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Abstract

We present an assessment of the water mass dynamics in a reanalysis of the Mediterranean Sea with a focus on the Western basin.

We use a θ-S based algorithm to compute the fractions of the main western Mediterranean water masses : Atlantic and modified

Atlantic Waters (AW, mAW), Western and Levantine Intermediate Waters (WIW and LIW)and Western Mediterranean Deep

Waters (WDW). The reanalysis retains the known mean characteristics of the water masses, their seasonal to interannual

variability and main circulation patterns when compared with the literature. The imprints of winter mixing is particularly

obvious with coherent variations of water mass volumes, mainly the yearly creation of WIW from mAW on northernmost

shelves and of WMDW from all surface and intermediate layers during years of deep water formation. The results also highlight

some unrealistic events of variability of the WMDW volume that are likely due to the data assimilation process. Re-computing

the water mass volumes and transports without these altered years allowed to highlight the possible disruption of the large-scale

barotropic cyclonic circulation in the Eastern Algerian basin in response to major DWF events over the Gulf of Lion. The

reanalysis also showsan overtopping ofWMDW in the Sardinia Channel in 2009 leading to a major backward flow of mAW from

the Tyrrhenian to the Algero-Provençal basin. Both processes affects the circulations of AW and mAW over the whole western

Mediterranean.
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 12 

Key points 13 

We study the water masses dynamics of the western Mediterranean from a 20yr reanalysis using 14 
a θ-S based algorithm of water masses fraction.  15 

The method allows detecting anomalous events of deep water creation/descruction likely due to 16 
the assimilation process. 17 

Results highligth the impact of deep water formation on the surface and intermediate regional 18 
circulation.  19 

 20 

Abstract 21 

We present an assessment of the water mass dynamics in a reanalysis of the Mediterranean Sea 22 
with a focus on the Western basin. We use a θ-S based algorithm to compute the fractions of the 23 
main western Mediterranean water masses : Atlantic and modified Atlantic Waters (AW, mAW), 24 
Western and Levantine Intermediate Waters (WIW and LIW)and Western Mediterranean Deep 25 
Waters (WDW). The reanalysis retains the known mean characteristics of the water masses, their 26 
seasonal to interannual variability and main circulation patterns when compared with the 27 
literature. The imprints of winter mixing is particularly obvious with coherent variations of water 28 
mass volumes, mainly the yearly creation of WIW from mAW on northernmost shelves and of 29 
WMDW from all surface and intermediate layers during years of deep water formation. The 30 
results also highlight some unrealistic events of variability of the WMDW volume that are likely 31 
due to the data assimilation process. Re-computing the water mass volumes and transports 32 
without these altered years allowed to highlight the possible disruption of the large-scale 33 
barotropic cyclonic circulation in the Eastern Algerian basin in response to major DWF events 34 
over the Gulf of Lion. The reanalysis also shows an overtopping of WMDW in the Sardinia 35 
Channel in 2009 leading to a major backward flow of mAW from the Tyrrhenian to the Algero-36 
Provençal basin. Both processes affects the circulations of AW and mAW over the whole 37 
western Mediterranean. 38 

 39 
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Plain Language Summary 40 

Defined as the large-scale oceanic circulation driven by surface heat and freshwater fluxes, the 41 
oceanic thermohaline circulation is a major player in the Earth's climate, as it distributes excess 42 
heat and carbon dioxide due to human activities into the deeper layers of the ocean over the long 43 
term. The Mediterranean Sea is unique in that it has its own thermohaline circulation due to its 44 
semi-enclosed configuration, a climate-driven water deficit (~ 1 m/year) balanced by a net inflow 45 
of Atlantic waters, and significant heat loss in winter leading to the formation of intermediate 46 
and bottom water masses. This thermohaline circulation has a time scale of around 100 years, 10 47 
times less than the global circulation, and has been shown to respond rapidly to the Northern 48 
Hemisphere climate variability. We have used a 20-year ocean reanalysis, i.e. a system that 49 
combines model and observations, to characterize and quantify the circulation of water masses in 50 
the western Mediterranean, from seasonal to interannual scales. Our study reveals that the main 51 
weakness of reanalysis lies in deep-water dynamics, whereas it has a marked imprint on surface 52 
and intermediate circulations. Understanding of the Mediterranean’s future requires a better 53 
representation of its deep dynamics. 54 

 55 

Abbreviations  56 

Water Masses : AW for Atlantic Water; LIW for Levantine Intermediate Water; mAW : for 57 
modified Atlantic Water; mIW for mixed Intermediate Water; TDWfor Tyrrhenian Deep Water; 58 
TIW for Tyrrhenian Intermediate Water; WIW for Western Intermediate Water; WMDW for 59 
Western Mediterranean Deep Water 60 

Currents : AC for Algerian Current; AE for Algerian Eddy; BC for Balearic Current; ECC for 61 
East Corsican Current; NC for Northern Current; SE for Sardinian Eddy; WCC for West 62 
Corsican Current  63 

Others : DWF for Deep Water Formation; EMT for Eastern Mediterranean Transient; MEDRYS 64 
for MEDiterranean ReanalYSis; MLD for Mixed Layer Depth; SLA for Sea Level Anomaly; 65 
WMT for Western Mediterranean Transition  66 

 67 

1. Introduction 68 

The Mediterranean Sea has the unique particularity of having its own and well defined thermo-69 
haline circulation, almost independent from the global one. This is due to its particular 70 
configuration : a semi-enclosed sea suffering a dry, windy and relatively warm regional climate 71 
that makes it a concentration basin where evaporation exceeds precipitation and run-offs (Nof, 72 
1979; Béthoux, 1980). This climate driven deficit of water (~0.5-1.0 m/year) is balanced by a net 73 
inflow through the Strait of Gibraltar between in-flowing AW and deeper out-flowing salty 74 
Mediterranean water (Nof, 1979; Millot, 1987; Béthoux & Gentili, 1999; Mariotti et al., 2002; 75 
Pellet et al., 2019). The incoming AW flows cyclonically in all the Mediterranean sub-basins 76 
toward the easternmost Levantine Basin and is continuously modified all along its path by 77 
mixing with saltier resident waters and air-sea exchanges. Simultaneously, severe heat loss and 78 
evaporation due to harsh atmospheric conditions in autumn and winter over the northern parts of 79 
the Mediterranean Sea causes convection to intermediate and deep layers (the deep water 80 
formation, DWF) in several areas and so to the recurrent formation of different intermediate and 81 
deep water masses. Those areas are mainly the Gulf of Lion for Western Mediterranean Deep 82 
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Water (WMDW), the Adriatic Sea and the Aegean Sea for the Easter Mediterranean Deep Water 83 
(EMDW) and in the northern Levantine Basin for the very salty Levantine Intermediate Water 84 
(LIW). All those locally produced water masses mix and spread all together with the AW to set 85 
up and maintain the Mediterranean ThermoHaline Circulation (MTHC, Robinson & Golnaraghi, 86 
1994; Bergamasco & Malanotte-Rizzoli, 2010; Waldman et al., 2018; Pinardi et al., 2019). The 87 
MTHC has a time scale of about 100 years (10 times less that the global Ocean one) and has 88 
been shown to quickly respond to Northern Hemisphere climate variability, be it during the last 89 
glacial period (Cacho et al., 2000, 2001; Incarbona et al., 2016; Cortina-Guerra et al., 2021) or 90 
more recently in the early 90’s when an abrupt shift in the intermediate and deep part of the 91 
eastern MTHC, called the Eastern Mediterranean Transient (EMT), has affected the water 92 
masses in both parts of the Mediterranean for at least a decade (Roether et al., 2007; Bergamasco 93 
& Malanotte-Rizzoli, 2010; Cardin et al., 2015; Li & Tanhua, 2020; Sisma-Ventura et al., 2021). 94 
Subsequent to the propagation of the EMT signal in the western Mediterranean and after a lack 95 
of intermediate and deep convection in the early 00’s, the sudden return of DWF events in 2005 96 
and after has led to a cooling and freshening of the intermediate waters associated with a 97 
warming and salting of the deep waters called the Western Mediterranean Transition (WMT, 98 
Lopez-Jurado et al., 2005; Schroeder et al., 2006, 2010, 2016; Pineiro et al., 2019, 2021; Amitai 99 
et al., 2021).  100 

All climate models predict in the Mediterranean an increase in rainfall variability and strong 101 
warming and drying (Somot et al., 2008; de Sherbinin et al., 2014; IPCC AR6 WGI Full Report, 102 
2021) while there is some evidence that the western DWF may collapse by mid-century due to 103 
increased stratification (Somot et al., 2006; Herrmann et al., 2008; Parras-Berrocal et al., 2021). 104 
Indeed, recent studies have shown the Mediterranean waters to have warmed at a rate four times 105 
larger than the global Ocean over the last decades (~0.04°C/year vs ~0.01°C/year, Bethoux et al., 106 
1998; Vargas-Yanez et al., 2008; Nykjaer, 2009; Bensoussan et al., 2019; Pisano et al., 2020), 107 
affecting all layers throughout the Mediterranean. These warning signals have led, over the last 108 
twenty years or so, to an unprecedented effort of sampling, modeling and analysis. However, an 109 
integrated and quantitative view of the MTHC able to improve the monitoring and future 110 
predictions of climate-induced changes still remains a challenge (CIESM 2002; Theocharis, 111 
2008; Somot et al., 2008; Fox-Kemper et al., 2019). Here, we focus on the western 112 
Mediterranean which is known to be a four-layer system (surface, winter subsurface, 113 
intermediate and deep waters, Juza et al., 2015) and has six main water masses which are 114 
commonly and clearly identified in the literature : the AW and mAW in near surface layers (0-115 
200m), the Western Intermediate Water (WIW, ~200m) and LIW at intermediate depths (300-116 
600m), the Tyrrhenian Deep Water (TDW, 500-1500m) and the WMDW at greater depths down 117 
to the bottom (Wust, 1961; Millot, 1987; Manzella & La Violette, 1990; Pinot et al., 1995; Millot 118 
& Taupier-Letage, 2005; Juza et al., 2013, 2019).  119 

The AW incoming from the strait of Gibraltar (0.6-1.0 Sv, Soto-Navarro et al., 2010; Peliz et al., 120 
2013; Skliris et al., 2018) is the first input of the western MTHC and, except the Rhône and Ebro 121 
rivers plumes, is the lightest and freshest water of the western Mediterranean (S~36.0 at the 122 
Strait of Gibraltar). It flows along the North-African coast within the Algerian Current (AC, Fig. 123 
1), being spread and partially mixed northward in the Algerian basin by the Algerian Eddies 124 
(AEs, e.g. Millot, 1990; Puillat et al., 2002; Testor et al., 2005b; Escudier et al., 2016) before 125 
flowing eastward toward the Tyrrhenian and through the strait of Sicily towards the Eastern 126 
Mediterranean (Béranger et al., 2004; Jebri et al., 2016). MAW or mAW, for modified Atlantic 127 
Water is an acronym commonly used by many authors to designate the saltier AW due to its 128 
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ageing in the Mediterranean (e.g. Theocharis et al., 1993; Millot, 1999; Onken & Sellschopp, 129 
2001; Puillat et al., 2002; Hassoun et al., 2015). It is sometimes also called old AW, (typical) 130 
Mediterranean Water or Mediterranean Surface Water, (Millot et al. 2006; Millot, 2007, 2009). 131 
Some others consider both the AW and mAW as a single entity (e.g. CIESM 2001, Millot & 132 
Taupier-Letage, 2005; Béranger et al., 2005; Millot, 2013; Fedele et al., 2022). Both the AW and 133 
mAW are restricted to the upper (0-200 m) layers but significantly differ in terms of salinity 134 
values, the latter reaching two salinity units greater values (~38.2-38.4) for the saltier ones in the 135 
Tyrrhenian and Ligurian Seas; hence the use of the appelation mAW for the present work. The 136 
saltier mAW from the Tyrrhenian fuels the East Corsican Current (ECC) and joins with the West 137 
Corsican Current (WCC) to feed the Northern Current (NC) that flows from the Ligurian to the 138 
Balearic Sea (Fig. 1). 139 

 140 

 141 
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Fig. 1. Map of the western Mediterranean bathymetry and major circulations features. AC, BC, 142 
NC and WCC denote respectively the Algerian, Balearic, Northern and West Corsican currents. 143 
Large and small arrow circles denote the Algerian and Sardinian Eddies, respectively (AEs & 144 
SEs) while black arrows represent their paths. The oval shape locates the Deep Water Formation 145 
area. The CS sections locate where the transports of Table 2 have been calculated. The NW1 146 
section locates the section of Fig. 3, and with NW2, both define the NWMED domain as in 147 
Somot et al. (2018). Bathymetry data are from etopo1.nc (NOAA National Geophysical Data 148 
Center. 2009) 149 

The Levantine Intermediate Water (LIW) is the second major input of the western MHTC. LIW 150 
is produced in the Eastern Mediterranean by intermediate (~200-600 meters) convection in 151 
winter and is the saltier (S>39) of the Mediterranean (Millot, 2013; Ozer et al., 2017; Kubin et 152 
al., 2019). The LIW flows cyclonically along the continental slope at intermediate depths (200-153 
600 meters) throughout the whole eastern basin and partly passes the strait of Sicily (Millot, 154 
2013; Ben Ismail et al., 2014) to enter the western basin. When LIW enters the Tyrrhenian Sea, it 155 
mixes with resident deep waters (mostly WMDW) and forms the TDW (Astraldi & Gasparini, 156 
1994; Sparnocchia et al., 1999; Gasparini et al., 2005), but still keeping a pronounced salinity 157 
signature (S>38.8 between 300-600 meters). Both the LIW and TDW follow a counterclockwise 158 
circulation in the Tyrrhenian (Falco et al., 2016; de la Vara et al., 2019; Iacono et al., 2021) 159 
before they leave through the Sardinia Channel to enter the Algero-Provençal basin where it flow 160 
northwestward along the western coasts of Sardinia and Corsica or are spreaded out westward in 161 
the central basin by the Sardinian Eddies (SEs) (Rhein et al., 1999; Testor et al., 2005a; Bosse et 162 
al., 2015; Send & Testor, 2017).  163 

The WIW is a winter cooled mAW due to cold and dry winds (Mistral and Tramontane) blowing 164 
over the shelf of the Gulf of Lion (GoL), the Provençal basin and the Ligurian Sea. Although not 165 
originally the saltiest of the mAW (~38.3), its cooling is sufficient to increase its potential 166 
density so as to make it sit between the warmer mAW and the deeper LIW at an intermediate 167 
depth of about 200-300 meters. It flows then mostly along the continental slope across the 168 
Balearic Sea and later through the Ibiza and Mallorca channels down to the Alboran Sea (Salat & 169 
Font, 1987; Puig et al., 2013; Juza et al., 2019; Vargas-Yanez et al., 2012, 2020). Stronger winter 170 
wind forcing over the GoL and the Provençal basin regularly causes vertical convection through 171 
the WIW and LIW/TDW that can reach the seafloor in some years, leading then to the renewal of 172 
the WMDW (MEDOC group, 1970; Millot, 1999; Schroeder et al., 2008ab; Waldmann et al., 173 
2016, 2017ab; Testor et al., 2018, Keller Jr. et al., 2022). Intermediate convection during less 174 
severe winters produces a slightly less dense water that stands and stacks between the LIW and 175 
older deep water with thermohaline characteristics similar to the TDW. Constrained by the 176 
southward increasing bathymetry, the denser WMDW (σθ>29.10 kg m-3) then spreads mostly 177 
southward across the whole Algero-Provençal basin up till the Alboran Sea. The WMDWs can 178 
sometimes pass through the Sardinia channel to enter the Tyrrhenian when exceptional DWF 179 
uplifts the older and lighter WMDW up to the strait sill, as following the WMT (e.g., Beuvier et 180 
al., 2012; Schroeder et al., 2016; Li & Tanhua, 2020). 181 

To better understand the dynamics of these water masses, it is necessary to be able to follow their 182 
behavior and interactions, their entry or exit, their propagation and their mixing through the 183 
numerous mesoscale to sub-mesoscale eddies that are found throughout the NW Mediterranean. 184 
This challenge is hardly achievable with at-sea observations alone, while numerical modeling 185 
may not be free of biases and unrealistic trends due to uncertainties in forcing, initial conditions 186 
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and unresolved sub-grid processes. By combining, thanks to data assimilation systems, modeling 187 
and observations in a coherent physical framework, ocean reanalysis offers a good compromise, 188 
particularly for multi-decanal series which allow us to approach the climatology of the system 189 
and its inter-annual variability (Balsameda et al., 2015; Aznar et al., 2016). However, the 190 
reanalysis has its own weaknesses, mainly due to the assimilation process which, by forcing the 191 
model trajectory to converge towards independent observations, does not guarantee the pure 192 
conservation of heat and salt and can therefore alter the characteristics of the water masses.  193 

This work is based on a reanalysis of the Mediterranean Sea, called MEDRYS1V2 (Hamon et 194 
al., 2016; Beuvier et al., 2016), with two main objectives : first, to assess the mean characteristics 195 
and distribution of water masses over the western Mediterranean as produced by the reanalysis, 196 
and second, to gain insight, characterize and quantify the circulation of these different water 197 
masses from seasonal to inter-annual time scales. We built a simple and efficient method to 198 
detect the water masses in the western Mediterranean and track their circulation and mixing over 199 
the twenty-year reanalysis (Section 2.2). The results are first analyzed using the mean 200 
thermohaline characteristics of each water mass to assess the robustness of the reanalysis in 201 
terms of water mass conservation. Climatological average of water mass volumes and transports 202 
are then assessed based on known circulation patterns (Section 3.1). In a second step, we analyze 203 
the time series of specific properties and volumes of each water mass (Section 3.2). In a third 204 
step, we focus the analysis on the DWF impact on surface dynamics at the climatological scale 205 
and by reference to the WMT (Section 3.3). We discuss the algorithm and the results, and 206 
conclude in Section 4. 207 

 208 

2. Data & Methods 209 

2.1. The MEDRYS1V2 Reanalysis 210 

The study is based on the MEDRYS1V2 reanalysis which begins in October 1992 and ends in 211 
June 2013 with daily outputs (Hamon et al., 2016; Beuvier et al., 2016). These two decades 212 
allow us to compute quite good climatology of water mass volumes and transports and to 213 
observe several different episodes. MEDRYS1V2 is a configuration of the NEMO-MED12 214 
model (which has a spatial resolution of 1/12° and 75 z levels sharpened near the surface) that 215 
uses the SAM2 assimilation scheme (Lellouche et al., 2013). The simulation is forced by the 216 
atmospheric ALDERA dataset (Hamon et al. 2016), a downscaling of the ERA-Interim 217 
reanalysis (Dee et al., 2011) with the ALADIN-Climate regional climate model (Colin et al., 218 
(2010) for the description of the version 5 of ALADIN-Climate used to produce the ALDERA 219 
dataset). Satellite SST, altimetry and in situ temperature-salinity (θ-S) profiles are assimilated. 220 
SST data was assimilated at a resolution of 1° and comes from NOAA 1/4° gridded radiometer 221 
products (Reynolds et al., 2007) without trusting any observation within 50 km off the coasts. 222 
The along-track Sea Level Anomaly (SLA) AVISO product (1992-2013) is assimilated one 223 
every three points and combined with the Mediterranean MDT from Rio et al. (2011). 224 
Assimilated in situ θ-S profiles from the CORA4 database (Cabanes et al., 2013) uses only one 225 
profile within 0.1° per day per platform. The reanalysis is initialized end of September 1992 with 226 
the state of a twin free run (same model configuration as MEDRYS1V2 but without data 227 
assimilation), which starts in October 1979. It takes about 9 months after its start for the 228 
reanalysis to achieve its spin up (see Hamon et al., 2016). Following results and validation hence 229 
do not take into account the first three seasons of the reanalysis (autumn 1992 to spring 1993). 230 
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2.2. The Detection Algorithm of Water Masses  231 

Among the oldest tools of physical oceanography, the θ-S diagram is classically used to analyze 232 
the mixing and distribution of water masses. It is based on the fact that the mixing of two water 233 
masses builds a straight line, allowing hence to determine the fraction of those for all sampled 234 
depth along this mixing line. The method is only a little more complicated for the mixing of three 235 
water masses considering that the sum of their fraction must equal unity. It becomes intractable 236 
for four water masses or more without considering at least another one conservative variable 237 
(e.g. Manca et al., 2006; Schroeder et al., 2008b; de Brauwere et al., 2007). Even in these cases, 238 
the other used variables should have to be sampled with the same spatio-temporal resolution that 239 
the θ-S data, which is a hard to achieve task. Other methods can be found in the recent literature, 240 
such as clustering based methods (e.g. Kim et al., 1991; Cardin et Celio., 1997; Zhu et al., 2019) 241 
sometimes combined with EOF analysis on vertical profile of temperature and salinity (e.g. 242 
Hjelmervik & Hjelmervik, 2013; Bauch & Cherniavskaia, 2018; Gao et al., 2020), but were not 243 
considered given their high computing cost over a 20-y reanalysis.  244 

Indeed, we rather use the fact that, with the exception of transitory convection events, the vertical 245 
distributions of the different water masses are constrained by their relative buoyancy, i.e. are 246 
vertically ordered with increasing potential density. The water mass sorting algorithm was so-247 
defined from the climatological (i.e. 20-y average) θ-S diagram computed from the reanalysis 248 
(Fig. 2) assuming that, over the western Mediterranean, the water column can be partitioned in 249 
three main layers, each with different θ-S mixing trends. AW and mAW (37<S<38.45, 250 
θ>13,5°C) are above 200-300m and can be easily distinguished from salinity alone. Temperature 251 
ranges seasonally from 13°C to more than 25°C in this upper layer and may only help in winter 252 
to identify WIW as cooled mAW (θ<13.5°C). Below 300m depth, a second mixing line reveals 253 
the transition toward a salinity maximum that marks the LIW core. Below this salinity 254 
maximum, the θ-S diagram shows a third and almost linear mixing line from LIW to the 255 
WMDW, including TDW-like mixed intermediate waters. The water masses’ sorting algorithm 256 
hence uses at first a partitioning of the water column based on potential density and, in a second 257 
step, ad hoc salinity and temperature dilution ratios along the three previously identified mixing 258 
lines. Using potential density based functions rather than fixed depths allows to dynamically 259 
adjust this partitioning of the water column all along the reanalysis. Likewise, dilution ratios are 260 
used afterward rather than net truncations that do not resolve water mass mixing and may 261 
generate spurious discontinuity effects in the vicinity of the threshold values used to discriminate 262 
the water masses. The main algorithm’s hypotheses are as follows (computations' steps and 263 
equations are detailed in Appendix A). 264 

At first, the partition of the water column is made with two functions defining the surface (fsurf) 265 
and deep (fdeep) waters assuming the LIW marks the boundary between both (Appendix A.1). 266 
The surface layer is defined as all waters above the σθ(mAW)=28.964 kg m-3 isopycnical 267 
(fsurf=1), assumed to mark the lower bound of the mAW core, and considering below a linear 268 
decrease of fsurf toward zero between σθ(mAW) and σθ(LIW) = 29.061 kg m-3. The mAW’s 269 
salinity (38.45) used to define σθ(mAW) is the maximum of time averaged sea surface salinity in 270 
the reanalysis (Fig. 2) and in observations in the Ligurian Sea (Marty & Chiavérini, 2010; Prieur 271 
et al., 2020). It is also the salinity minimum of WMDW (e.g., Puig et al., 2013; Houpert et al., 272 
2016). The value used for σθ(LIW) is that of the original LIW in the eastern basin (taking S=39 273 
and θ=15°C) that is globally conserved in the reanalysis along the path of the LIW spreading 274 
(Fig. 2). The deep layer function is defined similarly assuming a linear increase from zero to 275 
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flags in the upper layer, i.e. fmAW = fsurf . [1 – (ffresh+fAW+fLIW)], with, in addition, a sub-302 
partitioning of mAW to discriminate WIW using a temperature dilution ratio between 13°C and 303 
13.5°C when θ is lower than 13.5°C (Appendix A.3). This WIW labeling is an intermediate 304 
method between a fixed range detection and the geometry-based method of Juza et al. (2019). At 305 
last, we define a pool of intermediate mixed waters, called mIW, as the complementary of the 306 
sum of all previously computed flags, i.e. fmIW = 1- (ffresh+fAW+fmAW+fWIW+fLIW+fWMDW), that 307 
may include TDW as well as all partially mixed waters of similar thermohaline characteristics 308 
produced during intermediate or uncomplete DWF events over the GoL. None of those 309 
intermediate water masses is able to generate an inflection point on the θ-S diagram that may 310 
help to unambiguously discriminate them. 311 

Fig. 3 shows an illustrative example of the θ-S-flags diagrams and corresponding vertical 312 
distribution of the so-tagged water masses for a zonal section at 40°N in the late-spring of 2009. 313 
Higher flag values properly match the known θ-S ranges of each water mass, mixing trends 314 
between each and vertical distributions. Waters above σθ=29.0 kg m-3 are mainly AW and mAW, 315 
showing a zonal transition between the Balearic Sea, where mAW are mostly found, and the 316 
central area where the signature of AW is slightly more pronounced. Both are tagged in the 317 
upper 300 m and well above the LIW. WIW is located between mAW and LIW and 318 
preferentially in the Balearic Sea in a vein of low temperature (13-13.3°C) and moderate salinity 319 
(38.1 to 38.4). LIW is tagged between 200 and 800m depth, preferentially on the Sardinian coast, 320 
but also showing some traces at great depths (2000-2200 m) likely resulting from a previous to 321 
2009 convection event (Pineiro et al., 2021). The WMDW is labeled at depth (fWMDW greater 322 
than 75% below 800m) and mainly below the 29.10 kg m-3 isopycnical. The mIW is tagged on 323 
the WIW/LIW and LIW/WMDW mixing lines, centered around the 29.06 kg m-3 isopycnical 324 
with a larger extent at depth (800 m). 325 

 326 
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Fig. 3. θ-S diagrams (a-f) and (g-l) corresponding vertical cross-sections of the water mass ratios 328 
(%) along 40°N (NW1 section on Fig. 1) for 28 May 2009. Some critical isolines are shown on 329 
vertical section panels as :  dotted line for the 38.00 isohaline (g-h); solid line for the 29.06 kg m-330 
3 isopycnal (h) ; dotted line for the 13.5 °C isoherm and solid line for he 29.06 kg m-3 isopycnal 331 
(i) ; solid and dotted lines for the 38.54 and 38.477 isohalines, respectively (j) ; dotted line for 332 
the 29.06 kg m-3 isopycnal (k) ; solid line and dotted lines for the the 29.10 kg m-3 and 29.13 kg 333 
m-3 isopycnals (l), respectively. Balearic, Central and Sardinia locate the data of the Balearic Sea, 334 
the Central basin and the shelf’s slope of Sardinia. 335 

With the water masses marked in this way, several diagnostic quantities were calculated (see 336 
Appendix B for details of the calculations), first to check the robustness and efficiency of the 337 
algorithm over all the reanalysis, and second to extract the distributions and transports of each 338 
water mass. Based on the fact that the sum of the water mass fractions is always constrained to 339 
unity, these are first used as weighting factors to extract the volume-averaged thermohaline 340 
characteristics of each water mass over the study area. The core characteristics of each water 341 
mass are calculated similarly but using only the local maximum within the water column of the 342 
corresponding flag. We also calculated the depth range occupied by each water mass by 343 
averaging the minimum and maximum depths of each water column where the corresponding 344 
fraction is greater than 0.05 (5%). Still based on a sum of fractions equal to unity, the water mass 345 
fractions are then used to partition the volumes and advective fluxes for each grid cell, allowing 346 
the calculation of water mass-specific volumes and transports from the water column level (by 347 
depth integration) to the regional scale (by meridional and zonal integration). 348 

 349 

3. Results 350 

3.1. Average Thermohaline Characteristics, Volumes and Circulations of the Water Masses 351 

This section presents climatological averages (i.e. 20-year averages) of the thermohaline 352 
characteristics, volumes and transports of each water mass as labeled by the algorithm. The 353 
average characteristics (θ, S, σθ, z) are first given in Table 1 for comparison with known 354 
literature values (references therein the table). The calculated specific volumes and transports are 355 
presented in Figure 4. Reported per square meter for each model grid point, the estimated 356 
volumes (in m3) also correspond to the thickness of the water mass layer (in meters). Table 2 357 
gives transport values computed at selected sections (see Fig. 1) to facilitate the comparisons 358 
with known transports of the major currents in the literature.  359 

The mean salinity of the AW is estimated to be 37.565 ± 0.071 (average ± one standard 360 
deviation), slightly lower but more variable within the core of the water mass computed with the 361 
maximum flag value (37.289 ± 0.123). These values are about 1.5 units higher than those of the 362 
AW entering through the Strait of Gibraltar (S~36) and reflect the progressive mixing with the 363 
Mediterranean saltier waters in the Alboran gyre system and further east in the AC instabilities 364 
and associated AEs. The AW mean temperature is ca 15.954 ± 1.32°C, close to the mean values 365 
for the inflowing AW, with a standard deviation of 1.32-1.85 °C (core and whole estimates, 366 
respectively) that accounts for the seasonal cycle of surface layers in the area. As such, the AW 367 
is the lightest water mass, showing average potential density values less than 28.0 kg m-3, a 368 
maximum depth of 135 ± 16 m and a core’s mean depth close to the surface (22 ± 9 m).  369 

 370 



manuscript submitted to Journal of Geophysical Rearch: Oceans 

 

Table 1. Historical and computed (20y and spatial average, standard deviation in brackets) values of 371 
potential temperature, salinity, potential density anomaly and depth location of the water masses in the 372 
western Mediterranean. The locations of historical studies are indicated with Lig., Bal, Prov., Lev, Alg.-373 
Prov and Tyr. denoting respectively the the Ligurian and Balearic Seas, the Provençal area, Levantine, 374 
Algero-Provençal basin and Tyrrhenian Sea. 375 
 376 

Water Mass θ (°C) PSAL σθ  (kg.m-3) Depth range (m) Location & period References 

AW 

 

>15 36.0-36.4 <27 <200 Gibraltar, 1955-2007 Bryden et al., 1994; Millot, 2007, 2009; 
Carracedo et al., 2014 

14-25 37.5-37.8 ~25 0-150 Bal. Sea & Alg.-Pro. 
1996-2020 

Vargas-Yanez et al., 2020; Barral et al., 2021; 
Fedele et al., 2022 

Full 15.954 
(1.32) 

37.565 
(0.071) 

27.702 
(0.338) 

min 0 (0) ave 34 
(2) max 135 (16) 

Alg.-Pro. 1993-2013 This study 
Core 16.907 

(1.849) 
37.289 
(0.123) 

27.273 
(0.507) ave 22 (9) 

mAW 

 >13 38.0-38.5 27.5-29 0-300 Lig. Sea & Prov. area 
1980-2018 

Marty & Chiaverini, 2010; Puig et al., 2013; 
Prieur et al., 2020 

Full 14.508 
(0.605) 

38.107 
(0.04) 

28.462 
(0.147) 

min 0 (0) ave 63 
(8)max 253 (36)  

Alg.-Pro. 1993-2013 This study 
Core 13.798 

(0.355) 
38.302 
(0.042) 

28.779 
(0.09) ave 114 (27) 

WIW 

 11.5-13.5 37.7-38.6 28.9-29.1 100-300 Bal & Pro  
1983-2019 

Salat & Font, 1987; Puig et al., 2013; Juza et al., 
2019; Vargas-Yanez et al., 2012, 2020 

Full 13.204 
(0.084) 

38.356 
(0.05) 

28.953 
(0.024) 

min 131 (29) ave 
151 (51) max 257 

(33) Alg.-Pro. 1993-2013 This study 

Core 13.217 
(0.074) 

38.358 
(0.038) 

28.953 
(0.016) ave 164 (32) 

LIW 

 
≥15 39-39.2 29.06 200-500 Lev. basin1978-2017 Millot, 2013; Ozer et al., 2017; Kubin et al., 2019 

13.1-13.9 38.5-38.7 29.05-29.1 200-800 Alg.-Pro. 2000-2019 Puillat et al., 2006; Bosse et al., 2015; Mallil et 
al., 2021; Fedele et al., 2022 

Full 13.151 
(0.046) 

38.518 
(0.009) 

29.09 
(0.009) 

min 273 (28) ave 
703 (96) max 
1269 (401) Alg.-Pro. 1993-2013 This study 

Core 13.385 
(0.053) 

38.564 
(0.017) 

29.077 
(0.011) ave 425 (40) 

TDW  
12.8-13.7 38.43-

38.7 >29.09 >700 Tyr. Sea1987-2018 Fuda et al., 2002; Buffett et al., 2017; Napolitano 
et al., 2019; Li & Tanhua, 2020 

>12.86 38.46-
38.56  600-1900 Alg.-Pro. 1997-2002 Rhein et al., 1999; Send & Testor, 2017; Ben 

Ismail et al., 2021 

mIW 
Full 13.149 

(0.086) 
38.497 
(0.018) 

29.075 
(0.006) 

min 205 (26) ave 
525 (138) max 

1344 (402) Alg.-Pro. 1993-2013 This study 

Core 13.309 
(0.054) 

38.518 
(0.014) 

29.057 
(0.001) ave 325 (51) 

WMDW 

 12.7-13 38.4-38.5 >29.1 >1500 Alg.-Pro. 1990-2014 Millot, 1999; Fuda et al., 2000; Puig et al., 2013; 
Schroeder et al., 2006, 2016; Knoll et al., 2017 

Full 12.910 
(0.032) 

38.476 
(0.013) 

29.108 
(0.007) 

min 360 (56) ave 
1382 (85) max 

2246 (21) Alg.-Pro. 1993-2013 This study 

Core 12.783 
(0.026) 

38.461 
(0.010) 

29.122 
(0.009) ave 2192 (129) 

 377 

The AW is mainly detected (Fig. 4a) in the Algerian basin, within the AC and the AEs spreading 378 
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area toward 40-41°N with some intrusions in the Balearic Sea through the Ibiza Channel (see 379 
Millot, 1987; Pinot et al., 1995). The AW transport exiting the Alboran Sea is estimated to 0.58 ± 380 
0.31 Sv (CS1 in Table 2), from which a little part passes the channel of Ibiza (0.08 ± 0.15 Sv, 381 
CS8) while the largest part flows eastward through the Sardinia Channel toward the Tyrrhenian 382 
(0.37 ± 0.25 Sv, CS2). In both cases, the standard deviations reflect a high variability (0.15-0.25 383 
Sv) likely due to the mesoscale activity that prevails in the AC and AEs. There is no significant 384 
AW transport north to 41°N, i.e. only very low values (lower than 2 × 10-3 Sv) due to traces of 385 
tagged AW (fAW under 5%), left by the use of a linear salinity dilution ratio between AW and 386 
mAW in the algorithm rather than a fixed threshold. The imbalance in AW transport between the 387 
inflow from Alboran and the outflow through the Sardinia Channel is compensated by a 388 
significant eastward flow of mAW through the Sardinia Channel (see below), highlighting the 389 
mixing of AW with the resident Mediterranean waters in the instabilities of the AC and the AEs.  390 

The labeled mAWs show higher mean salinities of 38.107 in the whole and 38.302 in the core, 391 
but in both cases with a low standard deviation (ca 0.04). The mean temperatures are lower than 392 
for the AWs (13.798°C and 14.508°C for the core and the whole, respectively), and less variable 393 
(standard deviation less than 0.355-0.605°C), mainly due to their more northerly and deeper 394 
distribution (see Fig. 3). Mean densities are therefore higher (28.462-28.779 kg m-3), as are the 395 
whole’s maximum (253 ± 36 m) or the core’s mean (114 ± 27 m) depths. The algorithm labels an 396 
eastward, increasing volume of mAW in the Algerian basin in response to the salinity increase 397 
along the path of AW toward the Tyrrhenian and, coherently, a higher volume of mAW in the 398 
Tyrrhenian. While the transports through the Sardinia Channel show both eastward and 399 
westward flows for the mAW, the net balance is eastward (0.35 ± 0.47 Sv) and compensates for 400 
the imbalance of AW transport between the Alboran exit and the Sardinia Channel. In the 401 
northern part of the basin (North of 40°N), the mAW is tagged along the shelf’s slope, showing 402 
the well-known cyclonic circulation from the West Sardinia to the Balearic Sea with an offshore 403 
undulating return flow between Mallorca to Sardinia around 40°N. The lower amount of mAW 404 
in the center of this gyre is consistent with the well-known isopycnal doming in the wintertime 405 
convective areas (e.g., Prieur et al., 2020). The mean transport of mAW increases from 0.12 ± 406 
0.36 Sv along the shelf’s slope of West Sardinia (CS3), to 0.49 ± 0.41 Sv in the WCC off Calvi 407 
(CS4). Then, being reinforced by the ECC from the Tyrrhenian (+0.29 ± 0.31 Sv, CS5), the 408 
mAW flow finally reaches 0.72 ± 0.43 Sv in the NC off Nice (CS6), but clearly decreases off the 409 
Gulf of Lion before entering the Balearic Sea (0.32 ± 0.50 Sv, CS7). Part of this decrease comes 410 
from the long-time average effect of winter times when mAW temporarily vanishes due to their 411 
conversion in new WIW during the coldest months and ultimately in WMDW during deep 412 
convection events. 413 

The average thermohaline characteristics of WIW are close to those of mAW, showing only a 414 
slightly higher salinity (38.356 ± 0.05) and, as expected, a lower temperature (13.204 ± 415 
0.084 °C) with no significant difference between the full and core estimates. The low standard 416 
deviations of the mean temperatures of the WIWs are due to the narrow range of temperatures 417 
that defines them and their short period of contact with the ocean-atmosphere interface. The 418 
WIW is generally defined as colder than 13°C, but the 20-y average uses all days of the year and 419 
not only winter days when the recent WIW is at its coldest. In addition, Juza et al. (2019) and 420 
Vargas-Yanez et al. (2020) have shown a warming trend in the WIW of 0.5°C over the last 421 
decade. The corresponding mean potential density of the WIW (28.953 kg m-3) is slightly higher 422 
than that of the mAW’s core (28.779 kg m-3), leading to a depth range (131 ± 29 to 257 ± 33 m) 423 
that lies between the mAW and LIW cores (114 and 425 m). The average total volume of WIW 424 
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over the Algero-Provençal domain is 17.3 ×103 km3 , distributed mainly along the Gulf of Lion 425 
shelf-slope and over most of the catalano-balearic area in agreement with estimates of Juza et al. 426 
(2013, 2019). The WIW average transport off the Catalan coast is estimated to be 0.20 ± 0.32 Sv, 427 
part of which escapes from the Balearic Sea through the BC (0.11 ± 0.17 Sv) and a lesser amount 428 
through the channels of Ibiza and Mallorca toward the Alboran Sea (0.08 ± 0.12 Sv). These 429 
estimates are consistent with those of Juza et al. (2013), although they use a much higher 430 
resolution model (1/40°) and a shorter period. Finally, as the algorithm considers WIW as cold 431 
mAW, WIWs’ volume and transport mirror the decrease of mAW ones from the Gulf of Lion to 432 
the Balearic Sea. Adding both transports compensates for the loss of mAW between Nice and the 433 
Balearic Sea. 434 

Table 2. Twenty year averaged water masses transports (Sv) and standard deviations (in 435 
brackets) computed across the transects shown Fig. 1. The ones for the Alboran Sea and the 436 
Sardinia Channel are positive eastward ; all others are positive northward. Transports between 437 
Corsica and Sardinia are not shown (lower than 10-5 Sv). 438 

 439 

 AW mAW WIW LIW mIW WMDW 

CS1: Alboran Sea 0.579 (0.306) 0.133 (0.342) -0.086 (0.088) -0.060 (0.050) -0.324 (0.226) -0.198 (0.576) 

CS2: South of Sardinia 0.373 (0.254) 0.345 (0.472) 0.0 (0.01) -0.194 (0.160) -0.088 (0.148) -0.065 (0.462) 

CS3: WCC off Sardinia 0.018 (0.062) 0.171 (0.368)  0.0 (0.062) -0.009 (0.112) -0.136 (0.405) -0.246 (0.748) 

CS4: WCC off Calvi 0.062 (0.048) 0.487 (0.412) 0.09 (0.141) 0.056 (0.159) 0.348 (0.892) 0.142 (0.408) 

CS5: East of Corsica 0.034 (0.044) 0.294 (0.312) 0.006 (0.037) 0.010 (0.015) 0.005 (0.014) 0.000 (0.001) 

CS6: NC off Nice -0.075 (0.05) -0.72 (0.43) -0.142 (0.219) -0.068 (0.165) -0.351 (0.890) -0.163 (0.401) 

CS7: NC off Pyrenees -0.044 (0.093) -0.323 (0.497) -0.204 (0.325) -0.047 (0.082) -0.295 (0.372) -0.387 (0.842) 

CS8: Balearic channels 0.082 (0.154) -0.025 (0.351) -0.083 (0.115) -0.011 (0.023) -0.139 (0.206) -0.063 (0.154) 

CS9: BC off Menorca 0.095 (0.101) 0.310 (0.377) 0.111 (0.170) 0.027 (0.077) 0.143 (0.337) 0.374 (0.858) 

 440 

The algorithm gives the LIW mean salinity as 38.518 ± 0.009, with only a slightly higher value 441 
for the core (38.564 ± 0.017). These low values are consistent with a -0.4 PSU loss due to the 442 
LIW dilution from the Levantine to the Western basin (e.g. Millot et al., 2013; Schroeder et al., 443 
2020). Its relatively low mean temperatures (13.151 °C) can be interpreted in the same way, 444 
while less marked within the warmer LIW core (13.385 °C). Note that the estimated global LIW 445 
characteristics also include the older LIW which is distributed over all depths, especially during 446 
deep convection events, leading to traces of LIW in the deeper layers (see Fig. 3). This bias also 447 
affects the calculated depth range (273 ± 28m to 1269 ± 401m) and overall potential density 448 
(29.09 kg m-3). However, the core calculation better matches the main LIW vein flowing along 449 
western Sardinia at about 400 meters depth in Bosse et al. (2015), with salinities over 38.56, 450 
temperatures over 13.39 °C and a potential density of 29.075 kg m-3. This latter value is slightly 451 
higher than the one used in the algorithm (29.06 kg m-3) as a specific characteristic of the 452 
original LIW, but closer to the one usually found in the northwestern Mediterranean (e.g., Puig et 453 
al., 2013; Schroeder et al., 2020). The largest LIW volume is detected over the Sardinia Channel, 454 
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given the proximity of the Tyrrhenian where LIW is known to accumulate (e.g., Sammari et al., 455 
1999). LIW volumes decrease rapidly westwards with lowest (or even null) volumes over the 456 
shallowest areas, i.e. the GoL shelf, the East of Corsica and the Balearic Islands, ensuring that 457 
the algorithm effectively identifies them as intermediate waters. The associated transports show a 458 
turbulent eddy-like propagation between southern Sardinia and the Balearic archipelago, and a 459 
weak cyclonic flow (0.01-0.07 Sv) along the shelf slope over most of the western basin, except 460 
for an offshore separation of the main flow (0.027 Sv) at the entrance to the Balearic Sea 461 
somewhat linked toward northern Corsica. This cyclonic flow along the shelf slope is consistent 462 
with historical finding about the LIW behavior (e.g. Millot & Taupier-Letage, 2005) and the 463 
eddy-like flow in the central area would reflect the average effect of the SEs’ drift (e.g. Testor et 464 
al., 2005a; Bosse et al., 2015). The absence of a significant LIW flow along Corsica north of 465 
41°N is coherent with the detachment of the “SUddies'' northwest of Sardinia in Bosse et al. 466 
(2015) while the offshore LIW flow midway between Menorca and Corsica follows the mAW 467 
and WIW recirculations in the northern gyre has, to our knowledge, never been suggested nor 468 
demonstrated. 469 

The mean density of the tagged WMDW is close to the usual definition value of 29.10 kg m-3, 470 
both for the total (29.108 ± 0.007 kg m-3) and the core estimates (29.122 ± 0.009 kg m-3). The 471 
WMDW is detected at a depth greater than 360 ± 56m (fractions greater than 5%) with a 472 
maximum depth (2246 ± 21m) and a core depth (2192 ± 129m) that closely follows the average 473 
bottom depth of the area. Its density-based tagging gives mean salinities of 38.476 (entire) and 474 
38.461 (core) with small standard deviations (0.010-0.013), close to the usually observed range 475 
(see Table 1). The mean temperatures are also close to the usual estimates, being 12.783 ± 0.032 476 
and 12.910 ± 0.026 °C for the ensemble and core, respectively. Due to its greater vertical extent, 477 
the WMDW volumes are of a higher order than other water mass volumes, and closely follows 478 
the bathymetry of the basin, the higher values being in the southern deepest area. It could be 479 
surprising that the highest volume is not found in the DWF area, but this reflects the rapid 480 
(within a few months e.g. Beuvier et al., 2012) southward spreading of newly formed WMDWs 481 
following the general increase in bathymetry to the south. The WMDW transports reveal a 482 
turbulent eddy-like circulation between southern Sardinia and the Balearic Archipelago and two 483 
cyclonic circulations over, respectively, the south-western basin between the Balearic 484 
Archipelago and North Africa and the north-western Liguro-Provençal area. The associated 485 
transports (Fig. 4 and Table 2) are of the same order as those of mAW and mIW, the greater 486 
depth range of the WMDW (thousands of meters) compensating for the lower velocities (below 5 487 
cm/s) that prevail in the deeper layers.  488 
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 489 
Fig. 4. Climatology of model grid water mass volumes (m3) and transports (Sv) averaged over 490 
the 1993-2013 period: Atlantic Water (a), modified Atlantic Water (b), Western Intermediate 491 
Water (c), Levantine Intermediate Water (e), mixed Intermediate Water (e) and Western 492 
Mediterranean Deep Water (f). A scale arrow for transport values is shown on each panel.  493 

 494 

As the mIW flag adds up what is left of all the other water masses, it is not a defined water mass 495 
but a residual mixture likely including TDW and more generally all intermediate waters from the 496 
eastern basin that may have passed the Sicily and Sardinia Channel (e.g. Millot et al., 2013, 497 
Schroeder et al., 2020), as well as those produced in the Northwestern provençal area due 498 
intermediate convection events. As such, its average characteristics cannot be objectively 499 
compared with the literature, but have to be coherent with the surrounding water masses. The 500 
mean salinities of the mIW (38.497 ± 0.018 for the whole and 38.518 ± 0.014 for the core) are 501 
midway between those of the LIW and the WMDW, thus well on the mixing line between them. 502 
In contrast, the mean temperatures (13.149 ± 0.086 and 13.309 ± 0.054) are slightly warmer than 503 
the average between LIW and WMDW which is more like 13 °C. The average potential density 504 
of the whole mIW is 29.075 kg m-3, close to that of LIW, while that of the core is slightly lower 505 
at 29.057 kg m-3. This reflects the fact that mIW is also labeled on a significant part of the upper 506 
intermediate layers, i.e. between the mAW/WIW and the LIW and not only in the deep layers 507 
below the LIW (see Fig. 3). The range of calculated mIW depths is consistent with these 508 
findings, showing a minimum of 205 ± 26 m, close to the maximum depths of the mAW and 509 
WIW, a core depth of 325 ± 50vm and a maximum depth of 1344 ± 402 m close to the LIW's 510 
one. The mIW volumes are the second highest, twice as high as mAW or WIW but five times 511 
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lower than WMDW, and have a general distribution opposite to WMDW with higher values in 512 
the most north-eastern part of the area. The circulation patterns are similar but less pronounced 513 
than those of the WMDW, except over the Balearic Sea where they rather follow those of the 514 
mAW/WIW. The corresponding transport values are most often intermediate between mAW and 515 
WIW over the northern part of the basin, ranging from 0.1-0.3 Sv (Table 2), but predominate 516 
through and south of the Balearic islands.  517 

3.2. Time Series of Thermohaline Characteristics and Volumes of the Water Masses 518 

Given the coherent long term mean of the water mass characteristics, volumes and circulations 519 
described in the previous section, we now look for their variability over the whole 20-y of the 520 
reanalysis. To do so, we present the time series of the characteristics (Fig. 5) and volumes (Fig. 521 
6) of the water masses, with the corresponding maximum mixed layer depth (MLD) and DWF 522 
area extent (Fig. 6). The temperature variability on the surface water masses (AW, mAW) is first 523 
driven by the seasonal radiative cycles and enforced by strongest winds in winter time, i.e. 524 
classically, a cooling in autumn and winter and a warming in spring and summer. The mAW 525 
salinity shows a weaker (and even sometimes unclear) seasonal variability while the AW salinity 526 
does not show any seasonal cycles, coherently with the almost constant flow of AW through the 527 
strait of Gibraltar. This nearly constant AW flow also explains the low variability of the AW 528 
volume (Fig. 6). The seasonal variability of densities of the water masses then mainly depends 529 
on their temperature. By contrast, the mAW volumes exhibit a marked seasonal cycle with 530 
winter drops that mirror the increases of WIW volumes, materializing the conversion of mAW to 531 
WIW in winter time. Coherently, all WIWs’ thermohaline characteristics show strong seasonal 532 
variations (Fig. 5c) with minimum temperature and salinity in winter (ca 13.0°C and 38.25) and 533 
increasing values from spring to summer due to its mixing with surrounding warmer water 534 
masses from below (the LIW) and from above (AW and mAW) given the summertime 535 
stratification of the surface layers. As such, the WIWs’ volumes range from 10 × 103 km3 in 536 
summer to 28 ×103 km3 in winter close to the range estimated by Juza et al. (2019) for 2011-537 
2013 (10 × 103 - 50.103 km3). Note that the most severe drops in mAW volumes, which exceed 538 
the increase in WIW, occur during the DWF years (e.g., 1999 and 2005), affecting as well the 539 
WIW thermohaline characteristics. 540 

On longer time scales, the mAW and AW salinities’ time series show periods of alternating 541 
increase and decrease, but of limited amplitude (0.15) and not concomitant in time. We also note 542 
that maxima of mAW’s volume tend to increase during the periods with several years of low or 543 
no convection (1996-1998, 2001-2002, 2007-2009) and, conversely, stay nearly constant during 544 
periods of consecutive medium to strong convection (1999-2000, 2003-2006, 2010-2013). This 545 
suggests that the destruction of the mAW by DWF in the northern sub-basin is generally 546 
balanced later in the year by its production by mesoscale horizontal mixing in the AEs’ while 547 
several consecutive years of low or no convection may favor the accumulation of mAW over the 548 
whole basin. However, there are some exceptions to this global rule in 2001-2002 (stagnating 549 
mAW maximum volume instead of an increase) and in 2009 (increasing summer’s mAW 550 
maximum volume instead of a stagnation). In the first case, it seems that from summer to 551 
summer, the period of no or low convection was too short to significantly affect the mAW 552 
volume. The 2009 year is an exceptional case that will find a more rational explanation later 553 
(Section 3.3). Lastly, the AW volumes exhibit similar, but low, drops during years of medium to 554 
strong convection followed by relaxing periods during low or no convection years. This 555 
similarity between the AW and mAW pluri-annual variability is likely due to the use of a salinity 556 
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end of 1999. At the same time, the LIW volume starts to slowly increase after 1995, more 571 
suddenly in 1999-2000 and again slowly until 2003 (Fig. 6d). It is constantly high later (about 572 
twice the initial volume of 30 × 103 km3) but with still some interannual variations ( ± 20 × 103 573 
km3). The thermohaline characteristics and volumes of mIW and WMDW are more stable during 574 
the first four years, but clearly evolve during 1998-2000 toward a higher salinity that remains for 575 
the rest of the reanalysis (+0.04 and +0.02, respectively) and an increased variability. Recalling 576 
that the reanalysis was initiated with results from a twin free run, a longer spin-up than the nine 577 
months initially considered (see section 2.1) could probably explain the questionable variability 578 
observed in the very early years of the reanalysis (1993-1994). The salinization of the middle and 579 
deep layers during 2000 was already noted by Hamon et al. (2016) in a previous version of the 580 
reanalysis (MEDRYS1V1). They attributed it to a biased volume correction term of the SLA 581 
model equivalent. This misfit tends to compensate for the SLA error by densifying the water 582 
columns. As the assimilation system is more constrained on temperature (due to better data 583 
coverage) than on salinity, this adjustment has a stronger effect on salinity, especially at depth 584 
due to the very low number of data assimilated below 600 meters depth before 2005. That being 585 
said, the increase in LIW volume in 1999-2000 does not coincide with the gradual salinization of 586 
LIW that starts earlier and drops off sharply in 1998. Rather, it coincides with an increase of the 587 
LIW flux through the Sardinia Channel (not shown), beginning in late 1998 and peaking (0.35 588 
Sv) in late 1999 -early 2000. This increased LIW flux mainly comes from a slight increase of 589 
salinity (+0.04) of the LIW incoming from the Tyrrhenian, while velocities of the intermediate 590 
layers (200-600m) only show a very slight acceleration (+0.01 cm s-1). This suggests that the 591 
accumulation of salt and LIW in the Algero-Provençal basin may also be related to the EMT that 592 
slowly propagated higher salt content toward the western Mediterranean from 1997 to 2004 593 
(Schneider et al., 2014; Amitai et al., 2021).  However, this statement must be qualified because 594 
the transport of LIW in the Channel of Sicily does not increase as much as in the Channel of 595 
Sardinia and remains almost constant (not shown). Both processes (i.e., a biased SLA adjustment 596 
or the westward EMT propagation) may have occurred simultaneously but would be difficult to 597 
distinguish since the biased SLA adjustment also affects the Eastern Mediterranean (see Hamon 598 
et al., 2016, Beuvier et al., 2016). 599 

After 2000, WMDW and mIW show more stabilized behaviors with a variability that is mostly 600 
driven by the interannual variability of DWF, as evidenced by the conversion of mIW to 601 
WMDW (1999, 2005-2006, 2012-2013) and, conversely, a slow decrease (increase) in WMDW 602 
(mIW) volume during periods without DWF (2001-2002, 2007-2008). The effect of DWF is less 603 
pronounced on LIW volume, probably because the algorithm tends to retain the memory of the 604 
LIW salinity anomaly within the newly formed WMDW (see Fig. 3 for example). The WMDW 605 
volume is estimated to be about 600 ± 100 × 103 km3 for the entire area (0 to 10°E) and 270 ± 30 606 
103 km3 when calculated for the same NWMED area as in Somot et al. (2018) (see Fig. 1). This 607 
baseline of WMDW volume is a little higher than in Rixen et al. (2005) and Somot et al. (2018) 608 
(mean of 185 × 103 km3 over 1980-2002), mainly due to the algorithm that uses a density 609 
fraction, rather than a fixed density threshold, but the increases in deep water volume during 610 
DWF events ranging about 50-180 × 103 km3 are in good agreement with Somot et al. (2018), 611 
Beuvier et al. (2012), Waldmann et al. (2016) and Testor et al. (2018). 612 

 613 
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 614 
Fig. 6. Time series of the MLD maximum  and extent of the DWF area over the NWMED (a) as 615 
Somot et al. (2018) (see Fig. 1) and volumes of WMDW in the NWMED area (b) and of all the 616 
water masses over the whole studied area (c, d, see bottom of the figure for the water masses 617 
color codes). The computations excludes the Alboran and Tyrrhenian Seas. Vertical gray 618 
rectangles locate the 1999 LIW accumulation, the 1998 dubious WMDW production event and 619 
the 2003 and 2010 events of WMDW destruction. Vertical blue rectangles locate the DWF 620 
periods. EMT and WMT denote Eastern Mediterranean Transient and Western Mediterranean 621 
Transition. 622 

Conversely, some years make exceptions to this behavior, especially 2003 and 2010 showing 623 
high losses of the LIW (-25% and -40%) and WMDW (-20% and -25%) volumes mirrored by 624 
gains in mIW volume (about +150% and +250%). Likewise, the year 1998 inversely shows an 625 
increase (decrease) of the WMDW (mIW) volumes (+27%, -63%) while it is widely recognized 626 
that 1998 is not a DWF year (e.g. Somot et al., 2018). These dubious events of WMDW 627 
production (1998) and mixing or destruction (2003 and 2010) are detailed in Fig. 7. For 1998, 628 
the WMDW volume anomaly (by reference to the climatological one) suggests that the problem 629 
originates from the most southwestern area (likely in the Alboran Sea) and propagates 630 
northeastward on a large part of the basin (Fig. 7a). The associated transport anomalies show a 631 
considerably strengthened circulation (+2Sv) establishing a large anticyclonic gyre over the 632 
eastern Algerian basin, which is in contradiction with the well-known cyclonic gyre prevailing in 633 
this area (e.g., Send & Testor, 2017). Spatially averaged θ-S time series, over the southwestern 634 
area where the anomaly emerges, show that the WMDW volume anomaly mainly originates 635 
from a sudden increase of salinity (+0.02) near the bottom in December 1997 (Fig. 7dgj) that 636 
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reaches 1000 m in some months. It is followed by a cooling (-0.15 to -0.27 °C) of similar vertical 637 
extent. These thermohaline changes cause a drastic increase in density over a wide depth range 638 
with the 29.12 kg m-3 isopycnal reaching 600 m from mid-February to June 1998 (Fig. 7j), this 639 
being too shallow to be realistic in this region. Consequently, the algorithm diagnoses higher 640 
WMDW fractions, leading to dubious increased volumes. The years 2003 and 2010 are inverted 641 
situations with the WMDW volume anomalies showing WMDW destructions located over the 642 
whole Provençal basin (Fig. 7bc). The WMDW transport anomalies are not marked over the 643 
volume anomaly area, likely due to lowered WMDW fractions, but reach ca 1 Sv in numerous 644 
eddy-like structures over a large part of the Algerian basin. These anomalies are due to two 645 
similar events of desalination in the 600-2200 m range lasting several months. The drop in 646 
salinity reached -0.02 in the core (1800 m) of the anomaly in 2003 and -0.03 between 800 and 647 
2000 m in 2010. There is no temperature changes in 2003, but an increase in 2010 that reached 648 
+0.08°C, strengthening the drop in potential density. In both cases, the isopycnals of 29.10 kg m-649 
3 fall from 600 to 2000 m (Fig. 7kl), leading the algorithm to diagnose much lower WMDW 650 
fractions (less than 30%) and consequently lower volumes over a large part of the water column. 651 

In all of these three cases, there is no physical process that can be invoked to explain such 652 
changes in the salinity and heat contents of deep and intermediate waters over such large areas. 653 
Those are more likely due to biases in the assimilation processes, either through subregional 654 
SLA adjustments or local vertical profiles adjustments, that can propagate over large areas. It is 655 
not in the scope of this study to clearly identify these biases or malfunctioning of the assimilation 656 
processes, but we note that the 1998 event just follow a short period of intensive CTD operations 657 
in the Alboran Sea during the ALMOFRONT-2 campaign (Prieur et al., 2003) while the 658 
availability of CTD profiles in the Mediterranean was generally low before the Argo era (i.e., 659 
before 2005) and limited to the 0-1000m range (Hamon et al. 2016). The sudden arrival of a 660 
higher level of information at depth in the assimilation system may have over-constrained the 661 
model. Likewise, the 2003 event just follows the 2003 heat wave that has been shown to 662 
markedly impact the SST over the northwestern Mediterranean and the circulation in the Central 663 
Mediterranean (Olita et al., 2007; García-Herrera et al., 2010). It is not unlikely that the model 664 
and/or the assimilation system may have poorly or differently handled the steric effect of this 665 
exceptional heat wave, leading to a destabilization of the assimilation system for the SLA. Note 666 
that WMDW volume calculations using a fixed threshold (such as 29.10 or 29.12 kg m-3, Somot 667 
et al., 2018) yielded much more unrealistic estimates during these anomalous events, with 668 
stronger and more sudden variations (a few days, not shown). This indicates that the problem 669 
does not come from the water mass detection algorithm and rather supports the hypothesis of 670 
accidental biases in the assimilation system. 671 
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Fig. 7. Anomalies of the WMDW volumes (by reference to the climatology of Fig. 4f) at the 673 
dates of maximum of the anomalous events of 1998 (a), 2003 (b) and 2010 (c), and 674 
corresponding year-long centered times series of spatially averaged temperature (d, e, f), salinity 675 
(g, h, i) and WMDW ratio (j, k, l) in the most impacted areas. The black arrows on the left panels 676 
show the WMDW transport anomalies. The green squares show the spatial domains used for 677 
averaging time series. The vertical green lines on right panels indicate the same day as on the left 678 
panels. Isopycnals (kg m-3) are shown on the WMDW fractions’ time series. 679 

Beyond that, the reanalysis seems to resist these artifacts, which do not last more than a few 680 
months in terms of water mass volume (Fig. 6) and characteristics (Fig. 5). The impact in terms 681 
of deep water transport is more questionable, especially for the 1998 event for which the increase 682 
in WMDW transport over the Algerian basin and the inverted barotropic gyre lasted a few more 683 
than two years. We therefore recalculated the long-term mean volumes and transports for each 684 
water mass without the years 1998-1999, 2003, and 2010, as shown in Fig. 8. There are no 685 
significant differences in the volumes and transports of AW, mAW and WIW between Fig. 4 and 686 
Fig. 8 showing that the dubious events have had no effect on surface water masses. The new 687 
estimates for LIW, mIW and WMDW better highlight a deep cyclonic gyre in the eastern 688 
Algerian basin that is much more consistent with the literature (Testor et al., 2005b; Send & 689 
Testor, 2017). This mean cyclonic gyre was hidden by the strong anticyclonic gyre generated by 690 
the suspicious 1998 WMDW event, maintained until early 2000. The mIW and LIW also now 691 
exhibit this deep cyclonic circulation (Mallil et al., 2021), leading to cumulative transports of 692 
deep and intermediate water mass of about 2.5 ± 0.5Sv, only slightly lower than those reported 693 
by Send & Testor (2017) (4.0 ± 1.0Sv). For the six water masses, the largest volume differences 694 
from the first guess appear primarily in the western Algerian basin, consistent with the removal 695 
of the 1998 WMDW event, but do not exceed 10%.  696 

3.3. Possible Connections of Deep and Surface Dynamics 697 

The corrected climatology of water mass circulations (Fig. 4) highlights a deep gyre in the 698 
eastern Algerian basin in controlling the dynamics of deep and intermediate water masses. It has 699 
been suggested previously that this deep gyre may also control the surface path of AEs (Isern-700 
Fontanet et al., 2006; Escudier et al., 2016; Pessini et al., 2018; Mallil et al., 2021). Although 701 
clearly an artifact, the 1998 WMDW production event in the Alboran Sea suggests that the deep 702 
gyre of the eastern Algerian basin may be highly sensitive to the arrival of newly formed deep 703 
water. In addition, Barral et al. (2021) showed that the DWF over the northern sub-basin can 704 
shift the northern boundary of the AWs, i.e. the Balearic-Sardinian frontal zone, one degree 705 
southward. They hypothesized that this would be due to a weakening in the formation and 706 
northward propagations of AEs during DWF years. To reexamine this hypothesis, we 707 
recomputed the mean water mass volumes and transports by separating the years with (2004-708 
2006, 2009, 2011-2012, 6 years mean) and without DWF (1993-1997, 2000-2002, 2007-2008, 10 709 
years mean) based on the maximum MLD and DWF area (Fig. 6a). 710 
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Fig. 8. Same as Fig. 4, without the years 1998-1999, 2003 and 2010. 

For each water mass, the difference in mean volumes and transports between the two regimes are 711 
presented in Fig. 9. Years with DWF correctly show larger volumes of WMDW in the 712 
northwestern part of the basin, mainly in the known DWF area around 42°N-5°E, as well as 713 
increased transport of WMDW from the DWF area to northern Menorca and southward. The 714 
volume differences over the central Liguro-Provençal area for the mAW, WIW and mIW 715 
illustrate the conversion of surface and intermediate waters to WMDW when DWF occurs. The 716 
LIW volume is higher over the entire basin during DWF years in contradiction with the usual 717 
finding of its destruction during DWF events. This is partly due to the algorithm that retains 718 
memory of the LIW in deep layers after DWF events (see Sec. 3.1 and Fig. 3), but may also 719 
reflect the 1999 increase in LIW volume (Section 3.2), as all of the used DWF years occur after 720 
2004. Furthermore, the differences in transport estimates show an acceleration of the along-slope 721 
cyclonic circulation over the Liguro-Provençal area for all surface and intermediate water 722 
masses. This acceleration of the regional cyclonic circulation has been suggested for a long time, 723 
based on heat and water budget (e.g., Bethoux et al., 1982; Astraldi & Gasparini, 1994) or 724 
dynamical considerations (e.g., Crépon & Boukthir, 1987; Madec et al., 1991) and clearly 725 
evidenced in dedicated modeling study (e.g., Hermann et al., 2008) but, to our knowledge, never 726 
on such climatological mean. Except for a thin area on the west coast of Corsica which will be 727 
discussed later, the water mass volumes over the northern along-slope circulation are not 728 
significantly affected, showing that the response is almost kinematic. Conversely, there are 729 
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significant changes in the AW volumes around and east of the Balearic Sea, showing that the 730 
shape of the northern (southern) extension of the AW (mAW) reservoir is modified toward less 731 
AW north of 39°N. This is consistent with our previous study that shows a DWF-induced 732 
meridional shift of the haline frontal zone that prevails between Menorca and Sardinia (Barral et 733 
al. 2021). This regime shift also largely affects the amount of mAW at the West of Sardinia and 734 
above the Algerian gyre, suggesting that less mAW may be produced by mixing in the AEs or to 735 
a lesser extent and activity of the AEs following a DWF event. 736 

The difference in transports estimates between the two regimes also shows a marked inversion of 737 
the deep circulation in the area of the eastern deep Algerian gyre when DWF occurs, comforting 738 
the hypothesis of a disruption, or at least, a marked weakening of the barotropic gyre in response 739 
to the increased southward flow of the WMDW. Except WIW which is not detectable in this 740 
region, all the surface (AW, mAW) and intermediate (LIW, mIW) water masses show the same 741 
tendency. For LIW and mIW, this is likely due to the algorithm that maintains a link between the 742 
intermediate water masses and the WMDW through the use of salinity and potential density 743 
fractions, but it is also coherent with Send and Testor (2017). The alignment between the 744 
circulations of surface (AW, mAW) and deep water masses over the eastern deep Algerian gyre 745 
is less intuitive, but not so surprising if this long term mean is seen as retaining the long-term 746 
average of the paths of the AEs as guided by the deep barotropic gyre (Isern-Fontanet et al., 747 
2006; Escudier et al., 2016; Pessini et al., 2018; Mallil et al., 2021). The weakening of the deep 748 
eastern Algerian gyre would induce a lesser northern extent of the AEs, as suggested above 749 
regarding the differences in AW and mAW volumes, hence a weakened signature of their paths 750 
on the surface circulation. 751 

Surprisingly, it is not 2005, the most convective year in the time series (Fig. 6a, Schroeder et al. 752 
2008a; Somot et al., 2018), that have the largest effect on the annual circulations of surface and 753 
intermediate water masses, but the year 2009 with an overflow of WMDW towards the 754 
Tyrrhenian that induced a strong return current of mAWs at the surface. This 2009 event is 755 
clearly visible on the upper panel of Fig. 10 which shows the water mass fluxes through the 756 
Sardinia Channel. The transports of WMDW and mAW differ from the rest of the time series, 757 
from mid-2008 to the end of 2009, both in intensity (larger than 1Sv) and sign, and are almost 758 
perfectly opposite. This overflow of the WMDW onto the sill in 2009 has been previously 759 
documented (Schroeder et al., 2016) and is attributed to the deposition on the seafloor in 2005 of 760 
the newly formed WMDWs, followed by several moderate DWF events in 2006, 2008 and in 761 
2009. Each of these DWF events results in successive WMDW deposition, year after year, with 762 
the top of accumulated WMDW reaching 1900 m in 2009, the depth of Sardinia Channel sill 763 
(e.g. Schroeder et al., 2016; Li and Tanhua, 2020; Ben Ismail et al., 2021). The two transport 764 
anomalies peak late-June 2009, 4 months after the 2009 DWF events, a time scale for WMDW 765 
propagation that is consistent with Schroeder et al (2008a) and Beuvier et al (2012). 766 
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 768 
Fig. 9. Differences of water mass volumes and transports between the average of 10 years 769 
without DWF and the average of 6 years with DWF (i.e., DWF minus no DWF) for Atlantic 770 
Water (a), modified Atlantic Water (b), Western Intermediate Water (c), Levantine Intermediate 771 
Water (e), mixed Intermediate Water (e) and Western Mediterranean Deep Water (f). A scale 772 
arrow for transport values is shown on each panel.  773 

The time series of AW transport shows that it is not modified in the Channel of Sardinia in 774 
comparison with the previous years (still stronger in winter than summer), but its spatial 775 
distribution is more strongly affected (Fig. 10a) leading to a significant redistribution of the 776 
amount of AW over the whole basin. This redistribution shows a smaller volume of AW over the 777 
Balearic Islands contrasting with an accumulation in the eastern Algerian sub-basin in several 778 
AEs. In addition, part of the AW is driven by the northward flow of mAW from the center of the 779 
Algerian basin into the WCC. This unusual AW spatial distribution is consistent with Barral et 780 
al. (2021) who reported an anomalous northward extension of the AW-mAW haline frontal zone 781 
in 2009, while DWF years are generally characterized by a southward migration of the haline 782 
front. The lower amount of AW around the Balearic Archipelago is clearly due to the increased 783 
influx of mAW in the Balearic Sea and the WIW anticyclonic structures, preventing the usual 784 
northward summer inflow of AW through the Balearic channels (e.g., Mason & Pascual, 2013; 785 
Vargas-Yanez et al., 2020).  786 

The transports of LIW and mIW through the Sardinia Channel are also modified after this 787 
exceptional event, but at a lower level and with a 6-month delay. Again, the impact is more 788 
pronounced on their regional circulations throughout the basin. The positive anomaly of LIW 789 
volume over the entire Algero-Provençal basin is coherent with Fig. 9d as 2009 is a DWF year.. 790 
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The greater amount in the Ligurian is likely due to the northward accumulation and entrainment 791 
by the mAW flow, while the negative LIW volume anomaly in the Sardinia Channel may reflect 792 
the thinning of the LIW layer due to the larger inflow of mAW and the larger outflow of 793 
WMDW. The amount of mIW decreases throughout the basin, first because of the winter DWF 794 
in the Provençal basin (as shown in Fig. 9e), and second because mIW is trapped between a 795 
shallower WMDW upper boundary and a deeper AW/mAW lower boundary, especially over the 796 
shelf slope of western Sardinia and Corsica (Fig. 3hkl). 797 
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Fig. 10. Time series of water mass transport (Sv, positive eastward) through the Sardinian 
Channel (upper panel, water mass color codes shown at the top  and volume and water mass 
transport anomalies in 2009 compared with the climatology of Fig. 8 (lower panels) for 
Atlantic waters (a), modified Atlantic waters (b), western intermediate waters (c), Levantine 
intermediate waters (e), mixed intermediate waters (e) and deep western Mediterranean waters 
(f). The section of the Strait of Sardinia is shown in panels b and f. Transport values in the 
upper panel are smoothed using a seasonal triangular filter. 

 798 

4. Discussion and Conclusion  799 

The main objective of this study was to extract from a 20-year reanalysis of the Western 800 
Mediterranean a coherent climatological picture of the water mass dynamics, focusing on the 801 
Algero-Provençal basin. To do this, we built a θ-S based algorithm that discriminates the main 802 
water masses in order to estimate the corresponding volumes and transports. Prior to the actual 803 
analysis, the calculated water mass mixing fractions were also used to estimate the mean 804 
thermohaline characteristics and depth range of each water mass. This allowed us to validate the 805 
behavior of the algorithm, i.e., to ensure that it could indeed report the correct water mass at the 806 
correct depth. Averaged over the 20 years of the reanalysis, the results give consistent 807 
distributions of the volumes and transports of the different water masses. The AW is mainly 808 
located in the AC and spread by the AEs over a large part of the Algerian basin. The mAW is 809 
produced in the area of AEs influence and flows cyclonically over most of the continental slopes 810 
of the basin. The WIW is produced in the Liguro-Provençal basin and the Gulf of Lion and 811 
accumulated in the Balearic Sea. The LIW is flowing and diluting towards the northwest, mainly 812 
by the SEs. The WMDW is produced by regular and realistic deep convection events in the 813 
Provençal area and flows southwards to accumulate in the deeper Algerian basin. The analysis of 814 
the time series of temperature, salinity and volumes brought several other positive elements, such 815 
as the coherent seasonally driven variability of AW, mAW and WIW, and the realistic inter-816 
annual variability of WMDW production, particularly in 2005 which is known to be the major 817 
DWF event of the last three decades, given its impact on the intermediate and deep thermohaline 818 
characteristics (Schroeder et al., 2008ab). 819 

This sudden exchange of mAW and WMDW between the Tyrrhenian and the Algero-Provençal 820 
basin leads to important changes in the regional distribution and circulation of surface and 821 
intermediate water masses over the whole western basin. The marked mAW influx from the 822 
Tyrrhenian induces a continuous flow along western Sardinia and Corsica that feeds the WCC 823 
and the NC as far as the Balearic Sea (Fig. 10b). The concomitant increase in mAW volume is 824 
likely responsible for the difference in mAW between years with and without DWF previously 825 
observed in Fig. 9b along western Sardinia and western Corsica, as well as the maximum peak in 826 
mAW volume over the entire basin in 2009 in Fig. 6d. Likewise, this arrival of warmer mAW 827 
from the Channel of Sardinia through the WCC leads to a negative anomaly in the WIW volume 828 
along the Liguro-Provençal continental slopes (Fig. 10c) whereas the lack in WIW around 42°N-829 
5°E is consequent to the consumption of WIW by the 2009 DWF. The volume anomaly of WIW 830 
in the Balearic Sea shows increased escapes in the Ibiza Channel and northeast of Menorca, 831 
somewhat pushed by the mAW influx, but also the persistence of two distinct anticyclonic 832 
structures accumulating WIW in the central area and north of Ibiza. This latter has been reported 833 
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in Mason & Pascual (2013) as an anomalous SLA pattern in 2009, standing all year long but 834 
strengthened in Autumn.  835 

Nevertheless, the times series also reveal spurious anomalies in the intermediate and deeper 836 
layers as mIW-WMDW coupled nonphysical variability in 1998-1999, 2003 and 2010 that have 837 
been assigned to assimilation biases. Those are due to subtle variations of salinity (0.02-0.04) 838 
slightly lowering (for the 2003 and 2010 cases) or hardly increasing (for the 1998-1999 case) 839 
potential density on a large part of the intermediate and deep waters. From this point, the 840 
somewhat fuzzy definition of the mIW may appear as the main shortcoming of our approach and 841 
should be discussed first. The mIW aggregates several water masses of diverse origins, such as 842 
TDW (which itself has diverse origins, e.g., Fuda et al., 2002; Buffet et al., 2017; Li & Tanhua, 843 
2020; Iacono et al., 2021) and any waters possibly formed during intermediate or moderate 844 
convective events, and that do not fall into the typical WMDW category (such as the WDW in 845 
Bosse et al., 2016). The different intermediate water masses included in the mIW may have 846 
similar thermohaline characteristics and are distributed mainly along a LIW-WMDW mixing 847 
line. As such, they do not generate an inflection point on the θ-S diagram that could help to 848 
clearly discriminate them. Similarly, the algorithm does not distinguish Tyrrhenian Intermediate 849 
Water (TIW), a slightly warmer equivalent of the WIW formed in winter due to the Mistral 850 
channeled through the Strait of Bonifacio (Napolitano et al., 2019; Iacono et al., 2021). The TIW 851 
flows northward to the Corsican Channel and dilutes in the NC with average characteristics 852 
(θ~14°C, S~38.3 and σθ~28.8 kg m-3 in the reanalysis) similar to the mAW. The ideal way to 853 
properly sort TIW from the WIW-mAW set, and TDW from the mIW set, would be Lagrangian 854 
tracking of these water types along their trajectories from their original locations. This method 855 
has a development and computational cost that was quite prohibitive given the encouraging 856 
results we obtained with very early versions of the θ-S based algorithm (see Barral et al. 2020). 857 
Indeed, the presently defined mIW pool may be related to the finding of Millot (2013) as 858 
representative of all intermediate waters produced in areas of convection in the eastern basin, but 859 
extended here to the western basin as well. As so, it has an oceanographic sense, even if an 860 
oversimplified one, and it is not at the origin of the problem. Instead, its use helped to identify 861 
the three WMDW anomalous events.  862 

Second, the regime shift suggested by the marked increase of the estimated LIW volume (briefly 863 
discussed in section 3.2) call for a discussion on the fact that the current algorithm does not take 864 
into account the warming and salinization trends observed throughout the Mediterranean in 865 
recent decades (e.g., Schroeder et al., 2017; Iona et al., 2018; Skliris et al., 2018; Vargas-Yanez 866 
et al., 2021; Fedele et al., 2022). Warming would not significantly affect water mass sorting 867 
when based on salinity ratio (i.e., for AW, mAW, and LIW), but would eventually lead WIW to 868 
be less marked and even disappearing, at least relative to their current definition. Juza et al. 869 
(2019) and Vargas-Yanez et al. (2021) showed a warming trend in WIW of 0.14-0.5°C over the 870 
last decade, but our results do not show a significant decrease in the amount of WIW over the 871 
1993-2013 period. This can be explained by recalling that the current algorithm progressively 872 
marks WIW for a temperature below 13.5°C, whereas the usual temperature threshold used to 873 
identify it is 13°C. Preliminary tests using lower thresholds led to large underestimations of 874 
WIW volumes. The WIW temperature threshold was then set to keep the WIW volume estimates 875 
within the range of previous estimates and it appears, therefore, to implicitly parameterize the 876 
recent warming of the WIW. The most recent estimates of salinity trends in the Western 877 
Mediterranean range from 0.002 to 0.007 yr-1 depending on the area and period covered (Iona et 878 
al., 2018; Skliris et al., 2018; Vargas-Yanez et al., 2021; Fedele et al., 2022). Taking the most 879 
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extreme estimates, salinity changes over a 20-year period remain small (0.04-0.14) relative to the 880 
salinity ranges used by the algorithm to differentiate AW from mAW (2.35) and mAW from 881 
LIW (0.55). Furthermore, this trend appears to be more pronounced for AW than LIW (e.g., 882 
Vargas-Yanes, 2021; Fedele et al., 2022) so we do not expect serious bias in their fraction 883 
estimates. The problem is more questionable for the density-based water column partitioning, 884 
mainly for mIW-WMDW sorting which is very sensitive to small changes in potential density, as 885 
seen with the three anomalous events detected with the algorithm. Nevertheless, due to the 886 
nonlinear and antagonistic impact of salinity versus temperature changes on the sea state 887 
equation, the potential density trends observed for LIW or WMDW in the Western 888 
Mediterranean are small or insignificant (e.g., Vargas-Yanez et al., 2021) compared to the 889 
potential density values used in the algorithm to partition the water column. Therefore, we 890 
conclude that these warming and salinity trends would not have biased the estimated water mass 891 
fractions, and thus the subsequent volume and transport estimates. Nevertheless, it is clear that 892 
careful a priori consideration will be required for application on a longer time scale than the 893 
present 20 years analysis. 894 

Validation or evaluation of a reanalysis is most often based on global statistics for heat and salt 895 
content, model misfit or assimilation increment, etc. (e.g., Hamon et al., 2016; Aznar et al., 896 
2016). The approach we used goes further in this necessary assessment exercise as it allows us to 897 
identify at least three unrealistic events over the deep and intermediate layers that would be 898 
undetectable from global statistics given the small value of the salinity and temperature biases 899 
involved (fewer than 0.1, and than 0.3 °C). In fact, similar biases are likely to occur throughout 900 
the water column, but their impact would be much lower in the surface layers given the higher 901 
range of salinity and temperature variability between AW, mAW and WIW. Indeed, the removal 902 
of the three anomalous episodes shows no impact on surface volumes and circulations. This 903 
highlights a general weakness of contemporary reanalyses, which most often start in 1993 to 904 
benefit from the availability of altimetry data, but thus cover periods of very heterogeneous 905 
availability of in situ data. In the Mediterranean, the start of the ARGO era between 2000 and 906 
2005 has led to a fivefold increase in available in situ profiles, but with still insufficient coverage 907 
of deep layers, especially for salinity (e.g., Hamon et al., 2016). Because deep salinity is the least 908 
constrained variable in assimilation systems, it is the most likely to suffer from assimilation bias. 909 
Nevertheless, we have shown that bypassing the biased periods allowed us to improve the 910 
average circulation scheme of the intermediate and deep water masses, mainly by retrieving the 911 
well known eastern Algerian barotropic Gyre (see Fig. 8def). This shows that the reanalysis is 912 
robust to accidental assimilation biases and we can expect deep-sea dynamics to be better 913 
constrained as more and more in situ deep-sea data become available for assimilation. 914 

Beyond the assessment exercise, this study suggests new findings regarding the impact of the 915 
WMDW dynamics on surface and intermediate waters. The first is a possible breakdown of the 916 
eastern Algerian barotropic Gyre in response to the arrival of new WMDW in the southern part 917 
of the basin following significant DWF events occuring in the northern part. This disturbance of 918 
the Algerian Gyre has not been documented before from in situ data, but can be seen in Beuvier 919 
et al. (2012) who describes the southward propagation of WMDW cyclonic eddies after the 920 
strong DWF event of 2005 leading to a similar destabilization of the gyre in a model. Note that 921 
this deep gyre is not a true permanent feature in the reanalysis, but the average effect of the paths 922 
of several smaller (50-100 km) anticyclonic eddies. The velocities (and hence transports) in these 923 
eddies are about half the velocities of the southward spreading cyclonic eddies of the newly 924 
formed WMDW (about 5 cm s-1 vs 10 cm s-1, Testor et al. 2005b; Beuvier et al., 2012). The 925 



manuscript submitted to Journal of Geophysical Rearch: Oceans 

 

resulting eddy-eddy interactions are complex and chaotic (e.g., Waldman et al., 2018; Testor et 926 
al., 2018), so the disturbance of the deep gyre may simply reflect the mean of a more turbulent 927 
deep circulation. Of the sixteen years used to compute the two average regimes (i.e., after 928 
elimination of the four biased ones), six are DWF years while ten do not and DWF years occur 929 
more often at the end of the reanalysis, so that the two climatological regimes do not have the 930 
same statistical robustness. Nevertheless, the differences between the two regimes (DWF or no 931 
DWF) are coherent with the known acceleration of the northern cyclonic circulation of the 932 
surface (mAW), subsurface (WIW) and intermediate (LIW and mIW) layers (e.g., Madec et al., 933 
1991; Herrmann et al., 2008), and with the southern shift of the AW/mAW main frontal zone 934 
suggested in Barral et al. (2021) during DWF years. The last issue concerns the deep water 935 
overflow in the Sardinia Channel following the 2009 DWF event, and its drastic impact on the 936 
circulations of intermediate and surface waters (Fig. 10). This overtopping is documented by 937 
Schroeder et al. (2016) as following the strong deep water renewal of 2005, the WMT, on which 938 
several other episodes accumulated from 2006 to 2010, bringing the upper boundary of deep 939 
water above the sill depth. The reanalysis appears to replicate this complex accumulation 940 
sequence over several years. The subsequent impact of the WMDW overflow on the AW, mAW, 941 
and WIW circulations seems globally coherent (discussed in more detail in Section 3.3), but the 942 
2010 deep assimilation anomaly spoils the end of this sequence. Moreover, we did not find any 943 
independent estimate to validate the across strait eastward (westward) WMDW (mAW) 944 
transports (order 1 Sv) computed during the overflow event. Given the problems detected 945 
regarding the deep water dynamics in this reanalysis, more investigation will be needed to better 946 
corroborate these new findings regarding the impact of the DWF over surface and intermediate 947 
water mass dynamics throughout the Western Mediterranean. The way to do this are in progress 948 
by analyzing the satellite altimetry observations and, with the same algorithm of water mass 949 
sorting and derived proxies (volumes, transports), the twin free run of the MEDRYS1V2 950 
reanalysis and another longer and finer reanalysis of the Mediterranean, precisely the CMEMS-951 
MedRea reanalysis (1987-2019, 1/24°, Escudier et al., 2021). This should allow us to compare 952 
the impact of the detected assimilation biases, to get more robust climatological estimates and to 953 
enlarge the studied area to the Alboran and Tyrrhenian Seas. 954 
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 962 

Appendix A : The detection algorithm of water masses in the Western Mediterranean. 963 

First step of the algorithm, the partitioning of the water column involves the definitions of 964 
surface and deep layers. To locate the surface layer, two densities bound a linear function 965 
between the mAW (σmAW) and the LIW (σLIW). Above this σmAW, the surface flag is set to one 966 
while below σLIW , it is set to zero as : 967 
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𝑓𝑙𝑎𝑔 = 1, 𝜎 < 𝜎mAWLIWLIW mAW , 𝜎mAW ⩽ 𝜎 ⩽ 𝜎LIW0, 𝜎 > 𝜎LIW      (A.1) 968 

where σmAW=28.9643 kg m-3 (computed from SmAW=38.45, θmAW=13.5°C) and σLIW=29.061 kg 969 
m-³ (SLIW=39, θWMDW=15°C), standing for the lower bound of the surface layer and the well 970 
known core of the intermediate layer, respectively.  971 

The separation of the deep layer of the water column from the intermediate is carried out in the 972 
same way, but between the LIW and WMDW :  973 

𝑓𝑙𝑎𝑔deep = 0, 𝜎 < 𝜎LIWLIWWMDW LIW , 𝜎inf ⩽ 𝜎 ⩽ 𝜎WMDW1, 𝜎 > 𝜎WMDW      (A.2) 974 

where σLIW remains as previously, and σWMDW = 29.1075 kg m-3 is computed from 975 
SWMDW=38.45, θWMDW=12.815°C.  976 

The second step sorts the freshwater as a water with a salinity which is lower than the AW 977 
salinity minimum (SAW=36) : 978 𝑓𝑙𝑎𝑔 = , 𝑆 ⩽ 𝑆0, 𝑆 > 𝑆        (A.3) 979 

The flagging of AW hence uses a salinity ratio built to represent the AW-mAW mixing in the 980 
surface layer : 981 

𝑓𝑙𝑎𝑔AW = (1 − 𝑓𝑙𝑎𝑔fresh) ⋅ 𝑓𝑙𝑎𝑔surf, 𝑆 < 𝑆AW⋅ 𝑓𝑙𝑎𝑔surf, 𝑆AW ⩽ 𝑆 ⩽ 𝑆mAW0, 𝑆 > 𝑆mAW     (A.4) 982 

The LIW is defined assuming no salinity is higher than 39 in the western basin and that it dilutes 983 
along a salinity gradient from 39 to 38.45 (the mAW salinity maximum) :  984 𝑓𝑙𝑎𝑔 = 0, 𝑆 < 𝑆, 𝑆 ⩾ 𝑆       (A.5) 985 

The sum of previous water mass fractions defines a temporary flag that allows only the 986 
remaining ratios to be treated : 987 𝑡𝑚𝑝 = 𝑓𝑙𝑎𝑔 +𝑓𝑙𝑎𝑔 +𝑓𝑙𝑎𝑔       (A.6) 988 

Sorting the mAW and WIW assumes that they are pooled in the remaining surface waters and 989 
can be discriminated using a temperature ratio :  990 𝑓𝑙𝑎𝑔 = 𝑓𝑙𝑎𝑔surf ⋅ (1 − 𝑡𝑚𝑝) ⋅ 𝑟𝑎𝑡𝑖𝑜       (A.7a) 991 

 992 𝑓𝑙𝑎𝑔 = 𝑓𝑙𝑎𝑔surf ⋅ (1 − 𝑡𝑚𝑝) ⋅ (1 − 𝑟𝑎𝑡𝑖𝑜WIW)     (A.7b) 993 

where : 994 
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𝜎 < 𝜎LIW ⇒ 𝑟𝑎𝑡𝑖𝑜WIW = 1, 𝜃 < 𝜃WIWmAWmAW WIW , 𝜃WIW ⩽ 𝜃 ⩽ 𝜃mAW0, 𝜃 > 𝜃mAW     (A.8) 995 

The last well-known water mass to define is WMDW which is simply located with the potential 996 
density ratio of (A.2) in the remaining waters of (A.6) : 997 𝑓𝑙𝑎𝑔 = (1 − 𝑡𝑚𝑝) ⋅ 𝑓𝑙𝑎𝑔deep       (A.9) 998 

All known water masses being defined, mIW are defined as the rest of all flags : 999 𝑓𝑙𝑎𝑔 = 1 − (𝑓𝑙𝑎𝑔 +𝑓𝑙𝑎𝑔 +𝑓𝑙𝑎𝑔 +𝑓𝑙𝑎𝑔 +𝑓𝑙𝑎𝑔 +𝑓𝑙𝑎𝑔 ) (A.10) 1000 

 1001 

Appendix B : The characteristics, volumes and transports of the water masses. 1002 

The mean characteristics (θ, S, σθ and depth) of each water mass is computed as flag and volume 1003 
weighted means, as for example for the mean potential temperature : 1004 𝜃 (𝑡) = ∑ ( ⋅ ⋅ )∑ ( ⋅ )        (B.1) 1005 

where “i” is the water mass index (from 1 to 6 : AW, mAW, WIW, LIW, mIW, WMDW) and 1006 
dx, dy and dz are the spatial increments defining the finite volume of one grid mesh. Note that 1007 
the model grid being curvilinear and bottom adjusted for the deepest wet grid meshes (partial 1008 
step discrete mesh), the grid meshes dimensions vary in space. Indexes of spatial increments 1009 
have been omitted for simplification in this and the following equations (except when essential). 1010 
The estimate for the core of a water mass is similarly computed but retaining only the value of 1011 
the maximum fraction inside each vertical profile. 1012 

Starting for a simple water column (i.e., at a fixed longitude and latitude location), the water 1013 
mass volume is computed as : 1014 𝑉 (𝑥, 𝑦, 𝑡) = 𝑓𝑙𝑎𝑔 ⋅ 𝑑𝑉 = ∑ 𝑓𝑙𝑎𝑔 (𝑥, 𝑦, 𝑧, 𝑡) ⋅ 𝛥𝑥𝛥𝑦𝛥𝑧    (B.2) 1015 

This first quantity allows us to construct daily maps of the volumes of the different water masses. 1016 
Suming over the whole domain (or a subdomain like for the NWMed area) leads to the total 1017 
volume of each water mass. As the local (x,y,z,t) sum of all the water mass flags is always one, it 1018 
is straightforward to show that the summing over all water masses gives the constant water 1019 
column volume that is only bathymetry dependent, neglecting the dynamic height (SSH) that is 1020 
only about a tens of centimeters over the Western Mediterranean. 1021 

Using the same flags based distribution principle, each water mass transport (Sv) over a water 1022 
column is computed as : 1023 𝑀 (𝑡) = ∬ 𝑓𝑙𝑎𝑔 ⋅ 𝑈 𝑑𝑠 ≈ 𝚤∑ (𝑓𝑙𝑎𝑔 ⋅ 𝑢 ⋅ 𝛥𝑥 𝛥𝑧 )+𝚥∑ (𝑓𝑙𝑎𝑔 ⋅ 𝑣 ⋅ 𝛥𝑦 𝛥𝑧 ) (B.3) 1024 

where “uθ” and “vθ” stand for the velocity components interpolated at the scalar (temperature and 1025 
salinity) grid points, according to the used curvilinear and Arakawa C mesh grid. Similarly, the 1026 
across-section transports are computed as : 1027 𝑀 (𝑡) = ∬ 𝑓𝑙𝑎𝑔 ⋅ 𝑈 ⋅ 𝑛 𝑑𝑠 ≈ ∑ ∑ 𝑓𝑙𝑎𝑔 ⋅ (𝑢 ⋅ 𝛥𝑥 ⋅ 𝛥𝑧 +𝑣 ⋅ 𝛥𝑦 ⋅ 𝛥𝑧 )  (B.4) 1028 

where “S” is the chosen section and “NS” stands for the total number of grid points along the 1029 
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section. The velocities uS and vS and corresponding increments (dxu, dzu, dyv and dz) are the 1030 
original Arakawa C grid (no interpolation) following the rules for sign and discretization as 1031 
specified in the “cdftransport” routine of the Drakkar CDFTOOLS package (http://meom-1032 
group.github.io/code/). This grid specific computation was necessary to obtain a precise budget 1033 
of the total transport when applied over all frontiers of a sub-region. As previously shown for the 1034 
volumes, summing those transports on all water masses conserves the total transports, either on a 1035 
water column, or a boundary section.  1036 
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