Supplement to "Extreme warming restructures habitat distribution and productivity along local gradients in stress and biodiversity" v1

Matthew Whalen¹

¹Affiliation not available

June 4, 2021

Supplemental Material

Table S1. Range of sampling dates for intertidal biodiversity surveys in each year

Year

-			
2012	03 July	-	05 July
2013	23 May	-	26 May
2014	12 June	-	14 June
2015	14 June	-	16 June
2016	05 June	-	07 June
2017	$24 \mathrm{May}$	-	26 May
2018	12 June	-	14 June
2019	01 June	-	04 June

Date range

Regional measures of sea surface temperature, atmospheric temperatures, and waves

The 2014-2016 marine heatwave began with the formation of a warm 'blob' off of the west coast of North America, which was followed by an intense El Niño (Di Lorenzo & Mantua 2016). This led to a multiyear MHW that was strongly felt along Central Coast BC. Air and water temperature measurements from three BC lightstations illustrate the scale and severity of the heatwave in this region (Fig. 1). The heatwave was sustained from May 2014 to November 2017, longer than sites further south (e.g., California and Mexico: (Arafeh-Dalmau *et al.* 2019; Sanford *et al.* 2019) but consistent with patterns elsewhere on the BC coast (Starko *et al.* 2019). In a similar fashion, air temperatures were anomalously high from early 2014 through the end of 2016, demonstrating that this heatwave was extreme both oceanographically and atmospherically (Swain *et al.* 2017). This MHW rivaled the severity of the 1997/1998 El Niño for both air and water temperature in this region and represents the longest set of heatwaves in a time series of SST dating to the 1930s (Fig. S1). During the heatwave, daily SST and air temperature anomalies regularly exceeded 2.5° C.

Atmospheric temperatures on Calvert Island during the study period also reflect the anomalous conditions of the 2014-2016 NE Pacific MHW (Fig. S4). Temperatures tended toward positive temperature anomalies relative to mean conditions from Fall 2014 through Spring 2016.

Local intertidal temperatures

Temperature loggers were wrapped in parafilm and placed inside a PVC cap that was spray painted black and fastened to the substratum using a bolt, wall-anchor and marine epoxy. Temperature was then logged every 4 hours. From July 2012 to May 2013, we also measured intertidal temperatures in the high zone at Foggy Cove, but the cap was the blue top from a Falcon tube (Fisher Scientific). We anticipate differences due to the material of the cap, how it was affixed to the rock, and the precise location of the logger, therefore we do not formally compare 2012-2013 data with those from 2014-2016.

Temperature data collected *in situ* during the study were not sampled over a sufficiently long time period to allow similar retrospective analysis as we performed with data from BC lightstations, but they offer a glimpse into local temperatures during the heatwave that are relevant to intertidal organisms, as well as important differences in thermal environments among sites. Local intertidal temperatures measured in one transect from Foggy Cove before (2012-2013) and during the heatwave (2014-2016) spanned a range of over 30degC (Fig. S3). Winter temperatures from 2015 were 1degC warmer than the winter of 2016. Additionally, in situ temperatures in the late summer of 2015 more often exceeded the 75th quartile than in 2014, suggesting that high intertidal conditions in 2015 was more stressful than in 2014. Although we cannot directly compare the temperature data from before and during the heatwave, our data suggest that variance in intertidal temperatures may have increased during the heatwave. Rock temperatures were also highly variable across the three sites in our study area based on data from 2015-2016 (Fig. S4). North Beach experienced much longer durations of temperatures exceeding 20deg and 30degC than either other site, while Fifth Beach was the only site to never experience in situ temperatures exceeding 30 degC during the 2015 deployment. These differences are likely attributable to the physical setting of each site. North Beach faces west and has no barriers to sunlight on clear days, while Fifth Beach faces north and is backed by a vegetated bluff that blocks direct sunlight for much of the day. Foggy Cove differs from the two other sites in that its slope is shallower than the other sites and is characterized by boulders rather than a contiguous rocky outcrop, suggesting a different abiotic stress gradient over similar spatial extents (Fig. S1).



Fig. S1. Digital elevation models for the three sites in this study. Colors in all panels represent local slope estimates ranging from 0 to 90 degrees, where 0 degrees is parallel with a level horizontal plane. Note that the spatial scale of the image is different for Foggy Cove.

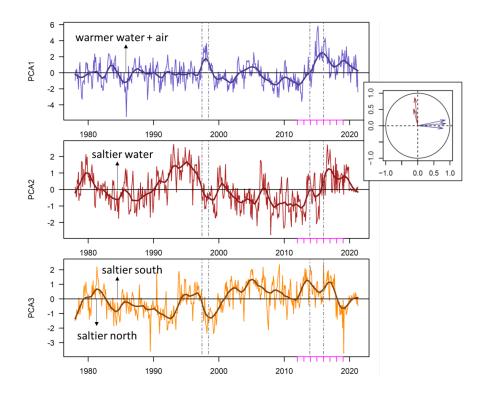


Fig. S2. Temporal change in the first three axes of a principal components analysis (PCA) on five environmental variables: monthly temperature anomalies at three lightstations (sea surface temperature at Pine and McInnes Islands, air temperature at Addenbroke Island) and moshtly surface salinity anomalies at Pine and McInnes Islands. The PCA used only times shared by all datasets (1978-2020), but anomalies are calculated from all available data. Lighter lines show monthly PCA values, while the darker lines are LOESS smoothers. Survey years are noted with magenta tick marks. Note how anomalous conditions continued in the region, even after the 2014-2016 marine heatwave ended elsewhere.

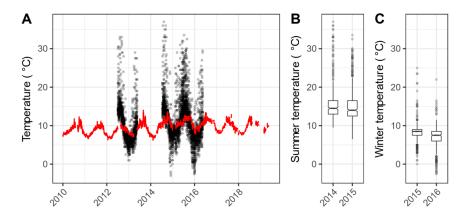


Fig. S3. (A) comparison of *in situ* temperature data from Foggy Cove (black points) and SST data from the Pine Island lightstation (red line; see Fig. 1, Fig. S2). Individual temperature records are shown for both datasets: *in situ* data were collected every 4 hours, while lightstation SST is recorded once daily when a keeper is present. Boxplots show the distributions of summer (B, July through September) and winter (C, December through February) *in situ* temperatures at Foggy Cove from 2014 to 2016.

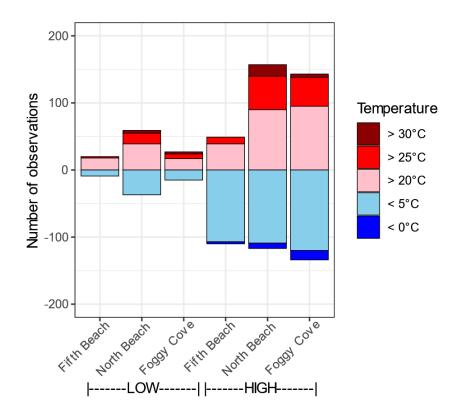


Fig. S4. Temperature logger measurements collected between June 2015 and May 2016 in LOW and HIGH zones at each study site. Bars show the number of observations (taken every four hours) above and below several thresholds for each logger.

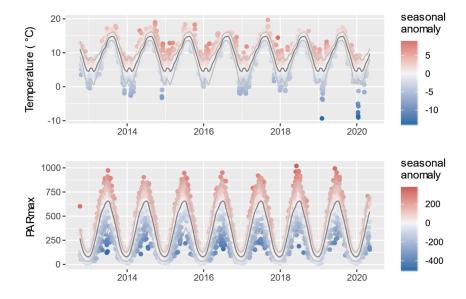
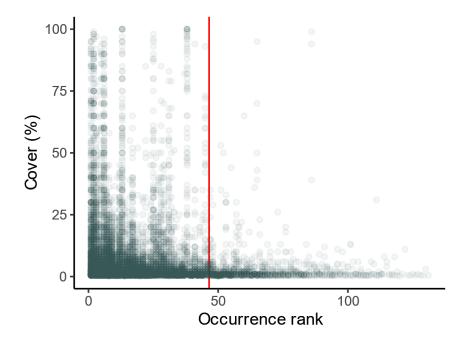



Fig. S5. Hourly atmospheric temperature and hourly maximum photosynthetically active radiation (PARmax) records collected since October 2012 at a weather station on Calvert Island. Black line shows the

seasonal trends, and color of data points represent anomalies from the seasonal trend. The weather station is located above Foggy Cove at 63m above sea-level at the top of a nearby hill that is often above the fog layer

Selection of taxa: Because we were interested in modelling species abundance as a function of year, we could only include species that occurred fairly regularly. The rarest taxa were not included in the joint species distribution modeling with HMSC. We could have included those species, but we would have had far less certainty about distributional patterns in any one year, as well as patterns across years. Therefore, we set an arbitrary threshold that species must have occurred in at least 48 plots throughout the entire time series, which equates to an average of 6 quadrats per year. This threshold left a minimum of XX observations in any year and a minimum of XX percent cover in any year.

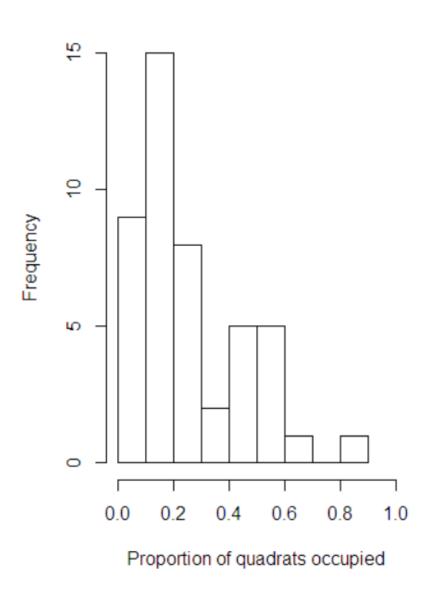


Fig. S6. Summary of cover for all taxa ordered by average occurrence in the dataset. The red line shows the threshold for inclusion in HMSC analysis. The inset figure shows the frequency of occurrence across taxa.

Supplemental Table 2. List of all taxonomic names used in the analyses. Taxa used in HMSC modeling are the first 47 taxa, while other taxa were used in analyses of total cover, species richness, and community composition. The trophic position and functional group designation of each taxon is also provided.

	rank	taxon	HMSC	trophic position	functional group
1	1	Hildenbrandia spp.	yes	producer	crust
2	2	Fucus distichus	yes	producer	canopy

9	2	Demonia ann *		nno du con	blada
$\frac{3}{4}$	$\frac{3}{4}$	Pyropia spp.*	yes	producer producer	blade turf
$\frac{4}{5}$	$\frac{4}{5}$	Mastocarpus spp. Mastocarpus spp. (crustose "Petrocelis" phase)	yes	producer	crust
5 6	5 6	Barnacles**	yes		animal
0 7	0 7	Corallina spp.	yes	consumer	turf
8	8	Endocladia muricata	yes	producer	turi thin turf
	8 9		yes	producer	
9 10		Chamberlainium tumidum	yes	producer	crust
10	10	Ulva spp.	yes	producer	blade
11	11	Halosaccion glandiforme	yes	producer	turf
12	12	articulate Bossiella spp.	yes	producer	animal
13	13	Alaria marginata	yes	producer	canopy
14	14	Acrosiphonia spp.	yes	producer	thin turf
15	15	Anemone	yes	consumer	animal
16	16	coralline crust	yes	producer	animal
17	17	Plocamium violaceum	yes	producer	thin turf
18	18	Mazzaella oregona	yes	producer	blade
19	19	Microcladia borealis	yes	producer	thin turf
20	20	Callithamnion pikeanum	yes	producer	thin turf
21	21	Cryptosiphonia woodii	yes	producer	turf
22	22	Gloiopeltis furcata	yes	producer	thin turf
23	23	Leathesia marina	yes	producer	turf
24	24	Hymenena spp.	yes	producer	turf
25	25	Phyllospadix spp.	yes	producer	canopy
26	26	Polyneura latissima	yes	producer	turf
27	27	$Mazzaella\ splendens$	yes	producer	blade
28	28	Neorhodomela larix	yes	producer	turf
29	29	Ptilota filicina	yes	producer	thin turf
30	29	$Savoiea\ robusta$	yes	producer	thin turf
31	31	Mytilus spp.	yes	consumer	animal
32	32	Odonthalia floccosa	yes	producer	turf
33	33	Elachista fucicola	yes	producer	thin turf
34	34	Cladophora columbiana	yes	producer	thin turf
35	34	Lithothamnion phymatodeum	yes	producer	crust
36	34	Ralfsioid	yes	producer	crust
37	37	Polysiphonia spp.	yes	producer	thin turf
38	38	Hedophyllum sessile	yes	producer	canopy
39	39	Ceramium pacificum	yes	producer	thin turf
40	40	Neopolyporolithon reclinatum	yes	producer	crust
41	41	Neogastroclonium subarticulatum	yes	producer	turf
42	42	Mazzaella parvula	yes	producer	turf
43	43	Prionitis spp.	yes	producer	turf
44	44	Farlowia mollis	yes	producer	turf
45	45	Egregia menziesii	yes	producer	canopy
46	46	Dilsea californica	yes	producer	blade
47	47	Palmaria hecatensis	yes	producer	blade
48	48	Codium fragile	no	producer	turf
49	49	Nemalion helminthoides	no	producer	turf
50	49	Tube worms	no	consumer	animal
51	51	Analipus japonicus	no	producer	turf
52	52	Bryozoan	no	consumer	animal
$53 \\ 53$	$52 \\ 52$	Schizymenia pacifica	no	producer	blade
	<u> </u>	~ citing hocioca pacifica		Producor	51000

54	52	Tunicata/Porifera	no	consumer	animal
$54 \\ 55$	$\frac{52}{55}$	Scytosiphon lomentaria	no	producer	turf
$55 \\ 56$	56	Codium setchellii	no	producer	crust
$50 \\ 57$	56	Hedophyllum nigripes	no	producer	canopy
58	$50 \\ 58$	Costaria costata	no	producer	canopy
$58 \\ 59$	58	Ectocarpus commensalis		producer	thin turf
60	58	Osmundea spectabilis	no	producer	turf
61	61	Peyssonnelia sp.	no	producer	crust
62	62	Blidingia sp.	no	producer	turf
63	62 62	Palmaria mollis	no no	producer	blade
64	64	Dactylosiphon bullosus	no	producer	turf
65	64	Scytosiphon dotyi	no	producer	turf
66	66	Calliarthron tuberculosum	no	producer	turf
67	67	Tokidadendron bullatum	no	producer	turf
68	68	Unknown crust	no	producer	crust
69	69	Salishia firma		producer	blade
09 70	09 70	Ahnfeltia fastigiata	no	producer	turf
70 71	70 70	Chiharaea silvae	no	producer	turf
$71 \\ 72$	70 70	Cumathamnion decipiens	no	producer	turf
$72 \\ 73$	70 70	Lomentaria hakodatensis	no	producer	turf
73 74	70 70		no	producer	turf
$74 \\ 75$	70 70	Mazzaella parksii Melanosiphon intestinalis	no	-	turf
75 76	70 70	-	no	producer	animal
70 77	70 77	Pollicipes polymerus	no	consumer	turf
77 78	77	Colpomenia peregrina	no	producer	
78 79	77	Desmarestia ligulata	no	producer	canopy
79 80	80	Laminaria setchellii Chihamaa mbadadastala	no	producer	canopy turf
80 81	80 81	Chiharaea rhododactyla	no	producer	turi thin turf
81 82	81 81	Antithamnionella spp.	no	producer	crust
83	81 81	Melobesia sp. Smithora naiadum	no	producer	blade
84	84		no	producer	thin turf
$\frac{84}{85}$	84 84	Antithamnion defectum Johansenia macmillanii	no	producer	turf
86 86	$\frac{84}{86}$	Erythrotrichia carnea	no	producer producer	turi thin turf
80 87	80 86	0	no	•	
88	80 86	Nereocystis luetkeana Palaialla littamia	no	producer	canopy thin turf
00 89	80 89	Pylaiella littoralis Collinsiella tuberculata	no	producer	turf
89 90	89 89	Hydroid	no	producer	animal
90 91	89 89	Neorhodomela oregona	no	consumer	
91 92	89 89	Rhodochorton purpureum	no	producer	turf thin turf
92 93	$\frac{89}{93}$		no	producer	thin turf
93 94	93 93	"Bangia" sp. Cladophora sericea	no	producer	thin turf
$\frac{94}{95}$	93 93	Laminaria yezoensis	no	producer	
95 96	93 93	Rhizoclonium tortuosum	no	producer producer	canopy thin turf
90 97	93 97	Desmarestia aculeata	no	producer	turf
97 98	97 97		no	-	turf
98 99	97 97	Herposiphonia plumula	no	producer	
		Lithothamnion glaciale	no	producer	crust
100 101	97 97	<i>Opuntiella californica</i> <i>Pododesmus</i> sp.	no	producer	blade animal
$101 \\ 102$	97 97	Poaoaesmus sp. Soranthera ulvoidea	no	consumer	turf
$\frac{102}{103}$	97 97	Soranthera uivoiaea Sphacelaria rigidula	no	producer	turi thin turf
$\frac{103}{104}$	97 104	Callophyllis sp.	no	producer producer	turf
104	104	Canopitynus sp.	no	producer	UUII

105	104	Chaetomorpha linum	no	producer	thin turf
106	104	Monostroma grevillei	no	producer	blade
107	104	Neorhodomela aculeata	no	producer	turf
108	104	Odonthalia floccosa f. comosa	no	producer	turf
109	104	Plocamium pacificum	no	producer	thin turf
110	104	$Pterocladiella\ caloglossoides$	no	producer	thin turf
111	104	Styela sp.	no	consumer	animal
112	113	Ceramium "codicola"	no	producer	thin turf
113	113	<i>Ectocarpus</i> sp.	no	producer	thin turf
114	113	$Mesophyllum\ vancouveriense$	no	producer	crust
115	113	Pterygophora californica	no	producer	canopy
116	113	$Symphyocladiella\ dendroidea$	no	producer	animal

* Pyropia spp. includes specimens identified as Neoporphyra perforata, Pyropia abbottiae, Pyropia fallax, Neopyropia fucicola, Pyropia gardneri, Pyropia pulchra, and Wildemania norrisii

** Barnacles include Balanus glandula + Chthamalusdalli + Semibalanus cariosus

Model structure and fit:

We ran HMSC models using the following setup: thin = 100, transient = 12,500, samples = 250. Using four chains to traverse parameter space and sample the posterior distribution of estimates, we obtained a total of 1,000 samples from each species, which we used in downstream analysis and interpretation. Gelman's diagnostic scores were largely within the range of acceptable values (98-99% of values were < 1.05), suggesting that we had reached convergence of the model. Examination of trace plots (not shown here) provided further support that chains were well mixed.

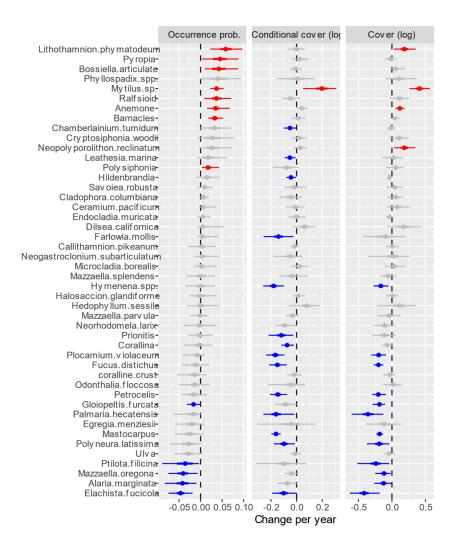


Fig. S7. Summary of temporal trends from HMSC analysis. Colors represent support for positive (red) or negative (blue) linear trends based on overlap of credible intervals with zero (grey). Predictions were averaged over eight uniformly spaced elevations between 61 cm and 382 cm above MLLWLT (69 cm, 113 cm, 158 cm, 202 cm, 246 cm, 290 cm, 335 cm, 379 cm), weighted by the proportion of sampled elevations in the dataset (proportion [?] 0.11, 0.17, 0.13, 0.24, 0.17, 0.09, 0.08).

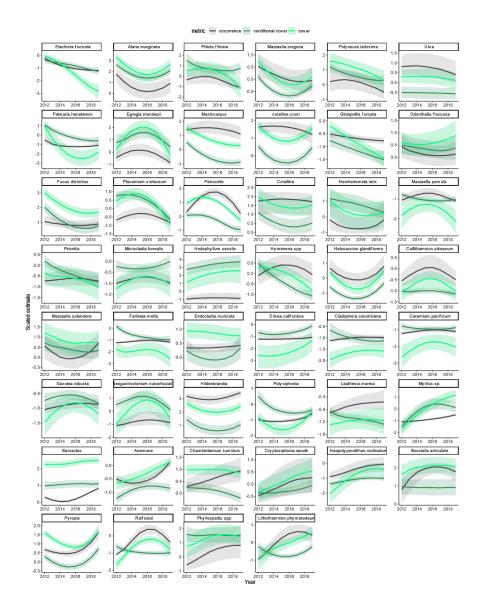


Fig. S8. Predictions from the HMSC hurdle model displaying scaled temporal trends for each taxon. Colors correspond to model metrics. Note that cover is produced by multiplying occurrence by conditional cover. Predictions were averaged over eight uniformly spaced elevations weighted by the frequency (see Fig. S7).

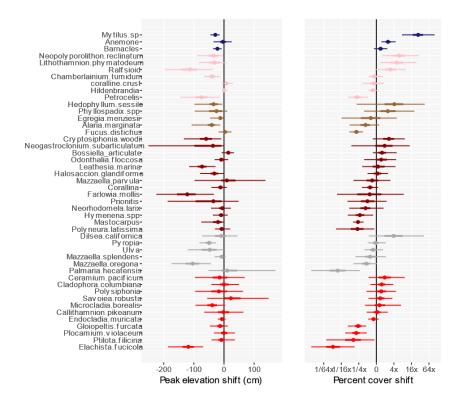


Fig. S9. Shifts in peak elevation (cm) and abundance (fold change) for the 46 taxa we modelled with HMSC, arranged by functional group and then individual trends in occurrence. Points are median shifts across 1,000 posterior samples (shown in Figure 2C), and errors bars are 50% (thick bars) and 95% CIs (thin bars). We constrained our predictions to the surveyed elevation range (61 to 382 cm above MLLWLT), creating a few situations where upper 95% credible limits for peak elevation shifts were exactly zero (e.g., *Egregia menziesii*, *Ulva ,Halosaccion glandiforme*). We do not consider these shifts to be significantly different from zero. Taxa are arranged from the greatest cover loss over time to greatest cover increases, first by functional group (colors as in Fig. 2) and then by taxa within functional groups.

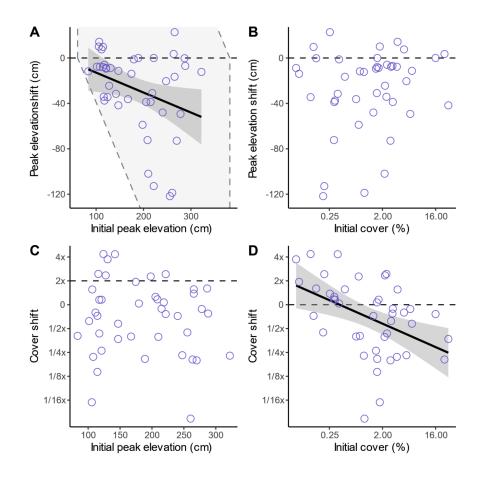


Fig. S10. Relationships among initial states and shifts over time for abundance and elevation as predicted by HMSC. Because our sampling design does not cover the entire elevation/depth distribution of every species, predicted elevational peaks for several species found below the lowest survey points (e.g., surfgrasses) or above the highest points (e.g., barnacles) were beyond the limits of the study area. We decided to restrict our predictions to the boundaries of the survey area. Therefore, the amount each taxon could shift up or down depended on its initial state (bounding box in A).

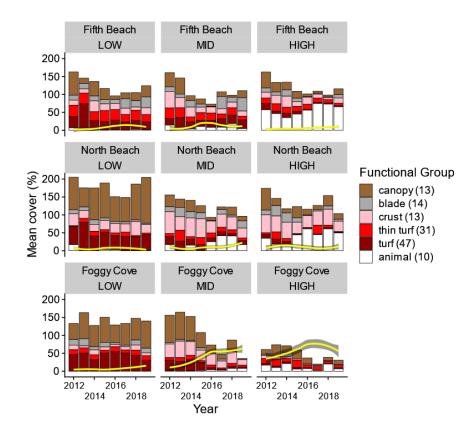


Fig. S11. Comparison of algal functional group dynamics and trends in bare rock cover. Mean abundance within functional groups (bar colors) is shown for each year of the time series. Numbers in parenthesis are counts of taxa in each group. Yellow lines show trends in bare rock cover based on local regressions (LOESS) with shaded 95% confidence intervals.

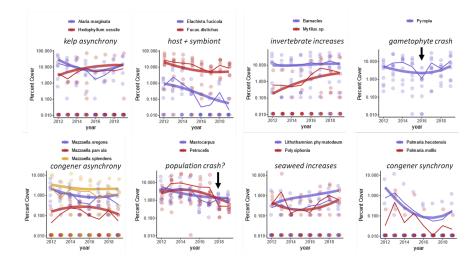


Fig. S12. Select time series of invertebrates and seaweeds observed during surveys. Thin lines show empirical annual means, while thick lines show mean cover predictions for taxa included in the HMSC analysis. HMSC predictions are averages over eight discrete elevations, weighted by their frequency of sampling in the dataset.

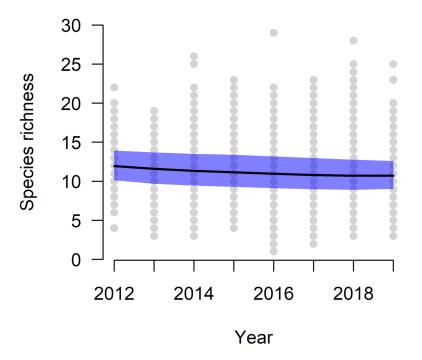


Fig. S13. Species richness estimate from the probit HMSC model (46 of 116 taxa).

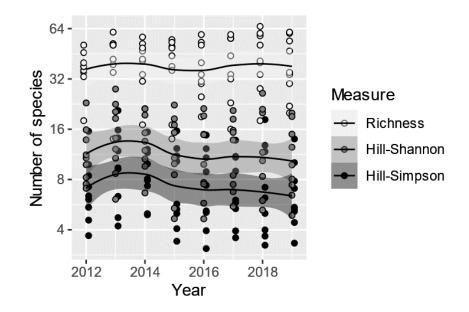


Fig. S14. Patterns of diversity expressed as three Hill numbers: species richness (white), Hill-Shannon index (light grey) and Hill-Simpson index (dark grey). Points are diversity values calculated from mean abundance of each taxon on each transect in each year, and lines show LOESS smooths with 95% confidence intervals independently fitted for each diversity measure. Note that y-axes are displayed on a log₂ scale.

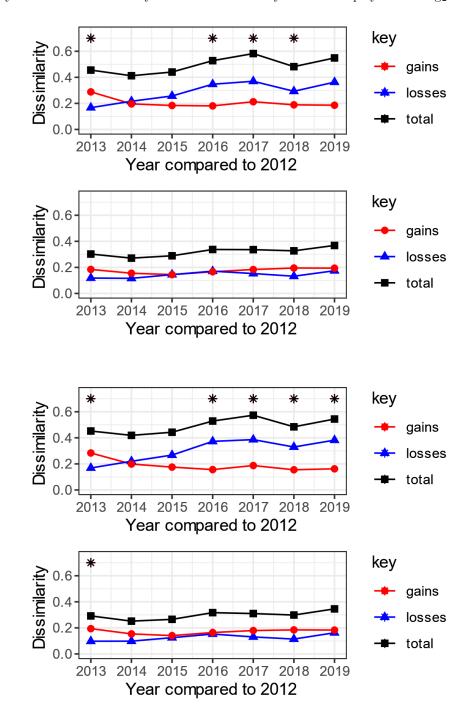


Fig. S15. Partitioning of temporal beta diversity indices within transects between years (left panels: all taxa; right: only seaweeds). The survey in 2012 is compared to each subsequent year in the dataset. Changes

in dissimilarity were calculated using abundance data (top) and presence-absence data (bottom). Asterisks denote significant differences between gains and losses for each pair of years.