This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google books

https://books.google.com

A

MaNUAL OF THE MOLLUSCA;
 OR,

RUDIMENTARY TREA'SISE
or

RECENT AND FOSSIL SHELLS.

by

S. P. WOODWARD, F.G.S.

ASSOCIATE OF THE LINNEAN SOCIETY;
assistant in the department of mineralogy and geology IN THE BRITISH MUSEUM; AND
member of the cotteswolde naturalists' club.

ILLUSTRATED WITH

NUMEROUS ENGRAVINGS AND WOODCUTS.

PART III.
containing the tunicata;
geographical distribution, etc.; supplement, and index.

LONDON:
JOHN WEALE, 59, HIGH HOLBORN.
mDCCCLVI.

LONDON:
PRINTED BY WILLIAM OSTELL,
HART STREET, BLOOMSBURY.

A

MANUAL OF THE MOLLUSCA.

PART III.

CLaSS VI. TUNICata, Lamarck.
(Order Hetero-branchiata, Blainville.)

The lowest order of Acephalous Mollusca are called Tunicaries, being protected by an clastic tunic in place of a shell. They are extremely unlike shell-fish in appearance, and are denied a place in most works on conchology; having no hard skeleton they neither furnish objects for the cabinet of the collector, nor materials for the speculations of the geologist.*

Many of the Tunicarics are curious objects when seen fresh from the sea; or still better when living in those miniature aquaria, which-thanks to Mr. Gosse-are now so popular. \dagger The transparent sorts are beautiful even when preserved in spirits. To the naturalist they present many points of in$t_{\text {erest }}$ unknown amongst the other mollusea, for here he meets with compound animals, and the phenomenon of alternate generation; they afford excellent illustrations of the structure of the breathing-organ and mechanism of aquatic respiration; and they also exhibit the simplest form and condition of the vascular system, in which the blood no longer circulates in one unvarying direction, but ebbs and flows like the tides. \ddagger (pp. 31, 49.)

The principal forms of tunicated mollusca are given in plate 24 , and the woodcut (fig. 224) represents one of the largest and simplest kind, which is drawn as if it were transparent, so as to shew the whole of its internal structure. These large solitary tunicaries are termed Ascidians, from their

[^0]resemblance to a water-skin, or small leather bottle (ascidium). They attain a length of several inches, and are fixed to rocks or shingle, or seaweed, but sometimes so slightly that they are brought up detached, and yet uninjured, by the dredge. Their appearance is sufficiently unpromising; their surface often rugged or concealed by adhering sand and fragments of shell; sea-weeds grow upon them, and small bivalves (crenella) burrow in their tunic. They are hollow and elastic, and have two orifices, from which (especially the terminal opening), they squirt water, as the bivalve shell-fish do when molested.

If the soft outer shell $\left(t^{\prime}\right)$ is opened there will be found inside a second tunic (t) which is compared to the mantle of the bivalves; it is extremely muscular, the fibres circling round it closely, especially near the orifices, whilst some others are oblique and longitudinal. The mantle lines the tunic, but is only slightly attached to it at the two orifices, and at those points where the blood-ressels pass through.*

During life the outer tunic follows the contractions of the muscular mantle; and when the latter relaxes, the tunic returns to its original shape by virtue of its elasticity. But when preserved in spirit the mantle contracts to such an extent as to tear itself away from the tunic, and if such a specimen is opened the muscular sac looks like a little tunicary quite loose within the large one. Within this a third and more delicate tunic is formed by the respiratory or branchial sac (b) having only one external orifice by which it is suspended, a little within the terminal (or exhalent) opening of the outer tunics; as its texture is porous the water passes through it readily into the mantle cavity, and thence by the second

[^1]outlet (ex.) At the bottom of the branchial sac is the animal's mouth (m) or commencement of the digestive canal, which ends (at a), near the second external orifice. This digestive system is accompanied by other organs, forming the body of the animal, but it appears only like a thickening of one side of the muscular tunic.

If the animai presenting this organization be eompared with the mussel (represented in fig. 30* p. 53,) or the mya (fig. 170, p. 244), it will be seen that each has a test lined by a mantle and furnished with an inhalent and an exhalent orifice; in each the respiratory cavity is separated from the channel of the out-going current by a sieve-like breathing organ, and in each the currents are produced and food brought to the mouth by microscopic cilia fringing the pores of the gill. The inhalent orifice of each is guarded by tentacles developed from the mantle, * and the exhalent opening is often furnished with a valve to prevent a reversal of the current when the animal expands after one of its occasional spasmodic contractions.

These points of analogy are so obvious and striking, as to have induced many naturalists to believe in a very close relationship between the Ascidians and bivalve shell-fish. We must, however, hesitate before we assume that the organs which perform identical functions, are themselves identical, ("homulogous.") Mr. Hancock has pointed out (in the excellent memoir just referred to, that the branchial sac of the Ascidian is not the anatomical equivalent of the gills of $m y a$, but a portion of the alimentary canal ; \dagger and that the peculiarities of their circulation and mode of reproduction are more in harmony with what obtains amongst the higher zoophytes (bryozoa), A similar view is expressed by M. Milne Edwards in his memoir on the Composite Ascidians. \ddagger

These statements are referred to more particularly, since of late ycars an
0. v '. referring to the space between the mantle and the branchial sac, indicate the dorsal and ventral sinuses of Milne-Edwards; m. mouth, at the bottom of the branchial sac ; s. stomach, plaited lengthways; i, intestine, lying between the brachial sac and muscular tunic, on the further side; a, termination of the intestine; \boldsymbol{r}, reproductive organ, ending in the cloaca.
*These tentacular filaments are not anatomically connected with the branchial sac as supposed by Farre and Owen. See Hancock on the Anatomy of the Freshwater Bryozoa. An. Nat. Hist. vol. V. p. 196.

+ Dr. Farre compared the Ascidian gill to the pharynx of the bryozoa; but M. Van Beneden and Mr. Hancock consider it homologous with the circle of oral tentacles in the retracted or undeveloped bryozoon.
\ddagger The Ascidians have less intimate analogies with the Mollusca, properly so called than is usually believed. They resemble, it is true, these animals in the arrangement of their digestive apparatus, and in some peculiarities of the respiratory system; but they depart from the Molluscan type in mode of circulation, in the metamorphosis which the fry undergo, and above all, in the singular power which most of them possess, of multiplying by gemmation. In these latter characters, so very important in a physiological point of view, they closely approach the polypes. (Milne-Edwards, Mcm. Inst., France, 1842.)
opinion has been gaining ground with anatomists that not only the tunicaries, but the bryozoa, (or Ascidian Zoophytes of Dr. Johnston) should be regarded as mollusca; this view was recommended by Prof. Forbes, though not adopted by him, and is advocated by Prof. Allman and Mr. Huxley.

Those who have only seen the horn-coloured sea-weeds such as Flustra and Notamia, drifted by the wind on the sea-beach, may have admired their minute lace-work or chain-like cells, without once dreaming they were examining compound animals-shell-fish, anatomically considered. But the miuute polypes which studded these zoophytes when alive, were undoubtedly as active, and in some respects as highly organized as the lower mollusca. The question is whether their organization is of the same kind, or type, as the molluscan, and in this respeet their claims are nearly on a parallel with those of the Tunicata. The relation of the bryozoa is to the Terebratulae, as shown in their oral apparatus and muscular system (Hancock), but they have neither heart, arteries or veins, and the nutrient fluid is contained in the common visceral cavity. The ciliated gemmules of the bryozoa are not, however, more unlike molluscan larvæ* than are the tadpole-shaped fry of the tunicarics.

Before proceeding further with the description of the tunicaries, we are glad to avail ourselves of a diagram by Mr. Huxley, which will make it more intelligible.

in. inhalent orifice: ex. exhalent orifice; b. branchial sac; c. atrium (" thoracic chamber" of Milne Edwards) ; o, tentacular filaments; g, nerve ganglion and auditory vesicle; d, thoracic vessel, (hypo-pharyngeal band); $v v^{\prime}$, great vascular sinuses; t^{\prime}, test; muscular mantle; e, endostyle; s, stomach; a, intestine; h, position of heart. The shading is accidently omitted on a small portion of the test by the letter g; the branchial sac (b) is connected with the wall of the atrium by (branchio-parielal) vessels crossing the cavity c, c.

[^2]In these figures the outer circle represents the test (t^{\prime}) lincd by the muscular mantle (t). The branchial sac in the centre (b) is perforated by a few large openings which are friuged with cilia; the arrows mark the direction of the respiratory currents which enter at the oral opening, passs through the branchial sac into the atrium or "thoracic chamber" (c c) and escape by the anal orifice (ex).

The atrium does not exist in the embryo; it is formed by an inflection of the tunics, and its ultimate extent varies in different genera. At first the whole space between the mantle and viscera is a common vascular sinus, as in the bryozoa, but the formation of the atriun divides it into two portions, one lining the mantle, the other investing the alimentary canal. The outer portion, or parictal sinus, is further subdivided by the union of its walls at definite points, leaving spaces and channels of various sizes and degrees of regularity. Of these, the principal are the dorsal and ventral sinuses ($v v^{\prime}$) communicating by trausverse channels.* The lower part of the alimentary canal continues surrounded by a vascular space termed the peri-intestinal sinus, whilst the pharyngeal portion with its vascular envelope becomes perforated to form the branchial sac. \dagger It has been mentioned that the branchial openings are microscopic and innumerable in the solitary ascidians, whilst they are comparatively few and large in the social and compound species. In Salpa the branchial sac is so much reduced that the respiratory process must be exercised chiefly by the vascular lining of the mantle itself.

The heart is near the posterior or fixed end of the body; it is elongated, and slightly muscular, open at each end, and contracts progressively like the dorsal vessel of the anellides, the direction of its contractions being periodically reversed. The nervous system consists of filaments connected with a single ganglion placed in the sinus between the external orifices. \ddagger The organs of special sense are an auditory capsule sometimes containing an otolithe, (fig. 225. g) and coloured spots, supposed to be rudimentary eyes, placed between the segments of the outer openings.

The neural side, or that on which the nerve-ganglion is placed, should be considered ventral in these as in other invertebrate animals; and the laemal side, where the heart is situated, ought to be regarded as dorsal. § The

[^3]first flexure of the intestinal canal in the tunicaries is always to the haemal side, but it is usually turned again in the opposite direction.
'The food of the ascidians, judging by the contents of their stomachs, consists chiefly of minute particles of the articulated sea-weeds and diatomacea; and it is a remarkable circumstance that the outer tunic of these animals contains cellulose, a ternary organic substance formerly supposed to be peculiar to vegetables.* They also contain radiated concretions, sometimes silicious, but more frequently calcarious, like the bodies found in alcyonium and gorgonia.

All the 'Tanicata appear to possess the power of reproduction by buds-or gemmation; but in one group the individuals, however produced, become entirely distict, in another they remain connected by a vascular canal, and in a third they become blended into a common mass. These three groups are the " solitary," "social," and "compound ascidians" of MilnoEdwards; these are all fixed in their adult state, whilst the two remaining families swim freely in the open sea, Pyrosoma being compound, and Salpa alternately aggregated and solitary. The separate individuals of these composite masses are termed Zoïds.

The sexes are united in all the Tunicata but Doliolum and Appendicularia. The young produced from eggs undergo a metamorphosis, which has been observed in many genera. The larvae are shaped like the tadpole of the frog; the body is oval and furnished with black eye specks, short tentacular processes, and a long tail by the vibrations of which they swim (Pl. 24, fig. 18). Ultimately they fix themselves, the tail is absorbed, and the young ascidian, or first zoid of a compound tunicary, is developed.

The tunicata are found in all seas, from low-water to a considerable depth. Four genera are pelagic, and several belong to the Arctic province viz., Boltenia, Chelyosoma, Synoccium and Cystingia.

Mr. Huxley divides the Tumicaries into three groups-

1. Ascidia Branchiales. Branchial sac occupying the whole, or nearly the whole, length of the boady ; intestine lying on one side of it. (Ascidiadae -Perophora-Botryllus-Pyrosoma.)
2. Ascidia Intestinales. Alimentary canal completely behind the branchial sac, which is comparatively small. (Other genera.)
3. Ascidia Larvales. Permament larval form. (Appendicularia.) \dagger
guided by the analogy of the ganglionic side of the tunicata to the dorsal region of the lamellibranchiata. Still more confusion exists in the employment of the terms anterior and posterior; the inhalent orifice is anterior if compared with the mouth of a polype, but Milne-Edwards makes it posterior.

* Discovered by Dr. Schmidt, in 1845. The observation has been confirmed by M. M. Löwig and Kolliker, and by M. Payen, whogives the following as the chemical emposition of the ascidian tunic;-Cellulose 60.34, azotised matter 27.00, inorganic 12.66. The cellulose portion is not acted upon by soda or hydrochloric acid.
+ See Knight's "English Cyclopædia," article Mollusca.

FAMILY I. Ascidiadae. Simple Ascidians.

Animal simple, fixed; solitary or gregarious; oviparous; sexes united; branchial sac simple or disposed in (3-18) deep and regular folds.

The simple ascidians were called tethya and well described in Aristotle's History of Animals.* Many of them are esteemed as articles of food in Brazil, China and the Mediterrancan ; at Cette they are regularly taken to market; and Cynthia microcosmus \dagger furnishes a delicate morsel, much sought after.

Ascidium, Bester 1764. Sea-squirt.

Etym. Diminutive of askos, a skin-bottle.
Syn. Alina, Risso : Phallusia, Pirena, Ciona, Savigny.
Ex. A monachus, Cuv. fig. 224, Tenby.
Body sessile, covered with a coriaceous or gelatinous tunic; branchial orifice 8 -lobed, furnished inside with a circle of simple tentacular filaments; anal 6-lobed; branchial sac not plaited, its meshes papillated.

The ascidia vary in length from 1 inch to 5 or 6 inches. The test is pale and semitransparent, the inner tunic orange or crimson, or sometimes marbled with crimson and white ; the ocelli are red, or yellow with a central red spot. The surface of \boldsymbol{A}. echinatum is studded with conical papillae, each with 4-7 radiating bristles. The ascidia range from low-water to 20 fathoms, attached to rocks, shells, and fuci.

Distr. Greenland, Spitzbergen, U. States, Europe, (especially in the north), Brit. 19 sp . Medit. New Zealand.

Molqula, Forbes.

Etym. Diminutive of molgos, a bag of skin.
Ex. M. arenosa, A, and H. (not M. tubulosa Rathke), Pl. 24, fig. 1.
Body more or less globular, attached or free ; test membranous, usually invested with extraneous matter; oritices on very contractile, naked tubes; oral opening 6-lobed, anal 4-lobed.
M. arenosa is found in the muddy lochs and bays of the west of Scotland; it comes up in the dredge like a little ball of sand. At Tenby it occurs between tide-marks, and in the laminarian zone.
M. oculata was dredged, adhering to a scallop, in 25 fathoms, off Plymouth; its orifices are like dark eyes in a spectacle-formed frame. (Forbes).

Distr. 3 sp. Denmark, Brit.

[^4]Cynthia, Savigny, 1816.
Etyn. A name of Diana, from Mt. Cynthos, Delos.
Syn. Stycla (pomaria) Sav. Cacsira (quadridentata) Sav.
Ex. C. papillosa, Pl. 24, fig 2.
Body coriaceous, sessile, orifices 4 -lobed, branchial sac plaited longitudinally, surmounted by a circle of tentacular filaments; ovaries two.

Sub-genera. Dendrodoa (glandaria) Mc Leay. Sub-cylindrical, smooth; orifices terminal, minute ; ovary single, on left side.

Pandocia (mytiligera) Sav. Right ovary only developed.
Distr. Norway-Medit. Sometimes on sand and very slightly attached; or on oysters, stoncs and sea-weed, from low-water to 30 fathoms. Occasionally gregarious in vast numbers, forming large bunches in consequence of the interlacing of their root-fibres. The test is often orange-coloured or crimson. The branchial sac, in this and the following genera, is thrown into deep folds to increase its extent of surface. Greenland, Brit. 14 sp .

Pelonea, Forbes and Goodsir.

Etym. Pelos, mad, naio to inhabit.
E.c. P. glabra, Pl. 24, fig. 3. Rothesay bay ; 7 fms.

Body elongated, cylindrical, smooth or wrinkled; orifices terminal 4 -cleft, on two small conical eminences; posterior end blunt pointed, villose with fine rootlets; mantle adherent to the test; no tentacles; ovaries 2, symmetrical.

Distr. 2 sp . N. Brit. Norway (Mc Andrew and Barrett).
Pelonæa resembles Sipunculus, one of the worm-like Echinoderms, in uppearance. It is not free, but rooted in mud and quite as apathetic as the other ascidians.*

Chelyosona, Broderip and Sby.
Etym. Chelyon tortoise-shell, soma body.
Type, C. Nacleayanum, Pl. 24, fig. 4. Greculand.
Body depressed, oblong; test coriaccous, its upper surface composed of 8 polygonal plates; orifices small, prominent, 6 -valved; gills plaited; tentacles simple.

Boltenia, Sav.

Named after Dr. Bolten, a Hamburgh naturalist.
Syn. ? Bi-papillaria, Lam. 1816. Australia.
Ex. B. pedunculata, Pl. 24, fig. 5.
Body globular, pedunculated; test coriaceous, orifices lateral, 4-cleft; branchial sac longitudinally plaiteà; tentacles compound.

[^5]The young Bolleniae sometimes grow on the stem of the parent. The branchial orifice is nearest the stalk, but as the body is pendulous it becomes higher than the other opeuing, as usual amongst the ascidians. (Rupert Jones.) B reniformis, Mc L. lives attached to stones in deep water; it is sometimes brought up by the fishing hooks. (Gonld.) Elizabeth harbour, 70 fms . (Ross.)

Distr. N. Zcaland; Greenland, (B. ovifera-Vorticella, L.) Mass. U. S.
Sub-genus? Cystingia (Griffithi) Mc Leay, 1824. Arctic scas, Felix harbour and Fox's chanuel. Test sub-coriaceous, anal orifice irregular, terminal.

FAMILY II. Clavellinidaz. Social Ascidians.

Animal compound, fixed; individuals connected by creeping tubular prolongations of the common tunic, through which the blood circulates, (or by a common gelatinous base).

These small or microscopic creatures are found on stones, shells and seaweed, adhering by numerous root-like projections of their onter tunic. They are so transparent and colourless that they may be examined without disser. tion (Pl. 24, figs. 6, 7). The position of the stomach is indicated by an orange-coloured spot; the asophagus is long, and the intestine returns parallel to it. The heart and ovary are near the stomach. The gill, perforated by rows of holes, completely separates the brauchial cavity from the cloaca; a series of membranous processes (languettes) project from its neural side. The creeping tube contains two channels through which the blood circulates in opposite directions.

Reproduction is effected by ova and by buds produced on filaments given off by the creeping tube. These off-shoots are hollow, and lined by a membrane continuous with the inner tunic of the ascidian; the circulation passes into them and they grow and branch and form buds containing little organized masses from which the internal organs are gradually developed. The branchial sac is perfectly outlined before it commmicates with the interior, and the curved digestive tube is scen before the oral opening is formed. The new individual may continue united with the parent, or become completely free by the rupture of the connecting tube. (Milue-Edwards.)

Clavellina, Sav.

Elym. Clavelia, a small staff, Syn. P Rhopalaca, Phi.
Type, C. lepadiformis, Pl. 24, fig. 6.
Body elongated, erect, more or less pedunculated; test smooth and transparent; orifices withont rays; thoracic region ustally marked with coloured lines.

Distr. Greculand, Brit. Medit. On rocks and stones at low-water.

Perophora, (Wiegm.) Lister, 1834.

Etym. Pera, a sac, and phoros bearing.

Type, P. Listeri, Wiegman, Pl. 24, fig. 7.
Body pedunculated, suborbicular, compressed ; thoracic region plain.
This curious little species was discovered by Mr. J. Lister at Brighton, growing on Conferva elongata. It occurs in groups consisting of severa individuals, each having its own heart, respiration, and system of nutrition, but fixed on a peduncle that branches from a common creeping stem, and all being connected by a circulation that extends throughout. (Lister).

Mr. Forbes has dredged it adhering to weed on the coast of Anglesey; he remarks "it is beautifully transparent, appearing on the weed like little specks of jelly dotted with orange and brown. When dried, as it may often be met with on sea-weed cast on shore, these bodies appear like the minute ova of some mollusk." According to Mr. Huxley's view this genus differs widely from the last, being a "branchial ascidian" whilst Clavellina is an "abdominal" one.

Syntethys, Forbes and Goodsir.

Type, S. Hebridicus, F and G. Croulin Id. near Applecross.
Animals compound, gelatinous, orbicular, sessile ; individuals very prominent, arranged sub-concentrically in the common mass; branchial and anal orifices simple, not cut into rays.

Syntethys is a Clavellina with the habit of a Diazona. The only known species forms compact greenish translucent gelatinous masses of half a foot in diameter, and nearly equal height, affixed to rocks or stones by a short base. The individual ascidians are when full grown 2 inches in length. Their inner tunics are remarkably irritable, withdrawing themselves into the common mass when pinched. (Forbes, Brit. Moll. iv., 244).

family III. Botryllidae, Compound Ascidians.

Animals compound, fixed, their tests fused, forming a common mass in which they are imbedded in one or more groups; individuals not connected by any internal union; oviparous and gemmiparous.

Milne-Edwards divides the compound ascidians into three tribes :-

1. Botryllina. Individuals united in systems around common excretory cavities (cloacae). Thorax and abdomen not distinct.
2. Didemnina. Thoras and abdomen distinct.
3. Polyclinina. Body divided into three distinct portions-l, thorax, with the branchial apparatus;-2, superior abdomen with the digestive organs ; -3 , post-abdomen, containing the heart and reproductive organs.

Tribe l, Botryllina-Botryllians. Botryllus, Gaertner, 1774.

Etym. Botrys, a cluster of grapes.
Syn. P Pyura, Bl. Polycyclus, Lam.
Ex. B. violaceus, Pl. 24, fig. 8, two stars from a group.
Test gelatinous or cartilaginous, incrusting; systems numerous, prominent, round or star-shaped, with central cavities ; individuals 6-20 in each system, lying horizontally, with the vent far from the simple branchial orifice.

Distr. 10 sp . U. States, Europe. Brit. 6 sp . On stones and sea-weed near low-water mark. B. violaceus is greenish grey, with dark blue stars, yellow in the centre round the common orifice. B. racemosus, N. Zealand.

Botrylloides, M. Edw., 1841.
Ex. B. rotifera, Pl. 24, fig 9, a zoïd detached, with a cluster of reproductive germs.
dnimals nearly vertical, in star-like groups irregular and ramifying; cloacae prolonged into the common mass, forming irregular chaunels, along each side of which the individuals are placed in linear series; orifices closely approximate.

Distr. European coasts, on roots of sea-weed and under sides of stones between tide marks. Brit. 4 sp .

Tribe 2, Didemnina. "Didemuians."
Division a, unistellate, (oral orifice rayed.)
Didemnium, Sav.
Etym. Di-demnium double-couch (or cavity).
Ex. D. gelatinosum, Pl. 24, fig. 10, zoïd detached.
Test coriaceous, polymorphous, incrusting; systems numerous, compressed, without central cavities or distinct circumscription; individuals scattered; abdomen pedunculate; ovary by the intestinal loop, increasing in length when the ova are fully developed.

Distr. Europe.

Eucglium, Sav.

Etym. Eu-koilias much excavated.
Ex. E. hospitiolum, Pl. 24, fig. 11.
Test gelatinous, incrusting; systems numerous, without central cavities or distinct circumscription : animals scattered or arranged quincuncially branchial orifice circular; anal minute; abdominal viscera beside the thoras.

Distr. Europe.

> Leptoclinum, M. Edw.

Etym. Leptos thin, Kline tunic.

Type, L. maculosum Edw. (L. gelatinosum, F. and H. Pl. A, B. fig. 5.)
T est coriaccous or gelatinous, thin, incrusting; systems few; individuals grouped irregularly round common cloacal cavities; abdomen pedunculate, short, smaller than the thorax.

Distr. Brit. 6 sp . On roots of laminariae; in colour white, yellowish, or variegated with blue.

Division b. Bi-stellate Didemnians.

Distomus, Gaertner.
Etym. Distomos two-mouthed. Syn. Polyzona, Flem.
$E x$. D. fuscus Pl. 24, fig. 12, a detached zoïd.
Test semi-cartilaginous, polymorphous, sessile : systems numerous, usually circular ; individuals 1 or 2 ranked at unequal distances from their common centre; both orifices 6-rayed.

Distr. Europe, S. Africa, Australia. Brit. 2 sp.

> Diazona, Sav.

Etym. Dia-zonai in circles.
Ex. D. violacea, Pl. 24, fig. 13 Medit.
Test gelatinous, orbicular, sessile or somewhat pedunculate; tunicaries very prominent, arranged in concentric circles on an expanded disk, forming a siugle flower-like system; orifices 6 -rayed; abdomen pedunculate; ovary inclosed in the intestinal loop.

Tribe 3. Polyclinina.

Division a, unistellate Polyclinians.
Polyclinum, Sav.
Etym. Polys many, kline cavities.
E.r. P. constellatum, Pl. 24, fig. 15.

Test gelatinous or cartilaginous, polymorphous, sessile or slightly pedunculate; systems numerous, convex, somewhat stellate, with central cloacal cavities; tunicaries $10-150$, at very unequal distances from centres; abdomen much smaller than thorax, post-abdomen pedunculate.

Distr. 6 sp. Brit., Medit., Red Sea, India.
Aplydium, Sav. Sea-fig.
Etym. Aploos simple. Ex. A. lobatum, Pl. 24, fig. 14.
Test gelatinous or cartilaginous, scssile; sustems very numerous, slightly prominent, sunular or sub-elliptical, without central cavities; tunicaries (3-25) in single rows, equidistant from centres; branchial orifice 6-rayed ; division of thorax and abdomen not always distinctly marked.

Distr. 6 sp. Europe, Red Sea. Attached to shells, \&e., in deep water.

Sidnyum, Sav.

Type, S. turbinatum, Sav. British coast. (F.'and H. Pl. A, B. fig. 2.)
Test gelatinous, incrusting; systems numerous, conical, truncated and starred at the summit; tunicaries 5 or 6 to 10 or 12 , forming a margin round a depressed centre; branchial orifice 8 -toothed; vent simple, tubular; ovary pedunculate.

Found on the under surfaces of shelving rocks, at low-water spring tides, forming translucent amber-coloured masses.

amoroecium, M. Edw.

Etym. Amoiros incomplete, oikos house.
Er. A. argus, Pl. 24, fig. 17. A proliferum, (larva) fig. 18.
Test fleshy or coriaceous, polymorphous, incrusting or', slightly pedunculate; systems numerous; tunicaries grouped round common apertures; abdominal divisions indistinct.

Distr. 4 sp . British Channel, Mcdit., Aegean.
Sub-genus Parascidium, M. Edw. P. flavum, 24, fig. 16. Oral openings 8 -lobed, each accompanied by 2 oculiform points.

Synoeciem, Phipps, 1773.

Etym. Synoikos united house. Type, S. turgens, Pl. 24, fig. 19.
Test semicartilaginous, cylindrical, pedunculate, isolated or gregarious; systems single, circular, terminal, tunicaries $6-9$; branchial orifice 6 -rayed, anal of 6 unequal rays; post-abdomen sessile.

Division b. Bistellate Polyclinians.

Sigillina, Sav.

Etym. Sigillum, a scal, Ex. S. Australis, Pl. 24, fig. 20.
Test gelatinous, solid, conical, elongated, pedunculate, solitary or gregarious; systems single, of many individuals, in irregular circles one above another; orifices both 6-rayed ; abdomen larger than thorax; post-abdomen long and sleader.

faMILY IV. Prrosomide.

Animal compound, free, pelagic.
Pirosoma, Péron, 1804.
Etym. Pyr (pyros) fire, soma body.
Ex. P. gigantcum, Pl. 24, fig. 21.
Body cartilaginous, non-coutractile, cylindrical, hollow, open at one end only; exterior covered by the numerous pointed zoïds, grouped in whirls interior mamillated and pierced by the exhalent orifices of the tunicaries.

The Pyrosomes are 2-] 4 inches long and $\frac{1}{2}-3$ inches in circumference; they are composed of innumerable tunicaries united side by side, with their orifices so arranged that the inhalent openings are external, the exhalent inside the tube, and the result of so many little currents discharged into the cavity is to produce one general outflow, which impels the floating cylinder with its closed end foremost.

The ganglionic side of each zoïd is turned towards the open end of the tube; the respiratory cavity is large, and completely inclosed by a quadrangular net-work; the test and mantle are united and lined by a vascular sinus-system. There is an "endostyle" on the haemal side, as long as the branchial sac. The ventral column (hypo-pharyngeal band) supports a series of languet

The sexes are combined; reproduction takes place by buds developed amongst the adult zoïds, and by solitary ova connected with the inner tunic by a pedicle near the posterior termination of the endostyle; 2 or 3 ova are perceptible in the young zoild at a very early period.

The Pyrosomes are often gregarious in vast numbers; in the Mediterranean they sometimes abound to such an extent as to clog the nets of the fishermen. They are phosphorescent at night. The light of P. atlanticum is very vivid and of a greenish blue colour; when touched the light appears in very minute sparks, issuing from each of the separate individuals, it first appears at the part touched, and gradually spreads over the body; it disappears after death. (Müller). Placed in a vessel of salt-water, and at rest, they emit no light, and the light excited by touching them gradually fades after the removal of irritation; but immersed in fresh-water they continue glowing with their brightest refulgence for several hours-as long as life remains. Péron first noticed them as " a phosphorescent band, stretched across the waves and occupying an immense tract in advance of the ship. Those most distinctly seen resembled incandescent cylinders of iron." Humboldt speaks of the Pyrosoma as forming a light $1 \frac{1}{2}$ feet in diameter, by which the fishes were visible!

FAMILY V. SalpidaE.

Animals free, oceanic ; alternately solitary and aggregated.
Salpa, Forskahl, 1775.
Etym. Salpe a luminous fish. Syn. Dagysa, Banks and Solander.
Thalia, Brown. Biphora, Brug. Pegea and Jasis, Sav.
Ex. S. maxima, Pl. 24, fig. 22, solitary form.
Animal oblong, sub-cylindrical, truncated in front by the oral orifice, pointed posteriorly; anal orifice sul-terminal ; test thin, transparent; muscular mantle incomplete, forming a set of transverse or oblique bands; mantle cavity lined by a system of vascular sinuses; gill rudimentary, forming an
oblique band across the interior; visceral nuclens posterior. Sexes combined; young produced by gemmation in chains, consisting of individuals unlike the parent and becoming oviparous, the alternate generations only being alike.

Distr. North sea, Brit. Medit. Australia, N. Zealand.
The individual Salpians are from $\frac{1}{2}$ an inch to 10 inches in length; the chains vary from a few inches to many feet, but are often broken up, indeed the adults appear to be always separate. They swim with either end foremost, although the pointed end would seem the normal one, as the motion is produced by the forcibly expulsion of the water from the mantle. Each orifice is furnished with a valve, and there is no division between the atrium and respiratory cavity except the rudimentary gill, or "hypopharyngeal band." The Salpa-chains also swim, with a regular serpentine movement.

The solitary and aggregate forms differ so much that they were always named and described as distinct species before the remarkable discovery made by Chamisso,* that each form always produced the other. The free form of S. democratica, Forsk. is a four-sided prism, with a rough surface, and 8 prominent spines at the posterior end; it has 7 mascular bands which completely encircle the body. The aggregate form (S. mucronata, Forsk.) is ovoid, pointed behind, smooth, and has only $5 \cdot$ muscular bands, whose dorsal ends are separate. (Huxley.) \dagger

The solitary Salpae always contain a chain of embryos winding spirally round the visceral nuclens; the embryos are attached in pairs to a double tube (or "proliferous stolon") connected with the sinus to the right of the heart. Sometimes they increase in size gradually from the heart outwards to the free end of the stolon, but usually the embryos are developed in groaps, and each portion of the series when it is detached consists of young Salpas of the same size. These portions are liberated in succession through an aperture produced in the tunic opposite the extremity of the stolon.

The aggregate Salpae produce a single ovum at a time, which is attached by a pedicle to the posterior part of the respiratory cavity. It remains there until it has attained a considerable size, and exhibits the proliferous stolon already partly developed, and those external characters which permanently distinguish it from its parent.

It was in Salpa thal Hasselt first observed the periodic change in the direction of the circulating currents. The heart itself is a muscular membrane not forming a complete tube, but open on one side. The dorsal sinus contains the long tubular filament (fig. 225, e) called the endostyle. In the ventral sinus is the ganglion, and the auditory vesicle containing 4 otolithes. The gill is a hollow column, or band, representing only the thoracic vessel ("hypo-pharyngeal band") of the Ascidians (fig. 226, d) and the respi-

[^6]ratory function is performed by the entire pailial cavity. The muscles of the Salpae consist of single layers of tranversely striped fibre.

Dololum, Quoy and Gaimard.
Etym. Diminutive of dolium a cask. Syn. P Anchinaea, Esch.
$T_{\text {ype }}$, D. denticulatum, Pl. 24, fig. 23.
Body transparent, cask-shaped, open at the ends, 2-10 lines in length; oral extremity a little prominent, with about 12 rounded denticulations; posterior end fringed; muscular bands 6, equidistant, besides the sphincters of the orifices; branchiae consisting of two bands stretched across the interior, ane above (epi) and oue below (hypopharyngeal), comnected by transverse bars with one another and the parietes; mouth on the dorsal side, in front of the fourth band ; heart above and in front of the mouth. (Huxley.)

Distr. 2 sp. Amboina, Vanicoro, N. Zealand.

Appendicularia, Chamisso.

Etym. Appendiculus, a small appendage.
Synn. Vexillaria, Müll. 1846. Oikopleura, Mertens, 1831.
Type, A. flabellum, Pl. 24, fig. 24.
Body ovoid, $\frac{1}{6}-\frac{1}{4}$ iuch long, with a long curved tail or swimmingorgan ; smaller end perforated, leading into a large cavity lined by a sinussystem; gill represented by the ciliated pharynx, which communicates with the exterior by two funnel-shaped canals opening on the hæmal surface beside the rectum ; œsophagus short, slightly curved, leading into a wide stomach; intestine turned forwards, ending on dorsal side in front of appendage; heart between lobes of the stomach; tail lanceolate, horizontally compressed. All the examples hitherto observed have been males. (Huxley.)

These minute creatures appear to be the lowest forms of the Tunicata; typifying in their adult age the larval state of the higher ascidians.

Distr. Behring's Straits, N. Brit. Tenby, Cape, New Guinea, S. Pacific.
Prof. Forbes relates that "when cruising off the north coast of Scotland in 1845, with Mr. Mc Andrew, their attention was attracted by the appearance of cloudy patches of red colouring matter in the water, and on procuring some and submitting it to microscopic examination, it was found to consist entirely of the curious and anomalous creatures called Appendicularie."*

[^7]
CONCLUSION.

CHAPTER I.

NUMERICAL ESTIMATE.

The number of living and fossil species of each genus of mollusca has been stated in the preceding pages, so far as they could be ascertained. With some modifications derived from recent data, these numbers give the following totals, by which the relative numerical development of the orders and families will be seen.

Brachiopoda.	Recent.	Fossil.	(Conchifera.)	Recent.	Fossil.
Terebratulidæ..	50	300	Tridacnidゅ	7	3
Spiriferidm	-	254	Cardiadæ.	200	300
Rhynchonellidæ....	3	300	Lucinidæ	120	351
Orthidm.	-	200	Cycladide	200	105
Productidm	-	100	Astartidem	46	373
Cranialm	3	30	Cyprinidm	108	356
Discinider	7	50	Veneridæ	573	260
Lingulidæ	7	38	Mactridæ.	82	41
	\cdots		Donacidæ	73	40
	75	1,272	Tellinidæ	315	200
Conchifera.			Solenidm	55	45
Ostreidæ	270	1,062	Myacidæ	90	250
Aviculidm	85	570	Anatinidæ	63	400
Mytilidæ	112	242	Gastrochænidæ..	23	34
Arcadm	288	616	Pholadidæ	- 64	50
Trigoniadæ	3	136		-	
Unionider	320	50		3,150	5,612
Chamide	50	50	Tunicata (about)....	150	
Hippuritidæ	-	78			

Of the recent marine shcll-fish some are in great measure auimal feeders, while the rest live on alge and infusoria.

Animal feeders.		Vegetable feeders.	
Cophalopoda....................	190	Gasteropoda rostriferaas	3,127
Proboscidean Gasteropoda	4,329	Opistho-branchiata (part)........	128
Dentaliadæ	50	Infusorial feeders.	
Opistho-branchiata (part)........	508	Bivalve shellfish	3,228
Nucleobranchiata	44	Tunicaries.	150
Pteropoda	79		1
	5,200	Pulmonifera	

[^8]
Cbapter II.

geographical distribution of the mollusca.

Ir is one of the most familiar facts in Natural History, that many countries possess a distinct Fauna aud Flora, or assemblages of auimals and plants peculiar to themselves; and it is equally trae, though less generally understood, that the sea also has its provinces of animal and vegetable life.

The most importaut, or best known of these provinces are indicated on the accompanying map ; different names, in some instances, and different letters and numbers being employed to distinguish the marine from the terrestrial regions.*

The division of the surface of the globe into natural history provinces ought to be framed upon the widest possible basis. The geographical distribution of every class of animals and plants should be considered, in order to arrive at a theory of universal application.

The Land Provinces hitherto proposed have been chiefly founded on botanical grounds, but the evidence afforded by insects, and the highes classes of animals, confirms the existence of these divisions.

The Marine Provinces have also been investigated by botanists; and the striking peculiarities of the fisheries have been taken into account as well as the distribution of shell-fish and corals.

In order to constitute a distinct province it is considered necessary that at least one-half the species should be peculiar, a rule which applies equally to plants and animals. Some genera, and sub-genera are limited to each province, but the proportion is different in each class of animals and in plants. \dagger

Specific areas.-Species vary extremely in their range, some being

[^9]limited to small areas, while others, more widely diffused, unite the local populations into fewer and larger groups. Those species which characterise particular regions are termed "endemic;" they mostly require peculiar circumstances, or possess small means of migrating. The others, sometimes called "sporadic," possess great facilities for diffusion, like the lower orders of plants propagated by spores, and more easily meet with suitable conditions. The space over which a species is distributed is called a "centre," or more properly specific area. The areas of one-half the species are smaller (usually much smaller) than a single province.

In each specific area there is frequently one spot where individuals are more abundant than elsewhere ; this has been called the " metropolis" of the species. Some species which appear to be no-where common can be shown to have abounded formerly; and many probably seem rare only because their head-quarters are at present unknown. (Forbes.)

Specific centres are the points at which the particular species are supposed to have been created, according to those who believe that each has originated from a common stock (p. 56) ; these can only be known approximately in any case. The doctrine that each species originated from a single individual, or pair, created once only, and at one place, derives strong confirmation from the fact that so "many animals and plants are indigenous only in determinate spots, while a thousand others might have supported them as weil."*

Gicneric areas.-Natural groups of species, whether called gencra, families or orders, are distributed much in the same manuer as species; \dagger not for the

* Mrs Somerville's Physical Geography, II. 95.
+ "What we call class, order, family, genus, are all only so many names for genera of various degrees of extent. Technically, a genus is a group to which a name (as Rihes) is applied: but essentially, Exogens, Ranunculacea, Ranunculus, are genera of different degrees.

One of the chief arguments in favour of the naturalness of genera (or groups), is that derived from the fact that many genera can be shown to be centralized in definite geographical areas (Erica, for example); i.e. we find the species gathered all, or mostly, within an area, which has some one point where the maximum number of species is developed.

But, in geographical space, we not unfrequently find that the same genus may have t wo or more areas, within each of which this phenomenon of a point of maximum number of species is seen, with fewer and fewer species radiating, as it were, from it.

In time, however (or, in other words, in geological distribution), so far as we know, each generic type has had an unique and continuous range. When once a generic type has ceased, it never re-appears.

A genus is an abstraction, a divine idea. The very fact of the centralization of groups of allied species, i.e. of genera, in space and time, is sufficient proof of this. Doubtless we make many so-called genera that are artificial; but a true genus is natural; and, as such, is not dependent on man's will." E. Forbes. (See An. Nat. Hist. July, 1852, and Jan. 1855, p. 45.)
same reason, since their constituents are not related by desceut, but apparently from the intention of the Creator.

Sub-generic areas are usually smaller than generic; and the areas of orders and families are as a matter of course larger than those of the included genera. But it is necessary to remember that groups of the same denomination are not always of equal value; and since species vary in range, it often happens that specific areas of one class or family are larger than gener ic areas of another. The smallest areas are ustally those of the forms termed aberrant (p .61) ; the typical groups and species are most widely distrib uted. (Waterhouse.)
"When a generic area includes a considerable number of species, there may be found within it a point of maximum, (metropolis) around which the number of species becomes less and less. A genus may have more centres than one.-It may have had unbroken extension at one period, and yet in the course of time and change, may have its centre so broken up that there shall appear to be out-lying points. When, however, the history of a natural genus shall have been traced equally through its extension in time and space, it is not impossible that the area, considered in the abstract, will be found to be necessarily unique." (Forbes.)

To illustrate the doctrine of the unity of generic areas Prof. Forbes has given several examples, showing that some of the most exceptional cases admit of explanation and confirm the rule. One of these rclates to the genus Mitra of which there are 400 species; it has its metropolis in the Philippine Islands and extends by the Red Sea to the Mediterranean and West Africa, the species becoming few, small, and obscure. Far away from the rest a single species is found on the coast of Greenland! But this very shell occurs fossil in Ireland along with another mitra now living in the Mediterranean. Another case is presented by the genus Panoprea, of which the six living species are widely separated,-a, in the Mediterranean; b, in Patagenia; c, at the Cape; d, Tismania; e, New Zealand; f, Japan. Of this genus above 100 fossil species are known, distributed over many places within the wide area, on whose margin the relics of this ancient form of life seem to linger, like the last ripple of a cireling wave.*

According to this view the specific centres are scattered thickly over the whole surface of the globe; those of the genera more thinly distributed: and the points of origin of the large groups become fewer in succession, mit:l we have to estimate the probable position or scene of creation of the primary divisions themselves; and are led to speculate whether there may not have been some common focus-the centre of centres-from which the first and greatest types of life have emanated.

Boundaries of Natural History Provinces. The land provinces are sepa-

[^10]rated by lofty mountains, deserts, seas, and climates; whilst the seas are divided by continents and influenced by the physical character of coastlines, by climates and currents. These "natural barriers" as they were called by Buffon, retard or altogether prevent the migrations of species in particular directions.

Influence of Climate.-Diversity of climate has been the popular explanation of most of the phenomena of geographical distribution, because it is so well-known that some species require a tropical amount of warmth, whilst others can endure a great variety of temperature, and some only thrive amidst the rigours of the arctic regions. The character of the vegetar tion of the zones of latitude has been sketched by Baron Flumboldt; Fabricius and Latreille have divided tbe world into climatal Insect-provinces; and Prof. E. Forbes has constructed a map of the homoiozoic belts or zones of marine life. To all these the remark of Mr. Kirby is applicable-that any division of the globe into provinces, by means of equivalent parallels and meridians, wears the appearance of an artificial and arbitrary system, rather than of one according to nature. Prof. Forbes has been careful to point out that although the "Faunas of regions under similar physical conditions bear a striking resemblance to each other "-this resemblance is produced, " not by identity of species, or even of genera, but by representation.," (p. 56).

Origin of the Natural History Provinces.-Mr. Kirby appears to have been the first to recognize the truth that physical conditions were not the primary causes of the zoological provinces, which he "regarded as fixed by the will of the Creator, rather than as regulated by isothermal lines."* Mr. Swaiuson also has shown that the "circumstances connected with temperature, food, situation and foes, are totally insufficient to account for the phenomena of animal geography," which he attributes to the operation of unknown laws. \dagger

The most important contribution towards a knowledge of these "unknown laws" has been made by Prof. E. Forbes, who was perhaps the first naturalist ever in a position to avail himself of the great storehouse of facts accumulated by geologists, respecting the distribution of organic life in "the former world." This subject will be referred to again in connection with the subject of Fossil Shells; meanwhile it may be stated, that according to this evidence, the Faunas of the Provinces are of various ages, and that their origin is connected with former (often very remote) geological changes, and a different distribution of land and water over the surface of the globe.

MARINE PROVINCES.

Amongst the genera of marine shells, there are some which have been considered particularly indicative of climate. From the Arctic list the follow-

[^11]ing may be taken as examples of the shells of high latitudes; those marked * being found in the southern, as well as in the northern hemisphere :-

Buccinum.	Velutina.	*Crenella.
*Chrysodomus.	Lacuna.	*Yoldia.
*Trophon.	*Margarita.	*Astarte.
Admete.	-	Cyprina.
*Trichotropis.		*Rhynchonella.

The following have been thought peculiar to the warmer regions of the sea:

Nautilus.	Conus.	Columbella.	Perna.
Rostellaria.	Harpa.	Cypræa.	Vulsella.
Triton.	Oliva.	Nerita.	Tridacna.
Cancellaria.	Voluta.	Spondylus.	Crassatella.
Terebra.	Marginella	Plicatula	Sanguinolaria

But it must not be inferred that these genera were always characteristic of extreme climates. On the contrary, the whole of them have existed in the British seas at no very remote geolocical period. Rhynchonella and Astarte were formerly "tropical shells;" and since the period of the English chalkformation there have been living Nautili in the North Sea, and Cones and Olives in the "London basin." It is not true that the same species have been at one time tropical, at another temperate, but the genera have in many instances enjoyed a much wider range than they exhibit now. Some of the "tropical" forms are more abundaut and extend farther in the Southern hemisphere; several large Volutes range to the extremity of South America, and the largest of all inhabits New Zealand.

The tropical and sub-tropical provinces might be naturally grouped in three principal divisions, viz., the Atlantic, the Indo-Pacific, and the West-American,-divisions which are bounded by meridians of longitude, not by parallels of latitude. The Arctic province is comparatively small and exceptional; and the three most southern Faunas of America, Africa, and Australia differ extremely, but not on account of climate.

If only a small extent of sea-coast is examined, the character of its mollusca will be found to depend very much upon the nature of the shore, the tides, depth, and local circumstances, which will be referred to again in another page. But these peculiaritics will disappear when the survey is extended to a region sufficiently large to include every ordinary variety of condition.

It has been stated that each Fauna consists of a number of peccliar species, properly, more than half; and of a smaller number which are common to some other provinces. By ascertaining the direction of the tides and currents, and the circumstances under which the specics occur, it may be possible to determine to which province these more widely diffused mollusca originally belonged. And when species occur both recent and fossil it is easy to perecive the direction in which their migrations have taken place.

The Fauna of the Mediterrancan has been critically examined by Prof. Forbes and M. Philippi, with this result,-that a large proportion of its population has migrated into it from the Atlantic, and a smaller number from the Red Sca, and that the supposed peculiar species are diminishing so rapidly with every new research in the Atlantic, that it can no longer rank as a province distinct from the Lusitanian.

When the Faunas of the other regions have been tested in the same manner, and disentangled, the result will probably be the establishment of a much greater number of provinces than we have ventured at present to indicate on the map.

It may be desirable to notice here the extraordinary range attributed to some of the marine species. These statements must be received with great hesitation; for when sufficiently investigated, it has usually proved that some of the localities were false, or that more than one species was included. The following are given by Dr. Krauss in his excellent monograph of the South African Mollusca :-

Ranella granifera: Red Sea, Natal, India, China, Philippines, New Zealand.

Triton olearius: Brazil, Mediterrauean, Natal, Pacific.
Purpura lapillus: Greenland (Senegal, Cape).
Venus verrucosa: (W. Indies) Brit. Senegal, Canaries, Mcditerranean, Red Sea, Cape (Australia).

Octopus culgaris: Antilles, Brazil, Europe, Natal, Mauritius, India.
Aryonauta argo: (Antilles), Medit. Red Sea, Cape.
Lucina divaricata is said to be "found on the shores of Europe, India, Africa, America, and Australia," (Gray.) In this case several species are confounded. The rock-boring Saxicava has been carried to all parts of the world in ballast, and it remains yet to be ascertained whether the same species occurs in a living state beyond the Arctic Seas and North Atlantic.

Lastly, the money cowry is always catalogued as a shell of the Mediterranean and Cape, although its home is in the Pacific, and it has no other origin in the Atlantic than the occasional wreck of one of the ships in which such vast quantities of the littie shell are annually brought to this country to be exported again to Africa.

I. Arctic Province.

The North Polar Scas contain but one assemblage of Mollusca, whose Southern limit is formed by the Aleutian Islands in the Pacific, but in the North Atlantic is determined chiefly by the boundary of floating ice, descending as low as Newfoundiand on the West, and thence rising rapidly to Iceland and the North Cape. A very complete general account of the Aretic Mollusca is given by Dr. Middendorff;* those of Greenland have been catalogued and

[^12]described by Otho Fabricius and Möller ;* and scattered notices occur in the Annals of Natural History, \dagger and the Supplements to the Narratives of the Arctic Voyagers,-Phipps, Scoresby, Franklin, Back, Ross, Parry, and Rich ardson. The existence of the same marine animals in Behring's Sea and Baffin's Bay, was long since held to prove at least a former North.West passage; but the occurrence of recent sea shells in banks far inland, rendered it probable that even recent elevation of the land in Arctic America might have much reduced the passage. During the "Glacial period," this Arctic Sea, with the same fauna, extended over Britain; over Northern Europe, as far as the Alps and Carpathians; and over Siberia, and a considerable part of North America. The shells now living in the Arctic Seas, are found fossil in the deposits of "Northern Drift," over all these countries; and a few of the species yet linger within the bounds of the two next provinces, especially in tracts of unusual depth. The Arctic shells have mostly a thick greenish epidermis (p. 40.) they occur in very great abundance, and are remarkably subject to variation of form, a circumstance attributed by Professor E. Forbes to the influence of the mixture of fresh water produced by the melting of great bodies of snow and ice.

ARCTIC SHELL-FISH.

R. Russian Lapland. F. Finmark. I. Iceland. G. Greenland. D. Davis Straits (west coast). B. Behring's Straits. O. Ochotsk. *British species. ** Brit. fossils.

* Index Molluscorum Grœenlandiæ. Hafn. 1842.
\dagger Hancock, An. Nat. Hist. vol. 18, p. 323, pl. 5.
*Fusus Berniciensis. R. B.
" Spitzbergensis. Spitz.
* " Islandicus. F.
* „ gracilis. F. R. G. B.
*Trophon clathratus. R. G. B.
** " scalariformis. Spitz. Newf. B.
** ", Gunneri. F. G.
** " craticulatus. R. I. G.
* " Barvicensis. F.
" harpularius. F. U.S.
*Parpura lapillus. R. G. B.
Mangelia, 9 sp. \quad.
,, decussata. D.
*Bela turricula F. G.
* "rufa. F. G.
**Mitra Grœnlandica. G.
**Admete viridula. R. Spitz. G. B.
*Trichotropis borealis. F. G. B. P. Regent Inlet.
, conica. G. " insignis. B. " bicarinata. B.
*Natica helicoides R. G. B.
** „ clausa, F. N. Zemla. G. Melville Id. P. Regent Inlet. B. pallida. R. O.
flava. N. Zemla. B. Newf. pusilla (groenlandica). G.

Norway. Spitz. nana. G.
*Velutina lævigata. R. B.

* " flexilis. F. zonata. R. G.
" lanigera. G.
Lamellaria prodita. F.
, Grærlandica. G. B.
**Scalaria Grœulandica. F. G. B. ,, borealis, (Eschrichti). G.
Amaura candida. G.
Chemnitzia albula. G.
Mesalia lactea. G.
Turritella polaris. G.
Aporrhais occidentalis. Labrador.
*Litorina obtusata. R.
* " tenebrosa. N. Zemla. D.
" Grœulandica. G. F.
" palliata (arctica). G.
" limata. \mathbf{F}.
*Lacuna vincta. R. Newf. G. lahiosa. F. P. Refuge.
* " crassior. R.
" glaci:lis. G.
* " pallidula. G.
* " puteolus. F. Newf.

Lacuna frigida F. solidula. F.
Hydrobia castanea. R. G.
Rissoa scrobiculata. G.
" globulus. G.
" saxatilis. G.
*Skenea planorbis. G. F.
Margarita cinerea. F. U.S.

* " undulata. R. G.
* " alabastrum. F.
* " helicina. G. White Sea. Spitz.
sordida. R. Spitz. G. B.
umbilicalis. D. B.
Harrisoni. D.
glauca. G. Vahlii. G.
- " costulata. G.
*Puncturella Noachina. F. G.
*Acmæa testudinalis. R. Iceland. G.
*Lepeta cæca. G. F. Spitz. C.Eden.
Plidium rubellum. F. G. D.
*Chitou ruber. F. G. Spitz.
* " albus. F. G.

Dentalium, entale. Spitz.

Bulla Reinhardi. G.
, subangulata. G.
*Cylichna alba. G. F. Spitz.
, turrita. G.
*Philine scabra. Norway. G.
, punctata (M̈̈ll.) G.
Doris liturata. G
" acutiuscula. G.
" obvelata. G.
*Dendronotus arborescens. F. G.
庣olis bodocensis. G.
Tergipes rupium. G.
Euplocamus Holbüllii. G.
*Terebratulina caput-serpentis. Spitz. F. Mass. Medit.
*Waldheimia cranium. F. " septigera. \mathbf{F}.
Terebratella Spitzbergensis. Sp. Labradorensis. Labr.
**Rhynchonella psittacea. R. Baffin's
Bay, 76 deg. N. Melville, I. B.
*Crania anomala. Spitz.
*Anomia squamula. R.

* „ aculeata. R.

Astarte Warhami. Davis Str.
" globosa. G.

* ", compressa. N. Zemla. G.
".Banksii. Spitz. Baffin's B.
* Cardium edule var. rusticum. R.
", Islandicum. N. Zemla. G.
" Groenlandicum. Kara. Spitz. C. Parry. St. Lawrence. elegantulum. G.
*Cryptodon fexuosus. G. F.
* Turtonia minuta. G. F.
* Cyprina Islandica. R. Labrador.
**Cardita borealis. Mass. O.
*Tellina calcaria. F. G. B.
** " Grœenlandica. (=Balthica, L.) N. Zemla. Spitz. F. G. B. edentula. B.
*Mya truncata. R. Spitz. G. C. Parry. B
** "Uddevallensis. St. Lawrence. D. P. Regent Inlet. Melville I.
* , arenaria N. Zemla. G. O.

Saxicava rugosa (arctica). N. Zemla. Spitz. G. C. Parry. B.

* " (Panopøa) Norvegica. White Sea. 0.
Machæra costata. Labrador. 0 . Glycimeris siliqua. C. Parry. Newf.
*Lyonsia Norvegica. F. 0.
" arenose G. D. P. Refug
Thracia myopsis. G.
Pandoraglacialis. Spitz. Baff. (Leach.
Chelyosoma Macleayanum. G.
Cynthia glutinosa. G.
Asciaium, 9 sp . including:
* $"$ echinatum. G.
* " conchilegum. G.
" rusticum. G. Spitz.
Clavellina crystallina G.
Boltenia reniformis. G. ciliata. G.
Synœecium turgens. Spitz.
Cystingia Griffithi. Felix H.

II. Boreal Province.

The Boreal Province extends across the Atlantic from Nova Scotia and Massachusetts to Iceland, the Faeroe and Shetland Islands, and alung the coast of Norway from North Cape to the Naze.

Of the 289 Scandinaviau shells catalogued by Dr. Lovén,* 217 , or 75 per

[^13]cent. are common to Britain, and 137 range as far as the North coast of Spain.

The boreal shells of America are described by Dr. Gould.* From these lists it appears that out of 140 sea-shells found ou the coast of Massachusetts north of Cape Cod, more than half are common to Northern Europe.

Many of the species, it is believed, could only have extended their range so distantly, by means of continuous lines of connecting coast, now no longer in existence. \dagger

Boreal Shells common to Europe and North America.

* British species.
*Teredo navalis.
* Pholas crispata.
*Solen ensis.
* (Panopæa) Norvegica.
* Mya arenaria
* " truncata.
*Thracia phaseolina (Conradi, Couth).
Mactra ponderosa (ovalis, G.)
? Montacuta bidentata.
*Turtonia minuta.
? Kellia rubra.
? Lepton nitidum (fabagella, Conr.?)
* Saxicava rugosa (arctica). Tellina solidula, var. (fusca, Say).
* n calcaria (sordida, Couth).
*Lucina borealis.
? " divaricata.
* Cryptodon flexuosus.
*Astarte borealis.
* ", triangularis? (quadrans, G.)]
* Cyprina Islandica.
?(Cardium Islandicum, U.S.-N. Zemla.)
Yoldia limatula.
," arctica, Gr. (= myalis).
* Leda pygmaa.
* ", cauclata.
? ", navicularis (lucida, Lovén?)
*Nucula tenuis.
*Mytilus edulis.
*Modiola modiolus.
*Crenella nigra.
* " discors, L.
* ", decussata, (glandula, Tot.)

Pecten Islandicus.
? Ostrea edulis (borealis, Lam.?)
*Anomia ephippium.

* " aculeata.
" squamula?
*Terebratulina caput-serpentis.
*Rhynchonella psittacea.
*Dendronotus arborescens.
Polycera Lessonii ?
? Amphisphyra hyalina (debilis?) Cylichna alba (triticea, C.)
* " obtusa (pertenuis).
*Philine quadrata (formosa, St.)
*Chiton cinereus.
* " marmoreus.
* " ruber.
* " lavis.
* Report on the Invertebrata of Massachusetts. 1841.
+ Forbes, Memoirs of the Geol. Survey, I. p. 379. Sir John Richardson, when speaking of the cod-tribe and turbot-tribe, says: " Most of the fish of this order feed on or near the bottom, and a very considerable number of the species are common to both sides of the Atlantic, particularly in the higher latitudes where they abound. It does not appear that their general diffusion ought to be attributed to migration from their native haunts, but rather that in this respect they are analogous to the owls, which, thongh mostly stationary birds, yet include a greater proportion of species common to the old and new worids than even the most migratory families. Several of the Scomberoidea (Mackerel-tribe) which feed on the surface, have been previously noted as traversing many degrees of longitude in the Atlantic : but the existence of the ground-feeding Gadoides in very distant localities must be attributed to a different cause, as it is not probable that any of them wander out of soundings or ever approach the mid-seas."-Report Zool. N. America, p. 218.

*Chiton albus. *Dentalium (entale, L.?)	Natica clausa. * , pusilla.
? Lepeta cæca (candida, C.)	*Scalaria gronlandica.
*Acmæa testudinalis (amoena, S.)	(Ianthina communis).
*Puncturella Noachina.	Odostomia producta.
*Adeorbis divisus (= Skenea serpuloides).	Cancellaria (admete) viridula. *Trichotropis borealis.
M argarita cinerea.	*Fusus antiquus (tornatus).
" costulata? (Skenea).	* " islandicus.
" helicina.	propinquu ? rosaceus.
, alabastrum (=occidentalis.?	*Trophon muricatus.
Litoriua gronlandica.	lathratu
* " tenebrosa (vestita). , palliata?	scalariformis. harpularius.
Lacuna vincta (divaricata).	* Purpura lapillus.
, puteolus (Montagui).	*Buccinum undatam
*Skenea planorbis.	* " (Cominella) Dalei.
elutina lævigata.	*Bela turricula.
zonata.	* " Trevelyana.
Lamellaria perspicua.	* " rufa (Vahlii)?

* Natice helicoides.
*Ommastrephes sagittatus and *Cynthia microcosmus are also common to both sides of the North Atlantic. The genera,

Machera,	Glycimeris,	Cardita, and
Solemya,	Mesodesma (deauratum).	Crepidula,

are peculiar to the American side of the Boreal Province.
Several other species now living on the coast of the U. States occur fossil in England : e.g. Trophon cinereus, Say., is bclieved to be the Fusus Forbesi, Strickland, of the Isle of Man; others are marked in the Arctic list.

III. Celtic Province.

The Celtic province, as described by Prof. E. Forbes, includes the British island coasts, Denmark, Southern Sweden, and the Baltic.* The fauna of this region (which includes the principal herring-fisheries) is essentially Atlantic; many of the species are of ancient origin, being known fossil in the Pliocene Tertiaries.

The British mollusca described by Forbes and Hanley amount to 682, viz.:-

14 Cephalopoda.	100 Pulmonifera.	175	Acephala.
220 Marine Univalves.	4 Pteropoda.	73 Tunicata.	

Of this number two-thirds of the Nudibranches, 55 marine univalves, and

[^14]7 bivalve shell fish, are, at present only known in British seas; bat as most of these are minute or "critical" species it is considered they will yet be met with elsewhere.

A few of the species belong to the Lusitanian province, whose northern limits include the Channel Islands, and just impinge upon our coast.

Phasianella pullus. Haliotis tulberculata. Truncatella Montagui. Oncidium celticum. Bulla hydatis Volva patula.

Murex corallinus.
Avicula Tarentina.
Galeomma Turtoni.
Pandora rostrata.
Ervilia castanea.
Mactra helvacea.

Cytherea chione.
Petricola lithophaga.
Venernpis irus.
Cardium rusticum, L. (tuberculaticm).

Of the Gasteropoda 54 are common to the seas both north and south of Britain; 52 range further south, but are not found northward of these islands; and 34 which find here their southern limit occur not ouly in Northern Europe, but most of them in Boreal America. Nearly half of the bivalves range both north and south of Britain; 40 extend southward only, and about as many more are found in Scandinavia, 27 of them being common to N. America. (Forbes.)

In the lists of Arctic and Boreal shells the British species are distinguished by an asterisk.

According to Mr. M'Andrew's estimate there are 406 British shellbearing mollusca, of which

| 217 | or 53 per cent. | are common to Scandinavia. | |
| ---: | :--- | :---: | :---: | :--- |
| 246 or 61 | $"$ | $"$ | North of Spain. |
| 227 or 56 | $"$ | $"$ | S. Spain and Medit. |
| 97 or 24 | $"$ | $"$ | Canary Islands. |

The following are at present peculiar to Britain : -
Assiminea, sp. Odostomis, 19 sp .? Montacuta ferruginosa.
Jeffreysia, sp. Buccinum fusiforme. Argiope cistellula.

Otina otis.
Rissoa, sp.
Stylifer turtoni.

Fusus Berniciensis. Pecten niveus. " Turtoni.
Natica Kingii.

Syndosmya tenuis.
Thracia villosiuscula.

Fusus antiquus.
Litorina litorea.

Ostrea edulis.	Mytilus edulis.	Fusus antiquus.
Pecten maximus.	Cardium edule.	Litorina litorea.

" opercularis. Buccinum undatum.
Amongst the species characteristic of the Celtic province-or most abundant in it -are the following :-

Trophon muricatus. Litorina litoralis.
Nassa reticulata.
Natica Montagui.
" monilifera.
, nitida.
Velutina lævigata.
Turritella communis.
Aporrhais pes-pelecani.
Rissoa cingillus.
Scalaria Trevelyana.

Trochus Montagui.
" millegranus. " tumidus.
Patella vulgata.
" pellucida.
Acmæa virginea.
Chiton cinereus.
Scaphander lignarius. Tellina crassa.

Venus striatula.
, casina.
Donax anatinus.
Solen ensis.
Pholas candida.
Mactra elliptica.
, solida.
Periploma prætenuis.
Thracia distorta.
Syndosmya prismatica.

The wide expanse of the Baltic affords no shell-fish unknown to the coasts of Britain and Sweden. The water is brackish, becoming less salt northward, till only estuary shells are met with, and the Litorinæ and Limnæans are found living together, as in many of our own marshes. This scanty list is taken from the Memoirs of Dr. Middendorff and M. Boll.

Buccinum undatum.	Neritina fluviatilis.	Tellina Balthica.
Purpura lapillus.	Limnæa auricularia.	\# tenuis.
Nassa reticulata.	ovata.	Scrobiclaria piperata.
Litorina litorea.	Mytilus edulis.	Mya arenaria.
Patella (tarentina).	Donax (trunculus).	"truncata.

IV. Lusitanian Province.

The shores of the Bay of Biscay, Portugal, the Mediterranean, and N. W. Africa, as far as Cape Juby, form one important province, extending westward in the Atlantic as far as the Gulf weed bank, so as to include Madeira, the Azores, and Canary Islands.*

In the Atlantic portion of the province occur the following genera, not met with in the Celtic and Boreal seas, although two of them, Mitra and Mesalia, occur on the coast of Greenland.

Argonauta.	Pisania.	Litiopa.	Umbrella.
Philonexis.	Dolium.	Truncatella.	Glaucus.
Chiroteuthis.	Cassis.	Solarium.	
	Triton.	Bifrontia.	Carinaria.
	Ranella.	Turbo.	Firola.
Conus.	Cancellaria.	Monodonta.	Atlanta.
Pleurotoma.	Sigaretus.	Haliotis.	Oxygyrus.
Marginella.	Crepidula.	Gadinia.	
Cymba.	Messlia.	Siphonaria	Cleodora.
Mitra.	Vermetus.	Auricula.	Cuvieria.
Terebra.	Fossarus.	Pedipes	Creseis.
Columbella.	Planaxis.	Ringicula	

[^15]| Megerlia. | Chama. | Cardita. | Ervilia. | |
| :--- | :--- | :--- | :--- | :--- |
| Spondylus. | | Crassatella.
 Lithodomus. | Cytherea.
 Petricola. | Panopæa. |
| Avicula. | | Ungulina. | Venerupis. | |
| Solemya. | Galeomma. | Mesodesma. | | |

Spain and Portugal.
The coast of Spain and Portugal is less known than any other part of the province, but the facilities for exploration are in some respects greater than in the Mediterrancan, on account of the tides. Shell-fish are more in demand as an article of food here than with us, and the Lisbon market afforded to Mr. M'Andrew the first indication that the genus Cymba ranged so far north.

On the coasts of the Asturias and Gallicia, especially in Vigo Bay, Mr. M'Andrew obtained, by dredging, 212 species, of a somewhat northern character, 50 per cent. of them being common to Norway, and 86 per cent. commou to the south of Spain.

On the southern coast of the Peninsula 353 species were obtained, of which only 28 per cent. are common to Norway and 51 per cent. to Britain.

The identical species are chicfly amongst the shells dredged from a considerable depth ($\mathbf{3} \mathbf{5}-50$ fathoms) ; the litoral specics have a much more distinct aspect.

The shells of the coast of Mogador are generally identical with those of the Mediterranean and Southern Peninsula.

Canary Islands. The shells of the Canaries collected by MM. Webb and Berthelot,* and described by M. D'Orbigny, amount to 124, to which Mr. M‘Andrew has added above 170 . Of the 300 species 17 per cent. are common to Norway, 32 per cent. to Britain, and 63 per cent.,to the coasts of Spain and the Mediterranean. Two only are W. Indian shells, Neritina viridis and Columbella cribaria. Of the African shells found here, and not met with in more northern localities, the most remarkable are :-

Crassatella divaricata.	Ranella lævigata.	Cymba proboscidalis.
Cardium costatum.	Cassis flammea.	Conus betulinus.
Lucina Adansoni.	" testiculus.	$"$ Prometheus.
Cerithium nodulosum.	Cymba Neptuni.	", Guinaicus.
Murex saxatilis.	" porcina.	" papilionaceus.

Madeira. Mr. M‘Andrew obtained 156 species at Madeira, of which 44 per cent. are British, 70 per cent. common to the Mediterrancan, and 83 to the Canaries. Amougst the latter are the two W. Indian shells before mentioned, and the following African shells:-

Pedipes.
Litorina striata.
solarium.
Scalaria cochlea.
Natica porcellana.

Mitra fusca.
" zebrina.
Marginella guancha.
Cancellaria. Monodonta Bertheloti.

Patella crenata.
" guttata.
" Lowei.
" Candei.
Pecten corallinoides.

* Hist. Naturelle des Iles Canaries; the list of shells is reprinted with the additions made by Mr. M'Andrew, as one of the Catalogues of the British Museum.

Azores. Amongst the litoral shells which range to the Azores, are Pedipes, Litorina striata, Mitra fusca, and Ervilia castanea; the other species obtained there are Lusitanian. ($M^{‘}$ Andrew.)

The Mediterranean fauna is known by the researches of Poli, Delle Chiaje, Philippi, Verany, Milne-Edwards, Prof. E. Forbes, and Deshayes. In its western part it is identical with that of the adjacent Atlantic coasts; the number of species diminishes eastward, although reinforced by a considerable number of new forms as yet only known in the Mediterranean; and a few accessions (about 30) of a different character from the Red Sea. The total number of shell-bearing species is estimated at 600 , viz.:-

On the coast of Sicily, M. Philippi has found altogether 619 marine mollusca, viz.:-
Bivalves 188 Pteropoda.......... 13 Gasteropoda 319
Brachiopoda 10 Nudibranches...... 54 Cephalopoda 15
Of the 522 which are provided with shells, 162 have not been found fossil, and are presumed to be of post-tertiary origin, so far as concerns their presence in the Medit. The remaining 360 occur fossil in the newer tertiary strata, along with nearly 200 others which are either extinct or not known living on those coasts; a few of them are living in the warmer regions of ${ }^{-}$ Senegal, the Red Sea, and the West Indies :-

Senegal.	Antilles.	Red Sea.		
Lucina columbella.	Lucina pennsylvanica.	Argonauta hians. Cardium hians.		
Vermetus intortus.	Dentalium elephantinum.			
Terebra fusca.		Morocco.		Terebra duplicata.
:---				
Trochus agglutinans.				

Most of them, however, are of northern origin, such as :-

Saxicava rugosa.	Tellina crassa.	Rhynchonella psittacea.
(Panopæa) Norvegica.	Cyprina Islandica.	Patella vulgata. Mya truncata.
Leda pygmæa.	Eulimella Scillæ.	
Periploma prætenuis.	Limopsis pygmæa.	Buccinum undatum
Lutraria solenoides.	Ostrea edulis.	Fusus contrarius.

Of the 522 Sicilian testacea about 35 (including 10 oceanic species) are common to the West Indies-if the species have been correctly determined; 28 are stated, with more probability, to be common to West Africa, including Murex Brandaris and other common species; 74, including Murex trunculus, are common to the Red Sea; Crania ringens cannot be distinguished from the species found in New South Wales (Davidson); and Columóella corniculum ranges from the north coast of Spain to Australia, the specimens from these distant localities being only distinguishable as geographical
varieties. (Gaskoin.) Six other species are included in Menke's Australian Catalogue, but require verification.

The following genera, nine of which are naked molluses, are supposed to be now peculiar to the Mediterranean; the small number of species show they are aberrant or expiring forms. Cassidaria, Terebratula, and Thecidium are ancient, widely-distributed genera, and the Mediterrauean Thecidium occars fossil in Brittany and the Canaries.

Histioteuthis, 2 sp.	Lobiger, 1.	Pedicularia, 1.
Verania, 1.	Pleurobranchæa, 1.	Terebratula, 1.
Gastropteron, 1.	Tethys, 1.	Morrisia, 2.
Doridium, 1.	Tiedemannia, 1.	Thecidium, 1.
Icarus, 1.	Cassidaria, 4?	Scacchia, 2.

The genera Fasciolaria, Siliquaria, Tylodina, Noturchus, Verticordia? Clavayella, and Crania, occur only in this portion of the Lusitanian province.

Amongst the peculiar species are:-

Nassa semistriata.	Argiope cuneata.	Artemis lupinus.
Fusus crispus.	Clavigella angulata.	Trigona nitiduls.
Tylodina lafinesquii	Spondylus Gussonii.	Lucinopsis decussata.
Crania rostrata.	Astarte bipartita.	

FIzean Sea. Prof. E. Forbes obtained 450 species of mollusca in the Fgean, belonging to the following orders :-
Cephalopoda........ 4 Nudibranches...... 15 Brarhiopoda 8
Pteropoda 8 Opisthobranches .. 28 Lamellibrauches 143
Nucleobranches...... 7 Prosobranches 217 Tunicata 222
Of these 71 were new species, bat several have since been found in the Atlantic, and even in Scotland.* The only marine air-breather met with was Auricula myosotis.

Black Sea. In the northern part a few Aralo-Caspian shells are found, otherwise the Black Sea only differs from the Mediterranean in the paucity of its species; Dr. Middendorff enumerates 68 only. The water is less salt, and there is no tide, but a current flows constantly through the Dardanelles to the Mediterranean. \dagger

V. Aralo Caspian Province.

The only inland salt-seas that contain peenliar shell-fish are the Aral and Caspian. The shells chiefly consist of a remarkable group of Cockles which burrow in the mud (see fig. 213, p. 291). No explorations have been made with the dredge, but other species, probably still existing in these seas, have been found in the beds of horizontal limestone which form their banks and extend in all directions far over the steppes. This limestoue is of brackish-

[^16]water origin, being sometimes composed of myriads of Cyclades, or the shells of Dreissena and Cardium, as in the islets near Astrakhan. It is believed to indicate the former existence of a great inland sea, of which the Aral and Caspian are remnants, but which was larger than the present Mediterranean at an age previous to that of the Mammoth and Siberian Rhinoceros. The present level of the Caspian is 83 feet below that of the Black Sea; that of the Aral has beeu stated to be 117 feet higher than the Caspian, but is probably not very different; their waters are only brackish, and in some parts driukable. The steppe limestone rises to a level of $200-300$ feet above the Caspian; it spreads eastward to the mountains of the Hindoo Kush and Chinese 'Tartary, sonthward over Daghestan and the low region E. of Tifis, and westward to the northern shores of the Black Sea. The extent to which it has been traced is represented by oblique lines on the map.* Some of the Caspian shells still exist in the Sea of Azof and the estuaries of the Dnicper and Duiester. Our information upon this seldom-visited region is derived from the works of Pallas, Eichwald, \dagger Krynicki, \ddagger Middendorff, and Sir Roderick Murchison.

[^17]The following species are described by Eichwald, from the steppe limestone. (Murchison, Russia, p. 297.) "Paludina" Triton.
" exigua.
Rissoa conus.
, dimidiatus. Bullina Ustuertensis.

Mactra Caspia.

" Karagana.
Cyclas Ustuertensis.
Mytilus rostriformis.

Donax priscus.
Monodacna propinqua.
" intermedia.
", Catillus.
Adacna prostrata.

No other inland bodies of salt water are known to have peculiar marine shells; those of the modern deposits, in Mesopotamia (at Sinkra and Warka), collected by Mr. W. K. Loftus, are species still abounding in the Persian Gulf. *

vi. West aprican Province.

The tropical coast of Western Africa is rich in conchological treasures, and far from being wholly explored. The researches of Adanson, \dagger Cranch (the naturalist to the Congo expedition \ddagger), and the officers of the Niger expedition, have left much to be done. Dr. Dunker has described 149 species in his Index Moll. Guinea, coll. Tams. Cassel, 1853.

At St. Helena, Mr. Cuming colleeted 16 species of sea-shells, 7 of them new. Litorina Helence is found on the shore of St. Helena, and L. miliaris and Nerita Ascensionis, at Ascension.

West African Shells.

Onychoteuthis, 3 sp .
Cranchia, 2 sp .
Strombus rosaceus.
Triton ficoides.
Ranella quercina.
Dolium tessellatum.
Harpa rosea.
Oliva hiatula.
Pusionella.
Nassa Pfeifferi.
Desmoulinsia.
Purpura nodosa.
Rapana bezoar.
Murex vitulinus.
" angalaris.
," megaceros.
," rosarius.
," duplex.
, cornutus.
Clavella? filosa.
, afta.

Lagena nassa.
'rerebra striatula.
" ferruginea.
? Halia priamus.
Mitra nigra.
Cymba.
Marginella.
Persicula.
Pleurotoma mitriformis.
Tomella lineata.
Clavatula mitra.
" coronata.
" bimarginata.
", virginea.
Conus papilionaceus.
" genainus.
" testudinarius.
," achatinus.
"" monachus.
Natica fulminea.
Cypræa stercoraria.

Cypræa picta.
Vermetus lumbricalis.
Cerithium Adansonii.
Turritella torulose.
Mesalia.
Litorina punctata.
Collonia.
Clanculus villanus.
Haliotis virginea. ", coccinea.
Nerita Senegalensis.
" Ascensionis.
Pecten gibbus.
Arca ventricosa.
,, senilis.
Cardium ringens. " costatum.
Lucina columbella.
Ungulina rubra.
Diplodonta rosea.
Cardita ajar.

* A species of coral (Porites elongata, Lam.) now living at the Seychelles has been said to be found in the Dead Sea. (v. Humboldt's Views of Nature, Bohn, ed. p.260.)
+ Hist. Nat. de Senegal, 4to. Paris, 1757. This able but eccentric naturalist destroyed the utility of his own writings by refusing to adopt the bi-nomial nomenclature of Linneus, and employing instead the most barbarous chance-combinations of letters he could invent.
\ddagger Appendix to Capt. Tuckey's Narrative (1818), by Dr. Leach.

Artemis africana.
, torrida. Cyclina Adansonii. Trigona bicolor. "tripla.
Cytherea tumens.

Cytherea africana.
Venus plicata.
Tellina.
Strigilla Senegalensis.
Gastrana polygona.
Mactra depressa.

Mactra rugosa. , nitida. Pholas clausa. Tugonia anatina.

Discina radiosa.

VII. South African Province.

The fauna of South Africa, beyond the tropic, possesses few characters in common with that of the western coast, and is more like the Indian Ocean fauna, as might be expected from the direction of the currents. But, together with these it has a large assemblage of marine animals found nowhere else, and the "Cape of Storms" forms a barrier between the populations of the two great oceans, scarcely less complete than the farprojecting promontory of South America. The coast is generally rocky, and there are no coral-reefs; accumulations of sand are frequent, and sometimes very extensive, like the Agulhas Bank. The few deep sea-shells which have been obtained off these banks possess considerable interest, but explorations in boats are said to be difficult, and often impossible on account of the surf. Shells from the Cape are too frequently dead and water-worn specimens picked up on the beach. The shell-fish of South Africa have been collected and described by Owen Stanley, Hinds, A. Adams, and, especially, by Dr Krauss, who has published a very complete monograph.* Of 400 seashells recorded in this work, above 200 are peculiar, and most of these belong to a few litoral genera. Only 11 species are common to the coast of Senegal, whilst 18 are found in the Red Sea.

South African Shells.

Panopæa natalensis.	Chiton, 16 sp.	Pleurotoma, 6 sp .
Solen marginatus.	Patella, 20 sp .	Clionella (sinuata).
Mactra spengle	" cochlea.	Typhis arcuatus.
Gastrana ventrico	mpressa	Triton dolarius
Nucula pulchra, Hinds.	apicin	, fictilis, $50-60 \mathrm{fm}$.
(L'Agulhas bank, 70 fm .)	, longicosta,	Harpa crassa.
Pectunculus Belcheri, 120 fm.	Helcion pectinata. Siphonaria, 5 sp.	Cominella ligata. ," lagenaria.
Modiola Capensis. ,, pelagica, Forbes.	Pupillia (aperta). Fissurella, 10 sp .	" limbosa. , tigrina.
Septifer Kraussi.	Crepidula, 4 sp. Haliotis sauguinea.	Bullia lævissima " achatina.
Terebratulina abyssicola, $132 \mathrm{fm}$	Delphinula granulosa. cancellata.	" natalensis. Nassa plicosa.
Terebratella (Kraussia),	Tr	, capensis.
lna	Litorina Africana	Eburna p
" pisum	Phasianella, 6 sp.	Columbella, 5 sp
, Deshayesii, 120 fm .	Bankivia varians.	Ancillaria obtusa. Mitra, 5 sp.

* Die Südafrikanischen Mollusken, fto. Stutt. 1848.

Imbricaria carbonacea.	Trivia ovulata.	
Voluta arniata.	Cypræa, 22 sp,	Octopus argus.
" scapha.	Luponia algoënsis.	Sepia, 4 sp.
"\# abyssicola, 132 fm.	Cyprovnlum (capense).	
Marginella rosea.	Conus, 8 sp.	

The following are stated to be common to the Cape and European seas.*

Saxicava (arctica?) Greenland, Medit. Tellina fabula, Brit. Medit.
Lucina lactea, Medit. Red Sea. ,, fragilis, Medit.
Venus verrucosa, W. Indies? Brit. Senegal, Canaries, Red Sea, Australia?
Tapes pullastra, North Sea.
" geographica, Medit.
Arca lactea, Medit.

Chama gryphoides, Medit. Red Sea.
Pecten pusio, Brit.
Diphyllidia (lineata ?) N. Brit. Medit.
Eulima nitida, Medit.
Purpura lapillus ?? (not in Medit.).
Nassa marginulata.
Octopus vulgaris? Brit.
Argonauta argo, Medit.

Vili. Indo-Pacipic Province.

This is by far the most extensive area over which similar shell-fish and other marine animals are distributed. It extends from Australia to Japan, and from the Red Sea and east coast of Africa to Easter Island in the Pacific, embracing three-fifths of the circumference of the globe and 45° of latitude. This great region might indeed be subdivided into a number of smaller provinces, each having a particular association of species, and some peculiar shells; such as the Red Sea, the Persian Gulf, Madagascar, \&c.; but a considerable number of species are found throughout the province, and their general character is the same. \dagger Mr. Cuming obtained more than 100 species of shells from the eastern coast of Africa, identical with those collecied by himself at the Philippines, and in the eastern coral islands of the Pacific. \ddagger This is pre-eminently the region of coral reefs, and of such shell-fish as affect their shelter. The number of species inhabiting it must amount to several thousands. The Philippine Islands have afforded the greatest variety, but their apparent superiority is due, in a measure, to the researches of Mr . Cuming; no other portion of the province has been so thoroughly explored. \oint

Amongst the genera most characteristic of the Indo-Pacific, those marked (*) are wholly wanting on the coasts of the Atlantic, but half of them occur fossil in the older tertiaries of Europe. Those in italics are also found on the west coast of America.

[^18]| * Nautilus. | *Magilus. | Stomatella. | Hemicardium. |
| :---: | :---: | :---: | :---: |
| *Pterocera | *Melo. | Gena. | * Cypricardia. |
| *Rimella | Mitra. | * Broderipia. | * Cardilia. |
| * Rostellaria. | * Cylindra. | *Rimula. | * Verticordia. |
| *Seraphs. | *Imbricaria. | *Neritopsis. | * P'ythina. |
| Conts. | Ovulum. | *Scutellina. | Circe. |
| Pleurotoma. | * Pyrula (type). | *Linteria. | * Clementia. |
| * Cithara. | *Monoptygma. | * Dolabella. | *Glaucomya. |
| * Clavella. | Phorus, | * Hemipecten. | * Meröe. |
| *Turbinella (typ.) | Siliquaria. | * Placuna. | Anatinella. |
| Cyllene. | *Quoyia. | *Malleus. | Cultellus. |
| Eburua. | *Tectaria. | * Vulsella. | *Auatina. |
| Phos. | Imperator. | * Pedum. | * Chæ口a. |
| Dolium. | Monodonta. | *Septifer. | * Aspergillum. |
| Harpa. | Delphinula. | * Cucullar, | *Jouannetia. |
| * Ancillaria. | Liotia. | * Hippopus. | *Lingula. |
| *Ricinula. | *Stomatia. | *Tridacna. | Discina. |

The strictly litoral species vary on each great line of coast : for example, Litorina intermedia and Tectaria pagodus occur on the east coast of Africa; Litorina conica and melanostoma, in the Bay of Bengal ; Litorina sinensis and castanea, and Haliotis venusta, on the coast of China; Litorina scabra and H. squamata, in N. Australia; H. asinina, New Guinea; and L. picta. at the Sandwich Islands.

Red Sea (Erythræan).
Of the 408 mollusca of the Red Sea, collected by Ehrenberg and Hemprich, 74 are common to the Medit. from which it would seem that these seas have communicated since the first appearance of some existing shells. Of the species common to the two seas 40 are Atlantic shells which have migrated into the Red Sea by way of the Medit. probably during the newer pliocene period; the others are Indo-Pacific shells which extended their range to the Mediterraneau at an earlier age.

The genera wanting in the Medit. but existing in the Red Sea, show most strikingly their diversity of character, and the affinity of the latter to the Indian fauna.

Pterocera.	Ancillaria.	Siphonaria.	Limopsis.
Strombus, 8 sp.	Harpa.	Placuna.	Tridacna
Rostellaria.	Ricinula.	Plicatula.	Crassatella.
Turbinella.	Magilus.	Pedum.	Trigona.
Terebra.	Pyramidella.	Malleus.	Sankuinolaria.
Ehurna.	Parmophorus.	Vulsella.	Anatina.
Oliva.	Nerita.	Perna.	Aspergillum.

Other genera become abundant, such as Conus, of which there are 19 species in the Red Sea, Cupriea 16, Mitra 10, Cerithium 17, Pinna 10, Chama 5, Circe 10.

Persian Gulf.

The marine zoology of the Persian Gulf and adjoining coast has not been yet explored, although the \mathbf{E}. India Company maintains a squadron of five or six ships constantly cruising in the Gulf.* The following shells were picked up on the beach at Kurachee by Major Baker, with many others evidently new, but not in a satisfactory state for description. (1850.)

Rostellaria curta.
Murex tenuispina var.
Pisania spiralis.
Ranella tuberculata. , spinosa.
" crumena.
Triton lampas.
Bullia, n. sp.
Eburna spirata.
Purpura persica. " carinifera. Columbella blanda.
Oliva subulata.
, Indusica.
,, ancillaroides.
Cypræa Lamarckii.
, ocellata.
Natica pellis-tigrina.
Sigaretus sp.
Odostomia sp.
Phorus corrugatus.
Planaxis sulcata.
Imperator Saulix.
Monodonta sp ,
Haliotis sp.
Stomatella imbricata. , sulcifera.
Fissurella Ruppellii.
" Indusica.
" salebrosa.
,. dactylosa.

Fissurella funiculata. Petricola sp.
Pileopsis tricarinatus. Tapes sulcosa.
Nerita ustulata. "Malabarica.
Dentalium octangulatum. Cypricardia vellicata.
Ringicula sp. Cardita crassicostata?
Bulla ampulla. " calyculata.
Anomia achæus.
, enigmatica.
Pecten sp.
Spondylus sp.
Plicatula depressa.
Mytilus canaliculatus.
Arca obliquata.
" sculptilis, \&oc.
Chama sp.
Lucinasp.
Cardium fimbriatum.
" latum.
, impolitum.
" pallidum.
" assimile.
Venus pinguis.
" cor.
" purpurata.
Meroë Solandri.
, effossa.
Trigona trigonella ?
Artemis angulosa. 1
" exasperata.
" subrosea?
Venerupis sp.
" Tankervillii.
Mactra Ægyptica, \&c.
Tellina angulata.
" capsoides.
Mesodesma Horsfieldii.
Psammobia sp.
Syndosmya sp.
Semele sp.
Solen sp .
Solecurtus politus.
Donax scortum.
" scalpellum.
Sanguinolaria diphos.
" violacea.
" sinuata.
Corbula sp.
Diplodonta sp.
Anatina rostrata.
Pandora sp.
Martesia sp.
Pholas australis.
, Bakeri, Desh.
, orientalis.
(Meleagrina v. p. 261.)

At the Cargados or St. Brandon shoals, north of Mauritius, Voluta costata, Conus verrucosus, Pleurotoma virgo, and Turbinella Belcheri have been obtained by dredging.

IX. Australo-Zelandic Province.

Most remote from the Celtic seas, this province is also most unlike them in its fauna, containing many genera wholly unknown in Europe, either living or fossil, and some which occur fossil in rocks of a remote period. The province includes New Zealand, Tasmania, and extra-tropical Australia, from

[^19]Sandy Cape on the east, to the Swan River. The shells, which are nearly all peculiar, have been catalogucd by Gray,* Menke, \dagger and Forbes. \ddagger Of the following genera some are peculiar (*), others attain here their greatest development:-

*Pinnoctopus.	*Macgillivraia.	Cypricardia.	Imperator.
*Struthiolaria.	*Amphibola.	Mesodesma.	Monoptygma.
Phasianella	*Trigonia.	Terebratella.	Siphonaria.
Elenchus.	*Chamostrea.	Spirula.	Pandora.
Bankivia.	*Myadora.	Oliva.	Anatinella.
Rotellu.	*Myochama.	Conus.	Clavagella.
*Macroschisma.	Crassatella.	Voluta.	Placunomia.
Parmophorus.	Cardita.	Terebra.	Waldheimia.
Risella.	Circe.	Fasciolaria.	Crania.

Some of the genera of this province are only met with elsewhere at a considerable distance:-

Solenella-Chile. Bankivia-Cape. Rhynchovella-Arctic seas.
Panopæa-Japan. Kraussia-Cape.
Monoceros-Patagonia.
Solemya-Medit.

Trophon-Fuegia; ,, Assiminea-India; Brit.

Amongst the litoral shells of South Australia are Haliotis elegans, H. rubicunda, and Litorina rugosa. Haliotis iris and Litorina squalida are found on the shores of N . Zealand; and Cyprovula umbilicata in Tasmania.

Mr. Gray's New Zealand list amounts to 104 marine species, among which are three volutes, including V. magnifica, the largest of its genus; Strombus troglodytes, Ranella argus, the great Thiton variegatus; 6 Cones, (all dcubtful), Oliva erythrostoma, Cyproa caput-serpentis, Ancillaria australis, Imperator helivtropium, Chiton monticularis, \&c.

Venus Stutchburyi and Modiolarca trapezina have been found at Kerguelen's Id. and Patella illuminata at the Auckland Ids.

X. Japonic Province.

The Japanese Islands and Corea represent the Lusitanian province. A few shells were collected here by Mr. A. Adams, but they are chiefly known through the Dutch dealers. \oint The Astarte Japonica of the Catalogues is nothing more than A. borealis, and is stated to have come from Lapland by Jay and Cuming. Panopea Japonica belongs to the same type with P. intermedia of the London Clay.

[^20]Octopus areolatus.
Sepia chrysopthalma.
Sepiola Japonica
Conus Sieboldi.
Pleurotoma Coreanica.
Terebra serotina.
" stylata.
Eburna Japonica.
Cassis Japonica.
Murex eurypterus.
" rorifluus.
\because plorator.
, Burneti.
Cancellaria nodulifera.
Mitra.
Strombus corrugatus. Cypræa fimbriata

Cyprea miliaris.	Isocardia Moltkiana.
Radius birostris.	Venus Japonica.
Cerithium longicaudatum.	Cyclina orientalis.
Imperator Guilfordix.	Cytherea petechialis.
Haliotis Japonica. " discus.	Artemis sericea. " bilunata. Sieboldi
Bullar Coreanica.	Japonica.
Siphonaria Coreanica	Circe Stutzeri.
Pecten asperulatus Japonicus.	Tapes Japonica. Petricola radiata.
Spondylus Cumingii.	Solen albidus.
Nucula mirabilis.	Panopæa Japonica.
" Japonica.	Terebratulina Japonica.
Cardium Bechei.	angusta.
Crassatella compressa.	Waldheimia Grayi.
Diplodonta alata.	Terebratella Coreanica.
Coreanica.	rubel

XI. Aleutian Province.

The Boreal province is represented on the northern coasts of the Pacific, where, according to Dr. Middendorff, the same genera and many identical species are found. In addition to those indicated in the Arctic list (p. 355), the following species occur at the Shantar Ids. in the Sea of Ochotsk (0), Saghalien, the Kuriles (K), Aleutians and Sitka (S).

Patella (scurra). S.
Acmæa, 3 sp. S.
Pilidium commodum. 0 .
Paludinella, 3 sp . O.
Litorina, 6 sp . O. K. S.
Turritella Eschrichtii. S.
Margarita sulcata. A.
Trochus, 6 sp . S .
Scalaria Ochntensis.
Crepidula Sitchana.
" minuta. S .
" grandis. A.
Fissurella violacea. S. $"$ aspera. S.
Haliotis Kamtschatica.
" aquatilis. K.
Velutina coriaces. K. " cryptospira. 0.
Trichotropis inermis. S.
Purpura decemcostata. (Mid.) S.
" Freycineti. O. S.
" septentrionalis. S.
Pleurotoma Schantarica.
" simplex. 0.
Murex monodon. S .
" lactuca. S.

Fusus (Chrysodomns) Sitchensis.
" decemcostatus. A.
" Schantaricus.
", Behringii.
" Baerii. A.
" luridas. S .
Buccinum undatum var. Schantaricum.
" simplex. 0 .
" Ochotense.
" cancellatum. A
" ovoides. 0 .
Pisania scabra. A.
Bullia ampullacea. O.
Onychoteuthis Kamtschatica.
Terebratella frontalis. 0.
Placunomia macroschisma. 0 .
Pecten rubidus. S .
Crenella vernicosa. 0 .
" cultellus. Kamts.
Nucula castrensis. S.
Pectunculus septentrionalis. A.
Cardita borealis. O.
Cardium Nuttalli. S.
, Californicum. S.
Saxidomus Petiti. S.

Saxidomus gigantens. S.
Petricola cylindracea. S.
" gibba. S .

Tellina lutea. A. nasuta. S. " edentula. A.
Lutraria maxima. S .

The influence of the Asiatic coast-current is shewn in the presence of two species of Haliotis, whilst affinity with the fauna of W. America is strongly indicated by the occurrence of Patella (scurra), three species of Crepidula, two of Fissurella, and species of Bullia, Placunomia, Cardita, Saxidomus, and Petricola, which are more abundant, and range farther north than their allies in the Atlantic.

Provinces on the Western coast of America.

The mollusca of the Western coast of America are equally distinct from those of the Atlantic and those inhabiting the central parts of the Pacific.

Mr. Darwin states in his Journal (p. 391) that " not one single sea-shell is known to be common to the Islands of the Pacific and to the west coast of America," and he adds that "after the comparison by Messrs. Cuming and Hinds of about 2000 shells from the Eastern and Western coasts of America, only one single shell was found in common, namely the Purpura patula, which inhahits the West Indies, the coast of Panama, and the Gallapagos." Even this single identification has since been doubted. Mr. Cuming, who resided many ycars at Valparaiso, did not discover any West India species on that coast, and M. D'Urbigny makes the same observation. On the other hand M. Mörch of Copenhagen says he has received Tellina operculata and Mactra alata from the west coast and also from Brazil ; and M. Deshayes gives the following extraordinary ranges in his "Catalogue of Venerida in the British Museum :"

> Artemis angulosa, Philippines-Chile.
> Cytherea umbonella, Red Sea-Brazil.
> \quad maculata, W. Indies-Philippines, Sandwich.
> " circinata, West Indies-West coast America.

In these instances there is doubtless some mistake, either about the locality or the shell. As regards the last, Mr. Carrick Moore has shown that the error has arisen from confonnding the Cytherea alternata of Broderip with C. circinata of Born. M. D'Orbigny collected 628 species on the coast of S. America, - 180 from the eastern side, and 447 from the Pacific coast, besides the Siphonaria Lessonii which ranges from Valparaiso in Chile to Maldonado on the coast of Uruguay.* These shells belong to 110 genera, of which 55 are common to both coasts, while 34 are peculiar to the Pacific. and 21 to the Atlantic side of S. America; an extraordinary amount of diversity, attributable partly to the different character of the two coasts-the

[^21]eastern low, sandy or muddy, the western rocky, with deep water near the shore.*

The comparison of the shells of Eastern and Western America is of considerable interest to geologists; for if is true that any number of living species are common to the Pacific, and Atlantic shores, it becomes probable that some portion of the Isthmus of Darien has been submerged since the Eocene Tertiary period. Any opening in this barrier would allow the Equatorial current to pass through into the Pacific-there would be no more Gulf Stream-and the climate of Britain might from this cause alone, become like that of Newfoundland at the present day.

XiI. Californian Province.

The shells of Oregon and California have been collected and described by Mr. IIinds, \dagger Mr. Nuttall \dagger, and Mr. Couthouy, naturalist of the American Exploring Expedition. \oint

Shells common to U. California and Sitka. (Middendorff.)

Tritonium scabrum.	Fissurella aspera.	Trochus euryomphalus.
Litorina modesta.	Trochus ater.	Petricola cylindracea.
aspera.	$"$ mœstus.	Lutraria maxima.
Fissurella violacea.	", Fokkesii.	

Scarcely any species are common to this province (extending from Puget Sound to the peninsula) and the Bay of California, which belongs to the Panamic province. The following list probably contains some shells which should be referred to the latter.

Fusus Oregonensis.	Dentalium politum.	Cardita ventricosa.
Murex Nuttalli.	Patella, 15 sp .	Cardium, 4. Lucina, 3.
Monoceros unicarinatus.	Acmæa scabra.	Cypricardia Californica.
punctatus.	ntadina.	Chironia Laperousii.
Cancellaria urceolata.	Chiton Mertensii.	Solecardia eburnea.
Trivia Californica.	crobiculatus, \&c.	Venus Californiensis.
Natica herculea.	Cleodora exacuta.	" callosa.
Lewisii.		Artemis ponderosa
Calyptræa fastiginta.	Waldheimia Californica.	Saxidomus Petiti.
Crepidula exuviata.	Discina Evansii.	Nuttalli.
, navicelloides.		giganteus.
, solida, \&c.	Anomia pernoides.	Venerupis cordieri.
Imperator Buschii.	Placunomia cepa.	Petricola mirabilis.
Haliotis Cracherodii.	Hinnites giganteus.	Mactra, 2. Donax, 1.
fulgens.	Perna, 1. Pinna, 2.	Tellina Bodegensis.
corrugata.	Mytilus, 1, Pecten 2.	", secta, \&c.
Fissurella crenulata.	Mytilimeria Nuttalli.	Semele decisa.
, cucullata.	Modiola capax.	Cumingia californica.
luncturella, 2 sp .	Chama exogyra.	Sanguinolaria Nuttalli.

[^22]| Lutraria Nuttalli. | Cyathodonta undulata. | Machaera maxima. |
| :--- | :--- | :--- |
| Platyodou cancellatus. | Sphenia californica. | Mya præcisa. |

XIII. Panamic Province.

The Western coast of America, from the Gulf of California to Payta in Peru, forms one of the largest and most distinct provinces. The shells of Mazatlan and the Gulf have been imperfectly catalogued by Menke and are now under examination by Mr. P. Carpenter, who states that they amount to about 500 species, of which perhaps half are common to Panama and Peru; a veryfew are common to the west coast of the Promontory and very few (including Purpura patula and Mactra similis) to the West Indies; still fewer to the Pacific coasts and islands, and one or two identical or closely analogous with Senegambian and British species, (e. g. Kellia suborlicularis.)

The late Prof. C. B. Adams of Amherst published, in 1852 , a very valuable work on the shells of Panama, in which the total number of species found in the province is estimated at 1500 , of which "perhaps none exist beyondall of the few examples which are supposed to have a wider range, are more or less doubtful." He remarks that "in general there is a great dissimilarity between the shells of this and the Caribbean Province" in which he had himself collected extensively; the number of large species was much greater in Panama.*

The river-openings of this coast are bordered by mangroves, amongst which are found Potamides, Arcas, Cyrenas, Potamomyas, Auriculas and Purpuras, whilst Litorina climb the trees and are found upon their leaves. The ordinary tide at Panama amounts to 16 or 20 feet, the extreme to 28 feet, so that once a fortnight a lower zone of beach may be examined and other shells collected; the beach is of fine sand, with reefs of rocks in the bay.

Gallapagos Islands.-Out of 90 sea-shells collected here by Mr. Cuming 47 are unknown elsewhere; 25 inhabit Western America, and of these 8 are distinguishable as varieties; the remaining 18 (including one variety) were found by Mr. Cuming in the Low Archipelago, and some of them also at the Philippines. (Darwin, p. 391.)

Litoral shells common to Panama and the Gallapagos (C. B. Adams.)

Cyprea rubescens	Columbella atramentaria.	Ricinula reevia
Mitrutristis.	bicanalifera.	Cassis coarct
Planaxis planicostatus.	hremastoma.	Oniscia tuberculosa.
Purpura carolineusis.	Columbella nigricans.	Conus brunneus.

[^23]Conus nux.
Strombus granulatus.
Turbinella cerata.

Strombus gracilior.
Murex erythrostomus.
" regius.
" imperialis.
" radix.
" brassica.
" monoceros, \&o.
Rapana muricata.
, Kiosquiformis.
Myristica patula.
Ricinula clathrata.
Purpura, many sp.
Monoceros, many sp.
" brevidentatus.
" cingulatus.
Clavella ? distorta.
Oliva porphyria.
, splendidula, \&c.
Northia pristis.
Harpa crenata.
Malea ringens.
Mitra Inca, \&c.
Terebra luctuosa, \&c. Conus regularis, \&c.
Pleurotoma, many sp. Cancellaria goniostoma.
" cassidiformis.
" chrysostoma.
Columbella, many sp.

Pleurotoma eccentrica.
Hipponyx radiata.
Fissurella macrotrema.

Fissurella nigro punctata. Siphonaria gigas.

Panama shells.

Columbella strombiformis. Spondylus princeps.
Marginella curta. Pecten magnificus.
Cypraa nigro-punctata. Arca lithodomus, \&c.
Trivia. Pectunculus tessellatus, \&c.
Pyrula ventricosa. Nucula exigua.
Natica glauca. Leda, 5 sp .
Pileopsis hangaricoides. Cardium senticosum,
Crucibulum auriculatum, $\& \mathrm{c}$.
Trochita mamillaris.
Crepidula arcuata \&c.
Litorina pulchra.
Turritella Californica.
Truncatella, 2 sp.
Cœсит, 8 sp.
Imperator unguis, \&c.
Trochus pellis serpentis.
Vitrinella, 12 sp .
Nerita ornata.
Patella maxima.
Discina strigata. ,, Cumingii.
Lingula semen.
" albida.
" audebardi.
Placunomia foliacea.
Ostrea æquatorialis.
" maculosum.
Cardita laticosta.
Gouldia Pacifica.
Cytherea, many sp.
Venus gnidia.
" histrionica.
Artemis Dunkeri.
Trigona crassatellıides.
Cyclina subquadrata.)
Venerupis foliacea.
Petricola califoruica, \&c.
Tellina Burneti.
Cumingia coarctata.
Semele, 7 sp.
Saxicava parpurascens.
Gastrochæna.
Solecurtus lacidus.
Lyonsia brevifrons.
Pandora arcuata, \&c.
Pholas melanura, \&c.
Parapholas.
Jouannetia pectinata.

XIV. Peruvian Province.

The coast of Peru and Chile, from Callao to Valparaiso, affords a large and characteristic assemblage of shells, of which only a small part have been catalogued, although the district has been well explored, especially by D'Orbigny, Cuming and Philippi. M. D'Orbigny collected 160 species, one half of which are common to Peru and Chile, whilst only one species found at Callao was also met with at Payta, a little beyond the boundary of the region. Mr. Cuming obtained 222 species on the coast of Peru, and 172 in Chile. The Island of Juan Fernandez is included within this province. Only a few of the Peruvian shell-fish can be here enumerated.

Onychoteuthis peratop- tera.	Posterobranchæa. Aplysia Inca. Tornatella venusta.	Crucibulum lignarium. Trochita radians.
Eolis Inca.	Chiton, many species.	Fissurella, many sp.
Doris Peruviana.	Patella scurra.	Liotia Cobijensis.
Diphyllidia Cavieri.	Acmæa scutum.	Gadinia J~mpiona.

Litorina Peruviana.
, araucana.
Rissoina Inca. Cancellaria buccinoides.
Sigaretus cymba.
Fusus Fontainei.
Murex horridus.
Ranella ventricosa.
Triton scaber.
Nassa dentifera.
Columbella sordida.
Oliva Peruviana.
Rapana labiosa.
Monoceros giganteus. , crassilabris.

Monoceros acuminatus.
Purpura chocolata.
Concholepas.
Mitra maura.
Terebratella Fontainei. " Chilensis.
Discina lamellosa. , lævis.

Pholas subtruncata, \&c.
Lyonsie cuneata.
Solen gladiolus.
Solecurtus Dombeyi.
Mactra Byronensis.

Mesodesma Chilensis. Cumingia lamellosa. Semele rosea, \&c. Petricols, many sp. Saxidomus opacus, \&c. Cyclina Kroyeri. Venus thaca. Crassatella gibbosa. Nucula, many sp. Leda, many sp. Solenella Norrisii. Lithodomus Peruvianus. Saxicava solida.

XV. Magellanic Province.

This region includes the coasts of Tierra del Fuego, the Falkland Ids. (Malvinas) and the Mainland of Sonth America, from P. Melo, on the east coast, to Concepcion, on the west. It is described by M. D'Orbigny and Mr. Darwin (Journal, p. 177 et seq.). The southern and western coasts are amongst the wildest and stormiest in the world; glaciers in many places descend into the sea, and the passage round Cape Horn has often to be made amidst icebergs floating from the south polar continent.* The greatest tides in the straits amount to 50 feet. " $\ln \mathrm{T}$. del Fuego the giant sea-weed (Macrocystis pyrifera), grows on every rock from low-water mark to 45 fathoms, both on the outer coast and within the channels; it not only reaches up to the surface, but spreads over many fathoms and shelters multitudes of marine animals, including beautiful compound Ascidians, various patelliform shells, Trochi, naked mollusca, cuttle.fish and attached bivalves. The rocks, at lowwater, also abound with shell-fish, which are very different in their character from those of corresponding northern latitudes, and even when the genera are identical the species are of much larger size and more vigorous growth." \dagger

Shells of the Magellanic province (${ }^{*}$ Falkland Islands).

Buccinum antarcticum. , Donovani?	Natica limbata. Lamellaria antarctica.	*Scissurella conica. *Fissurella radiosa.
Bullia cochlidium.	Litorina caliginosa.	Puncturella conic
Monoceros imbricatus.	Chemnitzia Americana.	Nacella cymbularia.
glabratus.	*Scalaria	*Pate
calcar.	*Truchita pileolus.	barbara.
Trophon Magellanicus.	Crepidula Patagonica.	zel
Voluta Masellanica.	Trochus Patagonicus.	Siphouaria late

[^24]| Doris luteola. | Waldheimia dilatata. | * Venus exalbida. |
| :---: | :---: | :---: |
| Eolis Patagonica. | Pecten Patagonicus. | * Cyamium antarcticum. |
| *Spongiobranchæa. | corneus. | Mactra edulis. |
| Spirialis? cucullata, $66^{\circ} \mathrm{S}$. | Mytilus Magellanicus. | * Lyonsia Malvinensis. |
| | * Modiolarca trapezina. | Pandora cistu |
| 'erebratella crenulata. | Leda sulculata. | Saxicava antarctica. |
| , Magellanica, many | *Cardita Thouarsi | Boltenia coacta. |
| varieties. | *Astarte longirostris. | Octopus megalocyathus. |

XVI. Patagonian Province.

From S. Catharina, south of the Tropic, to P. Melo. This coast-line has shifted considerably since the era of its present fauna. M. D'Orbigny and Mr. Darwin observed banks of recent shells, especially Potamomya labiata, in the valley of the La Plata and the Pampas around Bahia Blanca. Mr. Cuming also met with Voluta Brasiliana, and other living shells, in banks 50 miles inland. Of $\boldsymbol{\tau} 9$ shells obtained by M. D'Orbigny on the coast of N. Patagonia, 51 were peculiar, 1 common to the Falkland Ids. and 27 to Maldonado and Brazil. At Maldonado 37 species were found, 8 being special, 10 common to N. Patagonia, 2 to Rio, and 17 to Brazil. Of the latter 8 range as far as the Antilles; viz.:

Crepidula aculeata.	Mactra fragilis.	Modiola viator.
, protea.	Venus flexuosa*.	Plicatula Barbadensis.
Pholas costata.	Lucina semi-reticulata.	

At Bahia Blanca, in lat. 39° S., the most abundant shells observed by Mr. Darwin (p. 243) were

Oliva auricularia. Oliva t „ puelchana. Voluta	elchana. siliana.	Voluta angulata. Terebra Patagonica.
M. D'Orbigny's list also includes the following genera and species:		
Octopus tehuelchus	Æolis.	Leda.
Columbella sertularium.	Paludestrina.	Cytherea.
Bullia globulosa.	Scalaria.	Petricola.
Pleurotoma Patagonica.	Natica.	Corbula.
Fissurellidæa megatrema.	Chiton.	Pinna.
Panopæa abbreviata.	Solen.	Mytilus.
Periploma compressa.	Lutraria.	Lithodomus.
Lyonsia Patagonica.	Donacilla.	Pecten.
Solecurtus Platensis.	Nucula.	Ostrea.

XVIl. Caribbean Province.

The Guil' of Mesico, the West Indian Islands, and the eastern coast of South America, as far as Rio, form the fourth great tropical region of marine life. The number of shells is estimated by Prof. C. B. Adans at not less than 1500 species. Of these 500 are described by M. D'Orbiguy in Ramon de la Sagra's History of Cuba, and a small number of the Brazilian species in the same author's Travels in South America.

[^25]The coasts of the Antilles, Bermuda, and Brazil, are fringed with coral reefs, and there are considerable banks of gulf-weed at some distance from the coast of the Antilles.

West India Shells.

Argonauta. Octopus.
Philonexis.
Loligo.
Cranchia.
Onychoteuthis
strombus gigas.
, pugilis.
Murex caleitrapa.
Pisania articulata.
Enzina turbinella.
Triton pilearis.
" cutaceus.
Fusus morio.
Fasciolaria tulipa.
Lagena ocellata.
Cancellaria reticulata.
Fulgur aruauum.
Terebra acicularis.
Myristica melongena.
P'upura patula.
" deltoidea.
Oniscia oniscus.
Cassis tuberosa.
" Hammea.
" Marlagascariensis. Nerita.
Columbella mercatoria.
" nitida, \&c.
Voluta vespertilio. ,, musica.
Oliva brasiliensis.
" angulata.
", jaspidea.
" oryza, \&c.
Ancillaria glabrata.
Conus varius, \&c.
Clavatula zebra.
Marginella.
Ffâto Maugeriæ.
Cypræa mus.
,, exanthema.
", spurca, \&c.
Trivia pediculus.
Ovulum gibbosum.

Ommastrephes. Cleodora. Sepioteuthis. Creseis. Sepia. Cuvieria. Spirula. Atlanta. Hyalea.

Cheletropis. Ianthina. Glaucus. Notarchus Plei. Aplysia.

Natica canrena.

Pyramidella dolabrata.
Planaxis nucleus.
Litorina zic-zac.
" flava.
" lineolata.
Tectaria muricata.
Modulus lenticularis. ossarus
Truncatella caribbæ\&.
Torinia cylindracea.
Turritella exoleta. ," imbricata.
Trochus pica.
Imperator tuber.
" calcar.
Fissurella Listeri.
" nodosa.
" Barbadensis.
Neritina.
Hemitome 8 radiata.
Hipponyx mitrula.
Pileopsis militaris.
Calyptræa equestris.
Crepidula aculeata.
Patella leucopleura.
Chiton squamosus.
Hydatina physis.
Bouchardia tulipa.
Discina antillarum.
Placunomia foliata.
Plicatula cristata.
Lima scabra.
Mytilus exustus.
Lithodomus dactylus.

Arca Americana.
Yoldia tellinoides.
Chama arcinella.
" macrophylla.
Cardium lævigatum.
Lucina tigrina.
" Peunsylvanica.
" Jamaicensis.
Corbis fimbriata.
Coralliophaga.
Crassatella.
Gouldia parva.
Venus paphia.
" dysera.
" crenulata.
" cancellata.
" violacea.
Cytherea dione.
" circinata.
" maculata.
" figantea.
," flexuosa.
Artemis concentrica.
" lucinulis.
Cyclina saccata.
Trigona mactroides.
Petricola lapicida.
Capsula coccinea.
Tellina Braziliana.
" bimaculata.
Strigilia carnaria.
Semele reticulata.
, variegata.
Cumingia.
Iphigenia Brasiliensis.
Lutraria lineata.
Periploma inæquivalvis.
Pholadomya candida.

XVIII. Trans-Atlantic Province.

The Atlantic coast of the United States was supposed by Prof. E. Forbes to consist of two provinces, l. the Viryinian, from C. Cod to C. Hatteras,
and 2. the Carolinian, extending to Florida; but no data were supplied for such a division. The total number of mollusca is only 230 , and 60 of these range further north, 15 being moreover common to Furope.

Dr. Gould describes 110 shells from the coast of Massachusetts south of Cape Cod, of which 50 are not found to the northward, but form the commencement of the proper American type. The shells of New York and the sontheru Atlantic States are described by De Kay, in the State Natural History of New York; this list supplies 120 additional species, of which at least a few are stragglers from the Caribbean province; e.g. Chama arcinella, Iphigenia lavigata, Capsula deflorata.*
M. Massachusetts. Y. New York. SC. Sonth Carolina. F. Florida.

Conus mus. F.
Fusus cinereus. M. SC.
Nassa obsoleta. M. F. (Mex.)
" trivittata. M. SC.
", vibex. M. F. (Mexico).
Purpura Floridana. (Mex.)
Terebra dislocata. V. SC.
Pyrula? papyracea. F.
Fulgar carica. M. SC.
, canaliculatum. M. SC.
Oliva literata. SC.
Marginella carnea. F.
Fasciolaria distans. SC. (Mex.)
Columbella avara. M. Y.
Ranella caudata. M. Y.
Natica duplicata. Y. SC.
Sigaretus perspectivus. Y. SC.
Scalaria liveata. M. SC.
" multistriata. M. Y.
" turbinata. NC.
Cerithium ferragineum. F.
" 4 sp . M.
Triforis nigro-cinctus. M. Odostomia, 6 sp . M. Y.
Turritella interrupta. M. Y. " concava. SC.
(Vermetus lumbricalis. M. ?)
Calyptræa striata. Y.
Crepidula convexa. M. Y. " fornicata. M. F.(Mex.)
Litorina irrorata. Y.
Fissurelli alternata. (Say) ?
Chiton apiculatus. M. SC.
Tornatella puncto-striata. M. Y.
Bulla insculpta. M. Y.

Ostrea equestris. SC.F.
Pecten irradians (scallop).
Avicula Atlantica. F.
Mytilus leucophantus. SC.
Modiola Carolinensis.
, plicatula. M. Y.
Pinna muricata. SC.
Arca ponderosa. SC.
, pexata. M. F.
" incongrua. SC.
, transversa. M. Y.
Solemya velum. M. Y.
, borealis. M.
Cardinm ventricosum. SC.
, Mortoni. M. Y.
Lucina contracta. Y.
Astarte Mortoni. Y. " bilunulata. F.
Cardita incrassata. F.
Venus mercenaria. M. SC.
, Mortoni. SC. F.
, gemma. M. Y.
Artemis discus. SC.
Petricola dactylns. M. SC. ,, pholadiformis. Y
Mactra similis. SC.M. , solidissima. M. Y.
" lateralis. M. Y.
Lutraria lineata. F. " canaliculata. V.F.
Mesodesma arctata. M. Y.
Tellina tenta. M. SC.
, $8 \mathrm{sp} . \mathrm{SC} . \mathrm{F}$.
Semele æqualis. SC.
Cumingia tellinoides. M.
Donax fossar. Y.

[^26]Donax varialilis. G. F. Solecurtus fragilis. M. SC. , caribbæus. M. F. Corbula contracta. M. F. Periploma Leana. M. Y.

Periploma papyracea. M. Y. Lyonsia hyalina. Y. Pandora trilineata. M. F. Pholas costata SC. F.
, semicostata. SC.

LAND REGIONS.

Distribution of Land and Fresh-water Shells.

The boundaries of the Natural-history land-regions are more distinctly marked, and have been more fully investigated, than their counterparts in the sea. Alincst every large island has its own fauna and flora; almost every riversystem its peculiar fresh-water fish and shells; and mountain-chains like the Andes appear to present impassable barriers to the "nations" of animals and plants of either side. Exceptions, however, cccur which shew that beyoud this first generalisation there exists a higher law. The British Channel is not a barrier between two provinces, nor is the Mediterranean ; and the desert of Sahara separates only two portions of the same zoological region. In these and other similar instances the " barrier" is of later date than the surrounding fauna and flora.

It has been often remarked that the northern part of the map of the world presents the appearance of vastly-extended, continental plains, much of which is, geologically speaking, new land. In the southern hemisphere the continents taper off into promontories and peninsulas, or have loug since broken up into islands. Connected with this is the remarkable fact that only around the shores of the Arctic Sea are the same animals and plants found through every meridian; and that in passing southward, along the three prineipal lines of land, specific identities give way to mere identity of genera, these are replaced by family resemblances, and at last even the families of animals and plants become in great measure distinct - not only on the great continents, but on the islands-till every little rock in the ocean has its peculiar inhabitants-the survivors, seemingly, of tribes which the sea has swallowed up.(Waterhouse.)

The two largest genera, or principal types of the land and fresh-water shells, Helix and Unio, have an almost universal range, but admit of many geographical subdivisions.* Amongst the land-snails are several species to which a nearly world.wide range has been assigned, sometimes erroneously as when Helix cicatricosa is attributed to Senegal and China, or Heli.c similaris Fér. to Brazil and India; and often correctly, but ouly because they have been carried to distant localities by human agency. Land-suails are in

[^27]favour with Portuguese sailors, as "live sea-stock;" and they have naturalized the common garden-snail of Europe (Helir aspersa) in Algeria, the Azores, and Brazil; and Helix lactea at Teneriffe and Mte. Video. Achatina fulica has been taken from Africa to the Mauritius, and thence to Calcutta, where it has been established by a living uaturalist ; aud Helix hortensis has been carried from the old country to America, and naturalized on the coast of New England and the banks of the St. Lawrence. Bulimus Goodalli, indigenous to the West Indies and S. America, has beeu introduced into Euglish pineries and to Mauritius. Helix pulchella, one of the small species found in moss and decayed leaves, inhabits Europe, the Caucasus, Madeira, the Cape (introduced), and N. America as far as the Missouri. Helix cellaria inhabits Europe and the Northern States of America, and has been carried abroad with the roots of plants, or attached to water-casks, and naturalized at the Cape aud New Zealand.

The fresh-water Pulmonifera-Limnaa, Physa, Planorbis, Ancylusand the amphibious Succinea, have a nearly world-wide range; and like aquatic plants and iusects often re-appear, even at the antipodes, under familiar forms. The range of the gill-breathing fresh-water shells is more restricted.

The Old World and America may be regarded as provinces of paramount importance, having no species in common (except a few in the extreme north), and each possessing many characteristic genera.

America. Anastoma.	Old World. Zonites.	America. Choanopoma.	Old World. Pomatias.
Tridopsis.	Nanina.	Chondropoma.	Otopoma.
Sayda.	Vitrina.	Cistula.	Craspedopoma.
Stenopus.	Helicolimax.	Trochatella.	Diplommatina.
Proserpina.	Daudebardia.	Alcadia	Aulopoma.
Bulimus.	Achatina.	Stoastoma.	Pupina.
Oclontostomus.	Achatinella.	Geomelania	Acicula.
Jiguas.	Clansilia.		
Glandina.	Paxillus.	Hemisinus.	Vibex.
Cylindrella.	Pupa.	Melafusus.	Pirena.
Megaspira.		Ceriphasia.	Melanopsis.
Simpulopsis.	Testacella.	Anculotus.	Paludomus.
Amphibulima.	Parmacella.	Melatoma.	Lithoglyphus.
Omalonyx.	Limax.	Amnicola.	Navicella.
	Ariou.		
Philonycus.	Phosphorax.	Mülleria.	Ftheria.
Peltella.	Incilaria.	Mycetopus.	Iridina.
	Oncidium.	Castalia.	Galatea.
Chilinia.		Monocondylæa.	Cyrenoïdes.
Gundlachia.	Latia.	Gnathodon.	Glaucomya.

The Laud Provinces represented on the map are the principal Botanical Regions of Prof. Schouw, as given in the Physical Atlas of Berghans; and it is proposed to inquire how far these divisions are confirmed by the land and fresh-water shells, more especially by the land-snails, (Helicida, Limacida,
and Cyclostomide), which have been so elaborately catalogued by Dr. L. Pfeiffer.*

The first Botanical region-that of Saxifrages and Mosses-has not been numbered on the map, although its boundary is given by the line of northern limit of trees. This line nearly coincides with the Isotherm of 32°, or permanent ground-frost; but in Siberia the pine-forests extend 15° further, owing to the absence of winter rains and the bright clear air.

In this region shells are very rare; Dr. Middendorff found Physa hypno$r u m$ in Arctic Siberia, and Linnaa geisericola (Beck) inhabits the warm springs of Iceland. The few species discovered by Möller in Greenland are supposed to be peculiar :-

Helix Fabricii.	Succinea Groenlandica	Limnæq Holböllii.
Pupa Hoppii.	Limnea Vahlii.	Planorbis arcticus.
Vitrina angelicæ.	$\# \quad$ Pingelii.	Cyclas Steenbuchiı.

1. Germanic Region.

The whole of Northern Europe and Asia, bounded by the Pyrenees, Alps, Carpathians, Cancasus, and Altai, constitutes but one province, with a fauna by no means proportioned in richness to its extent. \dagger

The land-snails amount to more than 200, but nearly all (or at least fivesixths) are common to the Lusitanian region. \dagger

Helix.............. 90	Pupa 44	Cyclostoma
Bulimulus 10	Clansilia 52	Acicula 1
Zua	Vitrina 5	Limax
Azөса............ 5	Succinea 5	Arion 4
Cionella	Balea 1	Carychium

The fresh-water shells belong to these genera and sub-genera:-

Limnæィ. 20	Velletia	Unio, sp. and vars . . 20
Amphipeplea 2	Neritina, vars. 3	Anodon, vars....... 20
Physa............. 5	Paludina and Bithynia 23	Alasmodon 3
Aplexa 1	Valvata 5	Cyclas if
l'lanorbis.......... 16	Conovulus (Alexia) .. 3	Pisidium 11

Ancylus 7 Dreissena 1
The British land-shel!s amount to 74, fresh-water pulmonifera 24, freshwater pectinibranchi,fa 7, marine pulmonifera 4; fresh-water bivalves 15. Of the species formeriy thought peculiar, Pupa anglica and Helix fusca have been found in France, and Helix lamellata in Holsace. Helix excavatn (Bean) is still unknown upon the Continent; and Geomalacus maculosus and

[^28]Limnea involuta have only been met with in the south-west of Ireland, but are possibly Lusitauian species. Dreissena polymorpha has been permanently naturalized in canals (p. 267), and Testacella Maugei and haliotidea in gardens; Bulimus decollatus and Goodalli have been often established in greenhouses. Sone species are now very scarce in Eugland that were formerly abundant, as :-
$\begin{array}{lll}\text { Clausilia plicatula } & \text { Vertigo Venetzii. } & \text { Succinea oblonga. } \\ \text { Vertigo minutissima. } & \text { Helix lamellata. } & \text { Acicula fasca. }\end{array}$
Others which occur in the newer tertiary deposits have become quite extinct in England, such as:-

Helix fruticum, living in France and Sweden.
" ruderata............. Grmany.
", labyrinthica(Eocene) New Eugland.
Paludina marginata........ France.
Corbicula consolirina Fgypt and India.
Unio litoralis France and Spain.
On the other hand, some of the commonest liviug species have not been found fossil ; e.g. Helix aspersa, pomatia, aud cantiana. Several genera only occur fossil in the older tertiaries, viz. :

Clandina.	Cyclotus.	Nematura.
Proserpina.	Megalomas oma.	Mela:ia
Cylindrella?	Crasperop ma.	Melanopsis.

The land and fresh-water shells of Scandinavia are 56, all common European species; H. pomatia has been naturalizel at Stockholm.*
Dr_{t}. Middendorff gives the following list of Siberian shells in his Sibirische Reise (Band II. th. 1. Petersb. 1851) :-
Helix carthusiana. Irkutsk Planorbis complanatus, Altai.
, Schrenkii, M. Tunguska, 58n.
" hispida, Reresov. Bernaul.
" albus, Bornaul, "
" ruderata, Stanowoj Mtn.
" contortus, "
" pura, "
" vortex, "
" leucostoma, "
". sub-personata,,., ; Ochotsk.
Pupa mascorum, Bernaut.
Zua lubrica, "
succinea putr:s, , ; Irkutsk.
Limnæa Gebleri, M. Bernaul.
" auricularia, Nertschinsk.
,. ovata, Bernaul.
" Krmtschatica, Mid.
" peregra, Bernaul, B \quad resov.
" s:agualis, " Irkutsk.
" palustris, " "
" truncatula, , Tomsk.
,, leucostoma, Irkitsk.
Physa hyp:ororum, Bernaul; Taimyr- Cyclas calyculata, Bernau', R. Lena, R. lande.
Planorbis corneus, Bernaul; Beresov; Pisidium fontinale, Beresov. Kirgiscusteppe, Altai. , nitidus, Irkutsk.
Bithinia tentaculata, Beruaul.
, Kickxii, R. Ami, Altai.
Valvata cristata, var. Sibirica, Bernaul, Beresov; Kamtschatka. piscinalis, R. Ami.
Unio complanatus, Kamtachatka.
Uuiu Dahusicus, Mid. Schilka.
" Mongolicus, M. Gorbitza, Dauria.
Anodon herculens, M. Scharanai.
" anatinus, Tunguska.
" cellensis var. Beriugiana, Kamtschatka. Ami, S. Kants.
" obliquum, Bernaul, Tomsk.

[^29]
2. Lusitanian Region.

The countries bordering the Mediterranean, with Switzerland, Austria and Hungary, the Crimea (Taurida), and Caucasus, form a great proviuce (or rather cluster of provinces) to which Prof. E. Forbes applied the term Lusitanian. The Canaries, Azores, and Madeira are outlying fragments of the same region.*

In Southern Europe about 600 land-suails are found, of which above 100 are also spread over the Germanic region and Siberia; and 20 or 30 are common to Northern Africa. Besides these 60 others are found in Algeria and Egypt, 100 in Asia Minor and Syria, and 135 in the Atlantic Islands, making a total of nearly 900 species of Helicida. \dagger

Of the 12 species of Zonites (proper) 10 are peculiar to Lasitania.
The species of Bulimus, Achatina, and Pupa are small and minute, belonging to the sub-genera Bulimulus, Cionella, Zua, Azeca, Vertigo, \&c.; 4 (of which two are Algeriau) have been referred to Glandina.

In this region are also found 22 species of Cyclostomide and 44 Lima. cida:-

Helix 392	Vitriua 11	Cryptella
Hulimus 80	Daudebardia 3	Cyclostoma........ 5
Succinea 8	Helicolimax 3	Craspedopoma 3
Achatina 2.j	Limax 28	Pomatias 10
'Tornatellina 3	Arion 7	Acicula 4
Balea.............. 4	Phosphorax 1	
Pupa 120	Testacella.......... 2	Carychium 3
Clausilia \ddagger........247	Parmacella 5	

The fresh-water shells are of the same genera as in the Germanic province, and their numbers about the same; with the addition of several species of Melania, Melanopsis, Lithoglyphus, and Cyrena. Melanopsis buccinvides is found in Spain, Algeria, and Syria, having become extinct in the intervening countries. 'Two species of Lithoglyphus inhabit the Danube; Cyrena (Corbicula) Panormituna is found in Sicily, two others in the Euphrates, and C. consobrina in the Alesandrian Caual.

The Lusitanian province includes numerous minor regions, the islands and mountain tracts especially being centres or foci where a number of peculiar species are associated with those living around. Thus, of species not as yet recorded from other localities, Switzerland has 28, the Austrian Alps 46, Carpathians 28, ㅅ. Italy and Dalmatia 100, Roumelia 20, Greece and its

[^30]Archipelago 90, Anatolia 50, Caucasia 21, Syria 30, Lower Egypt and Algeria 60, Spain 26, and Portugal 15 Helicida and 9 Limacida.

Mediterranean Islands.
Corfu, Cyprus, Rhodes, Syra, Candia, and Crete, have each a few pecculiar land snails, amounting to 40 species altogether.

Balearic Isles. Helix Graellsiana, hispanica (var. balearica,) nyelhii, minoricensis; and Cyclostoma ferrugineum; common to Spain and Algeria.

Corsica. Helix Raspaili, tristis, Clausilia 4 sp .
Sardinia. Helix Sardiensis, meda, tenui-costata, Pupa 2, Clausilia 1.
Malta has two peculiar species of Helix, and a Clansilia (scalaris).
Sicily has 40 peculiar Helices and 3 Limaces. This island is connected with N. Africa by a winding shoal with deep water on each side.

Madeira Group.

These ancient volcanic islands, 660 miles S. W. of Portugal, consist of Madeira, with Fora and 3 other islets called Dezertas, and Porto Santo, 26 miles to the N. E., with the rocky islets Ferro, Baxo and Cima.* The land-snails have been described by the Rev. R. T. Lowe, \dagger and form the subject of a monograph by Dr. Albers; \ddagger the investigations of Mr. Vernon Wollaston have nearly doubled the number of known species, which now amount to 132. The Vitrina belong to the section Helico-limax; the Cyclostomas to the sub-genus Craspedopoma, and half the Pupas to Vertigo.

Arion 1	Bulimus 2	Cionella 3	Limnæа......... 1
Limax 4	Glandina...... 4	Pupa.......... . 23	Ancylus........ 1
Testacella...... 2	Azeca 3	Balea.......... 1	Conovalus 3
Vitrina 3	Tornatellina .. 1	Clausilia 3	Pedipes (afrai).. \mathbf{l}
Helix 76	Zua 2	Cyclostoma.... 2	

Of the 92 found in Madeira or the Dezertas, 70 are peculiar; 54, of which 39 are peculiar, inhabit Porto Santo and its islets; 11 others, of which 4 are widely diffused, are common to Madeira and Porto Santo. One species is peculiar to the Dezerta Grande; 1 speeies and 1 variety to the S. Dezerta (Bugio); 1 to the Northern (Cho); one variety to Ferro. Seven species are common to the Dezertas; 1 to the great and northern Dezertas; 5 to Madeira and Dezerta Grande; and 3 to Madeira, P. Santo, and the Dezertas. Of those species, which inhabit more than one island, the specimens from each locality are recognizable as distinct races;

[^31]or geographical varieties. Helix subplicata and papilio are found on the Ilheo Baxo; H. turricula on Cima. Of the total number (132) 111 species are peculiar to the Madeira group; 5 are common to the Canaries; 4 to the Azores, and 1 to the Guinea coast; 11 are common to S. Europe, besides 2 Limnaids, and 7 slugs, which may have been recently introduced viz. :-

Arion empiricorum	Helix cellaria.	Zua lubrica, var.
Limax variegatus.	crystallina.	folliculus.
autiquorum.	pisana.	Bulimus decollatu
agrestis.	pulchella.	ventrosus, F
gagates.	lenticula.	Balæa perversa (pil6i).
Testacella Mangei.	, lapicida, fossil).	Limnma truncatula.
haliotidea.	Cionella acioula.	Ancylus fluviatili

Great quantities of dead shells of the land-saails are found in ancient sand-dunes near Caniçal, at the eastern extremity of Madeira, and in Porto Santo, including 64 of the living species and 13 which have not been found alive. As the fossil examples of several species are larger than their living descendants, it is possible that some of those reputed to be extinct have only degenerated. It is a remarkable fact that some of the commonest living species are not found fossil, whilst others, now extremely scarce, occur abun. dantly as fossils.*

Extixct land-snails of Madeira:

```
Helix delphinula, Lowe. M.
        arcinella, Lowe, P.
        coronula, Lowe, S. Desertá.
        vermetiformis, Lowe, P.
        Lowei, Fer. (porto-sanctana, var. ?). P.
        fluctuosa, Lowe (=chrysomela, Lowe). P.
        psammophora, Lowe (phlebophora var.?). P.
        Bowdichiana, Fer. (punctulata, major ?). M. P
Glandina cylichna, Lowe. P. Santo.
Cionella eulima, Lowe, P.
Pupa linearis, Lowe. M. (= minutissima, Hartm ?)
    " abbreviata, Lowe. M.
```

The problem of the colonization of these islands receives additional light from the circumstances noticed at other oceanic islands, especially the Canaries and St. Helena. There is evidence that this mountain group has not arisen newly from the sea, and great probability that it has become insulated by the subsidence of the surrounding land. \dagger The character and arrangement of its fauna is probably nearly the same now as when it formed part of a continent, and the diminution of its land-shells in variety aud size

* Helix tiarella, W. and B. was supposed to be extinct, but in the last summer, (1255) Mr. Wollaston detected it. alive in two almost inaccessible spots on the north coast of Madeira : it is not a native of the Canaries.
+ See the Observations of Mr. James Smith, and of Sir C. Lyell and Mr. Hartung (Geol. Journ. 1854):
may be the result of a modern change of physical conditions brought about by human agency, as at St. Helena. The annual fall of rain is now 29.82 inchcs, whereas it was remarked by Columbus, 350 years ago, "that, formerly, the quantity of rain was as great in Madeira, the Canaries and the Azores, as in Jainaina, but since the trees, which shaded the ground, had bcen cut down, rain had become much more rare.'"

The Azores are a gronp of 9 volcanic islands, 800 miles W. of Lisbon, the loftiest being Pico, 7,613 ft. Oaly 13 land-shells have been found, of which 3 are common to the Canaries, 1 to the Canaries and Madeira, 3 to Madeira, 1 to the Canaries and C. de Verdes, and 2 are pecaliar, viz.: Helix Azorica and Bulimus cyaneus. Helix barbula is also found in Portugal, H. pisana and cellaria are common to Madeira and Europe, and H. aspersa has been introduced recently.

The Canary islands are 60 miles \mathbf{W}. of Africa, with a temperature of $60^{\circ}-66^{\circ}$ in the coolest half-year, and $78^{\circ}-87^{\circ}$ in the hottest. The landsnails are about 80 in number, including Helix 50, Nanina 1, Vitrina 3, Bulimus 16, Achatina 3, Pupa 5, Limax 1, Phosphorax 1, Testacella 2, Cryptella 1, and 4 Cyclostomida. Of these, 60 are peculiar, 12 are common to S. Europe, and 4 to the West Indies? 1 to Morocco, 1 to Algeria (also European), and 1 to Egypt. The fresh-water shells are Physa 2, Ancylus 1.

Helir ustulata and McAndrei are peculiar to the rocky islets known as the "Salvages" north of the Canaries.

The absence of W. African land-shells and the presence of W. Indian species may be explained by the currents, which come from the Antilles, as shown on the map. \dagger Some of the European species may have been introduced (e. g. Helix lactea, pisana, cellaria); but the presence of 20 Lusita. nian species, in a total of 80 , is too remarkable to be accidental.

The Cape de Verde lslands, although much further to the south, are also much farther from the continent, being 320 miles West of C. de Verde; the mean temperature is $65^{\circ}-70^{\circ}$, and the vegetation, as Dr. Christian Smith remarked, is more like that of the Mediterranean coast than W. Africa. Of the 12 land-shells, two are common to the Canaries and Azores.

Lusitanian species of wide distribution.

$$
\begin{aligned}
& \text { Helix amanda, Sicily - Palma. } \\
& \text { " planata, Morocco - Canaries. } \\
& \text { ", lenticula, S. Europe - Madeira - Canaries. } \\
& \text { ", rozeti, Sicily, Morea - Algeria - C. de Verde - Canaries. } \\
& \text { " lanuginosa, Majorca - Algeria - Palma. }
\end{aligned}
$$

[^32]```
Helix simulata, Syria - Egypt - Lancerotte.
 " Michaudi, summit of Porto Santo - Teneriffe?
 " cyclodon, Azores - Canaries - C. de Verdes.
 ,. advena, (= erubescens Lowe,) Madeira-Azores - St. Vincent.
 , plicaria and planorbella, Canaries-Porto Rico?
Bulimus subdiaphanus, Canaries - Azores - C. de Verdes.
 " bceticatus and badiosus, Canaries-St. Thomas?
```

Ascension. This barren volcanic island, in the midst of the Atlantic Occan, is not known to possess any terrestrial Pulmonifera beside a slug, the Limax Ascensionis. Mr. Beuson thinks that some Helicide might possibly be found on the Green Mountain, 2840 feet high, where the garrison have their gariens. Mr. Darwin remarks "we may feel sure that at some former epoch, the climate and productions of Ascension were very different from what they now are."

## St. Helena. (No. 28 of Map).

The Island of St. Heleua is 800 miles S. E. of Ascension, aud 1200 from the nearest.African coast of Benguela. It is entirely volcanic. The indigenous plants are all peculiar, and not more related to those of Western Africa than to Brazil.* The land shells are also peculiar; 13 species have been described; vix :-Helix, 3 sp. Bulimus 5, Achatina 2, Pupa 1, Succinea (Helisiga), 2. As many more have beer met with only in the condition of dead shells, rarely retaining their colour and translucency. They are found beneath the surfacesoil in the sides of ravines worn by the heavy rains, at a height of 1200 to 1700 feet; " their extinction has probably been caused by the entire destruction of the woods, and the consequent loss of food and shelter, which oecurred during the early part of last century."-iDarwin's Journal, p. 488). A living Bulimus, related to the extiuct B. Blofieldi, is found feeding on the cabbagetrees, ouly on the highest points of the Islaud.

## Extinct land-shells of St. Helena. $\dagger$

Bulimus auris vulpinus.
" Darwini.
," Blofieldi.
" Sealei.
", subplicatus.
" terebellum.
" fossilis.

Bulimus relegatue.
Helix bilamellata.
n polyodon.
" spurea.
" biplicata.
" Alexaudri.
Succinea Bensoni,

The large Bulimus, (fig. 91, p. 164) has no living analogue in Africa,

[^33]but is a member of of a group characteristic of tropical America (to which the names Plecochilus, Pachyotis and C'aprella have been given) including $B$. signatus, B. bilabiatus, B. goniostomus, and especially B. sulcatus (Chilonopsis, Fischer) of St. Iago.* The four next species belong to the same type, but are smaller and slenderer. "The marine mollnsks of the coast of St. Helena would lead us to infer the very ancient isolation of that island, whilst at the same time a pre-existing closer geographical reiationship between the African and the American continents than now maintains is dimly indicated. The information we have obtained respecting the extinct and existing terrestrial mollusks would seem to point in the same direction, and assuredly to indicate a closer geographical alliance between St. Helena and the east coast of S. America than now holds."-(Forbes).

## Tristan d'Acunha. (No. 29 of Map).

Two peculiar species of Balea (Tristensis and ventricosus) are found on this remote and lofty island, which attains an elevation of 8,236 feet.

## 3. Aprican Region.

Tropical Western Africa, with its hot and swampy coasts and river-valleys is the region of the great Achatince and Achatina-like Bulimi, the largest of all living land-snails. Dr. Pfeiffer enamerates-Vitrina 3 sp . Streptaxis 7, Heli.x 8, Pupa 5, Bulimus 35, Achatina 39, Succinea, 3. Streptaxis Reclu. ziana inhabits the Guinea Islands. Helix Folini, Bulimus numidicus and fastigiatus, Pupa crystallum and sorghum, Achatina columna, striatella and lotophaga are found ou Princes Island. Pupa putilla on Goree Island. Bulimus (Pseudachatina) Downesi, Achatina iostoma and Glandina cerea at Fernando Po. The reversed river-snail (Lanistes) is generally diffused in the fresh waters of Africa; several species of Potamides and Vibex are found in the embouchures of the western rivers and Pedipes on the sea-shore. The freshwater bivalves of Senegal are similar to those of the Nile; -

| Pisidiam parasitirum, Fgypt.Cyrenoides Dnponti, Senegal. |  | Iridina exntica, Senegal. |  |
| :---: | :---: | :---: | :---: |
|  |  | " rubens, | " |
| Corbicula, 4 sp . | Egypt. | Pleiodon ovatus | " |
| Jridina nilotica | " | 有theria semilunats | ta |
| " aegyptiaca | " | Galatea radiata | " |

## 4. Cape Region.

Dr. Krạuss describes 41 species of land-snail from South Africa, and Mr. Benson has furnished a list containing 22 others; these are all peculiar, except a Succinea which appears to be only a variety of the Earopean

[^34]S. putris, and two European Helices (H. cellaria and pulchella) probably imported to the environs of the Cape. There are also 3 stugs, 9 freshwater Pulmonifera, 7 marine Pulmonifera, 5 freshwater bivalves and 5 univalves. The species found at the Cape, Algoa Bay, Natal, \&c., are for the most part different-Potamides decollatus, Clionella sinuata and an Assiminea inhabit brackish waters.

| Limax .............. 1 | $\checkmark$ | - |
| :---: | :---: | :---: |
| Arion .............. 1 | Limnæィ ............. 1 | Paludina ............ \$ |
| - | Physa ............. 4 | Ncritina ............ 1 |
| Vitrina .............. 4 | Physopsis .......... 1 | - |
| Helix ............. 29 | Ancylus ............ 1 | Corbicula'............. 1 |
| Succinea ............ 4 | Planorbis............ 3 | Cyclas ............. 1 |
| Bulimus ............ 9 | - | Pisidium ............ 1 |
| Pupa............... 6 | Vaginulus ......... 1 | Unio ................. 1 |
| Achatina ............ 5 | Oncidinm............ 1 | Iridina ............. 1 |
| Cyclostoma......... 6 | Auricula ............ 6 |  |

## 5. Yemen-Madagasear.

The S. W. Highlands of Arabia (Yemen) form a distinct Botanical province isolated by rainless deserts to the north. The land suails consist of a few species of Helix and Bulimus, Cyclostoma lithidion, and 3 species of the section Otopoma, a group also found in Madagascar. Two species are common to the island of Socotra, (No. 30) which also has a species (of Pupa) common to Madagascar. Bulimus guillaini, Cyclostoma gratum, modestum and Souleyeti are found on the island of Abd-el-Gouri.

Very few land shells have been collected on the mainland of Eastern Africa, although it is a rainy region, and well wooded in the southern part; 5 species only are recorded from Mogadora and Ibu, belonging to the genera Helix, Bulimulus, Achatina, Pupa, and Otopoma. On the Island of Zanzibar are found, Achatina Rodatzi, and allisa, Cyclostoma Creplini, and Zanguebarica; Pupa cerea is common to Zanzibar and Madagascar.

Madagascar itself is rich in land shells; Dr. Pfeiffer enumerates-Helix 28 sp., Bulimus 6, Succinea 14, Pupa 1, Achatina 4, (one of which, eximia, is allied to A. Columna, of $W$. Africa), and 32 Cyclostomidæ, chiefly of the section with spiral ridges (Tropidophora), 3 of the division Otopoma. Cyclostoma cariniferum and Cuvieri are found on the Island of Nosse Be; Helix guillaini on S. Maria I. Amongst the fresh-water shells are Melania amarula, Melaratria fluminea and Neritina corona.

The land shells of the Mascarene Islands are all peculiar; we are indebted to Mr. W. H. Benson for most of the information existing in respect to them.

## Comoro Islands.

Helix russeola and Achatina simpularia are found in Mayotte; Cyclostoma pyrostoma in Mayotte and Madagascar.

Seychelles, (No. 81 of Map).

Parmacella Dussumieri
Helix unideutata
" Studeri
" Souleyeti
" Tranquebarica
Streptaxis Souleyeti

Bulimus ornatus
, fulvicans
Cyclostoma insulare
", pulchrum
Cyclotus conoideus
Mauritius, (32).

Parmacella perlucida
, Rangii
mauritii
Helix philyrina
inversicolor
stylodon
mauritiana
mauritianella
rawsoni
semicerina
mucronata
nitella
rufa
similaris
suffulta
albidens
Helix Barclayi
" odontina
Vitrina angularis
Tornatellina cernica
Gibbus Antoni
" Lyonneti
Succinea sp.
Bulimus clavulinus
" Mauritianus
Papa pagoda
" fusus
" sulcata
" clavulata
" modiolus
" fuvicula
" versipolis

Pupa Largillierti
Cyclostoma Barclayi
" Michaudi
" carinatum
" undulatum
" insulare?
Cyclotus conoideus?
Otopoma Listeri
" hwmastoma
Realia rubens
" aurantiaca
" multilirata
" expansilabris
" globosa
Megalomastoma croceum

Two large species of Achatina (fulica and panthera) abounding in the coffee plantations, are believed to have been introduced. The fall of rain in Mauritius is 35.25 .

Bourbon, (No. 33).
Helix tortula
Helix cælatura
" detecta
" delibata ?
,Brandiana
Pupa Largillierti-Mauritius.
Rodriguez.
Cyclostoma articulatum Madagascar? Streptaxis-pyriformis.
No. 34. Kerguelen's Land. Helix Hookeri was collected at this island when visited by the Antarctic Expedition.

## 6. Indian Region.

Proceeding eastward, in Asia, the species of Achatina, Pupa, Clausilia, Pliysa, Limax, and Cyclostoma rapidly diminish or quite disappear. Helices of the section Nanina become plentiful, amounting to 150 species, aud Buli. mulus and Cyclophorus attain their maximum. Leptopoma and Pupina are peculiar to the Asiatic islands.

Our catalogue of Indian land shells must be very imperfect, including only about 180 Helicida and 50 Cyclostomida. A very few of the Indian species are common to China and the Asiatic Islands, or even to Ceylon. The shells of northern India resemble those of the Lusitauian region : in the south they
approximate more to the large and vividly coloured species of the Asiatic Islands. In the Himalaya land shells are numerous, and ascend as high as the region of Junipers and Rhododendrons, $4,000-10,000$ feet above the sea.

| Helix |  | Pupa | 7 | Cyclophorus ...... 26 |
| :---: | :---: | :---: | :---: | :---: |
| Nanina | 46 | Clausilia | 7 | Leptopoma ... |
| Ariophanta | 8 | Vitrina | 9 | Pterocyclus ........ 10 |
| Streptaxis. | 3 | Succinea | 7 | Cyclotus |
| Bulimus |  | Parmacelle | 2 | Megalomastoma |
| Achatina | 13 | Cyclostoma | 3 | Diplommatina... |

Parmacella and Vaginulus are found in India, and the typical fresh-water species of Oncidium. Ordinary forms of Limnea and Planorbis are abundant, and there is oue species of Ancylus. Physa occurs only in a fossil state or is represented by the singular Camptoceras of Benson. Hypostoma Boysii, Auricula Juda and Pulydonta scarabous are also Indian forms.

The gill-breathing fresh-water shells of India are very numerous, especially the Melanias and Melanatrias, and species of Pirena, Paludomus, Hemimitra (retusa), Ampullaria, Paludina, Bithynia, Nematura (deltæ), Assiminea (fasciata), Neritina (particularly crepidularia and Smithii) and Navicella (tessellata).

The brackish-water species of Cerithidium, Terebralia, and Pyrazus are mostly common to India and North Australia.

The fresh-water bivalves are a few ordinary forms of Unio, 3 species of Cyrena, a Corbicula (of which 6 species have been made), Cyclas Indica, Arca scaphula, Glaucomya cerea and Novaculina gangetica.

Ceylon.-The land-shells of Ceylon have been investigated by Mr. Bensou who has favoured us with a list of 112 species; they most resemble those of the Neilgherry hills, but are nearly all specificaliy distinct, and even some of the genera are peculiar. It seems entitled to rank as a province. Helix Waltoni and Skinneri, are examples of the most characteristic form of Helices, the Vitrini-form type (Nanina) is also common. H. hamastoma, one of the most conspicnous species, found ou trees at P. Galle, is commou to the Nicobar Islands. The Achatiuas belong to a distinct section (Leptinaria, Beck) also represented on the Continent. Some of the Bulimi approach the Philippine forms.

| Helix .............. 36 | Succinea .......... 1 | Pterocyclus. |
| :---: | :---: | :---: |
| Naninai.............. 9 | Pupa.............. 3 | Aulopoma ........ 4 |
| Vitrina.............. 3 | Achatina .......... 7 | Leptopoma........ 7 |
| Streptaxis .... ..... 2 | Cyclophorus ...... 12 | Cataulus .......... 10 |
|  |  |  |

The fresh-water shells belong to the genera Limuæa, Physa, 2 species, (not found ou the Continent) ; Planorbis, Melania, T'analia 10 (peculiar), Paludomus, Bithynia, Ampullaria, Neritina, Navicella, Unio, and Cyrena.

At the Nicobar Islands are found-Cataulus tortuosus, Helicina Nicobarica and Pupina Nicobarica. Helix castanea is from Sumatra. (Beck).

## 7. China and Japan.

The few land-snails known from China are of Indian and Lasitanian types; viz.-Helix 12, Nanina 4, Streptaxis 1, (Cochin-China), Bulimus 5, Achatina 1, Pupa 1, Clausilia 11, Stecinea 1, Helicarion 6, Cyclophorus, 1, Cyclotus 1, Otopoma 1. In the 1. of Chusan Dr. Cantor discovered the genera Lampania and Incilaria: The most characteristic bivalves are Glaucomya Sinensis and Symphynota plicata; 3 species (or varieties) of Cyrena and 9 Corbioulas are described by Deshayes, and a Planorbis by Dnnker.

In the Japanese and Loo-choo Islands only 9 species of Helix, 2 of Nanina, 2 of Clausilia and 2 of Helicarion have been hitherto obtained.

## 8. Philippine Islands.

The extraordinary richness of these islands has been developed mainly by the researches of Mr. Cuming. The Helicida (above 300) are inferior in number only to those of Lusitania and the Antilles, and vastly superior in size and beauty of colouring. The Cyclostomida (55) are not much fewer than in Iudia. Nearly all the species are confined to particular islands, and the repetition of forms makes it probable that many of them are geographical varieties. The climate is equable, with a temperature like that of S. China ( $66^{\circ}$ $-84^{\circ}$ ) woods are prevalent, and the rains heavy-all circumstances favourable to the individual abundance of land snails.

| Helix .............. 152 | Clansilia. | 1 | Cyclotua |
| :---: | :---: | :---: | :---: |
| Nanina ............ 32 | Vitrina | 14 | Megalomastoma .... |
| Helicarion ? ........ 3 | Cyclophorus | 15 | Pupina |
| Bulimus ............ 96 | Leptopoma | 16 | Helicina. |

The Helices belong in great part to the section Callicochlias (Ag.) and Helicostyla (mirabilis) Fér. Some with sharply-keeled whirls have been called Geotrochi (Iberus of Albers.) The Bulimi are chiefly of the section Orthostylus (Beck), large and highly coloured, with a hydrophanous epidermis, the bauds becoming translucent when wetted; others, like the well-known $\boldsymbol{B}$. perversus, represent the typical brazilian forms. To these islands belong most of the helicina-shaped Cyclophori (Leptopoma.)

The fresh-water shells are numerous; above 100 were obtained by Mr. Cuming, including many species of Melania (54?) Navicella lineata and suborbicularis, $\mathbf{5}$ sp. of Glaucomya, Unio verecundus, a Corbicula, and 11 sp. (?) of Cyrena.

Celebes and Moluccas. From these islands we have on record, at present, 16 sp . of Helix, Nanina 19, Bulimus 3, Vitrina 2, (viridis and flammulata, Quoy), Cyclophorus 1. In the fresh-water ponds and rivulets Mr. A. Adams found sp. of Melania, Assiminea, Ampullaria and Navicella: Auricula subulata, and Conovulus leucodon. Neritina sutcata was found on the foliage of trees several hundred yarils from the water.

## 9. Java:

The $\dot{J}_{\text {ava }}$ group, including Floris and Timor, have been partially explored from the head-quarters of the Dutch settlement at Batavia. The land and fresh-water shells are nearly all peculiar, a few only being common to the Philippines and N. Australia; they have been described and figured by M. Albert Mousson (Svo. 'Zu:ich, 1849, 22 plates).

| Helix................ 15 | Platycloster?........ | 3 | Navicella .......... . 2 |
| :---: | :---: | :---: | :---: |
| Nanina . . . . . . . . . . 8 | Meghimatium ...... | 2 |  |
| Ariophanta .......... 1 | L - |  | Unio and ........) 4 |
| Bulimus ............ 10 | Limnæa | 1 | Symphynota ....) |
| Clausilia ............ 6 | Auricula | 2 | Alasmodon .......... 2 |
| Cyclophorus ........ 4 | - |  | Anodon............... 1 |
| Cyclotus ............ 2 | Melania | 5 | Cyrena .............. 7 |
| Leptopoma .......... 1 | Ampullaris .......... | 1 | Corbicula ........t. 4 |
| Parmacella .......... 3 | Neritins ............ | 2 |  |

## 10. Borneo.

The land shells of this great island are almost unknown; and the only reason for meutioning it separately is the doubt whether it should be considered part of the Javanese Province, or associated with the Moluccas and Philippines.

| Helix............... 12 | Paxillus ............ 1 | Leptopoma |
| :---: | :---: | :---: |
| Nauina.............. ${ }^{8}$ | Succinea ............ 2 | Cyclotus |
| Bulimus ............ 1 | Cyclophorus ........ 2 | Pterocyclus |

The freshwater bivalves are Glaucomya rostralis, Corbicula tumida and Cyrena triangularis. Pholas rivicola was found burrowing in floating logs used as landing places, 12 miles from the sea, up the Pantai river. The mangrove swamps abound with Cerithidium, Terebralia Telescopium, Potamides palustris and Quoyia ; Auricula Midae and Polydonta searabæus inhabit the damp woods.

## 11. Papua and New Ireland.

The landshells of New Guinea are nearly all distinct from those of the Philippines and Moluccas and include some related to the Polynesian types. The Louisiade Islands to the south-east and New Ireland on the North of New Guinea are included with it.

| Helix | 26 | Partula | 3 | Leptopo | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nanina | 4 | Pupina | 3 | Cyclotus | 1 |
| Bulimus | 2 | Otopoma | 1 | Helicina | 2 |

Cyrence are numerous in this region. Cyclostoma australe is common to the Australian Islands and New Ireland; C. Massence to Australia and New Guinea, and C. Vitreum to New Ireland, New Guinea, the Philippines and India.

## 12. Australian Region.

Both Fauna and Flors of Tropical Australia are distinct from those of New South Wales and Tasmania, the principal barrier being the desert character of the interior; but the localities of the landshells have not been defined with sufficient accuracy to shew whether they are equally distinct. The most complete list is given by Prof. E. Forbes, in the Appendix to Mc Gillivray's Narrative of the Voyage of H. M. S. Rattlesnake (1846-50) ; it specifies 48 Helices (of which $\boldsymbol{H}$. pomum is the most conspicuons), 10 Bulimi, an Achatina, 6 Vitriuas (Helicarion) belonging to the main land, and one from the Lizard Islauds, and a dextral Balea (australis). Pupa and Helicina (Gouldiana) are ouly found on the islets off the N. E. coast, and Pupina (bilinguis) at C. York and the adjacent islets; a portion of the province which is densely wooded, and lies within the rain region of the Asiatic Islands. Cyclostoma bilabre of Menke's Catalogue is probably West Indian. The fresh-water shells of Australia are Planorbis Gilberti, Iridinae? (Victoria R.) Unio auratus, cucumoides, superbus, (Hyridella) australis, Corbicula 4 sp . Cyrena 3, C'yclas egregia (IIunter R.) Pisidium semen and australe, the last common to Timor.

## 13. S. australia and Tasmania.

From extra-tropical Australia we have the following:-Helix 9, Helicarion 2, Bulimus 2, Succiuea 1 (common to Swan R. and Tasmania) Limax olivaceus, and one Ancylus. Two of the largest land snails, Helix Cunninghami and Falconeri, are found in N. South Wales. The coasts of this region are thinly wooded, but much of it is rendered desert by want of rain; in N. S. Wales droughts recur at iutervals of twelve years, and sometimes last three years, during which time scarcely any rain falls.

## 14. New Zealand.

The moist and equable climate of these islands (which have a mean temp. of $61^{\circ}-63^{\circ}$ ) is favourable to the existence of numerous land suails. Nearly 100 species of land aud fresh-water shells are already determined, and are all peculiar ; the genus Heli. musters 60 species, some of which (iucluding the great H. Busbyi) resemble in shape the European Helicellae; Bulimus 3; Balca (peregriua), Vitrina 2 of peculiar form, Tornatelliua 1, Cyclophorus cytora and Omphalotropis egea. There are two slugs, Limar antipodarum and Janella bitentaculata; two fresh-water pulmonifera, Physa variabilis and Latia neritoides; several mariue air-breathers,-Oncidium (Peronia) 2, Siphonaria 3, Amphibola 1 (avellana). The other fresh-water shells are Melauopsis trifasciatus (a Lusitauian type), Assiminea autipodarum and Zelaudix, Amnicola? corolla, Cyclas Zelaudiæ and Unio Meuziesii and Aucklaudicus.

Vitrina zebra is found at the Auckland Islands.

## 15. Polynesian Region.

The Pacific Islands are partly the volcanic summits of submerged mountain ranges, usually fringed or surrounded with coral reefs; and partly atolls or lagoon islauds, scarcely rising above the sea and presenting no vestige of the rock on which they are based. The low coral-islands form a long stream of archipelagos, commencing in the west with the Pelews, Carolines, Radack, Gilbert, and Ellice groups, then scattered over a wider space and ending eastwards in the Low Archipelago; they are chiefly, perhaps eutirely, colonized by drift from the other islands.

The volcanic groups are the Ladrones, Sandwich Islands and Marquesas, to the north of the low coral $z$ mene; and to the south of it, the Salomons, New Hebrides, New Caledonia and Feejees,-the Friendly Islands, Navigator's and Cook's Islands,-Society aud Austral Islauds, ending with Pitcairn's and Elizabeth Island. Mauy of these are very lofty, and are perhaps the inost ancient land in the world.* Their molluscan fauna is entirely peculiar, but it has most affinity with those of New Zealand and the Asiatic Islands, and great analogy with those of St. Helena, Brazil, and the W. Indies.
Salomons - New Hebrides - New Caledonia - Feejees.

The most remarkable land-shells of these islands are the great auriculoid, Bulimi (e. g. B. auris-bovince and B. miltochilus of the Salomons). Acicula striata and 2 sp . of Cyrena are found at Vanicoro; and Physa sinuata Peronia acinosa and corpulenta, and several Neritinas and coronated Melanias have been obtained at the Fecjees. $\dagger$

| Hel | 18 | Bulimus | 10 | Cyclophorus | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nanina | 2 | Partula | 6 | Omphalotropis | 1 |
| Vitrina | 6 | Acicula. | 1 | Helicina | 6 |

## Friendly Islands—Navigator's—Society Islands.

The principal lotty and rocky islands of the southern Pacific, at which land-shells have been obtained, are Tonga, Samoa, Upolu and Manua; 'Laheiti, Oheteroa, and Opara; Pitcairn's Island and llizabeth Island. Each appears to have some peculiar species and some common to other islauds; the little raised coral islet Aurora (Metia) N. E. of 'Taheiti, 250 feet in elevation, has four land snails which have been found nowhere else; Helix pertenuis, dedalea, Partula pusilla, Helicina trochlea. "Samoa and the Friendly Islauds must have intimate geological relations; the same forms, and many of the same species of land-shells occur on both groups; not a single Feejeean species was collected on either."-(Gould.)

[^35]| Helix ............... 13 | Tornatellina. | Cyclophorus |
| :---: | :---: | :---: |
| Nanina ........... . 18 | Pupa | Omphalotropis |
| Bulimus ........... 1 | Succinea .......... 12 | Helicina ............ 13 |
| Partula .............. 15 | Electrina |  |

The fluviatile shells are species of Physa, Melania, Assiminea (Taheitana), Neritina, and Navicella; the two last being often litoral, or even marine in their habit.

## Low Coral-islands.

The Atolls, or lagoon-islands, are less prolific; 2 Helices, and 2 Partula are found at Oualan, in the Caroline Archipelago; and from Chain Island (Annaa), the centre of commerce in the eastern Archipelago, have been obtained. -Helix 2 sp., Nanina 1, Partula i, Tornatellina 1, Cyclophorus 1, and Melampus mucronatus.

## Sanduich Islands.

The land shells of these islands exceed 100 , and are all, or nearly all, peculiar; there is one Limax; and in the fresh-waters are found Limnaa volutatrix, Physa reticulata (Gould), Neritopsis? Neritina Nuttalli and undata, and Unio contradens (Lea).

In the I. Kaui, two species of Achatina have been found; the Achatinellæ are elongated (Leptachatina, G.) and the Helices planorboid and multispiral. In Molokai the Achatinellæ are large and coloured. In Maui and Oahu the Helices are small and glabrous, or hispid, ribbed and toothed. In Hawaii, Succineas prevail, and Achatinellae are rare.-(Gould).
Helix .................. 13 Achatina ........... 3 Pupa .................... 2
Naniua .............. 4 Achatinella........ 56 Vitrina ................ 2

Bulimus ............ 5 Tornatellina........ 3 Succinea .............. 10
Partula .............. 4 Balea................. 1 Helicina .............. 6
The Island of Guam, Ladrones, has 3 sp . of Partula, 2 of Achatinella, and 1 Omphalotropis. At the Marquesas have been found 3 sp . of Namina, 1 Partula and 1 Helicina.

## NEW WORLD.

## 16. Canadian Region.

The country drained by the Great Lakes and the river St. Lawrence possesses very few peculiar shells, and these mostly of fresh-water genera. It is chiefly remarkable for the presence of a few European species, which strengthen the evidence before alluded to (p. 358.) of a land-way across the north Atlantic having remained till after the epoch of the existing animals and plants.*

[^36]```
Helix hortensis (imported) coast of New England and banks of St. Lawrence.
    ," pulchella (smooth var. only) Boston, Ohio, Missouri.
Helicella cellaria (glaphyra, Say ?) N. E. and middle States.
    " pura, nitida and fulva?
Zua lubrica, North West Territory.
Succinea amphibia ( = campestris, Say ?)
Limax agrestis ( \(=\) tunicatus, G.) Mass.
    ,, flavus, New York, introduced.
Vitrina pellucida (= Americana ?) Limnæa palustris ( = elodes, Say ?)
Arion hortensis, New York (Dekay.) " truncatula ( \(=\) desidiosa ?)
Aplexa hypnorum (= elongata, Say ?)
Auricula deticulata, Mont., New York Harbour.
Alasmodon margaritiferus ( \(=\) arcuatus, Barnes.)
A nodon cygneus ( = fluviatilis, Lea ?)
```

The shells proper to Canada, or derived from the adjoining States, are only 6 sp. of Helix, 2 Succineas, and 1 Pupa; 8 sp, of Cyclas have been obtained from the region of Lake Superior.

The following species occur in New England :-

Carychium exiguum, Say, is fouud in Vermont, and Limncea (Acella) gracilis in Lake Champlain; Valvata tricarinata and Paludina decisa are characteristic forms.

The gencra Clausilia and Cyclostora are entirely wanting in Canada and the Northern states. The Limacida are represented by Philomycus, of which there are 9 reputed species, ranging from Mass, to Keutucky and South Caroliua.

17. Atlantic States.

The parallel of $36^{\circ} \mathrm{N}$. Lat. forms the boundary-line of two botanical regions in the U. States, but the evidence of the fresh-water shells, in which they are particularly rich, seems to favour a division into two hydrographical provinces,-the region of the Atlantic streams and the basin of the Mississippi. Above 50 fresh-water Pulmonifera, 150 pectinibranchiatn, and 250 bivalves are reputed to be found in the States, and it is supposed that only a few species are common to both sides of the Alleghanies. Cyclas mirabilis, Pisidium Viryinicum, Cyrena Carolinensis, and Unio complanatus and radiatus are characteristic of the eastern rivers; Melania depygis is said to be the only member of that large genus found eastward of the Hudson River. Of the American land-suails, 29 sp. of Helix, 6 Succineas, and 13 Pupas are enumerated from the Atlantic States. In Florida the propinquity of the West Indian Fauna is strongly indicated by the occurrence of the great Glandina truncula, by species of Cyliudrella, and a Helicina. A Cuban species of

Chondropoma (C. dentatum), is also said to occar in Florida, and Ampullaria depressa in Florida and Georgia.

18. American Region.

The mass of American land and fresh.water shells are found in the central and southern states, the country drained by the Mississippi and its tributaries. The Helicila are not more remarkable for size ond colour than those of northern Europe; the most characteristic forms helong to the subgenns Polygyra (or Tridopsis, Raf.), such as Helix tridentata, albolabris, Airsuta, and septemvolvis. The truly North American forins all belong to three genera, viz.-IIelix 43, Succinea 8, Pupa 3 spccies. In the Southern States are also found 5 sp . of Bulimus, 3 Cylindrellas, 2 Glandinas, and 5 Helicines, genera whose metropolis is in the Antilles or in tropical America.

The fresh-water univalves include above 100 species of Melaniadre belonging to the genera Ceriphasin, Molafusus, Anculotus, Melatoma, and Amnicola, 15 Paludina, some kecled, and one muricated, (P. magnifica) ; and species of Valvata, Limnaa, Physa, (15) Planorbis, and Ancylus, (5).

The fresh-water bivalves are also extremely numerons; the Unionide are unequalled for their ponderous solidity, the rich tinting of their interiors, and the variety of their external forms.* Gnathodon cuneatus, Cyrena foridana, 16 sp . of Cyclas, and Pisidium altile, belong to this region.

19. Oregon and California.

The Fauna of the region beyond the Rocky Mountains is believed to be almost entirely distinct from that of the United States. Arion (foliolatus, and Limax (Columbianus,) genera not indigenous to eastern America, were found near Puget Sound, (Goull/). We have no information respecting the land and fresh-water shells of Russian America, but from analogy we may expect to find a few there identical with those already mentioned as occurring in Siberia \dagger

The shells of Oregon and California are as yet only imperfectly known by the researches of Mr. Nuttall and Mr. Corthouy.

Helix................. 22	Physa................ 1	Cyrena 2
Bulimus 1	Ancylus............. 2	Cyclas 1
Achatina 1	Planorbis............ 3	Unio 1
Succiner 4	Melania.............. 2	Alasmodon
Limnæa	Potamides 2	Anodon

Limnea fragilis, a Canadian species, is said to range westward to the Pacific; and L. jugularis to be commou to Michigan, the North-west terri-

[^37]tory and Oregon(De Kay.) Limnaa umbrosa, SayP aud Planorbis corpulentus Say, are found in the Columbia R.

20. Mexican Region.

The lowlands of the northern half of Tropical America constitute only one botanical region, extending from the R. Grande del Norte to the Amazon; but on zoological grounds it may be divided into two smaller areas. The Mexican province, including Central America, itself comprises three physical regions; the comparatively rainless and treeless districts of the west; the mountains or high table-lands with their peculiar flora; and the rainy wooded region that borders the Caribbean Sea. The land snails of Central America resemble those of the Antilles in the prevalence of some characteristic genera-Glandina, Cylindrella and Helicina,-of which very few species are found on the northern Coast of the Gulf of Mexico. The Bulimi are numerous but chiefly thin, translucent species.

Helix............. .. 33	Glandina 25	Cistula
Proserpina 1	Tornatellina 1	Cyclophorus 3
Bulimus 30	Pupa 1	Chondropoma 3
Succinea ${ }^{6}$	Cylindrella 11	Megaloma........... 2
Achatina (Spiraxis) .. 12	Cyclotus 1	Helicina

Amongst the fresh-water shells are Neritina picta, Cyclas maculata, Corbicula convexa, and 7 species of Cyrena. From Mazatlan, Mr. Carpenter describes Cyrena olivacea and Mexicana, Gnathodon trigonus, Anodon ciconia (allied to the Brazilian A. anserina), Physa aurantia and elata, Planorbis sp. Melampus olivaceus. Two brackish-water species, Cerithidium varicosum and Montagnei-are common to S. America.

21. Antilles.

The West Indian Islands have supplied nearly 500 species of Helicide, a larger number than any province except the Lusitanian; and above $260 C_{y}$ clostomida, or nearly 3 times as many as India. They are also richest in generic forms, and the climate is highly favourable to the multiplication of individuals. The mean temp. of the Antilles is $59^{\circ}-78^{\circ}$, and the annual fall of rain exceeds 100 inches in most of the islands.

Helix	200	Pupa.	26	Cyclophorus
Stenopus	2	Cylindrell	73	Cyclotus............ 14
Sagda	20	Clausilia.	1	Megaloma 8
Proserpina	5	Balea	1	Helicina............ 43
Julimus.	53	Succinea	16	Alcadia 17
Achatina	27	Chondronoma	15	Trochatella 16;
Glundina	46	Choanoporna	53	Lucidella
spiraxis.	9	Adamsiella..	10	Stoastoma 20
Toruatellina	1	Cistula.	36	Geomelania 21

Probably every island has some peculiar species, and those of the great islands, like Cuba and Jamaica are nearly all distinct. To Jamaica belong
the species of Stoastoma, Sagda and Geomelania, the small subgenus Lucidella, the Alcadius and the mass of beautiful Cyclostomas with a decollated spire and fringed lip (Choanopoma, Adamsiella, Jamaicia, Chondropoma, part, and Cistula, part.* The solitary Clausilia is found in P. Rico, the Balea in Haiti, and the Tornatellina in Cuba; Stenopus is peculiar to St. Vincents. Bermuda has 4 Helices of which one is common to Texas and one to Cuba. The Chondropomas are found in Cuba and Haiti.

The West Indian Achatina belong to the subgenera Glandina, Liguus, and Spiraxis; the Bulimi are sharp-lipped and mostly small and slender (Subulina, Orthalicus). Helix (Sagda) epistylium, H. Carocolla, and Succinea (Amphibulima) patula are characteristic forms.

Although connected with Florida by the chain of the Bahamas, and with Trinidad by the Lesser Antilles, very few species are common to the mainland of either North or South America; the relation is generic chiefly.

The Limacida are represented by Vaginulus (Sloanei); and in the freshwaters there are species of Physa (3,) Planorbis,8, Ancylus and the peculiar Gundlachia, Valvata pygmaa, Ampullaria (fasciata), Paludestrina (minute sp.) Hemisinus, and 2 sp . of Pisidium.

In the brackish-waters are Cerithidium, Neritina (e. g. meleagris, pupa, virginea, viridis), Melainpus (coniformis) and Pedipes quadridens.

22. Columbian Region. \dagger

The tract shaded in the map comprehends several minor regions; 1 , the rainy and wooded states of New Granada and Ecuador ; 2, the elevated and nearly rainless province of Venezuela, with a flora like that of the higher regions of the Andes; 3, the Guiauas, including the Valley of the Amazon, where the forests are most luxuriant, and rain falls almost daily (amounting to 100 or even 200 inches in the year). Most of the low lands, like those of the Mexican Province, belong to the "Cactus Region" of botanists, and have a mean temp. of $68^{\circ}-84^{\circ}$. Landshells are abundant in the forests and underwood of the lower zone of the mountaius, where the temperature is 10° less and the rains more copious. Bulimi are the predominatt forms, especially the succinea-shaped species, (e. g. B, succinoides).

ix 37	Pupa 7	Cistula
Streptaxis........... 3	Clausilia 3	Bourciera
Bulimus '............ 45	Cylindrella 1	Cyclotus 8
Succines 9	Vitrina 1	Adamsiella I
Tornatellina.......... 1	Limax 1	Helicina 6
Achatina 10	Choanopoma 2	Trochatella 1
	Cyclophorus	

[^38]The presence of several species of the old-world genera Clausilia and Streptaxis-both wanting in North America, becomes a significant fact when taken in connection with the affinities of the higher animals of South America and Africa. These imply a land-way across the Atlantic (at some very remote period,) more direct than would be afforded by the continent which is believed to have united the boreal regions at the close of the Miocene Age.*

Corbicula cuneata and 3 sp . of Cyrena are found in the Orinoco and smaller rivers; and the remarkable genus Mïlleria, representing the African Atheria, inhabits the Rio Magdalena. A sp. of Ancylus is recorded from Venezuela.

Galapagos Islands. No. 35.

The fauna and flora of these Tislands is peculiar, but related to tropical South America. The only known land-shells are 11 small and obscure species of Bulimus, of which the most remarkable is B. achatinellinus. Some of them are peculiar to particular islands, like the birds and reptiles, viz:Chatham I. 2, Charles I. 3, Jacob I. 2, James I. 1. "The Archipelago is a little world within itself, or rather a satellite attached to America, whence it has derived a few stray colonists, and has received the general character of its indigenous productions."-(Darwin's Journal, p. 377.)

23. Brazilian Region.

The " region of Palms and Melastomas," extending from the Amazon to the southern tropic, is one of the richest zoological provinces. It includes Bolivia, and the largest portion of Peru, all that lies to the east of the Andes. The greater part of the region is mountainous and rainy and densely wooded, but intersected by extensive plains (Llanos), some grassy and fertile, others dry, rocky and rainless, especially in the south; it is watered by numerous streams-the afluents of the Amazon and Plata. The hydrographical areas of these two great rivers have been represeuted on the map, but the southern boundary of the Brazilian Province extends beyond the line of watershed to the tropic, including the head-waters of the Plata, in which the same remarkable fresh-water bivalves are found as in the Bolivian streams. (D^{\prime} Orliyny). The mountains around the Lake Titicaca are the highest in the New World, aud there M. D'Orbigny found several species of Helix up to the elevation of 14,000 feet; Bulimus Tupaici rauges to 9,000 feet. The large and typical species of Bulimus belong to this province; B. ovatus and oblongus are found near the coast, (p .164,) and B. maximus farther inland. The auriculoid Bulimi, (Otostomus, and Pachyotis, Beck,) those with au

[^39]angular mouth, (Goniostomus, Beck,) and the pupiform species, with a toothed aperture, (Odontostomus,) are characteristic of this region, and also some of the most elongated forms, (Obeliscus). The lamp snails (Anastoma) and Megaspira, genera inhabiting France during the Eocene period, are now peculiar to Brazil ; Sinpulopsis is also peculiar, and Streptaxis attains its maximum there. The Cyclostomida are few, and the other W. Indian forms have almost disappeared.

Helix	34	Glandina 1	Cyclophorus 2
Streptaxis	9	Tornatellina........ I	Cyclotus 1
Anastoma	7	Vitrina 5	Cistula 1
Bulimus.	172	Omalonyx.......... 1	Helicina 12

Megaspira 2 Simpulopsis......... 5

The land slugs are Peltella palliolum, Vaginulus solea, and Limax andicolus. The fresh-waters of the interior are rich in bivalves of peculiar genera;*-

Physa............... 1	Ampullaria 2	Unio ${ }^{\text {4 }}$
Ancylus.............. 1	Corbicula.......... 2	Iridina 1
Planorhis 4	Pisidium 1	Hyria.......... 1
Paludestrina 2	Anodon 1	Castulia.............. 2
Marisa 1	Monocondylæa 1	Mycetopus 3

24. Peruvian Region.

The long and narrow tract between the Andes and Pacific, extending from the equator to $25^{\circ} \mathrm{S}$. lat. forms a distinct, though comparatively unproductive province, including the coast of Ecuador, Peru and Bolivia. It is warm and almost rainless; the clouds discharge themselves on the east side of the Andes, and rain is so rare on the west coast that in some parts it only falls two or three times in a century. In Peru, during great part of the year, a vapour riscs in the morning, called the "garua;" it disappears soon after mid-day, aud is followed by heavy dews at night.

Mr. Cuming collected 46 species of land snails in Peru; and Dr. Pfeiffer enumerates 100 , but perhaps half the latter were from the eastern side of the Addes, belonging to the Brazilian Province. They are mostly Bulimi, and are smaller and less richly coloured than those of Bolivia and Brazil: B. Denickei, solutus, and turritus are peculiar forms. Cistula Delatreana is the only operculated land snail, and Vaginulus limayanus the only slug.

Helix................. 12	Pupa 1	Ancylus 1
Bulimus 79	Balea................ 1	Ampullaria 1
Succinea 5	Cistula 1	Paludestrina 2
Glandina............ 1	Physa 1	Cyrena.............. 3
'Tornatellina 1	Planorbis............ 3	Anodon.............. 1

25. Argentine Region.

The "region of arborescent Composite" has afforded scarcely any land

[^40]snails, only 7 species of Bulimus, and 3 Helices are recorded, but some others may have been included with those of Brazil and Chile. From Bolivia this province is separated by the wide plains of the Great Desert, or northern prolongation of the Pampas; and all the eastern part has been submerged at a recent (geological) period; so that the only promising districts are Paraguay, and the eastern declivities of the Chilian Andes. The fresh-water shells of the La Plata and its tributaries are more remarkable; M. D'Orbigny gives the following :-

Paladestrina 7
Ampullaria (Marisa) cornu-arietis is a characteristic shell ; Paludestrina lapidum has a claw-like (non-spiral) operculum, and appears to belong to the Melaniada.

26. Chilian Region.

The northern part of Chile belongs to the same physical region with Peru, consisting of dry and rainless plains. Here the land snails are few and small, and only seen after the dews. At Valparaiso rain is abundant during the three winter months, and the southern coasts are luxuriantly wooded, and extremely wet. The characteristic pulmonifera are the fresh-water Chilinias. The genus Buchanania is doubtful. There are 25 sp . of Bulimus (including B. Chilensis, Plectostylus) and 4 of Helix ; Succinea Chiloensis, Ancylus Gayanus (Valparaiso), Planorbis fuscus, Paludestrina sp. Unio Chilensis, Pisidium Chilense (Valdivia). Helix Binneyana is found on the Island of Chiloë.

The Islaud of Juan Fernandez (36) has at least 20 species of land shells, all peculiar to it :-

Helix quadrata	Omalonyx Gayana	Tornatellina minuta
$"$ arctispira	Achatina diaphana	" trochiformis
$"$ pusio	" splendida	Succinea Cumingi
$"$ tessellata	$"$ bulimoides	" mamillata
$"$ ceroidss	marmorella	" acuminata?
", helicophantoides	Spiraxis consimilis	Parmacella Cumingi.

In the adjoining Island, Masafuera, are found-

Tornatellina Recluzii
Succinea rubicunda

Succinea semiglobosa
, pinguis

27. Patagonian Region.

The Pampas, or great plains of Patagonia are dry and rainless nearly all the ycar; the vegetation which springs up during the light summer rain becomes couverted into natural hay for the support of the wild animals. In

Fuegia the mean temperature is $33^{\circ}-50^{\circ}$, and there is rain and snow throughout the year; yet the bases of the mountains are clothed with forests of evergreen beech.* Bulimus sporadicus is found on the barks of the River Negro, and B. lutescens at the Straits of Magellan; Helix lyrata (costellata, D'Orb. ©) and H. saxutilis inhabit Fuegia. Succinea magellanica is also found at the Straits, and Chilinia fluminea, Limncea viatrix, a Paludestrina, diocion puelchanus, and Unio Patagonicus in the River Negro. Peronia maryinata and Potamides calatus were discovered in Fuegia by Mr. Conthouy.

The Falkland Islands are 300 miles east of Patagonia, and the only recorded shells are two species of Paludestrina. There is zoological evidence that these islands were united to the mainlaud of S. America at no very distant geological period. The flora consists of characteristic plants of Fuegia and Patagonia, mingled, and overspreading the whole surface; few species are peculiar. (J. D. Hooker). \dagger

Since the preceding pages were in type we have seen the following remark by Dr. Gonld, referring to certain statements about the distribution of shells (p. 354). "The doctrine of distinct zoological regions is well illustrated br the inollusca. The many thousand localities carefully noted on the records of the Amcrican Exploring Expedition go to prove beyond dispute, that no such random or wide-spread distribution obtains."

[^41]
gEOGRAPHICAL DEVELOPMENT.

Rough estimate of known Species proper to each Province.

	Marine Provinces.			Land Regions.	
I.	Arctic.	100	1.	Germanic	100
II.	Boreal	200	2.	Lusitanian	900
	(New England)	0	3.	African	150
III.	Celtic	250	4.	Cape	60
IV.	Lusitanian		5.	Mascarene	150
	(Medit. \}	450	6.	Indian	350
	Madeira, \&tc.)		7.	Chinese	50
V.	Aralo-Caspian ...	30	8.	Philippiue	350
	(N. Euxine) ... $\}$	30	9.	Javanese............	80
VI.	West African ...	500	10.	Bornean............	30
	(St. Helena) ...	500	11.	Papuan	80
VII.	South African	350	12.	Australian	80
VIII.	Indo-Pacific	$4(4) 0$	13.	Austro-Tasmanian	50
1 X .	Austro-Zelandic ... $\}$	400	14.	Zelandic...........	80
	(Tasmania) ...	400	15.	Yolynesian	300
X.	Japonic	300	16.	Canadian	30
XI.	Aleutian........$\}$	100	17.	Atlantic States	60
	(Ochotsk))	100	18.	American	80
XII.	Californian.	250	19.	Californian.	30
XIII.	Panamic)	1000	20.	Mexican	170
	(Galapagos) ...)		21.	Antillean	760
XIV.	Peruvian	500	29.	Equatorial	180
XV.	Magellanic	200	23.	Brazilian	260
	(Falklands) ...)		24.	Peruvian	100
XVI.	Patagonian	170	25.	Argentine	50
XVIT.	Caribbean	1000	26.	Chilian	60
XVIII.	Trans-Atlantic	300	27.	Patagonian........	10
Sea-Shells.....10,000			Laud-Shells......4,600		

The inequality of these provinces, in size and importance, is partly natural, and partly caused by the unequal facilities they present for sub-division. The "Indo-Pacific" is not of the same rank with the Japonic, but results from the fusion of several provinces. Mr. Waterhouse terms the great regions in which the large groups of animals are distinct, ordinal and family prorinces; the smaller regions generic or specific provinces.-(Johnston's Physical Atlas, 28.)

Chapter III.

on the distribetion of the mollusca in time.

The historian of modern geology, Sir Chas. Lyell, has tanght as to regard the stratified rocks as so many monuments, recording the physical condition and living inhabitants of the earth in past ages.

Each formation consists of a similar, and more or less complete series of limestones, sandstones, clay, coal, and other strata, representing the deep and shallow seas, the fresi-waters, and the terrestrial portions of the surface of the globe, at one particular period of time.*

The organic remains found in the strata exhilit no such repetitions, but are changed gradually and regularly, from the earliest to the latest formations; so that the mass of species in each period must have been peculiar and distinctive.

The important theory, that strata may be identified by fossils, was taught by Wililam Smith, early in the present century, and is thus expressed in his Stratigraphical System: " Organized fossils are to the naturalist as coins to the antiquary ; they are the antiquities of the earth; and very distinctly show its gradual, regular formation, with the various changes of inhabitants in the watery element."-"They are chiefly submarine, and as they vary generally from the present inhabitants of the sea, so at separate periods of the earth's formation they vary as much from each other; insomuch that each layer of these fossil organized bodies must be cousidered as a separate creation; or how could the earth be formed, stratum super stratum, and each abundantly stored with a different race of animals and plants." \dagger

The "Prodrome" of M. D'Orbigny is a catalogue of the shells (and radiate animals) of each formation, from which it appears that the mass of the living population of the globe has been changed twenty times since the close of the First or Palæozoic Age; and although the fossils of the older rocks have not been generally classified with the same minuteness, yet enough is known to shew that at least ten great changes had taken place before the Secondary epoch.

In the following Table, the first column gives the names of the Formations, or Periods; the second contains those by which the principal strata are known.

[^42][^43]
I. GEOLOGICAL TABLE.

Formations or Periods.

Names of Strata.

(Longmynd slate. (Bangor, Wicklow.)
Lingula flags $=$ Primordial group.
Festiniog slate. Potsdam sandstone. $\left\{\begin{array}{l}\text { Llandeilo flags } \quad \text { Bala or Coniston }\end{array}\right.$ group.
$\{$ May-hill sandstone $=$ Clinton group. Woolhope and Dudley limestones.
L. Ludlow, Aymestry lime., U. Ludlow.

Spirifer sandstone; Rhine. Killas, or Plymouth limestone. $\}$ Old Red Petherwin limestone. Sandstone.
Carboniferous limestone (shale and coal.)
Coal-measures. (Millstone grit, coal, \&c.)
Magnesian lime. $=$ Zechstein. $\quad($ Perm.)

	$\text { VI. }\left\{\begin{array}{l} \text { 11. Conchylian. } \\ \text { 12. Saliferons } \end{array}\right.$	$\left\{\begin{array}{l} \text { New-red-sandstone = Bunter. } \\ \text { (Muschel-kalk = Ceratite limestone. }) \end{array}\right.$
	$\left\{\begin{array}{l} \text { 13. Liassic. } \\ \text { 14. Toarcian. } \\ \text { 15. Bajocian. } \\ \text { 16. Bathonian. } \end{array}\right.$	L. Lias $=$ Sinemurien \& Liasien. Marlstone, Alum-shale. (Thouars.) Inf. Oolite, Fuller's-earth. (Bayeux.) $\left\{\begin{array}{c}\text { Great Oolite. } \\ \text { Bradford cl. }\end{array}\right.$ (Stonesfield.slate; G. Ool. $\begin{array}{c}\text { Forest m. Cornbrash.) }\end{array}$
	$\text { VIII. }\left\{\begin{array}{l} \text { 17. Oxfordian. } \\ \text { 18. Corallian. } \\ \text { 19. Kimmeridg } \end{array}\right.$	$\left\{\begin{array}{l} \begin{array}{l} \text { Kelloway rock = Cal } \\ \text { Oxford clay. (White } \\ \text { Coral-rag and Calcar } \\ \text { Kimmeridge clay. } \end{array} \\ \end{array}\right.$
	$\text { IX. }\left\{\begin{array}{l} 21 . \\ 22 . \end{array}\right.$	Hastings sand and Weald clay. $\left\{\begin{array}{l}\text { Speeton clay? (Neuchatel.) } \\ \text { Lower Green-sand, \& Aptien, D'Orb. }\end{array}\right.$
	X. $\left\{\begin{array}{l}\text { 24. Cenouritic. } \\ \text { 25. Hippurian } \\ \text { 26. Senouian. }\end{array}\right.$	Upper Green-sand. (Mans, Cenomanum.) Chalk-marl and L. Chalk = Turonien. Chalk with flints $=$ Baculite limestone. Maestricht chalk = Danien, D'Orb.

Thanet sands, Plastic clay, London clay.
\{ Bracklesham; Barton; I. Wight; = Parisien. Hempstead; Fontainbleau; = Tongrien. Faluns of Touraine ; Bordeaux, Vienna. Crag of E. Co. = Sub-apennin, D'Orb.

It must be observed that the number and magnitude of the "Formations" was determined by aceident in the first instance, and afterwards modified to suit the requireneuts of theory, and to make them more nearly equal in value.*

According to MM. Agassiz and D'Orbigny, all, or nearly all the fossils of earh formation are peculiar; very few species being supposed to have survived from one period to another. Sudlen and entire changes of this kind only take place when the nature of the deposit is completely altered,-as when sands or clays rest upon chalk;-and in these instances there is usaally evidence (in the form of beds of shiugle, or a change of dip) that an interval must have elapsed between the completion of the lower stratum and the commencement of the upper.

We have seen that distinct faunas may ie separated by narrow barriers in existing seas; and differences almost as great may occur on the same coastline without the interposition of any barrier, merely in passing from a sea-bed of rock and weed to one of sand or mud, or to a zone of different depth. It would be unreasonable to expect the same fossils in a limestone as in a sandstone; aud even in comparing similar strata we must consider the probability of their having been formed at different depths, or in distinct zoological provinees.

The most carcful observations hitherto made, under the most favourable circumstances, tend to show that all sudden alterations have been local, and that the law of change over the whole globe, and through all time, has been gradual and uniform. The hypothesis of Sir C. Lyell-that species have been created, and have died out, one by one, agrees far better with facts, than the doctrine of periodic and general extinctions and creations.

As regards the Zoological value of the "formations," we shall be within the truth if we assume that those already established correspond in importance with geographical proviuces; for at least haff the species are peculiar, the remainder being common to the previous or succeeding strata. This will give to each Geological Period a length equal to three times the average duration of the species of marine shells. \dagger

[^44]The distribution of species in the strata (or in time), is like their distribution in space. Each is most abundant in one horizon, and becomes gradually less frequent in the beds above and below; the locality of the newest rock in which it occurs being often far removed from that of the oldest.*

That species should be created at a single spot, and gradually multiply and diffuse themselves, is sufficiently intelligible. That, after attaining a certain climax of development, they should decline and disappear is a fact involved in mystery. But even if it depends on physical causes, and is not a law of all Being, its operation is equally certain, and does not appear to vary beyond moderate limits.

The deep-sea shells (such as Rhynchonella, Terebratula, and Yoldia), enjoy a longer range in time, as well as in space, than the litoral species; whilst the land aud fresh-water shells are most remarkable for specific longevity. \dagger

In each stratum there are some fossils which characterize small subdivisions of rock, just as there are living species of very limited range.

When species once die out they never reappear; one cvidence of their having become extinct consisting in their replacement by other species, which fulfilled their functions, and are found in deposits formed under similar conditions. (Forues.)

The total number of species is greater in the newest formations than in those of older date; but the ratio of increase has not been ascertained. \ddagger

Distribution of Genera in Time. The doctrine of the Identification of strata by fossils derives its chief value from the fact that the development and distribution of Genera is as much subject to law as the distribution of species; and so far as we know, follows a similar law.

Groups of strata, like the Zoological provinces, may be of various magnitudes; and whilst the smaller divisions are characterized by peculiar sirecies,
estimated to represent 100,000 years, have been accumulated since the era of many existing shells. The same may be said of the elevation of Mont Blanc, the formation of the Mediterranean Sea and other grand physical events. The great cities of anti-quity-Rome, Corinth, and biyyptian Thebes, stand upon raised sea-beds, or alluvial deposits, containing recent shells.

* M. Agassiz and Prof. E. Forbes have represented. diagramatically, the distribution of genera in time, by making the horizontal lines (such as in p. 415) sweil out in proportion to the development of the genera. Those whose commencement. climax, and end are ascertained may be represented by a line of this kind Genera which attain their maxima in the present seas are thus expressed
+ Land and Fresh-water shells of existing species are found with the fossil bones of the Mastodon and Megalonyx, in N. America. (Lyell.)
\ddagger The number in each formation depends on the extent to which it has been investigated, and on the opinions entertained as to the strata referabie to it. Pruf. Philhips has discussed this sulject in his work on Devonian fossils (p. 165), and in the " Guide to Geology."
the larger groups have distinct sub-genera, genera, and families, according to their size and importance.

Wm. Smith himself observed that "Three principal families of organized fossils occupy nearly three equal parts of Britain."
"Echini are most common in the superior strata;
"Ammonites to those beneath;
" Producti with numerous Encrini to the lowest."
This kind of generalization has justly been considered, by Prof. E. Forbes, of higher importance than the identification of strata by species; a method only applicable to moderate areas, and becoming less available with distance. Indeed it might be assumed that strata geographically distant, yet containing some identical species, must differ in age by the time required for the migration of those species from one locality to the other.

A table of the characteristic species of the English strata is of little use in America or India, except to shew how few and doubtful are the identical fossils. Whereas the characteristic genera, and order of succession of the larger groups are the same at the most distant localities; and whatever value there may be in the assumption that particular systems of rocks contain most workable coal, lead, or rock-salt, is not lessened by the circumstance that the species of fossils in those rocks are not everywhere the same, since the genera alone are sufficient to identify them.

Genera, like species, have a commencement, a climax, and a period of decline; the smallest usually range through several formations, and many of the typical genora equal the families in duration.

Groups of formations are called Systems, and these again are combined in three principal series-Palæozoic-Secondary-and Tertiary.

Thirteen geological systems, each having a number of peculiar genera are shewn in the accompanying table. (No. II.) Some of the genera cited have a wider range, like Belemnites, but are mentioned because of their abundance in one particular system. The names in italics are existing genera.*

The third table contains the names of some of the larger genera, arranged according to the order of their appearance. This diagram conveys the impression that the series of fossiliferous strata is not completely known; or that the beginning of many groups of fossils has been obliterated in the universal metamorphism of the oldest stratified rocks. \dagger

[^45]
II. TABLE OF CHARACTERISTIC GENERA.

Systems.

Grnera and Sub-genera.

| 1. Cambrian, or | Lower Silurian. |
| :--- | :--- |\(\quad\left\{\begin{array}{l}Camaroceras, Endoceras, Gonioceras, Pterotheca.

Maclurea, Raphistoma, Holopea, Platyceras.

Orthisina, Platystrophia, Porambonites, Pseudo-crania.

Ambonychia, Modiolopsis, Lyrodesma.\end{array}\right\}\)
6. Trias.
\{ Ceratites, Naticella, Platystoma, Koninckia, Cyrtia. Monotis, Myophoria, Pleurophorus, Opis.
7. L. Jurassic.
8. U. Jurassic.
9. L. Cretaceous.
\{ Crioceras, Toxoceras, Hamulina, Baculina. Requienia, Caprinella, Sphæra, Thetis.
Belemnitella, Conoteuthis, Turrilites, Ptychoceras. Hamites, Scaphites, Pterodonta, Cinulia, Tylostoma. Acteunella, Glubiconcha, Trigonosemus, Magas, Lyra.' Neithea, Inoceramus, Hippurites, Caprina, Caprotina

11. Eocrine.	$\left\{\begin{array}{l} \text { Beloptera, Lychnus, Megaspira, Glandina, Typhis. } \\ \text { Volutilithes, Clavella, Pseudoliva, Seraphs, Rimella. } \\ \text { Conorbis, Strepsidura, Globulus, Phorus, Velstes. } \\ \text { Chilostoma, Volvaria, Lithocardium, Teredina. } \end{array}\right.$
12. Miocene.	$\left\{\begin{array}{l} \text { Spirulirostra, Aturia, Vaginella, Ferussina, } \\ \text { Halia, Proto, Deshayesia, Niso, Cassidaria, Carolia. } \\ \text { Grateloupia, Artemis, Tapes, Jouannetia. } \end{array}\right.$
13. Pliocene.	$\left\{\begin{array}{l} \text { Arqonauta, Strombus, Purpura, Trophon. } \\ \text { Yoldia, T'ridacna, Circe, Verticordia. } \end{array}\right.$

III. RANGE OF GENERA IN TIME.

The genera of the older rockis are believed to be uearly all extinct ; for although the names of many recent forms appear in the catalogues of Palæozoic fossils, it must be understood that they are only employed in default of more exact information. Buccinum, Melania, and Mya, have been long since expunged; and Modiola, Nucula, and Natica, are only retained until the characters which distiuguish them are better understood.

IV．RANGE OF FAMILIES IN TIME．

$\left.\begin{array}{c} \text { Systems } \\ \text { of Strata. } \end{array}\right\}$			
Argonantilæ ．．．．．．．．．．			
Teuthidæ－Sepiadæ ．．．．．．．．		ーーーー	－－－－
Helemnitidæ ．．．．．．．．．．．．		－－－－	
Nautilidæ ．．	－－		
Ammonitidæ			
Orthoceratidæ	ーーーーー	－	
Atlantidæ－Hyaleidæ ．．	ーーーーー		
Strombidæ－Buccinidæ ．．．．			ーーー－
Conidæ－Volutidæ．．．．．．．．．．		－	
Naticidæ－Calyptræidæ ．．．．		ーーーーー	
Pyramidellidæ．．．．．．	ーーーーー	ーーーーー	
Cerithiadæ－Litorinidæ			
Turbinidæ－Ianthinidæ ．．		ーーーーー	－－－－
Fissurellidæ－Chitonidæ ．．．．	－－	－－－－－	－－－－
Neritidæ－Patellidæ ．．．．．．．．		－－－－	－－－－
Dentaliadæ ．．．．．．．．．．．．	ーーー	ーーーーー	
Tornatellidæ ：．．．．．．．．	－－	－ーーー－	
Bullidx ．．．．．．．．．．．．．．		－ーー－	－－－－
Helicidæ－Limacidæ ．．．．．．．．			－－ーー
Limıæidæ－Melaniadæ ．．．．．．		－－－	－－－－
Auriculidæ－Cyclostomidæ－．．．．			
Terebratulilæ ．．．．．．．．．．．．			
Rhynchonellidæ ．．．．．．．．	－－－－	－－－－－	
Spiriferidæ－Orthadæ ．．．．．．	－－－－	－－	
Productidæ ．．．．．．	ーーーーー		
Cranialæ－Lingulidæ ．．．．		ーーーーー	－
Pectinidæ．．．．．．．．			
Aviculidæ－Mytilidæ ．．			
Arcadm－Trigoniadæ ．．．．．．	－ーーーー	－－－－－	ーーーー
Unionidæ ．．．．．．．．．．．．			
Chamidx－Myadm ．．．．			
Hippuritidæ ．．．．．．			
Tridacnidæ ．．．．．．．．．．			
Cardiadæ－Lucinidx ．．	－－－	－ーーーー	－－－
Cycladidx！．．．．．．．．			
Cyprinix－Anatinidæ．．			
Astartide ．．．．．．．．			
Veneridæ－Tellinida ．．			
Muctridm ．．．．．．			
Soleuilæ ．．．．．．．．．．．．			
Gastrochænidm－Pholadidx ．．．．		－	ーーー

Distribution of Families of Shells in Time. Employing the term "families" for natural groups of genera, and adopting the smallest possible number of them, we find that sisteen, or nearly one-fifth, range through all the geological systems. Only seven have become extinct, viz.-

Belemnitidæ.	Spiriferidæ.	Hippuritidæ.
Ammonitidæ.	Orthidæ.	
Orthoceratidæ.	Productidæ.	

Three others are nearly extinct:-
Nautilidæ. Rhynchonellidæ. Trigoniadæ.
And several have passed their maximum, and become less varied and abundant than formerly, e.g.一

Tornatellidæ. Cyprinidæ. Anatinidæ.
The extinct families and genera appear to have attained their maxima more rapidly than their minima; continuing to exist, under obscure forms, and in remote localities, long after the period in which they flourished.

The introduction of new forms, also, is more rapid than the process of extinction. If four Palæozoic families disappear, twenty-six others replace them in the Secondary series; and three of the latter are succeeded by fifteen shell-bearing families in the Tertiaries and existing seas.

In consequence of this circumstance, the number of types is three times greater in the newer tertiary than it was at the Silurian period; and since there is no evidence or indication that the earth was ever destitute of life, either wholly or in part, it follows almost as a matter of necessity that the early types must have been more widely distributed and individually developed, than those of the present day.

From the following Table it will be seen that the number of Genera and Families increases with an amount of regularity, which cannot be accidental. Moreover the relation of these numbers is not liable to be much altered by the progress of discovery, or the caprice of opinion. The discovery of new types, is not likely to be frequent ; the imposition of new names, in place of the old, will not increase the number of Palæozoic genera; and the establishment of fresh and arbitrary distinctions will affect all the groups in due proportion.

If the number of groups called "Systems" were reduced to seven, (viz. three Palæozoic, three Secondary, and one Tertiary, as shewn in the following table, then the average duration of a genus of shells would be equal to a System of Formations.

The duration of the smallest well-defined Families of shells is about equal to one of the three great Geological Divisions, or Ages.

DEVELOPMENT OF FAMILIES, GENERA, AND SPECIES, IN TIME.

Order of appearance of the groups of Shells. The first and most important point shewn in the preceding Tables, is the co-existence of the four principal classes of testacea from the earliest period. The highest and the lowest groups were most abundant in the palæozoic age ; the ordinary bivalves and univalves attain their climax in existing seas. If there be any meaning in this order of appearance it is connected with the general scheme of creation, and cannot be inquired into separately; but it may be observed that the last-developed groups are also the most typical, or characteristic of their class. (p.61.)

The Cephalopoda exhibit amongst themselves unmistakable evidence of order in their appearance and succession. The tetrabranchiate group comes earliest, and culminates about the period of the first appearance of the more highly-organized cuttle-fishes. \dagger The families of each division which are least unlike (Orthoceratidos and Belemnitida) were respectively the first developed.

[^46]Amongst the Brachiopoda the hinge-less genera attained their maximum in the palwozoic age, and only three now survive, (Lingula, Discina, C'rania,) -the representatives of as many distinct families. Of the geuera with articulated valves, those provided with spiral arms appeared first and attained their maximum while the Terebratulide were still few in number. The subdivision with calcarious spires disappeared with the Liassic period, whereas the genus Rhynchonella still exists. Lastly, the typical group, Terebratulida, attained its masimum in the chalk period, and is scarcely yet on the decline. The number of sub-genera (as well as genera,) in each system, is stated in the preceding table, because this group shews a tendency to "polarity," or excessive development at the ends of the series.*

The genera of ocdinary bivalves (Conchifera) are seven times more numerous in the newer tertiary than in the oldest geological system. The palæozoic formations contain numerous genera of all the families with an open mantle; Cyprinidae, Anatinide, and the anomalous genus Conocardium. The mass of siphonated bivalves do not appear till the middle of the secondary age, and are only now at their maximum.

The Gasteropoda are represented in the palæozoic strata by several genera closely allied to the diminutive Atlanta and Scissurella, and by others perhaps related to Ianthina. The Naticida, and Calyptrieida are plentiful, and there are several genera of elongated spiral shells referred to the Pyramidellida. In the secondary strata, holostomatous shells become plentiful; and in a few peculiar localities (especially Sonthern India) the genera of siphonated univalves make their appearance in strata of Cretaceous age. Fresh-water Pulmonifera of the recent genus Physa occur in the Purbeck strata, but the marine air-breathers and land-snails have not certainly been found in strata older than the Eocene tertiary.

Order of Succession of Groups of Shells. - It has been already pointed out that animals which are closely allied in structure and habits, rarely live together, but occupy disti.act areas, and are termed "representative species." The same thing has been observed in the distribution of fossils; the species of successive strata are mostly representative.

At wider intervals of time and space, the representation is only generic, and the relative proportions of the larger groups are also changed.

The suceession of forms is often so regular as to mislead a superficial observer; whilst it affords, if properly investigated, a valuable clue to the afinitics of problematic fossils.

* See the anniversary address of Prof. E. Forbes to the Geological Society of London, Feb. 1854, p. 63. The hypothesis seems to have arisen out of an exclusive regard to the poverty of the Permian and Triassic strata in England, where they separate, like a desert, the palゃozoic from the " newzoic" formations. The " lermian" shoald never have been estemed more than a division of the Carboniferons system. and is poor in species, rather than in types. The Trias must be studied in Germany, or in the collection of Dr. Klipstein (in the Brit. Museum; to be properls appreciated.

It is now generally admitted that the earlier forms of life, strange as many of then seem to us, were really less metamorphosed-or departed less widely from their ideal archetypes-than those of later periods and of the present day.* The types first developed are most like the embryonic forms of their respective groups, and the progression observed is from these general types to forms more highly specialized. (Owen.)

Migration of Species and diffusion of Genera in Former Times.-Having adopted the doctrine of the continuity of specific and generic areas, it remains to be shewn that such groups as are now widely scattered can have been diffused from common centres, and that the barriers which now divide them have not always existed.

In the first place it will be noticed that the mass of the stratified rocks are of marine origin, a circumstance not to be wondered at, since the area of the sea is twice as great as the land, and probably has always been so; for the average depth of the sea is much greater than the general elevation of the land. \dagger

The mineral changes in the strata may sometimes be accounted for by changes in the depth of the sea, or an altered direction of the currents. But in many instances the sea-bed has been elevated so as to become dry land, in the interval between the formation of two distinct marine strata; and these alterations are believed to occur (at least) once in each formation.

If every part of what is now dry land has (on the average) been thirty times submerged, and has formed part of the sea-bed during two-thirds of all the past geological time;-there will be no difficulty in accounting for the migration of sea-shells, or the diffusion of marine genera.

On the other hand it may be inferred that every part of the present sea has been dry land many different times; -on an average not less than thirty times,-amounting to one-third of the whole interval since the Cambrian epoch.

The average duration of the marine species has been assumed at only onethird the length of a geological period, and this harmonises with the fact that so few (either living or extinct) have a world-wide distribution.

The life of the land-suails and of the fresh-water shells has been of longer

[^47]average extent, enabling them to acquire a wide range, notwithstanding their tardy migrations.

But when we compare the estimated rate of change in physical geography with the duration of genera and families of shells, we not only find ample time for their diffusion by land or sea over large portions of the world, but we may perceive that such trausferences of the scene of creation must have become inevitable.

Method of Geological Investigation.-In whatever way geological history is written, its original investigators have ouly one method of proceedingfrom the known to the unknown-or backwards in the course of time.

The newest and most superficial deposits contain the remains of man and his works, and the animals he has iutroduced.

Those of pre-historic date, but still very modern, contain shells, \&c., of recent species, but in proportions different from those which now prevail. (p. 384, 387). Some of the species may be extinct in the immediate neighbourhood of the deposits, but still living at a distance.

In the harbour of New Bedford are colonies of dead shells of the Pholas costata, a species living on the coast of the Sonthern States. At Bracklesham, Sussex, there is a raised sea-bed containing 35 species of sea-shells living on the same coast, aud 2 no longer living there, viz.-Pecten polymorphus, a Mediterranean shell; and Lutraria rugosa, still found on the coasts of Portugal and Mogador.

Tertiary $\mathbf{A g e}$.-If any distiuction is to be made between "Tertiary" and "Post-tertiary" strata, the former term should be restricted to those deposits which contain some extinct species. And the newest of these, in Britain, contain an assemblage of Northern shells. Prof. Forbes has published a list of 124 species of shells from these "Glacial beds," nearly all of which are now existing in British seas.*

In most of the localities for glacial shells, the species are all recent; but at Bridlington, Yorkshire, and in the Norwich Cray, a few extinct species are found. (e. g. Nucula Cobboldia, PI. 17, f. 18.) At Chillesford, Suffolk, Yoldia arctica and myalis occur of large size and in excellent preservation, with numerous specimens of Mya truncata, erect as they lived, in the muddy sea-bed. Trophon scalariforme, Admete viridula, Scalaria greenlandica, and Natica grecnlandica, also occur in the Norwich Crag; and Astarte borealis, with several arctic forms of Tellina, are amongst the commonest shells, and frequently occur in pairs, or with their ligament preserved; the deposit is extensively quarried for shell-sand.

Raised sea-beds with Arctic shells at Uddevalla in Sweden, have been repeatedly noticed ever since the time of Linuæus. Captain Bayfield disco-

[^48]vered similar beds near Quebec, $50-200$ feet above the River St. Lawrence, containing an assemblage of shells entirely arctic in character; whereas in the present gulf he obtained an admixture of the American representatives of Lusitanian types, Mesodesma, Periploma, Petricola, Crepidula.

The glacial deposits of the northern hemisphere extend about 15° south of the line of " northern limit of trees;" but this comparatively recent extension of the Arctic ocean does not appear to have much influenced, if it ever invaded, the inland basin of the Aralo-Caspian, which contains only one species common to the White Sea, Cardium edule, var. rusticum.*

The older pliocene period is represented in England by the Coralline Crag, a deposit containing 340 species of shells. Of these 73 are living British species, but (with two or three exceptions) they are such as range south of Britain. (Forbes.) The remainder are extinct, or living only to the south, especially in the Lusitanian province; e.g. Fossarus sulcatus, Lucinopsis Lajonkairii, Chama gryphoides, and species of Cassidaria, Cleodora, Sigaretus, Terebra, Columbella and Pyramidella. It also contains a few forms belonging to an earlier age,-a Pholadomya, a true Pyrula, a Lingula, aud a large Voluta, resembling the Magellanic species.

The shells of the newer tertiaries are always identical, at least generically, with those of the nearest coasts. Thus, in Patagonia, are found species of Trophon, Crepidula, Monoceros, Pseudoliva, Voluta, Oliva, Crassatella, and Solenella. The tertiaries of the United States contain species of Fulgur, Mercenaria and Gnathodon. The miocene shells of St. Domingo appear at first sight to be all of recent species, but on comparison prove to be mostly distinct.

The proportion of extinct species in the Pliocene tertiary, varies from $1-50$ per cent. If a deposit contains more than 50 per cent. of extinct species it is referred to the Miocene period; and this test is particularly valuable since the modern deposits are often isolated, and frequently no assistauce can be derived from superposition, or even from identity of species.

In the Eocene tertiaries we perceive the "dawn" of the present order of things. All, or very nearly all, the species are different, but a large proportion of the genera are still existing, though not always in the seas nearest to the localities where they occur fossil.

Thus in the London clay are found-Rostellaria, Oliva, Ancillaria, and Vulsella, genera still living in the Red Sea; and many species of Nautilus, Rimella, Seraphs, Conus, Mitra, Pyrula, Phorus, Liotia, Cardilia,-genera characteristic of the Indian Ocean; Cyprovula, Typhis and Volutilithes, now

[^49]living at the Cape; Clarella, at the Marquesas, and Pseudolica, Trochita, and species of Murex, whose recent analogues are found on the Western shores of S. America.

The freshwater shells of this period are Old-World forms; Melanopsis, Potamides, Lampania, Melanatria and Vemutura: whilst the land-shelis form a group quite American in character; large species of Glandina and Bulimus (with reflected lip) Megalomastoma (mumia), a Cyclotus (with its operculum) like C. Jamaicensis, and the little Helix labyrinthicus.

Secondary Age.-In none of the older strata do we find indications of a warmer climate having prevailed, in the latitude of Eugland, than that which marks the period of the London clay. And this is not more than can be accounted for by such a cause as the flow of an equatorial current from the direction of the Red Sea, until arrested by a continent to the south-west, as supposed by Mr. Prestwich, in the region of the Azores.

Some indications esist of a more moderate climate having obtained in the north polar regions; for remains of the Ichithyosaurus were found at Exmouth Id. the furthest point reached by Sir E. Belcher's expedition.

The peculiar physical couditions of the Chalk period are represented at the present day, not so much by the Coral-sea, as by the Egean, where calcarcous mud, derived from the waste of the scaglia regions, is being rapidly deposited in deep water. (Forbes).

The Wealden period was styled the "Age of Reptiles" by Dr. Mantell, who compared the state of England at that time with the present condition of the Galapagos Islands.

The Oolitic period finds its parallel in Australia, as long since pointed out by Prof. Phillips, and the comparison holds good to some extent, both for the Marine and Terrestrial Faunas.

The Trias, with its foot-prints of gigantic wingless birds, has been compared with the state of the Mascarene Islands ouly a few centuries ago, and with the New Zealand Fauna, where birds are still the highest aboriginal inhabitants.*

Paleozoic Age.-It has lately been suggested by Prof. Ramsay that signs of glacial action may be traced in some of the trappean conglomerates of the Permian Period; and Mr. Page bas endeavoured to apply the same interpretation to phenomena of a much earlier date, in the old red sand-stone of Scotland. \dagger Geologists generally have abandoned the notion, once very prevalent, of a universal high temperature in the earliest periods; a notion which

[^50]+ See also the Rev. J. G. Cumming's "Isle of Man,"(1819), p. 89.
they had derived from the occurrence of certain fossil plants, corals, and shells, in high latitudes.

The absence of remains of mammalia in the palæozoic formations, is at present a remarkable fact, but it is completely paralleled in the great modern zoological province of the Pacific Islands.

Baron Humboldt has speculated on the possibility of some land being yet discovered, where gigantic lichens and arborescent mosses may be the princes of the vegetable kingdom*. If such exist, to shadow the Palrozoic age, its appropriate inhabitants would be like the cavern-haunting Proteus, and the Silures which find an asylum even in the craters of the Andes.

What then is it which has chiefly determined the character of the preseut Zoological provinces? What law, more powerful than climate, more influential than soil, and food, and shelter; nay, often seemingly producing results opposed to a priori probability, and at variance with the suitableness of conditions? \dagger

The answer is, that each fauna bears, above all things, the impress of the age to which it belongs. Each has undergone a series of vicissitudes up to the time when its barriers became fixed, and after its isolation it has known no further change, but decline.

As regards the great types of terrestrial organization, their point of common origin seems to have been the centre of the Old World. Here they appear to have been formed in succession, and diffused outwards in all possible directions, to the ends of the earth; each wave of hife developing in its progress special forms adapted to the circumstances of the times, and exemplifying the modifications of which each type was capable. \ddagger

Chapter IV.

on Collecting shells.

The circumstances under which shells are found is a subject so intimately counected with the methods of collecting them, as to make it undesirable to treat of them separately.

Naturalists distinguish between the hatitats, or geographical localities of species, and the stations or circumstances in which they are found: to the latter subject ouly slight allusion has been hitherto made. (p. 11).

Land-shells are most abundant on calcareous soils, (p. 37) and in warm and moist clinates. The British species are collected with advantage in autumn, when full-grown, and showing themselves freely in the dews of morning and cvening. Some species, like bulimus acutus, are found only near the sea;

[^51]Bulimus Lackhamensis ascends beech-trees on the Chalk downs and Cotteswoldes; Pupa Juniperi and Helix umbilicata occur chiefly on rocks and stone walls. The moss-frequenting Clausilia may be obtained even in mild winter weather at the roots of trees; the small species of Pupa (or Vertigo) are sometimes taken abundantly when sweeping wet grass with an insect net; Acicula fusca lives at the roots of grass; Cionella acicula is found in old bones, (such as occur in Danish burial grounds!) and occasionally in moving garden-bulbs; Helix aculeata has been met with on the under sides of leaves (e.g. the sycamore), a few feet from the earth.

In tropical countries a large number of the land snails are arboreal in their habits. The West Indian Palms (such as Oreodora regia) are the chosen abode of many species of Helicidæ. Mr. Couthouy found Bulimus auris leporis on the orange and myrtle-trees near Rio, and Partula and Helicinc, on the Dracænas and Bananas of the Polynesian Islands; and the sailors of H.M.S. Rattlesnake, in Captain Owen Stanley's expedition, became expert in collecting Geotrochi in the trees of the Australian islands.

The great tropical Bulimi and Achatine will sometimes lay their eggs in captivity.*

The following are examples of the elevations at which land-snails have been found. (pp. 162, 166.)

The land-snails of warm and dry regions remain dormant for long periods (p.19), and require no attention for many months after being collected. \dagger

Freshwater shells are collected with an insect-net or "landing-net" of strength suited to the work of raising masses of weed. The strongly-rooted

[^52]flags and rushes may be pulled up with a boat-hook; and Cyclades as well as univalves, may be obtained by shaking aquatic plants over the net. For getting up the Pearl-mussels, the most efficient instrument is a tin bowl, perforated like a sieve, and fitted on the end of a staff, or jointed rod. (Pickering.)

In some situations the freshwater shells are all much eroded, (p. 41, 273,) or coated with a ferruginous deposit. It may be desirable to find out the localities where the specimens are in best condition before collecting extensively. The opercula should always be preserved with the shells to which they belong; those of the Cyclostomida, and Melaniada are particularly interesting.

The Auriculide are especially met with in damp places by the ses; in mangrove-swamps, and creeks and river-banks where the water becomes brackish. Amphibola and Assiminea are found in salt-marshes, Siphonaria and Peronia on the shore, between tide-marks.

Collecting Sea-shells.-The following remarks are from the pen of an experienced conchologist, Mr. W. J. Broderip.-" When the tide is at the lowest, the collector should wade among the rocks and pools near the shore, and search under overhanging ledges of rock as far as his arms can reach. An iron rake, with long close-set teeth, will be a useful implement on such occasions. He should turn over all loose stones aud growing sea-weeds, taking care to protect his hands with gloves, and his feet with shoes and stockings agaiust the sharp spines of echini, the back-fins of sting-fishes, and the stings of medusa. In detaching chitons and limpets which are all to be sought for on rocky coasts, the spatula or case knife will prove a valuable assistant. Those who have paid particular attention to preserving chitons have found it necessary to suffer them to die under pressure between two boards. Ormers (Haliotides) may be removed from the rocks to which they adhere by throwing a little warm water over them, and then giving them a sharp push with the foot sideways, when mere violence would be of no avail without injuring the shell. Rolled madrepores and loose fragments of rock should be turned over; Cowries and other shell-fish frequently harbour under them. Numbers of shell-fish are gencrally to be found about coral-reefs." In coral-regions the services of natives, should be obtained, as they may render much assistance by diviug or wading.

Advantage may be taken of spring-tides, especially at the equinoxes, to examine lower tracts of sca-shore than are ordinarily accessible. Many bivalves bury in sand and mud at extreme low-water, and may be obtained alive by digging with a spade or fork; others may be found boring in piles and rocks and require the hammer aud chisel for their extraction.*

[^53]Mr. Joshua Alder remarks that, "in collecting among rocks the principal thing is to look close, particularly in crevices and under stoncs. Minute species inhabiting sea-weed are best obtained by gathering the weed and iminersing it for some time in a basin of sea-water, when the little mollusks will generally creep out. If the shells only are wanted, the surer and more ready way is to plunge the weed into fresh-water, when the animals immediately fall to the bottom."

The foating mollusca of the open sea, especially in tropical latitudes, are comparatively little known. Good drawings, and descriptions made from the life, are most valuable. "Of the animal of the Spirula, entire specimens are greatly wanted. If captured alive, its movemeuts should be watched in a vessel of sea-water, to see whether it has the power of rising and sinking at will; its mode of swimming, and position during these movements, and when at rest. The chambered shell should be opened under water, to ascertain if it contain a gas, the nature of which should if, possible, be made out. The pearly nautilus requires the same observations, which would be attended with more precision and facility from its larger size." (Owen.)*

The towing-net used by Mr. Mc Gillivray "consisted of a bag of bunting (used for flags) two fect deep, the mouth of which was sewn round a wooden hoop 14 inches in diameter; thrce pieces of cord, a foot and a half long, were secured to the hoop at equal intervals and had their ends tied together. When in use the net was towed astern, clear of the ship's wake, by a stout cord secured to one of the quarter boats, or held in the hand. The scope of the line required was regulated by the speed of the vessel at the time, and the amount of strain caused by the partially submerged net." \dagger

Trawling.-Mr. John W. Woodall, of Scarbro', has kindly furnished the following sketches and particulars;-" Fig. 227, is intended to represent a trawl-net, at work on the bottom of the sea. The side frames are of iron, the upper beam of wood, and the lower edge of the net is kept down to the ground by means of a chain, which is wolded or wrapped round with old rope. The beam is generally from 40 to 50 feet in leugth, and about 8 inches square. The net is about 30 yards in depth, and has a couple of pockets inside. The end is untied when the net is hauled on board for the purpose of taking the fish out. These nets can only be worked where the bottom of the sea is free from rocks. They are used by boats of 35 to 60 tons, manned by crews of from 4 to 6 men, and 2 to 3 or four boys. In the vicinity of Scarbro' they fish between the shore-reefs and the off rock which is 4-10 miles from land; the bottom is sand or clay, with 4-15 fathom water on the land-side, and $17-25$ fathoms on the off side." Immense quantities of Crustacea and shell-fish are taken with the trawl, as well as ground-fish.

[^54]

Fig. 227. A Trawl-net. A. Side view; C. Plan ; B. Net in operation.
Kettle-nets.-On the flat, sandy coast of Kent and Sussex, the mackerelfishery is pursued by setting u_{i}) stakes 10 or 15 feet high, at distances of 10 feet apart, in lines running outwards from the shore at high-water, to lowwater neap tides, where they are turned in the direction of the tide. To these stakes, nets are attached and leaded, which remain as long as the fish are on the coast. Cuttle-fish are frequently taken in these nets.

Deep-sea Fishery.-In North Britain an extensive ground-fishery is conducted by means of long lines,-often a mile in length-with hooks and baits every few yards. These lines are laid out at night, near the coast, and takeu u_{1}, the next morning. When used out at sea, the boats lay by for a few hours, and then take up the lines. The carnivorous whelks adhere to the baits (which have not been seized by fishes), and sonetimes a bushel of them are taken in this way from a single line. Rhynchonella psittacea, Panopaa Norvegica, Velutina, and some of the scarce Fusi, have been obtained from these lines, the bivalves having been entangled accidentally by the hooks.

For trapping whelks on rocky ground a net may be made, such as is used for crabs and lobsters, by attaching a loose bag to an iron ring of a yard across. This is fastened to a rope by three equal strings, baited with dead fish, and let down from a vessel at anchor, or still better from a buoy. It is put down over-night, and hauled up gently in the morning.

Mr. D'Urban informs us that Natica Alderi and monilifera are fre-
quently found in the lobster-pots at Bognor, Sussex, which they enter to feed upon the bait.

Dredging.-The Dredges used in the Oyster and Whelk-fisheries are so rudely made as to injure the more delicate marine animals, and suffer all the minute things to escape. It is therefore necessary to have instruments specially adapted for the naturalist's work.

Fig. 228. Plan of the Framework of a Dredge, reduced to $\frac{1}{\mathbf{b}}$.

Fig. 229.

Fig. 228 is a plan, and Fig. 229 a side-view, of a small dredge, belonging to Mr. J. S. Bower, bank, and suited for such work as a private collector might do on the English coast. It is made of wrought iron, with moveable joints, so as to fold up and carry in the hand. The bag attached to the dredge is formed of two pieces of raw hide (h, h), connected at the ends and bottom by net (n) made of cod-line, to allow the water to escape; and is fastened to the frame with copper-wire, through the eyelet holes. The towing rope is attached to the rings (r, r), and when thrown overboard it scrapes with oue or other of the cutting edges (e, e^{\prime}). The opening is made narrow to prevent the admission of large and heavy stones.

Dredging should not be attempted in a rowingboat, unless near shore, in smooth water, and with a depth not exceeding 5 or 10 fathoms. It may be managed in a light boat by two persons; one rowing, the other holding the rope of the dredge which is passed overboard near the stern.*

[^55]The whelk and oyster-dredgers employ a decked sailing-vessel, and work several dredges simultaneously, each requiring a person to manage it. The dredges are put overboard on the weather-side, and the ropes made fast to a bulwark or thwart; each dredger holds the rope in his hand, after giving it a single turn round a thwart or "belaying-pin," to regulate the strain by means of the spare line. When a sufficient distance has been traversed, or the ropes strain with the weight of mud and stones, the vessel is brought to, and the dredges hauled up and emptied.*

The length of line required is about double the depth of the water. If the line is too short the dredge will only skim the bottom; if too long it will be in danger of getting fast. When the bottom is loose sand or soft mud, the line must be shortened, or the vessel have more way, or else the dredge will be apt to get buried.

The strength of the line ought to be sufficient to anchor the vessel in smooth water,-though not, of course, when there is much way on her,-so that if the dredge gets foul it is necessary to let out the spare line and relieve. the strain, while the vessel is brought round. The dredge will then usually capsize, and may be hauled up.

If the bottom is at all rocky, a small strong dredge is best. The line must be shortened, and some additional precautions may be taken, such as fastening the rope to one ring of the dredge, and tieing the other with spun yarn, which will break under a sudden and dangerous strain, and release one end of the dredge.

In dredging on Coral-ground, Mr. Cuming employed a 3 inch hawser, and had a patent buoy attached to the dredge by a $1 \frac{1}{4}$ inch rope. More than once the hawser parted, and the dredge was left down all night, but recovered the next day.

Mr. Mc Andrew's researches on the coast of Norway, were conducted in the "Naiad," a Yacht of 70 tons, and extended from the shore to 250 fathom water. The dredge employed was at least twice as strong and heavy as the one we have represented, and all forged in one piece, instead of folding up. The bag was fastened on the frame with thongs cut from the hide. Before using, it requires to be towed astern for a couple of hours to soften it. In three months work, only two cow-hides were used, and one of those was torn by accident on sharp rocks. Several spare dredges were on board (in case of emergency), but not used.

Dredging in deep water ($50-300$ fms.) can ouly be done in calm

[^56]weather, with a light breeze. The Yacht is brought to the wind (by putting up the helm), the foresheet hauled to windward, mainsail hauled up, and mizen taken in ; the gaff topsail also hauled up; she then drifts to leeward, and the dredge is thrown overboard to wiudward, with the line made fast amidships; the spare line being coiled up so as to be given ont readily. When the dredge is to be hauled in, the rope is passed through a moveable block, fixed to the shrouds, aud the whole strength of the crew (15 hands) called into requisition if necessary. When the depth does not exceed 50 fathoms, the boat, with three men aud the two dredgers, is used.

If the dredge gets fouled, the repe is passed into the boat, brought over t'ee dredge, and hauled up. In very deep water (150 fm .) the line is carried forward and made fast to the bows. and the yacht itself hauled up till right over the dredge, which is then recovered without difficulty.

The coutents of the dredge are washed, and sifted with two sieves, one " $\frac{1}{4}$ inch," the other very fine. They are made of copper wire, and one fits into the other. The dedge is emptied iuto the coarse sieve and washed in the sea from the boat, or if in the yacht, they are placed in an irou frame, over the side of the vessel, and buckets of water poured on. The sediment retained in the fine sieve may be dried and examined at leisure, for minute shells.

The following "dredging-papers," kept on the plan recommended by Prof. E. Forbes, have been selected by Mr. Barrett, to illustrate the kind of shells found at various zones of depth.

Note.-The shell-fish obtained by dredging should be at ouce boiled, and the animals removed, unless wanted for examination (p. 441). The bivalves gape, and require to be tied with cotton; the opercula of the univalves should be secured in their apertures with wool. The small univalves may be put up iu spirit, or glycerine, to save time. In warm climates the flies aud ants assist in removing any remains of the animals left in spiral shells, and chlo. ride of lime may be necessary to deodorize them.
M. Petit de la Saussaye has given very full instructions for collecting and preserving shells, in the Journal de Conchyliologie for 1850, p. 215, and 1851 , pp. 102, 226.

It is stated that both the form and colour of molluscous animals may be preserved in a saturated solution of hydro-chlorate of ammonia (10 parts) and corrosive sublimate (1 part-first dissolved in alcohol), but the preparation is expensive and dangerous.

Dredyes and other apparatus, glazed loxes, and glass tubes for specimens, may be obtaiued of G. Sowerby, 70, Great Russell Street, Bloomsbury ; and of R. Damon, Weymouth.

DREDGING PAPERS, AND RECORDS OF RESEARCHES ON THE COAST OF NORWAY.

By R. Mc Andref, Esq. and Lucas Barrett, Esq. F.G.S.

I.

Date. July 1st, 1855.
Locality Tromsoë (Nordland).
Depth . Between tide marks.
Ground Rock and sand.

(Note.) No specimens of Trochus, or Patella vulgata occurred.

II.

*The accented numbers in the column of "dead specimens" refer to disunited valves of Conchifera and Brachiopoda.

III.

DateJuly 3rd, 1855.
LocalityIsland of Arnüe (Finmarken).
Depth 7 to 22 fathoms.
Distance from shoreHalf a mile.
Ground...................Isminaria and red weed.

Species.				Number of living specimens.	Number of dead specimens
Dentalium entale	4
Trochus tumidus	Many.

IV.

DateJuly , 1855
LocalityVigten Island (N. Drontheim).
Distance from shoreQuarter of a mile.
Depth 30 fathoms.
Ground....................... Coral.bank.

V.

Species. \begin{tabular}{l}
Number

of living

specimens.

Number

of dead

specimens.
\end{tabular}\quad Observations.

Arca pectunculoides $. . \quad . \quad . . \quad 12 \quad 10 \quad$ Large.

Chiton Han!eyi	3	0
L.epeta cœca	4	0
Acmæa virginea	10	6

Pilidium fulvum	Many.

Puncturella noachina	2	-	
Trochus millegranus	2	0	

Finima polita 1 on
Natica nitida 3 2
——— helicoides 0 I
_ pusilla 0
Velutina lævigata 1 o
Trichotropis borealis \quad 6
Nassa incrassata 1 o

| Fusus antiquus | . | .. | . | .. | 0 | o |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frophon clathratus | .. | . | .. | 0 | $\mathbf{1}$ | |

Mangelia turricula. 1 0

Tornatella fasciata.. 0
Buccinum undatum 6
() Young.

Iany stones had on valve.

Large:
Carinated Var

VI.

Date	July 20th, 1855.
Locality	North of Rolphsoe (Finmayken).
Depth	130 to lR0 fathoms.
Distance from shore	Half a mile.
Ground.	Sand.
No. of hauls ..	Two.

Species. \begin{tabular}{c}
Number

of living

specimens. specimens.

Number

of dead
\end{tabular}\quad Observations.

DREDGING PaPERS, OR RECORDS OF RESEARCHES IN THi EGEAN SEA.

By Professor E. Forbes

I.

Date..............................May 29th, 1841.
LocalityNousa Bay, Paros.
Distance from shore Within the Bay.
Depth
Ground $\ldots \ldots \ldots \ldots \ldots \ldots$ Mud and sandy mud.

II.

Avicula Tarentina	3	3	Full grown, adhering to exch other.
Saxicava arctica	\ldots	4	0	

III.

V.

Date	.Nov. 25th, 1841.
Locality	.S. extremity of Galf of Macri.
Depth	. 230 fathoms.
Distanc	One mile (shore steep).
Ground	Fine yellowish mud.

| Species. | Number
 of living
 specimens. | Number
 of dead
 specimens. |
| :---: | :---: | :---: | Observations.

Terebratula vitrea	0	$\mathbf{2}^{\prime}$	
Syndosmya profundissima	0	$\mathbf{3}^{\prime}$		
Arca imbricata..	1	$\mathbf{1}^{\prime}$
Dentaliam quinquangulare..	..	1	0			
Hyalea gibbosa	0	1
Cleodora pyramidata	0	8	
Criseis spinifera	0	5

The Distribution of the Mollusca in Depth has been investigated by MM. Audouin and Milne-Edwards, M. Sars, and Prof. E. Forbes. By these observers the sea-bed is divided into four principal regions :-

1. The Litoral zone, or tract between tide marks.
2. The Laminarian zone, from low-water to 15 fms .
3. The Coralline zone, from $15-50$ fms.
4. The deep-sea coral zone, $50-100$ fms. or more.
5. The Litoral zore depends for its depth on the rise and fall of the tide, and for its extent on the form of the shore. The shells of this zone are more limited in their range than those which are protected from the vicissitudes of climate by living at some depth in the sea.* In Europe the characteristic genera of rocky shores are Iitorina, Patella and Purpura; of sandy beaches, Cardium, Tellina, Solen; gravelly shores, Mytilus; and on muddy shores Lutraria and Pullastra. On rocky coasts are also found many species of Haliotis, Siphonaria, Fissurella, and Trochus; they occur at various levels, some only at the high-water line, others in a middle zone, or at the verge of low-water. Cypraa and Conus shelter under coral-blocks, and Cerithium, Terebra, Natica, and Pyramidella bury in sand at low water, but may be round by tracing the marks of their long burrows. (Macgillivray).
6. Laminarian zone.-In this region, when rocky, the tangle (Laminaria) and other sea-weeds form miniature forests, the resort of the vegetable feeding mollusks-Lacuna, Rissoa, Nacella, Trochus, Aplysia, and various Nudibranchiata. On soft sea-beds bivalves abound and form the prey of Bucci-

[^57]num, Nassa, and Natica. From low-water to the depth of one or two fathoms on muddy and sandy shores, there are often great meadows of grass-wrack (Zostera) which afford shelter to numerous shell-fish, and are the haunt of the cuttle-fish and calamary. In tropical seas, the reef-building corals often take the place of sea-weeds, and extend their operations to a depth of about 25 fathoms. They cover the bottom with living verdure, on which many of the carnivorous mollusks feed, while some, like Ovulum and Purpura, browse on the flexible Gorgonic. To this zone belong the oyster-banks of our seas, and the pearl-fisheries of the south ; it is richer than any other in animal life, and affords the most highly coloured shells.
3. Coralline zone. In northern seas the belt of sea-weed that fringes the coast is succeeded by a zone where horuy zoophytes abound, and the chief vegetable growth consists of Nullipore which covers rocks and shells with its stony-looking incrustations. This zone extends from 15 or 25 , to 35 or 50 fathoms, and is inhabited by many of the predacious genera-Buccinum, Fusus, Pleurotoma, Natica, Aporrhais, Philine, Velutina; and by vegetable feeders, such as Fissurella, Emarginula, Pileopsis, Eulima, and Chemnitzia. The great banks of scallops belong to the shallower part of this region, and many bivalves of the gencra Lima, Arca, Nucula, Astarte, Venus, Artemis, and Corbula.
4. Deep-sea Coral-zone. From 50 to 100 fathoms the Nullipore still abounds, and small branching corals to which the Terebratula adhere. In northern seas the largest corals (Oculina and Primnoa) are found in this zone, and shells are relatively more abundant, owing to the uniformity of temperature at these depths. These deep-water shells are mostly small and destitute of bright colours; but interesting from the circumstances under which they are found, their wide range, and high antiquity. Amongst the characteristic genera are Crania, Thetis, Neara, Cryptodon, Yoldia, Dentalium, and Scissurella. In the mud brought up from deep water may be often found the shells of Pteropoda, aud other mollusca which live at the surface of the sea. In the Æyean Sea there is deep-water within one or two miles of the coast ; but in the British Channel the depth seldom amounts to more than $20-40$ fathoms.

When registering the results of dredging-operations, it is important to distinguish between dead and living shells, as in the preceding Tables; for almost every species is met with, in the condition of dead shells, at depths far greater than those in which it actually lives. On precipitous coasts the litoral sbells fall into deep water, and are mingled with the inhabitants of other zones: currents also may transport dead shells to some distance over the bed of the sea. But the principal ageuts by which so many decayed and broken shells are scattered over the bed of the deep sea, must be the molluskeating fishes. Of 140 species of boreal shells described by Dr. Gould (p. 358)
more than half were obtained from the maws of fishes, in Boston market. Cod-fish do not swallow the large whelk-shells, but sume idea of the number they consume may be derived from the fact that Mr. Warington has obtained the muscular foot and operculum of above 100 whelks, of large size, besides quantities of crustacea, from the maws of three cod-fish procured in the London market. Bivalve shells, like the Solens, and the rare Panopaa Norvegica are swallowell, and ejected again with eroded surfaces. The haddock swallows shells still more indiscriminately, and Mr. Mc Andrew has found great numbers of rare Pectens in them, but generally spoiled. The cat-fish and skate break up the strongest shell-fish with their teeth-accounting for the many angular fragments met with in the dredge, and in recent deposits.

The following are examples of shells obtained from great depths.

Norway. (Mc Andrew)		AEgean. (Forbes.)	
Living shells. Fathoms.		Living.	Dead.
		Murex vaginatus	50
Cerithium metula	.20-150	Fusus muricatus 80-95	150
Margarita cinerea	10-130	Nassa intermedia	45-185
Dentalium entale	200	Cerithium lima........3-80	140
Limea sarsii	120	Chemnitzia fasciata	110-150
Leda pygmma	200	Eulima distorta	69-140
Yoldia limatula.	120	Scalaria hellenica	110
Thetis koreni	.40-100	Rissoa reticulata 55	185
Cryptodon flexuosus		Trochus exasperatus 10-105	165
Off the Cape. (Belcher.)		Scissurella plica a	70-150
		Acmea unicolor61-175	150
Buccinum? clathratum	- 1:6	Dentalium quinquangulare	150-230
Volutilithes abyssicola	132	Bulla atriculus.	40-140
Pectunculus Belcheri	120	Spondylus Gussonii105	
Egean. (Forbes.)		Pecten lloskynsii Arca imbricata 90-230	185-200
Living.	. Dead.	Neæra cuspidata 12-185	
Terebratula vitrea 100	250	Thetis anatinoides	40-150
Argiope decollata........ 100	110	Kellia abyssicola70-180	200
Crania ringens 90	150	Syndosmya profund ssima	80-185

Preserving molluscous animals for examination.
When shell-fish are killed by sudden immersion in hot water or strong spirit, great and unequal contraction is caused, distorting the muscular parts and rupturing the membranes.

Experiments have yet to be made for the discovery of means whereby these and other marine animals may be paralysed and killed, without altering ihe ordinary condition of their organs.*

Glycerine is the best mediun for preserving such objects as the univalve

[^58]shell-fish, intended for the examination of their lingual teeth; for if put up in stroug spirit they become so hard that it is almost impossible to make good preparations from them, and in weak spirit they will not keep for any length of time.

Alcohol. - The cheapest alcohol for preserving natural history objects, at home, is sold as " methylated spirit;" it contains ten per cent. of ordinary wood spirit, and being undrinkable, is free of duty. When many specimens are put up together the spirit becomes much diluted, and should be changed. The soft tissues of bivalves, and spiral bodies of the univalves soon decompose in weak spirit. But for permanent use, in Museums, proof spirit may be diluted with an equal bulk of water. Cotton wool may be put with the specimens iu spirit, especially with cuttle-fish, to preserve them from distortion by pressure.

Goadby's solution is prepared by dissolving $\frac{1}{2} \mathrm{lb}$. of bay salt, 20 grains of arsenious acid, or white oxide of arsenic, and 2 grains of corrosive sublimate, in 1 quart of boiling rain-water.

Burnet's solution (chloride of zinc), largely diluted, is now used at the British Museum for the preservation of fishes and other objects, in glass jars. It has several advantages over spirit; being undrinkable, and not inflammable, and the concentrated solution (sold by all druggists) is much less bulky.

Muriate of Ammionia is recommended,by Mr. Gaskoin, for removing any nnpleasant odours which may arise from preparations when taken out of spirit for examination. (See p. 430.)

A solution of Chloride of Calcium has been employed by Gen. Totten, U.S. Engineers, for preserving the flexibility of the epidermis in various shells. The solution of this deliquescent salt (which any one can make by saturating hydrochloric acid with marble), keeps the object which has been steeped in it permanently moist, without injuring its colour or texture; while its autiseptic properties will aid in the preservation of matters liable to decay. (Prof. J. W. Bailey, in Silliman's Joarnal, July, 1854.)

Aquaria.

The establishment of fresh-water and marine aquaria by Mr. Mitchell, in the gardens of the Zoological Society, and the writings of Mr. Philip Gosse, have popularized the subject of aquatic animals, and shewn how easy and interesting it is to keep a few of them alive, and watch their habits even in the midst of London. Instead of the solitary gold-fish in its globe of glass, we may now have a variety of fishes in a little world of aquatic plants and water-insects and fresh-water shells. Salt-water may be brought from the sea, or manufactured at home; and a glass jar or tank of any size, may be tenanted with small sea-fish and soldier-crabs, sea-anemones, shrimps, and periwinkles.*

[^59]The woodcut (Fig. 228) represents a marine aquarium desirned by Mr. Gosse, with a small fountain in the centre, which not only adds to its ornamental appearance, but serves to aërate the water, or mix with it a greater amount of the fixed air which gill-breathing creatures respire.* An

aquarium of this shape combines the advantage of a large surface exposed (1) the air, with the opportunity of watching its inhabitants through the glass sides. The form of aquarium best snited for aquatic animals, viz. a wide

* The use of the woodcut for this work, was kindly afforded at our request, by Mr. Gosse.
shallow pan, is the least convenient to keep; and therefore a large glass jar is usually adopted, or an oblong tank, made to fit the recess of a window, with slate ends and bottom, and plate-glass sides.

The most convenient form of tank, is that recommended by Mr. R. Warington; it is a four-sided vessel, having the back gradually sloping upwards from the bottom at an angle of 45 or 50 degrees, and the consequently extended top sloping slightly downwards and resting on the upper part of the back. The bottom is narrow, and the back may be covered with light rockwork, extending just above the water-line, to aftiord places of growth to the sea-weeds and fixed animals, and provide the litoral shell-fish with a feedingground close to the surface. The front and top of this aquarium are of glass, the rest of slate, fixed in a stout frame-work. (An. Nat. Hist. 14; p. 373.)

The aquarium should be covered, at least in towns, with a lid, or plate of glass, to check evaporation and exclude dust. If ventilation is necessary, the lid may be supported by small bent pieces of lead, hung on the rim of the tank.

The "balance of organic nature" is maintained in these aquaria by growing plants with the animals (p.31, note). For fresh-water tanks, Valisneria spiralis is the best plant; but if there is space for the common flag (lris pseudacorus) or water-plantain (Alisma) they will rise above the surface and blossom.* The Anacharis alsinastrum and Hydrocharis (like a miniature water-lily), may be grown at the surface. And if the tank is covered with a frame filling the window, some climbing plants may be trained in it, and the sides converted into a rockwork on which many ferns will thrive and expand their fronds in the moist air. (Warington).

For marine aquaria the green-weeds (Ulva, Enteromorpha and Bryopsis) are better oxygen-producers than the red sea-weeds, but the latter are so attractive as to be often tried. \dagger The weed may become too luxuriant and require to be thinned in summer, but in the winter it dies down, and nearly disappears. Some of the threadlike weeds (diatomaceous algee) are apt to gain admission, and in autumn break up spontaneously, filling the water with an opaque green cloud.

The surface of rockwork, in the aquarium is liable to be overspread, and the interior of the glass itself rendered opaque, by the early growth of conferva. This may be in some degree prevented by keeping the water free from the grown plants, which are casily removed; and the green on the glass is kept in check by water-snails and periwinkles. These creatures occupy them-

[^60]selves unceasingly in licking the glass (p. 161), and may be watched with a magnifier of moderate power.

Artificial salt-water.-The difficulty of obtaining sea-water has been obviated by the manufacture of salts for the formation of medicinal baths, by evaporating large quantities of the sea-water itself. This plan was suggested by Dr. E. Schweitzer, whose analysis of the water of the English Channel, taken off Brighton, shews the following salts in 1001 bs . (or 10 gallons), stated in decimal fractions of the pound, and also in ounces and grains:-

As the weight of the salts amounts to $60 \frac{3}{3}$ ounces, the true proportion of water to be mixed with them will be 3 pints less then 10 gallons.*

The temperature of the aquarium should not range below 50° nor above 70°. The mean temperature of the sea is estimated to be about 56° Fahr. with a variation of about 12° throughout the year. In hot summer days a screen is necessary against strong sunlight. \dagger (Warington).

Many little points, in the management of the aquarium, will be determined by experience; such as the number of living animals it is capable of maintaining, and the sorts which may be safely kept together. Everything dead or decaying should be removed as soon as detected. The loss by evaporation may be supplied occasionally by sprinkling with distilled water. \ddagger

[^61]
Chapter V.

SUPPLEMENTARY NOTES ON THE MOLLUSCA.

Class, I. Cephalopoda.

Development, (p. 54.)-"All that is at present known upon this subject, is contained in the very beautiful memoir by Kölliker, who gives an elaborate account of the development of Sepia, Loligo, and Argonauta.*
"The process of yolk-division is partial, and the development of the embryo takes place within a distinct germinal area-whence a distinct pollsac is formed. This is proportionally very large in Sepia (Fig. 229) and Loligo, very small in Argonauta (Fig. 230) and therefore while the embryo is flattened and extended in the former genera, in the latter it more resembles the embryo of an ordinary Gasteropod.
"Development commences by the separation of the embryo into mantle and body, (foot). The part of the body in front of the mantle becomes the head; that behind it becomes the branchio-anal surface.

Fig, 229. Development of the C'uttle-fish. (Kölliker.)
A. Embryo two lines in diameter; m.mantle; b, branchial processes ; s, siphonal processes; a, mouth; e, eyes; l-5 rudimentary arms.
B. Side view of the embryo, when more developed.
C. Front view, at a later period.
D. Young cuttle-fish, still attached to the yolk-sac, with the tentaculararms (2) longer than the rest.
"The latero-posterior margins of the body are produced into four or five processes on each side, which become the arms.
"On each side of the mantle, betweeu it and the head and arms, a ridge

[^62]is formed upon the body. These ridges (s s. s.) represent the epipodium; their anterior ends are continuous and attached, the posterior ends are at first free but eventually uniting, they form the funnel (D.s.). The rudimentary gills (b.) appear between the epipodium and mantle. The alimentary canal is at first straight ; (the mouth beiug at a, the vent at l, in Fig. 229, A.)
"The embryo now grows faster in a vertical than in a longitudinal direction, so that it takes on the cephalopodic form. The intestine as a consequeace, becomes bent upon itself; and the anterior pairs of arms grow over in front of the head and unite, so as eventually to throw the mouth nearly into the centre of the arms." (Huxley.)

At a later period of developmeut (Fig. D.) the respiratory movements are performed by the alternate dilatation and contraction of the mantle; and the ink-bag is conspicuous by the colour of its contents, which are sufficient to blacken a considerable quantity of water. At the poriod of exclusion from the nidamental capsule, five layers of the shell of the young cuttle.fish have been formed; but except the nucleus, which is calcitied, they are horny and trausparent. The later al fins are broader than in the mature animal.

The observations of Madame Power respecting the young Aryonaut, (quoted at p. 66), must have been made on the Hectocotylus. The embryo as described by Kölliker has simple, conicul arms ($1-4$); and the elements of

Fig. 230. Aryonaut, embryo in the egg. the funnel appear as a ridge (p) on each side of the body. In Fig. 230, v, is the yolk-sac ; o, the position of the future mouth; e, the eye; b, the gill ; m, mantle.

Octopoda, p. 65.-The account already given of the extraordinary couldition of the male of the Argonaut and some other octopods has since been modified and extended by the observations of Dr. H. Müller* and M. Verany. \dagger

According to Dr. Müller, the Hectocutyle of the Argonaut is an arm irregularly metamorphosed, spontaneously detached, (when the fluid formed in the true testis has been deposited in it,) enjoying an independent life, feeding on the female Argonaut, and fecundating by a true union.
'The perfect male Argonauts are one inch in total length, and shell-less, (like the females of that size); their dorsal arms are pointed, not expanded. The testis is very large, and like that of the Octo ${ }^{\prime}$ us in structure

[^63]and situation; it contains spermatozoa of different degrees of develop. ment, and the excretory duct probably debouches into the Hectoco-

Fig. 231, Octopus carena δ, Ver.
A. Side view, shewing cyst in place of third arm.
B. $\mathrm{V} \epsilon$ ntral side of an individual more developed, with the Hectocotylus C.
 tylus. The Hectocotylus is developed in a coloured sac, which occupies the place of the third arm of the left side; the sac is cleft by the motions of the Hectocotylus, which extends itself, whilst the sac becomes inverted and forms the violet coloured capsule on its back. The sac never contains more than one Hectocotylus, which is attached by its base, whilst the rest of it is free and coiled up. It has no enlargement like the male Tremoctopus (Pl. I. f. 3) ; the filiform appendage proceeds from the smaller extremity, and sometimes remains entangled in the coloured cyst on the back of the Hectocotylus, near its base. It has a chain of nervous ganglia in its axis, (like that in the arms of ordinary cuttle-fish.)
M. Verany of Genca, found the male of "Octopus carena" (Tremoctopus granulosus, Cuv.) with the right arm of the third pair more developed than the others, and bearing an oval globe at its free extremity (Fig. 231, C.) This abnormal arm, agreeing with the Hectocotylus octopodis of Cuvier, was found to be developed in a cyst (A.) like that of the male Argonaut.

The Lingual dentition of the cuttle-fish, as described by Lovèn, is most like that of the Pteropoda and nucleobranchiata. The central teeth are simple in Sepia and Sepiola, tricuspid in Loligo, and Fig. 232, Lingual teeth of Seqia officinalis (Cocken.)
specimen of Sepia examined, the ribbon increasing in breadth backwards to twice its diameter in front.

Sciadephorus, Reinh. and Prosch; Bostrychoteuthis, Ag, = Cirroteuthis, p. 68.

Chondrosepia (loliginiformis) Leuckart, $=$ Sepioteuthis p. 70.
Owenia, Prosch, = Cranchia megalops, N. Atlantic.
Leachia (cyclura) Les. 1821 ; Perotis, Esch. $=$ Loligopsis, p. 71.
Belemnites.-Prof. Buckman of Cirencester possesses a phragmocone from the lias, containing the fossil ink-bag.

Helicerus (Fugiensis) Dana, Sill. Journ. 1848. Shell like a Belemnite, half an inch in diameter; guard thick, subcylindrical, fibrous; phragmocone slender, terminating in a fusiform spiral nucleus. In slate-rock, Cape Horn.

Conoteuthis Dupinianus occurs in the Gault of Folkstone. (Mus. Bower bank.)
Nautilus.-The gas with which the air-chambers of the pearly nautilus are filled, consists chiefly of nitogen, without a trace of carbonic acid. (Vrolik, An. Nat. Hist.] 2, 1843.)

Nautilus regalis, Sby, London Clay, Highgate. This species is distinguished by serrated lines on its external surface, nearly, but not quite concident with the lines of growth. (Wetherell, Lond. and Edin. Phil. Mag. IX. p. 462.)

Orthoceras.-The species figured (Pl. II. 14) is O. Ludense, of the Ludlow-rock, Herefordshire. O. giganteum is an Actinoceras, with a large beaded siphuncle, differing in structure, however, from the Silurian species; the vascular tubes (or interspaces) connecting the inner siphuncle with the air-chambers exist in ouly one plane, on the ventral (?) side, whereas in A. Biysbyi they radiate equally in all directions.

Hormoceras, Stokes.-The structure of the siphuncle in this fossil is essentially the same as in Actinoceras; the specimen (fig. 48, p. 88) is now in the British Muscum.

Discosorus (conoideus) Hall, 1852, Pal. New York, 99. This fossil appears to be a siphuncle similar to those figured by Dr. Bigsby in 1824 (Gcol. Trans. Pl. 30. f. 6.) and which have been correctly referred by Quenstedt to the Orthocerata. It resembles a pile of disks, and is more or less curved, and conical, the smaller end being upuards or towards the last chamber!

Conoceras (angulosus) Bronn, 1830, was founded on a figure of a weathered fragment of Gonioceras, as pointed out by M. Saemann.

Thoracoceras (vestitum) Fischer, $1844=$ Melia, Fischer (not L.) 1829, Carb. limestone of Moscow; the siphuncle is small and lateral. According to M. D'Orbigmy there are 20 species, ranging from the L. Silurian to the Carb. System, found in the U. States and Europe.

Apioceras (trochoides) Fischer, 1844. Dev.-Carb. Europe, Brit. (e. g. O. fusifurme) A perture sub-circular, not much contracted.

Gyroceras, D'Orb. (not Meyer) has been employed for the principal fossils included in Cyrtoceras by Goldfuss. The name was originally given by Meyer, to G. gracilis, Bronn (Spirula, Goldf. MS. 1832, Lituites, Quenstedt) which is the Goniatites compressus of D'Arch. and Vern.

Trigonoceras (paradosicum) Mc Coy, is a form of Nautiloceras, D'Orb. (Cyrt. ægocerus, Münst.) with a sub. spiral shell.

Discites (Mc Coy) is closely allied to the last, differing in the whirls being compact. It may be doubted whether any of the Palæozoic "Nautilidae" really belong to that family.

Ascoceras.-This curious fossil (which has been recently found at Ludlow, by Mr. Salter) only resembles Ptychoceras in appearance. It is slightly curved, and has a dorsal siphuncle, but the septa are bent and prolonged forwards on the ventral side to such an extent as to give an appearauce of the whole shell being doubled up.

Anmonites Jason, Reinecke (A. Gulielmi, Sby). The fossil figured, Pl. Ill 5, is A. spinusus, Sby. (=A. ornatus, Schl.) and is certainly distinct from the finely ribbed species which occurs with it, and to which the name Juson should be restricted.

CLASS II. GAS'JEROPODA.

Classification by lingual dentition.
The researches of Dr. Lovèn have been followed by many observations on genera not figured in his admirable memoir,* and by attempts to remodel the arrangement of the Gasteropoda by the aid of peculiaritics in their dentition. Whatever improvements may be thus obtained, it does not appear desirable to introduce a new terminology for divisious long since well established, and already over-burdened with classical names. \dagger

The patterns, or types of lingual dentition, are on the whole remarkably constant; but their systematic value is not uniform. It must be remembered that the teeth are essentially epithelian cells, and like other superficial organs liable to be modified in accordance with the wants and habits of the creatures. The instruments with which animals obtain their food are of all others most subject to these adaptive modifications, and can never form the basis of a philosophical system. \ddagger

* Öfversigt af Kongl. Vetensk. Akad. Förhandl. 1847.
+ The following names were proposed by Troschel (in Wieginan's Handbuch der Zoologie, 1848) and Gray (An. Nat. Hist.) for the principal types of lingual dentition.
a. Tænioglossa, teeth 3. 1. 3 ; Litorina, Natica, Triton,
b. Toxuglossa, teeth 1. 0.1; Conus, Terebra?
c. Hamiglossa, teeth 1. 1. 1; Murex, Buccinum.
d. Rachigiossa, teeth 1. 1. 0; Voluta. Mitra?
e. Gymnoglossa, teeth 0; Pyramidella, Cancellaria, Solariuni?
f. Rhipidoglossa, teeth 00.1. 03; Nerita, Trochus.
\ddagger The carnivorous opossums have teeth adapted for eating flesh, but are not on that account to be classified with the placental carnivora.

The lingual teeth, like the operculum, have usually a structure characteristic of the genera or sub-genera, and are sometimes uniform thoughout a whole family or group of families. They also exhibit minute differences in closely allied mollusks, and promise to be of great value in the discrimination of critical species. Mr. Wilton has ascertained that Patella athletica may be distinguished from the common limpet of our coast by its teeth; and a similar difference exists between two Cape species, P. apicina and P. longicostata.

In the account already given of the structure and use of the lingual teeth (p. 27 and 160), it has been pointed out that the Carnivorous families have a retractile proboscis; and it may now be added that in many instances the aperture of this organ is furnished with a prehensile spiny collar (fig. 239 and 260), apparently for the purpose of holding the prey whilst the lingual organ is employed in drilling or abrading it. The spinose collar coexists with a lower mandible in Doris; but appears not to be found in the genera provided with an upper jaw. The spiny buccal plates of Natica and Lamellaria are united above, like the lateral jaws of EDolis, of which they seem to be a modification. The vegetable feeders bave a rostrum, or non-retractile muzzle, and frequently a horny upper mandible (fig. 260), which is sometimes divided, and forms two lateral jaws, articulated above. The chemical composition of the lingual teeth has not yet been examined by a competent observer. It is not improbable that the opaque brown teeth of Chiton, Patella and Nerita, are chitinous, like the mandibles and pen of the calamary.*

ORDER I. NUCLEOBRANCHIATA.

Lingual membrane plane, widening backwards; teeth 3. 1. 3. (p. 199.) Firola, Carinaria, Atlanta.

Fig. 233. Carinaria cristata, L. (Wilton.)

[^64]
ORDER II. PROSOBRANCHIATA.

Section A. Zoophaga, Lam. (Proboscidea, Troschel.) [Family 1, Strombida: lingual teeth 3. 1.3.] p. 104.

Strombus (floridus) is described by Lovèn as having a non-retractile, produced muzzle, like Aporrhais. The teeth are 7 cusped; uncini-1 tridentate, 2 and 3
Fig. 234. Strombus. (Wilton). simple, claw-shaped. S. gibberulus is represented by Dr. Bergh with all the uncini denticulated.

The dentition of Aporrhais is most like Strombus and Carinaria; and quite unlike the Cerithiade with which it has been placed, in accordance with the views of Prof. Forbes. The animal is carnivorous. (p. 130.)

Fig. 235. Aporrhais pes-pelecani. (Warington.)

Fig. 2315. Operculum of Struthiolaria.
[Family 2? Cassida: teeth 3. 1. 3.]

Cassis.	Dolium.		Ranella.
Cassidaria.	Pyrula.	Triton.	

Fig 237. Cassis saburon. (Original.)
The spiny buccal plates of Cassis have been mistaken by Gray and Adams for the teeth, which in this genus, and also in Triton, are very minute and transparent.

Fig. 238. Operc. of Cassis.

Fig. 239. One of the buccal plates of Triton, $\frac{40}{1}$. (Wilton.).

Fig. 240. Teeth of Triton, $\frac{9}{2}^{2}$. (Wilton.)

Fig. 241. Dolium perdix. (Original.)
Fam. 3. Muricida (including Buccinida) : teeth 1. 1. 1. (p. 28).

Murex.	Fusus.	Buccinum.	Oliva
Trophon.	Fasciolaria.	Chrysodomus.	Ancillaria.
Parpura.	Turbinella.	Nassa.	Harpa.

$$
\text { X } 2
$$

The lingual ribbon of Murex, Purpura, and most of the other members of the family, is very slender, and the teeth minute and glassy. It is quite certain that they drill holes in other shells to get at the animal ; the process may be observed even in the confinement of a vivariam. The short, deeply notched canal of Buccinum and Nassa is related to their burrowing habits; Mr. Wariagton has observed that when

Fig. 243. Fasciolaria Tarentina. (Wilton.) Nassa reticiclata burrows, it maintains a communication with the surface by means of its long recurved siphon.

The teeth of Fasciolaria resemble those of Fusus Islandicus. In Buccinum undatum, the median tooth has 5 , or rarely 6 denticles; and Mr. Wilton has observed that B. limbosum, δ^{7} has the teeth 7 casped, whilst in the females they are 6 cusped.

Fig. 244. Voluta. (Wilton).

Fam. 4. Conida: teeth 1. 0.1. (see p. 117). Conus. Pleurotoma. Cithara. Terebra? Fam. 5. Volutida: teeth single, rachidian, or 1. 1. 1. Voluta. Cymba. Melo. Marginella? ! Mitra Grœnlandica, teeth 0.1. 0. minate, voluta-like; in more than 120 rows.
"

Caffra
episoopalis teeth

1. 2. 3. buccinoid.

Fam. 6. Cypraida: teeth 3. 1. 3. (p. 28). Cyprøa. Ovulum. Pedicularia. Erato?
In Ovulum the teeth are 2.1.2. the outermost broad, with pectinatel margins. Lovèn describes the Cypræidæ as having a short, non-retractile muzzle, and places them between the Naticide and Lamellaria.

Fam. 7. Naticida: teeth 3.1.3. or 1.1.1.

Fig. 245. Natica monilifera. (Wilton.)

Fig. 246. Velutina lavigata. (Warington.) The mouth of Natica is armed with buccal plates, shorter and broader in proportion than those of Triton (p.239), and a similar armature exists in Lamellaria.

The dentition of $L a$ mellaria is described and figured by Lovèn, and in the elaborate mouograph by

Dr. Rudolph Bergh. (Copenhagen, 1853.) It exhibits two modifica. tions:-

1. Lamellaria perspicua, teeth 1. 1. 1., median with a bifid base, apex recurved, denticulated; laterals large, trapezoidal, hooked and serrulate.
2. L. Groenlandica (Oncidiopsis, Beck.) and L. prodita, Lovèn, teeth 3. 1. 3., exactly as in Velutina (fig. 246)! The dental canal is spiral.

Fam. 8. Cancellariada: teeth 3. 1. 8. or 0.
Cancellaria (teeth 0.) Trichotropis. Ce:ithiopsis ?
Lovèn places Tricho. tropis in the same family with Velutina; Cancellaria is very closely allied, though it wants both teeth and opercalum. Mr. Couthouy deseribes Trichotro-

Fig. 247. Trichotropis borealis. (Warington.) pis cancellata as having a muzzle like Litorina.

Fam. 9. Pyramidellida: teeth 0.
Pyramidella. Aclis. Eulima. Monoptigma. (Lea.)

The Pyramidellida are related to Tornatella, which has numerous similar teeth (p. 180).

PScalaria; uncini numerous, similar.
Planthina; dentition like Testacella (if the two halves were united by their outer margins), p. 148.

SECTION B.-Phytophaga, Lam. (Rostrifera, Lovèn).
Fam. 10. Turritellida: teeth 3. J. 3. (p. 132).
Tarritella. Cæcum. Vermetus. Siliquaria.
Fam. 11. Cerithiada: teeth 3.1. 3. (p. 127).
Corithium. Triforis. Potamides. Planaxis?
Mr. Wilton has examined the dentition of four Cerithiada; the teeth are broad, as in Melaniada, with incurved and dentated summits. In Cerithidium the median teeth are slender with minute hooks.

Fam. 12. Melaniada: teeth 3. 1.3. (p. 130).
Melania. Paludestrina. Tanalia. Melanopsis. Pirena.

Fig. 248. Pirena atra. (Wilton.) ${ }^{-}$

Fam. 13. Paludinida: lingual teeth 3. 1. 3. (p. 138). Paludina. Paludomus? Ampullaria. Valvata.

The lingual ancini of Paludina and Valvata are denticalated; in Ampullaria the first and second uncini are tricsupid.

Fam. 14. Litorinida: teeth 3. 1. 3. (p. 134).

Litorina.	Tectaria.	Modulus,	Risella.
Fossarus.	Narica.	Solarium?	Phoras?
Lacuna.	Litiopa.	Rissoa.	Truncatella.

The teeth of Phorus are like those of Atlanta. (Mörch.)

The lingual canal of the periwinkle passes from the dack of the month under the œesophagus for a short distance, then turns up on the right side and terminates in a coil (like spare rope) resting on the plaited portion of the gullet. It is $2 \ddagger$ inches long, and contains about 600 rows of teeth; the part in use, arming the tongue, comprises about 24 rows.* The

[^65]dental ribbon of Risella is above 2 inches long, and coiled as in Litorina. (Wilton).
r, rostrum or muzzle.
k, buccal mass.
g, nervous ganglia
(reproductive orifice, on the right sided.
s, salivary gland.
\propto, œesophagus.
l, lingual coil.
m, shell-muscle.
b, branchis or gill.
c, heart.
n, aorta.
e, stomach.
f, liver.
h, biliary canal.

- i, intestine.
a, anus.
o, ovary.
d, ovi duct.
u, nidament.
-, ovarian orifice.
x, renal organ.
y, mucus gland.

Fig. 251. Litorina litoralis O : (after Souleyet.) Animal removed from its shell; branchial cavity and back laid open.

Fig. 252. Operculum and teeth of Risella. (Wilton.)
Fam. 15. Calyptraida: teeth 3. 1. 3. (p. 151.)
Calyptrea. Pileopsis. Hippony. Metoptoma

The rostrum is prominent and split, but non-retractile; the median tooth
 hooked and dentate; the first, or first and second lateralsserrated, the third clawshaped and simple.Lovèn places this family next to the Velutinida.
(Section C. Scuribranchiata, Cuv. Rhipidoglossa, Troschel.)
Fam. 16. Turbinida: lingual teeth $00.5,1,5.00$ (pp. 28 and 142). Fam. 17. Haliotida, p. $146 . \quad$ Fam. 18. Fissurellida, p. 149.

Parmophorus differs from Fissurella in having a broad median tooth.
Fam. 19. Neritida: teeth $00.3,1,3.00$ (p. 140).
Nerita. Neritopsis. Neritina. Naviceila. Pileolus.

Fig. 255. Navicella. (Wilton).
Median tooth small; laterals 3,-lst large, trapeziform, 2, 3, minute ; uncini numerous,-lst large, strong and opaque, the rest slender, translucent, with denticulate hooks.
(Cyclobranchiata. Cuv.)
Fam. 20. Patellida: p. 153. Fam. 21. Dentaliada: p. 156.
Fam. 22. Chitonida.
Patella. Nacella. Acmæa. Gadinia.

Fig. 257. Chitonellus. Tasmania. (Wilton.)

The Cape limpets (e.g. P. denticulata) have a minute central tooth, which is wanting in any other species hitherto examined. (Wilton.)

ORDER III. PULMONIFERA.
Section A. In-operculata. Lingual teeth numerous, similar. (p. 160.)

Section B. Operculata. Lingual teeth 3. J. 3. (p. 175.)

Glandina (Algira) has teeth like the Testacelle Fig.256. Patella vulgata. (p. 169, Raymond, Journ. Conch. 1853).
(Original: Wilton.)
The anomalous genera Siphonaria and Amphibola have a dentition like the inoperculate land-snails. (Wilton). Otina (Velutina) otis has teeth similar to Conovilus. (Clark.)

The many points of agreement between the Litorinide and Cyclostomide have beeu already pointed out (pp. 32, 174).

ORDER IV. OPISTHOBRANCHIATA.

Fig. 258. Philine aperta. (Wilton.)

The lingual dentition is extremely varied in the Bullida. In Philine aperta there is no central tooth; and the laterals, which increase rapidly in size backwards, have a finely denticulated membranous inner edge.
In Tornatella and Bulla (physis) the rachis is unarmed, and the lateral teeth are numerous and similar ; in Acera, Cylichna, and Amphisphyra, there is a minute central tooth.

ORDER V. NUDIBRANCHIATA.

Fig. 259. Dendronotus arborescens

The Doridida are distinguished by having a short and wide lingual membrane with numerous similar teeth; the 厌olids have a narow ribbon with a single series of larger teeth. In Dendronotus a large central tooth is flanked by a few small denticulated teeth. (Alder and Hancock, PI. II. fig. 8.)

The only Nudibranche with a solid upper jaw, is Eyirus punctilucens (A. and H. Pl. XVII. fig. 15). In other instances the two halves are arti-
calated and aet as lateral jaws. In Kgirus the mouth is also furnished with membranons fringes (A. and H. PI. XVII. fig. 14). Ancula cristata has a formidable spinous collar (Pl. XVII. fig. 7).

Fig. 260, a. Mouth of Egirus punctilucens.
b. Horny upper mandible detached.
c. Prehensile collar of Ancula.
a, mandible ; x, dental sac ; b, insertion-plate of mandible; c, passage of mouth.
Note on the preparation of the Lingual Teeth as microscopic objects; by J. W. Wilton, Esq. The mollusk when taken from its shell must be pinned down in the dissecting trough, with needle.points passed through the sides of the museular foot (fig. 25 l , and note). Water is then to be poured in till the animal is covered, and should be changed as often as the condition of the object renders it turbid. It is convenient to make these examinations under a simple lens, attached to an upright rod with a rack and screw, so that both hands may be free. A good light is necessary, and with lamplight a bull's-eye condenser is useful. The lower point of the scissors should be passed into the mouth of the animal, and kept close to the apper side, which is to be cut open so as to expose the floor of the moath, or tongue, with its teeth. When the cht edges have been pinned back, the whole length of the dental sack or canal may be carefully worked out with a lancet or other suitable instrument. Experience in this process may be gained by examining the periwinkle and whelk, or any others of which a namber may be easily procured. The lingual ribbon, when detached, should be placed in a watchglass of distilled water, and cleaned by repeated washings with a camel's-hair brush, and then placed in pure alcohol till wanted for mounting. If there is much difficulty in getting the membrane clean, it may be put for a time in liquor potassa, care being taken to wash it in frequent change of water afterwards. Before mounting in balsam the preparation requires to be saturated with spirits of turpentine, which will more readily enter its structure if it be first soaked in chloroform. The slide is prepared by dropping a little Canada balsam on its centre, the quantity varying with the size and thickness of the object. The dental membrane is placed on the balsam with the side from which the teeth project upwards, and guided into the desired position; it is
then covered with thin glass previously warmed over the flame of a spirit lamp.

Mr. Warington and Mr. Fisher Cocken recommend glycerine (which may be obtained at Price's, of Vaushall) as the best medium for microscopic objects; the glass covers are cemented on with hatter's-varnish (shell-lac dissolved in spirits of wine), and painted over afterwards with asphalt dissolved in turpentine, such as the varnish-makers supply.

SUPPLEMENTARY NOTES ON THE GENERA.

Dibaphus, Phi. 1847. Conohelix edentulus, Sw. (Strombida? p. 104.) Subcylindrical, spire acute ; aperture narrow, linear, edentulous, excised at the base; lip thickened, rectilinear, rounded and abbreviated below.

Rhizochilus (antipathum) Stp. 1850. Founded on a sp. of Purpura? which lives on the antipathes ericoides. When adult they attach themselves, singly or in groups, to the branches of the coral, or to each other, by a solid extension of the lips of the shell. The aperture becomes closed, with the exception of the respiratory canal.

Planaxis, p. 114 (Cerithiadæ ?). This genus was placed with the Buccinida on the statement of Mr. Gray, that the animal was like Purpura.

Borsonia (prima) Bellardi, 1838. Is a Pleurotoma with the columella plaited like Mitra. Miocene, Turin. Eocene, Brit.

Pachybathron (cassidiforme) Gaskoin. Sheil small, oblong, striated with lines of growth ; spire small, depressed, with channelled suture ; aperture with callous, deuticulated lips, like Cyprea. Distr. 3 sp .

Calpurnus, Montf. (name) = Ovulum verrucosum. p. 122.
Volva (Fleming) $=$ Ovulum patulum, (Calpurna, Leach.)
Radius (Montf.) Schum. $=$ Ovalum volva.
Deshayesia (Parisiensis), Raulin, 1844, (p. 123). Miocene, France. Some additional species have been found with a similar oblique apertare and corrugated inner lip. Baron Ryckholt has described a species (D. Raulini), from the Devonian, Belgium. The relation of the genus is uncertain.

Naticella (Munsteri, D'Orb.) Münster, 1841. This genus, abounding in the Trias of St. Cassian, has been referred to Natica by D'Orbigny. A characteristic species occurs in the Green-sand of Blackdown, and has been named Natica carinata, J. Sby. (Narica, D'Orb.) It is exactly intermediate between Narica (p .124) and Fossarus (p . 135) and appears to form with them a little group nearly related to Lacuna (p. 136.)

Velutina inhabits the laminarian Zone, and ranges to 40 fms. V.lavigata is sometimes brought in on the fishermen's lines, (off Northumberland), generally adhering to Alcyonium digitatum (Alder). Dr. Gould obtained it from the stomach of fishes.

Monoptigus (melanioides) Lea $=$ M. striata, Gray (name only.) Shell like Chemnitzia, rather fusiform, spirally grooved; columella slightly folded, with a sinus at the base. Distr. 12 sp. Indo-Pacific, (p. 126).

Menestho, Müller, (Turbo albulus, Fabr. Greenland) v. Chemnitzia. :

Aclis (p. 132) ascaris, Turt. (=A. supra-nitida, Wood) has the apex sinistral, like the Pyramidellidae.

Vicarya (Verneuili) D'Arch. 1854. Eocene. Scinde. Shell like Potamides ; aperture with a broad callosity spreading over the body whirl, outer lip with a deep narrow sinus like Clionella.

Holopella, Mc Coy, Turritella obsoleta, Sby. U. Silurian. Brit. Peristome entire, not produced in front.

Scoliostoma (Danuenbergii) Max. Braun, 1838. Syn. Cochlearia, F. Braun, 1841. Shell turreted, sometimes sinistral, whirls keeled or rounded, aperture more or less twisted, trumpet shaped, sometimes with a widely expanded outer peristome. Fossil. Devonian-Trias. Europe.

Amnicola, Gould and Haldemamn, 1841 (p. 131) = Paludina porata, Say, inhabits the fresh waters of New England, gregarious on stones and submerged plants. The species are numerous.

Paludomus, Sw. Shell turbinated, smooth or coronated; outer lip crenulated; olivaceous, with dark brown spiral lines. Distr. 24 sp. Himalaya, Bombay, Ceylon, Seychelles. This genus was founded on Melania conica and two other Indian species, having a concentric operculum, like Paludina. In Reeve's monograph it was made to include, primarily, a group of Cingalese shells for which Mr. Edgar Layard has revived Gray's MS. name Tanalia. The description at p. 131. applies to this latter group.

Petaloconchus (sculpturatus) Lea, 1843. Sub-genus of Vermetus, p. 133. Miocene, U.S., St. Domingo, S. Europe. Shell with two internal ridges, runuing spirally along the columella, becoming obsolete near the apes aud aperture.

Discohelix (calculiformis) Dunker, 1851. Lias, Gottingen. This name was proposed for the depressed Euomphali of the Lower Oolites, of which there are several species in Normandy and England. Shell usually sinistral, flat or concave above, aperture quadrangular.

Platystoma (Suessi) Hörues, 1855. Trias, Hallstadt. Shell discoidal, sinistral? sculptured; peristome suddenly expanded, plain ; aperture with an inner rim, circular, and deflected (upwards,) at right angles to the plane of the shell. Several examples have occurred.

Bifrontia, Desh. p. 135. B. Zanclaa, Phi. has been dredged alive off Madeira, by Mr. Mc Andrew, the operculum is like Torinia (fig. 82) from which the shell differs only in being more depressed.

Phisippia (lutea) Gray, has a multi-spiral operculum, and the animal is like Trochus. (Philippi.)

Paludestrina (lapidum) D'Orb. part. Fresh-waters of S. America.

Shell conic, few-whirled, epidermis green; aperture oblique, peristome abruptly reflected; operculum claw-like. The typical species appear to be Melaniada, but some small shells like Hydrobia have been included in the genus.

Vitrinella (valvatoides). C. B. Adams, 1850. Shell minute, hyaline, turbiniform, umbilicated ; aperture large, orbicular. Distr. 18 sp . W. Indies (5), Panama.

Scissurella (crispata). Animal like Margarita; tentacles long, pectinated, with the eyes at their base; foot with two pointed lappets and two long sleuder pectinated cirri on each side; operculum ovate, very thin, with an obscure sub-spiral nucleus.

No part of the animal was external to the shell. The only living example occurred at Hammerfest, in 40-80 fm. water; when placed in a glass of sea-water it crawled up the side and scraped the glass with its tongue. It was pale and translucent when living, but turned inky black after immersion in alcohol. (Barrett, An. N. H. 17, p. 206.)

Mr. Jeffreys found S. elegans, D'Orb. plentifully alive in sea-weed on the coast of Piedmont. It has a multispiral operculum, like Margarita. In this species, as noticed by Mr. G. Sowerby, the slit in the peristome of the young shell is converted into a foramen in the adult, as in the Jurassic Trochotoma.

Catantostoma (clathratum) Sandberger, 1842. Shell like Pleurotomaria; last whirl deflected, peristome incomplete, slightly varicose, irregular. Fossil. Devoniau, Eifel.

Raphistoma (angulata). Hall, (p. 147). L. Silurian. U. States. Canada. Shell depressed, out lip sinuated. In R. compacta (Salter) the spire is sunk and basiu-shaped, the umbilical side flat, and the last whirl a little disunited.

Holopea (symmetrica). Hall. 1847. (Ianthinidæ?) Outer lip sinuated near the base. L. Silurian, New York.

Brownia (Candei) D'Orb. 1853. (Atlantidæ?) A minute discoidal shell, associated with Helicophlegma in the first instance, but distinguished by the serrated keels on its whirls, and lateral notches to the aperture. Cuba.

Calcarilla (spinosa) Souleyet. 1850. (Atlantidæ?) Shell sub-globose, dextrally spiral, horny, pellucid, with three acutely serrated keels; aperture thickened, entire. Lat. 3 lines South Seas. (=Echinospira, Krohn.)

Recluzia, Petit, 1853. R. Jehennei, Red Sea. R. Rollandiana, Atlantic, and Mazatlan. Animal pelagic, resembling Ianthina; one inch long. Shell paludiniform, thin, with a brown epidermis; whirls ventricose; aper-
ture ovate-oblique, slightly effused at the base, margins dis-united; inner lip oblique, rather sinuated in the middle; outer lip acute, entire.

Patella, p.154. The common limpet makes oval pits in timber as well as in chalk. Small individuals sometimes roost, habitually, on larger specimens, and make an oval furrow on the shell. The surface on which limpets roost, and some space around it, is often covered with radiating strix not parallel like those produced by their teeth on nullipore. Mr. Gaskoin has a limpet-shell incrusted with nullipore, which other limpets have rasped all over. In M. D'Orbigny's collection of Cuban shells there is a group of oysters (O. cornucopia), with a colony of the Hipponyx mitrula sheltered in their interstices; these limpets have not only fed on the nullipore with which the oysters are incrusted, but have extensively eroded the epidermal layer of shell beneath.*

As to the Calyptraida generally, although furnished with lingual teeth (fig. 248) like those of the animal-feeding Velutina, and themselves manifesting carnivorous propensities (p. 151), it is difficult to understand how they can travel in quest of food.

The shape of some species of limpet is believed to vary with the nature of the surface on which they habitually live. Thus the British Nacella pellucida is found on the fronds of the tangle, and assumes the form called N. lavis, when it lives on their stalks. (Forbes.) The Acmaa testudinalis becomes laterally compressed and is called A. alvea when it grows on the blades of the Zostera (Gould); and Patella miniata of the Cape becomes a new "genus" (Cymba, Adams, not Broderip) when it roosts on the round stems of sea-weed, and takes the form called P. compressa. (Gray.)

Tanystoma (tubiferum) Benson, 1856. Helicida. Shell like Anastoma, minute, umbilicated; aperture disengaged, trumpet-like, toothed. Banks of the Irawadi, above Prome.

Preifferia (micans) Gray. Helicida. A Nanina without the mucuspore at the tail. Philippines.

Spiraxis, C. B. Adams, 1850. Type, Achatina anomala, Pfr. Shell ovate-oblong, fusiform, or cylindrical; last whirl attenuated; aperture narrow, right margin usually inflected, columella more or less contorted, base scarcely truncated, furnished with a deeply-entering callous lamina. Distr. 30 sp . W. Indies, Mexico, Juan Fernandez.

Janella, Gray, 1850 (not Grat. 1826). Syn. Athoracophorus (!) Gould. Type. Limax bitentaculatus, Quoy. Elongate, limaciform, covered by a mantle with free margins; back grooved; tentacles 2 , retractile, rising within the edge of the mantle; respiratory orifice to the right of the dorsal groove,

[^66]reproductive orifice below it and beneath the mantle. Distr. New Zealand, on leaves.

Testacella, p. 168. During winter and dry weather the Testacella forms a sort of cocoon in the ground by the exadation of its mucus. If this cell is broken, the animal may be seen completely shrouded in its thin opaque white mantle, which rapidly contracts until it exteuds but a little way beyond the margin of the shell. Fig. 262 represents T. Maugei (lately found by Mr. Cunnington, in fields uear Devizes),

Fig. 262. Testacella. just disturbed from its sleep; s, the shell; m, the contracted mantle.

Limneide. Mr. R. Warington has observed that the fresh-water snails (and also Neritina) can lower themselves from aquatic plants by a mucous thread, and reascend by the same; a Physa could be lifted out of the water by its thread.

Planorbula, Haldemann, 1841. Planorbis armigerus, Say; aperture with 5 teeth, nearly closing the passage.

Gundlachia (ancyliformis) Pfeiffer, 1850. Fresh-waters, Cuba. Shell thin, obliquely conic; apex inclined posteriorly; base closed for two-thirds by a flat, horizontal plate; apertare semicircular.

Adamsiella (mirabilis) Pfeiffer, $185 \mathrm{l}=$ Choanopoma, Pfr. (part) 1847. "Operculum thin, rather cartilaginous." Distr. 12 sp . Jamaica, Demarara. Named after the late Prof. C. B. Adams, of Amherst, Mass.

Opisthoporus, Benson, 1855. O. biciliatus, Mouss. Shell like Pterocyclus ; operculum double, margin grooved, interior concamerated. Distr. 4 sp . Singapore, Borneo, Java.

Aplysia (like Loligo, p. 69) has several shells when old.
Umbrella, p. 187, has a minute sinistral nucleus, like Tylodina.
Stylochilus, Gould. Exped. shells. Aplysia longicauda Q. and G. Animal limaciform, cirrigerous, dilated at the sides, attenuated behind; neck distinct; tentacles 4, long, linear, papillose, far apart ; lips dilated laterally into tentacular processes. Distr. 3 sp. New Guinea, on Fuci.

Chiorera (leonina) Gould. Puget Sound. Appears to be a nudibranche resembling Glaucus, with oral cirri.

Rhodope (Veranii) Kölliker, 1847. Animal minate, similar to Limapontia? worm-shaped, rather convex above, flat beneath; without mantle, gills, or tentacles. Upon algæ, Messina.

BRACHIOPODA.

In the summer of 1855 , Messrs. M‘Andrew and Barrett obtained, on the coast of Norway, living examples of Rhynchonella psittacea, Waldheimia cranium, Terebratulina caput-serpentis, and Crania anomala. The two last projected their cirri beyond the margins of the opened valves, and moved
them, as the Bryozoa move their oral tentacles; but in no instance were the arms exteuded. When the Crania opened, the upper valve turned upon its hinge-line. (Barrett, An. Nat. Hist.)

The anatomy of Terebratula and Rhynchonella has been farther investigated by Dr. Gratiolet, Mr. Huxley, and Mr. A. Hancock.

The pallial arteries (mentioned p. 212, and figured p. 227, fig. 141) are regarded as "narrow bands from which the ovaria or testes are developed."

The nature of the organs previously described as hearts is rendered doubtful, as they appear to open externally, forming the "ovarian orifices" of Hancock; the plaited organs (h, h, fig. 165), described as auricles, are compared with nidamental glands.

Rhynchonella has two additional "hearts" above the others, one on each side of the liver. The peculiarity of the ovarian spaces in Rhynchonella and Orthis (described at p. 212, and represented in figs. 139, 140, 145, 147, letter o) is explained by the structure of the ovarian sinuses in the recent Rhynchonella; "the floor of this great sinus is marked out into meshes by the reticulated genital band, and from the centre of each mesh a flat band passes, uniting the two walls of the sinus, and breaking it up into irregular partial channels." The insertion of these bands produces the punctures in the shells represented in the figures above referred to. The membranes which support the alimentary canal are described, and explain the origin and nature of the septa in Stringocephalus and Pentamerus. The mode of termination of the alimentary canal is not yet satisfactorily made out.

Prof. Oscar Schmidt has observed the existence of flattened and radiated calcarious particles in the mantle, arms, and cirri of Terebratulina caput. serpentis; their occurrence appears to be very general in the Brachiopoda, and accounts for the frequent preservation of internal structures in fossil specimens.

Dr. Gratiolet has pointed out that the true function of the cardinal muscles of Terebratula was known to Prof. Quenstedt, and published by him in 1835. (Wiegm. Archiv. II. 220.)

Suessia (imbricata) Eugène Deslongchamps, 1855. (Dedicated to M. Suess.) Shell like Spirifera; texture fibrous; hinge area wide as the shell ; foramen deltoid; large valve with two cardinal septa, and a prominent central septum, supporting a little plate; small valve with a tri-lobed cardinal process, and a broad 4 -partite hinge plate, with processes from the outer angles of the dental sockets; crura of the spires united by a transverse band supporting a small process. Fossil. 2 sp . U. Lias, Normandy.

Davidsonia, p. 232. The upper valve sometimes exhibits markings derived from the surface on which the shell has grown.

Zellania (Davidsoni) Moore, 1855. (Etym. Zella, a lady's name?) Shell minute, orthi-form; texture fibrous; hinge area short, foramen angu-
lar, encroaching on both valves; interior of dorsal valve as in Thecidium, with a single central septum and broad margin. Fossil. Lias-G. Oolite, 3 sp. Brit.

Anoplotheca, (lamellosa) Fr. Sandberger, 1856. Dev. Rhine. = Atrypa.

Meganteris, Suess, 1856. Terebratula Archiaci, Vern. Devonian, Asturias. Shell with a long, reflected, internal loop.

CONCHIFERA.

Development.-The observations of Dr. Lovèn on the development of Cardium pygmaum and Crenella marmorata (referrred to at p. 51, note) have been confirmed by M. M. Keber and Webb, who observed similar phenomena in the ova of the river-mussel (Anodon). The body described by Lovèn as the nucleus of the germinal vesicle is regarded by these later observers as a tubular orifice, analogous to the micropyle in the vegetable ovum, by which the spermatozoa penetrate the yolk.

In Anodon the embryouic mass divides, partially, into two halves, each having its own mouth and intestine; and its own distinct though simple heart; and it is by the approximation and ultimate fusion of the two ventricles that the common rectum of the originally distinct intestines is intercepted. (Quatrefages -Lovèn.)

Ostreidet, p. 253. The union of the Ostreida and Pectinida, as proposed by the authors of the "History of British Mollusca," has not proved satisfactory. The genus Ostrea stands quite alone, and distinct from all the Pectinida in the structure of its gills, which are like those of Avicula, and by resting on its left valve. The shell also is more nacreons than that of the scallops.

Dimya (Deshayesana) Rouault, 1859. Mém. Soc. Géol. b. III. 471.t. 15. fig. 3. L. Eocene, Paris. The figure is most like an oyster, and the "second adductor impression," on account of which it is named Dimya, is rather like the small anterior scar in Pecten (fig. 173, p. 249).

Placuna* is essentially like Anomia, having the generative system attached to the right mantle-lobe, and the ventricle exposed. The mantle-margin is cirrated, and furnished with a curtain, as in Pecten; the foot is tubular and extensile, but has no distinct muscles except the small one, whose existence in P. placenta (Pl. XVI. fig. 6) we had predicated from examination of the shell (p. 256). \dagger The small muscular impressions before and in the rear of the adductor are produced by suspensors of the gills.

Anomia. The description given at p. 255 requires correction; the lips

[^67]are extremely elongated and plain, the striated portion (or palpi) almost obsolete, whereas in Placuna the plicated surface is sufficiently extensive. The onter gill-laminæ, in both genera, are furnished with a broad reffected margin.

Plicatula, p. 259. The animal is like Spondylus in every essential respect, and only resembles Ostrea in the foot being nearly obsolete.

Streblo-pteria (lævigata) Mc Coy, 1856. Carb. Brit. (Aviculida).
Mytilida. Modiola pelagica (Myrina, Adams), p. 266, has the mantle open; the shell is peculiar from the large size of the anterior muscular impression ; and the subcentral umbones distinguish it from Modiolarca.

Hoplomytilus (crassus) Sdbgr. Devonian, Nassau. Shell with a massular plate in the umbo, like Septifer (p. 265). The Mytilus squamosus, Sby. Magnesian limestone, Brit. has a similar plate.

Arcada. Scaphula (celox) Benson, the fresh-water Ark, p. 268. A second species has been found in the R. Tenasserim, Birmah. The hinge is edentulous in the centre, and the posterior teeth are laminar and branched; the elements of the posterior muscular impression are distinct.

Limopsis, p. 268. Syn. Pectunculina, D'Orb. Mr. M‘Andrew has dredged L. pygmaa, living, on the coast of Finmark; it is a fossil of the Pliocene of England, Belgium and Sicily.

Fig. 263. Foldia limatula (after Barrett).

Nuculida, p. 270. The Yoldia limatu$l a$ has been dredged, alive, by Mr. M'Andrew, on the coast of Finmark. It is also found in Portland Harbour, Mass. The animal is very active, and leaps to an astonishing height, exceeding in this faculty the scollop-shells. (Dr. Mighels.)

Unionida, p. 276. Mülleria; Fig. 246 represents the left, or attached valve, showing the single muscular impression, aud projecting spur with the nucleus, consisting of both valves of the fry, united, and filled up with shell.*

Hippuritida, p. 279. The structure of these shells has been more fully described in the Quarterly Journal of the Geol. Soc. London. In all the genera the shell consists of three layers, but the outermost, which is thin and compact, is often destroyed by the weathering of the specimens. The principal layer in the lower valve of the Hippurite is not really very difierent from the upper valve in structure ; the laminæ are corragated, leaving irregular pores, or tubes, parallel with the long axis of the shell, and often visible on the rim. The umbo of the upper-valve of the Radiolite is marginal in the young shell. (Geol. Journ. vol. xi. p. 40.)

[^68]

Fig. 246. Mulleria lobata, Fér. (Original.)
Tridacnida, p. 289. Animal of Tridacna, as seen on removing the left valve and part of the mantle within the pallial line.

Fig. 265. Tridacna crocea, Lam. (Originnl).
a, the single adductor muscle; p, pedal muscle, and pedal opening in mantle; f, the small grooved foot ; b, byssus; t, labial tentacles; g, gills; l, the broad pallial muscle; between g and l is the renal organ; m, the double mantle-margin; s, the siphonal border; i, inhalent orifice. e, valvular excurrent orifice. An. Nat. Hist. 1855, p. 190.

Lucinida, p. 294 . Fig. 266, represents the animal of a species of Diplodonta, from the Philippines, as seen on

Fig. 266. Diplodonta. removing the left valve, and part of the mantle within the pallial line; $b-c$, the large pedal opening; the arrows indicate the small plain incur. rent orifice, and the valvular excurrent orifice; f, the foot, contracted in spirit; p, p, the large striated palpi; l, the liver; the outer gill has a simplemargin, the inner is grooved and conducts to the mouth. This genus has higher claims than Kellia to be regarded as the type of a family.

Scintilla (Cumingi) Desh. 1856. Small shells resembling Lepton, p. 296; minutely punctate; ligament internal, oblique; hinge-teeth 1. 2; posterior laterals 1. 2. Distr. 37 sp. (?) Philippines, N. Australia, Panama.

Family 12a. Astartida.

Astarte. Opis. Crassatella. Circe? 'Cardita.
Astarte (borealis) ; mantle-margins free, plain, slightly cirrated in the branchial region, united posteriorly by the branchial septum, forming a single, excurrent orifice; pedal muscles ($p . p$), distinct from adductors; gills flat, finely striated, destitute of internal partitions; outer gill narrow, elliptical, with a simple margin; inner gill grooved, conducting to the mouth.

Fig. 267. Astarte borealis, var. semi-sulcata, Leach. $\frac{8}{2}$ Wellington Channel.
Gouldin (Pacifica) C. B. Adams. Shell minute, triangular, furrowed; hinge like Astarte, with lateral teeth; pallial line simple. Dist. 4 sp. Panama, W. Indies.

Fig. 268. Crassatella pulchra. Sandy Cape, J. B. Jukes.
Animal as seen on the removal of the right valve, and portion of the mantle.
Crassatella (pulchra) animal like Astarte; foot linguiform, slightly grooved; palpi short and broad, few-plaited; outer gill narrower in front.

Cypricardia rostrata, Lam. Philippines (p. 300). Animal with mantlelobes united, and covered with wrinkled epidermis; siphonal orifices fringed; gills deeply plicated, anterior part of the outer gill united to the inner; dorsal border narrow, plaited; adductor muscles of two elements.

Fig. 269. Cypricardia.

Goniophora, Phillips, 1S48. Cypricardia cymbæformis, Sby. U. Silurian, Brit. (Mytilida ?)

Redonia, Rouault, Bull Soc. Geol. 8, 362. (= Plearophoras? p. 301.) Shell oval, tumid; hinge with cardinal and posterior teeth; anterior adductor bounded by a ridge. Fossil, L. Silurian, Brittany, Portugal. (Sharpe.)

Carbonicola, Mc Coy, $1856=$ Authracosia, p. 303.
Omalia, Ryck. $1856=$ Pullastra bistriata, Portl. Carb. Belgium.
Verticordia, p. 304. Syn. Trigonulina (ornata) D'Orb. Jamaica. Hingeteeth 2. 2; right valve with a long. posterior tooth. Epidermis of large nucleated cells, as in Trigoniada, to which family it undoubtedly belongs. (Pl. XVII. f. 26.)

Lucinopsis, p. 306. The type of this genus having been erroneously placed in Cyclina by M. Deshayes, he has proposed a new genus (Lajonkairia) for the second species, L. decussata, Phi. a fossil of the English Pliocene, but still living in the Medit.

Glaucomya, p. 307. See An. Nat. Hist. 1855, p. 23.
Sowerbya, p. 308. (Syn. Isodonta, Buv. p. 314). The cavity described as a "cartilage-pit" receives a tooth of the opposite valve.

Tellinida, p. 311. Psammobia.

Fig. 270. Psammobia pallida, Desh. Red Sea. Left valve, part of the mantle, and retractor of the siphons removed. Siphons much contracted; a, a, adductors; p, p, pedal muscles.

Solenida, Glycimeris, p. 320. An. Nat. Hist. 1855, p. 99.

Fig. 271. Glycimeris siliqua, Caemn. Newfoundland. a, a, adductor muscle; p, pedal muscle ; s, siphonal muscle; f, foot ; t, labial tentacles; g, gills, much contracted and crumpled.

Ribeiria (pholadiformis) Sharpe, 1853. Ged. Journ. Shell gaping at both ends; sub-ovate, rounded in front, elongated and rather attenuated behind; punctate-striate; casts of interior with a large umbonal impression (caused by a cartilage-plate, as in Lyonsia?) and a notch in front of it. Fossil. L. Silurian, Portugal. (Anatinida, p. 320.)

Scaldia, Ryckholt, 1856. Carb. Tournay. Shell like Edmondia (p. 323,) with a single cardinal tooth in each valve.

Fig. 272. Panopaa glycimeris. $\frac{2}{7}$ The size of the original. a, a^{\prime}, adductor muscles; p, posterior pedal muscle; r, renal organ.

Isoleda, Ryck. 1856 = Leda solenoides and Cacullella sp. p. 269.
Anomianella, (proteus) Ryck. Carb. Tournay = Crania?
Crenella (decussata) T. Br. 1827. p. $266=$ Nuculocardia (divaricata) D'Orb. Cuba. = Myoparo, Lea (p. 269.) Brachydontes, Sw. p. 265, is more elongated; Lanistes (discors) Sw. nearly wants the crenulations.

abBREVIATIONS OF AUTHOR'S NAMES.

C. B. Ad. C. B. Adams, p. 375.
H. A. Ad. H. and A. Adams.

Adans. Adanson, $\mathbf{p} 366$.
Ag. Agassiz, p. 251.
Ant. Anton, 1839.
A. \& H. Alder and Hancock.

Bar. Barrande, 1852.
Bl. De Blainville, 1825.
Broc. Brocchi, 1814.
Brod. Broderip, W.J.
Bron. Brongniart, 1835.
Br. Bronn, 1831-
T. Br. T. Brown, 1827.

Buv. Buvignier, 1852.
Charp. Charpentier, 1837.
Chemn. Chemnitz, 1780-95.
Chen. Chenu, 1848-
Con. Conrad, 1852-
Cuv. Cuvier, 1799-1817.
D'Arch. D'Archiac.
Defr. Defrance, 1816-29.
Dh. Deshayes, 1825-
D'Orb. D'Orbigny, 1835-
Don. Donovan, 1824-7.
Drap. Draparnaud, 1805.
Eich. Eichwald, 1828-30.
F. Edw. F. Edwards, 1850-
E. \& S. Eydoux and Sonleyet.

Fabr. O. Fabricius, 1780.
Fér. Férussac, 1819.
Flem. Fleming, 1828.
F. \& H. Forbes and Hanley.

Gm. Gmelin, 1788.
Gld. Gould, 1841-
Gldf. Goldfuss, 1826-44.
Hart. Hartmann, 1840.
His. Hisinger, 1837.
Johnst. Johnston, G.
Kien. Kiener, 1834-
K. \& D. Koch and Dunker.

Kon. Koninck, 1837-
Kiist. Kiister, 1837-
Lam. Lamarck, 1799-1818.
L. Linnæus, 1787 .

Les. Lesson, 1829.
Mant. Mantell, 1822-54.
Mart. Martin, 1793.
Marti. Martini, 1769-74.
Mtyn. Martyn, 1784.
Mc C. Mc Coy, 1845-
Mke. Menke, 1828.
Mid. Middendorff, p. 354.
Möl. Möller, p. 355.
Mont. Montagu, 1803-8.
Montf. Montfort, 1799-1820.
M. \& L. Morris and Lycett.

Mhl. Muhlfeldt, 1811.
Müll. Müller, O.F., 1773-6.
Münst. Münster, 1826-43.
Nils. Nilsson, 1822-7.
Quenst. Quenstedt, 1852.
Q. \& G. Quoy and Gaimard.

Park. Parkinson, 1804-11.
Pen. Pennant, 1776-7.
Pf. Pfeiffer, 1848—
Phi. Philippi, 1836-
Ph. Phillips, 1829-
Portl. Portlock, 184:-
P. \& M. Potiez and Michaud.

Ris. Risso, 1826.
Rois. Roissy, 1805.
Röm. Rümer, F. A., 1836-
Sdgr. Sandberger, G. and F.
Sav. Savigny, 1816.
Schl. Schlotheim, 1813-23.
Sch. Schumacher, 1816.
Sol. Solander, 1765.
Sby. Sowerby, 1812-30.
J. Sby. J. Sowerby, 1830-
G. Sby. Geo. Sowerby.
G. B. S. G. B. Sowerby, 1843.

Stp. Steenstrup.
Sw. Swainson, 1820-40.
Turt. Turton, 1822.
Vern. Verneuil. 1845.
Wahl. Wablenberg, 1821.

INDEX OF GENERA AND TECHNICAI TERMS.

The names of Genera commence with a capital letter, those in italics are Synonymes.
abbreviations, 61 . Alderia, 196.
Abralia, 72.
Acanthina, $113 . \quad$ Alicula, 182.
Acanthochites, 157. Alina, 237.
Acanthopleura, 157. Allorisma, 322, 323.
Acanthoteuthis, 75. alternate gen. 49.
Acanthothyris, 226.
Acardo, 187, 291.
Acavus, 162. acephala, 7.
Acera, 183, 184. acetabula, 63. Achatina, 160, 165. Achatinella, 165.
Acicula, 178. Aclesia, 186.
Aclis, 132, 462. Aстæョ, 155, 178, 464.
Acme, 178.
acœeli, 74,
Acostra, 276.
Acroculia, 153.
Acroloxus, 172.
Acrotreta, 238.
Actaon, 180, 197. Acteonella, 180. Acteonia, 197. Acteonina, 180. Actinocamax, 74. Actinoceras, 88. Actinoconchus, 224. Actinodonta, 273. Acus, 111.
Adacna, 291. Adamsiella, 401, 465. adaptive, 56 . adductor, $26,210,248$. Ancistrochirus, 72. adelopneumona, 159. Ancistroteuthis, 72. Adeorbis, 145. Admete, 108. Agirus, 191, 460. Enigma, 255.
Aolis, 17, 23, 194.
mstivation, 49.
压theria, 275. affinity, 55. Aganides, 484. Agaronia, 117. Agina, 317. Alasinedon, 274. Alcadia, 178.

Alvania, 132.
Alycaus, 176.
Amalthea, 153.
Amathina, 153.
Amaura, 126, 356.
Ambonychia, 261.
Amicula, 157.
Ammonites, 17, 93.
Amnicola, 131, 462.
Amorøcium, 343.
Ampibicularia, 346.
Amphibola, 139, 160. Aptychus, 81.
Arca, 267.
Amphichæna, 314.
Amphidesma, 312.
Amphidonta, 254.
Amphipeplea, 171.
Amphiperas, 12.
Amphisphyra, 183.
Amphorina, 194.
Ampullacea, 139.
Ampullaria, 18, 138, 456.

Ampullina, 123, 177.
Amusium, 256.
analogy, 47, 56.
Anapa, 313.
Anatina, 321. Anatomus, 147. Anchinaa, 346. Ancillaria, 117. Ancula, 192, 460. Anculotus. 131.
Ancyloceras, 95.
Ancylus, 171.
Anodon, 245, 275. Anodontopsis, 273.
Anolax, 111 .
Anomalocardia 304
Anomia, 25, 2;5, 467. Atys, 182.
Anomianella,473. Aucella, 261.
Anoplomya, $322 . \quad$ auditory, 21.
Anoplotheca, 467. Aulonotreta, 240.
Anops, $199 . \quad$ Sulopoma, 177.
Architectonice, 135.
Arcinella, 276, 308, Batillaria, 12.

Arcomya, 322.
Arcopagia, 310.

Arion, $168 . \quad$ Belopeltis, 70.
Artemis, 306. Belosepia, 76.

Asolene, 139.
Astarte, 299, 470.
Astartila, 302.
Assininea, 137.
Athoracophorus, 464.
Athyris, 223.
Atlanta, 200.
Atrium, 335.
Atrypa, 228.
Aturia, 86.

Aulosteges, 284.
Aulus, 311.
Auricella, 174.
auricle, 30.
Auricula, 173.
Suriscalpium, 321.
Avellana, 180.
Avicula, 260.
Aviculopecten, 262.
Axinus, 272.
Azara, 318.
Azeca, 164.

Ircinella, 276, 303, Batillaria, 129. $320 . \quad$ Batillus, 142.

Bela, 118.
Belemnitella, 74.
Arctica, $298 . \quad$ Belemnites, 73, 449
arctic shells, 40, 353. Belemnosepia, 70.
areas, $349 . \quad$ Belemnosis, 77.
Argiope, $220 . \quad$ Belemnotenthis, 75.
Argonauta, 13, 66, 447. Bellerophon, 201.
Argus, 22, 256. Bellerophina, 201.
Ariophanta, 163. Beloptera, 76.
Ascidium, 9, 15, 337. Beloteathis, 70.
Ascoceras, 91, 450. Berthella, 187.
asiphonida, $253 . \quad$ Bezoardica, 114.
Aspergillum, 43. Biapholius, 320.

Bifrontia, 135, 462.
Bipapillaria, 338.
Biphora, 344.
Bi-radiolites, 278, 286.

Birostrites, 286.
Bithynia, 41, 138.
Bittium, 127.
bivalves, $8,12,36$.
body-whirl, 100.
Boltenia, 338, 378.
Bonellia, 126.
bonnet-limpet, 152.
Bontia, 321.
borers, 11, 25, 39, 241 .

Bornella, 193.
Bornia, 294.
Borsonia, 461.
Bostrychoteuthis,449.
Botrylloides, 341.
Botryllus, 341.
Bouchardia, 218.
Bourciera, 176.
brachiopoda, 7, 209, Caprina, 288. 465.

Brachypus, 166.
branchial, 30, 243.
branchifera, 98.
Brocchia, 152.
Brochus, 133.
Broderipia, 146.
Brownia, 463.
bryozoa, 334.
Bucania, 201.
Bucardium, 300.
buccal membrane, 6.
Buccinanops, 111 C
Buccinum, 28,110. Cardinalia, 143.
Buchanania, 170. Cardio-cardita, 303.
Bulimulus, 164.
Bulimus, 19, 54, 164. Cardiomorpha, 323.
Bulin, 171.
Buila, 29, 182.
Bullata, 184.
Bullia, 111.
Bullina, 183, 366.
Bullinula, 183
burrowers, 11, 25, 241. carrier-trochus, 15.
Bursatella, 186. cartilage, 247.
Busiris, l86. Carychium, 174.
byssal muscles, 249. Cassidaria, 115.
Bysso-anod mta, 275. Cassidula, 109, 173.
Bysso-arca, 267. Cassis, 46, 114, 452.
Byssomya, 320.
byssus, 25 .
Casira, 338.
Calamary, 23, 69.
Calcar, 143.
Calcarella, 463.
Callicochlias, 394.
Calliopæa, 195.
Callochiton, 157. Callopoma, 142. Calpurna, 122, 461. Calypeopsis, 152. Calyptræa, 151, Camaroceras, 88.
Camarophoria, 227.

Cardinal teeth, 248.
Camptoceras, 171. "Ceratodes, 139.
C'ampulites, 91. Campulote, 114.
Campyloceras, 91. Cancellaria, 108. Canthiridus, 144. Capisterium, 313. Caprella, 164. Caprinella, 287.
Caprinula, 287.
Caprotina, 289.
Capsa,311,314.
Capsula, 311.
capsular, 210.
Capulus, 152.
Carbonicola, 471.
Cardiapoda, 200.
Cardilia, 301.
cardinal-muscles, 210.

Cardiola, 261.
Cardita, 303.
Cardium, 290.
Carinaria, 200, 451.
Carinaroides, 200.
Carocolle, 163.
Carolia, 256.

Castaila, 275.
Catantostoma, 463.
Cataulus, 177.
Catillus, 263.
Cavolina, 194, 204.
cellar-snail, 12. cellulose, $3: 36$.
Cemoria, 150 .
Cenia, 197.
centres, 350 .
C'epa, 255.
Cepatia, 123. cephalopoda, 6, 62. cephalo-thorax, 198.
Ceratisolen, 315.
Ceratites, 93.
Ceratosoma, 192.
Cercomya, 321.
Ceriphasia, 131.
Cerithidium, 128.'
Cerithiopsis, 128.
Cerithium, 127.
Cernina, 123.
Ceromya, 323.
Cerophora, 199.
Chæna, 326.
Chalidis, 197.
Chama, 276.
Chamostrea, 325.
Cheletropis, 207.
Chelidonura, 184.
Cheiroteuthis, 71.
Chelyosoma, 338.
Chemnitzia, 126.
Chenopus, 130.
Chilinia, 171.
Chilonopsis, 390.
Chione, 304, 313.
Chioræra, 465.
Chironia, 295.

Choristites, 223.
Choristodl $n, 307$.
Chorus, 113.
Chrysoriomus, 109.'
chyle, 30.
cilia, 32, 51, 211.
Cingula, 136.
Cinulia, 180.
Ciona, 337.
Cionella, 165.
Circe, 299.
circulation, 30, 198.
cirrì, $2 l l$.
cirripeda, 5, 36.
Cirroteuthis, 68.
Cirrus, 148.
Cistula, 176.
Cistopus,67.
Cithnra, 115.
clam, 18.
Clanculus, 144.
classification, 55.

Chiton, 31, 155. Cochlohydra, 164:
Chitonellus, 157, 458. Cockle, 12.
Chlorostoma, 143. C'odakia, 293.
Choanopoma, 176. Coleoprion, 206.
Chondropoma, 176. Collonia, 145.
Chonirosepia, $449 . \quad$ colours. 46.
Chonetes, $235 . \quad$ Columbella, 116.

Clausilia, 166.
Clausina, 293.
Clavagella, 326.
Clavatula, 118.
Clavella, 109.
Clavellina, 339.
Cleidophorus, 301.
Cleidothærus, 325.
C'leiothyris, 228.
Clementia, 306.
Cleobis, 302.
Cleodora, 205.
Clio, 208.
Cliodita, 208.
cliona, 42, 254.
Clione, 208.
Clionella, 118.
cloaca, 244.
Cloelia, 195.
Clymenia, 87.
Coccoteuthis, 486.
Cochlidium, 109.
Cochlitoma, 165.
Cochlodesma, 321.
Cochlodina, 166.

Columbellina, 116.
Columella, 27, 100.
Columna, 165.
Colus, 109.
Cominella, 111.
conchifera, 8, 240.
conchioline, 451.
Concholepas, 26, 113.
Conchorhynchus, 81.
Congeria, 266.
Conoceras, 449.
Conohelix, 461.
Conorbis, 117.
Conoteuthis, 76, 449.
Conovulus, 173.
Conularia, 206.
Conus, 42, 117.
Coralliophaga, 301.
Corbicula, 297.
Corbis, 293.
Corbula, 317.
Corbulomya, 318.

Corephium, 157.
Coret, 172.
Corimya, 321 .
Coriocella, 124.
cornea, 22.
Corniculina, 133.
cowry, 44.
Cranchia, 70.
Crania, 236.
Craspedopoma, 177. Cynthia, 338.
Crassatella, 299,471. Cypræa, 121.
Crassina, 299. Cypracassis, 114.
Crenatula, 263.
Crenella, 52, 2066, 473. Cypricardites, 266,
Crepidula, 152, 458.
Creseis, 205.
Crioceras, 95.
Criopus, 236.
Crucibulum, 152.
crura, 216.
Crypta, 152.
Cryptella, 168.
Cryptina, 272.
Cryptoceras, 86.
Cryptochiton, 157
Cryptochiton, 157. Cyrtulus, 109.
Cryptoconchus, 157. Cystingia, 339.
Cryptodon, 293. Cytherea, 26, 305.
Cryptopthalmus, 182.
Cryptostoma, 124. Dactylus, 180.
crystalline stylet, 29. Daqysa, 344.
Ctenoconcha, 270. Daphnella, 118.
Ctenodonta, 269.
Cucullæa, 268.
Cucullella, 269.
Cultellus, 315.
Cuma, 108.
Cumingia, 312.
Cuners, 305, 313.
Cuspidaria, 318.
cuttles, 6, 11, 62.
Cuvieria, 205.
Cyamium, 294.
Cyathodonta, 321.
Cycladina, 294.
Cyclus, 20.
Cyclina, 306.
Cycloceras, 88.
Cyclonassa, 112.
Cyclophorus, 175.
Cyclostome, 144, 175.
Cyclostrema, 145.
Cyclothyris, 226.
Cyclotus, 177.
Cylichna, 183.
Deslongchampsiat86 Eglisia, 132.

Cynodonta, 108.
Cylindra, 120.
Cylindrella, 165.
Cylindrites, 180.
Cyllene, 112.
Cymba, 37.
Cymbiola, 119.
Cymbulia, 206.
Cymodoce, 209.

Cypricardia, 300, 471.
Cypricardites, 266, 301.

Cyprina, 14, 298.
Cyprovula, 121.
Cyrena, 297.
Cyrenella, 298.
Cyrenoides, 298.
Cyrtia, 223.
Cyrtoceras, 91.
Cyrtodaria, 320.
Cyrtolites, 201.

Daudebardia, 163.
Davidsonia, 232, 466. dесаросіа, 68.
decollated, 44.
Defrancia, 118.
Delphinoidea, 137.
Donacilla, 313.
Deltinula, Donacina,314.
Delthyridaea, 217.
Dellhyris, 223.
deltidium, 216.
Dendrodoa, 338.
Dendronotus, 193, 4:9.
Dendostrea, 254. Dreissena, 25, 266.
dental formula, 248. Drillia, 118.
Dentajium, 156.
Dispotcea, 152.
Distomus, 342.
dithyra, 241.
Ditremaria, 148.
Dolabella, 186.
Dolabra, 273.
Doliolum, 346.
Dolium, 115, 453.
Dombeya, 171.

Donax, 313.
Doridium, 184.
Doris, 17, 19, 190.
Dorsanum, 111.
Dosinia, 306.
Doto, 193.

Deridobranchus, 146. Ecculiomphalus 201. Exogyre, 255
dermi-branch. 197. Echinospira, 463.
desert-snail, 19. Edmondia, 323.
Deshayesia, 123, 461. Eyeria, 313, 314.
Desmoulinsia, 112. Eidothea, 184.
development, 51, 161. Elasmatina, 166.

Eledone, 35, 68.
Elenchus, 16, 144.
Elysia, 197.
Emarginula, 150.
Embla, 319.
Embletonia, 105.
encephala, 6.
endemic, $\mathbf{3 5 0}$.
Endoceras, 89, 90.
Endosiphonites, 87.
endostyle, 334 .
Enoplochiton, 157.
Enoploteuthis, 72.
Ensatella, 315.
Ensis, 315.
Enteletes, 230.
Entodesma, 324.
Enzina, 107.
Eolis v. Eolis.
epidermis, 40.
Dipilidia, 277.

Diplommatina, 177. epipodium, 182, 203.
Dipsas, $274 . \quad$ Epithyris, 215.
Discina, 237. Erato, 122.
Discites, 86, 256, 450. Erodona, 317.
Discohelix, 462. Ervilia, 313.
Discosorus, 449. Erycina,294,304,312, 313.

Eryx, 313.
Eschadites, 331.
escutcheon, 247.
Etheria, v. \boldsymbol{E}.
Eubranchus, 194.
Eucharis, 319.
Euccelium, 341.
Eudesia, 216.
Eulima, 126.
Eulimella, 126.
Eumenis, 194.
Euomphalus, 44, 145.
Euphemus, 201.
Euplocamus, 192.
Eurybia, 206.
Eurydesma, 262.
Eurydice, 196.
Euthria, 107.
Eutropia, 143.
falciform, 250.
families, 57.
Farcimen, 177.
Fasciolaria, 107, 454.
Fastigiella, 129.

Fаммек, 158.
Frelania, 294.
Fenestrella, 255.
Perussina, 176.
fibrous shells, 99.
Ficula, 109.
Fimbria, 193, 298.
Fiona, 195.
Firola, 199.
Firoloides, 199.
Fissirostra, 217.
Fissurella, 149, 458.
Fissurellidsea, 150.
Fistulana, 45.
Flabellina, 194.
foraminifera, 2.
Fossarus, 135.
fosset, 279.
fossil bivalves, 251.
Fragiba, 310.
Frucole, 197.
falorum, 910.
Pulgur, 109.
Fusulus, 166.
Fusus, 105.
Gadinia, 155.
Galatea, 314.
Galeomma, 296.
Galerus, 152.
ganglia, 21.
Gari, 311.
garlio-snail, 30.
Gastrana, 367.
Gactridium, 111.
Gastrochæna, 325.
gastroccoli, 74.
Gastroplax, 187.
Gastropteron, 185.
gemmation, 49.
Gena, 146.
genera, 57,
genetic, 56.
Geomalacus, 167.
Geomelania, 178.
Geotenthis, 70.
Geotrochus, 162.
Geovula, 173.
germinal vesicle, 51 .
Gervillia, 262.
Gibbuls, 144.
Gibbus, 164.
gizzard, 29.
Glandina, 160, 459.

Glancomye, 507.
Glauconella, 182.
Glauconome, 307.
Glaucus, 195.
Globiconoha, 181.
Globulus, 128.
Glossus, 300.
Glottella, 131.
Glycimeris, 321, 472.
glycerine, 441.
Gnathodon, 308.
Goldfussia, 302.

Goniodoris, 191.
Goniomya, 322.
Goniophore, 471.
Goniostomus, 404.
Goodallia, 299.
Gouldia, 470.
Grammysia, 322.
Grateloupia, 306.
Gresslya, 323.
Gryphøa, 255.
Gryphochiton, 158.
Gryphus, 215.
guard, 73.
Gundlachia, 465.
gustatory, 21.
gymnoglossa, 450.
gymnosomata, 208.
Gypidia, 227.
Gyroceras, 91, 450.
hramal, 335.
Halia, 111.
Haliotis, 146.
Halobia, 262.
hamiglossa, 450.
Haminea, 182.
Hamites, 96.
Hamulina, 96.
Harpa, 116.
Harpula, 119.
Hectocotyle, 65, 447
Hecuba, 313.
Helicarion, 163.
Helicella, 163.
Helicerus, 449.
Helicina, 144, 177.
Helcion, 154.

158
Gomphoceras, 80, 89. Hemicardium, 291. Icarus, 186.
Gonambonites, 229. Hemicyclonosta, 301. Ichthyosarcolites,288.
Gonatus, 69. Hemimitra, 181. Idalia, 192.
Goniatites, $98 . \quad$ Hemipecten, 258. Idotaa, 293.
Gonioceras, 88. Hemiplacuna, 256. Imbricaria, 120.
Helicoceras, 05. Hypodema, 292.
Heliconoides, 207. Hypogiaa, 315.
Helicocryptus, 135. hypo-pharyngeal, Helicolimax, 163.
Helcophanta, 163. Hypostoma, 163.
Helicophlegma, 201. Hypothyris, 226.
Helicostyla, 394. Hypotrema, 263.
Helicteres, 165. Hyria, 274.
Hyridella, 396.
Ianthina, 148.
Iberus, 394.
Icarus, 186.

Imperator, 143.
Incilaria, 167.
inferobranchiata 179.
Infundibulum, 143, 152.

Inoceramus, 263.
inoperculata, 159.-
Io, 131.
Iphigenia, 314.
Iridina, 275.
Ischnochiton, 157.
Isidora, 171.
Ismenis, 220.
Isoarca, 289.
Isocardia, 300.
Isodonta, 313.
Hippurites, 282, 468. Isognomon, 263.
Hirundella, 184. Isoleda, 473.
Histioteuthis, 71. Itieria, 180.
histological, 56.
Holopea, $463 . \quad J a m a i c i a, 176$.
Holopella, $462 . \quad$ Jaminea, 126.
holostomata, 34. Janella, 396.
homologies, 47. Janira, 256.
Homomya, 322. Janus, 196.
Hoplomytilus, 468. Jasis, 344.
Hormoceras, 88. Jeffreysia, 137.
Hortolus, 87.
Huronia, 88. Katharina, 157.
Hyalea, $204 . \quad$ Kelano, 75.
Kellia, 294.
key-hole limpet, 149.
Kingena, 219.
Koninckia, 231.
Kraussia, 219.
Labio, 144.

Lachesis, 118.
Lacuna, 136.
Ladas, 201.
Jagena, 108.
Lajonkairia, 471.
Lamellaria, 124.
lamellibrauchiata, 240.

1,ampania, 128.
Lainpas, 21.).
lamp-shelis, 209.
land-suails, 17, 159.
langueties, 339.
Laniogerus, 195
Lanistes, 139, 266.
Lasea, 294.
Latona, 313.
Laternula, 321.
Latia, 172.
Latirus, 108.
Latruitcul,ts, 111.
Lavi!jn!n, 312.
Learlı'и, 449.
Leda, $\boldsymbol{2}_{69}$.
Leguminaria, 316.
Leiodomus, 111.
Leiostomus, 109.
Lembules, 269.
Leonia, 175.
Lepeta, 1.5.
Leptachatiia, 398.
Lepiæna, 231.
Leptagonia, 230.
Leptinaria, 393.
Lepto-chion, 157.
Leptoclinum, 311.
Leptoconchus, 114.
Leptodomıs, 322.
Lepton, 21, 246 .
Leptopoma, 177.
Leptoteuthis, 70.
Leucostoma, 114.
Leucotis, 124.
Levenia, 114.
Liarea, 176.
Libilina, 300.
ligament, 247.
Ligula, 312, 321.
Li!guus, 165.
Lima, 15, 2:8.
Limacella, 168.
Limacina, 207.
Limæa, 258.
Limanomia, $2 \boldsymbol{6}$.

Limapontia, 197. Macha, 316. Limatula, 258.
Limax, 167.
Limuea, 170, 465.
Limneria, 365.
Limopsis, 268, 468.
limpet, 15.
Lincina, 176. lingual teeth, 27,160. Mactromya, 293, 312, Linguella, 188.
Liugula, 239.
Liuteria, 182.
Liotia, 145.
Listera, 312.
Lithedaphus, 151.
Lithidion, 175.
Lithocardium, 291.
, Malleus, 261.
Lithoglyphus, l38. Mamilla, 12;.
Litiopa, 136.
Litorina, 134, 456.
Lituites, 87.
liver, 29, 190.
Livona, 143.
Lobaria, 184, 811.
Lobiger, 186.
Loligo, 6, 69, 446.
Loligosepia, 70.
Loligopsis, 71.
Lomanotus, 194.
loop, 210.
Lophocercus, 186.
Lophurus, 157.
Loripes, 293.
Lollia, 150.
Lusonema, 127.
Lucapina, 150.
Lucidella, 178.
Jucina. 2ys.
Jucioopsis, 306, 4;1.
Lunatia, 123.
lunule, 247.
Lunulo-cardium, 292.
Luponia, 121.
Lurraria, 309.
Luiノicola, 312.
Lychas, 2!2.
L!/chnus, 163.
Lyonsia, 323.
Lyra, 217.
Lyriodon, 271.
Lyrodesina, 273.
Lysianassa, 322.

Mangelia, 114.
mantle, 6.
Marinula, 173.
Marisa, 139.
Margarita, 144.
Margaritana, 274. Monilea, 143.
Marginella, 120. Monocondylæa, 274.
Marmorostoma, 142. Monodacna, 291.
Ma;'senia, 124. Monodonta, 144.
marsupium, 245. moncecious, 50.
Martinia, 223. mono-myaria, 26, 249.
measurements, 246. Monopleura, 277.
Mrdoria, 136. Monopt!!!ma,180,462.
Megadesma, 314.
Megalodon, 301.
Megaloma, 177. monstrosities, 45.
Méolomastoma,302. Montacuta, 245.
Meganteris, 467. Montayua, 194.
Megasiphonia, 86. Mopalia, 157.
Megaspira, li6. Morio, 114.
Megalh!y;is, 220. Morrisia, 218.
Megerlia, $219 . \quad$ Morum, 114.
Me!fimaiium, 167. mother-of-pearl, 38.
Meladomus, 139. Mouretia. lis.
Melafusus, 131. Mulinia. 308.
Melampus, 173. Mülleria, 2;6, 468.
Melanatria, 131.
Melania, 131.
Melanopsis, 132.
Melatoma, 1:31.
Meleagrina, 260.
Melia, 88.
Melibæa, 194.
Melina, 263.
Melo, 119.

Menestho, 462.
Mercenaria, 304.
Meretrix, 305.
Merista, 224.
Meroë, 305.
Merria, 124.
Mesalia, 132.
Mesodesma, 313.
mesopodium, 198.
metamorphic, 40.
metapodium, 198.
Metoptoma, 155.
metropolis, 351.
mimetic, 56 .
Miranda, 192.
Mitra, 119, 351.
Mitrella, 120.
Modiola, 265.
Modiolarca, 266.
Modiolaria, 266.
Modiolopsis, 206.
Modulus, 135.
Molgula, 337.
money-cowry, 121.
mono-thalamous, 64.
Monotis, 262.

Mulinia. 308.
Mülleria, 276, 468.
multivalves, 36 .
Murchisonia, 147.
Murex, 106, 453.
Musculium, 297.
Muiela, 275.
Mya, 244, 317.
Myacites, $3 \div 2$.
Myalina, 265.
Myatella, 323.

Mycetopus, 275, Myllita, 295.
Myochama, 324.
Myoooncha, 303.
Myodore, 324.
Myoparo, 269, 473.
Myophoria, 272.
Myopsis, 322.
Myrina, 468.
Myristica, 109.
Mysia, 306.
Mytilicardia, 303.
Mytilimeria, 266.
Mytilomya, 266.
Mytilus, 53, 264.
Myxostoma, 177.

Necella, 155.
nacreous, 38.
naides, 273.
Nanina, 163.
Naranio, 307.
Narica, 124.
Nassa, 112.
Natica, 123.
Naticella, 123, 461.
Naticopsis, 123.
Nautiloceras, 91, 450.
Nantilus, 83, 449,
Mavicella, 142, 458.
Neere, 318.
Neilo, 270.
Neithea, 258.
Nematura, 137.
Nerea, 193.
Nerinella, 129.
Nerinæa, 129.
Nerita, 141.
Neritina, 141.
Neritoma, 141.
Neritopsis, 141.
nerves, 21.
neural, 335.
Neverita, 123.
nidamental, 50.
Nina, 135.
Niso, 126.
nomenclature, 59.
Northia, 112, 376.
Notarchus, 186.
notocceli, 74.
Notomya, 802.
Novaculina, 316.
Nucinella, 269.
nucleobranchiata,97, optic, 21.
197.
nuclens, 36.
Nucula, 269.
Nuculicardia, 473.
Nuculina, 269.
Nucunella, 269.
nudibranches 23,188 . Ormoceras, v. H.
numerical dev., 58. Orthalicus, 402.
Orthambonites, 229.
Obeliscus, 125, 404. Orthis, 229.
Obolus, 240.
oceanic-snail, 12.
ocelli, 22.
Odoncinetus, 321.
Odontidium, 133.
octopoda, 23, 64.
Octopodoteuthis, 72. Osteodesma, 321.

Odostomia, 125. otolithe, 23.
œesophagus, 21. Otopoma, 176, 391.
Oikopleura, 346. Otostomus, 403.
Oithona, $195 . \quad$ oviparous, rep. 50.
Oleacina, 165.
olfactory, 21.
Oligyra, 177.
Oliva, 116.
Olivella, 117.
Olivia, 144.
Omala, 310.
Omalaxis, 135.
Omalia, 471.
Omalonyx, 164.
Ommastrephes, 72. pachystoma, 131.
ommatophora, 22. Pachytes, 259.
Omphalotropis, 176.
Onchis, 169.
Oncidıopsis, 455.
Oncidium, 169.
Oncidoris, 191.
Oncoceras, 90.
Oniscia, 114.
Onychia, 72.
Onustus, 135.
Onychochiton, 157.
Onychoteuthis, 72.
operculata, 174.
operculum, 47, 102.
Ophileta, 145.
Opis, 302.
opisthobranch 179. Para, 338.
Opisthoporus, 465. Pandorina, 323.

Octopus, 67, 448. Ostrea, 254, 281, 467. Pecchiolia, 300.
Ocythoë, 66. Otavia, v. Olivia. Pecten, 249, 256.
Odontostomus, 164. Otina, 125, 459. Pectunculina, 468.
Panopsea, 319, 351, 478.
paper-sailor, 66.
Paphia, 299, 306, 313.
Papyridea, 290.
Parascidium, 343.
parietal, 165.
Parmacella, 168.
Parmophorus, 151.
Parthenia, 126.
Parthenopea, 296.
Partula, 164.
Orthoceras, 88, 449. Pasithea, 126.
Orthonotus, 266. Patella, 154, 459, 464.
Orthostylus, 394. Patelloida, 155.
Orthothrix, 234. Patina, 155.
Paxillus, 166.

Pectunculus, 268.
pedal, $249,250$.
Pedalion, 263.
pedicle, 209.
Pedicularia, 113.
Pedipes, 173.
Pedum, 259.
Pachybathron, 461. Pegea, 344.
Pachydomus, 302. Pelagia 209.
Pachylabra, 138. pelli-branchiata, 197.
Pachymya, 319. Pelonæa, 338.
Pachyodon, 274, 302. Peloris, 254.
Pachyotis, 164, 403. Pelta, 164, 187.
Pachyrisma, 302. Peltella, 168, 404.
Pentamerus, 227.
Peplidium, 192.
Peracle, 207.
pericardium, 190.
periostracum, 40.
Pacyodon, 317.
Payodella, 134.

Palaoteuthis, 81, 417. Periploma, 321.
palatal, $165 . \quad$ peristome, 101.
pallial, 26,251. periwinkle, 11.
palliobranchiata, 209. Perna, 262.
Pallium, 258. Peronaa, 310.
palpi, $27 . \quad$ Peronia, 169.
Paludestrina, $462 . \quad$ Perophora, 340.
Paludina, 98, 138. Perotis, 449.
Palıdinella, 137, 365. Perrona v. Tomella.
Paludomus, 131, 462. Persicula, 120.
pancreas, $30 . \quad$ Persona, 107.
Pandocia, 338. Petaloconchus, 462.
Petricula, 307.
Pfeifferia, 464.

Phallusia, 337.
phanero-pneumona, 174.

Phaneropthalmus, 182.

Phanerotinus, 145.
Phasianella, 143.
Phasianema, 135.
Pharus, 315.
Philine, 184, 459.
Philippia, 135, 462.
Philomycus, 168.
Philonexis, 68.
phlebenterata, 197.
Pholadomya, 322.
Pholas, 328.
Phorus, 135.
Phos, 112.
Phosphorax, 167.
Phosphorax, 167. Pneumodermon, 208. pseudomorphous,40. Redonia, 471. Phragmoceras, 80,90. P
phragmocone, 73. Phyllidia, 188.
Phyllirhoa, 196.
Phylloda, 310.
Phyllodesmium, 194.
Physa, 171.
Physopsis, 171.
phytophaga, 455.
Pileolus, 141.
Pileopsis, 152.
Pinna, 38, 263.
pinnigene, 264.
Pinnoctopus, 67.
Pirena, 132, 455.
Pirenella, 128.
Pisania, 107.
Pisum, 297.
Pisidium, 297.
Pitonillus, 177.
Placobranchus, 197.
Placuna, 256, 467.
Placunomia, 255.
Placunopsis, 250.
Plagioptychus, 288. Plagiostoma, 258.
Planaxis, 114.
Planorbis, 41, 45.
Planorbula, 465.
Planulites, 94.
Platyceras, 153.
Platyodon, 317, 375.
Platyschisma, 145.
Platystoma, 462,
Platystrophia, 229. poulpe, 67.
Plaxiphora, 157. Priamus, 111.
Plectostylus, 405. Prisodon, 274.
Plectrophorus, 168. Producta, 233.
pleurm, 27. Pronites, 230.
Pleurobranchæa, 187. Pronoë, 302.
Pleurobranchidium, propodium, 198.
187. \quad Proserpina, 160.

Pleurobranchus, 187. prosobranchiata, 103.
Pleurodon, 269. Proto, $132 . \quad$ Radiolites, 285.
Pleuromya, 322. Protocardium, $292 . \quad$ Radsia, 157.
Pleurophyllidia, 188. Psammobia, 311, 472. Ranella, 107.
Pleuropus, 195, 205. Psammocola, 311. Rangia, 308.
Pleurorhynchus, 292. Psammosolen, 316. Rapana, 109, 366.
Pleurotoma, 118. psammotea, 310, 311. Raphistoma, 147,463.
Pleurotomaria, 147. Pseud-achatina, 390. Razor-fish, 15, 315.
Plicatula, 259, 468. Pseudo-crania, 236. Realia, 176.
Plocamophorus, 192. Pseudoliva, 111. Recluzia, 463. pneumo-skeleton, 35. Psiloceras, 191. renal, 29.

Podopsis, 259. Pterines, 262.
Polia, 315.
Polinices, 123.
Pollia, 107.
Polycera, 191.
Polyclinum, 342.
Polycyclus, 341.
Polydonta, 173.
Polygyra, 162.
Polyphemus, 165.
poly-thalamous, 77.
Polytremaria, 147.
Polyzona, 342.
Pomatias, 176.
pomato-branch. 179.
Pomus, 139.
pond-snail, 11, 170.
Pontolimax, 197.
Porambonites, 227.
Porcellana, 120.
porcellanous, 39.
Porcellia, 201.
Poromya, 319.
Poronia, 294.
portal-beart, 190.
Posidonia, 262.
Posidonomya, 262.
Posterobranchæa, 187.

Potamides, 128.
Potamomya, 318.
Potamophila, 314.
Poterioceras, 90.

Reniella, 261.

Pteroceras, 105.
Pterochilus, 195.
Plerochilus, 195. Requienia, 279.
Pterocyclus, 177. Resania, 486.
Pteronites, $262 . \quad$ respiration, 31.
Pteroperna, 261. retina, 22.
pteropoda, 7, 202. retractor, 26, 211.
Pterotrachaa, 199. Retzia, 224.
Ptychina, 293.
Ptychoceras, 96. Rhegostoma, 177.
Rhegostoma, 177.
Rhinodomus, 112.
Rhizochilus, 461.
Pugiunculus, 205. \quad Rhizorus, 183.
pulmonifera, 32, 159. Rhodope, 465.
Pullastra, $306 . \quad$ Rhodostoma, 173.
Pulvinites, 263. Rhomboides, 320.
Puncturella, 150. Rhopalaa, 339.
Pupa, 165.
Pupillia, 150.
Pupina, 177.
Pupinella, 177.
Purpura, 113.
Purpurina, 113.
Pusionella, 109.
Pycnodonta, 254. Rimula, 150.
Pygope, 215. Rimularia, 151.
Pyramidella, 125. Ringicula, 112, 181.
Pyramis, 126, 144,302. Ringinella, 180.
Pyrazus, 128. ripidoglossa, 458.
Pyrella, 109. Risella, 135, 457.
Pyrgula, 131. Rissoa, 136.
Pyrosoma, 343. Rissoëlla, 137.
Pyrula, 109.

Rissoina, 137.
river mussel, 18, 34, Sedgwickia, 322.
274.

Rivicola, 171.
Roman-snail, 15.
Rossia, 71.
Rostellaria, 105.
rostrifere, 455.
Rotella, 144.
Roxania, 182.
Runcina, 187.
Rupellaria, 307.
Rupicola, 321.
Sagda, 163.
Sagitta, 199.
salivary, 30
Salpa, 31, 49, 344.
Sanguinolaris, 311
Sanguinolites, 266, Sigillina, 343. 301, 323.
sargasso sea, 361.
Saxicava, 320, 354. Simpulopsis, 163.
Saxidomus, 305.
Scaa, 207.
Scalaria, 133.
Scaldia, 472.
Scalites, 147.
scallop, 256.
Scapha, 119.
Scaphander, 184.
Scaphella, 119.
Scaphites, 95.
Scaphula, 117.
Scaphula, 268, 468.
Scarabus, 173.
Schizochiton, 157.
Schizodesma, 308.
Schizodus, 272.
Schizostoma, 145.
Schizolreta, 238.
Sciadephorus, 449.
Scintilla, 470.
Scissurella, 147, 463.
Sclerotic, 22.
Scoliostoma, 462.
Sconsia, 115.
Scacchia, 294.
Scrobicularia, 312.
Scurria, 155.
Scutellina, $10 ̆ 5$.
Scutus, 151.
Scyllæa, 12, 103.
sea hare, 15.
sea-snail, 12.
,
Segmentina, 172.
Semele, 312.
Semi-corbis, 293.
Sepia, 76, 446, 448.
Sepiola, 71.
Sepioteuthis, 70.
septa, 78.
Septifer, 265.
Seraphs, 106.
Serpulorbis, 133.
Serripes, 291.
setæ, 212.
shell cameos, 46.
shell-opal, 16.
shell sand, 16.
Sidnyum, 343.
Sigaretus, 124.
Siliqua. 316.

Sinemuria, 302.
sinupallialia, 252. sinus, 26, 31 .
Sinusigera, 207. siphonal line, 251.
S'phonaria, lj5, 174. sporadic, $3 \mathbf{3 0}$.
Siphonium, 133. squid, 69.
Sipítonostoma, 166. Stalagminm, 269.
siphonostomata, 34, Steganostoma, 177.
103.

Siphonotrela, 238.
Siphonotus, 185.
siphons, 33.
Siphopatella, 152.
siphuacle, 78.
Skevea, 137.
slug, 12, 28.
Solurium, 135.
Solecurtoides, 315 .
Solecurtus, 316.
Solemya, 271.
Solen, 315.
Solenella, 270.
Solenomya, 271.
Solenopsis, 266.
Solrtellina, 311.
Sowerbya, 308, 472.
Spatha, 275.
species, 56.
specific, gr. 39, 73.
specific names, 60 .
spermatozoa, 50.
Spharella, 294.
Spherium, 297.
Spharonites, 381.
Spharulites, 285.
Sphenia, 318.
ophincter, 25.
spicula, 25.
Spinigera, 105.
Spiratella, 207.
Spiraxis, 464.
Spirialis, 207.
Spirifera, 223.
Spiriferina, 223.
Spirigera, 223.
Spirigerina, 228.
Spiroglyphus, 133.
Spirula, 13, 77.
Spirulirostra, 76.
Spisula, 308.
splanchno-skeleton, 48.

Spondylobolns, 236.
Spondylus, 43, 259.
Spongariam, 79.
Spongiobranchæa, 209.

Stenoceras, 93.
Stenopus, 163.
Stoastoma, 178.
Siomatella, 145.
Stomatia, 124.
Stomatia, 147.
Struparollus, 14.5.
Strephona, 116.
Streptaxis, 163.
Streptorhynchus, 230.

Strigilla, 310.
Stringocephalus, 222.

Strobilus, 166.
Strombidia, 105.
Strombus, 104, 452.
Strophalosia, 234.
Stropheodonta, 231.
Strophomeva, 230.
Strophostoma, 176.
Strepsidura, 109.

Sphæra, 293.

Streblopteria, 468. Tentaculites, 88, 205.

Strathiolaria, 130, 452.

Stycla, 338.
Stylifer, 120.
Stylina, 23, 126.
Styliola, 205.
Stylochilus, 465.
Sub-clymenia, 87.
Subula, 111.
Subulina, 165, 402.
Succinea, 164.
Suessia, 466.
Sulco-buccinum, 111.
Sunetta, 305.
sutures, 78, 100.
Sycotypus, 109.
Symphynota, 274.
Syncera, 137.
Syndosmya, 312.
Synœсіи, 343.
synonyms, 59.
Syntethys, 340.
systemic, 30.
tænioglossa, 450.
Tanalia, 131, 462.
Tancredia, 293.
Tanystoma, 464.
Tapes, 306.
Telennophorts, 168.
Tectaria, 134.
tectibranchista, 179.
Tegula, 143.
teleological, 56.
Tellina, 310.
Tellinides, 310.
Tellinomya, 322.
T'enuochilus, 86.
Terebellum, 106, 132.
Terebralia, 128.
Terebra, 111.
Terebratella, 217.
Terebratula, 8, 215.
T'erabratulina, 216.
Tcrebrirostra, 217.
Teredo, 43.
Tergipes, 195.
test, 392.
testacea, 36.
Testacella, 13, 465.
tethya, 337.
tethyum, 337.
Tethys, 193, 337.
tetra-branchiata, 77. Triforis, 128.
Tetraplodon, 275. Trigona, 305.
Teudopsis, 69.
Teuthis, 69.
Thalassides, 302.
Thalia, 344.
Thallicera, 139.
Theca, 205.
Thecacera, 191.
Thecidium, 21.
thecosomata, 204.
Thetis, 319.
Thiara, 131.
Thoracoceras, 449.
Thyreus, 113.
Tiara, 119.
Tichogonia, 266.
Tiedemannia, 206.
Tomella, 118.
Tomigerus, 163.
Tonicia, 157.
Torcula, 132.
Torinia, 135.
Tornatella, 180.
Tornatellina, 166.
Tornatina, 181.
Torquilla, 165.
toxiglossa, 450.
Toxoceras, 95.
Trapezium, 300.
Trematis, 238.
Tremoctopus 65, 68
68. Turbinella, 108.

Trichites, $264 . \quad$ Turbonilla, 126.
Trichocyclus, 209. Turbo, 142.
Trichotropis, 108, 455.

Tricolea, 143.
Tridacna, 290, 469.
Tridonta, 299.
Tridopsis, 163.
Trochatella, 152, 178.

Trocholites, 87.
Trochotoma, 148.
Trochus, 28, 143.
Trophon, 109.

Tropidophora, 176.
Tropaum, 95.
Truncatella, 137.
Tuba, 137.
Tudora, 176.
Tugonia, 317, 367.
Tunicata, 8, 331.

Turrilites, 96.
Turritella, 132.
Turris, 118.
Turtonia, 295.
types, 61.
Tylostoma, 181.

Tylodina, $188 . \quad$ Vibex, 131.
Typhis, $106 . \quad$ vibracula, 24.
Tympanostomus, 128. Vicarya, 462.
Villiersia, 191.
violet-snail, 148.
vitellus, 51.
umbo, 37.
umbones, 245.
Umbrella, 187, 465. Vitrina, 30, 163.
uncini, 28.
Uncites, 225.
Unyula, 240.
Ungulina, 294.
Unicardium, 293. Voluta, 119, 454.
Unio, 246, $274 . \quad$ Volutella, 119.
Unionites, 301. Volutilithes, 119.
univalves, $36 . \quad$ Volva, 122.
Utriculus, 183. Volvaria, 120.
Vulsella, 261,
Trochiscus, 143. Vagina, 315.
'Irochoceras, 87. Vaginella, 205 Waldheimia, 210, 16.
tropical, 353. varices, 17, 43.

Vaginulus, 170.
Valvata, 140.
Vanganella, 486.
Vanicoro, 124.
varieties, 57.
Varigera, 181.
Velates, 141.
Velletia, 172.
Velutina, 124, 454, 61. Yoldia, 270, 468.
Venericardia, 303.
Venerupis, 307. Zaria, 132.
Venilia, $195 . \quad$ Zellania, 466.
ventricle, 30. Zephrina, 195.
Venus, $304 . \quad$ Zierliana, 119.
Verania, 72, 364. Zirfaa, 328.
Vermetus, 133.
Veronicella, 170.
Verticordia, 304, 471.
Vertigo, 165.
Vexillaria, 346.

Vel Yetus, 119.
Waltonia, 220.
wentle-trap, 16, 133.
whelk, 13, 28, 110.
worm-shell, 133.
Xanthonella, 182.
Xenophorus, 135.
Yetus, 119.
zoïd, 336.
Zonites, 163.
zoophaga, 452.
Zua, 164.

Atractodon, Charl. v. Chrysodomus. Chilotrema, Leach, v. Carocolla. Coleoceras, Portl. v. Orthoceras. Cordieria, Roault, v. Borsonia. Cryptodon, Conr. v. Lutraria. Cypricia, Gray, v. Lutraria. Ellipsolithes, Sby. v. Goniatites. Gaimarda, Gould, v. Modiolarca. Gladius, "Klein," v. Rostellaria. Harpago, " Klein," v. Pteroceras. Macoma, Leach, v. Psammotea.
Masza, " Klein," v. Turbinella.

Neptunea," Bolten," v. Chrysodomus. Orthostoma, Buv. v. Acteonina. Phascolicama, Val. v. Modiolarca. Polyphemopsis, Portl. v. Macrochilus. Ptychomphalus, Ag. v. Rotella.
Separatista, (helicina), Gray MS. = ?
Sidemina, Casteln. v. Apioceras? Spiricella, Rang, v. Pileopsis?
Thyatira, Leach, v. Cryptodon.
Tugali, Gr. v. Hemitoma.
Vasum, "Link," v. Cynodonta.
Xancus, "Link," v. Turbinella.

ERRATA AND ADDENDA.

It is earnestly recommended that the corrections be made with pen and ink at the places indicated.

Page 5 The foot-prints referred to in the note, are now ascribed, by Prof. Owen to some unknown Crustaceous animal.
23 second line from bottom add "but is more probably the seat of the olfactiory sense."
29 line 7 for "communicating" read " comminuting."
32 lines 8 and 9 from bottom erase "in one family of tunicaries (pelo. naidre)."
93 line 3 Agarides, D'Orb. (not Montf, - Aturia zic zac.)
97 Carinaria cymbium, Desh. = C. cristata, L. sp. The same correction may be made at p. 200, and PI. XIV., f. 19.
108 line 4 from below for "Strombus" read." Velutina."
109 line 20 for " Leiotomus" read " Leiostoma (bulbiformis)."
115 line 5 add " U. States, S. Domingo."
117 line 3 Scaphula, Sw. = Olivancillaria, D'Orb.
121 erase lines 28-30.
125 erase line 2 , see p. 461.
line 5 erase " like Velutina;" see p. 459.
126 ", 6 for "Gray " read " Jea, part," see p. 462.
127 " 10 add "Type L. sinuata, U. Devonian, Petherwin."
15 add "Syn. Polyphemopsis, Portlock."
128 " 16 for " old world only ?" read "California."
18 for "Vulsella," read " Ostrea."
131 " 10 for "Eocene" read "Wealden."
" 28 for "Authouy " read "G. \& H.," see p. 462.
137 ", 10 erase " Paludestrina, D'Orb.," see p. 462.
144 ", 32 for "Otavia" read "Olivia."
145 " 19 for "Eocene, Paris" read "Type, Euomphalus Serpula, Kon. Car3. Belgium."
153 ", 8 from botiom, for "jaws" read " upper jaw."
154 " 16 for "tongue" read " dental canal."
". " 31 for " nocturnal" read " beiween tides."
156 " 7 add "France."
228 " 13 for " fig. 17 " read "fig. 21."
184 " 15 for "Bullea, Lam." read "Philine, Ascanius. 1772 " and erase the foot-note.
237 last line for " more like" read " setose, like."
280 line 17 erase " Hippurite and."

Page 310 for "Diodonta" read "Gastrana," and add "Syn. Diodonta, F. \& H. not Schum."

311 line 1 for " Greenland " read " Norway." 319 " 8 from below, for "Australis" read "Natalensis."
320 Saxicava belongs to the Gastrochanida.
321 line ${ }^{6}$ erase "Cochlodesma."
, 30 for " without an'" read " ossicle minute."
363 Senegal; add "Tellina lacunosa" and "Cymba olla."
364 line 13 add "Typhis."
383 " 9 from below for "Holsace" read " Holstein."
391 " 6 from below for " all" read "nearly all."
419 " 21 for "alterations" read "alternations."
450 lines 12 and 13 the terms dorsal and ventral are transposed.
457 in the figure of Risella the central tooth is worn round, it should be pointed as in Litorina.

Plate II. f. 140 Ludense, Sby. $\frac{1}{4}$ Ludlow-rock.
III. f. 5 A. spinosus, Sby (ornatus, Schl. part.)
V. f. 12 for " W. America" read "Cape."
VI. f. 4 for "China" read "Cuba" D'Orb.
VIII. f. 23 for "Gray" read "Lam."
XI. f. 22 for " W. Indies" read "Cape."
XIV. f. 15 for " verrucosa, Gmel." read " scapula, Martyn."
" f. 32 for "tridentata, Forsk." read "telemus, L."
, transpose the numbers 46 and 47.
XIX. f. 1 for "China" read " W. Africa."
" f. 22 for "Gray " read "Cailliaud."
XXI. f. 8 for " Diodonta" read "Gastrana."
f. 12 for "Bahamas" read " Peru."
f. 16 for "donacium, Lam." read "Chilensis, D'Orb."
XXII. f. 3 for " S . America" read " Penang."
XXIV. for "Bortyllide" read "Botryllida."
" f. 1 for "tubulosa, Rathke" read "arenosa, A. \& H."
Llaria, Morris and Lycett, 1851. E.x. Rostellaria trifida, Ph. Shell like Aporrhais (p. 129) but having no channelled process of the lip extending up the spire. In most species the expanded lip is repeated, as in Cerithium, or produced periodically, as in Ranella and Spinigera. Fossil in the Oolites; the species are very uumerous.

Amberlya (nodosa) M. \& L. 1851. Gt. Oolite, Minchinhampton. Resembling Tectaria (p. 134) but slightly notched in front like Purpurina.

Anaulus (bombycinus) Pfr. 1855, Sarawak, Borneo. Shell like Mega-
lomastoma, with a small tubular orifice at the suture leading into the bodywhirl at a little distance from the aperture. A. Lorraini is found at Penang.

Brachytrema (Buvignieri) M. \& L. 1854. Gt. Oolite, Minchinhampton. Shell turbinated, whirls ornamented, columella twisted, canal short and oblique. Fossil, 10 sp . Oolites.

Ceritella (acuta) M. \& L. 2851. Gt. Oolite, Minchinhampton. Shell turreted, acute, last whirl large, canal short. ($=$ Rissoina, D'Orb. part.) Fossil 9 sp .

Coccoteuthis, (latipinnis) Owen, I855, Geol. Journ. XI., pl. VII., p. 124 $=$ Geoteuthis, part. Pen rather calcarious, rounded in front, lateral wings small. Kim. Clay and Oxford Clay, S. of England.

Corbicella (Bathonica) M. \& L. 1855. Gt. Oolite, Minchinhampton, oval, smooth, posterior side elongated; anterior lateral teeth wanting. Fossid 6 sp. Oolites.

Crossostoma (Prattii) M. \& L. 1851. Gt. Oolite, Minchinhampton. v. Liotia. Columella toothed when young, concealed by callus in the adult.

Deslongchampsia (Eugenei) Mc Coy, MS. in M. \& L. 1851, Great Oolite, Minchinhampton = Hemitoma, p. 151.

Diastoma, Desh. 1849 = Melania costellata, Lam.
Euspira, Ag. 1837. A subgenus of Natica, with angular whirls, Fossil Oolites.

Quenstedtia (oblita) M, \& L. 1855. Gt. Oolite, Minchinhampton. Like Psammobia; pallial sinus small; ligament in a narrow groove; cardinal teeth 0. 1.

Resania (lanccolata) Gray 1853, An. N. H. p. 43, (same shell as Vanganella Taylori, Gray, An. N. H. 1853, p. 475). New Zealand = Lutraria, subgenus, p. 309.

Fossil land-shells of Madeira, p. 387. Of the eleven species now common to Madeira and P. Santo, only two (Helix paupercula, and H. compacta) occur fossil in both islands. And of the species now peculiar to oue island, two occur fossil in both, viz. Helix sphcerula of P. Santo, and Cyclostoma lucidum of Madeira. (Wollaston).

[^0]: * König supposed the Sphaeronites to be tunicaries allied to Boltenia; they are globular bodies, with a tessellated surface and two orifices, found in the Silurian strata and belong to the order Cystideae amongst the Echinodermala. The genus Eschadites of König was a!so supposed to be a fossil tunicary ; its nature is still problematical. See Murchison's "Siluria."
 + At the gardens of the London Zoological Society there are examples of Ascidium and Cynthia, the compound and starlike Botryllus (pl. 24. fig. 8) and a delicate little pearly Clavellina, whose presence was first detected by Mr. Tennent the intelligent and obliging keeper of the aquarium.
 \ddagger In Appendicularia Mr. Huxley finds no reversal of the current.

[^1]: * In the thick pellucid test of Ascidium mamillatum the eye can discern an extensive network of vascular ramifications. The blood vessels enter the test near the base. In the closely allied genus Cynthia there is no such vascular connexion, but the mantle is more strongly united to the test at the orifices; in Chelysoma the tunics are extensively united by muscular fibres. (Rupert Jones) The relation between the Ascidian test and mantle is that of the epidermis to the cutis vera, precisely as in the lamellibranchiate bivalves; the union of the two in the majority of Ascidians is exceedingly intimate in the fresh state. (Huxley.)
 + Fig. 224, Ascidium monachus; 'in. incurrent; es. excurrent orifice; t '. outer unic; t. muscular tunic; b. branchia! sac; o. tentacular fringe; g. nervous ganglion;

[^2]: * The embryo of antiopa (p. 196) is bell-shaped at first, with a fringe of long cilia round the rim which afterwards becomes the two-lobed velum.

[^3]: * See the figure of Salpa, Pl. 24, fig. 22. The thick black lines represent the sinuses; the heart is near the lower end of the figure, outside the virceral nucleus. The sinuses have no visible lining membrane but resemble those already referred to (pp. 31, 198) as existing in all classes of mollusca.
 + The resemblance of the pharyngeal sac of the tunicaries to the gills of fishes was pointed out by Mr. Goodsir in his memoir on the Lancelet (amphioxus).
 \ddagger In Plate 21 , the position of the nervous ganglion is indicated in several instances by a small star.
 § Xilne-Edwards has employed these terms in an opposite sense, apparently

[^4]: - Linnaeus used the name Tethyum for the Tunicaries in the earlier editions of his "Systema Naturae," and recognising their resemblence to the bivalves, called the animal of the latter " a tethys." Afterwards he adopted Baster's name Ascidium, and used Tethys for a nudibranche; Tellya (Lam.) is now e ployed for a genus of globular sponges.
 + So called from the little world of parasites that ofter grow upon it.

[^5]: * Pelonæa is not so extraordinary as at first supposed. The very erroneous statement at p. 32 , lines 27,28 , should be erased.

[^6]: - Chiefly known in England as the author of Peter Schlemific.
 \dagger Phil. Trans, 1851, Part II. p. 567.

[^7]: * The most complete and accurate history of the class Tunicata is contained in the Article Tunicata of Todd's Cyclopadia of Anatomy, by Mr. T. Rupert Jones,

[^8]: * The total number of living Vertebrate animals amounts to about 16,000 ; the namber of Plants is estimated at 100,000 , and the Insect class is supposed to include not less then 300,000 species.

[^9]: * The author regrets that, on account of the expense, this map appears without the advantage of colours. He would recommend those who are sufficiently interested in the subject, to colour their own copies, distinguishing the shores of the marine provinces by the following tints :-

 Blue 1. Arctic province; 15. Magellanic.
 Green. 2. Boreal; 11, Aleutian, 5. Aralo-Caspian.
 Orange. 3. Celtic.
 Purple. 4. Lusitanian; 10. Japonic; 12. Californiar ; 18, Trans-Atlantic.
 Yellow. 6. W. African; 8. Indo-Pacific; 13. Panamic; 17. Caribbean.
 Lake. 7. S. African ; 9. Australo-Zealandic; 14. Peruvian; 16. Patagonian.
 \dagger The genera of plants amount to 20,000 , and consist on an average of only 4 species apiece! The genera of shells commonly admitted are only 400 in number, and average 40 species each. It follows that the areas of the molluscan genera (eateris paribus) ought to be 10 times as great as those of plants.

[^10]: * The most striking and conclusive instances may be met with in the distribution of the higest classes of vertebrate animals.

[^11]: * Introduction to Entomology.
 + Treatise on Geography and Classification of Animals, Lardner's Cabinet Cyclopredia.

[^12]: * Malaco-zoologia Rossica; Mem. del'Acad. Imp. des Sc. Petersb. T. 6, pt. 2, 1849.

[^13]: * Index Molluscorum Scandinaviz; extracted from the "Ofversigt af K. Vet. Akad. Forh." 1846. I he climate of Finmark is much less severe than Russian Lapland; Hammerfest has an open harbour all the year.

[^14]: * The great work of Messrs. Forbes and Hanley contains all that is known respecting British Testacea up to the present time. The Nudibranchiata alone have been more fully described, in the publications of the Ray Society, by Messrs. Alder and Hancock. For the marine zoology of the coasts of Denmark the "Zuologia Danica" of O. F. Müller is still the most important work.

[^15]: * In the northern part of the Lusitanian province are the Pilchard fisheries; in the Mediterranean, the Tunny, Coral, and Sponge fisheries.

 The Gulf-weed banks (represented in the map) extend from 19° to 47° in the middle of the North Atlantic, covering a space almost seven times greater than the area of France. Columbus, who first met with the sargasso about one hundred miles west of the Azores, was apprehensive that his ships would run upon a shoal. (Humboldt.) The banks are supposed by Prof. F. Forbes to indicate an ancient coastline of the Lusitanian land-province, on which the weed originated. Dr. Harvey states that species of Sargassum abound along the shores of tropical countries, but none exactly correspond with the Gulf-weed (S. bacciferum). It never produces fructitication-the "berries" being air-vesicles, not fruit-but yet continues to grow and flourish in its present situation, being propagated by breakage. It may be an abnormal condition of S. vulgare, similar to the varieties of Fucus nodosus (Mackayi) and F. vesiculosus which often occur in immense strata; the one on muddy sea-shores, the other in salt marshes, in which situations they have never been found in fructification. (Manual of British Alga, Intr. 16, 17.)

[^16]: * Trans. Brit. Assoc. (for 1843) 1844, p, 130.
 + A current from the Atlantic sets in perpetually through the Straits of Gibraltar, and there is scarcely any tide; it only amounts to 1 foot at Naples and the Euripus, 2 feet at Messina, and 5 at Venice and the Bay of Tunis.

[^17]: Aralo-Caspian Shells.
 A, Aral; C, Caspian; B, Black Sen.
 The Species marked * are fomd also in the steppe limestone.
 *Cardium edule, L. C. (very small) B. Baltic.
 , edule, var. (rusticum, Chemn.) A. C. B. Icy Sea.
 *Didacur trigonoides, Pal. C (Azof. M. Hommaire).
 , Eichwaldi, Kryn. (crassa, Eich.) C. B. (Nikulaieff).
 Monodacua Caspia, Eich. C.
 , pseudo-cardium, Desh. (pontica, Eich.) B.
 Adacna leviuscula, Eich. C.
 vitrea, Eich. C.A.

 * " edentula, Pallas. C.
 „ plicata, Eich. C. B. (Dniester, Akerman, Odessa).
 , colorata, Eich. C. B. (Azof, Duieper).
 *Mytilus edulis, L. C. B. (not in Middendorffer list.)
 " latus, Chemn. B.
 *Dreissena polymorpha, Pal. C. B.
 Paludinella stagnalis, L. (pusilla Eich.) C. B. (Odessa). Ochotsk.
 * „, variabilis, Eich. C.
 *Neritina liturata, Eich. C. on sea weed.
 *Rissoa Caspia, Eich. C.
 , oblouga, Desm. B.
 " cylindracea, Kryn. B. $\boldsymbol{\varepsilon}$
 * From a sketch kindly prepared by Professor Ramsay.
 + Geogr. des Kaspischen Meeres, des Kaukasus und des Südlichen Russlands, Berlin, 1838. Fauna Caspio-Caucasica, 1841.
 \ddagger Bull. des Nat. Moscow, 1837.
 t The Velutina (Limneria) Caspiensis, A. Ad. was founded on a specimen of Limncea Gebleri, Midd. (1851) from Bernaoul, Siberia.

[^18]: * Marks of doubt are added to some of the species, and other are quite omitted.
 + See Mrs. Somerville's Physical Geography, Il. p. 233.
 \ddagger Journal Geol. Soc. 1846, vol. II. p. 268.
 \& X. Cuming collected 2500 species of sea-shells at the Philippines, and estimates the total number at a thousand more. The genera most developed are Conus $1 \geqslant 0 \mathrm{sp}$., Pleurotoma 100, Mitra 250, Columbella 40, Cypraa 50, Natica 50, Chiton 30, Tellina 50.

[^19]: * The " Brindled Cowry," (Cypraa princeps) from the Persian Gulf, was valued at $£ 50$; the only known specimen is in the British Museum.

[^20]: *Travels in New Zealand, by Dr. E. Dieffenbach. 8vo, London, 1843.

 + Moll. Nov. Hollandiæ, 1843.
 \ddagger Narrative of the Voyage of H.M.S. Rattlesnake, 1846-50, by J. Macgillivray. Supplement by Prof. E. Forbes.
 $\&$ For many years the Dutch have been allowed to send one ship annualiy to Japan for trade, whilst all other nations have been excluded; a state of things which the Americans will perhaps alter. The work of Siebold, on the Natural History of Japan, does not contain any account of the shells.

[^21]: * The dispersion of this coast shell may perhaps have taken place at the time when the channel of the river S. Cruz formed a strait, joining the Atlantic and Pacific oceans, like that of Magellan. (Darwin, p. 181.) Mr. Couthouy makes 3 sp . S. Lessonii, nearly smooth, Atlantic coast; S. antarctica, ribbed. Pacific coast; and S. lateralis, thin, oblique, Fuegia.

[^22]: * Voyage dans l'A mérique Méridionale. 1847, t. v. p. v.
 \dagger Voyge of H. M. S. Sulphur ; Zoology by R. B. Hinds, 4to. 1844.
 \ddagger Doscribed by T. A. Conrad, Journ. Acad. N. S. Philadelphia, 1831.
 § Gosld in Bost. Nat. Hist. Soc. Proceedings, 1846 ; and U. S. Exploring Exped.
 (Commander Wilkes) vol. xii. Mollusca, with Atlas. 4to. Philad. 1852.

[^23]: * Mr. Adams found but one shell common to the two sides of the IsthmusCrepidula unguiformis- wich is said to be found throughout the warmer latitudes, but is really an abnormal form of many distinct species of Crepidula, caused by growing in the interior of other shells.

[^24]: *Familiar to the admirers of Coleridge's "Ancient Mariner," and graphically described in Dana's "Two Years before the Mast."

 + Shell-fish are here the chief support of the natives as well as of the wild animals. At Low's harbour a sea-otter was killed in the act of carrying to its hole a large Volute, and, in T. del Fuego, one was seen eating a cuttle-fish. (Darwin.)

[^25]: * The variety of Venus fexuosa found at Rio, can be distinguished from the West Indian shell, which is the Venus punctifera of Gray.

[^26]: * The sea-shells of the United States have also been collected and described by Say, Le Sueur, Conrad, and Couthory.

[^27]: * In cataloguing Unionidie the river and country of each species should be stated. American authurs are too often contented with recording such localities as "Nashville" and "Smithville," which are quite unintellibible. Alnust as uncertain in their meaning are S. Vircent. S. Cruz, S. Thomas, Prince's Id.; whilst the latinized name, if places often defy all attempts at re-translation.

[^28]: * The distribution of the Cycladida is taken from the British Museum Catalogue, by M. Deshayes.
 + The mean temperature of the winter and summer months averages $36^{\circ}-57^{\circ}$; in Western Europe autumn rains prevail, and summer rains in Eastern Europe and Siberia.
 ; It was the npinion of Prof. E. Forbes that all the species of the Post pliocene tand of Northern l:urope and Asia had originated beyond the bounds of that region.

[^29]: * Norske Land- og Fersk-vands Mollusker, Joachim Friele, 1851.

[^30]: * In the South of Europe rain seldom falls in summer, but is frequent at other seasons, especially in winter. 'The mean temp. is $54^{\circ}-72^{\circ}$.
 + The writer is greatly indebted to W. H. Benson, Esq. for information respecting the land-shells of the Lusitanian province, Africa, and the remote islands.
 \ddagger Many of these cannot be considered species, in the sense here understood, but only as races, or geographical varieties.

[^31]: * These islands, and also the Canaries and Azores, contain marine formations (volcanic grits and tufas) with Miocene Tertiary shells. The islet of Baxo is quarried for lime.
 + Primitiæ et novitiæ Faunæ et Floræ Maderæ et Portus Sancti. 12 mo . Lond., 1851. Descriptive list of all the species, by same author, Zool. Proc. for 1854, p. 161. The statements and numbers given above are taken from this last monograph, corrected by Mr. Wollaston.
 \ddagger Malacographia Maderensis, 4to. Berlin, 1854, with figures of all the species.

[^32]: * Cosmos, II. 660, Bohn ed. It seems likely that Jamaica itself has since undergone a similar change; the fall of rain is stated to be 49.12. Whilst in the neighbouring islands it exceeds 100 inches.
 \dagger Long before the discovery of America it was observed that the westerly gales washed ashore stems of bamboos, trunks of pines, and even living men in canges. -Humboldt, II p. 462.

[^33]: * "It might perhaps liave been expected that the examination of the vicinity of the Congo would have thrown some light un the origin, if I may so express myself, of the Flora of St. Helena. This, however, has not proved to be the case; for neither las a single indigenous species, nor have any of the principal genera characterising the vegetation of that Island, been found either on the banks of the Congo. or on any uther part of this coast of Afiica."-R. Brown, Appendix to Captain Tuckey's Narrative of the Congo Expedition, (p, 476.) 1818.
 \dagger G. Sowerby in Darwin's "Volcanic Islands," p. 73. Forbes, Journ. Geol. Suc" 1852, p. 197.-Bensun, An. Nat. Hist. 1851, VII. 263.

[^34]: * As Dr. Pfeiffer includesthis(with a sign of doubt) amongst the synonymes of B. auris-vulpinus he must have suspected that the specimens came from St. Helena and not from St. Iago. The only other group of Bulimi resembling the St. Helena shells occurs in the Pacific Islands:-Bulimus Caledonicus at Mulgrave I.-B. awris zovince at the Solomons, and B. shongi in New Zealand.

[^35]: * Islands composed partly of stratified rocks must be newer than those rocks; Volcanic Islands may be of any degree of antiquity.
 t The Feejees ($V i t i$) are more nearly allied to the westward islands, such as the New Hebrides, than the Friendly Islands. Succinea and Partula, so plentiful at the latter, are not found at the Feejees.-(Gould, U. S. Exploring Expedition,)

[^36]: * For example, the common Heather (Calluna vulgaris), one of the most abundant social plants of Europe, characteristic of the moorland zone, and seldom rising above 3000 feet on the mountains of Scotland.-(Watson.) According to Pallas it abounds on the western flanks of the Ural Mountains, but disappears on their eastern side and is not found in Siberia. In the Pliocene period it appears to have spread itself nothward and westward to Iceland, Greenland and Newfoundland, where it still grows, the only heath indigenots to the New World.-(Humboldt.)

[^37]: * The private cabinet of Mr. Jay contains above 200 species of North American Unionida, and very many varieties.
 + The affinity between the Mammalia of the Old and New Worlds is greatest in eastern Asia and north-west America, and diminishes with distance from thoseregions. - W'aterhouse, in Johnston's Physical Atlas, No. 28.)

[^38]: * A magnificent collection of Jam:ica land shells has been presented to the British Museum by the Hon. E. Chitty whose researches were conducted with the late Prof. C. B. Adams.
 + In $18 \% 1$ the states of New Granada, Venezucla and Ecuador united to form the "Columbian Republic," but dissolved again in 1831.

[^39]: * In Lieut. Maury's physical map of the Atlantic, the contour of this former land is partly shewn by the 2000 fathom line, extending beyond the Canaries and Madeira, and sending out a promontory to the Azores. Clausilice are found in Locene strata; perhaps even in the Coal-measures, (p. 160.)

[^40]: * The American Expedition explored 40 Brazilian streams, and found only 1 Ampullaria, 1 Melania, and 1 Planorbis.-(Gould.)

[^41]: * Humming birds are seen fluttering about delicate flowers, and parrots feeding amidst the evergreen-woods. (Daruin, p. 251.)
 \dagger Dr. Hooker has suggested that not only the Falkland Islands, but the far distant Tristan d'Acunha (p 390) and Kerguelen's-land (p.392) may be mountain-tops of a continent which has been submerged since the epoch of their existing flora. "There are five detached groups of islands between Fuegia and Kerguelen's land, (a region extending 5,000 miles, all partaking of the botanical peculiarities of the southern extremity of the S. American continent. Some of these detached spots are much closer to the African and Australian continents, whose vegetation they do not assume, than to the American; and they are situated in latitudes and under circumstances eminently unfavourable to the migration of species."
 "The botany of Tristan d'Acunha (which is only 1,000 miles distant from the Cape of Good Hope, but 3,000 from the Straits of Magellan) is far more intimately allied to that of Fuegia than Africa. Of $2 s$ flowering plants, 7 are natives of Fuegia, or typical of s . American botany."
 "'The flora of Kerguelen's-land is similar to, and many of the species identical with, those of the American continent. (Its geological structure) would bespeak an antiquity for the flora of this isolated speck on the surface of our globe, far beyond our power of calculation. We may regard it as the remains of some far more extended body of land."-(Bctany of Antarctic Voyage, I. Pt. 2, 1847.)

[^42]: * The coal-measures and chalk of England cannot indeed be called similar, but the Cretaceous formations of the whole world afford mineral types corresponding to perhaps every variety of Carboniferous rock.

[^43]: + Stratigraphical System of Organized Fossils, 4to, Lond. 1817.

[^44]: * The names of Formations are in great measure provisional, and open to criticism. Some of them were given by Brongniart and O. D'Halloy; others have been more recently applied by D'Orbigny, Sedgwick, Murchison, and Barrande; and some are adopted from popular usage. Geographical names, and those derived from characteristic fossils have been found the best, but no complete scheme of zoological nomenclature has been framed.

 The epithet "Turonien" (25) is rejected, because it conveys the same meaning with "Falunian" (29), or Middle Tertiary, the type of which was taken from Touraine.

 The term Icenian is proposed for the Pliocene strata, because their order of succession was first determined, by Mr. Charlesworth, in the eastern counties of England, the country of the ICENi.
 t The exact value of these periods cannot be ascertained, but some notion of their length may be obtained by considering that the deposits in the valley of the Mississippi,

[^45]: * The Pliocene strata contain no extinct genera, and represent only the commencement of the present order of things. All the deposits now taking place will not constitute an additional "Formation," much less a "Quaternary System."
 \dagger It was on this account Prof. Sedgwick proposed the term" Palæozoic. rather than "Protozoic," for the oldest fossiliferous rocks.

[^46]: * Those genera are estimated as belonging to each System which occur in the strata both above and below, as well as those actually found in it.
 + The Palaoteuthis of Bronn (not D'Orb.) appears to be afsh-bone, from the equi ${ }^{4}$ valent of the Old-red sandstone in the Eifel.

[^47]: * Mr Darwin has pointed out that the sessile Cirripedes, which are more highly metamorphosed than the Lepadide, were the last to appear. The fossil mammalia afford, however, the most remarkable examples of this law. At the present day such an animal as the three-toed horse (Hippotherium) of the Miocene Tertiary would be deemed a lusus nalurc. but in truth the ordinary horse is far more wonderful. Unfortunately, a new " vulgar error" has arisen from the terms in which extinct animals have sometimes been described- as if they had been constructed upon several distinet types, and combined the character of several classes!
 + The enormous thickness of the older rocks in all parts of the world, has been held to indicate the prevalence of deep water in the primæval seas.

[^48]: * The species which have retired further north are marked (**) in the preceding Arctic List, p. 355.

[^49]: * Mr. Wm. Hopkins of Cambridge has investigated the causes which may have produced a temporary extension of the Arctic phenomena in Europe; and considers the most efficient and probable cause would be a diversion of the Gulf-stream, which he supposes to have flowed up what is now the valley of the Mississippi.-(Geol. Journal.)

[^50]: * In a paper read before the British Association, on the subject of the great extinct wingless birds of New Zealand, Prof. Owen surgested the notion of land having been propagated like a wave throughout the vast interval between Connecticut and New Zealand, since the Triassic period.

[^51]: * Views of Nature, p. 221. Bohn's ed. + Burchell, in Darwin's Journal, p. 87.
 \ddagger "The Tide of Vegetation has, in the intertropical Pacific Islands, set in a direction contrary to the prevailing winds; namely, from the Asiatic, and not from the Ainerican shores." (Huoker, 1. c. p. 211, note.)

[^52]: * Such giarts require to be collected in a basket, while the small land shells of open and rocky countries may be put in a cotton bag, hung on a coat button.
 + Land and freshwater snails may be killed instantaneously with boiling water, if a few are done at a time; and cooled by removal to cold water. Every collector finds expedients for removing the animals more or less compietely from their shells; those which, like Clausilia, retire beyond the reach of a bent pin may be drowned in tepid water.

[^53]: * Bivalves may be boiled, and their soft parts removed when the shells gape. Care should be taken not to injure the ligament, or hinge, especially in the genera like the Anatinid) provided with an ossicle.

[^54]: * Admiralty, Manual of Scientific Inquiry. 8vo. Lond. 1849.
 + Voyage of H. M. S. Rattlesnake, vol. I. p. 27.

[^55]: * "Weymouth is pre-eminently the best place on the British coast for dredging. I can reckon 195 marine species of shells that I have collected within a range of five miles, and ten more species may safely be added. The dredging is also easy and safe. The cost of a suitable boat and man is about 7 s .6 d . a day, i. e. from 10 or

[^56]: 11, a.m., to 4 or 5, p.m. Dredging can be carried on in Weymouth in almost any weather, the bay is so protected." (R. Damon.)

 * The collector may go out with the fishermen, and superintend his own dredge, almost any time of the year, although oyster catching is illegal in the summer. The scallop banks off Brighton are in 15 fms . water, and nearly out of sight of land. It is not always possible to work over them and return the same night.

[^57]: * Some of the litoral shells, like Purpura lapillus and Litorina rudis, have no freeswimming larval condition, but commence life as crawlers, with a well-developed shell. Their habits are sluggish, and their diffusion by ordinary means must be exceedingly slow.

[^58]: * The brittle-stars (Ophiocoma) are killed by sudden immersion in fresh-water; and the Actinia may be stupified by adding fresh-water drop by drop, until they lose the power of retracting their tentacles. But the bivalves (such as Pholas) may be kept in stale water till their valves fall off with incipient decomposition, and yet the muscular siphons retain their irritability, and contract slowly and completely, when placed in spirit.

[^59]: * All the materials for fresh-water and marine aquaria, including live plants and Gishes, may be obtained of W. A. Lloyd, 164, St. John Street Road, London.

[^60]: * When small fishes are kept in an aquarium, however limited, in which the aquatic plants are grouped in the centre, they will swim round and round it in a little shoal
 \dagger Mr. Warington recommends the employment of glass tinted green for moderating the light when red sea-weeds are grown.

[^61]: * These salts are manufactured hy Messrs, Brew and Schweitzer, 71, East Street, Urighton; the proportion ordered to be used is 6 oz . to the , allon of water, and stirred well until dissolved.

 There are few inland towns without a fishmonger, through whom may be obtained live periwinkles (occasionally tenanted by the hermit-crab), and oyster-shells incrusted with scrpulce and sea-weed, some of which may be still living. The stickle-back is almost the only fresh-water fish capable of existing in a marine aquarium.

 + In a sitting-room with a south aspect and good fire daily, the temperature of a thirty-gallon aquarium has been known tu fall as low as 45° on several occasions, though screened at night by a blind. (Warington, An. Nat. Hist. 1855, p. 315.)
 \ddagger Hand-book of the Marine Aquarium. P. H. Gosse. l2mo. Lond. 1855.

[^62]: * Entwickelungs geschichte der Cephalopcden. Zarich, 1844.

[^63]: * Annales des Sciences Naturelles, t. 16, No. 3, and An. Nat. 1.ist., June, 1852.
 \dagger Moll. Medit $\mathbf{4}^{\circ}$ Genes. 1851. An. Sc. Nat. t. 16, 1852.

[^64]: * The animal basis of shell is a peculiar organic substance, termed conchioline insoluble in water, alcohol and ether, and resisting the long-continued action of acids; in caustic alkali it dissolves very slowly; its composition is-H. 5, 9; C. 50,0 N. 17,5, and O.26,6, (M. E. F'remy, Ann. de Chimie, 1855, p 96.)

[^65]: * The opposite figure shows the manner in which a gasteropod may be laid out for examination, under water; the body requires to be fixed, and the cut edges of the mantle to be kept open with needle points. A convenient trough may be made of a plain earthenware soap-dish, by cutting a piece of sheet-cork (such as bootmakers use) to fit the bottom, and fixing it to a piece of sheet-lead of the same size with a couple of india rubber bands. The instruments required for dissecting are simply a pair of fine pointed scissors, a few broken needles, a penknife, or scalpel, and a pair of forceps with fine curved points.

[^66]: * A similar circumstance has been noticed in the fresh-water Paludina and Ampullaria, by Dr. Bland and Mr. R. Swift; in the absence of other food they devour the green vegetable matter incrusting one another's shells, aad in doing this remove the epidermis, or even make holes in the shell.

[^67]: * Original figures and descriptions will be found in the An. Nat. Hist. 1855, p. 22.
 + This organ appears to represent the byssal-sheath of Anomia, rather than the foot, as there is no other opening for the passage of a byssus.

[^68]: * M. D'Orbigny very liberally placed his suite of specimens of this remarkable genus in the British Museum. Oct. 1854.

