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Abstract

Many modern sea ice models used in global climate models represent the subgrid-scale heterogeneity in sea ice thickness with

an ice thickness distribution (ITD), which improves model realism by representing the significant impact of the high spatial

heterogeneity of sea ice thickness on thermodynamic and dynamic processes. Most models default to five thickness categories.

However, little has been done to explore the effects of the resolution of this distribution (number of categories) on sea-ice

feedbacks in a coupled model framework and resulting representation of the sea ice mean state. Here, we explore this using

sensitivity experiments in CESM2 with the standard five ice thickness categories and fifteen ice thickness categories. Increasing

the resolution of the ITD in a run with preindustrial climate forcing results in substantially thicker Arctic sea ice year-round.

Analyses show that this is a result of the ITD influence on ice strength. With 15 ITD categories, weaker ice occurs for the same

average thickness, resulting in a higher fraction of ridged sea ice. In contrast, the higher resolution of thin ice categories results

in enhanced heat conduction and bottom growth and leads to only somewhat increased winter Antarctic sea ice. The spatial

resolution of the ICESat-2 satellite mission provides a new opportunity to compare model outputs with observations of seasonal

evolution of the ITD in the Arctic (ICESat-2; 2018-2021). Comparisons highlight significant differences from the ITD modeled

with both runs over this period, likely pointing to underlying issues contributing to the representation of average thickness.
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Abstract16

Many modern sea ice models used in global climate models represent the subgrid-17

scale heterogeneity in sea ice thickness with an ice thickness distribution (ITD), which18

improves model realism by representing the significant impact of the high spatial het-19

erogeneity of sea ice thickness on thermodynamic and dynamic processes. Most mod-20

els default to five thickness categories. However, little has been done to explore the ef-21

fects of the resolution of this distribution (number of categories) on sea-ice feedbacks in22

a coupled model framework and resulting representation of the sea ice mean state. Here,23

we explore this using sensitivity experiments in CESM2 with the standard five ice thick-24

ness categories and fifteen ice thickness categories. Increasing the resolution of the ITD25

in a run with preindustrial climate forcing results in substantially thicker Arctic sea ice26

year-round. Analyses show that this is a result of the ITD influence on ice strength. With27

15 ITD categories, weaker ice occurs for the same average thickness, resulting in a higher28

fraction of ridged sea ice. In contrast, the higher resolution of thin ice categories results29

in enhanced heat conduction and bottom growth and leads to only somewhat increased30

winter Antarctic sea ice. The spatial resolution of the ICESat-2 satellite mission provides31

a new opportunity to compare model outputs with observations of seasonal evolution of32

the ITD in the Arctic (ICESat-2; 2018-2021). Comparisons highlight significant differ-33

ences from the ITD modeled with both runs over this period, likely pointing to under-34

lying issues contributing to the representation of average thickness.35

Plain Language Summary36

The sea ice thickness is a key property of the sea ice cover, and is highly variable37

across the Arctic. The thickness influences thermal processes like growth and melt and38

dynamic processes like ridging. One of the simplifying assumptions that is applied in sim-39

ulating sea ice in global climate models is representing the variation in ice thickness with40

an ice thickness distribution with a set number of categories. Typically, most models use41

five categories. Here, we test the impact of using a higher number of categories (15) on42

the simulation of sea ice. More ITD categories in the model results in significantly more43

simulated Arctic sea ice. This is primarily because the model estimates that the ice is44

weaker and so more of it is ridged into thicker ice. Modeled ice thickness distributions45

are also compared with thicknesses from satellite observations (ICESat-2). In the cur-46

rent version of the model, increasing the resolution of thickness does not improve the com-47

parison with observations. We highlight areas for development and future work.48

1 Introduction49

Sophisticated sea ice models included in the current suite of global climate mod-50

els now generally represent many of the dynamic and thermodynamic processes impor-51

tant for simulating the mean state of sea ice across both hemispheres. Various simpli-52

fications are invoked in order to account for the small-scale variability of the ice pack.53

For example, at the subgrid-scale level, the range of sea ice thickness is often represented54

using a discretized ice thickness distribution (ITD). The ITD defines the fraction of the55

ice cover with thicknesses in the range of specified bins (Figure 1). The idea of an ITD56

was first introduced by Thorndike et al. (1975) and adapted for climate models by C. M. Bitz57

et al. (2001), incorporating the mechanical redistribution proposed by Flato and Hibler III58

(1995). In the ITD formulation, sea ice is transferred between thickness categories as a59

result of simulated thermodynamic (e.g., growth and melt), and dynamic (e.g., ridging)60

processes. The ITD discretization then provides a computationally efficient means of pa-61

rameterizing small-scale sea ice variability in models, with significant advantages over62

the use of a single mean grid-cell thickness.63
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Many parameterization schemes included in sea ice models are sensitive to the use64

of an ITD and the details of its resolution (C. M. Bitz et al., 2001; Holland et al., 2001).65

In fact, Massonnet et al. (2018) suggests that the main differences in the sea ice cover66

simulated by different global climate models are a result of varying ice thickness distri-67

bution schemes, as the thermodynamics schemes are generally quite similar. Fundamen-68

tally, thin ice grows faster than thicker ice and so exerts an unequal influence on ice growth,69

atmospheric heat fluxes, and brine rejection compared to thicker ice (Maykut, 1982). The70

relationship between growth and thickness is not linear, such that higher resolution of71

thin ice results in more growth and a thicker average ice cover (Holland & Curry, 1999).72

The resulting ice pack is also impacted by the influence of thickness on sea ice strength,73

where thin, first-year ice is weaker and more likely to participate in ridging (e.g., Flato74

& Hibler III, 1995). These processes can have cascading effects on the ice-ocean-atmosphere75

system (C. M. Bitz et al., 2001).76

In most global climate models with an ITD, the default setting of five thickness cat-77

egories originally proposed by C. M. Bitz et al. (2001) to capture the primary impacts78

of sea ice for the climate has largely been used without further investigation (Keen et79

al., 2021). However, more recent studies using a coupled ice-ocean model (NEMO-LIM)80

have investigated the impact of the number and bounds of ice thickness category discretiza-81

tion on the representation of global sea ice. Massonnet et al. (2011) found that increas-82

ing the number of ITD categories improved the seasonal to interannual variability of Arc-83

tic sea ice extent and retreat at basin-scales. In contrast, Moreno-Chamarro et al. (2020)84

found that increasing the number of thin categories resulted in worse comparisons of Arc-85

tic sea ice concentration and extent with observations when all other model settings were86

kept constant. Massonnet et al. (2019) more broadly investigated the impact of the dis-87

cretization and resolution of thick ice categories on representation of sea ice over the his-88

torical period. However, to our knowledge there has not been any specific investigations89

into how increasing the number of ice thickness distribution categories might affect the90

representation of specific sea ice processes, particularly in a fully-coupled climate model91

with an interactive atmosphere. Additionally, despite the importance of sub-grid prop-92

erties on key sea ice processes, prior studies examining model sensitivity to the ITD have93

focused on improving the comparison of mean state variables with observations, includ-94

ing total extent, total volume, and average thickness. There are only a few examples of95

studies in general that have examined the spatial variability or distribution of grid-cell96

mean thicknesses (e.g., Jahn et al., 2012), and there are no studies to our knowledge in-97

vestigating subgrid-scale thickness distributions.98

The main objective of this study is to examine the sensitivity of the sea ice state99

to increased resolution of the ITD. Our approach here improves on earlier analyses in100

two primary ways. First, the use of a fully-coupled framework, which allows for feedbacks101

and a more realistic representation of the ITD category resolution on sea ice, supports102

a focus on the impact of key physical processes on subgrid-scale thickness. Second, the103

use of new high-resolution sea ice observations allows us to assess comparisons of the subgrid-104

scale variability. We will begin by exploring the impact on Arctic and Antarctic sea ice105

mean state in a preindustrial control climate as a result of the differences in regime. We106

then investigate the possible implications for model realism by comparing model results107

from a current-day climate scenario with high spatial resolution ice thickness observa-108

tions from ICESat-2. Our comparison with observations is possibly the first to evalu-109

ate modeled sea ice thickness on a subgrid-scale level. We suggest that evaluating the110

distribution of ice thickness in global climate models can provide insight into represen-111

tation of processes beyond the typical comparison of mean state variables.112
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2 Model and Experimental Design113

2.1 Coupled climate model configuration (CESM2-CAM6)114

To investigate the role of the ITD category resolution in a coupled climate model,115

we perform simulations using the Community Earth System Model 2 (CESM2; Danaba-116

soglu et al., 2020). We run CESM2 over a global domain with ocean and sea ice mod-117

els on a displaced pole grid with a nominal horizontal resolution of 1◦ x 1◦. CESM2 in-118

cludes the sea ice model CICE version 5.1.2 (E. C. Hunke et al., 2015; E. Hunke et al.,119

2017). Information on the implementation of the sea ice model within CESM2 can be120

found in Bailey et al. (2020). The only significant change in the implementation here is121

the use of tuned albedos of snow on sea ice to give a realistic simulation of ice thickness122

over the historical period (Kay et al., 2022, ;details on tuning therein).123

The CICE model includes an ice thickness distribution (Holland et al., 2006), which124

is common across most modern global sea ice models (Keen et al., 2021). Sea ice is dis-125

cretized into a set number of categories (typically five), which occupy an evolving frac-126

tion of the grid cell. Sea ice volume and area are transferred between categories as a re-127

sult of melt, growth, and dynamic processes. Lipscomb (2001) introduced a linear remap-128

ping scheme to transfer ice between categories, which has faster convergence than prior129

schemes. Linear remapping is also less diffusive, where more diffusive schemes can act130

to artificially smear out peaks in the distribution. The boundaries of the discretized ice131

thickness categories are determined following Lipscomb (2001, Eq. 22), which defines bound-132

aries between 0 and 10 m using a tanh function to give wider spacing for increasing ice133

thickness. The minimum thickness of the thinnest category is set at 0.01 m. Greater cat-134

egory resolution for thin ice is beneficial to better resolve sea ice growth, which is a non-135

linear function of ice thickness. Relatedly, poor resolution of thin ice categories can also136

result in more numerical diffusion.137

The dynamic component of the CICE model utilizes the sea ice strength param-138

eterization defined by Rothrock (1975). In this formulation, the sea ice strength is de-139

fined in proportion to the change in potential energy per unit of compressive deforma-140

tion of the ice (Rothrock, 1975). The deformational work of compression goes into ridge-141

building (Flato & Hibler III, 1995). This is in contrast to the Hibler (1979) strength for-142

mulation used by many other sea ice models, where strength depends only on mean con-143

centration and thickness. The Rothrock (1975) formulation results in a weaker icepack144

with higher resolution of the ITD (C. M. Bitz et al., 2001), likely because there are im-145

portant physical effects that are not properly included (Ungermann et al., 2017). A thor-146

ough evaluation of the role of the strength parameterization on sea ice mean state sen-147

sitivity to the ITD is presented by Ungermann et al. (2017).148

For this study, we perform simulations in preindustrial, historical and SSP3-7.0 sce-149

narios, and primarily assess outputs from the preindustrial and SSP3-7.0 runs. Prein-150

dustrial runs were branched after 880 years with inter-annually invariant atmospheric151

conditions appropriate for year 1850. Preindustrial control runs were 60 years long, and152

averages and analysis were done over the last 25 years to investigate changes in processes.153

A run over the historical period with the relevant changes was initialized at the year 1850.154

This was then used to initialize an SSP3-7.0 experiment run at the year 2015, which is155

compared to four SSP3-7.0 ensemble members run over the same period, as described156

by Kay et al. (2022). These SSP3-7.0 runs are used for comparison with current satel-157

lite data.158

All runs use the full atmosphere, sea ice, and land models of CESM2. The histor-159

ical and future scenario also use the full dynamic ocean model, while the preindustrial160

runs use a simplified slab ocean model (SOM; C. M. Bitz et al., 2012). The SOM is used161

for preindustrial runs as it converges much faster (e.g., in around 20 years with CO2 dou-162

bling) and so requires significantly less computational time. The ocean model is simpli-163
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fied to use fixed dynamic forcings and specified global mixed layer depths (with a min-164

imum of 10 m depth). The temperature of the slab mixed layer is calculated using sur-165

face energy fluxes and a prescribed ocean heat flux associated with advection and mix-166

ing. Although dynamic feedbacks between the sea ice and ocean are limited by the use167

of the SOM in preindustrial runs, coupled climate feedbacks are generally well-captured168

(e.g., Bacmeister et al., 2020).169

2.2 Sensitivity experiments170

To examine the impact of ITD category resolution, we compare experimental runs171

with the default of 5 ITD categories with runs using an increased resolution of 15 ITD172

categories (Figure 1). The categories are preferentially distributed toward the thin classes173

following the default discretization scheme described above (Lipscomb, 2001, Eq. 22).174

To initialize the 15 ITD category simulations, restart files for 15-category runs are made175

by placing ice from each of the 5 original thickness categories from a spun up simulation176

into the bin of the 15 categories which includes the relevant ice thickness. This conserves177

sea ice volume such that the 15-category simulations are initialized with a mean thick-178

ness that is consistent with the 5-category runs. However, it does result in an initially179

discontinuous ITD that equilibrates over the spin-up period. Increasing the number of180

ITD categories from 5 to 15 increases the computational time associated with the sea181

ice component of the model by approximately 3x. Nonetheless, the sea ice component182

represents a small fraction of the model run time; for example, the sea ice model runs183

in 3 seconds per model day with 15 ITD categories, compared to the 5.6 seconds per model184

day required by the atmosphere model.185

The ITD is determined by calculating the fraction of ice-covered area accounted186

for by each thickness category in a given region. In order to compare distributions from187

5 and 15 category runs, the 15 category ITD (solid yellow lines in Figure 1) is re-binned188

into 5 categories with approximately the same bounds as the control run (dashed yel-189

low lines). We utilize the NSIDC regional mask of the Arctic Ocean and its peripheral190

seas to delineate the results by region. Hemispheric and regional totals of sea ice area191

and sea ice volume are calculated using the standard method as the modeled sea ice con-192

centration multiplied by grid cell area or grid cell area and average thickness, respectively,193

summed over all cells.194

2.3 Observations of Arctic ITD from ICESat-2195

The high-resolution freeboard measurements produced from the ATLAS laser al-196

timeter onboard the ICESat-2 satellite launched in 2018 provide a unique opportunity197

to compare observations of ice thickness distribution with model outputs. Here, we use198

the ICESat-2 along-track sea ice thickness data (IS2SITDAT4) available through the Na-199

tional Snow and Ice Data Center (NSIDC, https://nsidc.org/data/is2sitdat4; Petty, Kurtz,200

et al., 2022). Briefly, these thickness estimates utilize high-resolution freeboard data (ATL10)201

provided by ICESat-2 along the three strong beams. The ATL10 freeboard data are the202

end result of a series of algorithms that aggregate raw photon data collected by ATLAS203

into sea ice height and then freeboard segments with horizontal resolutions of tens of me-204

ters and vertical uncertainties of centimeters (Kwok et al., 2021). To produce estimates205

of sea ice thickness, Petty et al. (2020) converted ATL10 to thickness using the hydro-206

static equilibrium equation and input assumptions regarding sea ice density, snow depth,207

and snow density. Snow depth and density are derived from the NASA Eulerian Snow208

on Sea Ice Model (NESOSIM), which is a snow budget model configured for the Arctic209

Ocean using records of snowfall, wind, sea ice concentration, and ice drift. As the model210

produces relatively coarse resolution snow data (∼100 km), relationships of snow depth211

and freeboard obtained from NASA’s Operation IceBridge are used to redistribute snow212

onto the higher resolution (∼30 m) ICESat-2 data. A more detailed description of the213

thickness data processing is provided in Petty et al. (2020), while recent upgrades to this214
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Figure 1. Example of discretized ice thickness distribution (ITD) in CICE with 5 categories

(green) and 15 categories (gold, solid lines), where bars denote the frequency or fraction of ice

in each ice thickness category. The 15 category ITD (gold, solid lines) can be re-binned into 5

categories with approximately the same bounds as the control (gold, dashed lines) for easier

comparison.

data utilizing the latest rel005 ATL10 freeboards and NESOSIM v1.1 snow loading from215

November 2018 to April 2021 are presented in Petty, Keeney, et al. (2022). In this study,216

we use the IS2SITDAT4 thickness data from all three strong beams from November 2018217

to April 2021. These data are used to calculate an ITD for a given month and region by218

collating all available ice thickness values within that region, and binning the data us-219

ing the category bounds defined by CESM2. Thickness data are available in winter only220

due to availability of NESOSIM snow loading estimates. The thickness data are exam-221

ined at regional scales in order to minimize any biases relating to spatial sampling of the222

satellite path.223

Due to the use of a statistical redistribution scheme and the uncertainties of the224

underlying Operation IceBridge snow depths, we acknowledge that the ICESat-2 thick-225

ness observations at subgrid-scales carry large uncertainties and should be treated with226

caution. An alternative method could be to directly compare freeboard, rather than thick-227

ness, to minimize error associated with estimates of snow in thickness retrievals. Thick-228

ness is used here due to our focus on understanding the processes influenced by the ITD.229

3 Results230

3.1 Impact of ITD category resolution on simulated sea ice231

We first describe the impacts of ITD category resolution on simulated sea ice mean232

state and the differences between results in the Arctic and Antarctic under preindustrial233

control forcing. This comparison uses 60-year runs with the slab ocean model. Given the234

relatively short length of these runs, we use a long control run that has a fully-coupled235

ocean (Kay et al., 2022), rather than the SOM used in experiments here, to quantify the236

internal variability in 25-year climatological averages. We acknowledge that the inter-237

nal variability may be different in SOM and fully-coupled simulations but given the lim-238

itations in available data, this provides a reasonable approximation for simulation com-239
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Figure 2. Mean seasonal cycle of (a-c) Arctic and (d-f) Antarctic sea ice. (a,d) Sea ice area,

(b,e) volume, and (c,f) fraction of ridged ice are shown for runs with 5 categories (control; green)

and 15 categories (gold). Shading represents the approximate internal variability as estimated by

the standard deviation of 25-year segments of a fully-coupled preindustrial control run.

parison. The approximate internal variability as determined by the standard deviation240

of five randomly selected 25-year segments is shown as shading in Fig. 2.241

In the Arctic, increasing the ITD category resolution in a preindustrial control cli-242

mate from 5 to 15 categories results in thicker and more expansive sea ice (Fig. 2a-c).243

The Arctic sea ice area is approximately unchanged in the winter, but up to 30% greater244

at the summer sea ice minimum in September. More notably, the sea ice volume is higher245

year-round, indicative of thicker ice on average. There is approximately a 50% increase246

in volume of simulated ice at the September minimum, or about 12,268 km3 more ice.247

The fraction of ridged ice is similarly about 50% greater in the winter, and around 0.1248

higher year-round.249
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Figure 3. Difference in grid-averaged August sea ice thickness in the Arctic (left) and Antarc-

tic (right) between run with 15 categories and 5 categories. Red indicates an increase in ice

thickness with higher ITD category resolution, and blue indicates a decrease in ice thickness.

Note that the scale of colorbar changes between panels.

In contrast, the mean state of Antarctic sea ice in a preindustrial control climate250

shows only a weak response to our ITD category resolution change (Fig. 2d-f). Both the251

sea ice area and sea ice volume response are somewhat larger with increased ITD cat-252

egory resolution in the austral winter, but approximately unchanged in the summer. The253

increased resolution results in a 570 km3 increase in simulated sea ice volume at the time254

of maximum difference, in September. The fraction of ridged ice similarly increases a small255

amount, and is only significantly different from the control in winter. Though small, these256

differences are outside the estimated range of internal variability (shading in Fig. 2). Thus,257

the season of largest impact is the opposite of that in the Arctic, where summer changes258

were more dramatic.259

Figure 3 shows the spatial distribution of changes in sea ice thickness for both hemi-260

spheres in August, which is around the time of the greatest change in each. Maps of spa-261

tial changes in sea ice thickness in February can be found in the Supporting Informa-262

tion (Fig. S1). In the Arctic, the map shows uniform increase in August ice thickness263

with higher ITD category resolution, with no areas showing a decrease in sea ice thick-264

ness. The increase in thickness is particularly high in the Canadian Islands (>3 m) but265

is substantial across the Central Arctic and through most of the Arctic Basin. The Antarc-266

tic has more spatial variability in average sea ice thickness change. In most regions of267

the Antarctic, August sea ice thickness is an average of 0–0.3 m greater. Decreases in268

sea ice thickness are observed primarily in the Bellinghausen and Amundsen Seas (west269

of the Antarctic Peninsula). This simulated decrease is primarily dynamically driven,270

and within the relatively high standard deviation of sea ice thickness in the control run271

for this region. This variability is likely related to the influence of the Southern Annu-272

lar Mode (Landrum et al., 2012; Holland et al., 2017), and does not likely suggest a sig-273

nificant change associated with the increased ITD category resolution in the simulation.274

Contributions of individual terms to the annual sea ice volume budget are exam-275

ined in Figure 4. The volume changes associated with thermodynamic processes of bot-276

tom growth and top melt both decrease in the Arctic with higher ITD category resolu-277

tion. In contrast, the volume of bottom growth and basal melt increase in the Antarc-278
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Figure 4. Annual sea ice volume budgets for preindustrial control run with 5 categories

(green) and 15 categories (gold) in the (a) Arctic and (b) Antarctic. Volume budgets can be con-

verted into mass budgets using the assumed constant sea ice density of 917 kg m−3 used in the

model. Bars intentionally offset for visual clarity.

tic. All other terms remain approximately unchanged. Note that for hemispheric totals,279

the dynamics term, including ridging and advection, is by definition negligible, as it re-280

distributes ice rather than accounting for net formation or loss. The interaction between281

dynamic and thermodynamic terms are discussed further in Section 3.2.282

To better understand the response of the subgrid-scale ITD associated with the sig-283

nificant changes in Arctic sea ice thickness and volume, we examine the changes in the284

Central Arctic ITD and volume budget. The annual cycle of the ITD (Figure 5) shows285

relatively minor changes in the first two ice thickness categories with increased ITD cat-286

egory resolution. There is a somewhat lower fraction of open water in the summer, in287

agreement with the slight overall decrease in sea ice area seasonally (Fig. 2a). However,288

the more notable changes are in the middle and thickest ice thickness categories (1.39–289

2.47 m and 4.57+, respectively). There is a substantial reduction of the fraction of ice290

in the middle ice thickness category, which seems to be nearly completely accounted for291

by an increase in the thickest category. This appears to be consistent with an increase292

in the fraction of ridged ice in the Arctic by about 0.1 throughout the year (Fig. 2c). It293

is possible that more of the thinner ice is ridged, rather than being promoted by ice growth294

to the mid-range ice category (1.39-2.47 m), or that more of the 1.39-2.47 m ice specif-295

ically is ridged, moving it into the thickest ice category. As the fraction of ridged ice is296

not tracked as a function of ice thickness category in these runs, it is not possible to con-297

firm this more specifically from the model outputs.298

Comparison of the volume budgets for the Central Arctic (Fig. 6) shows the changes299

in thermodynamic and dynamic processes associated with the higher resolution and shift300

in sea ice mean state. As with the Arctic hemispheric totals (Fig. 4), we see a decrease301

in thermodynamic terms of bottom growth, and surface and basal melt. This is likely302

associated with the decrease in the fraction of thin categories (Fig. 5), as thin ice typ-303

ically undergoes more rapid growth and melt. The role of thermodynamic processes de-304

creases with higher ITD category resolution due to the shift of the mean state towards305

the thickest ice category because of the weaker simulated strength driving more active306

ridging. The increase in ice volume loss due to dynamics suggests an increase in advec-307

tion of ice out of the region, as ridging conserves ice volume locally.308
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Figure 5. Mean annual cycle of ice thickness distribution in the Central Arctic (as defined

by NSIDC), preindustrial forcing. The fractional coverage of open water and each ice category

is shown for the control run (green) and 15 category run (gold). As in Fig. 1, 15 categories are

re-binned into 5 categories with approximately the same bounds as the control.

Figure 6. Annual sea ice volume budget for the Central Arctic in preindustrial control run

with 5 categories (green) and 15 categories (gold). Volume budgets can be converted into mass

budgets using the assumed constant sea ice density of 917 kg m−3 used in the model.
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3.2 Causes of ITD-related differences in sea ice simulation309

We next examine the primary causes behind the differences in simulated sea ice with310

15 ITD categories. In particular, we compare the differences between the two hemispheres,311

and examine the primary dynamic and thermodynamic processes responsible for the ob-312

served changes.313

To understand the role of sea ice dynamics in changes in simulated sea ice thick-314

ness, we first investigate the changes in simulated ice strength. In CESM2, ice strength315

is calculated for each grid-cell and depends on the ITD, as described in Section 2.1. In316

general, a lower mean thickness will result in weaker ice (Fig. 7). Compressive deforma-317

tion of the ice increases with lower strength such that the fraction of ice that is ridged318

increases with weaker ice. Figure 7 shows that, for the same mean grid-cell sea ice thick-319

ness, increased ITD category resolution in the Arctic results in generally weaker ice. This320

is particularly true for grid cells with mean thickness of 5 m or greater. These results321

are consistent with the seasonal cycle of the ITD in the Central Arctic (Figure 5) sug-322

gesting that increasing the resolution of the ITD primarily impacts relatively thick ice323

categories in the Arctic. Figure 7 shows results for December, but the result is consis-324

tent with other winter months. In effect, higher ITD category resolution of thick ice leads325

to weaker ice which undergoes more dynamic ridging. In particular, the model suggests326

a ∼50% increase in the fraction of Arctic winter ice that is in the thick ridged ice cat-327

egory, from 0.2 to 0.3 (Fig. 2c). The fraction of ridged ice is generally higher in the Arc-328

tic summer due to the preferential melt of thin ice. The fraction of ridged ice reaches329

0.49 in August with 15 ITD categories, compared to 0.36 in the 5 ITD category run (Fig.330

2c). Notably, increased ITD category resolution is not associated with the same increase331

in average strength in the Antarctic (Fig. 7). The Antarctic ice pack has less persistent332

ridged ice and an overall thinner ice pack (Fig. 2e-f), resulting in less of the especially333

thick (> 5 m) ice where the effect of resolution was particularly notable for sea ice strength334

in the Arctic.335

To isolate the impact of ITD category resolution on thermodynamic processes, we336

examine the changes in simulated bottom growth rates. We acknowledge that, in com-337

parison to strength, thermodynamic mass budget terms can vary spatially due to the re-338

lationship with the heat budget, which could impact these comparisons. While the spa-339

tial distribution of sea ice is relatively unchanged in the Antarctic, spatial changes in sea340

ice thickness in the Arctic (Fig. 3) are more substantial. In both the Arctic and Antarc-341

tic, the bottom growth rate peaks around 0.5–1.0 m mean thickness (Fig. 8). Ice less than342

0.5 m thickness is more likely to be near the ice edge where the atmosphere is warmer343

and growth rates are slower. The average bottom growth rate in the Arctic is largely un-344

changed by the increase in ITD category resolution (with similar patterns seen in the345

analysis of the Central Arctic, suggesting a small role of spatial redistribution). There346

is more bottom growth in Antarctic sea ice for grid cells of the same mean sea ice thick-347

ness between 0.5–2.5 m (Fig. 8). Results are shown for June, but a similar direction and348

magnitude of change is seen for all winter months. The impact is particularly clear for349

relatively thin ice, around 0.5-1.5 m thick. Thermodynamic growth is non-linear with350

ice thickness, and tends to be more rapid for thinner ice as it allows for more heat con-351

duction from the ice-ocean interface. For the same average thickness, more ITD cate-352

gories will allow better resolution of thin ice categories. As a result, the increase in bot-353

tom growth throughout the growth season is associated with an increase in sea ice thick-354

ness across much of the Antarctic sea ice pack (Fig. 8). Mass budget analysis (Fig. 4)355

shows that increase in bottom growth is offset by similar increase in the rate of basal melt,356

such that the ice volume and area return to the levels of the control run in the spring357

and summer (Fig. 2d,e).358

While the results in Figure 8 suggest that thermodynamic processes in the Arc-359

tic are not significantly impacted directly by the higher resolution of the ITD, changes360

in the sea ice volume budgets in Figures 4 and 6 demonstrate the interaction between361
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Figure 7. Sea ice strength as a function of grid-cell mean sea ice thickness in December (Arc-

tic; left) and June (Antarctic; right). Runs with 5 categories (control; green) and 15 categories

(gold). Transparent circles show points from all grid cells in all analyzed years, with solid bars

showing binned means with length indicating standard deviation.

Figure 8. Bottom growth rate as a function of sea ice thickness for December (Arctic; left)

and June (Antarctic; right). Runs with 5 categories (control; green) and 15 categories (gold).

Transparent circles show points from all grid cells in all analyzed years, with solid bars showing

binned means with horizontal length indicating standard deviation.

the thermodynamic and dynamic processes presented here. The increase of ridging brings362

the sea ice to a new equilibrium ice thickness (Fig. 2; C. Bitz & Roe, 2004) such that363

the ice growth equals ice melt. We may be more likely to see a relative increase in growth364

associated with ridging (which conserves volume) in the transient response. As we can365

see in Figure 8, the rate of growth is not equal across average thickness. Dynamics (ridg-366

ing) is moving ice into thicker categories where bottom growth and surface melt are weaker.367

In other words, decreases in thermodynamic processes are not a direct impact of the res-368

olution of categories as it relates to growth or melt, but rather appear to be an indirect369

result of subgrid-scale thickness redistribution due to ridging.370

3.3 Comparison with ICESat-2 thickness estimates371

High spatial resolution estimates of sea ice thickness derived from ICESat-2 free-372

board data provide a unique opportunity to assess the modeled ITDs. We do not expect373

the model to precisely capture ITDs derived from ICESat-2 data, as there are many fac-374

tors in addition to the ITD category resolution that impact this comparison. This in-375

cludes that the model is not using an exact forcing from reanalysis, but rather represents376

similar climatological conditions to what we would expect over the observed time period.377

Additionally, the ICESat-2 thickness estimates rely on snow loading from a relatively sim-378
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ple snow accumulation model framework and empirical assumptions regarding small-scale379

snow distribution. Thickness retrievals may be particularly problematic in areas of rel-380

atively high snowfall and low freeboard (such as can occur in the Barents Sea) and ar-381

eas of heavily ridged ice. Nonetheless, comparisons between observations and models are382

useful for understanding process differences across regions and how they may be repre-383

sented in our current models and observational datasets.384

For model comparisons, we use outputs from the SSP-3.70 scenario simulation (Kay385

et al., 2022), which begins in 2015. Averages from 2015-2025 are used to center on the386

time covered by observations, and the simulated sea ice is shown in Figure 9. The im-387

pact of increasing ITD category resolution is less dramatic than in preindustrial control388

runs, similarly resulting in a substantial increase in sea ice volume year-round and a greater389

fraction of ridged ice, but with no change in the sea ice area (Fig. 9). These runs use390

tuned albedo characteristics that improve the simulation of the sea ice state over the his-391

torical period (Kay et al., 2022), and by extension, we expect that the Arctic sea ice over392

this period in the control run is appropriate for the climate state. We use the four avail-393

able SSP3-7.0 ensemble members (Kay et al., 2022) to estimate the associated internal394

variability. The standard deviation of the annual cycle for the 10-year interval is shown395

as shading around the mean in Figure 9. As the changes noted are outside the range of396

internal variability, subsequent analysis will proceed with one ensemble member.397

We present comparisons of the ITD from the Central Arctic and Barents Sea to398

highlight processes in regions dominated by perennial and seasonal ice regimes, respec-399

tively. While ICESat-2 will not provide full coverage over each region for any given month400

due to the satellite orbit cycle, combining all observations for a given month results in401

a sufficient number of observations such that we can expect it to be statistically repre-402

sentative. For example, the Central Arctic has an average of 1.7×109 ICESat-2 thick-403

ness observations for each month across all months and years, with a monthly minimum404

of 8.7×108 during one month. The Barents Sea has an average of 5.2×107 ICESat-2 thick-405

ness observations for each month across all months and years, with a monthly minimum406

of 2.4×105 during a month with particularly low returns. Figures for results of all other407

Arctic Basin regions are included in the Supporting Information. ICESat-2 observes sea408

ice freeboard in both hemispheres, but we only show comparisons in the Arctic here as409

thickness estimates are not available for the Antarctic due to the added complexity of410

modeling snow on Southern Hemisphere sea ice.411

Comparisons of ITD are displayed in two ways to highlight different aspects. Plots412

of the mean annual cycle (Figures 10 and 12) highlight the seasonal changes, where we413

can compare quantities within individual categories. Here, the fraction in each category414

is scaled by the total ice concentration such that the values represent the fraction of the415

entire region covered by ice in that thickness range. As each category has an associated416

average thickness within the bounds, changes in fractions do not capture all changes in417

the mean thickness. Growth and melt do not necessarily transfer ice to new categories418

depending on the average thickness, but typically will on monthly time scales. As regional419

ice concentration estimates are not directly available from the ICESat-2 thickness data,420

the observational ITD are scaled by the ice concentration in the 5 category run. These421

plots also highlight estimates of interannual variability, where the total range of values422

over the 10 analyzed years of the model and 3 years of ICESat-2 are represented by the423

shaded areas, and the solid line represents the mean in both datasets. The differences424

noted here are generally outside the range of inter-annual variability. Histograms from425

selected months (Figures 11 and 13) show the absolute value of fractions in ice-covered426

areas. We note again that the re-binning of the 15 category run results in slightly dif-427

ferent bin edges than in the 5 category run (Fig. 1), but we expect this to have a neg-428

ligible impact on the comparison.429

In almost all regions, the model in both resolutions predicts significantly more ice430

in the thickest ice category than the ICESat-2 observations (e.g., Figs. 10 and 12). Higher431
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Figure 9. Simulated seasonal cycle of Arctic (a) sea ice area, (b) volume, and (c) ridged ice

fraction, over years 2015-2025 (SSP3-7.0). Runs with 5 categories (control; green), where shading

represents the approximate internal variability as estimated by the standard deviation around the

ensemble mean using four ensemble members (Kay et al., 2022), and 15 categories (gold).
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resolution of ITD results in an even higher fraction of ice in the thickest category (4.57+432

m) compared to the control, and thus is even further from the estimate from observa-433

tions. Ice of such thickness can only be achieved by ridging. The observed seasonal cy-434

cle of thick, ridged ice in the Central Arctic has a strong amplitude, where there is al-435

most no ice in the thickest category at the start of fall freeze-up and the fraction rapidly436

increases through the fall and winter (Fig. 10). In comparison, the modeled ice in the437

thickest category is persistent through the summer, but is comparable to observations438

by April. The seasonal changes in thick ice warrant further exploration in future work,439

in particular to understand the potential impact of the preferential melt of thick, ridged440

ice over the summer (e.g., Wadhams, 2000; Schramm et al., 2000). We note that while441

it is possible that the ability of ICESat-2 to resolve the range of thicknesses impacts the442

comparison, recent work has suggested that ICESat-2 can resolve small-scale freeboard443

variability, including leads and pressure ridges, with centimeter-scale accuracy (Kwok444

et al., 2019; Farrell et al., 2020). The snow model, NESOSIM, used to convert freeboard445

to thickness, has been calibrated using recent snow depths obtained from NASA’s Op-446

eration IceBridge at regional-scales in the most recent release used here (Version 1.1; Petty,447

Keeney, et al., 2022). However, questions still remain regarding snow distribution over448

ridges. The Operation IceBridge Snow Radar-derived snow depth observations used to449

estimate the empirical relationship between freeboard and small-scale snow depth vari-450

ability are noted to be more uncertain over ridged/deformed ice regimes compared to451

thin level ice (King et al., 2015). If less snow is retained over ridges compared to cur-452

rent assumptions, this would increase the effective sea ice thickness estimates from ICESat-453

2 (Nicolaus et al., 2022).454

The fractional coverage of thin ice categories is driven by dynamics as well as ther-455

modynamics, as ridging can cause a loss of ice from these categories. The growth of rel-456

atively thin and new ice is well-captured by comparisons in the Barents Sea, which is457

predominately seasonal ice (i.e., open water fraction is nearly 1 at the September min-458

imum; Fig. 12). Thin and new ice growth generally compares well with ICESat-2 ob-459

servations. In particular, the rate of change of ice concentration in the 1st and 2nd cat-460

egories in the Barents Sea (0.0–0.64 and 0.64–1.39 m) are comparable from fall through461

winter (Fig. 12). The model representation of the seasonal cycle of thin ice in the 5 cat-462

egory control run matches particularly well with observations, and the growth of new463

ice possibly becomes too rapid compared to observations with the increased ITD cat-464

egory resolution of the 15 category run. Thus, higher ITD category resolution results in465

a lower quality comparison with observations in regions dominated by seasonal, thin ice.466

The volume contribution from advection makes up substantial fraction of the Barents467

Sea ice volume change in the fall (≈30% in November), but is likely primarily new ice468

growth from neighboring regions such that we can justify treating the ITD changes as469

primarily thermodynamic.470

Model simulations appear to estimate a lower fraction of ice in intermediate thick-471

ness categories compared to ICESat-2 observations. This is evident in the Central Arc-472

tic throughout the periods of comparison (Fig. 11), and the Barents Sea region in the473

fall (Fig. 13). This may be related to more thin ice being ridged in the model, rather474

than being promoted to thicker ice by growth processes.475

4 Discussion476

4.1 Implications for choice of ITD category resolution477

The primary aim of this study was to assess the effect of increases in the ITD cat-478

egory resolution in a coupled model framework, rather than a more robust recommen-479

dation of the optimal number of thickness categories. Nonetheless, it highlights some con-480

siderations for choosing model setup. Increasing the ITD category resolution currently481

results in increased disagreement with ICESat-2-derived thickness estimates for most thick-482
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Figure 10. Mean annual cycle of the ice thickness distribution in the Central Arctic in model

simulations and ICESat-2 observations. The fractional coverage of open water and in each ice

category is shown for the control 5 category model run (green), 15 category model run (gold),

and ICESat-2 (black). Shading represents the full range of values over the 10 years analyzed from

the model or the 3 years of observations.

Figure 11. Comparison of discretized ice thickness distribution in the Central Arctic in model

simulations and ICESat-2 for select months: November, January, and March. The average frac-

tion of ice coverage in each category is shown for the 5 category model run (green), 15 category

model run (gold), and ICESat-2 (black outline).
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Figure 12. Mean annual cycle of the ice thickness distribution in the Barents Sea in model

simulations and ICESat-2 observations. The fractional coverage of open water and in each ice

category is shown for the control 5 category model run (green), 15 category model run (gold),

and ICESat-2 (black). Shading represents the full range of values over the 10 years analyzed from

the model or the 3 years of observations.

Figure 13. Comparison of discretized ice thickness distribution in the Barents Sea in model

simulations and ICESat-2 for select months: November, January, and March. The average frac-

tion of ice coverage in each category is shown for the 5 category model run (green), 15 category

model run (gold), and ICESat-2 (black outline).
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ness categories (Figs. 10, 12), and is particularly poor for thick categories, which has a483

significant impact on the sea ice mean state (Fig. 9). Tuning the model (e.g., Kay et al.,484

2022) or revisiting parameterizations could improve the mean state simulation and the485

ITD comparisons. Additionally, if completing a study focused on understanding the in-486

teractions of the sea ice with other components of the climate model, using 15 categories487

may provide benefits. An ITD with more categories should result in less numerical dif-488

fusion (smoothing of peaks), and result in better representation of thermodynamic growth489

processes and the redistribution from thin to thick ice. More ITD categories is likely es-490

pecially important in climate system where multiple ice types are present (i.e., multi-491

year and first-year ice) such that multiple peaks can be resolved simultaneously. Stud-492

ies focused on understanding evolution of sea ice processes, and in particular on inves-493

tigating sea ice variability, will likely benefit from better resolution of the ITD provided494

by more categories (i.e. Massonnet et al., 2019). While we only completed a 15-category495

run here, similar directional impact can be expected from runs with increasing the num-496

ber of categories to other specific values (Massonnet et al., 2019). Although it can have497

significant increases on the computational time associated with the sea ice component,498

the sea ice component remains a relatively small computational expense in the context499

of a fully or partially-coupled model (i.e., the slab ocean model, as used here).500

Most CMIP6 global sea ice models have a known low bias in Arctic sea ice volume501

over the historical period (Notz & Community, 2020). In light of this, considering the502

role of the number of ITD categories on key sea ice processes should prove useful in tar-503

geting future improvements. For example, the standard version of the CESM2 model used504

here has a known thin bias in the Arctic sea ice pack (Danabasoglu et al., 2020; DeRe-505

pentigny et al., 2020). This may be related to the under-prediction of ice in the inter-506

mediate thickness categories (e.g., Fig. 11) despite the apparent over-prediction of the507

thickest ice category. While our results suggest that increasing the number of categories508

increases the simulated thickness and volume (Fig. 9b), the albedo tunings used in Kay509

et al. (2022) to produce a more realistic ice pack show that there are many additional510

factors that could be considered in relation to better thickness representation. We pro-511

pose that the under-representation of ice in intermediate thickness categories in the model512

is at least in part a result of the propensity for ridging, which moves ice towards thicker513

categories. Understanding the factors contributing to disagreement in these categories514

should be a focus for efforts to improve model representation of ice thickness in global515

climate models. To do so, more effort should also be devoted to better observing and char-516

acterizing the expected ice thickness distributions at basin scales.517

The realism of many thickness-dependent parameterizations, such as the sea ice strength,518

is largely uncertain. As such, adjustment to the number of ITD categories may be more519

beneficial with future changes to thickness-dependent parameterizations. The results in520

Section 3.3 suggest that there is even more thick, ridged ice in the model than is esti-521

mated based on satellite observations due to the dependence of the current parameter-522

ization for ice strength on ITD category resolution. Ungermann et al. (2017) similarly523

concluded that the strength formulation by Rothrock (1975) strongly depends on the num-524

ber of ITD categories. Updated strength and ridging parameterizations are likely needed525

to allow improved prediction of sea ice. Thus, the ideal number of ITD categories should526

be re-evaluated after new parameterizations are implemented. In particular, it is pos-527

sible that 5 categories may not be enough to sufficiently resolve thick ice categories with528

the implementation of more advanced ridging schemes (e.g., E. C. Hunke, 2014). Higher-529

resolution simulation of thin ice will additionally affect the sea ice growth rates, with im-530

plications for the ice-ocean coupling. The formation of open water is also related to the531

resolution of the thinnest ice categories, so melting is similarly expected to be depen-532

dent on the number of ITD categories, especially with implementation of more advanced533

lateral melting and floe size distribution schemes (e.g., Roach et al., 2018; Smith et al.,534

2022).535
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5 Conclusions536

This study suggests that the resolution of the sea ice thickness distribution (ITD)537

has a substantial impact on sea ice processes in a coupled climate model. Sensitivity anal-538

ysis of runs with an increased number of ITD categories in a control climate suggest the539

following key points:540

• Increasing the ITD category resolution in the coupled model significantly increases541

the simulated Arctic sea ice thickness and is primarily dynamically-driven, while542

increases in Antarctic sea ice are relatively minor and primarily thermodynamically-543

driven.544

• Dynamic impacts of increasing ITD category resolution primarily moves ice from545

thinner to thicker ice categories due to the thickness-dependent representation of546

ice strength, which results in weaker ice and more ridging. Dynamic impacts are547

especially noticeable in the Arctic summer ice pack when proportions of ridged548

ice remain high.549

• Thermodynamic impacts of increasing ITD category resolution result in both more550

melt and growth across ice thicknesses in the Antarctic winter ice pack due to the551

larger impact on growth via the ice thickness-ice growth rate feedback. (C. Bitz552

& Roe, 2004).553

These results are consistent with previous work indicating that thinnest categories are554

most sensitive to thermodynamic processes, while thickest categories are most sensitive555

to dynamic processes (Moreno-Chamarro et al., 2020; E. C. Hunke, 2014). We expect556

the dynamic impact of higher ITD category resolution to decrease over time as Arctic557

sea ice becomes thinner and less ridged on average, as demonstrated by the results of558

the future scenario SSP3-7.0.559

In addition, this study provides the first comparisons of estimates of subgrid-scale560

ITD from high-resolution ICESat-2 freeboard observations and state-of-the-art coupled561

sea ice model output. Comparisons of model outputs with satellite-derived data suggest562

targets for future work:563

• Improvements in simulating Arctic sea ice thickness should focus on ice strength564

and ridging parameterizations. A number of recent efforts have been focusing on565

improved ridging schemes (e.g., Roberts et al., 2019) which could be tested and566

incorporated into coupled models.567

• Ice thickness distribution provides an under-utilized opportunity for insights into568

sea ice schemes in coupled climate models, beyond mean state and grid-cell av-569

erage thickness.570

• The optimum number of ITD categories should be revisited depending on the ap-571

plication, but tuning will likely be required as many current settings have been572

determined based on the default resolution of five categories.573

• The ICESat-2-derived thickness estimates rely on modelled estimates of small-scale574

snow redistribution that needs to be better informed by the latest in observational575

data towards achieving more reliable ice thickness estimation.576
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1. Figures S1 to S11

Introduction Figure S1 shows the change in sea ice thickness in both hemispheres in

February associated with increasing the ITD category resolution from 5 to 15 categories.

Figures S2 to S6 show comparisons of ITD histograms from model runs and ICESat-2

derived thicknesses for all other regions not included in the manuscript. Figures S7 to

S11 show comparisons of the ITD mean annual cycle for all other regions not included in

the manuscript.
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Figure S1. Difference in grid-averaged February sea ice thickness in the Arctic (left) and

Antarctic (right) between run with 15 categories and 5 categories. Red indicates an increase in

ice thickness with higher ITD category resolution, and blue indicates a decrease in ice thickness.

Note that the scale of colorbar changes between panels.

Figure S2. Comparison of discretized ice thickness distribution in the Beaufort Sea in model

simulations and ICESat-2 for select months: November, January, and March. The average

fraction of ice coverage in each category is shown for the 5 category model run (green), 15

category model run (gold), and ICESat-2 (black outline).
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Figure S3. Comparison of discretized ice thickness distribution in the Chukchi Sea in model

simulations and ICESat-2 for select months: November, January, and March. The average

fraction of ice coverage in each category is shown for the 5 category model run (green), 15

category model run (gold), and ICESat-2 (black outline).

Figure S4. Comparison of discretized ice thickness distribution in the East Siberian Sea

in model simulations and ICESat-2 for select months: November, January, and March. The

average fraction of ice coverage in each category is shown for the 5 category model run (green),

15 category model run (gold), and ICESat-2 (black outline).
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Figure S5. Comparison of discretized ice thickness distribution in the Laptev Sea in model

simulations and ICESat-2 for select months: November, January, and March. The average

fraction of ice coverage in each category is shown for the 5 category model run (green), 15

category model run (gold), and ICESat-2 (black outline).

Figure S6. Comparison of discretized ice thickness distribution in the Kara Sea in model

simulations and ICESat-2 for select months: November, January, and March. The average

fraction of ice coverage in each category is shown for the 5 category model run (green), 15

category model run (gold), and ICESat-2 (black outline).
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Figure S7. Mean annual cycle of the ice thickness distribution in the Beaufort Sea in model

simulations and ICESat-2 observations. The fractional coverage of open water and in each ice

category is shown for the control 5 category model run (green), 15 category model run (gold),

and ICESat-2 (black). Shading represents the full range of values over the 10 years analyzed

from the model or the 3 years of observations.
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Figure S8. Mean annual cycle of the ice thickness distribution in the Chukchi Sea in model

simulations and ICESat-2 observations. The fractional coverage of open water and in each ice

category is shown for the control 5 category model run (green), 15 category model run (gold),

and ICESat-2 (black). Shading represents the full range of values over the 10 years analyzed

from the model or the 3 years of observations.
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Figure S9. Mean annual cycle of the ice thickness distribution in the East Siberian Sea in

model simulations and ICESat-2 observations. The fractional coverage of open water and in each

ice category is shown for the control 5 category model run (green), 15 category model run (gold),

and ICESat-2 (black). Shading represents the full range of values over the 10 years analyzed

from the model or the 3 years of observations.
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Figure S10. Mean annual cycle of the ice thickness distribution in the Laptev Sea in model

simulations and ICESat-2 observations. The fractional coverage of open water and in each ice

category is shown for the control 5 category model run (green), 15 category model run (gold),

and ICESat-2 (black). Shading represents the full range of values over the 10 years analyzed

from the model or the 3 years of observations.
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Figure S11. Mean annual cycle of the ice thickness distribution in the Kara Sea in model

simulations and ICESat-2 observations. The fractional coverage of open water and in each ice

category is shown for the control 5 category model run (green), 15 category model run (gold),

and ICESat-2 (black). Shading represents the full range of values over the 10 years analyzed

from the model or the 3 years of observations.
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