,00694275	0,0138963	HA56	DE2	0,0552048	0,02207743	0,0308138
JL1	DE7	0,02118333	0,01153858	0,00924011	MP12	HA450	0,05522396	0,021517	0,03141623
ME1	DE7	0,02118725	0,01099057	0,00982534	MP12 Munnono	HA56	0,05523415	0,02094531	0,03203673
HA311	HA55	0.02125649	0.00812264	0.01279309	MP3	AC22	0.05531906	0.02325916	0.02966405
HA57	HA56	0,0212623	0,01044382	0,01043958	Eurycope	Joerop	0,05534405	0,01749888	0,03563132
MP3	DE1	0,0213098	0,00931916	0,01164448	MA2	HA311	0,05535503	0,0244025	0,02852278
MAZ MA1	JL1 DE7	0,02173403	0,00866158	0,0127025	BIVIP55 Echino	Joerop BIA32	0,05538516	0,01868094	0,03447146
MP3	MA1	0,02180365	0,0098337	0,01157544	BMP42	Joerop	0,05542993	0,0181189	0,03509825
ME1	DE2	0,02238862	0,01098303	0,01098658	Joerop	AC22	0,0555486	0,02220041	0,03099293
HA450	HA55 Acapth	0,02239931	0,00810805	0,01391871	HA311 BMD5	DE1	0,05555281	0,02454648	0,02867195
BMP55	MA1	0.02296468	0.01039156	0.01213001	BMP38	lathrip	0.05566525	0.01799827	0.03549601
HA56	HA55	0,02302312	0,00812301	0,01450865	IS11	BAC27	0,05572759	0,02261725	0,03074087
BMP42	DE1	0,02310313	0,00815825	0,01459411	JA18	HA450	0,05574395	0,02260559	0,03079148
MP1 BMP42	MF1	0,02314748	0,01109734	0,01164209	JL1 IS14	AC22 HA450	0,05576441	0,02375633	0,029565
BMP42	JL1	0,02356876	0,00925553	0,01390695	IS14	HA56	0,05586021	0,02380389	0,02963375
BMP55	MA2	0,02356896	0,01097647	0,01213822	Sursumura	AC22	0,05589703	0,02383015	0,02966541
MP1 MP5	DE7 DE1	0,02365162	0,01156722	0,01160643	MP3 DE7	BAC27 BAC27	0,05590009	0,02381457	0,02965559
JL1	DE5	0,02411268	0,00923134	0,01442561	IS14	HA311	0,05598361	0,02440259	0,02910951
MP5	JL1	0,02415409	0,01040378	0,01330741	HA311	AC25	0,0559852	0,02552985	0,02793893
MP3	Eurycope	0,02415824	0,00866258	0,0150704	HA311	DE2	0,05600635	0,02500692	0,02853811
JL1	DE2	0.02419247	0.01270584	0.0109744	BMP5	BAC10	0.05612618	0.02905688	0.02440348
MP9	BMP55	0,02470716	0,00750331	0,01677327	MP1	BJO12	0,05613316	0,02220263	0,03151308
MP3	MP9	0,02471821	0,00634867	0,01797015	MP9	HA57	0,05628068	0,01739997	0,03664998
MP5	Eurycope	0.02474603	0.00868415	0.01565587	BJA14	BJA32	0.05641451	0.0226435	0.03131845
IS11	IS14	0,0247676	0,0109662	0,01326544	JA18	HA56	0,05641488	0,02204981	0,03198731
BMP42	Eurycope	0,02476806	0,00869	0,01565558	Munnops	BJA32	0,05643978	0,02148185	0,03255873
MP1 BMP55	JL1 DE2	0,02478334	0,01041537	0,01389325	BJA9 18s BJA9 18s	HA450 HA56	0,05647061	0,02265707	0,03141978
Sursumura	DE1	0,02489321	0,00930718	0,0151655	IS11	HA55	0,05654353	0,02609606	0,02790689
ME1	IS14	0,02530445	0,00751024	0,01732334	MP5	AC22	0,05654386	0,02440703	0,02966223
Eurycope	BMP55 Eurycope	0,02532206	U,UU867449 0 00979722	0,01620492	JA18 Munnons	HA311 BJO12	0,05654674	0,02379081	0,03029343
MP5	ME1	0,02534045	0,00982532	0,0150391	MP5	Joerop	0,05665855	0,01925507	0,03505752
Sursumura	ME1	0,02534116	0,00982209	0,01505009	Joerop	HA55	0,05667832	0,01869217	0,0356865
MP5	MA1	0,02534636	0,00924302	0,01562092	BMP5	AC4	0,05669073	0,02901938	0,02494941
Sursumura	JL1	0.02536452	0.01040615	0.01449908	BMP5	lathrip	0.05678056	0.02734802	0.02500453
MP5	DE7	0,02538933	0,00983668	0,01508304	BMP38	JO3	0,05682673	0,01913686	0,03534382
IS14	DE7	0,02539457	0,01268824	0,01211655	BMP5	HA55	0,05688146	0,0296673	0,02447983
BMP42 MA2	DE7 DE1	0,02540512	0,00984559	0,01510395	BMP38 BMP38	153	0,0568848	0,02369668	0,03065126
IS14	DE1	0,02547647	0,00985349	0,01511225	BMP38	AC7	0,05703713	0,0226068	0,03196226
MP5	MP9	0,02589859	0,00750644	0,01794396	HA311	AC4	0,05716353	0,02609348	0,02843465
MA1 MP9	IS14 MP1	0,02591261	0,00807954	0,0173212	JA18 MA1	IS3	0,05718635	0,02839828	0.0373465
BMP55	DE5	0.02596596	0.01040465	0.01503906	HA311	AC7	0.05726911	0.0261097	0.02851845
MA1	DE2	0,02599934	0,01156436	0,01387443	BJA9 18s	HA311	0,05727768	0,0238456	0,03092506
Acanth	MA2	0,02600915	0,01066465	0,01481395	Sursumura	Joerop	0,05732549	0,01927747	0,03568838
BIVIP42 MP3	DE2 DE2	0,02603059 0,02603723	0,00985375	0,01308051	BMP5	AC21	0,05736774	0,02222498	0.02615372
JA6BC 18s	BAC1	0,02609657	0,01158828	0,01391993	JA6BC 18s	IS3	0,05737534	0,02904513	0,02557225
BMP42	MP9	0,02652775	0,0075085	0,01855914	BMP5	AC25	0,05753699	0,03142095	0,02327431
INIA I IS14	DES DES	0,0∠053004 0.02653200	0,00923507	0,01074911 0,01673381	MP38	DJA32 AC21	0,05760584	0,01800035	0,03724897
MA2	DE7	0,02656119	0,01096881	0,01501867	DE5	BAC27	0,05761726	0,02202518	0,03307462
MP12	JL1	0,02658418	0,01155082	0,01446016	DE5	AC22	0,0576357	0,02261808	0,03246522
Sursumura BJA32	DE7 lathrin	0,02659801	0,0103981	U,U1566546 0.01806182	HA55 ME1	BAC27 AC22	0,05765592	0,02319814	0,03196646
Acanth	MA1	0,02664384	0,01183774	0,01422141	BJA32	IS11	0,05768422	0,02207807	0,03308452
Acanth	DE7	0,02664791	0,01010064	0,01605486	BMP38	IS4	0,05768498	0,02376312	0,0313761
Munnops	DE1	0,02669207	0,00990581	0,01627859	BMP42	BAC27	0,05779259	0,02327082	0,03206177
N/1 = 1 -				111111// 2011	0.0014	10000	11111119011	111/11/11/11	11112904410

MP3	BMP38	0,02715666	0,00921402	0,01740036	BJA14	HA56	0,05780447	0,02553492	0,02964482
MP1	ME1	0,02716935	0,00984171	0,01678316	Eurycope	BAC27	0,05781204	0,02554235	0,02967253
Sursumura	Eurycope	0,02717057	0,01098839	0,01565242		AC22 BAC27	0,05787406	0,02444202	0,03081731
MP1	MA1	0.02718634	0.00983002	0.01678181	BJA9 18s	IS3	0.05791912	0.02845794	0.02669518
MP1	Eurycope	0,02720055	0,00983458	0,01681887	MP3	Joerop	0,05794819	0,01812584	0,03741378
MP12	DE7	0,02720083	0,0104125	0,01622042	JA18	IS4	0,05795625	0,02847419	0,02674374
MP3	MA2	0,02720571	0,01100645	0,01564839	BJO12	HA57	0,05798107	0,02222956	0,03324511
MP5	DE2	0,02722824	0,01158147	0,01508517	Joerop	DE7	0,05799464	0,02100345	0,034443
BAC1	BAC27	0.02725758	0.01334111	0.0133647	BMP5	BAC1	0.05804214	0.03078247	0.02440322
MP1	DE2	0,02730396	0,01390334	0,01276797	BJO12	HA56	0,05805167	0,0239717	0,03150094
JA6BC 18s	BAC10	0,02731846	0,01160474	0,01509673	BJA9 18s	IS4	0,0580619	0,02853869	0,02678314
lathrip	JA6BC 18s	0,02736632	0,01105609	0,01574771	JA6BC 18s	IS4	0,05807636	0,02911674	0,02623785
Acanth MA2	DE1 DE5	0,02739906	0,01073352	0,01609194	BIVIP5	BJA9 185 HA450	0,05810055	0,02971129	0,0256135
BMP42	MA2	0,02778354	0,00983068	0,01738899	MP9	HA56	0,05824656	0,01972909	0,03606204
Munnops	DE7	0,02779285	0,01097375	0,01621714	Joerop	JO3	0,05824803	0,01343043	0,04260322
Sursumura	DE2	0,02780411	0,01098801	0,01623648	JO3	HA450	0,05826529	0,02319269	0,03251982
MP3	IS14	0,02783422	0,0115727	0,01564826	IS11	HA450	0,05826728	0,02376802	0,03190561
IS11	IS3	0,02783776	0,01003961	0,01720069	IS14 IS11	ACZZ HA56	0,05830519	0,02376632	0,03186573
BAC27	AC25	0,02790235	0,01393707	0,01335901	MA2	AC22	0,05838203	0,02494165	0,03074656
IS11	IS4	0,02792758	0,01562901	0,01158187	DN1	AC25	0,05838465	0,02381393	0,03193306
JA6BC 18s	AC25	0,02793057	0,01219048	0,01508319	Munnops	AC22	0,05839337	0,02439567	0,03133572
ECNINO Sursumura	DE1 MPQ	0,02798564	0,01108051	0,01634109	HA311	153 AC21	0,05846329	0,02550362	0,03025157
MP5	MA2	0.02837013	0.01098055	0.01678558	JA6BC 18s	HM1	0.05847892	0.0227051	0.03319369
MP12	MA1	0,02838552	0,01155203	0,01619644	BJO12	IS11	0,05851893	0,02333312	0,03256829
BMP42	DE5	0,02839157	0,00926091	0,01857529	BJO12	DE2	0,05856659	0,02276748	0,03319789
MP1	MA2	0,02840679	0,0109925	0,01680422	DN1	BAC1	0,05888318	0,02319174	0,03305117
Echino		0,02842438	0,01100277	0,01662764	IO3	ACZZ HA56	0,0589014	0,02320308	0,03306354
lathrip	BAC1	0,02846912	0,01158106	0,01622627	MP9	BJO12	0,05894057	0,01809414	0,03838355
Munnops	ME1	0,02891648	0,00982367	0,01848711	DE2	BAC27	0,05895618	0,02435843	0,03190112
BMP38	BMP55	0,02894262	0,01036824	0,01792847	DE7	AC22	0,05898347	0,02492596	0,03131739
Munnops	JL1 MD12	0,02894404	0,01040113	0,01793066	Eurycope	HA450	0,05899719	0,02380596	0,03256457
Sursumura	MA2	0,02896063	0,00982027	0,01795679	MP5	BAC27	0,05901828	0.02440925	0.03202841
BMP55	IS14	0,02900273	0,01155822	0,01678262	HA55	AC22	0,05903338	0,02552235	0,03079168
Echino	DE7	0,02905867	0,01158465	0,01681791	Joerop	JL1	0,05904713	0,01864505	0,03789529
Acanth	ME1	0,02906411	0,01065598	0,01776183	IS11	HA57	0,05907413	0,02668598	0,02961906
MP9 MA2	MP12	0,02952934	0,00866048	0,02025848	JO3 B 1414	HA311 BIO12	0,05907831	0,02438437	0,0320179
MP12	MF1	0,02957497	0.01098812	0,02022804	BMP5	153	0.05912905	0.02956476	0.02665627
BMP42	BMP38	0,02957659	0,01039212	0,01854781	BMP5	JO3	0,05924167	0,03021718	0,02611147
Munnops	DE2	0,02963012	0,01214456	0,01679211	lathrip	IS4	0,05927391	0,02564744	0,03101065
Echino	DE2	0,02968117	0,01101486	0,01800458	Eurycope	HA56	0,05963786	0,02323638	0,0337405
BMP5	ACZI	0,02968247	0,01390106	0,01506956	Sursumura	RAC27	0,05965428	0,02377098	0.03267356
Munnops	MP9	0,03009243	0,00866135	0,02081051	MP12	AC22	0,05971491	0,02497554	0,03196289
Munnops	Eurycope	0,03013216	0,0098319	0,0196494	MP12	BAC27	0,05971652	0,02497635	0,0319801
MP5	BMP38	0,03014145	0,01038481	0,01909873	JO3	IS3	0,05972051	0,02899452	0,02781153
MP5	DE5	0,03015316	0,00983475	0,01967812	153	BAC10	0,05972175	0,02898038	0,02785319
Sursumura	DE5	0,03018172	0,01040716	0,01914758	MP1	BAC27	0,05975014	0,02501776	0,03201336
MP12	DE2	0,03024976	0,01098729	0,01854788	Joerop	DE5	0,05979913	0,01984351	0,03735126
Echino	MA1	0,0302652	0,01273444	0,01680688	Echino	AC22	0,05980188	0,02445186	0,03259258
lathrip	BAC10	0,03027671	0,01043901	0,01915039	MA2	Joerop	0,05981807	0,02039778	0,03675541
BMP5	BMP55	0.03029415	0.01619546	0.01329927	BJO12	HA450	0.05989856	0.02453751	0.03262459
BAC27	AC7	0,03031561	0,0144991	0,01508895	IS4	BAC1	0,05990453	0,02906376	0,02798364
lathrip	AC25	0,03034315	0,01219981	0,01743287	BMP5	IS4	0,05990689	0,02959866	0,02732333
JA6BC 18s	AC4	0,03036703	0,01391965	0,01565261	Joerop	HA56	0,05992962	0,02045245	0,03690183
MP9	AC7 Echino	0,03040364	0,01393791	0,01508311	HA57	BAC27	0,060079	0,0254334	0,03180745
Echino	ME1	0,03083704	0,01215794	0,01795703	IS11	AC22	0,06026863	0,0266656	0,03070164
BAC1	AC22	0,03084374	0,01273699	0,01738808	MP9	HA311	0,0602692	0,02147803	0,03612363
MP1	IS14	0,03084508	0,01157775	0,01853971	Joerop	IS14	0,06033226	0,0174843	0,04024819
JA6BC 18S	AC21 MA1	0,03097964	0,01334908	0,01683867	153 B 1414	AC4 HA311	0,06043055	0,03070618	0,02664072
Eurvcope	MA1	0.03132678	0.00925135	0.02137512	MP12	Joerop	0.06045713	0.01868356	0.03912111
Eurycope	Echino	0,03137865	0,010989	0,01966907	DE1	AC22	0,06045787	0,02444925	0,03324629
Sursumura	BMP38	0,03139098	0,01269994	0,0179576	IS3	AC25	0,06048508	0,02962657	0,02788132
MP12 Eurycope	MA2 DE7	0,0314224	0,01213761	0,01852653	Joerop	HA57 HA55	0,06050988	0,01928403	0,0386224
BJA14	MP3	0,03145245	0,01384828	0,01678951	JO3	IS4	0,06053611	0,02908251	0,028512
Echino	MA2	0,03147081	0,01272518	0,01799318	IS3	AC7	0,06054261	0,03074805	0,02670587
BAC10	AC22	0,03148415	0,01447316	0,01622574	BMP5	HA56	0,06062381	0,03023674	0,02733318
Acanth	DE5	0,03158001	0,01126664	0,01957105	IS4	AC25	0,06063325	0,02970013	0,02798005
Munnons	JLI MA1	0,03191717	0,00981714	0,02141142	HA450	BAC27	0,06064636	0,02909654	0,02853657
BJA14	ME1	0,031969	0,0132631	0,01788612	HA56	BAC27	0,06081469	0,02377686	0,03426631
BJA14	JL1	0,0319761	0,01269968	0,01848111	BJA14	BAC27	0,06082636	0,02320748	0,03486582
BMP38	MP1	0,03203389	0,01271203	0,01853001	MP9	BAC27	0,06084928	0,02379796	0,03432224
IS14	DIVIE00 DE2	0,03204262	0.01386171	0,01017079	HA57	AC22	0,00000467	0,02349819	0,03252055
IS14	IS3	0,03210706	0,01675759	0,01444351	MA2	BAC27	0,06089582	0,02494161	0,03311912
MP9	DE1	0,03213881	0,01163092	0,01979226	BJA14	Joerop	0,06100604	0,01868253	0,03969587
BJA14	Acanth	0,03220972	0,01303106	0,01837376	Munnops	Joerop	0,06106871	0,01926761	0,03910316
Acanth .II 1	IS11	0,0322/3	0,01305532	0,01839639	ECNINO IS3	BAG27 AC21	0,06108789	0,02503414 0.03015337	0,03325839
Munnops	MA2	0,03256387	0,01098476	0,02081685	Joerop	HA450	0,06114488	0,02101059	0,0374465
MP9	DE7	0,03259937	0,0115527	0,02026329	MP1	Joerop	0,06117072	0,01985726	0,03857922
lathrip	AC4	0,03270518	0,01275608	0,01911735	IS4	AC4	0,06124996	0,03078243	0,02735471
AG20 Iathrin	AG22 AC7	0,0327254	0,01333484	0,01856965	154	AG21 HA55	0,00120324	0,03022322	0,02793286
IS14	IS4	0,03279084	0,01680058	0,01505496	IS4	AC7	0,061326	0,03081502	0,02739386
MP3	BMP5	0,03284049	0,01853372	0,01333709	Joerop	DE1	0,06133457	0,02048179	0,03815021
Stenase	Lirceus	0,03313977	0,01211336	0,02023082	BMP38	BJA32	0,06145726	0,02150593	0,03724367
Eurycope	MA2	0,03316649	0,01097573	0,02140541	BMP5	BJU12 BAC10	0,06150721	0,03043418	0,02801961
BJA14	MA1	0,03318845	0,01384364	0,01846363	DE2	AC22	0,06152802	0,02495182	0,03366353

1	20	
T	27	

BMP42	IS14	0,0332147	0,01040743	0,02202232	BMP38	BJO12	0,06154411	0,02041294	0,03838218
MP12 MA2	DE5 DE2	0,03323061	0,01097678	0,02142186	Eurycope	HA311	0,06170995	0,02496233	0,03367579
lathrip	AC21	0,03333815	0,01218836	0,02032332	IS3	HA57	0,06174233	0,02846735	0,03025
MP9 MP5	BMP5 BMP5	0,03335422	0,01793272	0,01446522 0.0150564	Echino BMP5	Joerop HA450	0,06188122	0,01987533	0,03925078
BMP42	BMP5	0,03340207	0,01738464	0,01507862	BJO12	HA311	0,06199076	0,02574864	0,03328526
BJA32 BMD55	JA6BC 18s	0,03344624	0,01339275	0,01922254	IS4 MP0	HA57	0,06256738	0,0285546	0,03097541
Eurycope	ME1	0,03373758	0,01039346	0,01458577	HA450	AC22 AC22	0,06277344	0,02380114	0,03244885
ME1	IS11	0,03379081	0,01270619	0,02019208	lathrip	DN1	0,06280984	0,0226879	0,03719295
MP5 BJA14	IS14 MA2	0,03382272	0,01155081	0,02141294 0.01846549	Munnops IS11	BAC27 HA311	0,06282511	0,02497733	0,03488832
BMP55	IS11	0,03386939	0,01445316	0,01850999	IS3	HA450	0,06296099	0,02902819	0,03078778
AC7	AC22	0,03399245	0,01565487	0,017397	Joerop	HA311	0,06324434	0,02221688	0,03811426
MP9	ME1	0,03400492	0,00923708	0,020363	HM1	BAC1	0,06354029	0,02549537	0,03480668
BMP38	MA1	0,03434083	0,01038856	0,02309958	IS3	HA56	0,0636463	0,02846757	0,03198207
Munnops BMP38	BMP38 MP12	0,03436282	0,01153468	0,02196094	HM1 Joeron	AC25	0,06368015	0,02735868	0,03318622
MP12	IS14	0,03445721	0,01270717	0,02082472	IS4	HA450	0,06379018	0,02911113	0,03151483
IS11	DE7	0,03446088	0,01442131	0,01901715	BMP38	HA57	0,06399038	0,02205371	0,03897712
AC22 AC21	AC4 AC22	0,03455079	0,01620352	0,01735961 0.01854044	BMP5 DN1	HA311 AC21	0,06402531	0,03202999	0,02857952
BJO12	Joerop	0,03457493	0,01390991	0,01972824	BMP38	Joerop	0,06420064	0,02041605	0,04082745
BJA14	DE1	0,03462926	0,01450528	0,01919114	IS4	HA56	0,06439874	0,02853001	0,0326779
ME1	JA6BC 18s	0.03468465	0.01452079	0.01747369	BJA32	IS3	0.06503266	0.03022991	0.03138341
MP1	BMP5	0,03469718	0,02084755	0,01274564	BJO12	IS3	0,06512497	0,02920046	0,03261657
BJA9 18s	JA6BC 18s	0,03470467	0,01456253	0,01922597	BJO12 BMD29	IS4	0,06532595	0,02928587	0,03273812
JA6BC 18s	DE7	0,03474292	0,01860709	0,01513614	DE7	DN1	0,06536374	0,02730175	0,03598545
IS11	DE5	0,03499208	0,01211548	0,02190038	BJA32	IS4	0,06579014	0,03030993	0,03208923
BJA14 Eurycope	MP9 DE5	0,03500515	0,01325901	0,02081733	BMP5 BMP38	BJA32 BAC27	0,06587291	0,03314496	0,02909457
Sursumura	IS14	0,03505446	0,01156494	0,02262364	IS3	BAC27 BAC27	0,06618698	0,03018007	0,03250021
Echino	DE5	0,03507852	0,01155637	0,02260844	Joerop	IS11	0,06626208	0,02390744	0,03910705
Echino BMP55	IS14 .IA18	0,03517289	0,01390204	0,02031389 0.01738166	IS4 BMP38	BAC27 HA450	0,06630857	0,03022094	0,03254435
MP12	BMP5	0,03523367	0,01853403	0,01563641	DN1	AC4	0,06659596	0,0267107	0,03649063
BMP38	JL1	0,03557193	0,01154114	0,02313161	BMP38	HA56	0,06662484	0,02437774	0,03897627
BMP38	Echino	0.03568438	0.01270575	0,02373734	JL1 DN1	AC7	0.06671957	0.02957228	0.03658785
lathrip	HA57	0,03579167	0,01334371	0,02146995	HA311	BAC27	0,06673747	0,02669942	0,03668055
BJA32 BMP55	BAC1	0,03581791	0,01509079	0,01972424	HM1 HM1	AC4 BAC10	0,06675439	0,02844754	0,03479406
Echino	BMP5	0,03589918	0,01914902	0,01564507	HM1	AC21	0,06677025	0,02789657	0,03540829
BMP55	BJA9 18s	0,03590184	0,01685374	0,01799318	HM1	AC7	0,06683727	0,02848298	0,0348527
JA6BC 18s MP9	JL1 MA2	0,03590242	0,01799299	0,01685617	IS3 BMP38	HA311 HA311	0,06697843	0,03023701	0,03320265
BMP38	DE5	0,03619915	0,01155622	0,02371299	lathrip	HM1	0,0674334	0,02618093	0,03781004
BJA14	DE5	0,03625295	0,01387393	0,02138286	Acanth	DN1	0,06767298	0,02504381	0,03918377
Sursumura	BMP5	0.03642821	0.01335143	0,0221141	IS4 BMP5	AC22	0.06782593	0.03031729	0.02729711
BJA32	AC25	0,03650562	0,01572468	0,01974716	BJA32	DN1	0,06807929	0,02682448	0,03777782
JA6BC 18s	HA55 BAC10	0,03656504	0,01742976	0,018068	ME1	DN1	0,06845237	0,02670547	0,03822812
JA6BC 18s	DE1	0,03669747	0,01865853	0,01691115	BMP5	Joerop	0,06859402	0,02866481	0,03627203
Acanth	lathrip	0,03672452	0,01311664	0,02265483	JA18	DN1	0,06865269	0,02845895	0,03660791
BMP38 Munnons	MA2 IS14	0,03676862	0,01095819	0,02483705	BMP55 HM1	HM1 DE7	0,06872991	0,02904508	0,03603778
BJA14	BMP42	0,036858	0,01384369	0,02197903	BJO12	HM1	0,06900724	0,0263463	0,03909385
BJA14	DE7	0,0369465	0,01731861	0,01850413	IS14	DN1	0,06927005	0,02960615	0,03593561
JA18	BAC1	0.03698203	0.01506475	0,02085441	BJA9 18S BMP5	DN1 BAC27	0.06970818	0.02851048	0.03085722
JA18	lathrip	0,03701377	0,01277028	0,02326297	Acanth	HM1	0,0698509	0,02800844	0,03814999
lathrip Eurycopo	HA55 BMP5	0,03704742	0,01392403	0,02208329	ME1	HM1	0,06986029	0,02789247	0,03826506
BMP38	ME1	0,03736569	0,01153882	0,02481624	DN1	BAC27	0,06995291	0,02961317	0,03660155
Stenase	Proasell	0,03739336	0,01328776	0,02308332	MA1	HM1	0,06998918	0,02964277	0,03654736
Eurycope MP9	IS14 DE2	0,03748505	0,01272398	0,02372199	MP3 MP3	DN1 HM1	0,06999186	0,02792875	0,03836859
BAC27	AC22	0,0375833	0,01563211	0,02083993	HA311	AC22	0,07005516	0,02959956	0,0366444
JA18	BAC10	0,03758733	0,01277474	0,02383355	DE1	DN1	0,0707224	0,0291018	0,03780562
JA14 JA18	JL1	0.03759835	0.01677752	0,0202659	IS3	AC22	0.07083385	0.03424456	0.03246483
BJA9 18s	BAC10	0,03765429	0,01280046	0,02387699	JL1	HM1	0,07113332	0,02957112	0,03766418
BJA9 18s	BAC1	0,03766403	0,01510871	0,02153643	JA18 Joeron	HM1 IS3	0,07124285	0,02847875	0,03894412
MP9	IS14	0,03799969	0,00981609	0,02721015	IS4	AC22	0,0716518	0,03431474	0,03319395
MA1	IS11	0,03803794	0,01211976	0,02480846	Joerop	IS4	0,07172778	0,02691228	0,04098945
BJA14 BMP38	MP5 DF7	0,03807663	0,01498251	0,02194611 0.02255096	DE2 MP5	DN1 DN1	0,0718214	0,02959858	0,03825144
BMP42	IS11	0,03812623	0,01216587	0,02492635	JO3	DN1	0,07186341	0,02905104	0,0389222
IS11 BIA22	DE1 BAC10	0,03823607	0,01389479	0,02323171	BMP42	DN1 BAC27	0,07193083	0,02856646	0,0395411
BJA9 18s	JL1	0,0382757	0,01681405	0,02028923	BJA9 18s	HM1	0,07201321	0,0285351	0,03959259
JO3	JA6BC 18s	0,03833807	0,01511031	0,02211955	HM1	DE1	0,07218949	0,03030258	0,0378869
IAGRC 18e	DE7 DE2	0,0383447	0,01684838	0,02036267	MP1 IS11	DN1 DN1	0,07266196	0,03027257	0.0388124
JA6BC 18s	HA57	0,03843645	0,01802335	0,01922281	HM1	DE5	0,07308753	0,02847429	0,04059493
BMP42	JA6BC 18s	0,03845024	0,01865067	0,01870113	Sursumura	DN1	0,0731767	0,02969457	0,0395205
IVIP3 BJA14	JA6BC 188 BMP38	0,03862438	0,01921358 0.01269108	0,01807566	HA57 HA55	DN1 DN1	0,07330124 0,07333281	0,03023628	0,03895065
BJA14	Sursumura	0,0386944	0,01442437	0,02313956	DE5	DN1	0,07358047	0,02730467	0,0422684
BJA14	MP12	0,03873732	0,01615876	0,02139476	MA2	DN1	0,07381607	0,03137428	0,03825115
BJA14	DE2	0,03878322	0,01618976	0,02237274	MA2	HM1	0,07390908	0,02907026	0,03832046
ME1	JA18	0,03879679	0,01504442	0,02258503	HA57	HM1	0,07412931	0,03315201	0,03667085
BMP55 JA18	JU3 AC25	0,03887808 0.03890032	0,01738681 0.01568876	0,02026256 0.02213044	HM1 BMP42	DE2 HM1	0,07452621 0.07463768	0,03079896 0.03143164	0.03947192
BMP55	BAC10	0,03893546	0,01683667	0,02091317	DN1	AC22	0,07515677	0,03135484	0,03943364
MA1	JA6BC 18s	0,03897635	0,01685873	0,02095897	MP5	HM1	0,07515699	0,03080259	0,04006434

MP1	lathrip	0,03901675	0,01572235	0,02217374	MP12	DN1	0,07518025	0,03026464	0,04063818
BMP55	HA55	0,03905681	0,0100224	0,01923428	Munnons	DN1	0,07572588	0.0302409	0,03779849
Acanth	JA6BC 18s	0,03939373	0,01788236	0,02029381	Echino	DN1	0,07597442	0,03145932	0,04013436
BJA14	Echino	0,03944576	0,0173479	0,02085739	Joerop	DN1	0,07607234	0,02516425	0,04676365
ME1	lathrip	0,03946283	0,01394223	0,02442008	IS11	HM1	0,07642595	0,03189494	0,04004127
JU3 ME1	Iathrip B IA9 18c	0,03946778	0,01335501	0,02499217	Sursumura		0,07657898	0,03257407	0,03954365
BJA32	AC21	0.03952733	0.0168277	0.02144763	Eurycope	DN1	0.07826326	0.02965378	0.04411659
Munnops	BMP5	0,03953785	0,02082185	0,01735951	BJA32	HM1	0,07845669	0,02858005	0,04539799
BJA9 18s	AC25	0,03958233	0,01572033	0,02274234	Eurycope	HM1	0,07846884	0,03252686	0,04120992
lathrip	DE1	0,03966436	0,01457716	0,0239145	HA56	DN1	0,07856926	0,0325848	0,04127735
Joerop	BAC1	0,0397616	0,01690168	0,02164303	Joerop	HM1	0,07888471	0,02868325	0,04562015
JII 1	151	0,03993445	0,01331891	0,02049117	Echino	HM1	0,07914256	0,03311433	0,0412376
JO3	BAC1	0.04003504	0.01506178	0.02380928	HA450	HM1	0.07929076	0.03488112	0.03955072
MA1	JA18	0,04005846	0,0156336	0,0231714	HA56	HM1	0,07935803	0,03433967	0,04016425
JO3	JL1	0,04007553	0,01737495	0,02143183	MP12	HM1	0,07973508	0,0319494	0,04293485
lathrip	JL1	0,04008928	0,01451821	0,02441835	HA450	DN1	0,07979676	0,03312287	0,04181827
BIA32		0,04012997	0,01567321	0,02321102	Acanth	Janira	0,08005357	0,02786122	0,04755988
BMP55	BAC1	0.04013907	0.01799574	0.02089057	HM1	AC22	0.08064109	0.03489916	0.04070384
BMP42	JA18	0,04015696	0,01684209	0,02207519	BJA14	DN1	0,08092039	0,03191622	0,04407493
BJA32	AC7	0,0401791	0,01740907	0,02146921	BMP38	HM1	0,08096838	0,03191917	0,04411712
JA6BC 18s	IS14	0,04021016	0,01799847	0,02091258	BMP5	HM1	0,08139017	0,03495885	0,04129497
BMP42	BJA9 18s	0,04022883	0,01688236	0,02211725	HA311 MPO	DN1	0,0814188	0,03550514	0,04074858
Sursumura	JAGBC 18s	0,04031926	0,015752	0,02332212	HA311	HM1	0,08146605	0,02957947	0,04704238
BJO12	lathrip	0,04033837	0,01405243	0,02514141	JA18	Janira	0,08152324	0,03072934	0,04585679
MP1	JA6BC 18s	0,04036626	0,02039472	0,01865962	BMP38	DN1	0,08159251	0,03251682	0,04406349
BJA14	Munnops	0,04050066	0,0155769	0,02366333	BMP5	DN1	0,08183338	0,03318981	0,04357405
BJA14	IS14	0,04052834	0,01558145	0,0236847	BJA9 18s	Janira	0,08232049	0,03078979	0,04651041
MP5	IS11 BAC10	0,04054327	0,01330903	0,02607105	153	DN1 DN1	0,08248214	0,03657422	0,04057383
BMP55	IS3	0,04003333	0.01270034	0,02072470	B.IA14	HM1	0.0830058	0.03367225	0.04412005
JL1	IS4	0,0407197	0,01795988	0,02144502	JO3	Janira	0,08349197	0,03131208	0,04699518
BMP55	AC4	0,04073408	0,01796071	0,02146236	ME1	Janira	0,08356702	0,03419829	0,0439746
BMP55	AC21	0,0407673	0,01739223	0,02209834	Janira	JA6BC 18s	0,08472437	0,03438425	0,04484405
Sursumura	JA18	0,04077514	0,01799831	0,02149814	BMP55	Janira	0,08488742	0,03192309	0,04754487
BMP42 BMP55	BAC10	0,04080584	0,01627856	0,02329669	153	HM1	0,08525005	0,03941504	0,04001727
BMP55	AC25	0.0408401	0.01861657	0.02092783	Janira	DE1	0.08746015	0.0372871	0.04425658
Acanth	JA18	0.04107201	0.01724637	0.02248016	Janira	HA55	0.08849783	0.03429833	0.04832172
MP1	IS11	0,04122116	0,01391967	0,02606942	Janira	JL1	0,08961278	0,03653786	0,0469055
BMP38	DE2	0,04125414	0,01735109	0,02258157	BMP42	Janira	0,08974604	0,03428841	0,04943927
MA1	lathrip	0,04130991	0,01336111	0,02673271	MP3	Janira	0,0897503	0,03431293	0,04941195
Sursumura	AC4 Iathrin	0,04131539	0,01795376	0,02203699	Janira		0,09028871	0,03367029	0,05055009
BMP38	BMP5	0.04134239	0.01966832	0.020253	Janira	BAC1	0.09042656	0.03655199	0.04766446
MP5	JA18	0,04136418	0,01797642	0,02204402	MP9	Janira	0,0907555	0,03305532	0,05161334
JA18	AC7	0,04136549	0,01797824	0,02207391	MP5	Janira	0,09094134	0,03424643	0,05053169
lathrip	HA56	0,04137258	0,01568139	0,02440392	Echino	Janira	0,09101181	0,03258659	0,05233037
BMP42	lathrip	0,04139742	0,01397801	0,02626606	Sursumura	Janira	0,09101436	0,03540787	0,04939591
DIVIPOD ME1	154 H455	0,0414219	0,01854993	0,02149777	Janira MA1	AC25 Janira	0,09128869	0,03721750	0,04773407
BMP5	JL1	0.04143861	0.02314091	0.0167752	Janira	BAC10	0.09163992	0.03313663	0.05233901
BMP5	DE7	0,04143891	0,02200416	0,01795407	Janira	DE5	0,09164155	0,03656187	0,0486402
MP3	BAC10	0,04146187	0,01684606	0,02327811	MP1	Janira	0,09168247	0,03370853	0,05170675
Sursumura	BJA9 18s	0,04146287	0,01803839	0,02211059	Janira	DE2	0,09169427	0,03657037	0,04868705
DE7 BMB55	AC25	0,04148264	0,02032583	0,01976331	Eurycope	Janira	0,09208947	0,03250571	0,05333895
Munnons	IAS7	0,04149779	0,01918808	0,02095605	MA2	Janira	0,09214042	0,03422344	0.05156835
MA2	JA6BC 18s	0.04153027	0.01977584	0.0203824	Janira	AC4	0.09313736	0.03774569	0.04876228
BMP5	DE1	0,04168452	0,02331976	0,01689654	Janira	AC7	0,09331446	0,03781246	0,04889705
BMP38	IS14	0,04172083	0,01269876	0,02776208	MP12	Janira	0,09359654	0,03370516	0,05338876
MA2	IS11	0,04176216	0,01501528	0,02540233	Janira	AC21	0,09387681	0,03721841	0,05002418
Acanth	BAC10	0,04177024	0,01605088	0,02435879	Janira	HA57	0,09589989	0,03720706	0,05175927
Acanth	BJA9 18s	0,04177534	0.0172732	0.02311848	Janira	IS14 IS11	0,09636649	0,03590975	0,05327575
IS11	DE2	0.04180556	0.01560067	0.02480646	BJO12	Janira	0.09671295	0.03787906	0.05181099
Acanth	AC7	0,04185243	0,0189988	0,02142579	Janira	HA450	0,09722383	0,0389135	0,05112885
ME1	JO3	0,04186447	0,01562731	0,02489736	BMP5	Janira	0,09744468	0,04128045	0,04875503
Acanth	AC25	0,04187011	0,01902919	0,02143069	Acanth	Stenase	0,09745157	0,04269964	0,04761951
lathrin	HA450	0.04195179	0.01623801	0.02321014	Joerop	Janira	0,0974000	0,03090937	0.05662803
JO3	AC25	0,04195983	0,0156729	0,02501762	Janira	HA56	0,09800948	0,03895833	0,05173546
MA2	lathrip	0,04197465	0,01624843	0,02439565	JA6BC 18s	Stenase	0,09827613	0,04422222	0,04679533
BMP5	ME1	0,04199564	0,02199339	0,01850898	BJA14	Janira	0,09887715	0,03767019	0,05385293
BJA9 18s	AC4	0,04200286	0,01799344	0,02264791	BMP38	Janira	0,09889525	0,03711655	0,05448077
DE7	BAC1	0,04200658	0,0196945	0,02090136	JA6BC 18s	Lirceus	0,09961864	0,04309352	0,04908838
MA1	ACZ	0,042000003	0.01796585	0.02262698	Janira	AC22	0,10073004	0,0390955	0.05233342
ME1	AC25	0,04201585	0,01858997	0,02207632	lathrip	Stenase	0,10127358	0,04235102	0,05122491
DE7	BAC10	0,04201939	0,01911446	0,02146758	Janira	IS3	0,10165116	0,03826943	0,0556336
MP5	BAC10	0,04203953	0,01743039	0,0232625	JA6BC 18s	Proasell	0,10181077	0,04377764	0,05028262
MP5	AU/ B 149 190	0,0420524	0,010000000	0,02204701	Janira	104 BAC 27	0,10193228	0,03732520	0.05762614
BJA9 18s	AC7	0,04205433	0,01801798	0,02268649	BAC1	Stenase	0,10260132	0,04462802	0,05000778
MP3	lathrip	0,04205547	0,01455146	0,02626222	HA55	Stenase	0,10283679	0,04410926	0,05077854
DE7	AC7	0,04208986	0,01971202	0,02089928	JA6BC 18s	Asellus	0,10304316	0,04307713	0,05202118
MP12	JA6BC 18s	0,04213521	0,01920629	0,02157404	DE5	Proasell	0,10305039	0,04121693	0,05404287
MP3 BIO12	AC25	0,04213608	0,01920484	0,02151992	BAC1	LIFCEUS	0,10340186	0,04350027	0,05176966
Joerop	AC25	0.04231895	0.01752881	0.02341626	Acanth	Proasell	0,10352237	0.04029343	0.05537016
Acanth	BAC1	0,04240723	0,01840437	0,02257787	lathrip	Lirceus	0,10401017	0,04005247	0,05599684
Acanth	AC21	0,04243942	0,01840437	0,022601	ME1	Lirceus	0,10427929	0,04056227	0,05585397
ME1	IS3	0,04249401	0,01849948	0,02254781	lathrip	Proasell	0,10468529	0,04009487	0,05657329
IVIA1	JU3 BAC1	0,04252008	0,01621805	0,02490512	Janira AC25	BJA32 Stenaso	0,10500646	0,0406011	0.05102702
MA1	BAC10	0.04253173	0.01565128	0.022572314	DE7	Proasell	0.10573905	0.04001017	0.05765306
JL1	BAC10	0,04253764	0,01678465	0,02435324	DE7	Lirceus	0,10584132	0,04232794	0,05531613
ME1	BAC1	0,04253838	0,01795823	0,02320816	DE5	Lirceus	0,10591385	0,04354726	0,05408781
ME1	BAC10	0,04254641	0,01622077	0,02494938	BJO12	Stenase	0,10597067	0,04472059	0,05288126

1	2	1
I	Э	T

	101	0.04050000	0.0405070	0.00057040	DA04	Deces	0 40040074	0.04055000	0.0544400
MAT	AC4	0,04256306	0,0185278	0,02257818	BACI	Proasell	0,10610371	0,04355832	0,0541189
Munnops	JA18	0,04257645	0,01739519	0,02377749	AC25	Lirceus	0,10635302	0,04420443	0,05367197
MA1	AC21	0,04258229	0,017378	0,02377119	JL1	Proasell	0,10647438	0,04292512	0,0551956
lathrip	DEZ	0,04258349	0,0151024	0,02616534	BAC10	Lirceus	0,10679478	0,04353448	0,05476484
ME1	AC21	0,04258694	0,01852486	0,02262769	HA55	Lirceus	0,10695578	0,04298497	0,05544608
JA6BC 18s	BAC27	0,04262708	0,01740624	0,02382124	BMP55	Stenase	0,10711721	0,04509972	0,05339408
BJA9 18s	AC21	0,04262719	0,01742244	0,02383158	MP5	Stenase	0,10712862	0,04453826	0,05397579
MP5	lathrip	0,04263104	0,01512257	0,0262388	BMP55	Proasell	0,10714497	0,04170121	0,0569310
JA18	DE7	0,04263254	0,01912148	0,02202668	Joerop	Stenase	0,10728781	0,04116917	0,05771105
MP3	AC4	0,04264078	0,01854942	0,02263426	AC4	Stenase	0,10742684	0,04581271	0,05298669
MA1	AC25	0,04264219	0,01801485	0,02323428	AC7	Stenase	0,10763595	0,04588264	0,0531044
DE7	AC4	0,04264387	0,02027907	0,02085302	ME1	Stenase	0,10766545	0,0445831	0,0546141
Sursumura	BAC10	0,04265489	0,01742866	0,02386635	BMP55	Lirceus	0,10782402	0,04166732	0,05756563
DE7	AC21	0,04266318	0,0191244	0,02203888	JL1	Lirceus	0,10784372	0,0440513	0,05518653
MP3	BAC1	0,04268526	0,01858765	0,02267911	MP5	Lirceus	0,10785405	0,04226448	0,0569698
JA6BC 18s	DE5	0,04269508	0,01801435	0,02326882	lathrip	Asellus	0,10811356	0,04177029	0,05769382
BJA9 18s	DE7	0,04270897	0,01917556	0,022064	ME1	Asellus	0,10823863	0,04054273	0,0593082
Acanth	IS11	0,04286956	0,01480209	0,02664233	AC4	Lirceus	0,10828355	0,04530471	0,05411712
Munnops	IS11	0,04300831	0,01503962	0,02658867	AC7	Lirceus	0,10842434	0,04535193	0,05419328
JA18	IS14	0,04311876	0,01562337	0,02606745	MA2	Lirceus	0,10843415	0,04112647	0,05878619
MA2	JA18	0,04313165	0,01620712	0,02548967	DE1	Lirceus	0,10846039	0,04257829	0,05727003
MA1	BAC1	0,0431639	0,01739482	0,02435745	Acanth	Asellus	0,10849365	0,04204281	0,05774918
ME1	AC4	0,0431648	0,01909951	0,02257563	BMP42	Lirceus	0,10855997	0,04170122	0,05820848
IS3	DE7	0,04318172	0,02078411	0,02078572	IS14	Proasell	0,10856134	0,04177999	0,05821952
BJA9 18s	IS14	0,04319587	0,01566285	0,02610562	DE5	Stenase	0,10859434	0,04697308	0,05289579
Munnops	lathrip	0,04321189	0,01570033	0,02617403	MP5	Proasell	0,10859887	0,04233412	0,0575476
BMP5	MA1	0,0432271	0,02198214	0,01965425	DE7	Stenase	0,10863532	0,04636368	0,05355044
MP3	JA18	0,04322935	0,0168312	0,02496778	BJO12	Lirceus	0,1087583	0,04188235	0,05822335
HA55	BAC10	0,0432355	0,01796415	0,0238172	BAC1	Asellus	0,10877181	0,04406558	0,05587829
DE5	AC25	0,04323675	0,0180019	0,02381452	BJO12	Proasell	0,10883859	0,04315122	0,0570426
ME1	IS4	0,04323695	0,01855783	0,02323505	BAC10	Stenase	0,10885341	0,04584303	0,05418985
ME1	AC7	0,04324335	0,01911093	0,02264328	AC21	Stenase	0,10888183	0,04531112	0,05489349
Munnops	BJA9 18s	0,04326763	0,01742771	0,02439664	DE1	Proasell	0,10896607	0,04024076	0,0602004
HA55	BAC1	0,04326961	0,02025482	0,02150406	BJA32	Stenase	0,10896976	0,04531519	0,05491503
MP1	JA18	0,0432776	0,01858396	0,02321556	Munnops	Lirceus	0,10903469	0,03990225	0,06048345
MP1	BAC10	0,04334182	0,01803022	0,02384869	AC25	Proasell	0,10906927	0,04426954	0,0560224
DE1	BAC10	0,0433707	0,01745537	0,02447683	MA2	Proasell	0,10911217	0,04115931	0,0593277
BMP42	HA55	0.0434139	0.01978098	0.02219769	IS14	Lirceus	0.10918716	0.04288823	0.0575966
DE1	AC25	0.04343178	0.01980003	0.02216487	JA18	Lirceus	0.10927994	0.04228568	0.05820707
HA55	DE7	0.04349153	0.02498478	0.01687424	MP1	Lirceus	0.10931298	0.04170491	0.05882369
Echino	JA6BC 18s	0.04350634	0.0204279	0.02164601	MP3	Proasell	0.10934068	0.04116271	0.0594273
BJO12	AC21	0.04350761	0.02041492	0.02156116	BMP42	Proasell	0.10937692	0.0417813	0.05879932
Proasell	Asellus	0.04355675	0.01562166	0.0265646	JA18	Stenase	0.10938714	0.04577358	0.05469789
BJA14	Eurycope	0.04362403	0.01732266	0.02486213	BMP42	Stenase	0.10939584	0.04576285	0.05464618
DE5	BAC1	0.04375686	0.01738311	0.02494444	DE2	Lirceus	0.10948037	0.04409559	0.05648359
MA2	BJA9 18s	0.04382326	0.01624391	0.02611463	BJA9 18s	Lirceus	0.10948899	0.04239168	0.05832146
ME1	HA57	0.0438408	0.0168503	0.02555801	AC21	Lirceus	0.10967165	0.04478476	0.05595134
DE5	AC21	0.0438479	0.01854216	0.02377905	Munnops	Proasell	0.10970914	0.0399383	0.06102223
lathrip	IS14	0.04385462	0.01569263	0.02676082	MP3	Lirceus	0.10995126	0.04111756	0.06002507
BMP42	JO3	0.04385471	0.01742464	0.024976	MP1	Proasell	0.10998902	0.0417416	0.05937659
HA57	BAC1	0.04386709	0.01968024	0.02265183	Sursumura	Stenase	0.11002194	0.04688957	0.05401214
MP3	AC21	0.04388162	0.01798591	0.02437997	Joerop	Lirceus	0.11023307	0.04124241	0.06012078
IS4	DF7	0.04390165	0.02084866	0.02145581	B.IA9 18s	Stenase	0 11027651	0.0458672	0.05538512
BJA14	BMP5	0.04391925	0.02487628	0.01734963	Munnops	Stenase	0.11031734	0.04275637	0.05860704
MP3	B.IA9 18s	0.04392276	0.01686499	0 02559049	Acanth	BST28	0 11035538	0.04508966	0.0561448
MP1	BAC1	0.04395122	0.01976618	0.02268389	DE5	Asellus	0 11061358	0.04412164	0.05756692
MA1	HA55	0.04395367	0.01973742	0.02267606	MA1	Lirceus	0 11063196	0.04404469	0.05755306
JA18	DF1	0.0439586	0.01742535	0.02504179	DE2	Proasell	0 1106619	0.04178018	0.05997578
Echino	lathrin	0.04396947	0.01688673	0.02567443	Sursumura	Lirceus	0 11068501	0.04287084	0.05882838
MP1	BJA9 18s	0.04397189	0.018624	0.02383663	BIO12	Asellus	0 11069714	0.04184971	0.06002596
JA6BC 18s	HA450	0.04397331	0 01974942	0.02268795	MP1	Stenase	0 11075864	0.04576005	0.05581386
DE1	BAC1	0.04398052	0.01917948	0.02331706	Eurycope	Proasell	0.1107714	0.04409713	0.05760928
Furvcope	JA6BC 18s	0.0440239	0.01979672	0.02276022	Acanth	ST1	0 11087935	0.04560223	0.056026
Sursumura	HA55	0.04403782	0.0209149	0.02162548	AC4	Proasell	0.11100265	0.04535936	0.05646769
Joeron	AC4	0.04409328	0.01806257	0.02450145	AC7	Proasell	0 11114694	0.04538438	0.05656909
Lirceus	Asellus	0.0441354	0.01442511	0.02831307	HA55	Proasell	0.11124357	0.04479633	0.05725189
Joerop	AC7	0.04414724	0.01808638	0.02452966	MA1	Proasell	0.11129273	0.04292667	0.05930652
Eurycope	IS11	0.04428025	0.016768	0.02601465	JL1	Stenase	0.11132429	0.04806103	0.05400852
IS3	DE5	0.04436398	0.02022108	0.02252387	Sursumura	Proasell	0.11136233	0.04291568	0.05934628
MA1	IS3	0.04438042	0.01907584	0.02370253	Eurycope	Lirceus	0.11145469	0.04406455	0.05824589
JO3	AC4	0,0443805	0,01794113	0,02492494	JA18	Proasell	0,11151642	0,04415759	0,05820419
JL1	AC4	0.04439478	0.01909248	0.02372353	Echino	Stenase	0.11151685	0.04577809	0.0565013
MP5	AC4	0,04440746	0,01681707	0,02611704	BAC10	Proasell	0,11161757	0,04359175	0,05888603
DE5	AC4	0,04442593	0,01911334	0,02372721	AC25	Asellus	0,11175065	0,04476586	0,05779552
BMP42	IS3	0,04444059	0,01853431	0,02435829	MP9	Lirceus	0,11179976	0,04337677	0,05924936
JL1	AC7	0,04444874	0,01910551	0,02376475	BMP55	Asellus	0,11188693	0,04283663	0,05984177
Sursumura	JO3	0,04444919	0,01857188	0,02437522	JL1	Asellus	0,11189467	0,04403415	0,05871462
JO3	AC7	0,04446128	0,01797148	0,02498856	MP3	Stenase	0,11198489	0,04400079	0,05879393
MP5	AC7	0,04446145	0,01682904	0,02616169	MP12	Stenase	0,11205401	0,0457193	0,05700784
MP12	JA18	0,0444684	0,0179878	0,0249229	AC22	Stenase	0,11233677	0,04754964	0,0553219
DE5	AC7	0,04450689	0,01913054	0,0237982	BJA9 18s	Proasell	0,11241229	0,0442473	0,05890066
BMP42	BAC1	0,04451522	0,01801646	0,02505269	AC21	Proasell	0,11246845	0,04485448	0,05834902
Eurycope	BAC1	0,04451877	0,0208771	0,02207929	HA55	Asellus	0,11247032	0,04411382	0,05899566
Eurycope	BAC10	0,04452585	0,0191482	0,02383119	MA2	Stenase	0,11261321	0,04629586	0,0569407
MP12	lathrip	0,04452639	0,01570288	0,02740236	DE1	Stenase	0,11266755	0,04776157	0,05543603
MP12	BJA9 18s	0,04454819	0,0180339	0,02497031	DE7	Asellus	0,11273723	0,04410677	0,05941058
BJA9 18s	DE1	0,04465562	0,01746546	0,02566098	IS14	Stenase	0,11274108	0,04693208	0,05640419
MP1	AC25	0,04466539	0,0203981	0,02271554	JO3	Stenase	0,11275738	0,04633884	0,05698792
Joerop	lathrip	0,0446776	0,0117116	0,03165301	MA1	Stenase	0,11276003	0,04805731	0,055156
BJO12	AC4	0,04470848	0,02097883	0,02210488	Echino	Proasell	0,11295426	0,04296415	0,06065398
HA57	DE7	0,0447101	0,02441188	0,01860524	Echino	Lirceus	0,11295604	0,04291318	0,06073702
Joerop	AC21	0,0447225	0,01749559	0,02567628	MA2	Asellus	0,11313759	0,04169052	0,06222027
BJO12	AC7	0,04479045	0,02102007	0,02216348	BJA32	Lirceus	0,11313869	0,04534001	0,05835558
BJO12	AC25	0,0447923	0,02043446	0,02278007	Janira	HM1	0,11328043	0,04652903	0,05705755
Acanth	JO3	0,0448287	0,01781301	0,02542451	HA57	Lirceus	0,11329206	0,04481419	0,05901746
MP12	IS11	0,04493587	0,01620125	0,02718799	IS14	Asellus	0,11331683	0,04287847	0,0611495
MA2	JO3	0,04498883	0,01678881	0,02664934	JO3	Lirceus	0,11339914	0,04287722	0,06113788
DE5	BAC10	0,04499226	0,01565038	0,02783336	Eurycope	Stenase	0,11342432	0,04690608	0,05700555
Acanth	BJA32	0,04499526	0,01665458	0,02683126	DE2	Stenase	0,11359098	0,04810908	0,05583519
Echino	IS11	0,04500636	0,01683061	0,02666312	BAC10	Asellus	0,11362165	0,0440761	0,06008949
JL1	AC21	0,04501992	0,01852044	0,02490448	AC4	Asellus	0,11368621	0,04582978	0,05827002
MDE	AC21	0,04503276	0,0162477	0,02730717	JA6BC 18s	ST1	0,11370455	0,05017643	0,05376654
IVIPS	11021								

lathrip	DE5	0,04506074	0,015694	0,02791373	JA6BC 18s	BST28	0,11382749	0,05079852	0,05323784
IS14	JO3 AC4	0.04509996	0.02026867	0,02494134	MP9	Proasell	0,11383471	0.04254976	0.06093067
MA1	IS4	0,04510361	0,01913707	0,02440382	AC7	Asellus	0,11390854	0,04590007	0,05839247
BMP42	AC4	0,04511211	0,01799567	0,02557665	MP12	Lirceus	0,11402585	0,04282528	0,06172421
DE2	BAC10	0,04511738	0,02027545	0,02321444	BAC27	Lirceus	0,11417229	0,04652091	0,05838813
BMP42	IS4	0,04513803	0,01857331	0,02504032	HA57	Stenase	0,11461942	0,04705936	0,05785385
MP12	BAC10	0,04513944	0,01800538	0,02557299	MP5	Asellus	0,11462109	0,04227968	0,06282698
IS14 IS14	AC25 AC7	0.04515489	0.02028774	0,02440272	MA1	Asellus	0,11464675	0.04404193	0.0610573
JA6BC 18s	IS11	0,04516652	0,01916592	0,0244005	BMP42	Asellus	0,11472792	0,04172631	0,06349446
BMP42	AC7	0,04516708	0,01800989	0,02561827	MP3	Asellus	0,114785	0,04230274	0,06293812
HA55	AC25	0,04519947	0,01919757	0,02441739	IS11	Proasell	0,11482573	0,04290075	0.06049736
BMP42	AC25	0,0452302	0,01864385	0,0250871	Munnops	Asellus	0,11514088	0,04107135	0,06452648
MP1	HA55	0,0452332	0,02034654	0,02327227	AC21	Asellus	0,11515798	0,04530953	0,0601571
DE1	AC25 AC4	0,04523949	0,02150445	0,02210848	BJA32	Proasell	0,11534245	0,04541909	0,06034282
MP5	HA55	0,0452458	0,02092062	0,02274244	Sursumura	Asellus	0,1153546	0,04286307	0,06284679
JA6BC 18s	HA56	0,04525138	0,02034873	0,02330339	BST28	Lirceus	0,11537558	0,04017373	0,06582373
MP9	IS11	0,04541184	0,01444577	0,02950558	BMP38	Lirceus	0,11547922	0,0420945	0,05864576
JO3	IS14	0,04561708	0,01621721	0,02782939	JO3	Proasell	0,11557812	0,04472784	0,06109276
Sursumura	IS3 BAC1	0,04563355	0,01910405	0,02491641	BMP38	Proasell	0,11615998	0,04698528	0,0591738
Eurycope	lathrip	0,04567472	0,0156874	0,02852268	BJA9 18s	Asellus	0,11632544	0,04297996	0,06362949
Munnops	BAC1	0,04568408	0,01857458	0,02553238	Janira	DN1	0,11637284	0,04474856	0,06160166
MA1	BJA32	0,0456964	0,01684287	0,02729624	Proasell MP0	Astacus	0,11643703	0,04123265	0,06538953
HA57	BAC10	0,04571204	0,0185458	0,0255359	Lirceus	Astacus	0,11651013	0,04125131	0,06548432
Munnops	BAC10	0,04572461	0,01800182	0,02612426	BJA32	Asellus	0,11666704	0,0459246	0,06074028
JO3 MP5	DE7 BAC1	0,04572513	0,01971404	0,02434596	MP12 Echipo	Asellus	0,11681082	0,04287975	0,06406558
Eurvcope	AC4	0.04573363	0.02085611	0.02319315	DE2	Asellus	0,11693702	0.0446873	0.06234225
BMP42	AC21	0,04573973	0,01742806	0,02676142	BAC27	Stenase	0,11729857	0,04885517	0,05849511
MP1	AC7	0,04575552	0,0197251	0,02435434	HA56	Lirceus	0,11746212	0,04709673	0,06013634
Eurycope MP1	AC21 AC4	0.04578326	0.01973282	0,02382355	HA56	Stenase	0,11740034	0,04882977	0.05780003
ME1	BJO12	0,04579752	0,01810103	0,02613737	HA57	Proasell	0,11755099	0,04661156	0,0607757
HA57	AC25	0,04581513	0,02031725	0,02385534	Joerop	Asellus	0,11776581	0,04185056	0,06604314
lathrip	HA311	0.04581651	0.01858393	0.02559696	IS3	Proasell	0.11803823	0,04017397	0.0574631
Eurycope	AC7	0,04581716	0,02088143	0,02326023	HA450	Stenase	0,11807878	0,04991819	0,05772723
JL1	HA55	0,04582368	0,02319385	0,02090832	HA450	Lirceus	0,118126	0,04765331	0,06007538
MP3	HA56 HA55	0.0458508	0.02033425	0.02386227	HA311	Stenase	0,11828117	0,04082515	0.05787183
JA6BC 18s	AC22	0,04586221	0,0209152	0,02327472	Stenase	Astacus	0,11853626	0,04471305	0,06356651
BMP42	HA57	0,04586788	0,0192194	0,0250902	BMP38	Stenase	0,11872008	0,04856896	0,05973929
Echino	DE2 BAC10	0.04586834	0.01920903	0,01969557	HA56	Proasell	0,11890863	0,04522648	0.06074335
MP12	AC25	0,04587723	0,02036845	0,02385522	Eurycope	Asellus	0,11896995	0,04521376	0,06348003
DE1	AC21	0,04589637	0,01921703	0,025085	BJA14	Lirceus	0,11904669	0,04704629	0,0616747
Eurvcope	JA18	0.04623242	0.01622456	0.02842794	IS4 IS11	Stenase	0,11911417	0.05101291	0.05752585
Munnops	JO3	0,04625383	0,0179642	0,0266456	ME1	ST1	0,11934847	0,04574658	0,06320599
JA18	BJA32	0,04631639	0,01628874	0,02849217	BMP38	Asellus	0,11949079	0,04687938	0,06209449
DE2	BAC1	0,04633453	0.02084651	0,02374428	IS3	Lirceus	0,11949138	0.0510732	0.05753079
Sursumura	BAC1	0,04634475	0,01916085	0,02561725	HA450	Proasell	0,11955336	0,04826361	0,06066855
BJA32	HA55	0,04635789	0,01739228	0,02735528	ME1	BST28 Broasoll	0,11963256	0,04639676	0,06275504
HA55	AC4 AC7	0.04636454	0.02142445	0.02317618	ST1	Stenase	0.12008312	0.04360245	0.06629389
MP12	AC4	0,04637464	0,01972206	0,02492901	BAC27	Proasell	0,1201001	0,04660314	0,06314674
Sursumura	IS4 BAC1	0,04638994	0,01915871	0,02563565	AC22	Asellus	0,12017303	0,04936106	0,06005911
BJA9 18s	BJA32	0,04639967	0,01632658	0,0249854614	JL1	ST1	0,12038628	0,04980993	0,05968935
MA2	AC25	0,04642375	0,02091953	0,02380933	IS4	Lirceus	0,1204415	0,0511928	0,05832291
MP12	AC7	0,04643123	0,01973234	0,02496897	HA311	Lirceus	0,12049471	0,04775506	0,06199278
IS3	DE1	0,04643939	0,02431086	0,02023456	MP9	Asellus	0,12059505	0,04452715	0,06560074
MP5	AC25	0,04644514	0,01978304	0,0250457	IS3	Stenase	0,12090834	0,05505802	0,05448091
BMP55 HA55	BJA32 DF2	0,0464909 0,04649622	0,0208955	0,02385673	HA57 BAC1	Asellus ST1	0,12094834	0,04708177	0.05759639
MP1	HA57	0,04657127	0,02096492	0,02391992	HA311	Proasell	0,12113788	0,04717406	0,06317439
BMP55	HA311	0,04658009	0,02210262	0,02273964	BAC1	BST28	0,12124643	0,05297064	0,05713728
BJO12 MP5	JA6BC 18s	0,04663109	0,01697684	0,02805252	BAC27 BIA14	Asellus	0,12143135	0,04710742	0,06377633
HM1	DN1	0,04689869	0,01741227	0,02787663	IS4	Stenase	0,12199752	0,05524425	0,05536228
Eurycope	BJA9 18s	0,04693223	0,01625974	0,02905255	IS3	Asellus	0,12212069	0,05048988	0,0604277
MA2	BAC1	0,04694006	0,02028856	0,02493013	BJA14	Asellus	0,12236203	0,0458428	0,06576979
Sursumura	AC4	0,04694177	0,01913311	0,02614284	IS14	ST1	0,12251556	0,04867873	0,06268848
MA2	BAC10	0,04694887	0,01855824	0,02668905	AC25	ST1	0,1226262	0,05303615	0,05827586
IS14 MP1	AC21 IS3	0,04696162	0,01969928	0,02549881 0,02492346	IS14 AC25	BS128 BST28	0,12264802	0,04929388 0,05369379	0.05781731
BJA32	JL1	0,04696966	0,01917925	0,02612319	IS4	Asellus	0,12321346	0,05063153	0,06129789
MP9	JA6BC 18s	0,04697128	0,0168387	0,02851718	AC4	ST1	0,12329571	0,05528589	0,05636385
BMP5 MP1	MA2 JO3	0,04698377	0,02313788	0,02199041 0.02611485	HM1 AC7	LIRCEUS ST1	0,12331138	0,05116637 0,05536557	0,0607259
MA2	AC21	0,04699434	0,02085461	0,02437783	AC4	BST28	0,12359273	0,05594499	0,05589865
JA18	HA55	0,04699747	0,02028135	0,02501433	AC7	BST28	0,12367439	0,05597644	0,05593188
MP1 Sursumura	AC21 AC7	0,0470024	0,01915918 0.01915765	0,02610731	HA450 BMP5	Asellus Proasell	0,12374995 0,12389832	0,04996489 0,05237449	0.05996474
DE2	AC25	0,04703597	0,02148495	0,02379898	BJO12	BST28	0,1239218	0,05178507	0,06056846
MP3	IS4	0,04703734	0,02088596	0,02439592	HA311	Asellus	0,12405801	0,05004271	0,06255594
BMP5 Sursumura	IS14 AC25	0,04705026 0,04706474	0,02428883	0,02084118 0,0256528	AC21 Asellus	ST1 Astacus	0,12410118 0,12421858	0,05478014 0,0442458	0.06895861
Echino	BAC1	0,04710518	0,02094424	0,02444789	BMP55	BST28	0,12429287	0,05049271	0,06228577
MP12	HA55	0,04712045	0,02036436	0,02505224	AC21	BST28	0,12431852	0,05541094	0,05712125
IS4 Echino	HA55	0.04717271	0.02094068	0.02453232	ST1	Asellus	0,12431973	0.05111562	0.0686098
	1911	0.04739417	0.01006072	0.02657887	BMP5	Lircous	0 12/5963	0.0523/023	0.06058822

IS14	BAC10	0,04752304	0,01795613	0,02783874	HM1	Stenase	0,12466532	0,05287958	0,06001369
MP9	BAC10	0,04753039	0,01740205	0,02844835	BST28	Asellus	0,12477947	0,04550666	0,06816778
lathrip	BAC27	0,04753398	0,01684222	0,0290882	BMP55	ST1	0,12548435	0,05098666	0,06273752
lathrip	AC22	0,04755122	0,01740383	0,02843474	lathrip	ST1	0,12571928	0,0488347	0,06534627
MA2	AC4	0,04757253	0,02142429	0,02431936	lathrip	BST28	0,12593889	0,04947335	0,06485156
HA57	AC4	0,04757992	0,02085369	0,02491003	Munnops	BST28	0,12596452	0,04695328	0,06750152
ME1	BJA32	0,04759823	0,01858824	0,02731474	BJA32	ST1	0,12605204	0,05299128	0,06113251
Sursumura	AC21	0,04759961	0,01857352	0,02736522	MA1	ST1	0,12608525	0,0510138	0,06324366
MP5	IS4	0,04761484	0,01971416	0,02619384	DE1	SII	0,12611406	0,05133112	0,06300234
MA1	HA57	0,04762347	0,01858834	0,02730938	BJA32	BST28	0,12618947	0,05360947	0,06060494
Munnops	AC25	0,04763856	0,01919258	0,0267333	HM1	Proasell	0,12622191	0,05185279	0,06246478
JL1	HA57	0,04765234	0,02147162	0,02439234	MA1	BST28	0,12630486	0,05166135	0,06276462
MA2	AC7	0,04765949	0,02144465	0,02439052	DE1	BST28	0,12641847	0,05199761	0,06254704
HA57	AC7	0,0476669	0,02087365	0,02498566	MP12	BST28	0,12648095	0,05169465	0,06291835
Echino	AC4	0,04766784	0,01975678	0,02613802	JA18	BST28	0,12653081	0,05166191	0,06289078
JO3	DE1	0,0476827	0,01801193	0,0279492	Joerop	BST28	0,12656295	0,04828205	0,06654911
ME1	HA311	0,0476875	0,01977115	0,02617957	BAC10	ST1	0,12667502	0,05234989	0,06235202
Munnops	HA57	0,04769412	0,02093871	0,02500185	BJA9 18s	BST28	0,12677677	0,05178212	0,06299736
MP1	IS4	0,04769567	0,02032327	0,02560487	MA2	ST1	0,1268259	0,05158727	0,0632318
BJA9 18s	HA55	0,04770138	0,02033048	0,02563574	HA55	ST1	0,12684622	0,05242262	0,0624571
Sursumura	HA57	0,04770415	0,02035019	0,02566124	BMP5	Stenase	0,12689042	0,05753061	0,05697212
HA57	DE2	0,04771397	0,02150975	0,02441155	BAC10	BST28	0,12689674	0,0529958	0,06188044
MP5	HA57	0,04773128	0,02036144	0,02566508	HA55	BS128	0,12698486	0,05303922	0,06189844
Munnops	HA55	0,04774315	0,02151325	0,02446798	JA18	SII	0,12700678	0,05102846	0,06398735
Echino	AC7	0,04775515	0,01977096	0,02621491	Joerop	SII	0,12703896	0,04764525	0,06763931
BJO12	BJA32	0,04782193	0,01584609	0,03039194	MP5	BS128	0,12705271	0,05053842	0,06466193
Echino	AC25	0,04782954	0,02157814	0,0244828	AC22	BS128	0,1270946	0,05590362	0,05883406
HA450	BAC10	0,04817107	0,02083487	0,02549586	MA2	BS128	0,12713063	0,05225531	0,06277721
MP12	JO3	0,04818596	0,01856558	0,02781944	Munnops	SI1	0,12723514	0,04748539	0,06799932
HA55	ACZ1	0,0482007	0,02085778	0,02551116	JO3	BS128	0,12735969	0,05228908	0,06293041
JA18	HA57	0,04820479	0,01856246	0,02792066	DE5	SII	0,12745577	0,05156995	0,06378921
JA18	DEZ	0,04820931	0,02029592	0,0260945	Echino	BS128	0,12753344	0,05295411	0,06244596
JO3	BJA32	0,04821394	0,01688738	0,0296847	BMP42	BS128	0,12764342	0,04938014	0,0664314
BJA32	HASO	0,04822847	0,01799403	0,02852743	DE7	511	0,12768364	0,05220536	0,06328005
	AC21	0,04823855	0,020289	0,02613039	JU3	SIT	0,12//512	0,05162413	0,06397606
	AC21	0,04824078	0,01915329	0,02/2/5/	DES	B5128	0,127762	0,0522336	0,0633446
BJA14	AU25	0,04825986	0,02033477	0,02615214	MP1	B0128	0,12783518	0,05059947	0,06526171
BMP38	JA6BC 18s	0,04831523	0,02032163	0,02619413	MP3	BS128	0,12784016	0,05055567	0,06525944
BJA14	JA6BC 18S	0,04831779	0,0203196	0,02619214	MP12	511	0,12784104	0,05223678	0,06344319
MA1	BJO12	0,048348	0,0175015	0,02909455	DE7	BS128	0,12790664	0,05285326	0,06280599
JA6BC 18s	HA311	0,04850107	0,02324778	0,02333521	DE2	BS128	0,12794739	0,05172243	0,06406035
BIMP38	1511	0,04857138	0,01732976	0,02946688	BJA9 18S	511	0,12794848	0,05113276	0,06467745
HA55	DET	0,04857863	0,02391602	0,02279606	AC22	511	0,12832466	0,05581793	0,05991579
MP9	JA18	0,04863162	0,01505914	0,03187878	IVIP5	511	0,12832774	0,05106051	0,06516326
NIP9	launip	0,04000443	0,01334799	0,03372971	DE2 Eshina	511	0,12838930	0,05162575	0,06452576
	JU3 BAC1	0,0407 1403	0,01001422	0,03013443	ECHINO BMD42	ST1	0,1200133	0,00040111	0,00294000
Munnono	DAC I	0,04672199	0,01797134	0,02902414		ST1	0,12900734	0,04994621	0,00701279
1/18	DES	0,04672524	0,0202392	0,02039974	MD2	ST1	0,12919033	0,05115040	0,00001939
MA2	193	0,0407202	0,01737303	0,02603228		Proseell	0,1202014	0.05298675	0.06/231/0
B.IA32	IS14	0.04878395	0.0168476	0.03019525	DN1	Lirceus	0 129746	0.05294473	0.06426483
HA56	BAC10	0.04879918	0.02026835	0.02668772	BMP5	Asellus	0.13025285	0.05352222	0.06411467
ME1	HA450	0.04881154	0.01972956	0.02726842	Sursumura	ST1	0.13041478	0.05107411	0.06694905
BJA32	HA450	0.04883746	0.01855877	0.02850203	Sursumura	BST28	0.13064303	0.05171343	0.0664506
ME1	HA56	0,04885047	0,01916519	0,02788137	IS3	ST1	0,13087295	0,05744334	0,0603061
Echino	JO3	0,04889983	0,01976327	0,02729394	HM1	Asellus	0,13088356	0,05060011	0,06773291
BJA9 18s	HA57	0,04891131	0,01860655	0,02854641	BAC27	ST1	0,13111918	0,05589302	0,06235765
BJA9 18s	DE2	0,04891591	0,02034169	0,02671331	IS3	BST28	0,13118957	0,05811227	0,05984322
Echino	AC21	0,04894756	0,01918918	0,02794942	BAC27	BST28	0,13134995	0,05652032	0,06185513
BJA32	DE7	0,04897461	0,02260295	0,02439025	DN1	Stenase	0,13164106	0,05461462	0,06412656
HA56	DE7	0,04898889	0,02323107	0,02383017	IS4	ST1	0,13200663	0,05757867	0,06113121
Acanth	BJO12	0,04902765	0,01973676	0,02740767	IS4	BST28	0,1321516	0,05820578	0,0605974
Joerop	BJA32	0,04904143	0,01285107	0,03451645	lathrip	Astacus	0,13218158	0,04993933	0,06957278
HA57	DE1	0,04916196	0,02276051	0,02454183	HA57	ST1	0,13259195	0,05422194	0,06538102
Joerop	BAC27	0,04919302	0,02043811	0,02685695	IS11	ST1	0,13268399	0,05454434	0,06497926
MP9	BJA9 18s	0,04933636	0,01509057	0,03251028	HA57	BST28	0,13282563	0,05486637	0,06487872
BJA14	BAC1	0,04939243	0,01971318	0,02786053	BJA14	BST28	0,1328851	0,05516302	0,06450442
BJA9 18s	DE5	0,04943469	0,01801323	0,02958618	IS11	BST28	0,1330047	0,05520665	0,06452376
Acanth	IS3	0,04945271	0,02193341	0,02550529	HA450	ST1	0,13319179	0,05471571	0,06531148
HA450	BAC1	0,04945942	0,02256875	0,02494581	JA6BC 18s	Astacus	0,13319431	0,04940386	0,07115531
DE2	AC4	0,04946179	0,02144907	0,02606385	DN1	Acolluc		0.05460003	0.06522215
Munnops	IS4				5.11	Aselius	0,13329108	0,03409995	0,000000210
HA56		0,04949302	0,02029197	0,02732192	Eurycope	BST28	0,13329108 0,13335563	0,05169204	0,06876577
MA2	BAC1	0,04949302 0,0494989	0,02029197 0,02201527	0,02732192 0,02555429	Eurycope HA450	BST28 BST28	0,13329108 0,13335563 0,13351499	0,05169204 0,05539048	0,06876577 0,06486835
103	BAC1 IS4	0,04949302 0,0494989 0,04951249	0,02029197 0,02201527 0,02088088	0,02732192 0,02555429 0,02674016	Eurycope HA450 MP9	BST28 BST28 BST28 BST28	0,13329108 0,13335563 0,13351499 0,13369074	0,05169204 0,05539048 0,05041099	0,06333213 0,06876577 0,06486835 0,07034879
303	BAC1 IS4 HA55	0,04949302 0,0494989 0,04951249 0,04952006	0,02029197 0,02201527 0,02088088 0,02087341	0,02732192 0,02555429 0,02674016 0,02676833	Eurycope HA450 MP9 BJA14	BST28 BST28 BST28 BST28 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658	0,05169204 0,05539048 0,05041099 0,05449774	0,06533213 0,06876577 0,06486835 0,07034879 0,06616679
Echino	BAC1 IS4 HA55 IS3	0,04949302 0,0494989 0,04951249 0,04952006 0,04953058	0,02029197 0,02201527 0,02088088 0,02087341 0,02319	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073	Eurycope HA450 MP9 BJA14 Eurycope	ASEIIUS BST28 BST28 BST28 ST1 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783	0,06333213 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391
Echino MA2	BAC1 IS4 HA55 IS3 BJA32	0,04949302 0,0494989 0,04951249 0,04952006 0,04953058 0,04953208	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644	Eurycope HA450 MP9 BJA14 Eurycope HA56	ASEIIUS BST28 BST28 BST28 ST1 ST1 ST1 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13482763	0,05405353 0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976	0,06333213 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615
Echino MA2 DE2	BAC1 IS4 HA55 IS3 BJA32 AC7	0,04949302 0,0494989 0,04951249 0,04952006 0,04953058 0,04953208 0,04955237	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9	ASERIUS BST28 BST28 BST28 ST1 ST1 ST1 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13482763 0,13487753	0,05405353 0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976 0,05090263	0,06333213 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177
Echino MA2 DE2 Acanth	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57	0,04949302 0,0494989 0,04951249 0,04952006 0,04953058 0,04953208 0,04955237 0,04955263	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02087821 0,02087829	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,0280977	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira	Asenus BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13482763 0,13487753 0,134897631	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976 0,05090263 0,05389461	0,0633213 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722
Echino MA2 DE2 Acanth BMP42	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA57	0,04949302 0,0494989 0,04951249 0,04952006 0,04953058 0,04953208 0,04955237 0,04955263 0,04955263	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56	Aseilus BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28	0,13329108 0,13335163 0,13351499 0,13369074 0,13465658 0,13463424 0,13462763 0,13482763 0,13499631 0,13506573	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976 0,05090263 0,05599222	0,0635213 0,06876577 0,06486835 0,07034879 0,06616679 0,0659615 0,07078177 0,06597615 0,07078177 0,06551112
Echino MA2 DE2 Acanth BMP42 HA55	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5	0,04949302 0,0494989 0,04951249 0,04952006 0,04953058 0,04953058 0,04955263 0,04955263 0,04955263 0,04955263	0,02029197 0,02201527 0,0208808 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942	0,02732192 0,0255429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02241737	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1	BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 ST1 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13482763 0,13482763 0,13487753 0,13499631 0,13506573 0,13574636	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976 0,05090263 0,05389461 0,05599922 0,06061279	0,0635213 0,06876577 0,06486835 0,07034879 0,06616679 0,065926391 0,06597615 0,07078177 0,06743722 0,06551112 0,06099427
Echino MA2 DE2 Acanth BMP42 HA55 MP3	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04953208 0,04955237 0,04955263 0,04955263 0,04958037 0,04960643 0,04960643	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951	0,02732192 0,02555429 0,02676833 0,02676833 0,0267683 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,022601061	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 DN1	BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 ST1 BST28 ST1 BST28 ST1	0,13329108 0,1335563 0,1335563 0,13369074 0,13405658 0,13463424 0,13405658 0,13487763 0,1349763 0,13499631 0,135046573 0,13607734	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976 0,05090263 0,055389461 0,05599922 0,06061279 0,06129284	0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,0609427 0,06051793
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1	0,04949302 0,0494989 0,04951249 0,04952006 0,04953058 0,04953208 0,04955237 0,04955263 0,04958037 0,04963987 0,04963987 0,04977224	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267684 0,02613789 0,02680977 0,02798945 0,02241737 0,02801061 0,02767976	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5	BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 BST28 BST28 BST28 BST28 BST28	0,13329108 0,1335563 0,13351499 0,13369074 0,13463454 0,13463454 0,13482763 0,13499631 0,13506573 0,13507734 0,13607734 0,13607734	0,05169204 0,05539048 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976 0,05090263 0,05389461 0,05599922 0,06061279 0,06874845 0,05874845	0,06376577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,06051793 0,06351006
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA57 HA450 DE5 HA57 Asellus BAC1	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04953208 0,04955237 0,04955263 0,04958037 0,04960643 0,04963987 0,04977224 0,04977224	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,020255	0,02732192 0,0255429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02298945 0,02441737 0,022767976 0,02767976	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth	BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 BST28 BST28 BST28 BST28 BST28 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,134635658 0,13463424 0,13482763 0,13482763 0,13487753 0,13499631 0,13506573 0,1367734 0,13633499 0,13646279	0,05169204 0,05539048 0,05539048 0,05241099 0,05449774 0,05221783 0,0553976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,05874845 0,04882823	0,06835219 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,06051793 0,06351006 0,07439917
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munococo	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04955237 0,04955263 0,04955263 0,04958037 0,04960643 0,04963987 0,04977224 0,04997759 0,05003413	0,02029197 0,02201527 0,0208808 0,02087341 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366	0,02732192 0,02555429 0,026764016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,022901061 0,02763765 0,02783545 0,02379411	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1	Asterius BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 ST1 BST28 BST28 Astacus ST1 BST28 ST1 BST28	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13482763 0,13482763 0,13487753 0,13499631 0,13506573 0,13574636 0,13607734 0,13633499 0,13646279 0,13646279	0,05169204 0,05539048 0,05041099 0,05449774 0,0553976 0,05090263 0,05589461 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791	0,06835219 0,06876577 0,06466835 0,07034879 0,06616679 0,06926391 0,0673722 0,06743722 0,06651112 0,06051793 0,06651793 0,06631703 0,06178777 0,06178777
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP0	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA57 HA57 DE5 HA57 Asellus BAC1 HA56 AC4 AC25	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04953208 0,04955237 0,04955263 0,04955263 0,04958037 0,04960643 0,04960643 0,04960643 0,0497729 0,05003413 0,05000077	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02086981 0,02086981	0,02732192 0,02555429 0,02676833 0,02476416 0,02676833 0,0267684 0,02613789 0,02680977 0,02798945 0,02441737 0,02801061 0,0276376 0,0278545 0,03079411 0,02721808	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 DN1 BMP5 Acanth HM1 HM1 HM1 HM1	Aseinus BST28 BST28 BST28 BST28 ST1 ST1 ST1 Lirceus BST28 BST28 BST28 BST28 BST28 ST1 BST28 ST1 BST28 ST1	0,13329108 0,1335563 0,1335563 0,13359074 0,13405658 0,13463424 0,13482763 0,1349763 0,13499631 0,13506573 0,13574636 0,13607734 0,13607734 0,13663499 0,13664217 0,13668356 0,1370205	0,05169204 0,05539048 0,05539048 0,05539048 0,05221783 0,05533976 0,05090263 0,05539922 0,06061279 0,06129284 0,0682823 0,068060791 0,066125759	0,06835219 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,0609427 0,06051793 0,06351006 0,07439917 0,06127709 0,06127709
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 IA18	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA57 HA57 Asellus BAC1 HA56 AC4 AC2 AC4 AC25 IS11	0,049449302 0,0494989 0,04951249 0,04953208 0,04953058 0,04953208 0,04955237 0,04955237 0,04955263 0,04958037 0,04958037 0,04963987 0,04977224 0,04997729 0,0500607 0,0500607	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02066981 0,01859196 0,022653	0,02732192 0,0255429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02291061 0,02767976 0,02783545 0,03079411 0,02721808 0,02965482 0,02965482	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HM1 HM1 HM1 HA311 ME4	Asterius BST28 BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 BST28 BST28 BST28 ST1 BST28 ST1 Astacus	0,13329108 0,13335163 0,13351499 0,13369074 0,134635658 0,13463424 0,13462763 0,13482763 0,13499631 0,13506573 0,13574636 0,13607734 0,13633499 0,13646279 0,13664517 0,13688356 0,13700895 0,13706234	0,05169204 0,05539048 0,05539048 0,05241099 0,05449774 0,05221783 0,05533976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,06874845 0,04882823 0,06060791 0,06125759 0,05426309	0,06835219 0,06876577 0,06486835 0,07034879 0,06616679 0,06597615 0,07078177 0,06743722 0,06551112 0,06059427 0,06051793 0,06551006 0,07439917 0,06127709 0,06898822 0,07474247
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BIA14	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 Isthic	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04955237 0,04955237 0,04955263 0,04958037 0,04960643 0,04963887 0,04977224 0,04997759 0,0500647 0,05006656 0,05006656 0,05006656	0,02029197 0,02201527 0,0208808 0,02087341 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,0201741366 0,02086981 0,01859196 0,02200432 0,019255	0,02732192 0,0255429 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,022908945 0,02441737 0,02767976 0,02767976 0,02767976 0,02767976 0,027783545 0,03079411 0,02721808 0,02965482 0,0290785	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HM1 HA311 ME1 Ianira	Astacus BST28 BST28 BST28 BST28 BST28 ST1 ST1 ST1 Lirceus BST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 ST1 ST1 ST28 ST1 ST28 ST28 ST1 ST1 ST1 ST1 ST1 ST1 ST1 ST1 ST1 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13482763 0,13482763 0,13499631 0,13506573 0,13574636 0,13607734 0,13633499 0,13646279 0,13664279 0,13664279 0,13664279 0,1368356 0,13700895 0,13706224 0,132047	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,0553976 0,05090263 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,06125759 0,05426309 0,04903691	0,06835219 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06743722 0,06743722 0,066551112 0,06051793 0,066519427 0,066178977 0,06178797 0,06127709 0,06828822 0,07474247
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 Iathrip AC21	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04953208 0,04955263 0,04955263 0,04958037 0,04960643 0,04960643 0,0496759 0,0500643 0,0500607 0,05006656 0,05006821 0,05007032	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02086981 0,018695196 0,02200432 0,01800595	0,02732192 0,02555429 0,02676833 0,02474016 0,02676833 0,02432073 0,0267644 0,02613789 0,02441737 0,0279845 0,02441737 0,02801061 0,02783545 0,03079411 0,02783545 0,03079411 0,02721808 0,02965482 0,03065482 0,0302427	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 DN1 BMP5 Acanth HM1 HM1 HA311 ME1 Janira HA311	Astacus Proceeding	0,13329108 0,1335563 0,1335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13487753 0,1349763 0,13499631 0,13506573 0,13574636 0,13607734 0,1363499 0,13664279 0,13664279 0,13664279 0,13664279 0,1370895 0,13700895 0,13700895	0,05169204 0,05539048 0,05539048 0,05539048 0,05539048 0,0553976 0,05090263 0,05539976 0,05599922 0,06061279 0,06129284 0,06874845 0,04882823 0,06060791 0,06125759 0,05426309 0,04903691 0,05337002	0,06835213 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,06059427 0,06051793 0,06351006 0,07439917 0,06127709 0,06898022 0,07474247 0,06980081
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 Iathrip AC21 AC7	0,04949302 0,0494989 0,04951249 0,04953206 0,04953058 0,04953208 0,04953208 0,04955263 0,04958037 0,04955263 0,04958037 0,04963887 0,04977224 0,04907729 0,05003413 0,0500607 0,0500607 0,05006821 0,05007031 0,05012365	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02066981 0,01859196 0,02200432 0,0180595 0,02088219 0,02088219	0,02732192 0,0255429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02291061 0,02767976 0,02767976 0,02767976 0,02783545 0,03079411 0,02721808 0,02607856 0,0302427 0,02727961	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HM1 HM1 HA311 ME1 Janira HA311 BMP5	Asenius BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 BST28 BST28 BST28 ST1 BST28 ST1 Astacus Proasell BST28 ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13463658 0,13463424 0,13482763 0,13499631 0,13506573 0,135074636 0,13607734 0,13664117 0,13688356 0,13700895 0,13706224	0,05169204 0,05539048 0,05539048 0,05539048 0,05221783 0,05533976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,06125759 0,05426309 0,04903691 0,05337002 0,05494066	0,06835219 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,06099427 0,06051793 0,06351006 0,07439917 0,06127709 0,06888823 0,07474247 0,06980081 0,06854913 0,06854913
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 Iathrip AC21 AC7 IS11	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04955203 0,04955237 0,04955263 0,04955263 0,04958037 0,04960643 0,04963987 0,04977224 0,04997729 0,05003413 0,0500607 0,0500607 0,05006656 0,05006656 0,05006821 0,05007031 0,05012365 0,05015237	0,02029197 0,02201527 0,0208808 0,02087341 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,0201741366 0,0206981 0,01859196 0,0280432 0,0180595 0,02088219 0,02088219 0,02089015	0,02732192 0,0255429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,0279845 0,02441737 0,02801061 0,02767976 0,02783545 0,03079411 0,02721808 0,02965482 0,02607856 0,0302427 0,02727961 0,0272928	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HA311 ME1 Janira HA311 BMP5	Asterius BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Lirceus BST28 ST1 BST28 ST1 BST28 ST1 Astacus Proasell BST28 ST1 Astacus ST1	0,13329108 0,13335563 0,13351499 0,13369074 0,13405658 0,13463424 0,13482763 0,13487753 0,13499631 0,13506573 0,1367734 0,13633499 0,13646279 0,13646279 0,13646279 0,13646279 0,13646279 0,13700895 0,13700895 0,13713047 0,13734289 0,13762318	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,0553976 0,05090263 0,05599922 0,06061279 0,06129284 0,06129284 0,06125759 0,05426309 0,05925426309 0,05925443 0,05925443	0,06835219 0,06876577 0,06466835 0,07034879 0,06616679 0,06926391 0,06743722 0,06743722 0,066743722 0,06651112 0,06051793 0,06551106 0,07439917 0,061787777 0,06127709 0,06838822 0,07474247 0,06838822 0,07474247 0,06839081 0,06834913 0,06834913
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 MM22	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA57 HA57 HA57 HA57 HA57 HA57 ASellus BAC1 HA56 AC4 AC25 IS11 lathrip AC21 AC7 IS11 HA57	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04955237 0,04955237 0,04955263 0,04955263 0,04958037 0,04960643 0,04963987 0,04977224 0,04997759 0,05006421 0,05006656 0,05006656 0,05006656 0,05006656 0,05012365 0,05012365 0,05012365	0,02029197 0,02201527 0,0208808 0,02087341 0,02319 0,02087821 0,02147172 0,02147172 0,0219321942 0,01980951 0,02019328 0,01800595 0,01741366 0,02086981 0,02200432 0,01800595 0,02088219 0,02088219 0,02088219 0,02088219 0,02088219 0,02088219 0,02088219	0,02732192 0,02555429 0,02676833 0,02474016 0,02676833 0,0267684 0,02613789 0,02680977 0,0279845 0,02441737 0,0279845 0,02441737 0,02763766 0,02783545 0,03079411 0,02721808 0,02965482 0,03079411 0,02727961 0,02727961 0,0272928 0,02257997	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 DN1 DN1 BMP5 Acanth HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1	Astacus BST28 BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Licceus BST28 ST1 BST28 ST1 BST28 ST1 Astacus Proasell BST28 ST1 Astacus ST1 Astacus	0,13329108 0,1335563 0,1335563 0,13359074 0,13405658 0,13463424 0,13487763 0,13499631 0,13574636 0,13607734 0,13607734 0,13664279 0,13664279 0,13664279 0,1370895 0,1370895 0,1370895 0,1370824 0,13713047 0,13762778 0,13762778 0,13762778	0,05169204 0,05539048 0,05539048 0,05539048 0,05533976 0,05590263 0,05539976 0,055990263 0,055399461 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,05125759 0,05426309 0,05494066 0,05925443 0,05038314 0,05038314	0,0633210 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,0609427 0,06051793 0,06551112 0,06051793 0,06351006 0,07439917 0,06127709 0,06888822 0,07474247 0,06880081 0,06884913 0,0638796 0,07376508
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 MA2 BMP42	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 lathrip AC21 AC7 IS11 HA57 HA57	0,04949302 0,0494989 0,04951249 0,04953058 0,04953058 0,04953208 0,04953208 0,04955237 0,04955263 0,04958037 0,04958037 0,0496643 0,049077224 0,04997759 0,0500607 0,0500607 0,05006821 0,050015237 0,05015237 0,0501888 0,05019401	0,02029197 0,02201527 0,02088088 0,02087341 0,02379 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02066981 0,01859196 0,02200432 0,01860595 0,02088219 0,02088219 0,02089015 0,02247435 0,02148304	0,02732192 0,0255429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02291061 0,02767976 0,02767976 0,02767976 0,02767976 0,02767976 0,0265482 0,02607856 0,0302427 0,02727961 0,02727961 0,02727961 0,02727981 0,02257997 0,02673428	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira	Astacus Stacus Astacus Stacus	0,13329108 0,1335563 0,1335563 0,13359074 0,13463658 0,13463424 0,13482763 0,13499631 0,13506573 0,13507734 0,13607734 0,13664117 0,13668356 0,13700895 0,13706224 0,13762318 0,13762318 0,13762318	0,05169204 0,05539048 0,05539048 0,05539048 0,05221783 0,05533976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,06125759 0,05426309 0,05426309 0,05494066 0,05925443 0,05038314 0,055161153	0,06835219 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06557615 0,07078177 0,06743722 0,06551112 0,06099427 0,06051793 0,06351006 0,07439917 0,06127709 0,06838822 0,07474247 0,0683081 0,06854913 0,0635496 0,07376508 0,07376508
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 MA2 BMP42 Acanth	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC25 IS11 lathrip AC21 AC7 IS11 HA57 HA56 IS11 HA57 IS11 HA57 HA56 IS11 IS11 HA57 HA56 IS11 IS11 HA57 HA56 IS11 IS11 HA57 HA56 IS11 IS11 HA57 IS15 IS11 IS17 IS1	0,04949302 0,0494989 0,04951249 0,04953206 0,04953208 0,04953208 0,04955237 0,04955263 0,04958037 0,04963987 0,04967724 0,04967724 0,04907724 0,0500607 0,0500607 0,0500607 0,05006021 0,05015237 0,0501888 0,05019401 0,05021184	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02068981 0,01859196 0,02200432 0,0180595 0,028219 0,02089015 0,02284219 0,02089015 0,02244350 0,02148304 0,01920114	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02798945 0,02441737 0,02767976 0,02767976 0,027783545 0,03079411 0,02721808 0,02965482 0,0207563 0,02727961 0,0272928 0,02257997 0,02673428 0,02257997	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira BMP38	Astacus Stracus ST1 ST1 ST1 ST1 ST1 Lirceus ST1 ST1 Lirceus ST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST28 ST28 ST28 ST1 ST28 ST28 ST1 ST28 ST1 ST28 ST1 ST28 ST28 ST28 ST28 ST28 ST28 ST28 ST28	0,13329108 0,13335163 0,13351499 0,13369074 0,134635658 0,13463424 0,13463424 0,13482763 0,13499631 0,13506573 0,13574636 0,13607734 0,13663739 0,13646279 0,13664117 0,13688356 0,13700895 0,13706224 0,13713047 0,13762318 0,13762318 0,13762318 0,13762318 0,13762595 0,13782963 0,13782595	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,0553976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,05125759 0,05426309 0,05494066 0,05925443 0,0503814 0,05161153 0,05731443	0,06835219 0,06876577 0,0646635 0,07034879 0,06616679 0,06926391 0,06743722 0,06743722 0,066551112 0,06051739 0,06551106 0,07439917 0,06178777 0,06127709 0,06838822 0,07474247 0,0683084 0,063590 0,063590 0,063590 0,07376508 0,07376508 0,07258889 0,06614012 0,07376508
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 MA2 BMP42 Acanth MA2	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 HA57 HA57 HA56 AC4 AC25 IS11 Iathrip AC21 AC7 IS11 HA56 IS4 HA57 IS11 HA56 IS4 HA57 IS11 HA56 IS4 IS1 HA57 IS11 HA56 IS4 IS1 HA57 IS11 HA56 IS1 IS1 HA57 IS1 IS1 IS1 IS1 IS1 IS1 IS1 IS1	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04953208 0,04955237 0,04955237 0,04958037 0,04958037 0,04963827 0,04963827 0,049637827 0,04997759 0,0500607 0,05006626 0,05006821 0,05006656 0,05012365 0,05012365 0,05012365 0,05015237 0,05019401 0,05021184 0,05024428	0,02029197 0,02201527 0,02088088 0,02087341 0,02087821 0,02147172 0,02083529 0,0197868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02086981 0,02200432 0,01800595 0,02268219 0,022647435 0,02247435 0,02148304 0,01920114 0,02201195 0,022311	0,02732192 0,02555429 0,02676416 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02801061 0,02783545 0,020783545 0,03079411 0,02721808 0,02965482 0,0307947 0,02727861 0,0272961 0,0272961 0,0272928 0,02257997 0,02675428 0,02919226 0,0265629 0,02500844	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 DN1 BMP5 Acanth HM1 HM311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira BMP38 BAC1 Janira BMP38 BAC1	Astacus BST28 BST28 BST28 BST28 BST28 ST1 ST1 ST1 ST1 Licceus BST28 ST28 BST28 ST1 BST28 ST1 BST28 ST1 Astacus ST1 Astacus ST1 Astacus Stenase BST28 Stenase BST28 Stenase BST28 Stenase BST28 Stenase BST28 Stenase BST28 Stenase BST28 Stenase BST28 Stenase BST28 Stenase Stenase Stenase BST28 Stenase Stenas Stenas Stenas Stenase Stenase Stenas	0,13329108 0,1335563 0,1335563 0,13351499 0,13469074 0,13405658 0,13463424 0,13487763 0,13499631 0,13574636 0,13607734 0,13677734 0,13664279 0,13664279 0,13664279 0,13664279 0,13700895 0,13700895 0,13702318 0,13762778 0,1376278 0,1376278 0,1376255 0,1382963 0,1382963 0,138295 0,138295 0,1382935 0,1382197	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,0553976 0,05090263 0,05539976 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,05125759 0,05426309 0,05925443 0,05038314 0,05161153 0,05731443 0,05386372 0,050386372	0,0633210 0,06876577 0,0646635 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,0609427 0,06051793 0,06551112 0,06051793 0,06351006 0,07439917 0,06127709 0,0688822 0,07474247 0,0688028 0,07474247 0,06890081 0,06884913 0,06884913 0,0638796 0,07376508 0,07236889 0,07614012 0,0703226
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 MA2 BMP5 MA2 BMP42 Acanth MA2 HA450	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 lathrip AC21 AC7 IS11 HA56 IS1 HA56 IS1 HA56 IS1 BAC1 HA56 IS1 BAC1 IS1 HA56 IS1 BAC1 IS1 IS1 HA57 IS1 IS1 IS1 IS1 IS1 IS1 IS1 IS1	0,04949302 0,0494989 0,04951249 0,04953058 0,04953058 0,04953208 0,04953208 0,04955237 0,04955263 0,04958037 0,04965983 0,049663987 0,04907752 0,05006056 0,05006056 0,05006052 0,05006052 0,05007031 0,05012365 0,0501888 0,05019401 0,05021184 0,05022184 0,05025346	0,02029197 0,02201527 0,02088088 0,02087341 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02066981 0,01859196 0,02200432 0,01859195 0,02088219 0,0208432 0,02247435 0,02148304 0,01220114 0,02201145 0,023211 0,024817	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644 0,02680977 0,02798945 0,02441737 0,02798945 0,02441737 0,02767976 0,02767976 0,02767976 0,02767976 0,02767976 0,02727808 0,02607856 0,0302427 0,02727961 0,02727961 0,02727961 0,02727981 0,02257997 0,02673428 0,022657428 0,0265629 0,02607844 0,0225029	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 DN1 BMP5 Acanth HM1 HM1 HA311 ME1 Janira HA311 BMP5 JA18 BMP5 JA18 BAC1 Janira BMP38 BJA918s BMP38	Astacus ST1 Astacus ST28 BST28 BST28 BST28 BST28 BST1 Lirceus BST28 BST28 BST28 BST28 BST28 BST28 BST28 ST1 Astacus Proasell BST28 ST1 Astacus Astacus ST1 Astacus Astacus ST1 Stenase BST28 ST28 ST1 BST28 SST1 Astacus St1 Astacus St28 ST28 ST28 ST28 ST28 ST28 ST28 ST28 ST	0,13329108 0,1335563 0,1335563 0,13351499 0,13469424 0,13463424 0,13482763 0,13499631 0,13506573 0,135074636 0,13607734 0,13663499 0,13664177 0,13668356 0,13700895 0,13706224 0,13762318 0,13762318 0,13762778 0,13762963 0,13782963 0,1382335 0,13861917 0,13861917	0,05169204 0,05539048 0,05539048 0,05539048 0,05533976 0,05090263 0,05533976 0,0509922 0,06061279 0,06129284 0,06874845 0,0482823 0,06060791 0,06125759 0,05426309 0,04903691 0,05337002 0,05494066 0,05925443 0,05038314 0,0553871443 0,05731443 0,05386372 0,05049205	0,0635210 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,060551112 0,0609427 0,060551113 0,06351006 0,07439917 0,06127709 0,06838202 0,07474247 0,06850413 0,0639796 0,07376508 0,07376508 0,07376508 0,0732554 0,0703226 0,07449728
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops BJA14 DE2 Munnops BJA14 DE2 Munnops BMP5 MA2 BMP5 Acanth MA2 BMP42 Acanth MA2 BMP42 IAcanth MA2 BMP42 IAcanth MA2 BMP42 IACanth MA2 BMP42 IACA BMP42 IACAN IACAN BMP42 IACAN	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC25 IS11 lathrip AC21 AC7 IS11 HA57 HA56 IS11 HA55 DE7 HA55 DE7 HA55	0,04949302 0,0494989 0,04951249 0,04953058 0,04953058 0,04953058 0,04955237 0,04955237 0,04955037 0,04958037 0,04960843 0,04963987 0,04977224 0,04997729 0,0500607 0,0500607 0,0500607 0,05006021 0,05006021 0,05007031 0,05015237 0,0501888 0,0501888 0,0501888 0,0501888 0,05025346 0,05025346 0,0502618	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02068981 0,02806981 0,0288219 0,0208432 0,0180595 0,027435 0,02148304 0,02201195 0,02241195 0,02495817 0,02495817	0,02732192 0,02555429 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02798945 0,02441737 0,027098945 0,02767976 0,02783545 0,03079411 0,02767976 0,02721808 0,02965482 0,02067856 0,0302427 0,0272928 0,02257997 0,02673428 0,02257997 0,02673428 0,02257997	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira BMP38 BJA918s BMP38 BJA918s	Astacus Stacus ST1 ST1 ST1 ST1 ST1 ST1 Lirceus BST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 BST28 ST1 Astacus ST1 Astacus ST1 Astacus ST28 ST1 Astacus ST1 Astacus ST28 ST1 Astacus ST28 ST1 Astacus ST28 ST1 Astacus ST28 ST1 Astacus ST28 ST1 Astacus ST1 Astacus ST28 ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST28 ST1 Astacus ST28 ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST28 Astacus ST1 Astacus ST28 Astacus ST28 Astacus ST28 Astacus ST28 Astacus ST28 Astacus ST28 Astacus ST28 Astacus ST1 Astacus ST28 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus ST1 Astacus	0,13329108 0,13335563 0,13351499 0,13369074 0,134635658 0,13463424 0,13482763 0,13499631 0,13506573 0,1357636 0,13607734 0,13664117 0,136684117 0,13762278 0,13762278 0,13762318 0,13762318 0,13762318 0,13762318 0,13762318 0,13762318 0,13782963 0,1386595 0,1386595 0,13861917 0,13840225 0,13840312	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,0553976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,05126759 0,05426309 0,05494066 0,05925443 0,05049205 0,05434858 0,05049205 0,055434858	0,06835219 0,06876577 0,06466353 0,07034879 0,06616679 0,06926391 0,06743722 0,06743722 0,066743722 0,0605173 0,066551112 0,06051739 0,06351006 0,07439917 0,06127709 0,06838822 0,07474247 0,0688082 0,073574 0,06854913 0,0633796 0,073576508 0,07258889 0,06614012 0,0703526 0,07449288 0,0775574
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP42 Acanth MA2 BMP42 Acanth MA2 BMP42 Acanth MA2 BMP42 Acanth Echino	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 HA57 HA57 HA57 HA56 AC4 AC2 IS11 lathrip AC21 AC7 IS11 IA57 HA56 IS1 HA55 DE7 HA55 IS4	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04955207 0,04955237 0,04955263 0,04955263 0,04958037 0,04960843 0,04963987 0,04977224 0,049977224 0,049977224 0,04997729 0,0500607 0,0500607 0,0500607 0,05006656 0,05007031 0,05012365 0,05012365 0,05012365 0,05012428 0,05024428 0,05025346 0,0502618 0,0502618	0,02029197 0,02201527 0,02088088 0,02087341 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02086981 0,02200432 0,01800595 0,021859196 0,0220432 0,01800595 0,022847435 0,02148304 0,01920114 0,02201195 0,0223211 0,02437454 0,0233664	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,0279845 0,02441737 0,0279845 0,02441737 0,027783545 0,027783545 0,027783545 0,027783545 0,03079411 0,02721808 0,02965482 0,0207856 0,0302427 0,02727961 0,02727961 0,02727928 0,02257997 0,02673428 0,02257997 0,02673428 0,02250844 0,02323184 0,02382873 0,02350135	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HM1 HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira BMP38 BAC1 Janira BMP38 BJA9 18s BMP38 AC25 AC4	Astacus ST1 Astacus ST28 BST28 BST28 BST28 BST28 BST1 BST28 BST28 BST28 BST28 BST28 Astacus ST1 Astacus Stenase BST28 Stenase BST28 Stenase Stenas Stenase Stenase Stenase Stenase Stenase Stenase Stenas St	0,13329108 0,1335563 0,1335563 0,1335563 0,13469074 0,13405658 0,13463424 0,13487763 0,13499631 0,13574636 0,13607734 0,13607734 0,13664279 0,13664279 0,13664279 0,13664279 0,1376224 0,137100895 0,13700895 0,13762318 0,13762318 0,13762318 0,13762318 0,13762318 0,13782963 0,13782963 0,13861917 0,13942225 0,13861917	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,0553976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,05874845 0,04882823 0,06060791 0,06125759 0,05426309 0,04903691 0,05337002 0,05494066 0,05925443 0,05038314 0,05161153 0,05731443 0,05731443 0,05236366 0,05236366 0,05236366 0,05236366	0,0633210 0,06876577 0,0646635 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06051793 0,06551112 0,06051793 0,06351006 0,07439917 0,06178707 0,06177709 0,06888822 0,07474247 0,06898081 0,06884913 0,06898022 0,07474247 0,0639796 0,07376508 0,07238889 0,06614012 0,07032574 0,077355849
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 MA2 BMP5 MA2 BMP42 Acanth MA2 IS14 Echino BJA32	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 lathrip AC21 AC7 IS11 HA56 IS1 HA56 IS1 HA56 IS1 HA56 IS1 HA55 IS1 HA55 IS1 HA55 IS1 HA55 IS1 HA55 IS1 HA55 IS1 HA55 IS1 HA55 IS1 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA57 IS1 HA56 IS1 IS1 HA57 IS1 HA56 IS1 IS1 HA57 IS1 HA56 IS1 IS1 HA57 IS1 HA56 IS1 IS1 HA56 IS1 IS1 HA56 IS1 HA55 IS1 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA56 IS4 HA55 IS4 HA56 IS4 HA55 IS4 HA55 IS4 HA56 IS4 HA55 HA55 HA55 HA55 HA55 HA55 HA55 HA5	0,04949302 0,0494989 0,04951249 0,04953058 0,04953058 0,04953208 0,04953208 0,04955237 0,04955263 0,04958037 0,04963987 0,04963987 0,04907752 0,0500665 0,0500665 0,0500665 0,0500665 0,0500665 0,0500665 0,0500665 0,0500665 0,05006821 0,05012365 0,0501888 0,05019401 0,05021184 0,05024428 0,05026346 0,05026348 0,05026348 0,05026348	0,02029197 0,02201527 0,02088088 0,02087341 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,020455 0,01741366 0,02068981 0,01859196 0,0220432 0,01859196 0,0220432 0,01859196 0,0220432 0,02088219 0,02089015 0,02247435 0,02148304 0,01922114 0,0229114 0,0229114 0,0232364 0,0232364 0,0232364 0,01922999	0,02732192 0,02555429 0,02676833 0,02474016 0,02676833 0,0267684 0,02613789 0,02680977 0,0279845 0,02441737 0,02801061 0,02783545 0,03079411 0,02771808 0,02965482 0,03079411 0,02721808 0,02965482 0,0302427 0,02727961 0,0272928 0,02257997 0,02673428 0,02919226 0,0265629 0,02500844 0,02323184 0,0238184	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira BMP38 BJA918s BMP38 AC25 AC4 DE1	Astacus Astacus Astacus Astacus Astacus Astacus	0,13329108 0,1335563 0,1335563 0,13351499 0,13369074 0,13405658 0,134482763 0,13499631 0,13506573 0,13574636 0,13607734 0,13607734 0,13664279 0,13664279 0,13664279 0,13664217 0,13668356 0,13700895 0,13706224 0,13713047 0,13762318 0,13762318 0,13762318 0,13762318 0,1376235 0,1382963 0,13782963 0,1382963 0,138235 0,13861917 0,13942225 0,13960312 0,14017056 0,14020216	0,05169204 0,05539048 0,05539048 0,05539048 0,0553976 0,0553976 0,0553976 0,05539976 0,05539922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,0512759 0,05426309 0,05494066 0,05925443 0,05038314 0,05386372 0,05494066 0,05925443 0,05386372 0,05494066 0,05925443 0,05731443 0,05386372 0,0549405 0,0549406 0,053955 0,0549406 0,053955 0,054940 0,053955 0,0549406 0,053955 0,0554940 0,05595 0,054940 0,05595 0,0549405 0,05595 0,054940 0,05595 0,054940 0,05595 0,05595 0,054940 0,05595 0,055755 0,055755 0,055755 0,055755 0,055755 0,055755 0,055755 0,055755 0,055755 0,055755 0,0557555 0,0557555 0,05575555 0,05575555555555	0,0635210 0,06876577 0,0646635 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,0609427 0,060511793 0,06551112 0,06051793 0,06351006 0,07439917 0,06127709 0,06898022 0,07474247 0,06898028 0,07376508 0,07376508 0,0733878 0,0703226 0,07449728 0,07033878 0,0725594
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops BJA14 DE2 Munnops BMP5 MA2 BMP5 MA2 BMP42 Acanth MA2 BMP42 Acanth MA2 BMP42 Acanth MA2 BMP42 Acanth MA2 BMP55 BMP42 BMP55	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC2 IS11 Iathrip AC21 AC7 IS11 HA56 IS11 HA57 HA56 IS11 HA57 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA55 IS4 HA57 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA57 HA57 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA57 HA56 IS1 IS1 HA56 IS1 HA57 HA56 IS1 HA56 IS1 HA57 HA56 IS1 HA56 IS1 HA57 HA56 IS1 HA57 HA56 IS1 HA55 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 IS1 HA57 HA57 HA57 HA57 HA57 HA57 HA57 HA57	0,04949302 0,0494989 0,04951249 0,04953058 0,04953058 0,04953058 0,04953208 0,04955237 0,04955263 0,04958037 0,0496387 0,04977224 0,049077224 0,049077224 0,04907729 0,0500413 0,0500607 0,0500607 0,05006821 0,05007031 0,05012365 0,05015237 0,0501888 0,05024428 0,05025346 0,05026188 0,0502428 0,05025346 0,0502636 0,05027362 0,05023278 0,05033376	0,02029197 0,02201527 0,02088088 0,02087341 0,02319 0,0207821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02019328 0,020255 0,01741366 0,02086981 0,01859196 0,0220432 0,0180595 0,022847435 0,02148304 0,019201195 0,023211 0,02495817 0,02437454 0,02323664 0,01922999 0,02101867	0,02732192 0,0255429 0,02676416 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,02798945 0,02441737 0,02798945 0,02441737 0,0270976 0,02767976 0,02783545 0,03079411 0,02721808 0,02965482 0,02607856 0,0302427 0,0272981 0,0272981 0,0272928 0,02257997 0,02673428 0,02257997 0,02625629 0,02625629 0,02625629 0,02625629 0,02625629 0,02500844 0,02323184 0,023135 0,02919227 0,02738548	Eurycope HA450 MP9 BJA14 Eurycope HA56 DN1 DN1 DN1 DN1 BMP5 Acanth HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira BMP38 BJA9 18s BMP38 BJA9 18s BMP38 BJA9 18s	Astacus Astacus Astacus Astacus Astacus Astacus Astacus	0,13329108 0,13335563 0,1335563 0,13369074 0,13463658 0,13463424 0,13482763 0,13499631 0,13506573 0,135074636 0,13607734 0,13607734 0,13664117 0,13668356 0,13700895 0,13706224 0,13762318 0,13762318 0,13762318 0,1376235 0,13782963 0,13782963 0,13782963 0,1378295 0,13861917 0,13861917 0,13960312 0,14017056 0,14020216 0,14025581	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,05533976 0,05090263 0,05389461 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,06125759 0,05426309 0,05426309 0,0542463 0,05025443 0,0503814 0,05038314 0,05038372 0,05038372 0,05038572 0,0543458 0,0523666 0,05349551 0,054365720 0,054365720 0,053365720 0,053365720 0,053365720 0,053365720 0,053365720 0,053365720 0,053365720 0,053365720 0,053365720 0,0533657200,053365720 0,05336572000000000000000000000000000000000000	0,06835219 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,0609427 0,06051793 0,06351006 0,07439917 0,06178777 0,06178777 0,06178777 0,061878777 0,06838822 0,07474247 0,0689081 0,0639796 0,07376508 0,07258889 0,07258889 0,07258889 0,0775574 0,0725594 0,0725594 0,0725594
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 BMP5 BMP42 Acanth MA2 BMP42 Acanth MA2 BMP42 BMP5 BMP42 Acanth Acanth BMP42 BMP5 BJA32 BMP55 Joerop	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 Asellus BAC1 HA56 AC4 AC25 IS11 Iathrip AC7 IS11 Iathrip HA57 HA56 IS4 DE7 HA55 DE7 HA55 DE7 HA55 IS4 DE1 BJA12 JA6BC 18s	0,04949302 0,0494989 0,04951249 0,04952006 0,04953208 0,04953208 0,04955237 0,04955237 0,04955237 0,04958037 0,04958037 0,04963987 0,049677224 0,049677224 0,04967729 0,0500607 0,0500607 0,0500607 0,05006656 0,0500607 0,05015237 0,0501488 0,05024184 0,0502618 0,0502636 0,05027362 0,05033278 0,0503376 0,050341593	0,02029197 0,02201527 0,0208808 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01977868 0,02321942 0,01980951 0,02055 0,01741366 0,02068981 0,02200432 0,0180595 0,02188219 0,0220432 0,0180595 0,02547435 0,02437435 0,02248304 0,01922114 0,02201195 0,023211 0,02437454 0,0232311 0,02437454 0,01922999 0,02101867 0,0163877	0,02732192 0,0255429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,0280977 0,0279845 0,02441737 0,0279845 0,02441737 0,02799645 0,02767976 0,02778545 0,03079411 0,02767976 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02257997 0,02673428 0,02260844 0,02321848 0,02919227 0,027315 0,027315 0,02731883	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HM1 HA311 ME1 Janira HA311 BMP5 JA18 BAC1 Janira BMP38 BAC1 Janira BMP38 BJA9 18s BMP38 BJA9 18s BMP38 AC25 AC4 DE1 AC7 JO3	Astacus Astacus Astacus Astacus Astacus Astacus	0,13329108 0,1335563 0,1335563 0,1335563 0,134699 0,1346974 0,13405658 0,13467763 0,13487763 0,13499631 0,13506573 0,13574636 0,13607734 0,1363499 0,13664279 0,13664279 0,13664279 0,13664279 0,13664279 0,13700895 0,13700895 0,13700895 0,13762318 0,13762318 0,13762318 0,13782963 0,13782963 0,13861917 0,13861917 0,13942225 0,13861917 0,13942225 0,13861917 0,13942225 0,13861917 0,13942225 0,13861917 0,13942225 0,13861917	0,05169204 0,05539048 0,05041099 0,05449774 0,05221783 0,0553976 0,05090263 0,0553976 0,05539976 0,05599922 0,06061279 0,0612279 0,0612279 0,06125759 0,05426309 0,04903691 0,05337002 0,05494066 0,05925443 0,05731443 0,05731443 0,05731443 0,05731443 0,05731443 0,05731443 0,05236372 0,05434858 0,05236366 0,05349551 0,04940217 0,05356709 0,05096767	0,0633213 0,06876577 0,0646635 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551106 0,07439917 0,06178707 0,0617709 0,06187777 0,06127709 0,06888822 0,07474247 0,06890081 0,0639796 0,0733878 0,07355888 0,06614012 0,0733878 0,0735574 0,0733878 0,07255994
Echino MA2 DE2 Acanth BMP42 HA55 MP3 Stenase IS11 MA1 Munnops MP9 JA18 BJA14 DE2 Munnops BMP5 MA2 BMP42 Acanth M42 HA450 IS14 Echino BJA32 BMP55 Joerop Eurycope	BAC1 IS4 HA55 IS3 BJA32 AC7 HA57 HA450 DE5 HA57 HA57 HA57 HA56 AC4 AC2 IS11 Iathrip AC21 AC7 IS11 HA56 IS4 HA55 IS4 DE7 HA55 IS4 DE1 BJO12 JA6BC 18s IS3	0,04949302 0,0494989 0,04951249 0,04953058 0,04953058 0,04953208 0,04955237 0,04955263 0,04955263 0,04958037 0,04963987 0,04963987 0,04963987 0,04967759 0,05006413 0,05006656 0,05006856 0,05006851 0,05012365 0,0501888 0,05019401 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,0502618 0,050253278 0,05033278	0,02029197 0,02201527 0,0208808 0,02087341 0,02319 0,02087821 0,02147172 0,02083529 0,01980951 0,02019328 0,020255 0,01741366 0,02086981 0,02200432 0,01800595 0,022647435 0,02247435 0,02247435 0,02247435 0,02247435 0,0224817 0,0223211 0,02437454 0,0232364 0,01922999 0,02101867 0,0213922	0,02732192 0,02555429 0,02674016 0,02676833 0,02432073 0,0267644 0,02613789 0,02680977 0,0279845 0,02441737 0,0279845 0,02441737 0,02761 0,02783545 0,020783545 0,03079411 0,02727861 0,02727861 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,02727961 0,025629 0,0250644 0,0232184 0,0230844 0,0232184 0,0225135 0,02919227 0,02738548 0,03218833 0,02715017	Eurycope HA450 MP9 BJA14 Eurycope HA56 MP9 Janira HA56 DN1 DN1 BMP5 Acanth HM1 HM1 HM1 HM1 HA311 ME1 Janira BMP5 JA18 BAC1 Janira BMP5 JA18 BAC1 Janira BMP38 BJA9 18s BMP38 AC25 AC4 DE1 AC7 JO3 BJA32	Astacus Astacus	0,13329108 0,1335563 0,1335563 0,1335563 0,1346974 0,13405658 0,13463424 0,13487763 0,1349763 0,1349763 0,13507734 0,13507734 0,13607734 0,13607734 0,13604279 0,13664279 0,13664279 0,13664117 0,13688356 0,13700895 0,13708294 0,13762318 0,13762318 0,13762318 0,13762318 0,1376238 0,1376255 0,13782963 0,13782963 0,1382335 0,1382335 0,1382335 0,13841917 0,13942225 0,13940312 0,14007056 0,14002216 0,140045581 0,14098954	0,05169204 0,05539048 0,05539048 0,05539048 0,05539048 0,0553976 0,05090263 0,05539976 0,05599922 0,06061279 0,06129284 0,05874845 0,0482823 0,06060791 0,05426309 0,05426309 0,05426309 0,05494066 0,05925443 0,05533144 0,05161153 0,05731443 0,05731443 0,0523636709 0,05236366 0,05349551 0,04940217 0,0536709 0,05096767	0,0633210 0,06876577 0,06486835 0,07034879 0,06616679 0,06926391 0,06597615 0,07078177 0,06743722 0,06551112 0,0609427 0,06051793 0,06351006 0,07439917 0,06127709 0,0688822 0,07474247 0,0688028 0,07474247 0,0688028 0,074742889 0,07637574 0,0733878 0,0725594 0,0725594 0,07547525 0,07547525

IS11	BAC10	0,05064436	0,01969844	0,02897825	AC21	Astacus	0,14102601	0,05301716	0,07389971
JA18	BAC27	0,05064803	0,01915934	0,0296786	BMP55	Astacus	0,14106627	0,05146566	0,07537387
MP12	IS3	0,0506724	0,02198035	0,02660196	DE5	Astacus	0,1410781	0,0515045	0,07541716
MA1	HA450	0,05068387	0,01914235	0,02960201	DE7	Astacus	0,14124195	0,05209303	0,07489339
BJA14	AC4	0,05068509	0,02201519	0,02664563	HA55	Astacus	0,1412749	0,05353217	0,07345565
IS3	DE2	0,05069883	0,02371526	0,02485757	JL1	Astacus	0,14186826	0,05324641	0,0741576
BJO12	JA18	0.05069922	0.01458594	0.03436567	MP5	Astacus	0.14258732	0.05151493	0.07661091
IS11	AC25	0.05070709	0.02088983	0.02786302	Echino	Astacus	0.1426741	0.0504205	0.07792873
Munnops	AC21	0.05072321	0.02030515	0.02843568	MA2	Astacus	0.14315075	0.05091679	0.07776295
BJA32	BAC27	0.05072699	0.02032274	0.02844122	MP12	Astacus	0.14325865	0.05092063	0.07784634
MP9	HA55	0.05074096	0.01912206	0.02968728	DE2	Astacus	0.143537	0.05264277	0.07606437
BMP42	BJA32	0.05075658	0.0186193	0.03029063	BJO12	Astacus	0.14401734	0.05604682	0.07315263
BJA32	AC22	0.05076657	0 02142857	0.02729197	MP3	Astacus	0 14426599	0.05267883	0.07668608
BJA32	HA57	0.05077474	0.01917925	0.02969576	BAC10	Astacus	0 14448255	0.05223255	0 07748967
B IA14	AC7	0.05077794	0.0220453	0.02671411	1514	Astacus	0 14482684	0.0521649	0.07788178
B IA9 18s	IS11	0.05077952	0.0220538	0.02669897	BMP42	Astacus	0 145015	0.05214454	0.07793865
Acanth	HA56	0.05084861	0.02143842	0.02743174	Joeron	Astacus	0 14587106	0.04998994	0.08116073
1914	HA57	0.0508563	0.02264524	0.02615829	MA1	Astacus	0,14629683	0.05322115	0.07780281
MP1	HA56	0.0508684	0,02204324	0,02013023	HA57	Astacus	0,14023003	0,05361135	0,07760125
Echino	HA57	0,05006004	0.02215441	0,02683557	MP1	Astacus	0,14050033	0,053/3687	0,07705381
BMD42	HA311	0,05030203	0,02213066	0,020000007	Munnone	Astacus	0,14676170	0,0509004	0,07733301
		0,05102403	0,02213000	0,02092320	Surcumura	Astacus	0,14070179	0,0500504	0,00071437
MDO		0,05104592	0,02017722	0,0227137	Joniro	Asidous	0,14711304	0,05527041	0,07567061
	JU3 BAC10	0,05111795	0,01304701	0,03300010	Janila	Asterius	0,1407021	0,05064097	0,07307001
DJA14	BAC10	0,05122879	0,01797995	0,03134009	Eurycope	Astacus	0,14905724	0,05206661	0,08143166
DIVIP30	BACIU	0,05131646	0,01971994	0,02960604	511	Astacus	0,14966472	0,05180148	0,08240352
103	HA57	0,05132092	0,01914546	0,03023699	1511	Astacus	0,14999802	0,05389161	0,08023235
103	DEZ	0,05132424	0,02088118	0,02840889	Janira	BS128	0,15016271	0,06029003	0,0732901
Eurycope	IS4	0,0513327	0,02143366	0,0278173	Janira	SII	0,15051225	0,05961064	0,07428741
BJO12	JO3	0,05133811	0,01516941	0,03435204	HA450	Astacus	0,15074037	0,0564751	0,07808288
BJA9 18s	BAC27	0,05136026	0,01919999	0,03030121	BJA14	Astacus	0,15075406	0,0544954	0,08018254
JL1	HA450	0,05137662	0,02319196	0,02610689	BST28	Astacus	0,15096554	0,05246022	0,08257744
MP12	IS4	0,05138599	0,02202519	0,02729535	MP9	Astacus	0,15153237	0,05078018	0,08487539
Sursumura	BJA32	0,05139806	0,01920128	0,03029543	AC22	Astacus	0,15222654	0,05646608	0,07927606
BJO12	BJA9 18s	0,05141225	0,01461341	0,03500231	HA56	Astacus	0,15247238	0,05710324	0,07875608
JL1	HA56	0,05141772	0,02263267	0,02671727	HA311	Astacus	0,15268043	0,05719801	0,0788622
MP5	HA450	0,05142006	0,02091899	0,02852906	BAC27	Astacus	0,15295024	0,05654477	0,07999717
Sursumura	HA450	0,05142158	0,02090625	0,02855309	IS3	Astacus	0,15351623	0,05926928	0,07721518
HA450	AC25	0,05143275	0,02321051	0,02615085	IS4	Astacus	0,15403722	0,05946878	0,07749597
Acanth	HA450	0,05144347	0,02200324	0,02739985	BMP38	Astacus	0,15482813	0,05436993	0,08365062
IS4	DE2	0,05144453	0,02378002	0,02553774	BMP5	Astacus	0,15923274	0,0617935	0,07909371
HA57	DE5	0,05146921	0,02324407	0,02614289	HM1	Astacus	0,16078508	0,06183081	0,08040176
MP1	HA450	0,05146981	0,02035632	0,02911549	Janira	Astacus	0,16376799	0,05422223	0,0907989
HA56	AC25	0,05147394	0,02265056	0,02676629	DN1	Astacus	0,16572297	0,0605455	0,08573624
MP3	BJA32	0,05150196	0,02034018	0,02911237					

8.2.4 p-Distanzen der partiellen 16S rDNA Sequenzen der untersuchten

Individuen der Familie Acanthaspidiidae

Die Taxabezeichnungen entsprechen den Kennungen der untersuchten Individuen (siehe Tab. 2.2).

Tab. 8.4: p-Distanzen der partiellen 16S rDNA Sequenzen der untersuchten Acanthaspidiidea:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1 Joeropsis	_																		
2 BAC5 Ir	0.3002	-																	
3 BAC54 Ir	0.2977	0.0023	-																
4 BAC37 Ir	0.2953	0.0047	0.0023	-															
5 BAC51 Ir	0.2904	0.0118	0.0095	0.0071	-														
6 BAC52 Ir	0.2904	0.0118	0.0095	0.0071	0.0000	-													
/ BACI IT 9 BACIO Im	0.2983	0.0434	0.0459	0.0434	0.0458	0.0458	0 2503	_											
9 BAC11 Im	0.2892	0.2475	0.2300	0.2330	0.2332	0.2332	0.2503	0 0189	_										
10 BAC12 Im	0.2874	0.2390	0.2366	0.2342	0.2318	0.2318	0.2441	0.0286	0.0263	-									
11 AC1 Ab	0.3016	0.2083	0.2060	0.2036	0.2036	0.2036	0.2183	0.2183	0.2232	0.2193	-								
12 AC3 Ab	0.3016	0.2083	0.2060	0.2036	0.2036	0.2036	0.2183	0.2183	0.2232	0.2193	0.0000	-							
13 AC4 Ab	0.3064	0.1964	0.1940	0.1916	0.1965	0.1965	0.2112	0.2231	0.2279	0.2192	0.0214	0.0214	-						
14 AC6 Ab	0.3039	0.2012	0.1988	0.1964	0.1965	0.1965	0.2159	0.2231	0.2279	0.2192	0.0190	0.0190	0.0071	-					
15 AC7 Ap	0.2900	0.1896	0.1872	0.1848	0.1849	0.1849	0.1948	0.2020	0.2069	0.1981	0.0453	0.0453	0.0501	0.0501	-				
10 AC9 AP	0.2917	0.1915	0.1891	0.1867	0.1868	0.1868	0.1967	0.2038	0.2088	0.2000	0.0452	0.0452	0.0500	0.0500	0.0024	0 1794	_		
18 AC18 As	0.3240	0.2201	0.2177	0.2153	0.2153	0.2153	0.2280	0.2231	0.2329	0.2289	0.1769	0.1769	0.1793	0.1793	0.1798	0.1794	0.0000	_	
19 AC21 As	0.3240	0.2201	0.2177	0.2153	0.2153	0.2153	0.2280	0.2231	0.2329	0.2289	0.1769	0.1769	0.1793	0.1793	0.1798	0.1794	0.0000	0.0000	-
20 AC23 As	0.3240	0.2201	0.2177	0.2153	0.2153	0.2153	0.2280	0.2231	0.2329	0.2289	0.1769	0.1769	0.1793	0.1793	0.1798	0.1794	0.0000	0.0000	0.0000
21 AC17 Ad1	0.2755	0.2160	0.2137	0.2112	0.2161	0.2161	0.2261	0.2260	0.2308	0.2319	0.1842	0.1842	0.1890	0.1914	0.1725	0.1722	0.2464	0.2464	0.2464
22 AC22 Ad1	0.2755	0.2160	0.2137	0.2112	0.2161	0.2161	0.2261	0.2260	0.2308	0.2319	0.1842	0.1842	0.1890	0.1914	0.1725	0.1722	0.2464	0.2464	0.2464
23 AC27 Ad1	0.2789	0.2189	0.2165	0.2141	0.2189	0.2189	0.2291	0.2289	0.2338	0.2299	0.1871	0.1871	0.1870	0.1894	0.1753	0.1749	0.2494	0.2494	0.2495
24 ACIU Adi	0.2779	0.2185	0.2161	0.2137	0.2185	0.2185	0.2285	0.2284	0.2332	0.2343	0.1866	0.1866	0.1914	0.1938	0.1750	0.1746	0.2487	0.2487	0.2487
25 AC24 Ad1	0.2779	0.2185	0.2101	0.2137	0.2105	0.2185	0.2285	0.2204	0.2352	0.2343	0.1890	0.1890	0.1914	0.1930	0.1774	0.1740	0.2407	0.2407	0.2407
27 AC14 Ad1	0.2754	0.2209	0.2185	0.2157	0.2209	0.2209	0.2209	0.2308	0.2356	0.2366	0.1890	0.1890	0.1938	0.1962	0.1774	0.1769	0.2511	0.2511	0.2511
28 AC15 Ad2	0.2613	0.2067	0.2043	0.2019	0.2019	0.2019	0.2217	0.2338	0.2362	0.2372	0.1919	0.1919	0.2015	0.2015	0.1850	0.1846	0.2397	0.2397	0.2397
29 AC19 Ad2	0.2637	0.2042	0.2018	0.1994	0.1995	0.1995	0.2193	0.2314	0.2338	0.2348	0.1895	0.1895	0.1990	0.1991	0.1826	0.1822	0.2373	0.2373	0.2373
30 BAC17Ad3	0.2614	0.2063	0.2039	0.2015	0.2039	0.2039	0.2285	0.2405	0.2477	0.2439	0.2106	0.2106	0.2129	0.2154	0.2013	0.2009	0.2441	0.2441	0.2441
31 BAC20Ad3	0.2623	0.2067	0.2043	0.2019	0.2043	0.2043	0.2292	0.2411	0.2484	0.2446	0.2111	0.2111	0.2135	0.2159	0.2018	0.2014	0.2448	0.2448	0.2448
32 BAC46Ad3	0.2614	0.2063	0.2039	0.2015	0.2039	0.2039	0.2285	0.2405	0.24//	0.2439	0.2106	0.2106	0.2129	0.2154	0.2013	0.2009	0.2441	0.2441	0.2441
34 BAC18Ad3	0.2014	0.2003	0.2039	0.2015	0.2039	0.2039	0.2205	0.2405	0.2477	0.2439	0.2106	0.2106	0.2129	0.2154	0.2013	0.2009	0.2441	0.2441	0.2441
35 BAC45Ad3	0.2639	0.2087	0.2063	0.2039	0.2063	0.2063	0.2310	0.2429	0.2501	0.2464	0.2130	0.2130	0.2153	0.2178	0.2037	0.2033	0.2417	0.2417	0.2417
36 BAC21Ad3	0.2590	0.2039	0.2015	0.1991	0.2015	0.2015	0.2261	0.2381	0.2453	0.2415	0.2082	0.2082	0.2105	0.2130	0.1989	0.1985	0.2417	0.2417	0.2417
37 BAC24Ad3	0.2590	0.2039	0.2015	0.1991	0.2015	0.2015	0.2261	0.2381	0.2453	0.2415	0.2082	0.2082	0.2105	0.2130	0.1989	0.1985	0.2417	0.2417	0.2417
	20	21	22	23	24	25	26	27	28	29	3.0	31	32	33	34	35	36	37	
	20		22	25		25	20	27	20	25	50	51	52	55	51	55	50	5,	
20 AC23 As	-																		
21 AC17 Ad1	0.2464	-																	
22 AC22 Ad1	0.2464	0.0000	-																
23 AC27 Ad1	0.2495	0.0047	0.0047	-															
24 ACIU Adi 25 AC24 Adi	0.2487	0.0023	0.0023	0.0071	-	_													
26 AC12 Ad1	0.2511	0.0023	0.0023	0.0071	0.0000	0 0023	_												
27 AC14 Ad1	0.2511	0.0047	0.0047	0.0095	0.0023	0.0023	0.0047	-											
28 AC15 Ad2	0.2397	0.0766	0.0766	0.0793	0.0790	0.0790	0.0790	0.0766	-										
29 AC19 Ad2	0.2373	0.0743	0.0743	0.0769	0.0766	0.0766	0.0766	0.0743	0.0024	-									
30 BAC17Ad3	0.2441	0.0815	0.0815	0.0842	0.0791	0.0791	0.0791	0.0767	0.0888	0.0864	-								
31 BAC20Ad3	0.2448	0.0818	0.0818	0.0845	0.0794	0.0794	0.0794	0.0770	0.0890	0.0866	0.0000	-							
32 BAC46Ad3	0.2441	0.0815	0.0815	0.0842	0.0791	0.0791	0.0791	0.0767	0.0888	0.0864	0.0000	0.0000	-						
34 RACI9A03	0.2441	0.0015	0.0815	0.0842	0.0791	0.0791	0.0791	0.0767	0.0888	0.0864	0 0000	0 0000	0 0000	0 0000	_				
35 BAC45Ad3	0.2417	0.0840	0.0840	0.0866	0.0815	0.0815	0.0815	0.0791	0.0912	0.0888	0.0023	0.0023	0.0023	0.0023	0.0023	-			
36 BAC21Ad3	0.2417	0.0791	0.0791	0.0818	0.0815	0.0815	0.0815	0.0791	0.0864	0.0840	0.0023	0.0023	0.0023	0.0023	0.0023	0.0047	-		
37 BAC24Ad3	0.2417	0.0791	0.0791	0.0818	0.0815	0.0815	0.0815	0.0791	0.0864	0.0840	0.0023	0.0023	0.0023	0.0023	0.0023	0.0047	0.0000	-	

8.2.5 p-Distanzen der partiellen 16S rDNA Sequenzen der untersuchten

Individuen der Familie Haploniscidae

Die Taxabezeichnungen entsprechen den Kennungen der untersuchten Individuen (siehe Tab. 2.2).

Tab. 8.5: p-Distanzen der partiellen 16S rDNA Sequenzen der untersuchten Haploniscidae:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1 HA55	-																		
2 HA51	0.1959	-																	
3 HA57	0.2020	0.0042	-																
4 HA402	0.2252	0.2078	0.2078	-															
5 HA403	0.2071	0.1798	0.1793	0.1506	-														
6 HA450	0.1951	0.2059	0.2054	0.0660	0.1611	-													
7 HA24	0.2093	0.2154	0.2150	0.0955	0.1627	0.0719	-												
8 HA26	0.2050	0.2117	0.2113	0.0955	0.1627	0.0720	0.0042	-											
9 HA27	0.2094	0.2160	0.2156	0.0977	0.1649	0.0742	0.0064	0.00432	-										
10 HA28	0.2097	0.2164	0.2160	0.0979	0.1651	0.0743	0.0063	0.00422	0.00426	-									
11 HA56	0.2072	0.2138	0.2134	0.0934	0.1606	0.0699	0.0021	0.00211	0.00432	0.0042	-								
12 HA39	0.2093	0.2159	0.2155	0.0913	0.1627	0.0720	0.0042	0.00423	0.00643	0.0063	0.0021	-							
13 HA68	0.2115	0.2181	0.2177	0.0934	0.1647	0.0741	0.0063	0.00635	0.00860	0.0084	0.0042	0.0021	-						
14 HA70	0.2135	0.2202	0.2198	0.0955	0.1669	0.0762	0.0084	0.00847	0.01071	0.0105	0.0063	0.0042	0.0021	-					
15 HA63	0.1986	0.1986	0.1981	0.1128	0.1626	0.0933	0.1186	0.11874	0.12087	0.1210	0.1165	0.1186	0.1204	0.1229	-				
16 HA2	0.2014	0.2206	0.2201	0.1192	0.1693	0.0976	0.1206	0.12086	0.12280	0.1230	0.1187	0.1208	0.1225	0.1250	0.1057	-			
17 HA34	0.2035	0.2227	0.2222	0.1214	0.1714	0.0998	0.1228	0.12298	0.12491	0.1252	0.1208	0.1229	0.1247	0.1271	0.1078	0.0021	-		
18 HA35	0.2011	0.2202	0.2197	0.1233	0.1732	0.1017	0.1247	0.12066	0.12473	0.1250	0.1227	0.1248	0.1265	0.1290	0.1078	0.0021	0.0042	-	
19 HA36	0.2011	0.2202	0.2197	0.1233	0.1732	0.1017	0.1247	0.12066	0.12473	0.1250	0.1227	0.1248	0.1265	0.1290	0.1078	0.0021	0.0042	0.0000	-
20 HA37	0.2057	0.2227	0.2222	0.1235	0.1735	0.1019	0.1249	0.12509	0.12702	0.1273	0.1229	0.1250	0.1268	0.1292	0.1099	0.0042	0.0063	0.0064	0.0064
21 HA38	0.2057	0.2227	0.2222	0.1235	0.1735	0.1019	0.1249	0.12510	0.12702	0.1273	0.1229	0.1250	0.1268	0.1293	0.1099	0.0042	0.0021	0.0064	0.0064
22 HA73	0.2010	0.2205	0.2221	0.1257	0.1812	0.1060	0.1187	0.12094	0.12086	0.1231	0.1187	0.1209	0.1250	0.1230	0.1142	0.0730	0.0751	0.0752	0.0752
23 HA78	0.2010	0.2205	0.2221	0.1257	0.1812	0.1060	0.1187	0.12094	0.12086	0.1231	0.1187	0.1209	0.1250	0.1230	0.1142	0.0730	0.0751	0.0752	0.0752
24 HA79	0.2010	0.2205	0.2221	0.1257	0.1812	0.1060	0.1187	0.12094	0.12086	0.1231	0.1187	0.1209	0.1250	0.1230	0.1142	0.0730	0.0751	0.0752	0.0752
25 HA80	0.2033	0.2228	0.2244	0.1279	0.1835	0.1084	0.1210	0.12324	0.12314	0.1254	0.1210	0.1232	0.1273	0.1253	0.1165	0.0751	0.0752	0.0774	0.0774
	20	21	22	23	24	25													
20 11227																			
20 11A37	-																		

 20 HA37

 21 HA38
 0.0042

 22 HA73
 0.0773
 0.0773

 23 HA78
 0.0773
 0.0773
 0.0000

 24 HA79
 0.0773
 0.0773
 0.0000

 25 HA80
 0.0773
 0.0021
 0.0021
 0.0021

-

9. Lebenslauf

Name:	Michael Jürgen Raupach
	geboren am 7.2.1972 in Herten/Westerholt

Eltern: Johannes Jürgen Raupach geboren am 5.9.1942 in Recklinghausen Brigitte Raupach geb. Holz geboren am 6.10.1943 in Danzig

Staatsangehörigkeit: deutsch

Schulbildung:	1978 – 1982	Grundschule: Ewaldschule Oer-Erkenschwick
	1982 – 1991	Gymnasium: Städtisches Gymnasium Oer-Erkenschwick
Ausbildung:	1991 – 1995	Ausbildung zum Chemielaborant (Hüls AG / Marl)
	1995 – 1996	Zivildienst (Salvador Allende Haus, Oer-Erkenschwick)
Studium:	1996 - 2000	Studium Biologie (Diplom) an der Ruhr-Universität Bochum
	2000 - 2001	Diplomarbeit am Lehrstuhl für Spezielle Zoologie der Ruhr-
		Universität Bochum
	ab 1.10.2001	Wissenschaftlicher Mitarbeiter am Lehrstuhl für Spezielle
		Zoologie der Ruhr-Universität Bochum
Publikationen:

Brandt, A., Brökeland, W., Hilbig, B., Mühlenhardt-Siegel, U., Raupach, M., Strieso, G. & Wegener, G. (2003): Biodiversity and zoogeography of Crustacea Peracarida and Polychaeta. In: Fütterer D.K., Brandt A., Poore G.C.B. (eds.): The expeditions ANTARKTIS-XIX/3-4 of the Research Vessel POLARSTERN in 2002 (ANDEEP I and II: <u>Antarctic benthic deep-sea biodiversity</u> – colonization history and recent community patterns). *Berichte zur Polar- und Meeresforschung* **470**: 66-71.

Brandt, A., Brökeland, W., Raupach, M., Strieso, G. & Wegener, G. (2003): Investigations on the systematics, zoogeography, and evolution of Antarctic deep-sea isopods (Crustacea, Malacostraca). In: Fütterer D.K., Brandt A., Poore G.C.B. (eds.): The expeditions ANTARKTIS-XIX/3-4 of the Research Vessel POLARSTERN in 2002 (ANDEEP I and II: <u>Antarctic benthic deep-sea biodiversity</u> – colonization history and recent community patterns). *Berichte zur Polar- und Meeresforschung* **470**: 86-87

Raupach, M. & Wägele, J.-W. (2003): Die Asellota: Erfolgreiche Invasoren der Tiefsee. *Organisms, Diversity & Evolution* **3** Electr. Suppl. **17**: 41

Raupach M. (2004): Analysis of Biogeography, Speciation and Biodiversity of Antarctic Asellota (Crustacea: Peracarida: Isopoda) using Molecular Markers. In: The expedition ANTARKTIS-XXI/2 of the Research Vessel POLARSTERN in 2003/2004. *Berichte zur Polar- und Meeresforschung*, im Druck

Raupach M., Held C. & Wägele J.-W. (2004): Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda) *Deep-Sea Research*, im Druck.

Vorträge:

"Eine marine Erfolgsstory: Die Besiedlung der Tiefsee durch Isopoden", 15minütiger Vortag bei der 11. Crustaceologen-Tagung in Ulm. 20. - 23.02.03

"Die Asellota: Erfolgreiche Invasoren der Tiefsee". 15minütiger Vortrag bei der 6. Jahrestagung der GfBS in Dresden. 16. - 19.9.03

The Asellota: Successful invaders of the deep sea". 15minütiger Vortrag bei dem IBMANT/ANDEEP International Symposium & Workshop in Ushuaia, Argentinien. 19. - 24.10.03

Posterpräsentationen:

Brandt, A., Brökeland, W., Mühlenhardt-Siegel, U., Raupach, M., Strieso, G. und Wegener, G. (2002): "Biodiversity and zoogeography of Crustacea Peracarida obtained in the Antarctic deep sea during the expedition ANDEEP I (ANT XIX-3): Preliminary results". Fourth European Crustacean Conference, Lodz, Polen. 22. - 26.07.02.

Raupach, M., Wägele, J.-W. (2003): "Molekulargenetische Analyse der Biogeographie, Speziation und Biodiversität der Asellota (Peracarida: Isopoda) aus der antarktischen Tiefsee". DIVA Workshop, Wilhelmshaven. 5. - 6.6.03.

Brökeland, W., Raupach, M. (2003): "Radiation of Haploniscidae (Isopoda: Asellota) in the Southern Ocean? A morphological and molecular approach.". 6. Jahrestagung der GfBS, Dresden, 16.-19.9.03; IBMANT / ANDEEP International Symposium & Workshop in Ushuaia, Argentinien. 19. - 24.10.03.

Raupach M. & Wägele (2004): "Dispersal and intraspecific differentation of deep-sea Asellota (Crustacea: Isopoda) in the Weddell Sea". XXVIII SCAR (Scientific Community of Antarctic Research), Open Science Conference in Bremen, 25. - 31.7.04.

10. Danksagung

Ein herzliches Dankeschön gilt Herrn Prof. Dr. Johann-Wolfgang Wägele für seine Betreuung während der letzten drei Jahre, seinem Interesse am Fortgang meiner Arbeit, seinen Anregungen und seiner fortwährende engagierte Unterstützung.

Bei Herrn Prof. Dr. Thomas Stützel möchte ich mich für seine Bereitschaft zur Begutachtung dieser Arbeit bedanken.

Ohne Angelika Brandt und Brigitte Hilbig, die die ANDEEP-Expeditionen von der Idee in die Tat umsetzten, wäre diese Arbeit nicht möglich gewesen. Entsprechend soll ihnen hier für ihren Enthusiasmus und ihr Engagement außerordentlich gedankt werden.

Während der zwei Antarktisfahrten lernte ich eine große Anzahl an Kollegen und Kolleginnen kennen, die mir stets hilfreich zur Seite standen und die Fahrten zu unvergesslichen Erlebnissen werden ließen: Patrick Martin, Claude DeBroyer, Uwe Piatkowski, Rüdiger Riehl, Lorenzo Zane, Christoph von Friedeburg, Ute Mühlenhardt-Siegel, Jörgen Berge, Robert Diaz, Pedro Martinez-Abrizu, James Blake, Katrin Linse, Sven Thatje, Armin Rose, Conxita Avila, Manuel Ballesteros, Anna Pasternak und viele andere.

Ohne eine routinierte Mannschaft ist das beste Forschungsschiff nichts wert. Daher soll an dieser Stelle auch den Besatzungen des Forschungseisbrechers "Polarstern" für ihren tollen Einsatz gedankt werden.

Besonderer Dank gilt weiterhin Wiebke Brökeland, Andre Mursch, Nils Brenke, Marina Malyutina, Daniell Roccatagliata, Brenda Doti, Saskia Brix und Stefanie Kaiser für ihre Hilfe bei der nicht leichten Identifizierung der Asellota.

Bei Christoph Held, Ulrike Englisch, Christoph Meyer, Stefan Richter und Verena Vonnemann möchte ich mich an dieser Stelle für ihre Hilfe bei der Datenauswertung und der mitunter notwendigen Geduld bedanken.

Oliver Schultz, Thorsten Wengelnik, Florian Leese, Heike Wägele, Ingo Burghardt und Martin Fanenbruck danke ich für viele hilfreiche und unterhaltsame Gespräche.

Bei Gabi Strieso, Malgorzata Rudschewski und Beate Hackethal möchte ich mich für ihre Hilfe an Bord der "Polarstern" bzw. im DNA-Labor bedanken.

Einen reibungslosen Ablauf der bürokratischen Formalia garantierte Simone Jannett souverän zu jeder Zeit.

Allen anderen Mitarbeitern des Lehrstuhls danke ich für die tolle Arbeitsatmosphäre und ihre Unterstützung.

Bei der Deutschen Forschungsgemeinschaft (DFG) möchte ich mich für die finanzielle Unterstützung bedanken.

Mein allergrößter Dank gebührt jedoch meinen Eltern sowie Angelika Beuker für ihre seelische und moralische Unterstützung, für Geduld und Verständnis zu jeder Zeit. Sie waren immer für mich da, wenn ich Hilfe brauchte. Vielen, vielen Dank für alles!