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Abstract 

In nature, cells must constantly sense their environment and respond appropriately. 

These cellular “decisions” are implemented by molecular components that can mutate and 

evolve. How do mutations lead to changes in cellular decision-making? How do the decisions 

made by cells affect their fitness? This thesis explores these questions by examining the same 

metabolic decision made by geographically and ecologically diverse strains of Saccharomyces 

cerevisiae (budding yeast). When yeast encounter a mixture of the sugars glucose and galactose, 

they utilize glucose while repressing galactose-utilization (GAL) genes. When glucose is 

exhausted, cells undergo a “diauxic lag” while inducing GAL genes, and then resume growth 

on galactose. We found that some yeast strains can induce GAL genes before glucose is 

exhausted, which reduces their diauxic lag but imposes an initial growth cost. The degree of 

pre-induction depends on the sugar-sensing threshold of the GAL circuit, which we map to a 

natural allelic series of the signaling gene GAL3. However, because the GAL response is 

bimodal, we find that GAL3 alleles only modulate the fraction of cells that induced in a given 

condition, while the expression level attained by those induced cells is tuned by alleles of other 

genes. Overall, our results reveal the repertoire of mutations that can quantitatively tune a 

cellular decision in nature, as well as the downstream effects of this tuning on physiology and 

fitness.  
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Chapter 1. 

Introduction 

In nature, cells must constantly sense their environment and respond appropriately [1–

3]. These cellular “decisions” are implemented by molecular components that can mutate and 

evolve. How do mutations lead to changes in cellular decision-making? How do the decisions 

made by cells affect their fitness? This thesis explores these questions by examining a metabolic 

decision made by Saccharomyces cerevisiae (budding yeast): whether to consume the sugars 

glucose, galactose, or both. 

The yeast galactose-utilization (GAL) pathway is a compelling model for cellular 

decision-making because it is well-characterized and exhibits a deceptively simple logic: when 

galactose is present and glucose is not, GAL genes are expressed; in all other cases, they stay 

uninduced [4–6]. In this sense, yeast “prefer” glucose over galactose. However, this traditional 

picture ignores the fact that sugar concentration, like most environmental signals, is a 

continuous quantity, and decision circuits must in general map quantitative inputs to 

quantitative outputs. One of the most detailed measurements of such a mapping was recently 

made in the GAL pathway by Escalante-Chong, Savir, et al [7]. They found that mere presence 

of glucose is not sufficient to repress GAL genes, as previously assumed. Instead, repression 

requires a certain ratio of glucose to galactose, a behavior they call “ratio-sensing”. They also 

found that different natural isolates of yeast induced GAL genes at different ratios of galactose 

to glucose. These observations motivated the project in Chapter 2 by raising two questions: 1) 

What are the physiological consequences of ratio-sensing by the GAL pathway? 2) Why do 

different strains of yeast have different induction thresholds? 
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To investigate these questions, we decided to study diauxic growth, a well-known 

physiological manifestation of microbial nutrient preferences [8,9]. When cells grow in a mix of 

preferred and alternative nutrients, they first consume the preferred nutrient to exhaustion. 

Then, growth slows while cells induce alternative nutrient utilization genes; this period is called 

the “diauxic lag” and can last up to several hours.  Finally, cells resume growth on the 

alternative nutrient. The findings of Escalante-Chong, Savir, et al. imply that cells could 

potentially activate GAL genes before glucose exhaustion and thereby avoid a diauxic lag. 

Additionally, strain variation in the threshold of ratio-sensing should result in a spectrum of 

diauxic lag across natural yeast isolates. In fact, variation in diauxic lag had already been seen 

across natural yeast strains in glucose-maltose mixtures [10] and in experimentally evolved 

bacteria [11] and yeast [10]. We confirmed the connection between GAL regulatory variation 

and diauxic lag, and unexpectedly found that GAL gene expression has a considerable fitness 

cost, suggesting a rationale for why diverse regulatory phenotypes exist. These conclusions 

have been echoed by other studies published alongside and after ours [12,13]. 

 The differences in diauxic lag seemed to be caused by differences in how the GAL 

pathway integrates signals from glucose and galactose. This is done by the 7 genes of the 

canonical GAL pathway [6] and a much larger glucose signaling network [14,15]. In the GAL 

pathway, the Gal1p, Gal7p, and Gal10p enzymes help catabolize galactose [6]. Gal2p permease 

transports galactose into the cell [16]. Intracellular galactose binds Gal3p and converts it to an 

active form [17]. Activated Gal3p sequesters the Gal80p repressor [18], thus preventing it from 

sequestering Gal4p [19]. Free Gal4p binds to promoters of GAL1, GAL2, GAL7, GAL10, and 

GAL80 and activates their expression [20]. These genes are unexpressed in the absence of 

galactose and actively repressed in the presence of glucose by the transcriptional repressor 

Mig1p [21,22]. Additional glucose-mediated mechanisms trigger degradation of GAL pathway 
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transcripts and Gal2p transporters. GAL pathway components are obvious candidates for 

mutations driving the natural variation; indeed, multiple related yeast species have lost 

function of some GAL genes, suggesting rapid evolution in this pathway  [23,24]. On the other 

hand, polymorphisms in glucose signaling are also plausible. Experimentally evolved yeast 

strains with shortened glucose-maltose diauxic lag were found to have mutations in the glucose 

signaling genes HXK2 and STD1 [10]. 

The strain differences in GAL regulation we observed are particularly interesting in light 

of numerous recent studies dissecting the genetics of nutrient utilization and stress resistance 

across natural yeast isolates [25–29]. These studies showed that budding yeast harbor extensive 

phenotypic variation as a species, based on a changing repertoire of alleles required for growth 

in various environments. At a practical level, these studies demonstrated that meiotic 

recombination and linkage analysis, long staples of yeast genetics, are also powerful tools for 

revealing the molecular mechanisms underlying natural variation [30–33]. Despite these 

advances, the effects of natural polymorphisms on quantitative cellular decisions are mostly 

unexplored. In chapter 3, we address this gap by mapping the mutations underlying strain 

differences in glucose-galactose signaling. 

In chapters 2 and 3, we were intrigued to see an array of bimodal and unimodal GAL 

induction patterns across our strains. In the most obvious cases, a subpopulation of cells was 

uninduced while another subpopulation induced at near-maximal levels. The range of sugar 

conditions that elicited bimodality varied across strains, and some strains produced a unimodal 

response in all conditions tested. Bimodality, and non-genetic heterogeneity more broadly, is 

widely observed across microbes and multicellular organisms, and can play important roles in 

environmental sensing, differentiation, and disease [34–37]. A variety of mechanisms, typically 
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involving positive feedback, can give rise to bimodality [35,38–40]. In the GAL pathway, 

bimodality is attributed to bistability [41] and requires positive feedback through Gal1p and 

Gal3p [42]. Additionally, the sugar-dosage-response of GAL expression distributions is 

quantitatively altered by perturbing GAL1, GAL2, GAL3, GAL80 [41,43,44], or MIG1 [22]. Under 

certain environmental conditions and genetic perturbations, GAL genes can also convert to a 

unimodal, graded behavior [22]. This latter phenomenon is poorly understood and seems to be 

phenocopied by the differences between our strains, which we know can be dissected 

genetically. In chapter 4, we took this opportunity to delve into the genetic factors affecting the 

modality of the GAL response. 

Chapter 4 was also motivated by a methodological challenge when studying bimodality 

or any other distributed phenotype: high dimensionality. The behaviors of mutants often vary 

in multiple ways compared to the wildtype, and usually the analysis must focus on a summary 

metric that seems most salient. For example, most recent works, including ours in chapter 3, 

compute the “induced fraction” to quantify the degree of induction of GAL genes [44,45]. 

However, there are many ways a distribution can contain X% induced cells. This means that 

most of the quantitative behavior encoded in the GAL response is currently being ignored by 

the literature (with a few recent exceptions [12,42]). Given that the GAL pathway is one of the 

best-characterized models for quantitative gene regulation, many new insights are likely if the 

full distribution of the GAL response can be taken into account or dimensionally reduced in an 

unbiased way. Our work in chapter 4 makes a step toward this goal by considering a second 

dimension of the GAL response that is subject to natural variation. This allows us not only to 

uncover an additional set of genetic variants affecting GAL regulation, but obtain a deeper 

understanding of the dimension that is already widely studied.   
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Chapter 2. 

Natural Variation in Preparation for Nutrient Depletion Reveals a Cost–

Benefit Tradeoff 

Jue Wang, Esha Atolia, Bo Hua, Yonatan Savir, Renan Escalante-Chong, Michael Springer 

Adapted from Wang et al. (2015) PLoS Biology. doi: 10.1371/journal.pbio.1002041 

Maximizing growth and survival in the face of a complex, time-varying environment is a 

common problem for single-celled organisms in nature. When offered two different sugars as 

carbon sources, microorganisms first consume the preferred sugar, then undergo a transient 

growth delay, the “diauxic lag”, while inducing genes to metabolize the less preferred sugar. 

This delay is assumed to be inevitable, due to selection to maximize use of the preferred sugar. 

Contrary to this view, we found that many natural isolates of Saccharomyces cerevisiae display 

short or non-existent diauxic lags when grown in mixtures of glucose (preferred) and galactose. 

These strains induce galactose-utilization (GAL) genes hours before glucose exhaustion, thereby 

“preparing” for the transition from glucose to galactose metabolism. The extent of preparation 

varies across strains, and seems to be determined by the steady-state response of GAL genes to 

mixtures of glucose and galactose rather than by induction kinetics. Although early GAL 

induction gives strains a competitive advantage once glucose runs out, it comes at a cost while 

glucose is still present. Costs and benefits correlate with the degree of preparation: strains with 

higher expression of GAL genes prior to glucose exhaustion experience a larger upfront growth 

cost but also a shorter diauxic lag. Our results show that classical diauxic growth is only one 

extreme on a continuum of growth strategies constrained by a cost-benefit tradeoff. This type of 

continuum is likely to be common in nature, as similar tradeoffs can arise whenever cells evolve 

to use mixtures of nutrients. 
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Introduction 

Natural environments contain complex, time-varying mixtures of nutrients and stresses. 

Understanding how cells use external cues to maximize growth and survival is key to 

understanding the evolution and function of regulatory circuits. Gene regulation allows cells to 

express pathways for specific tasks only in conditions when they are needed, to maximize the 

benefit of these pathways while minimizing their metabolic cost [1–4]. Regulatory circuits have 

evolved elaborate behaviors such as bet-hedging, signal integration, and environmental 

anticipation in response to the complexity of natural environments [5]. 

A classic example of gene regulation occurs during microbial growth on mixtures of carbon 

sources. For example, when budding yeast or E. coli grow in the sugars glucose and galactose, 

they first consume glucose, while dedicated signaling mechanisms repress galactose-utilization 

(GAL) genes [6–11]. When glucose has been exhausted, cells temporarily stop growing, induce 

GAL genes, and start growing again. The transient pause in growth, called the diauxic lag, can 

last up to several hours. 

The diauxic lag is commonly thought to be a consequence of selection to minimize expression of 

superfluous metabolic pathways when a nutrient that can be more efficiently utilized is 

available [12–14]. This is supported by the observation that cells growing in two sugars that 

support similar growth rates do not exhibit a diauxic lag [8]. However, recent studies have 

shown that even in the same nutrient mixture, the length of diauxic lag can vary among 

experimentally evolved bacterial strains [15,16] or yeast isolates [17]. In both cases, evolved 

strains lacking a diauxic shift possessed weaker catabolite repression of secondary carbon 

pathways than the ancestor. This leads to a fitness cost during growth in the preferred nutrient, 

but a fitness advantage when the environment shifts rapidly between preferred and alternative 
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nutrients. These results raise the question of whether similar mechanisms and fitness tradeoffs 

underlie the diauxic lag variation seen in natural yeast isolates [17]. 

To address this question, we monitored culture density and gene expression in ecologically 

diverse Saccharomyces cerevisiae natural isolates growing in mixtures of glucose and galactose. 

As expected, we found a spectrum of diauxic lag phenotypes, from strains with non-existent 

lags to those with more classical lag times of many hours. Strikingly, the variation in lag time is 

not due to differences in how fast strains can execute induction of GAL genes, but rather the 

timing of when they begin to induce. Short-lag strains induce GAL genes up to 4 hours before 

glucose is exhausted, in effect “preparing” for the transition to galactose metabolism. The 

degree of preparation correlates with the strength of glucose repression; strains that induce 

GAL genes at higher glucose levels also induce them earlier during diauxic growth. These 

results suggest that natural variation in catabolite repression is not only a key determinant of 

microbial fitness during sudden nutrient shifts [17], but also gradually changing nutrient 

conditions. Finally, we show that the observed phenotypic variation follows a tradeoff: early 

GAL induction benefits cells by preparing them for glucose exhaustion, but the cost of 

expressing GAL genes reduces growth rate while glucose is still present. This tradeoff is likely a 

general constraint on microbial growth strategies in mixed-nutrient environments. 

Results 

Natural yeast strains vary in length of diauxic lag 

We grew 43 Saccharomyces cerevisiae strains in a carbon-limited medium containing 0.25% 

glucose and 0.25% galactose, the preferred and alternative carbon source respectively (Figure 

2.1A). The S. cerevisiae strains come from a range of geographical locations and environments 

[18,19] and are all prototrophic, allowing us to omit amino acids from the media and avoid 
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potential complications from their role as alternative carbon sources [20]. Bulk growth of the 

cells was measured by recording the optical density of each culture every 10 minutes for 44 

hours using an automated plate reader (Materials and methods). 

The growth curves generally display an initial phase of fast growth followed by a second phase 

of relatively slower growth, as expected in a 2-sugar mixture (Figure 2.1B-C, S2.1). However, the 

strains varied in the extent of growth lag, or a local minimum in growth rate, between the two 

growth phases (top versus bottom strains in Figure 2.1B-C). Some strains (e.g. YJM978) had a 

long diauxic lag during which growth rate almost reaches zero, whereas some strains (e.g. 

BC187) had a brief lag period during which even the minimum growth rate was relatively high. 

Strain SLYG78, a derivative of the commonly used laboratory strain S288C, exhibits a 

prominent lag phase (Figure S2.1), consistent with previous studies and the traditional 

understanding of S. cerevisiae as having a diauxic-growth phenotype [6,17]  

To quantify the variation in diauxic lag, we defined a “diauxic lag time” metric as the time 

required to reach a strain’s smoothed maximal growth rate in galactose after having dropped 

below this growth rate during glucose depletion (horizontal black lines in Figure 2.1C, S2.2B, 

Materials and Methods). In growth curves that do not have a local growth-rate minimum, we 

defined the lag time as zero (Figure 2.1C, S2.2B). This lag time metric was robust to small 

differences in culture behavior (R2 = 0.96; Figure S2.2C) and to the method of calculation (Figure 

S2.2D, Materials and Methods). 
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Figure 2.1. Natural yeast strains vary in length of diauxic lag. 

(A) Schematic of growth curve experiment in “diauxic growth conditions”, defined as batch culture in 

synthetic minimal media with 0.25% glucose and 0.25% galactose. (B) Growth curves (OD600 versus time 

relative to diauxic shift) plotted top-to-bottom in order of increasing diauxic lag. A single replicate 

growth curve is shown for each of 11 strains with similar growth rates in galactose-only media. (Growth 

curves for both replicates of all 43 strains assayed are shown in Figure S2.1). Strains BC187 and YJM978 

are highlighted in red and blue, respectively. (C) Smoothed growth rate versus time relative to diauxic 

shift for the same strains as in (B). Example plots of raw OD differentials (light blue, light red) used to 

obtain the smoothed growth rate are shown for BC187 and YJM978. Diauxic lag time metric is denoted by 

horizontal black line with circles (see also Figure S2.2). (D) Histogram of diauxic lag time across all 

natural isolates assayed. Data used for histogram are the mean of 2 replicates (Materials and methods).  
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We found that diauxic lag time varies continuously in our strains from 0 to 9 hours, with a 

mean of 3.2 hours and a standard deviation of 1.6 hours (Figure 2.1D). The continuous nature of 

the observed variation was robust to the choice of metric, as a related but distinct growth-curve 

feature, the minimum mid-diauxic growth rate, also varies continuously and correlates strongly 

with lag time (R2 = 0.71, Figure S2.2C). Lag time was not correlated with growth rate in pure 

glucose or galactose, and even among a subset of strains with similarly high growth rates in 

galactose-only media (subset shown in Figure 2.1B-C) we saw wide variability in the diauxic lag 

time (Figure S2.3). This suggests that the observed variation is due to differences in metabolic 

regulation rather than in maximal sugar utilization rates. 

Several strains displayed no measurable diauxic lag and seem to transition instantly from 

glucose consumption to galactose consumption. This implies either that these strains can induce 

GAL genes quickly upon glucose exhaustion, induce GAL genes before glucose exhaustion, or 

both. To examine these possibilities, we characterized strains YJM978 and BC187, which 

represent long-lag and short-lag phenotypes, respectively (red and blue curves in Figure 2.1). 

Strain BC187 induces galactose-responsive genes before glucose is exhausted 

We cultured BC187 and YJM978 in 0.25% glucose plus 0.25% galactose and monitored GAL 

pathway expression and glucose and galactose concentrations until saturation, when both 

sugars were depleted (Figure 2.2A, Materials and methods). We refer to this as a “diauxic 

growth experiment.” To enable single-cell measurement of GAL gene induction, we integrated 

a cassette containing yellow fluorescent protein driven by the GAL1 promoter (GAL1pr-YFP), 

which has been shown to be a faithful proxy for GAL pathway expression [21–23], at a neutral 

chromosomal locus (Figure 2.2A, top, Materials and Methods). We measured GAL1pr-YFP 

expression and extracellular sugar concentration by flow cytometry and enzymatic assay, 
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respectively, over the entire diauxic growth cycle (Figure 2.2A, bottom). To quantify the timing 

of GAL gene induction, we defined tlow and thigh, respectively, as the time when GAL1pr-YFP 

expression reaches 2-fold above basal levels and 1/4 of maximal levels, relative to the moment of 

glucose exhaustion (Figure 2.2B). 

Strain YJM978, which has a long diauxic lag, does not induce galactose-responsive genes until 

after glucose is exhausted, consistent with the classical understanding of diauxic growth (Figure 

2.2C; tlow = 1.7 ± 0.1 hours, thigh = 2.7 ± 0.1 hours). In contrast, BC187, which has a short diauxic 

lag, begins GAL induction significantly before glucose exhaustion (Figure 2.2D; tlow = -3.0 ± 0.1 

hours, p = 0.02 by t-test on n = 2 replicates). Even using the more conservative thigh metric, BC187 

reaches near-maximal induction before glucose exhaustion (thigh = -0.5 ± 0.1 hours). Pre-

induction of GAL genes by BC187 leads to significant galactose consumption, even before 

glucose is fully exhausted (Figure S2.5). Both strains use glucose and galactose to completion 

and reach a similar yield (Figure S2.1), indicating that differences in induction time are not due 

to drastic differences in carbon utilization efficiency. Both strains have undetectable GAL1pr-

YFP expression in glucose-only media (Figure S2.6), ruling out the possibility that galactose 

metabolism  is constitutively active in BC187. In effect, BC187 “prepares” for the diauxic shift by 

inducing GAL genes before glucose exhaustion. 
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Figure 2.2. A short-lag strain induces galactose-utilization (GAL) genes hours before the diauxic shift. 

 (A) Top: Schematic of GAL1pr-YFP transcriptional reporter and cartoon of fluorescence distribution as 

measured by flow cytometry. Bottom: Schematic of diauxic growth GAL induction experiment. (B) 

Definitions of induction metrics, tlow and thigh, when reporter expression is at low but above-basal or near-

maximal levels, respectively. Diauxic growth for strains (C) YJM978 and (D) BC187. GAL reporter 

expression distributions (gray shading), GAL reporter median (red line), glucose concentration (purple 

circles), and galactose concentration (orange circles). Time is defined relative to the moment when culture 

achieves a density of 106 cells / mL (Figure S2.4). Purple and orange lines are smoothing spline fits to 

glucose and galactose measurements. Dotted purple line indicates time of glucose exhaustion, calculated 

using a local linear fit (Materials and methods). Data shown in (B) and (C) represent two replicate 

experiment. GAL reporter expression distribution is shown for only one of the two replicates. (E) 

Comparison of induction start time, tlow, and near-maximal induction time, thigh, for YJM978 (red bars) and 

BC187 (blue bars) cultures. Bars and error bars represent the mean and range, respectively, of two 

replicates. 

 



 
 

17 

 

Figure 2.2 (Continued). A short-lag strain induces galactose-utilization (GAL) genes hours before the 

diauxic shift. 
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Preparation is a continuous trait among natural yeast isolates 

To determine if GAL induction prior to glucose exhaustion is a typical behavior of natural 

isolates, we integrated a GAL1pr-YFP reporter into 13 additional strains (for a total of 15 strains; 

see Table S1B) and monitored their expression during diauxic growth (same conditions as in 

Figure 2.2, Materials and Methods). Directly measuring sugar concentrations is laborious and 

less precise than measuring YFP fluorescence by flow cytometry, so we used YJM978 as a 

“reference” strain to signal the exhaustion of glucose, and co-cultured it with a “query” strain 

whose GAL induction kinetics we wanted to assay (Figure 2.3A). The reference strain was 

modified to express a fluorescent marker to distinguish it from the query strain (Figure S2.7A, 

Materials and Methods). To quantify differences in GAL induction time, we defined the 

“preparation time” as the difference in time between when the query and reference strains 

reach 1/16 of their maximal median GAL1pr-YFP expression (Figure 2.3B-C). Preparation time 

ranged from -3.8 to 0.04 hours relative to YJM978 with a mean of -1.3 hours, indicating that 

most strains induce GAL genes earlier than YJM978. The preparation time measured by this 

method is highly reproducible and robust to the query-to-reference mixing ratio (Figure 

S2.7B,C,E,F, Materials and Methods).If the degree of preparation determines the extent to which 

a strain has a diauxic shift, then strains that begin inducing GAL genes earlier should also have 

a shorter diauxic lag. We find a strong correlation (R2 = 0.83, p = 9.2x10-7) between preparation 

time and the diauxic lag time (Figure 2.3D). However, earlier-inducing strains appeared to take 

longer to reach full induction, or “execute” induction more slowly. We defined the “execution 

time” as the time required for median GAL1pr-YFP expression to increase from 1/64 to 1/4 of its 

maximal level (Figure 2.3B-C). The execution time anticorrelated with preparation time (Figure 

2.3E inset) and lag time (Figure 2.3E), contradicting the naive expectation that a strain with a 

shorter diauxic lag will induce GAL genes more quickly. Taken together, our data show that the 
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length of diauxic lag correlates to when strains begin to transition to galactose metabolism, not 

how fast they can execute the transition once they begin. 

Related studies have observed population heterogeneity of growth rates and gene expression 

during sudden media shifts and diauxic growth [17,23,24]. In our experimental conditions, 

strains BC187 and YJM978 do not display bimodality in GAL1pr-YFP expression during diauxic 

growth (Figure 2.2C,D). A small number of strains do display bimodal expression at steady-

state in glucose + galactose (Figure S2.6) and possibly also during diauxic growth (Figure S2.7D, 

G-I). However, the time window of any bimodality is short compared to induction time 

differences between strains (Figure S2.7G-I, Materials and methods). Therefore, although single-

cell variation is likely an important dimension of regulatory behavior in some strains [17,23,24], 

our analysis of population-level dynamics already captures a major regulatory mode of diauxic 

growth. 
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Figure 2.3. Diauxic lag time is correlated with the start time of GAL induction. 

(A) Schematic of co-culture GAL induction experiment. Each of 15 query strains (gray) are co-cultured 

with reference strain YJM978 expressing constitutive mCherry marker (red), and sampled for flow 

cytometry every 15 minutes from mid-exponential phase until saturation. (B) Illustration of how 

preparation time and execution time metrics are defined. (C) Median GAL1pr-YFP expression versus 

time for query (gray) and reference (red) strain in 3 co-cultures selected to illustrate a range of 

preparation times. Strain I14 had above-basal reporter expression at the start of sampling, so its execution 

time was computed by linear extrapolation. (D) Scatterplot of diauxic lag time (from Figure 2.1) versus 

preparation time. (E) Scatterplot of diauxic lag time versus execution time. (E, inset) Scatterplot of 

preparation time versus execution time. Dotted gray lines in (D) and (E) indicate least-squares linear fits 

used to calculate coefficients of determination R2 and p-values. Data for diauxic lag time are the mean 

and range of two replicates, and for preparation time and execution time are the mean and s.e.m. of three 

replicates. 
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Figure 2.3 (Continued). Diauxic lag time is correlated with the start time of GAL induction. 
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GAL induction kinetics after sudden media shift are poorly correlated with diauxic lag time 

Our observations above rule out a model of the diauxic lag in which all strains begin inducing 

upon glucose exhaustion and vary only in how quickly they can reach maximal induction. 

However, it is possible that instead of inducing at glucose exhaustion, all strains induce when 

glucose is depleted below a certain threshold and vary in the delay before displaying 

observable GAL1pr-YFP expression. In this scenario, strains with a short delay between the 

start of induction and observable GAL1pr-YFP expression would appear to be preparing 

whereas strains with a long delay would appear to be inducing only after glucose exhaustion. 

When cells are grown in glucose, the GAL pathway is repressed [7,25]. To ask whether 

differences in glucose de-repression kinetics could explain diauxic lag variation in our natural 

isolates, we grew strains in 2% glucose and transferred them into 2% galactose. We found 

significant variation in induction delay, defined as the time until median GAL1pr-YFP 

expression has increased 2-fold after transfer into galactose (Figure 2.4A). Some strains began to 

induce 5 hours after media switch, while one strain did not induce even after 18 hours. In 

contrast, the execution time of induction varied only between 0.6 to 1.6 hours (Table S2), 

suggesting that once glucose repression is relieved, GAL expression quickly induces from basal 

to maximal in all strains. Strikingly, induction delay after glucose-to-galactose shift was a poor 

predictor of both preparation time (Figure 2.4B; R2 = 0.16) and diauxic lag time (Figure 2.4C; R2 = 

0.13). In particular, strains BC187 and I14 have short diauxic lags and early preparation times 

but very long induction delays after glucose-to-galactose media shift. Strain I14 had a similar 

behavior. When these two strains were omitted from the data, a weak correlation emerged (R2 = 

0.56; p = 0.005), suggesting that glucose de-repression kinetics may play a role in the diauxic lag 

in our strains, but potentially convolved with a second response such as cell stress. 



 
 

23 

Figure 2.4. Diauxic lag time is correlated poorly with GAL induction kinetics but strongly with steady-

state GAL expression in a glucose-galactose mixture. 

(A) Median GAL1pr-YFP expression versus time for BC187 (blue line), YJM978 (red line), and 13 other 

strains (gray lines) after transfer from 2% glucose into 2% galactose. (B) Scatterplot of preparation time 

(from Figure 2.3) versus induction delay after glucose-to-galactose shift, defined as the time until median 

GAL expression reaches 2-fold above basal expression. Black triangle indicates strain YJM981, which did 

not induce above background during the entire 18-hour experiment; this strain was omitted from the R2 

calculation. (C) Scatterplot of diauxic lag time (from Figure 2.1) versus induction delay after glucose-to-

galactose shift. (D) Top: Schematic of how sugar concentrations for steady-state measurements were 

chosen from the diauxic growth experiment. Bottom: Measured steady-state GAL1pr-YFP expression 

distributions for BC187, YJM978, and 13 other strains in 0.0625% glucose + 0.25% galactose. (E) Scatterplot 

of preparation time versus mean steady-state GAL1pr-YFP expression from (D). (F) Scatterplot of diauxic 

lag time versus mean steady-state GAL1pr-YFP expression from (D). Dotted gray lines in (B), (C), (E), and 

(F) indicate least-squares linear fits used to calculate coefficients of determination R2 and p-values. 
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Figure 2.4 (Continued). Diauxic lag time is correlated poorly with GAL induction kinetics but strongly 

with steady-state GAL expression in a glucose-galactose mixture. 
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Differences in steady-state sugar sensing explains variation in preparation and diauxic lag 

time 

Given that some strains can induce GAL genes in the presence of glucose, we hypothesized that 

differences in steady-state GAL expression in glucose + galactose may underlie differences in 

preparation. We measured GAL expression of our natural isolates in 0.0625% glucose + 0.25% 

galactose to simulate the conditions of a diauxic batch culture just before glucose exhaustion 

(Figure 2.4D). To ensure that we observed the steady-state response of the GAL reporter, we 

measured induction after cultures reached steady-state but before appreciable glucose had been 

depleted (Figure S2.8, Materials and Methods). We found that steady-state GAL expression in 

glucose + galactose varied from uninduced to almost maximal (Figure 2.4D, S6). On the other 

hand, all strains were uninduced in glucose-only media and maximally induced in galactose-

only media (Figure S2.6), suggesting that strains vary not in overall glucose-repressibility or 

inducibility of GAL genes, but in how they integrate signals from both sugars in the mixed 

environment prior to diauxic shift. 

We found that steady-state GAL expression in the glucose-galactose mixture correlated 

significantly with preparation time (Figure 2.4E; R2 = 0.77, p = 4x10-5) and diauxic lag time 

(Figure 2.4F; R2 = 0.67, p = 2x10-4). In other words, the strains that induce earlier during diauxic 

growth are those with higher steady-state GAL1pr-YFP expression in glucose + galactose. This 

suggests that short-lag strains do not suddenly switch GAL genes from "off" to "on" during 

diauxic growth, but instead express them at quasi-steady-state levels appropriate to the degree 

of glucose depletion. Consistent with this, the steady-state GAL1pr-YFP expression of these 

strains is proportional to their expression 3 hours before reference strain induction during 

diauxic growth (Fig S9A). Furthermore, BC187 grown in 3 sugar mixtures representing different 

moments during diauxic growth (0.25% galactose plus 0.25%, 0.125%, or 0.0625% glucose) 
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displayed intermediate GAL1pr-YFP expression even after reaching steady-state, not basal or 

maximal expression as would be expected for a switch-like response (Figure S2.8, S2.9B). Taken 

together, our data strongly suggest that differences in preparation, and therefore diauxic lag 

time, are due to differences in the steady-state response of GAL genes to glucose-galactose 

mixtures. 

All strains prepare for glucose exhaustion during diauxic growth 

Comparing the timing of GAL gene induction between diauxic growth and sudden media shift 

conditions offers a more sensitive measure of preparation for glucose exhaustion than the 

diauxic growth experiment alone. Even a long-lag strain like YJM978, which does not show 

observable GAL1pr-YFP expression until after glucose is exhausted (Figure 2.2 and 2.3), 

displays a much shorter induction delay during diauxic growth (tlow = 1.7 ± 0.1 hours; Figure 

2.2C) than after media shift from glucose to galactose (induction delay = 12.2 hours, Figure 

2.4A). To directly test if YJM978 could prepare for glucose exhaustion, we grew it in 0.125% 

glucose with or without 0.25% galactose and suddenly transferred the cells to galactose. We 

found that pre-growth in medium containing both galactose and glucose leads to an induction 

delay approximately one hour shorter than pre-growth in glucose alone, even though GAL1pr-

YFP expression is indistinguishable from basal levels in both pre-growth media (Figure S2.10).  

As YJM978 has one of the longest diauxic lags in our set of strains, these data indicate that all 

strains prepare for glucose exhaustion to some degree. 

Preparation for glucose exhaustion has an immediate cost but delayed benefit 

The fact that all of our strains prepared for glucose exhaustion by pre-inducing GAL genes 

suggests that preparation provides a fitness benefit. Consistent with this, strains with shorter 

diauxic lag times take less time after the diauxic shift to reach saturation (Figure 2.1B-C, S2.11A-
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B). But if preparation is always advantageous, then why don’t all strains display this 

phenotype? In the diauxic growth experiment of Figure 2.2, we noted that the YJM978 culture 

exhausts glucose 23 ± 4 minutes before BC187 does (Figure S2.11C), even though BC187 

eventually exhausts both sugars first. Since BC187 and YJM978 grow at similar rates in glucose-

only media (Figure S2.3), this suggests that BC187 is paying a cost for expressing GAL genes 

before glucose is exhausted. 

To directly measure potential costs and benefits experienced by BC187 during diauxic growth, 

we performed a competitive fitness assay by co-culturing BC187 and YJM978 under diauxic 

growth conditions. In addition to GAL1pr-YFP reporter expression, we also monitored the 

relative abundance of the two strains by tagging them with constitutive fluorophores (Figure 

2.5A, Materials and Methods). We plotted the log-ratio of BC187 to YJM978 cell counts versus 

time and found four different phases of relative fitness during a diauxic growth cycle (Figure 

2.5A). Initially, when both sugar concentrations are high, both strains exhibit low GAL1pr-YFP 

expression (Figure 2.5B, Phase I) and grow at comparable rates (growth rate difference less than 

0.062 doublings/hr at 95% confidence). When glucose is depleted below 0.1%, BC187 displays 

increased GAL1pr-YFP expression while YJM978 does not (Figure 2.5B, Phase II). During this 

phase, BC187 has a significant fitness disadvantage of -0.17 doublings/hr relative to YJM978 

(Figure 2.5A, pink-shaded point in 5C; p = 0.0025 for non-zero slope by t-test). After glucose 

exhaustion, YJM978 begins to induce GAL1pr-YFP (Figure 2.5B, Phase III), and here BC187 has 

a significant fitness advantage of 0.38 doublings/hr relative to YJM978 (Figure 2.5A, light-blue-

shaded point in 5C; p = 7.7x10-5 for non-zero slope by t-test). Once GAL1pr-YFP is fully induced 

in both strains the relative fitness again is comparable (Figure 2.5A, Phase IV; fitness difference 

less than 0.06 doublings/hour at 95% confidence).  
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Figure 2.5. Preparation for glucose exhaustion has upfront cost and delayed benefit. 

(A) Log2-ratio of BC187 cell number versus YJM978 cell number versus time during diauxic growth in 

two replicate co-cultures. A positive value on the vertical axis at any given moment indicates that BC187 

has divided more times than YJM978 since time = 0, and therefore has a net fitness advantage. Raw data 

(black circles) and smoothing splines (gray curves) are shown for two replicates. (B) Median GAL1pr-YFP 

expression of BC187 (blue lines) and YJM978 (red lines), glucose concentration (purple circles, lines), and 

galactose concentration (orange circles, lines) from (A). Definitions of “high”, “medium” and “low” sugar 

concentrations are indicated for reference. Vertical dotted gray lines in (A) and (B) demarcate 4 phases of 

relative fitness and GAL1pr-YFP expression during the experiment (see Results). (C) Comparison of 

growth rate differences during the diauxic growth versus steady-state sugar conditions. Data points with 

shaded backgrounds and labeled “diauxic growth” represent the slope of the data in (A) during Phase II 

(pink background) and Phase III (light blue background). Positive values indicate that BC187 grows faster 

than YJM978. Data are the mean and s.e.m. of n=6 (phase II) or n=14 (phase III) discrete derivatives in the 

shaded regions from (A). Points with white background and labeled “steady-state” are computed from 

the same data as in Figure S2.12C, and represent the mean and s.e.m. of 3-6 replicates. P-values are 

computed by 2-sample t-test. 
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Figure 2.5 (Continued). Preparation for glucose exhaustion has upfront cost and delayed benefit. 
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This experiment shows that BC187 grows more slowly than YJM978 just before glucose 

exhaustion (Figure 2.5A, Phase II). To rule out that this is due to differences in utilization of low 

glucose concentrations unrelated to GAL regulation, we measured the absolute growth rates of 

the two strains in 0.0625% glucose with or without an additional 0.25% galactose,where sugar 

concentrations were held constant by frequent dilution (Figure S2.12, Materials and Methods). 

We found that BC187 grows at 0.62 doublings/hour in glucose alone, but significantly slower, at 

0.51 doublings/hour, in glucose plus galactose (Figure S2.12C; p = 3.2x10-4 by t-test on n = 3-6 

replicates per condition). YJM978 has the same growth rate of 0.67 doublings/hour in both 

conditions. Neither strain shows GAL1pr-YFP expression in glucose alone, but in glucose plus 

galactose, BC187 displays near-maximal induction while YJM978 remains at background 

(Figure S2.12D). These results correspond to a relative fitness of BC187 to YJM978 of -0.043 

doublings/hour in glucose alone and -0.16 doublings/hour in glucose plus galactose. Only the 

latter is comparable to the fitness difference of -0.13 doublings/hour just prior to glucose 

exhaustion during diauxic growth (Figure 2.5C, left panel). Therefore, the fitness difference 

prior to glucose exhaustion is due to a steady-state cost of BC187’s early response to galactose. 

In principle, the fitness difference after glucose exhaustion (Figure 2.5A, phase III) could be due 

to differences in galactose utilization rather than a benefit from pre-induction of GAL genes. To 

rule this out, we measured the steady-state relative fitness of the strains in 0.15% galactose 

(Figure S2.12C), corresponding to the carbon conditions just after glucose exhaustion when 

BC187 has its largest fitness advantage, 0.38 doublings/hour, over YJM978 (Figure 2.5A-B, Phase 

III),. In contrast, when galactose is held constant at 0.15%, BC187 has only a 0.076 

doublings/hour advantage over YJM978 (Figure 2.5C, S2.12C). This steady-state relative fitness 

is significantly lower than the fitness difference during Phase III of diauxic growth (p = 0.009 by 
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t-test; Figure 2.5C, right panel), showing that the majority of the fitness benefit after glucose 

exhaustion during diauxic growth is kinetic, not steady-state. 

These results indicate that GAL pathway expression has a strong influence on growth rate in 

both constant and time-varying sugar environments. If this is a direct result of GAL gene 

activity, then cells from the same population with non-genetic variation in GAL expression 

should also exhibit different growth rates. To test this, we performed time-lapse microscopy to 

measure the growth rate and GAL expression of BC187 cells growing in 0.125% glucose + 0.25% 

galactose mixture, a partially inducing condition (Figure S2.13, Materials and Methods). To 

maximize the dynamic range of GAL expression of the observed cells, we performed three 

experiments, pre-induced cells to low, medium, and high GAL1pr-YFP expression by culturing 

in 0.125% glucose, 0.125% glucose + 0.25% galactose, and 0.25% galactose respectively. We 

found that growth rate and GAL1pr-YFP expression displayed a significant negative correlation 

across cells of the same population, regardless of the pre-culture medium (Figure S2.13B). 

Furthermore, cell populations pre-induced to higher GAL1pr-YFP levels displayed lower 

growth rates than populations pre-induced to lower GAL levels (Figure S2.13C). Therefore, the 

fitness differences between bulk cultures of different strains may be due to effects of GAL 

expression at the single-cell level. 

Synthetic expression of GAL genes recapitulates costs and benefits 

Given the long-established role of GAL genes in performing and regulating galactose 

metabolism [10], our findings strongly suggest that GAL expression causes the observed costs 

and benefits. Nevertheless, it is possible that unknown genes outside of the GAL pathway can 

also mediate cellular responses to the environments we studied. To show that expression of 

GAL pathway genes alone is sufficient to produce a fitness cost and a benefit, we introduced the 
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chimeric transcription factor GEV into the S288C lab strain background (Figure 2.6A, “S288C-

GEV”) [26,27]. The presence of β-estradiol, an otherwise inert compound in yeast, triggers the 

GEV protein to activate genes responsive to the GAL pathway activator GAL4p [28,29]. 

Therefore, S288C-GEV cells grown in glucose + β-estradiol will express all the inducible genes in 

the GAL pathway, as well as a GAL1pr-YFP reporter we integrated into this strain (Figure 2.6B, 

Materials and Methods). As expected, we find that S288C-GEV has a fitness cost relative to an 

unmodified S288C strain when grown in glucose + β-estradiol (Figure 2.6C, top panel, black 

line). This cost is absent in glucose-only media (Figure 2.6C, top panel, purple line), where 

S288C does not express GAL genes (Figure 2.6C, bottom panel). 
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Figure 2.6 (Continued). Synthetic induction of GAL genes is costly in glucose but beneficial during 

transition to galactose.  

 (A) Strains S288C (“WT”) and S288C-GEV, a congenic strain expressing the GEV protein (“GEV”) were 

used. Both WT and GEV strains induce GAL genes (“GAL”) in response to galactose; strain GEV also 

induces GAL genes in response to β-estradiol. (B) GAL1pr-YFP expression histograms of strains WT 

(black) and GEV (green) at steady-state in 2% glucose, 2% glucose + 30nM β-estradiol, or 2% galactose. 

The same concentrations were used in the following experiments. (C) Top: log2-ratio of GEV to WT cell 

counts during steady-state co-culture in glucose (purple) or glucose + β-estradiol (black). Bottom: median 

GAL1pr-YFP expression of strain WT during this experiment. (D) Top: log2-ratio of GEV to WT cell 

counts upon sudden shift to galactose, after pre-growth in glucose (purple) or glucose + β-estradiol 

(black). Asterisk “*”: p = 0.008 for change in log2-strain ratio by 2-sample t-test. “n.s.”: not significant, or p 

> 0.05. Bottom: median GAL1pr-YFP expression of strain GEV during this experiment. (E) Top: log2-ratio 

of cell counts of two WT strains pre-grown in different conditions and shifted to galactose. The strains 

were either both pre-conditioned in glucose (purple) or the query strain (numerator of log-ratio) was pre-

conditioned in galactose while the reference strain (denominator of log-ratio) was pre-conditioned in 

glucose (black). The black line from (D) is reproduced in gray in (E) to compare synthetic and “natural” 

GAL pre-induction. “**”: p = 0.01 for change in log2-strain ratio by 2-sample t-test.  Bottom: median 

GAL1pr-YFP expression of the strain from pre-condition 1 during this experiment. The WT strain from 

pre-condition 1 contains a GAL1pr-YFP reporter, whereas the WT strain from pre-condition 2 expresses 

constitutive mCherry to distinguish the cells. Data in (C-E) are mean and s.e.m. of 3 replicates. 

We find that S288C-GEV pre-induced in glucose + β-estradiol has an advantage over uninduced 

S288C when transferred suddenly to galactose medium (Figure 2.6D). We see a similar 

advantage when strain S288C is “naturally” pre-induced by growing in galactose, and then 

mixed with uninduced S288C and shifted together to galactose (Figure 2.6E). Therefore, 

induction of GAL genes recapitulates the benefits of galactose pre-growth in preparing cells for 

a transition to galactose. Surprisingly, the advantage of pre-induction (Figure 2.6D-E, slope of 

black line) is largest 3-6 hours after medium shift rather than immediately. However, this delay 

is seen for both synthetic and “natural” pre-induction, suggesting that it is due to stresses of the 
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medium shift unrelated to sugar metabolism (Materials and Methods). In fact, even the 

immediate advantage of pre-induction is significant; by one hour after shift to galactose, the 

synthetically pre-induced strain has made 0.068 more doublings than the non-pre-induced 

strain (p = 0.008; “*” in Figure 2.6D). This is almost identical to the immediate advantage 

conferred by “natural” pre-induction (Figure 2.6E, gray and black lines). Therefore, expression 

of GAL genes alone is sufficient to cause a fitness cost in glucose-containing environments and a 

fitness benefit during transitions to galactose. 

Tradeoff between costs and benefits of preparation is a general constraint 

Our data indicate that BC187 pre-induces GAL genes at a cost before the diauxic shift but reaps 

a benefit afterward, whereas YJM978 minimizes its preparation cost at the expense of 

experiencing a growth lag. To see if this tradeoff also constrains our other natural isolates, we 

assayed 15 strains to determine the cost they incur by responding to galactose while glucose is 

present. We defined the “galactose cost” of each strain as the relative difference in its steady-

state growth rate in glucose + galactose versus glucose only, or specifically, as (Rglu+gal - Rglu) / 

Rglu, where Rglu+gal represents growth rate in 0.03125% glucose + 0.25% galactose and Rglu 

represents growth rate in  0.03125% glucose. Galactose cost ranged from 0 to -0.6, meaning that 

a strain may grow up to 60% slower simply because galactose is present in addition to glucose. 

The cost experienced by a given strain increased with its GAL1pr-YFP expression in glucose + 

galactose (Figure 2.7B), suggesting that the growth rate reduction is due to expression or 

activity of GAL genes. Additionally, when the cost measurement was repeated in 0.125% 

glucose + 0.25% galactose, a condition which elicits lower GAL1pr-YFP expression from most 

strains, the magnitude of galactose cost also decreased (Figure S2.14). These results confirm the 

presence of a tradeoff: no strain can partially induce GAL genes without also experiencing a 

decrease in growth rate. 
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To further illustrate this tradeoff, we used the minimum mid-diauxic growth rate (“minimum 

rate”) as a direct metric for the benefit of preparation (Figure 2.6A bottom). This metric is 

correlated with lag time and intuitively captures why preparation is beneficial: the more 

prepared a strain is, the higher its growth rate will be just after glucose exhaustion (Figure 

S2.2C). Furthermore, the minimum rate is not correlated with growth rate in glucose or 

galactose alone, and therefore is not convolved with steady-state metabolic differences (Figure 

S2.3). As expected, we found a negative correlation between preparation cost and minimum 

rate (Figure 2.7C). Our model strains for short-lag and long-lag phenotypes, BC187 and YJM978, 

appeared near the extremes of this tradeoff, with the phenotypes of most other strains in 

between.  

 

Figure 2.7. Tradeoff between costs and benefits of preparation underlies natural variation in GAL 

pathway expression.  
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Figure 2.7 (Continued). Tradeoff between costs and benefits of preparation underlies natural variation 

in GAL pathway expression.  

 (A) Illustration of how (Top) galactose cost and (Bottom) the minimum mid-diauxic growth rate are 

defined (see also Figure S2.2, S14, and Materials and methods). Glucose and glucose + galactose 

conditions indicate 0.03125% glucose and 0.3125% glucose + 0.25% galactose media, respectively. (B) 

Scatterplot of galactose cost versus mean GAL1pr-YFP expression at steady-state in glucose + galactose. 

Data points are mean and s.e.m. of n=3 replicates. (C) Scatterplot of galactose cost versus minimum mid-

diauxic growth rate. The latter is computed from the growth curves shown in Figure 2.1 and S1. Data 

points are the mean and s.e.m. of n=3 replicates (galactose cost) or mean and range of n=2 replicates 

(minimum rate). 

Discussion 

“Why no lag phase?” An old problem revisited again 

A recent study by New et al. found that yeast strains evolved to respond quickly to sudden 

glucose-to-maltose (i.e. preferred-to-alternative sugar) transitions tended to also have shorter 

diauxic lags [17]. These evolved isolates acquired mutations that weakened carbon catabolite 

repression, so that maltose-utilization (MAL) genes are partially induced in otherwise 

repressing glucose levels. New et al. found that partial MAL expression is costly when glucose 

is available, but enables cells to resume growth more quickly when the environment changes 

suddenly from glucose to maltose. 

Here we confirm the link between diauxic lag duration and glucose repression found by New et 

al., and observe an analogous expression cost in the GAL pathway, consistent with other reports 

[14,30]. Additionally, we extend the previous results in two ways. First, we show that variation 

in glucose repression leads to a spectrum of GAL pre-induction phenotypes during diauxic 

growth, and that this “preparation” is mediated by steady-state sugar-sensing rather than 

induction or de-repression kinetics. Secondly, we demonstrate that the same cost-benefit 
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tradeoff that constrains lab evolution in sudden nutrient shifts also applies to natural isolates in 

gradually depleting nutrient mixtures. Overall, our results suggest that the mechanisms and 

selective forces that New et al. found in evolved strains are very likely also relevant in nature. 

Preparation arises from weak catabolite repression during gradual glucose depletion 

Preparation for the diauxic shift can be attributed to two key features of the yeast GAL 

pathway. First, some strains express GAL genes at relatively high levels in glucose-galactose 

mixtures [31]. This partial induction has the effect of allowing cells to anticipate sudden nutrient 

shifts, which New et al. also hypothesized to underlie differences in diauxic lag duration [17]. 

However, it is not obvious a priori whether partial induction of GAL genes happens fast enough 

relative to glucose depletion to be physiologically relevant. Our experiments show that cells are 

indeed able to induce GAL genes before glucose exhaustion. For example, in our culture 

conditions, strain BC187 takes 4.1 hours and YJM978 3.3 hours to deplete glucose from 0.2% to 

0%, while both strains can execute induction from 1/64 to 1/4 of maximal expression in less than 

2 hours. Even long-lag strains, which do not display observable induction prior to the diauxic 

shift, still begin to induce sooner during diauxic growth than after a sudden nutrient shift, 

suggesting that all strains can prepare for glucose depletion. These findings contribute to 

growing evidence that batch culture is a continuous dynamical process and that this feature 

plays an important role in cellular regulation [32,33].  

Induction timing, not speed, underlies variation in diauxic lag 

Previous studies have described differences in diauxic lag in terms of how quickly strains can 

transition from preferred to non-preferred nutrient metabolism [15–17]. We find that in a 

gradually depleting glucose-galactose mixture, “fast” or “slow” changes in growth rate are not 

due to “fast” or “slow” induction of GAL genes from basal to maximal, nor high basal 
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induction, but rather “early” or “late” initiation of induction relative to glucose exhaustion. This 

clarifies a distinction between induction “speed” and “timing” that has not been addressed 

explicitly in previous work on diauxic growth. 

New et al. observed a correlation between diauxic growth phenotype and growth delay after 

glucose-to-maltose shift [17], suggesting that common mechanisms underlie the behavior of 

cells in sudden and gradual nutrient shifts. We observe that diauxic lag duration is only weakly 

correlated to induction delay after a sudden glucose-to-galactose shift (Figure 2.4A-C), and 

instead that diauxic lag is more strongly correlated to preparation time and partial GAL 

expression (Figure 2.3, 2.4D-F). This discrepancy may be due to differences in our experimental 

systems, and suggest that our strains may experience stress after the glucose-to-galactose shift 

incurred by sudden loss of a metabolizable carbon source (Materials and Methods). 

Preparation as a widespread regulatory strategy 

Other examples of preparation have recently been described in microbes encountering specific 

sequences of nutrients or stresses. For example, when E. coli encounter either heat shock or low 

oxygen, they induce both heat-responsive and low-oxygen-responsive genes, presumably an 

adaptive response when entering the warm, oxygen-deprived mammalian gut [34]. The co-

regulation was decoupled by lab evolution under repeated heat shock in constant high oxygen, 

suggesting that the secondary response was neutral or costly when not needed. Anticipatory 

responses can also be asymmetric. When domesticated yeast encounter stresses typical of early 

stages of fermentation, they acquire resistance to later stresses; however, later stresses do not 

trigger resistance to early ones [35]. These results demonstrate that simple biochemical circuits 

can evolve the ability to anticipate environmental changes when the environmental cues occur 

in a predictable temporal sequence [36]. We now show that low or decreasing levels of a 
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preferred nutrient can serve as a predictive cue for eventual depletion. Since this is inevitable 

when cells deplete a mixture of nutrients at unequal rates, and mixed-nutrient environments are 

ubiquitous in nature, environmental anticipation may be a more widespread regulatory 

strategy than previously recognized. 

Natural variation in diauxic lag may result from a tradeoff between costs and benefits 

To be considered a meaningful example of preparation, a response must be beneficial in the 

future but neutral or costly in the present [35,36]. We showed that anticipatory GAL induction 

is costly--specifically, that many strains grow faster in glucose-only media than in media 

containing the same concentration of glucose plus an inducing concentration of galactose. The 

magnitude of cost is correlated to the degree of GAL expression across genetically diverse 

natural isolates, as well as across cells of the same strain with non-genetic expression variation. 

This cost can likely be attributed to the expression or activity of GAL pathway genes, because a 

strain that synthetically induces GAL genes in an otherwise non-inducing environment also 

exhibits a growth defect. These results rule out the possibility that strains induce GAL genes in 

glucose + galactose because it provides additional energy and thus a selective advantage. 

The cost of GAL induction confirms part of the traditional rationale for the diauxic lag: strains 

that maintain stringent repression of alternative sugar pathways gain an advantage by 

maximizing their growth rate on glucose. On the other hand, we show that pre-induction also 

has a benefit that can sometimes more than compensate for its cost. Simply by being able to 

grow when glucose runs out, BC187 is able to double its population size over 3 hours while 

YJM978 undergoes a lag phase. This benefit is recapitulated when synthetically pre-induced 

cells are shifted from glucose to galactose media. The prevalence of short-lag phenotypes 
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among natural strains shows that diauxic lag is by no means an inevitable phenotype in nature, 

and may be selectively advantageous only in certain conditions. 

We find that strains seem to face a tradeoff between fast growth on glucose and readiness to 

grow on galactose when glucose runs out. In principle, these goals need not be in conflict, and 

given the countless ways that genetic variation can tune growth rates and gene expression, 

perhaps evolution can optimize multiple traits simultaneously. In fact, a naïve analysis reveals 

no tradeoff between our diauxic growth metrics and unnormalized growth rates in glucose or 

galactose (Figure S2.3), consistent with a similar observation by New et. al. [17]. Therefore, 

although the correlations that we observe across natural isolates suggest there can be a causal 

relationship between GAL gene regulation and fitness consequences during diauxic growth, 

definitive proof of this idea requires future work incorporating genetic and mechanistic 

analyses. 

Given these caveats, it is nevertheless striking that we do observe a tradeoff between minimum 

diauxic growth rate and a galactose cost metric normalized for baseline growth rate differences 

in glucose. Like other examples of biological tradeoffs [2,3,37], our observation suggests the 

presence of underlying constraints despite substantial variation in other traits. In our strains, 

this constraint is likely the combination of an upper “speed limit” on how quickly GAL 

induction can be executed and an unavoidable cost of pre-induction. 

Bet hedging, mixed strategies, and optimal growth 

In this study, we have focused on the timing of induction of entire cell populations during 

diauxic growth. Some of our natural isolates display bimodal GAL induction, similar to lab-

evolved isolates, suggesting that the core phenomenon of preparation may be further 

modulated by heterogeneity across single cells. In fact, a different lab strain W303 has been 
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found to implement both early and late induction strategies simultaneously in subpopulations 

of the same culture [23], reminiscent of microbial “bet-hedging” observed in other contexts [38–

40]. This “mixed strategy” can be evolutionarily stable, as mutants with unimodal GAL 

induction are unable to invade the bimodal wildtype strain in glucose-galactose mixtures [41]. 

Similar population diversification during diauxic growth has been observed in bacteria 

[24,42,43]. Additionally, cellular decisions in nutrient mixtures can be influenced by epigenetic 

memory [22,44,45] and inter-species signalling [46,47]. An important goal of future investigation 

will be determining the relative importance of these different contributions to cellular decision-

making in complex natural environments.  



 
 

42 

Materials and Methods 

Strains and Media 

Natural isolate yeast strains were obtained from multiple sources: 23 strains were part of the 

Saccharomyces Genome Resequencing Project (SGRP) and obtained from the National Collection 

of Yeast Cultures [18]; 18 strains were obtained from the Fay lab at Washington University [19]; 

strain Bb32 was obtained from the Broad Institute [48]; strain SLYG78 was constructed for this 

study. Some strains were obtained in duplicate, which we indicate by affixing “-SGRP” or “-

WashU” to the strain name. One of these, Y12, displayed reproducibly different diauxic growth 

phenotypes depending on the source collection—this may be due to strain mislabeling (Table 

S1, personal communication, Justin Fay) [49]. All strains are homozygous diploid and 

prototrophic. 

Growth curves were performed on 43 strains, and a subset of 15 natural isolates were chosen for 

subsequent analyses. A full strain list, as well as detailed genotypes of the 15-strain subset, can 

be found in Table S1. With the exception of SLYG78, the subset strains were transformed with 

vector SLVA63 or SLVD02 digested with NotI, which replaces the chromosomal HO locus with 

GAL1pr-YFP linked to the kanMX4 or hphNT1 selection marker respectively. Deletion of HO 

does not affect growth rate [50]. Strain SLYG78 was constructed by transforming S288C-lineage 

haploid strains FY4 and FY5 [51] with GAL1pr-YFP and TDH3pr-mTagBFP2 (vectors SLVD02 

and SLVD13), respectively, and mating them to obtain a diploid. Strains BC187 and YJM978 

were transformed a second time with SLVA19 or SLVA06, which replace the 2nd HO locus with 

TDH3pr-mTagBFP or TDH3pr-mCherry linked to natMX4, respectively. These strains are 

designated BC187yb and YJM978ym in this section and in the supporting materials, but simply 

‘BC187’ and ‘YJM978’ in the main text for clarity. Strain BC187ym was used for time-lapse 

microscopy experiments (Figure S2.13) instead of BC187yb (see “Single-cell measurements by 
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time-lapse microscopy”); the two strains are identical other than the fluorescent protein they 

express. Strains for synthetic GAL induction via GEV are described below. All yeast 

transformations were done by the standard lithium acetate procedure [52].  

All experiments were performed in synthetic minimal medium, which contains 1.7g/L Yeast 

Nitrogen Base (YNB) (BD Difco) and 5g/L ammonium sulfate (EMD), plus carbon sources. YNB 

contains no amino acids and extremely small amounts of other carbon-containing compounds, 

and therefore the added sugars comprise the sole carbon source. For diauxic growth 

experiments (Figures 2.1-2.3), the synthetic minimal media base was supplemented with 2.5g/L 

glucose (EMD) and 2.5g/L galactose (Sigma) to obtain 0.25% glucose plus 0.25% galactose w/v. 

We chose a 1:1 mixture of sugars to maximize the amount of growth curve data in both diauxic 

growth phases, and a total carbon concentration of 0.5% w/v because it is the highest that can be 

completely exhausted in synthetic minimal medium before non-carbon nutrients become yield-

limiting. Unless noted otherwise, cultures were grown in a humidified incubator (Infors 

Multitron) at 30°C with rotary shaking at 230rpm (tubes and flasks) or 999rpm (deep 96-well 

plates). 

Growth curves and diauxic lag time metric 

Growth curves (Figure 2.1) were obtained using an automated robotic workcell in a room 

maintained at 30°C and 75% humidity. Strains were cultured in 150uL of medium in optical-

bottom 96-well plates (CellTreat). Plates were cycled between a shaker (Liconic) and a plate 

reader (Perkin Elmer Envision) using a robotic arm (Caliper Life Sciences Twister II), and 

absorbance at 600nm (OD600) was measured for each plate approximately every 10 minutes for 

up to 48 hours. In the humidity-controlled room, evaporation of medium was negligible within 

this time. Strains to be assayed were pinned from glycerol stock onto YPD agar and incubated 
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for 16 hours, and then pinned into 600uL of liquid YPD and incubated another 16 hours. These 

cultures were diluted 1:200 into 600uL of synthetic minimal + 0.5% glucose and grown for 8 

hours, and finally diluted 1:300 into synthetic minimal + 0.25% glucose + 0.25% galactose for 

growth curve measurements. The final inoculation was performed into 2 different plates; these 

replicate growth curves were nearly indistinguishable for all strains (Figure S2.1). 

Analysis of growth curve data was performed in MATLAB using custom-written code. Raw 

OD600 readings were background-corrected by subtracting the median OD of 5-10 media-only 

wells on each plate. OD increased linearly with culture density in the density range of our 

cultures (Figure S2.2A). The OD of a typical saturated culture in our experiment was 

approximately 0.3, which corresponds to 5×107 cells/mL. To analyze the diauxic lag, a smoothed 

growth rate was obtained by log2-transforming the data, computing discrete derivatives 

between consecutive data points as (ODi – ODi-1) / (ti – ti-1) and fitting the derivatives to a cubic 

spline using the MATLAB function csaps with a smoothing parameter of 0.75. This smoothed 

derivative represents the instantaneous growth rate in units of doublings/hour. The diauxic lag 

time metric was computed as the difference in time between the last local maximum in the 

smoothed growth rate and the previous point where the culture had the same growth rate; the 

earlier point was also used as the time of diauxic shift (Figure 2.1, S2.2B). The minimum mid-

diauxic growth rate was computed as the minimum value of the smoothed growth rate between 

these two times (Figure S2.2B). In strains that did not have a local minimum in smoothed 

growth rate, we defined the diauxic lag as zero and the minimum mid-diauxic growth rate as 

the value of the smoothed growth rate at its inflection point between the two growth phases; 

this inflection point was also used as the time of diauxic shift (Figure S2.2B, strain Bb32). Similar 

results were obtained if the 2 metrics were calculated using a sliding-window average on the 

discrete derivatives instead of a smoothing spline (Figure S2.2D). We chose the smoothing-
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spline method because it facilitated calculation of a second derivative to allow identification of 

inflection points in the growth rate (Figure 2.2B, red lines). 

To obtain growth rates in glucose or galactose (Figure S2.3), additional growth curves were 

performed as above, except the final culture medium contained 0.5% glucose alone or 0.5% 

galactose alone. Exponential growth rate was extracted from these data as the mean growth rate 

between when OD600 = 2-6 and OD600 = 2-4, or when culture density is approximately 1/16 and 1/4 

of saturation. 

Flow cytometry and sugar assays on diauxic batch cultures 

We assayed the gene expression and sugar consumption of BC187yb, YJM978yb, or a co-culture 

of the 2 during diauxic growth (Figure 2.2, 2.5) by inoculating them from single colonies into 

liquid YPD, incubating for 16 hours, mixing 1:1 by volume if co-culturing, and then diluting 

1:100 – 1:500 into 2% raffinose and growing for 20 hours to ~1.5x106 cells/mL. The raffinose 

cultures were pelleted by centrifugation, washed once, and then resuspended in 0.25% glucose 

+ 0.25% galactose medium in 2 replicate cultures of 50mL each. The cultures were incubated in 

flasks at 30°C with shaking, and a sample was removed every 15 minutes until saturation, about 

18 hours. Some sample was placed on ice and diluted 1:2 – 1:100 in Tris-EDTA pH8.0 and read 

immediately on a Stratedigm S1000EX cytometer. The flow cytometer injected a defined 

volume, so we can estimate the absolute culture density (Figure S2.4A). The remaining sample 

was filter-sterilized using a Pall 0.2um filter plate and the flow-through stored at -20°C. Media 

flow-throughs were later thawed and assayed for glucose and galactose concentrations by 

mixing with a sugar-specific oxidase (Megazyme) and measuring the absorbance of the reaction 

at 340nm. A standard curve of known sugar concentrations was also assayed and used to infer 

concentration from absorbance. We expect YFP signal to change one hour slower than GAL1 
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protein levels, due to fluorophore maturation time [53]. This may be why galactose decreases 

slightly in the YJM978 culture before GAL1pr-YFP increases (Figure 2.2D). However, since all 

strains have the same reporter, this should not affect induction time differences between strains. 

Analysis of flow cytometry and sugar time course data 

Flow cytometry data was analyzed using custom MATLAB code. In co-culture experiments, a 

2D Gaussian mixture model (using the gmdistribution class) was fit to mCherry and side-

scatter signal to segment the nonfluorescent and mCherry-expressing populations. When 

BC187yb was co-cultured with YJM978ym, segmentation was applied to both mCherry and BFP 

signal to exclude debris and doublets. We optimized flow cytometry conditions to minimize the 

occurrence of doublets (<1%), and therefore segmentation with 1 or 2 fluorescent markers gave 

equivalent results. GAL1pr-YFP expression histograms were computed on the log10-

transformed YFP signal of each segmented subpopulation. 

Results of diauxic growth experiments (Figure 2.2B-C, 2.5A-B) are plotted so that time zero 

corresponds to when culture density is 106 cells/mL rather than inoculation time (Figure S2.4B-

D). This allows the glucose consumption rate of each strain to be compared by looking at the 

glucose exhaustion time (Figure S2.11). To determine the glucose exhaustion time for each 

dataset in Figure 2.2, a line was fit to all glucose data points whose values lay between 0.01% 

and 0.05%, and the x-intercept of this line was taken as the time of glucose exhaustion. This 

method is more robust to measurement noise at low sugar concentrations than simply finding 

the time when concentration reaches some low threshold. 

Diauxic growth time-course measurements on multiple strains 

To determine the timing of GAL pathway induction in multiple natural isolates (Figure 2.3), we 

co-cultured GAL1pr-YFP-labeled versions of each “query” strain with a “reference” strain, 
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YJM978ym, which contains a constitutive fluorescent protein, TDH3pr-mCherry, as well as a 

GAL1pr-YFP reporter (Table S1; also see “Strains and media”). Query strains were grown in 

liquid YPD for 16 hours and then mixed with the reference strain YJM978ym at ratios of 1:4, 1:1, 

and 4:1 by volume. The mixed cultures were diluted 1:20 into YPD and grown for 4 hours, and 

then diluted 1:200 in 2% raffinose and grown for 12 hours. The raffinose cultures were then 

diluted 1:200 into 0.25% glucose + 0.25% galactose cultures split across 40 96-well plates. These 

were placed in a shaking incubator and allowed to grow for 8 hours before beginning sampling. 

Every 15 minutes a plate was removed from the incubator and its contents were mixed 1:1 with 

Tris-EDTA pH8.0 + 0.2% sodium azide to stop growth and protein synthesis, and incubated for 

1 hour at room temperature to allow fluorophore maturation. The 40 plates were then measured 

on the flow cytometer with the aid of a robotic arm. 

We confirmed that the constitutive fluorophore does not affect the time of induction by co-

culturing two YJM978 strains, with and without the TDH3pr-mCherry (Figure S2.7B). We also 

compared the GAL induction start time (tlow) of BC187 and YJM978 when they are cultured 

separately and when co-cultured, and saw no significant difference for either strain (Figure 

S2.7C). To check that growth rate differences between strains do not affect how quickly glucose 

is depleted, and therefore the timing of GAL induction, we performed each co-culture 

experiment at 3 different initial ratios of query to reference strain, and obtained almost identical 

results (Figure S2.7D-E). Therefore, this assay is robust to the presence and amount of reference 

strain, and we used the 3 inoculating ratios as replicates for data analysis. 

To analyze population heterogeneity in GAL induction (Figure S2.7G-I), we computed the “ON 

fraction” as the fraction of cells with YFP signal greater than 1/32 of maximal median YFP. This 

threshold is just above the uninduced YFP level (Figure S2.7G). The ON fraction increases 
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monotonically in most of our strains. Some strains have a small pre-induced population at the 

start of sampling (Figure S2.7H), consistent with the steady-state bimodality we have seen. 

Some strains do not seem to reach complete induction (ON fraction = 1), and in fact decrease in 

ON fraction due to an increasing YFP-off population toward the end of the timecourse (also see 

Figure S2.7D). This is unlikely for biological reasons (all glucose and most galactose has been 

depleted at that point) and may reflect the presence of contaminants in the fixative. Our metrics 

are computed on data before this potential contaminant reaches appreciable concentrations and 

do not affect the reported results. Likewise, before this point at least 90% of cells induce as one 

coherent population in all our strains (Figure 2.7H-I) rather than as two-subpopulations as seen 

by Venturelli et al. in strain W303 [23], which we did not assay here. The environmental and 

genetic determinants of induction time heterogeneity are potentially interesting to dissect in 

future experiments. 

Sudden medium shift experiments 

The medium shift experiment in Figure 2.4A was performed by inoculating strains from colony 

into liquid YPD, incubating for 16 hours, and then diluting 1:500-8000 into 2% glucose so that 

cell density was approximately 1×106 after 12 hours of further incubation. At this point, cultures 

were pelleted by centrifugation at 1000g for 2 minutes and washed once in 2% galactose. The 

cultures were pelleted again and resuspended in 2% galactose, and a sample of cells was 

removed from each culture and measured on the flow cytometer every 20 minutes for 18 hours. 

The same protocol was used when shifting strain YJM978ym from 0.125% glucose + 0.25% 

galactose to 0.125% glucose (Figure S2.10). 

A similar experiment by New et al. using time-lapse microscopy after a glucose-to-maltose shift 

found that the average single-cell growth lag correlated with a metric similar to our diauxic lag 
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time [17]. The apparent discrepancy between New et al. and our observations in Figure 2.4A-C 

is likely explained by differences in our metrics, the circuit studied (GAL versus MAL), and/or 

growth media. In particular, we used Yeast Nitrogen Base, which contains no carbon sources 

other than glucose or galactose, whereas New et al. used YP, which contains peptone and yeast 

extract. We speculate that auxiliary carbon sources may modulate the response of cells to 

sudden primary carbon shifts, a potentially interesting effect for future investigation. 

Calculation of induction metrics 

For both the diauxic growth (Figure 2.2-2.3) and sudden medium shift experiments (Figure 

2.4A), we analyzed GAL1pr-YFP expression kinetics by calculating the time that a certain 

threshold value of median YFP signal was reached, and using these induction times to define 

other metrics (e.g. preparation time). These induction time calculations were always done by 

linear interpolation between two data points that bracketed the threshold YFP value. The 

threshold values of YFP signal were chosen to reflect the meaning of a given metric—for 

example, we considered the “start” of induction to be when YFP signal reached 2-fold above the 

basal expression of that strain (usually the initial value in a timecourse), and the “end” of 

induction to be when YFP signal was 4-fold below maximal expression. If the same metric was 

used in different experimental designs (for example, execution time during diauxic growth or 

after medium shift), we occasionally chose different YFP thresholds to define the metric due to 

variation in the range of observed data. In general, however, our results were robust to the 

choice of threshold. For example, preparation time can be computed using a different definition 

of “mid-induction time” with almost identical results (Figure S2.7F). For a detailed description 

of each metric used in this study, and when they can be compared across experiments, see Table 

S2.  
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Steady-state GAL expression and growth rate measurements 

To measure the steady-state behavior of cells in defined glucose and galactose concentrations, 

we inoculated cells from colony into liquid YPD for 16 hours, diluted in 2% raffinose and grew 

for 20 hours, and then inoculated into glucose and/or galactose media and grew for at least 8 

hours before sampling. To maintain steady-state conditions, we diluted the cultures 1:3 – 1:10 

with fresh media every 2 hours so that the culture density stayed below 106 cells/mL (Figure 

S2.12A, light-colored lines). Based on the observed glucose consumption rates, this ensures that 

less than 10% of the glucose in a 0.0625% glucose medium is depleted. As a further check, we 

continued the experiment up to 48 hours and found that GAL expression reached steady-state 

at 8 hours and stayed constant (Figure S2.8), indicating that our protocol was sufficient to 

prevent physiologically relevant changes in sugar concentrations. 

To measure the steady-state relative and absolute growth rates of strains BC187yb and 

YJM978ym (Figure 2.5C,E), we co-cultured them in various glucose and/or galactose media and 

sampled and diluted the cultures every 2 hours for 12 hours. We determined the growth rate 

difference (a.k.a. selection rate) by fitting a line to the log2-ratio of cell counts for each strain 

over time (Figure 2.5C, S2.12B). We determined absolute growth rates from the same data by 

fitting a line to the log2-dilution-adjusted-cell-concentration (Figure S2.12A, C; see also Figure 

S2.4). We obtained precise dilution factors by weighing culture tubes when empty and during 

each dilution. These experiments were done with n=3-6 replicates. To compare steady-state 

growth rate differences to those from diauxic growth (Figure 2.5A), we computed discrete 

derivative of the log2-strain-ratio at all consecutive data points in Phase I or Phase II, and 

compared their distribution with our steady-state measurements by a 2-sample t-test (Figure 

2.5C). 
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Single-cell measurements by time-lapse microscopy 

To prepare cells for time-lapse microscopy (Figure S2.13), we inoculated BC187ym from a 

colony into liquid YPD and grew for 16 hours, diluted in 2% raffinose and grew for 16 hours, 

and then diluted into 0.125% glucose, 0.125% glucose + 0.25% galactose, or 0.25% galactose for 8 

hours to a density of 5×105 cells/mL. Cells are then diluted 1:300 into 0.125% glucose + 0.25% 

galactose medium into wells (~1000 cells / well) on a glass-bottom 96-well plate pre-coated with 

concanavalin A (Sigma) and left to settle for 1 hour. BC187ym contained a GAL1pr-YFP 

promoter and a TDH3pr-mCherry marker for image segmentation. Imaging was performed on 

a Nikon Eclipse Ti inverted microscope through a 20x objective lens. Exposures were taken 

every hour for 4 hours in bright field, YFP (ex. 500/24, em. 542/27), and mCherry (ex. 562/40, em. 

641/75) channels, from 30 camera positions across 2 wells per pre-media condition, for a total of 

90 camera positions. Image acquisition was controlled using custom MATLAB code using 

Micromanager/ImageJ. 

Microscopy data were analyzed using custom MATLAB code. Microcolonies (clumps of 1-10 

cells) were segmented in each mCherry image by applying a Gaussian blur to smooth cell 

boundaries, followed by a tophat filter to even out background, and thresholding to identify 

cells. Microcolonies were tracked across each time series by identifying overlapping areas. 

Colonies that split up, merged, entered, or exited the image during the acquisition time period 

were omitted from downstream analysis. Growth rate was computed as the change in log2 of a 

microccolony’s pixel area between first and last time points, divided by elapsed time (4 hours). 

YFP concentration was computed as the final average background-subtracted YFP signal per 

pixel area of a microcolony, where background YFP was taken as the median pixel intensity. 



 
 

52 

Synthetic GAL induction using the GEV system 

Synthetic induction experiments (Figure 2.6) were performed using 3 strains derived from FY5, 

a MATα S288C derivative (Table S1) [51]. Strain SLYA32 (“wt” reference strain in Figure 2.6C-E) 

was transformed with a constitutive TDH3pr-mCherry-natMX4 (vector SLVA06) to allow flow 

cytometry segmentation. Strain SLYA39 (“WT” in Figure 2.6B, query strain in 2.6E) was 

transformed with a GAL1pr-YFP-natMX4 reporter (vector SLVA64). Strain SLYH71 (“GEV” in 

Figure 2.6) was transformed with a tandem GAL1pr-YFP- ACT1pr-GEV-hphNT1 replacing the 

HO locus (vector SLVD04). The GEV sequence was subcloned from vector pAGL, a generous 

gift from the Botstein lab [26]. To perform competitive growth experiments (Figure 2.6C-D), 

query and reference strains were inoculated from single colonies into YPD, grown overnight, 

mixed 1:1 by volume, and then diluted 1:100 into YPD and grown 6 hours to OD~0.3. Then the 

cultures were concentrated 5x by centrifugation and diluted in triplicate 1:300 (1:60 dilution of 

cells) into 2% glucose or 2% glucose + 30nM β-estradiol and grown 12 hours to pre-induce. If 

needed (Figure 2.6D), cells were shifted to 2% galactose by centrifugation at 3000g for 2min, 

washing in new medium, pelleting again, and resuspending. For the experiment in Figure 2.6E, 

the above protocol was used, except query and reference strains were kept in separate cultures 

until the time of medium shift, and then mixed and resuspended together into new medium. 

The cultures were sampled immediately after medium shift, and then every 30 minutes for 9 

hours, to measure the strain ratio by flow cytometry. The query strain in Figure 2.6E, black line, 

is shifted from galactose medium back to the same medium, so the apparent delay in fitness 

advantage it exhibits may reflect a stress response to centrifugation and resuspension. 

Measuring galactose cost 

To obtain the galactose cost (Figure 2.7, S2.14), we measured the growth rates of multiple strains 

in glucose and glucose + galactose. We co-cultured strains with the YJM978ym reference in 
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0.03125% glucose alone or 0.03125% glucose + 0.25% galactose (0.125% glucose in Figure S2.14), 

allowed them to grow for 8 hours, and then measured the cell count ratio at 2 timepoints 4 

hours apart. To minimize glucose depletion, we inoculated cells so that their density at the end 

of the experiment did not exceed 3x106 cells / mL. We computed the growth rate difference 

between query and reference strain as 

!" = log'

()*+,-,/0123

(,+/,/0123
− log'

()*+,-,0105023

(,+/,0105023
/4	ℎ:;<=, 

where N refers to the number of cells of a particular strain at a particular timepoint. We 

computed the absolute growth rate of the reference strain in each well as 

",+/ = log'

(,+/,/01>3

(,+/,0105023
/4	ℎ:;<=, 

and then found the average and s.e.m. of reference strain growth rates across all replicates of 

each condition as <Rref,glu> and <Rref,glu+gal> (see Table S2). We computed the absolute growth rates 

of query strains as Rquery = <Rref > + ΔR in each of the two conditions. Then we computed the 

galactose cost metric as (Rglu+gal - Rglu) / Rglu, where R denotes query strain growth rates in each 

condition. Error bars are the s.e.m. of galactose cost, computed from the s.e.m. of measured ΔR 

and <Rref > values using standard uncertainty propagation formulas [54]. 

Raw data and MATLAB code 

Raw data and MATLAB analysis code used to generate all figures in this paper are deposited in 

the Dryad repository and are openly available via: http://dx.doi.org/10.5061/dryad.39h5m [55].  
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Chapter 3. 

Polymorphisms in the Yeast Galactose Sensor Underlie a Natural 

Continuum of Nutrient-Decision Phenotypes 

Kayla B. Lee*, Jue Wang*, Renan Escalante-Chong, Julius Palme, Bo Hua, Michael Springer 
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In nature, microbes often need to "decide" which of several available nutrients to utilize, a 

choice that depends on a cell’s inherent preference and external nutrient levels. While natural 

environments can have mixtures of different nutrients, phenotypic variation in microbes’ 

decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the 

concentration of glucose and galactose required to induce galactose-responsive (GAL) genes 

across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we identified a locus 

containing the galactose sensor, GAL3, which was associated with differences in GAL signaling 

in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver 

of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of 

the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag 

time, a trait that has been previously demonstrated to be selectable. These results suggest that 

ecological constraints on the galactose pathway may have led to variation in a single protein, 

which allows cells to quantitatively tune their response to nutrient changes in the environment.  
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Introduction 

The nutrient composition of natural environments can fluctuate and organisms must induce 

metabolic pathways that allow them to utilize the available nutrients [1-3]. Recent studies have 

found that closely related microbes vary in both the types of nutrients they can utilize and the 

efficiency at which they do so [4,5]. However, most studies have focused on differences in 

growth in single-nutrient environments (e.g., growth in “pure” glycerol). Natural 

environments, on the other hand, are often composed of mixtures of multiple nutrients. This is 

likely to select for cells that not only utilize nutrients efficiently, but also best decide which 

subsets of nutrients to utilize. 

Comparative studies have highlighted the plasticity of transcriptional regulatory networks. 

While transcription factor binding sites are typically conserved, the location of the binding sites 

in the genome can rapidly evolve [6]. Chromatin immunoprecipitation followed by sequencing 

in yeast [7-9], mice and human [10], and flies [11] have shown a surprisingly small conservation 

in the genes and sites that were bound by transcriptional regulators between species. Even 

when the regulated genes are conserved, the transcription factors that regulate them can change 

[12-15]. The development of genomic tools has greatly aided the interspecific comparison of 

regulatory binding sites.  

The comparative paucity of examples of evolution of other components of regulatory networks 

should not be taken as a sign of their relative absence, but instead is likely due to the lack of 

high throughput tools to identify these changes. There are multiple situations where upstream 

signaling changes must have occurred. For instance, in the galactose-utilization pathway (GAL) 

in C. albicans, Rtg1p and Rtg3p activate GAL genes while Gal4p is involved in glucose 

regulation; in S. cerevisiae, Gal4p activates GAL genes while Rtg1p and Rtg3p are involved in 
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glucose regulation [16]. This implies that the upstream signaling networks that sense and 

transduce galactose and glucose signals have also changed. Furthermore, duplication and 

divergence can shape signaling networks. For example in the GAL pathway in yeast, 

duplication and divergence allowed the sensing and catabolic activity of a single ancestral 

protein to be separated into two paralogous proteins [17]; this divergence likely had profound 

consequences for how yeast were able to 'perceive' galactose. Hence, it is likely that cellular 

decision-making can also evolve, but the degree of variation, its molecular and physiological 

basis, and the evolutionary timeframe at which it occurs has yet to be resolved.  

To begin to address these questions, and given the previously observed changes in the GAL 

regulatory network, we characterized differences in the induction of the GAL pathway in 

natural isolates of the budding yeast, S. cerevisiae. In the presence of high concentrations of 

glucose, the preferred carbon source, yeast cells repress the GAL pathway [18,19]. In the 

presence of galactose alone, cells activate GAL genes. In mixtures of both glucose and galactose, 

cells must "decide" whether to induce GAL-associated genes. In such mixed environments, cells 

show a complex response [20] where the induction of the pathway is dependent on the ratio of 

glucose and galactose [21]. These observations, combined with the deep molecular 

understanding in the literature [22,23], make the GAL pathway an excellent model for studying 

natural variation in cellular decision-making. 

Here, we use single-cell measurements to quantify the extent of variation in GAL induction, 

followed by bulk segregant analysis and synthetic allele replacements to find the determinants 

of this variation. We found that the glucose concentration needed to induce GAL genes varies 

~100-fold across closely related natural isolates of S. cerevisiae. Even though this phenotypic 

variation is continuous, a large proportion of it can be explained by differences in a single gene, 
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the galactose sensor GAL3. Changing the GAL3 allele produces a measurable difference in the 

diauxic lag length, a trait that was previously shown to be selectable [24]. These results 

highlight the fact that cellular decision-making has the potential to be rapidly shaped by 

selective pressures in the environment. 

Results 

The decision to induce GAL pathway varies across S. cerevisiae natural isolates 

To enable measurement of the GAL signaling response, we generated a fusion of the GAL1 

promoter from S. cerevisiae and yellow fluorescent protein (GAL1pr-YFP) (Figure 3.1A). GAL1 is 

the first metabolic gene in the galactose utilization pathway [25] and this promoter has been 

used by numerous studies as a faithful readout of pathway activity [21,26-28]. The reporter 

construct was integrated into the neutral HO locus [29] in 42 different S. cerevisiae strain 

backgrounds (Figure S3.1) [30,31]. These 42 strains span a range of phylogenetic and ecological 

diversity [30,31]. Six of these strains either did not grow in galactose, likely due to inactivation 

of the pathway [4], and thus were not characterized further. We focused on determining the 

GAL response phenotype of the remaining 36 strains (Table S3.1). 

To survey the natural variation in the inducibility of GAL genes in mixtures of glucose and 

galactose, we measured the GAL reporter response in a titration of glucose concentrations from 

2% to 0.004% w/v on a background of constant 0.25% galactose (Figure 3.1B, Materials and 

methods). Cells were first pre-grown for 14-16 hours in 2% raffinose (which does not induce or 

repress the GAL pathway), and then transferred to glucose + galactose and grown for 8 hours at 

low densities. We previously showed that this protocol is sufficient for cells to reach steady-

state without depleting the carbon sources [21]. Finally, single-cell YFP fluorescence was 

measured by flow cytometry. To account for well-to-well variability or variability in our glucose 
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titration, each of the 36 query strains were co-cultured with a reference strain, YJM978, 

containing TDH3pr-mCherry (this constitutive fluorophore allowed us to distinguish the query 

and reference strains) and GAL1pr-YFP (Materials and Methods).  

 

Figure 3.1. Natural isolates of S. cerevisiae vary in the decision to induce the GAL pathway. 

(A) Schematic of the reporter construct (GAL1pr-YFP). (B) Schematic of co-culture pre-growth, glucose 

and galactose induction, and flow cytometry measurement for a glucose titration. The decision threshold, 

the concentration of glucose where 50% of the cells are induced, is indicated by circle and dashed line. (C) 

Decision threshold for 36 lab and natural isolates of S. cerevisiae. Histogram shows the distribution of the 

mean decision threshold for all strains assayed. 
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Qualitatively, there was a large amount of variability in the concentration of glucose at which 

cells induced the GAL pathway (Figure 3.1, S3.4). We also observed bimodal expression in some 

strains and conditions, a likely consequence of cellular heterogeneity and ultrasensitivity in the 

GAL circuit [28,32,33]. This complicates quantitative analysis, because a metric such as the mean 

expression (which is implicit, for example, in a bulk assay) would convolute both the number of 

cells that are inducing and the expression level of the cells that have 'decided to' induce, two 

factors that may vary independently in bimodal responses. Hence, to compare the GAL 

pathway response between natural isolates, we defined a metric, the “decision threshold” or F50, 

as the concentration at which 50% of cells have greater-than-basal expression of the GAL 

reporter (Materials and Methods). This metric is similar to those used in previous work [27,34], 

and focuses on when a cell decides to induce a pathway while differentiating it from how 

strongly a cell responds once induced. The decision threshold was highly reproducible across 

replicate measurements for all of our natural isolates (Figure S3.3).  

Quantitatively, the decision threshold varies over a range of 108 ± 0.7-fold glucose 

concentrations across our strains (Figure 3.1, S3.4). The Hawaiian cactus strain UWOPS87-242.1, 

was most inducible, with a decision threshold of 0.74±0.2% glucose (mean ± standard error 

mean), while the clinical isolate, YJM421, was least inducible, with a decision threshold of 

0.01±0.01% glucose (mean ± S.E.M.). Half of the strains have decision thresholds within a 8.1-

fold range centered at 0.25% glucose (Figure 3.1C). This glucose concentration corresponds to a 

galactose+glucose ratio of ~1:1. By eye the decision threshold appear to form 2 clusters, but 

given the reproducibility of our measurements there are significantly more than 2 (Materials 

and Methods). Therefore, there is a reproducible continuum of a phenotypes centered around 2 

typical behaviors. 
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Strain differences in decision threshold could be due to differences in sugar signaling, 

utilization, or both. If sugar utilization is a factor, we expect the decision threshold to be 

correlated to growth rates in glucose or galactose. We measured the growth rates of the 36 

natural isolates during mid-exponential growth in either 0.5% glucose or 0.5% galactose (Figure 

S3.5, [35]). Despite substantial variation in single-sugar growth rates across our strains (0.23-

fold in glucose and 0.16-fold in galactose), neither growth in pure galactose or glucose are 

correlated with the decision threshold (glucose R2 = 0.2, galactose R2 = 0.001). This implies that 

while both sugar utilization and signaling can vary between strains, evolution has the potential 

to select these two traits independently. 

Previous studies have determined the correlation between genotypic diversity and either 

phenotypic diversity or ecological niche. For example, analysis of 600 traits in yeast by 

Warringer et al. identified a correlation between phylogeny and phenotype [4]. These studies 

can be used to assess whether traits are more likely to be neutral or undergoing selective 

constraint. To determine if the decision threshold is correlated with phylogeny, we began by 

comparing the 11 closely related strains of the wine/European clean lineage. Despite the close 

phylogenetic relationship of these strains, there is significant variation in the decision threshold 

(ANOVA, 11 strains, p-value=3.8*10-9). The two most phenotypically distinct strains in this 

lineage, YJM975 and DBVPG1373, have a 48±0.3-fold difference (mean ± S.E.M.). More broadly, 

we compared the pairwise genetic distances (determined by RAD-SEQ [36]) to pairwise 

phenotypic distance (Materials and Methods). We did not find a significant correlation (R2=-

0.08) between genetic distance and decision threshold. When we compared the correlation 

between individual traits tested in Warringer et al. with the genetic distance, the decision 

threshold fell within one standard deviation of the mean of each individual correlation [4] 

(Figure S3.6). This suggests that the relationship between phylogenetic distance and phenotype 
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for the decision threshold is similar to previously analyzed phenotypes. Similarly, we found 

that differences in the decision threshold are not correlated with ecological source of the isolate 

(Figure S3.7). Thus, while the decision threshold varies, the cause of this variation and even 

whether the variation is selected or neutral is unclear. 

Bulk segregant analysis identifies one major-effect locus underlying natural variation in the 

GAL decision threshold 

To investigate the genetic basis of the observed variation in GAL decision threshold, we 

performed bulk-segregant analysis using a variant of the X-QTL method (Figure 3.2A) [37-39]. 

We crossed eight strains that span the phenotypic and phylogenetic diversity of S. cerevisiae in a 

round-robin design (Figure 3.2). This design is known to efficiently sample parental genetic 

variation and allow downstream linkage analyses to detect loci with a range of effect sizes [37]. 

Pools of segregants from each cross were grown in a glucose + galactose condition that 

maximally differentiates the parental phenotypes. The 5% least and 5% most induced cells 

(“OFF” and “ON” segregant pools) were isolated by fluorescence-activated cell sorting (FACS) 

and sequenced at 20-50x coverage in bulk to determine the parental allele frequencies in each 

pool. We used the MULTIPOOL software [40] to determine statistical significance for allele 

frequency differences between OFF and ON pools across the genome (Materials and Methods), 

and called significant loci as regions where the peak log-odds-ratio was greater than 10 (Figure 

3.2B). This cutoff had a low false-discovery rate in a previous study, and correlated well with 

allele frequency difference, a proxy for locus effect size, in our data [37] (Figure S3.8). 
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Figure 3.2. Bulk segregant analysis identifies one major-effect locus underlying natural variation in 

decision threshold. 

(A) Schematic of bulk segregant analysis. Meiotic segregants from heterozygous hybrids were sorted by 

FACS into ‘ON’ and ‘OFF’ pools based on GAL1pr-YFP expression and then sequenced. (B) LOD score of 

allele frequency difference between ‘ON’ and ‘OFF’ segregant pools versus genomic position (red 

asterisks: LOD > 10). A region of chromosome IV containing GAL3 was associated with the difference 

between the ‘ON’ and ‘OFF’ phenotype in all 8 crosses. Potential candidate genes for other loci include 

GAL80, MKT1, and others listed in Table S3.2. (C) Genes found within the 2-LOD support interval around 

the peak LOD score from ChrIV:460kb plotted with the LOD score for the BC187xYJM978 cross. 

Over all 8 crosses, we found 16 loci where segregant pools differ in allele frequency at LOD > 10 

(Figure 3.2B). One locus centered at 460 kb on chromosome IV (henceforth, “chrIV:460”) was the 

only locus to exceed the LOD cutoff in all 8 crosses, as well as the most significant locus in each 

cross (Figure 3.2B). The 2-LOD support interval for this locus in the YJM978 x BC187 cross, 
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defined as the genomic region where LOD decreases by 2 from its peak, is 10 kb wide and 

contains six genes (Figure 3.2C). This includes GAL3, whose product directly binds galactose 

and positively regulates the GAL pathway [41]. The support interval for chr:460 looked similar 

in other crosses (Table S3.2). One other locus, at chrXIV:462, reached LOD > 10 in two crosses; 

the remaining significant loci were confined to a single cross. In principle, a round-robin cross 

design is expected to detect each locus in more than one cross. The fact that we identified 

several alleles in only one cross is potentially explained by a lack of statistical power, epistasis, 

or gene-by-environment effects [37]. In our experiments we suspect this may arise from the 

different conditions used for sorting each cross (Materials and Methods), i.e. gene-by-

environment effects. We did detect additional loci in multiple crosses using a less stringent 

cutoff of LOD > 5; however, chrIV:460 remained the only locus significant in all crosses (Figure 

S3.8, Table S3.2, Materials and Methods). Given its importance, we chose to focus on the 

chrIV:460 locus for further characterization.  

GAL3 is the causative allele and major driver of variation in the GAL signaling response  

To determine if GAL3 was the causative allele on chrIV:460 with a predictable and quantitative 

impact on the decision threshold, we replaced the endogenous GAL3 allele of strains YJM978, 

BC187, and S288C with alleles from eleven natural isolates spanning the observed range of 

phenotypic variation (Figure 3.1). Allele replacements were constructed by deleting the 3283bp 

GAL3 locus, which includes 890 bp upstream, 911 bp downstream, and the 1563 bp GAL3 ORF 

in haploid parental strains and then replacing the deleted locus with the homologous ~3283bp 

GAL3 locus from other strains using the CRISPR-Cas9 system [42] (Materials and Methods). 

Replacement of GAL3 alleles in the YJM978 background recapitulated the ~95-fold range of 

decision threshold of the natural isolates that served as GAL3 allele donors. Additionally, the 

decision thresholds of allele-replacement and GAL3 donor strains were well-correlated in this 
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background (r2 of 0.58). Similarly, GAL3 alleles in the S288C background had a ~55-fold range 

and r2 of 0.60; GAL3 alleles in the BC187 background had a ~138-fold range and r2 of 0.63. In 

total, this confirms the significant impact that the GAL3 locus has on variation in the decision 

threshold (Figure 3.1, 3.3A-C, S3.9). 

While different GAL3 alleles were able to confer a range of phenotypes in a particular strain 

background, the three strain backgrounds also displayed different decision thresholds for a 

given GAL3 allele. This suggests that genes other than GAL3 also affect the decision threshold, 

even for the BC187xYJM978 cross. To assess the magnitude of this background effect, we 

measured the decision threshold in seven different strain backgrounds where the GAL3 locus 

has been replaced with an allele from YJM978, S288C, or BC187 (Figure 3.3D, S3.10). Across the 

seven backgrounds, GAL3YJM978 allele-replacement strains varied in decision threshold over a 

~14-fold range, GAL3S288C strains over ~20-fold, and GAL3BC187 strains over ~49-fold (Figure 3.3), 

and the correlation (r2) in decision threshold between these allele-replacement strains and their 

strain background donors was 0.60, 0.28, and 0.12, respectively. These results confirm that strain 

background strongly influences decision threshold. However, it is also clear that GAL3 allele 

still has a stronger effect, because both the phenotypic range and correlations to donor strain 

were lower for strain background than for GAL3 allele. This can also be seen by the fact that the 

GAL3BC187 and GAL3S288C strains have decision thresholds that are similar to each other but 

systematically higher than GAL3YJM978, regardless of strain background. 
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Figure 3.3. GAL3 allele largely sets the decision threshold. 

Decision threshold of eleven different GAL3 homologous replacements in three genetic backgrounds: (A) 

YJM978, (B) S288C, and (C) BC187. Decision threshold of wild-type strain is indicated by the black circle. 

Inset: Scatterplot of natural isolate versus allele replacement decision threshold; error bar represents 

S.E.M. (D) Decision threshold of three allelic variants of GAL3 (Mean +/- S.E.M., n≥2) inserted into various 

genetic backgrounds: GAL3YJM978 (red), GAL3S288C (green), and GAL3BC187 (blue), haploid wild-type strain 

(black). Strains are ordered based on wild-type decision threshold. Inset: Scatterplot of natural isolate 

(decision threshold of background strain) versus the decision threshold of the allele replacement, error 

bar represents S.E.M. 
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The GAL3 allele accounts for 70-90% of the phenotypic variance in a cross between strains 

with extreme opposite decision thresholds 

The allele replacements show that GAL3 is a major driver of natural variation in the decision 

threshold, but also suggests that other genes play a significant role. To quantitatively separate 

the contributions of GAL3 allele versus other genes to variation in decision threshold, we 

calculated the contribution of GAL3 to the total variance of decision threshold in meiotic 

segregants from a YJM978 and BC187 hybrid. We selected these two strains because the GAL3 

locus was the only significant locus from our BSA on this cross, and hence this should serve as a 

rough upper bound on the GAL3 contribution in other strains. We constructed three YJM978 x 

BC187 hybrid strains: 1) a ‘wild-type’ hybrid (YJM978 x BC187), 2) a hybrid with GAL3 only 

from YJM978 (YJM978 x BC187 gal3Δ::GAL3YJM978) and 3) a hybrid with GAL3 only from BC187 

(YJM978 gal3Δ::GAL3BC187 x BC187). The decision threshold of at least 58 meiotic segregants was 

measured for each hybrid in duplicate (Figure 3.4, S3.11). Strikingly, by converting a single 

allele in each hybrid, we were able to dramatically reduce the phenotypic variation of the 

segregant populations.  

The total variance of each population (VP) can be separated into several contributions: ?@ = ?A +

?C + ?CA + ?D + ?E. We assumed no interactions between gene and environment (VEG=0) and no 

epistatic interactions (VI=0). Additionally, there is no dominance as we used haploid strains 

(VD=0) and the environmental variability is equal to the measurement noise because the strains 

are isogenic and are grown in identical environments (VE=F'). Since we know that GAL3 is a 

major driver of the decision threshold phenotype, we partitioned VG into two components: the 

variance due to the background (?I2JKL,M*1N) and the variance due to GAL3 (VGAL3). Hence the 

total variance could be simplified to ?@ = F' + ?AOPQ + ?I2JKL,M*1N (Figure 3.4, S3.11). By 

definition, in the allele swap segregants (hybrids 2 and 3) ?AOPQ = 0. 
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Figure 3.4. The GAL3 allele accounts for 70-90% of the decision threshold. 

Decision threshold of segregants produced from hybrid (top), hybrid with GAL3YJM978 allele homologously 

replaced with GAL3BC187 (middle), and hybrid with GAL3BC187 allele homologously replaced with 

GAL3YJM978 (bottom). Hybrids are indicated by small schematic, the line represents the genetic background 

and the filled in box represents the origin of the GAL3 allele (YJM978: red, BC187: blue)  

The contribution of measurement noise (F'), ?AOPQ, and ?I2JKL,M*1N to the total variance (3.5) of 

was 0.5, 2.6, and 0.4 respectively (Materials and Methods). Hence 86% of the genetic variance 

between YJM978 and BC187 is controlled by GAL3. With the knowledge of ?AOPQ from 

comparing segregants from hybrid 2 and 3, ?I2JKL,M*1N	can also be determined from the ‘wild-

type’ hybrid. In this case, the background variance was estimated by subtracting the 

measurement noise and GAL3 variance from the variance of the hybrid 1 segregant population. 

Two segregants from hybrid 1 have a decision threshold lower than what we would have 

expected from segregants of hybrid 2 (Figure S3.11). These two strains increase the 

?I2JKL,M*1N	yielding a value of 1.4. This would correspond to GAL3 explaining 67% of the 

variance between YJM978 and BC187. These two 'outliers' could potentially result from a rare 
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combination of alleles between the strains, implying that we undersampled the distribution 

from hybrid 2. These calculations suggest that GAL3 could contribute anywhere from 70-90% to 

the variance of the decision threshold phenotype. 

GAL3 tunes the GAL diauxic lag length 

We next asked whether variation in GAL3 produces selectable variation in phenotype. Diauxic 

growth is a classical phenotype observed when cells are grown in two sugars [3]. This behavior 

is characterized by two phases of growth separated by a period with little growth, during which 

cells induce the genes required to metabolize the second sugar. This period of little growth is 

referred to as the diauxic lag. Previously, our lab has shown that BC187 and YJM978 have 

different diauxic lag lengths [35]. Furthermore, higher GAL1 expression levels before the 

diauxic lag is inversely correlated with diauxic lag length [35]. In addition to this, changes in the 

decision threshold are correlated to GAL1 expression levels (Figure S3.12), and likely because of 

this, diauxic lag length is negatively correlated with the decision threshold (Figure 3.5B). Hence, 

GAL3 alleles would be expected to lead to changes in the length of the diauxic lag.  

To determine if changing the GAL3 allele is sufficient to change the diauxic lag length in natural 

isolates, we preformed diauxic shift experiments on our allele replacement strains (Figure 3.5A). 

Diauxic shift experiments with six GAL3 alleles (I14, YJM421, Y12-WashU, BC187, and S288c) in 

three strain backgrounds (YJM978, S288C and BC187) allele replacements are shown in Figure 

3.5. Diauxic shift experiments were performed by measuring the OD600 every 15 mins for strains 

inoculated into medium containing 0.25% glucose and 0.25% galactose for approximately 20 

hours (Materials and methods). If the GAL3 allele is sufficient to change the diauxic lag, the 

expectation would be that the diauxic lag length in glucose+galactose medium would be 

strongly affected by GAL3 variants. Specifically, GAL3 alleles from S288C, BC187, and I14 



 
 

74 

would have short lags and GAL3 alleles from YJM978, DBVPG1106, and YJM421 would have 

long lags. Indeed, simply changing the GAL3 allele in either the YJM978, BC187, or S288C 

background was enough to change the diauxic lag (Figure 3.5A, S3.13). Previous work had 

selected for strains that had a different diauxic lag in glucose+maltose, the mutants they found 

also changed the glucose+galactose diauxic lag [24]. To determine if the GAL3 alleles we 

identified had a specific effect on the GAL diauxic lag or also affected the maltose diauxic lag, 

we grew cells in 0.25% glucose+0.25% maltose medium. The GAL3 allele only affects the diauxic 

lag in glucose+galactose, not in glucose+maltose (Figure 3.5A, inset). 

 

Figure 3.5. Changing GAL3 alleles specifically affects the glucose-galactose diauxic lag. 

(A) Growth curves (OD600 versus time) of allele replacement strains in three genetic backgrounds: YJM978 

(red), S288C (green), BC187 (blue) of cells grown in a mixture 0.25% glucose and 0.25% galactose. 

Cultures grew for 6 to 8 hours before entering the diauxic lag. A single replicate is shown (additional 

replicates are shown in Figure S3.13). Inset: Growth curves (OD600 versus time) of the same strains grown 

in a mixture of 0.25% glucose and 0.25% maltose. (B) The decision threshold (as measured in Figure 3.1) is 

inversely correlated with the diauxic lag length (as measured in [35]). 
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Discussion 

Natural genetic variation in the GAL pathway 

Determining the genetic source of phenotypic variation is a major challenge of modern biology. 

Two recent studies have examined phenotypic variation in the GAL pathway, each at different 

genetic distances. We examine variation between natural isolates of S. cerevisiae, Roop et al. 

between S. cerevisiae and S. bayanus, and Peng et al. between S. cerevisiae and S. paradoxus. 

Interestingly, the conclusions from each genetic distance have been distinct.  

We found that there is significant variation in the glucose and galactose concentrations at which 

natural isolates of S. cerevisiae induce the GAL pathway. Using BSA, we identified the galactose 

sensor, GAL3, as a major driver of this phenotypic variation, which can account for 70-90% of 

the variation in a single cross. Additionally, there was a strong correlation between the decision 

thresholds of homologous GAL3 allele-replacements in three distinct backgrounds and their 

corresponding GAL3 donor strains. This work demonstrates that there can be significant 

variation in the signaling pathways that interpret the environment even in closely related 

strains. 

Our results from examining variance in S. cerevisiae might be surprising as one might expect 

other members of the GAL pathway to be key drivers of the decision threshold. By changing the 

copy number of the GAL regulatory genes, Acar et al. showed that solely changing the level of 

Gal3p or Gal80p could change the 'inducibility profile' of S. cerevisiae [27]. Surprisingly, while 

we found evidence for a role of GAL3 in all our crosses, we only obtained evidence for a 

potential role for GAL80 in a single cross, I14 x BC187. Additionally, in all our crosses we found 

that the GAL3 allele had the largest effect size. Interestingly, work from Peng et al. showed that 

between S. cerevisiae and S. paradoxus, promoter variation in GAL80 is a major factor in the 
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variation in response profiles [43]. One possibility is that GAL80 is under additional selective 

constraint in S. cerevisiae and hence is not found as a source of variation between S. cerevisiae 

strains. For example, in S. uvarum there are two alleles of GAL80 and the deletion of one of the 

alleles leads to rapid galactose catabolism and metabolic overload [44]. The single copy of 

GAL80 in S. cerevisiae and S. paradoxus might similarly have a distinct function in each species 

and hence could affect the mutational plasticity. Alternatively, it could be possible that a 

significant amount of the variation between S. cerevisiae and S. paradoxus is driven by changes in 

the coding sequence of GAL3 or that the strain of S. paradoxus used by Peng et al. was an outlier.  

Synthetic perturbations of feedback in the GAL pathway by Venturelli et al. also highlighted the 

role of GAL1 [33]. Roop et al. examined the variation between S. cerevisiae and S. bayanus by 

swapping coding and promoter sequences. They found GAL1, GAL3, GAL4, and GAL10 affected 

diauxic lag length, while GAL2, GAL7, and GAL80 did not. While the phenotype they examined 

was distinct, this still highlights the potential different genetic sources of variation that are 

occurring between the different strains. More work will be required to understand the relative 

importance of different members of the GAL pathway variation and the potential similarities 

and differences caused by variation in each.  

Genetic complexity of signaling traits  

Our limited understanding of complex traits has been underscored by the shortcomings of 

genome-wide association studies (GWAS). While GWAS has helped to identify players in 

multiple diseases and traits, much of the expected heritability is missing for many traits [45]. 

There have been multiple potential explanations including a large number of small effect loci 

and epistasis [46]. Using model organisms with quantitative and tractable genetic systems have 

the potential to elucidate these issues. 
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The potential role of small effect genes is highlighted by the fact that GAL3 was the only one 

significant locus identified by BSA in a single cross, but there was still 10-30% of unaccounted 

variance. BSA places a maximum effect size on the remaining causative alleles, and hence 

suggests that small levels of variation in multiple genes influence the decision threshold in the 

GAL pathway. Given the number of genes that are known to be involved in the GAL pathway, 

many of the small effect alleles must be in other cellular processes. Indeed, by examining the 

effect of deletion mutants upwards of 40% of genes in the yeast genome have the potential to 

influence the GAL response (Bo et al., under review). This result might also explain why 

swapping the main regulators of the GAL pathway between S. cerevisiae and S. bayanus was 

only able to partially interconvert the phenotypes [47]. 

This could also explain the difference in the number of causative alleles that we identified. 

Previous X-QTL analyses in yeast that have identified multiple loci, typically average more than 

10 per trait [37,38,48]. One possible explanation for this is that our trait is ‘less’ complex and is 

therefore driven by fewer genes. But, at least two alternative hypotheses exist. One, while the 

trait might be equally complex, variation of this trait might be under more selective constraint 

than previously observed phenotypes, and hence there is less standing genetic variation. Two, 

there could be a similar number of genes involved, but if the largest effect size genes drive 

majority of the variance, so the power to identify other small effect size genes is diminished. 

While many of the GAL3 allele swaps had effects that are consistent with a linear additive 

model, there were two types of epistasis that were evident. First, while the difference between 

the S288C, BC187, and YJM978 GAL3 alleles are largely preserved, in two of the strain 

backgrounds (YJM978 and S288C) the differences between the alleles are highly compressed 

(Figure 3.3D). This suggests a direct epistatic interaction between the GAL3 allele and another 



 
 

78 

gene.  Second, GAL3 alleles that had decision thresholds above 0.25% glucose in 0.25% galactose 

placed in the S288C and BC187 backgrounds have a smaller spread than that for the YJM978 

background, suggesting that some feature of the circuit limits the effect of the GAL3 allele 

appears to saturate at high decision thresholds. This could be explained by epistasis between 

GAL3 and an emergent property of the system, i.e. pathway saturation. The underlying genetic 

interactions could be quite complex; any gene that is involved in the linearity of the pathway 

could have an epistatic interaction with GAL3. By looking at the coherent behavior of whole 

pathways, the interaction of genes, and emergent properties we can gain more insight than by 

limiting our observations to a strict gene by gene comparison. Given these results, the GAL 

system will likely be a good system for testing the principles of quantitative genetics. 

Evolution and selection of the GAL pathway 

When grown in multiple sugars, cultures often go through two distinct growth phases 

separated by a diauxic lag [3]. This phenomenon results from cells first consuming the preferred 

sugar, followed by a “lag” where cells must induce the genes necessary to metabolize the 

second, less preferred sugar, in order to achieve a higher growth rate. Several recent works have 

highlighted that even for the same mixture of sugars, related strains can have a continuum of 

diauxic lag times [24,35]. The diauxic lag length is selectable [24] and correlated to the 

expression level of the GAL pathway before glucose depletion [35]. Here we extend this to show 

that this variation in 'preparation' of the GAL pathway is driven by variation in GAL3 and 

directly correlated with the decision threshold (Figure 3.5B). We confirm this by showing that 

allelic swaps of GAL3 are sufficient to alter the diauxic lag length. Hence, differences in the 

diauxic lag lengths result from differences in how cells 'perceive' their environment. 
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Interestingly, one laboratory evolution study produced distinct variation from what we 

observed in natural isolates [24]. New et al. selected for strains that had a shorter diauxic lag 

during the switch from utilizing glucose to maltose, which in principle this could be achieved 

by changing the response to either maltose or glucose. The evolved strains had mutations in 

genes that caused weakened catabolite repression, i.e. mutations in the glucose sensing and 

metabolic genes, HXK2 and STD1, instead of, by analogy to our system, maltose regulators. One 

potential explanation for this difference is that New et al. selected for an altered diauxic lag in 

maltose; nature might counter select against mutants that affect the diauxic lag in other sugars. 

Supporting this, the New et al.'s evolved strains having shorter diauxic lags in both maltose and 

galactose, while our GAL3 allele replacements specifically tune the diauxic length in galactose 

and do not affect the lag length in maltose (Figure 3.5A, inset). The difference between these 

classes of mutants also raise the possibility that populations with different lifestyles, e.g., 

generalists versus specialist [49], might be enriched for different classes of mutants. 

More broadly, certain types of fluctuating environments might select for strains that are able to 

quickly adapt along a specific phenotypic axes of variation. For example, in environments 

where there was a selective advantage in being able to rapidly tune diauxic lag time, strains 

where a single protein specifically regulated the GAL decision threshold could have a selective 

advantage. Hence, it is interesting to consider whether the variation we see in GAL3 alleles is 

under selection as a result of environmental pressures, which vary between different strains 

depending on their ecological niche, for altered diauxic lag length. This raises the interesting 

hypothesis that variation in signaling pathways is prevalent in nature and that this variation 

might be an indicator of the type of environment the organism evolved in. Given these results, 

the GAL system will likely serve as a rich system for understanding the relationship between 
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environmental variation, quantitative traits and the underlying signaling pathways that give 

rise to such traits. 
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Materials and methods 

Strains and media 

Strains were obtained as described in [35]. Strains used in this study can be found in Table S3.1. 

All strains from the collection and those assayed in Figure 3.1 were homozygous diploids and 

prototrophic. An initial set of 42 strains were assayed in a gradient of glucose (2% to 0.004% by 

two-fold dilution) in a background of 0.25% galactose. Strains W303 and YIIC17-E5 were 

excluded from downstream analysis due to poor growth in our media conditions. Strain 

378604X was also excluded due to a high basal expression phenotype that was an outlier in our 

collection. All experiments were performed in synthetic minimal medium, which contains 

1.7g/L Yeast Nitrogen Base (YNB) (BD Difco) and 5g/L ammonium sulfate (EMD), plus D-

glucose (EMD), D-galactose (Sigma), or raffinose (Sigma). Cultures were grown in a humidified 

incubator (Infors Multitron) at 30°C with rotary shaking at 230rpm (tubes and flasks) or 999rpm 

(600uL cultures in 1mL 96-well plates). 

Flow cytometry assay 

GAL induction experiments were performed in a 2-fold dilution series of glucose concentration, 

from 1% to 0.004% w/v, with constant 0.25% galactose. 2% glucose and 2% galactose conditions 

were also included with each glucose titration experiment. To assess and control for well-to-

well variation, experiments were performed as a co-culture of a “query” strain to be 

phenotyped and a “reference” strain that was always SLYB93 (natural isolate YJM978 with 

constitutive mCherry segmentation marker). 

To start an experiment, cells were struck onto YPD agar from -80C glycerol stocks, grown to 

colonies, and then inoculated from colony into YPD liquid and cultured for 16-24 hours. Query 

and reference strains were then co-innoculated at a 9:1 ratio by volume in a dilution series (1:200 
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to 1:6400) in S + 2% raffinose medium. The raffinose outgrowths were incubated for 14-16 hours, 

and then their optical density (OD600) was measured on a plate reader (PerkinElmer Envision). 

One outgrowth culture with OD600 closest to 0.1 was selected for each strain, and then washed 

once in S (0.17% Yeast Nitrogen Base + 0.5% Ammonium Sulfate). Washed cells were diluted 

1:200 into glucose + galactose gradients in 96-well plates (500uL cultures in each well) and 

incubated for 8 hours. Then, cells were processed by washing twice in Tris-EDTA pH 8.0 (TE) 

and resuspended in TE + 0.1% sodium azide before transferring to a shallow microtiter plate 

(CELLTREAT) for measurement.  

Calculating the decision threshold (F50) metric 

Flow cytometry was performed using a Stratedigm S1000EX with A700 automated plate 

handling system. Data analysis was performed using custom MATLAB scripts, including Flow-

Cytometry-Toolkit (https://github.com/springerlab/Flow-Cytometry-Toolkit). All experiments 

were co-cultured with a reference strain and were manually segmented using a fluorescent 

channel (mCherry or BFP) and side scatter channel (SSC).  GAL1pr-YFP expression for each 

segmented population was collected and the induced fraction for each concentration of sugars 

was computed as shown previously in Escalante et al. [21]. The decision threshold for each 

glucose titration was calculated from the induced fraction of the ten sugar concentrations. The 

decision threshold was reported as the glucose concentration were 50% of the cells were 

induced. 

Filtering reference and query data 

To account for well-to-well variability or variability in our glucose titration, each of the query 

strains were co-cultured with a reference strain, YJM978, containing TDH3pr-mCherry. This 

constitutive fluorophore was used to segment the query and reference strains. Three filters were 
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used to discard bad samples. 1) The 5% truncated standard deviation was calculated. Samples 

where the reference strains response was double this truncated deviation from the mean 

reference response were discarded without analyzing the co-cultured query strain (39 of 480 

total experiments) (Figure S3.2). 2) Query strains where the data was of poor quality such that 

we could not make an accurate calculation of F50, typically for low counts or cultures that did 

not induce (8 of 441). 3) Query strain values that were over 1.5 standard deviations from the 

mean of the other replicates, (21 of 433) (Figure S3.3). This 1.5 standard deviation cut-off was 

determined based on calculating the difference of each sample from the mean and fitting this to 

a normal distribution assuming outliers (Figure S3.3). All strains were measured at least twice; 

replicates were performed on different days. 

Crossing and generating segregants 

To prepare parent strains for crossing and sporulation, diploid natural isolates bearing the 

hoΔ::GAL1pr-YFP-hphNT1 reporter cassette were sporulated and random spores were isolated. 

Mating type was determined by a test cross. We then introduced a constitutive fluorescent 

marker in tandem with the GAL reporter, to obtain MATa; hoΔ::GAL1pr-YFP-mTagBFP2-

kanMX4 or MATα; hoΔ::GAL1pr-YFP-mCherry-natMX4 parent strains. To the MATa parent we 

also introduced a pRS413-derived plasmid bearing STE2pr-AUR1-C and hphNT1. This plasmid 

is maintained by hygromycin selection but also allows selection for MATa cells by 

Aureobasidin A [50]. This plasmid design is inspired by a similar mating-type selection plasmid 

used in a recent study [37]. 

To generate segregant pools, we prepared a diploid hybrid and sporulated it as follows. We 

crossed a parent with BFP-kanMX with the mating type selection plasmid to a parent with 

mCherry-natMX4 and isolated a G418RNatRHygR diploid hybrid with the plasmid. We 
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sporulated the hybrid by culturing it to saturation in YPD, diluting 1:10 in YP+2% potassium 

acetate and incubating at 30C for 8 hours. Cell were then washed and resuspended in 2% 

potassium acetate and incubated at 30C until >20% of cells were tetrads, or about 72 hours. We 

incubated ~5x106 tetrads in 100uL water with 50U of zymolyase 100T (Zymo Research) for 5 

hours at 30C, and then resuspended tetrads in 1mL of 1.5% NP-40 and sonicated for 10 seconds 

at power setting 3 on a probe sonicator (Fisher Scientific Model 550).  

To reduce the size of recombination blocks and improve the resolution of linkage mapping [51], 

we then performed the following “intercross” protocol 4 times: 1) Spores were isolated using 

the Sony SH800 Cell Sorter selecting for 4x106 BFP+ or mCherry+ (but not +/+ or -/-). 2) The 

sorted cells were grown into 100uL YPD + 40ug/mL tetracycline. 3) Cells were incubated for 16 

hours at 30C without shaking. 4) 5mL of YPD + 200ug/mL G418 + 100ug/mL ClonNat + 

200ug/mL Hygromycin B was added and cells were incubated for 48 hours at 30C with shaking. 

5) Cultures were sporulated and spores were isolated by zymolyase treatment and sonication as 

described above. Steps 1-5 were repeated 4 times, resulting in a sonicated suspension of spores 

that had undergone 5 generations of meiosis since the parents. These spores were resuspended 

in YPD + 0.5ug/mL AbA and incubated at 30C for 16 hours to select for MATa haploids. This 

haploid culture was split to create a frozen glycerol stock, and was used as the inoculum for 

phenotypic isolation by FACS (as described above). 

Sorting-based bulk-segregant analysis 

To sort segregant pools for bulk genotyping, the intercrossed MATa-selected segregants were 

inoculated from a saturated YPD culture into S + 2% raffinose + AbA at dilutions of 1:200, 1:400, 

1:800, and 1:1600, and incubated at 30C for 16-24 hours. The outgrowth culture with OD600 

closest to 0.1 was selected for each strain, washed once in S, and diluted 1:200 into S + 0.25% 
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glucose + 0.25% galactose + AbA. The glucose-galactose culture was incubated at 30C for 8 

hours, and then a Sony SH800 sorter was used to isolate pools of 30,000 cells with the 5% lowest 

(“OFF”) and highest (“ON”) YFP expression, among cells whose Back Scatter (BSC) signal was 

between 105 and 3x105. This BSC gate was used to minimize the effects of cell size on expression 

level as cell with similar BSC have similar cell size. The sorted cells were resuspended in YPD + 

AbA and incubated at 30C until saturation, about 16-24 hours. An aliquot of this culture was 

saved for -80C glycerol stocks, and another was used to prepare sequencing libraries. 

To sequence the segregant pools, genomic DNA was extracted from 0.5mL of saturated YPD 

culture of each segregant pool using the PureLink Pro 96 kit (Thermo Fisher K182104A). From 

these genomic preps, sequencing libraries were made using Nextera reagents (Illumina FC-121-

1030) following a low-volume protocol [52]. The input DNA concentration was adjusted so that 

resulting libraries had mean fragment sizes of 200-300bp as measured on a BioAnalyzer. 

Libraries were multiplexed and sequenced in an Illumina NextSeq flow cell to a depth of 16-33x. 

Genome sequences of round-robin parents 

Non-S288C parental genomes for the bulk segregant analysis were obtained from the literature: 

I14 from [37]; BC187, YJM978, DBVPG1106, and Y12 from [53]; YPS606 from [54]. We sequenced 

our parent strains at ~1x depth and verified their SNP patterns against these datasets. We 

initially obtained an unpublished sequence for YJM421 from the NCBI Sequencing Read 

Archive (accessions SRR097627, SRR096491), but this did not match our strain (it appeared 

similar to YJM326 instead). A RAD-seq SNP profile of YJM421 [36] partially matched our 

YJM421, but the RAD-seq data displayed heterozygosity. Because we crossed our YJM421 strain 

to both I14 and DBVPG1106, for which we have high-quality genomes, we could do the linkage 

mapping given only one parental genome. However, we confirmed that the YJM421 parent 
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used for both crosses were the same strain, by looking at SNPs in the segregant pools of the two 

crosses that did not match the other parent. Our current hypothesis is that the YJM421 isolate 

we obtained from the Fay lab (and which was genotyped by RAD-seq in Cromie et al) was a 

heterozygous diploid, a haploid spore of which we used as the parent in our round robin cross. 

Linkage mapping and loci detection 

To perform linkage analysis, we aligned raw reads for parent strains (from the literature) and 

segregant pools (from our experiments) to the sacCer3 (S288C) reference genome using BWA-

MEM on the Harvard Medical School Orchestra cluster (http://rc.hms.harvard.edu, see Orchestra 

High Performance Compute Cluster note below).  We identified SNPs between cross parents 

and determined allele counts at each SNP in segregant pools using samtools mpileup and 

bcftools call -c. Using custom MATLAB code, we removed SNPs where read depth was 

less than 2 or higher than 1000 to avoid alignment artifacts. To calculate LOD scores for allele 

frequency differences between OFF and ON pools, we input filtered allele counts to the 

mp_inference.py script (MULTIPOOL Version 0.10.2; [40]) with the options -m contrast 

-r 100 -c 2200 -n 1000, following previous practice  [37]. A value of n=1000 likely 

underestimates our segregant pool size and will lead to conservative LOD estimates. An 

exception to this is the I14xYJM421 cross, which displayed unusually low spore viability (~20%), 

possibly due to a Dobzhansky-Muller incompatibility [55]. Thus we used n=200 for this cross.  

We defined significant loci as LOD peaks where LOD > 10 (Figure 3.2B). Previous bulk 

segregant analyses using MULTIPOOL used a less stringent cutoff of LOD > 5 [37,38]. This 

corresponded to a false discovery rate of 5% in one study [38], but led to a much higher number 

of unreplicated locus calls in another study [37]. Given that our segregant pools underwent 

multiple rounds of meiosis (and potentially diversity-reducing selection), we chose to use the 
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more conservative LOD > 10. The choice of LOD does not affect our main conclusions about 

GAL3; even the lowest LOD for the chrIV:460 locus (in YJM978 x Y12) is 24 and thus highly 

significant (Table S3.2). Besides this locus, other moderately significant loci may still be 

biologically relevant, and so we provide a list of LOD peaks and their corresponding support 

intervals at LOD > 5 (S2 Table). We clustered these peaks as a single locus if they occur within 

20kb of each other from different crosses (Figure S3.8, Table S3.2). 

CRISPR/Cas9 allele replacement 

Allele replacement strains were constructed by knocking out GAL3 (-890bp from start to +911bp 

from the stop) with KANMX4 followed by CRISPR/Cas9-mediated markerless integration of the 

heterologous allele. Initially, strains were prepared by introducing Cas9 on a CEN/ARS plasmid 

(SLVF11); this plasmid is derived from a previous one [56], but the auxotrophic URA3 marker 

was replaced with AUR1-C to allow Aureobasidin A selection on prototrophic natural isolates. 

Then, a donor DNA, a guide RNA insert, and a guide RNA backbone were simultaneously 

transformed into the strain [42]. The donor DNA contained the new allele (PCR amplified from 

the desired natural isolate genome), its flanking sequences, and an additional 40bp of homology 

to target it to the correct genomic locus. The guide RNA insert was a linear DNA containing a 

SNR52 promoter driving a guide RNA gene containing a 20bp CRISPR/Cas recognition 

sequence linked to a crRNA scaffold sequence, plus 40bp of flanking homology on both ends to 

a guide RNA backbone. The guide RNA backbone was a 2u plasmid containing natMX4 

(pRS420). This was linearized by NotI + XhoI digestion before transformation. Allele re-

integration transformations were plated on cloNAT to select for in vivo assembly of the guide 

RNA into a maintainable plasmid, and Aureobasidin A to select for presence of Cas9. Successful 

re-integration was verified by colony PCR and Sanger sequencing was performed on a subset of 

strains and on all donor DNAs to verify the sequence of allelic variants. 
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Hybrid conversions and determining GAL3 allelic contribution 

Hybrid conversions were constructed by mating CRISPR/Cas9 generated allele replacement 

strains (YJM978 GAL3BC187 or BC187 GAL3YJM978) to either BC187 or YJM978 (haploid, wild-type). 

Segregants were generated as mentioned above (see crossing and generating segregants). 

Segregants from the original hybrid (BC187 x YM978) were also phenotyped. Since the hybrid 

conversion strains had a known GAL3 allele, the allelic contribution of the GAL3 alleles was 

estimated by subtracting the background effect, and measurement noise from the total 

phenotypic variance of the two hybrid conversion segregant populations. A range of allelic 

contribution was estimated by using the variance of the original hybrid (YJM978 x BC187) and 

the two hybrid conversion populations.  

Estimating measurement error 

S0
T~S0 + F

T 

S0
'~S0 + F

' 

∴ S0
T − S0

' = FT + F' 

S0
T − S0

'~W(Y, 2[) 

F =
[

2
 

The measurement noise (ε) was estimated by determining the difference of two replicate 

measurements, which was normally distributed. The variance of the noise was estimated as the 

noise term. Superscripts were used to denote the two different replicate measurements. If the 

deviation from the mean of the two replicate measurements was greater than a threshold value 

(1.5 as calculated above for detecting outliers), both measurements were removed.  
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Estimating the GAL3 effect 

Y2 =
\]
^

_
 , Y`2 =

\]
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_
 

bAOPQ =
Y2 − Y`2

2
 

?AOPQ = bAOPQ
' 

The two allelic variants of GAL3 are denoted by a and –a. In order to estimate the effect of the 

GAL3 allele (EGAL3), the mean of each allele population (a or –a) was calculated, by taking the 

difference of the mean of the population and dividing by 2.  

Determining allelic contribution 

?@ = F' + ?A  

where, ?@ =
\]`\

c

_
 

where, ?A = ?d2JKL,M*1N + ?AOPQ 

The phenotypic variance of a segregant population (VP) is composed of the measurement noise 

(ε2) and the genotypic variance (VG). VP was calculated for the YJM978 x BC187 segregants and 

for both of the hybrid conversion segregants. Since GAL3 is a major driver of the decision 

threshold phenotype, VG was partitioned into two components: the contribution to variance of 

the background (Vbackground) and the contribution to variance of GAL3 (VGAL3). The background 

variance was estimated by subtracting the measurement noise and GAL3 variance from the 

variance of the segregant population. The GAL3 contribution was reported as the ratio of the 

variance in GAL3 and the genotypic variance (VG). 

efg3	i:jk<lm;kl:j =
?AOPQ

?A
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Growth curves and diauxic lag time metric 

Growth curves were obtained as described in Wang et al. [35]. In short, growth curves were 

obtained by manually measuring the absorbance at 600 nm (OD600) on a plate reader 

(PerkinElmer EnVision) for each plate approximately every 15 min for up to 20 h in a room 

maintained at 30°C and 75% humidity. Strains to be assayed were pinned into 500 µl of liquid 

YPD and incubated for 16 h, then diluted 1:200 into 500 µl of synthetic minimal medium + 0.5% 

glucose and grown for 6-8 h, and finally diluted 1:150 into synthetic minimal medium + 0.25% 

glucose + 0.25% galactose or synthetic minimal medium + 0.25% glucose + 0.25% maltose for 

growth curve measurements. The final inoculation was performed into two different plates 

(with 2 replicates per plate); these replicate growth curves were nearly indistinguishable for all 

strains. Analysis of growth curve data was performed in MATLAB using custom-written code 

[35].  

To obtain growth rates in glucose or galactose, additional growth curves were performed as 

above, except the final culture medium contained 0.5% glucose alone or 0.5% galactose alone. 

The exponential growth rate was extracted from these data as the mean growth rate between 

when OD600 = 2−6 and OD600 = 2−4 (or, equivalently, when culture density was approximately 

1/16 and 1/4 of saturation, respectively).  

Bioinformatic analysis 

Sequences for the SGRP strains were downloaded from SGRP website. Sequences for the strains 

in the Liti library [57] were downloaded from  

https://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html. For the remaining 

strains with multiple distinct isolates reporter in the literature, a single genetic distance that 
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matched the strain in our collection was selected. A neighbor-joining phylogenetic tree was 

generated using the seqneighjoin function on MATLAB. 
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Chapter 4. 

Natural Genetic Variation Can Independently Tune the Induced Fraction 

and Induction Level of a Bimodal Signaling Response 

 

Jue Wang, Julius Palme, Kayla B. Lee, Michael Springer 

 

Bimodal gene expression by genetically identical cells is a pervasive feature of signaling 

networks, but the mechanisms modulating bimodality are poorly understood. We found that 

natural yeast strains induce the galactose-utilization (GAL) pathway with a variety of bimodal 

phenotypes in mixtures of glucose and galactose. The phenotypic variation can be described in 

terms of two uncorrelated features representing the fraction of cells that are induced and the 

expression level of the induced subpopulation. We mapped genomic loci underlying these two 

traits using bulk-segregant analysis, identified causal genes in 3 loci, and phenotyped allele-

replacement strains containing all allelic combinations of these genes. One gene affected only 

the induced fraction of the GAL response, another affected only the level of induction, and a 

third gene affected both traits. Additionally, the genetic effect on induced fraction could be 

phenocopied by varying the growth conditions prior to galactose induction. Our results show 

that different quantitative features of a bimodal signaling response can be tuned independently 

by genetic and environmental perturbations, and that this tuning can change the response from 

unimodal to bimodal. This modularity may help cells adapt to complex natural environments 

on physiological as well as evolutionary timescales. 
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Introduction 

Non-genetic heterogeneity is a pervasive feature of gene expression and cellular signaling [1–3]. 

Bimodal responses, where cells in an isogenic population adopt one of two distinct states, are 

particularly important for microbes coping with fluctuating environments [4,5] and cells of 

multicellular organisms differentiating into discrete types [6,7]. The galactose-utilization (GAL) 

pathway in Saccharomyces cerevisiae (budding yeast) is a well-characterized bimodal response 

and a classic model of microbial decision-making [8,9]. GAL enzymes are tightly repressed in 

glucose and activated almost 1000-fold in galactose [10]. In mixtures of glucose and galactose, 

GAL genes induce as a function of the galactose-to-glucose ratio [11] and display complex 

patterns of bimodal expression [12].  

Bimodality of GAL gene expression is attributed to bistability arising from positive feedback 

through the Gal1p kinase and Gal3p transducer [13,14]. However, perturbing other pathway 

components such as  Gal2p permease, Gal4p activator, and Gal80p repressor also affect 

quantitative features of the GAL response [14–17]. Additionally, the modality of the GAL 

response is affected by the metabolic conditions prior to encountering galactose [12]. Despite 

the complex response of GAL expression distributions to genetic and environmental 

perturbations, most studies of the pathway have focused on one quantitative feature such as the 

induced fraction [16,18,19], with a few recent exceptions [13,20]. How multiple quantitative 

features of the pathway are controlled and vary across perturbations is poorly understood. 

In previous work, we found that natural yeast isolates differed widely in the inducibility of 

GAL genes in glucose + galactose mixtures [19,21]. In particular, some strains displayed 

bimodal activation of GAL genes while other strains were unimodal in the same conditions. 

Similar population heterogeneity has been seen in yeast maltose utilization [22] and bacterial 
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utilization of various sugar mixtures [23]. This natural variation provides an opportunity to 

dissect the genetic variants modulating bimodality in nature and expand our knowledge of the 

repertoire of quantitative behaviors that can be achieved by this model circuit. 

In this work, we showed that natural yeast isolates induce the GAL pathway with a diverse 

array of bimodal and unimodal expression patterns that vary with sugar conditions. We 

analyzed this variation in terms of two traits representing the induced fraction of cells and the 

expression level the induced subpopulation, which vary in an uncorrelated way across natural 

isolates. Using bulk segregant analysis and CRISPR/cas9 allele replacement, we identified 

genetic variants underlying these two traits and showed that the variants can affect the traits 

independently of each other. Additionally, we found that the metabolic history of cells before 

inducing GAL genes also affects the bimodal response in a trait-specific way. The independent 

tuning of these two quantitative features of the GAL response can account for the diversity of 

unimodal and bimodal phenotypes observed in our natural isolates. This underlying genetic 

flexibility may be advantageous for cells adapting to complex natural nutrient environments. 

Results 

Natural yeast isolates vary in the degree of bimodality of GAL induction 

To study natural variation in the population behavior of the GAL pathway response, we 

measured the expression of a GAL1 promoter driving YFP (GAL1pr-YFP) in 34 geographically 

and ecologically diverse yeast strains [21,24,25] grown in a titration of glucose plus a constant 

level of galactose. As expected, we found that all strains are uninduced in high glucose and 

fully induced in low or no glucose (Figure 4.1). However, at intermediate glucose 

concentrations, some strains display a unimodal population with intermediate (i.e. sub-

maximal) GAL expression (Figure 4.1B) while other strains display a bimodal mixture of 
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uninduced and partially induced cells (Figure 4.1C). Additionally, strains with the same 

modality still have quantitatively different GAL induction profiles (Figure S4.1), raising the 

question of what mechanisms can give rise to these diverse signaling phenotypes. 

Variation in GAL bimodality phenotypes can be parameterized by two uncorrelated metrics 

Upon close inspection, the GAL induction phenotypes generally seem to be a mixture of two 

components: an induced subpopulation that decreases in YFP level as glucose increases, and an 

uninduced subpopulation that remains at the same YFP level regardless of glucose 

concentration (Figure S4.2A). The mixing of these components can be quantified as an induced 

fraction that decreases as a function of glucose concentration (Figure S4.2B). Simply by varying 

the glucose-dependence of the induced fraction and of the induced subpopulation expression 

level, we can simulate many bimodal phenotypes, as well as unimodal phenotypes, reminiscent 

of the observed data (Figure S4.1, S4.2B-C). In this framework, a strain which is unimodal in a 

particular condition has an induced fraction of one (but a sub-maximal induced level), while a 

strain that is bimodal in this condition has an induced fraction of less than one. 
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Figure 4.1. Natural variation in GAL induction can be analyzed in terms of two uncorrelated features 

Each plot is a series of YFP fluorescence (normalized to side scatter “SSC”) histograms from 12 sugar 

conditions for strains (A) I14, (B) S288C, (C) DBVPG1106, and (D) YJM978. Other phenotyped strains are 

shown in Figure S4.1. Darker regions represent more frequently observed YFP values. The middle 10 

conditions in each plot are 0.25% galactose + the indicated concentrations of glucose. The first and last 

conditions contain only one sugar: “D”, 2% glucose; “G”, 2% galactose. (E) Identification of induced cell 

subpopulation (green shading) using a reference distribution from 2% glucose (black histogram) 

(Materials and Methods). (F) Induced level (blue line) and induced fraction (orange line), and the 

corresponding bTn and opn metrics, for strain DBVPG1106. (G) Scatterplot of bTn versus opn across 34 S. 

cerevisiae natural isolates (mean and S.D.; n=3-10). 

Applying this population decomposition framework to our data, we computationally separated 

induced and uninduced cells from each GAL reporter distribution (Figure 4.2E) and calculated 

two summary metrics for each strain’s phenotype: bTn, the glucose concentration where the 
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induced subpopulation reaches 10% of its maximal GAL expression level, and opn, the glucose 

concentration where 50% of cells in the population are induced (Figure 4.2F). For convenience, 

we express these metrics in units of log2-transformed glucose concentration, so a strain with 

bTn = −1 has an induced subpopulation that reaches 10% of maximal induction at 2`T = 0.5% 

w/v glucose. We find that the bTn and opn are uncorrelated across natural isolates, suggesting 

the possible existence of genetic changes that can decouple them (Figure 4.2G). 

Bulk segregant analysis identifies genetic loci associated with GAL induction variation 

To analyze the genetic basis of bTn and opn, we crossed strains S288C and DBVPG1106 and 

phenotyped random haploid segregants from their hybrid. These parent strains differ in both 

traits, and their segregants display semi-continuous, correlated variation in these traits with a 

small number of outliers. Therefore, bTn and opn are likely modulated by multiple genes, at least 

some of which affect both traits. 
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Figure 4.2. Bulk segregant analysis of tuv and wxv 

(A) bTn versus opn across 90 haploid segregants of the DBVPG1106 x S288C cross. Parent phenotypes are 

shown as filled circles: DBVPG1106 (red), S288C (blue). (B) Schematic of bulk segregant analysis strategy. 

(C) GAL reporter histograms of parent strains DBVPG1106 (red) and S288C (blue) and a pool of haploid 

segregants (gray, bottom) in the sorting conditions, 0.25% glucose + 0.25% galactose. Green boxes are a 

schematic of the gates used to sort segregant cells into 3 phenotyped pools for sequencing (Gates used in 

actual sorting experiment are shown in Figure S4.3). ON pool allele counts are a computational sum of 

the LOW and HI pool allele counts (Materials and methods). (D) Genome-wide plots of differential allele 

frequency and log-odds-ratio (LOD) as computed by the MULTIPOOL algorithm (see Main Text, 

Materials and Methods). Top two panels show the OFF/ON comparison; bottom two panels show the 

LOW/HIGH comparison. 
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To identify these genes, we performed bulk-segregant linkage mapping using a pooled sorting 

strategy (Figure 4.2B). We chose a glucose+galactose condition where the parental GAL1pr-YFP 

distributions were maximally different and used it to induce a pooled mixture of haploid 

(MATa) segregants (Figure 4.2C). We then used FACS to sort the segregants into pools of 

uninduced (“OFF”), induced and low-expression (“LOW”), and induced and high-expression 

(“HI”) cells (Figure 4.2C), and sequenced each pool to 15-33x coverage. We expected that a 

genomic locus affecting the induced level (and thus bTn) will differ in allele frequency between 

the LOW and HI pools, while any locus affecting the induced fraction (and thus opn) would 

differ in parental allele frequency between the OFF pool and a computationally merged 

LOW+HI pool (“ON”) (Materials and Methods). 

We found 5 loci with significantly different allele frequencies between OFF/ON pools or 

between LOW/HI pools, defined as genomic regions with a peak log-odds (LOD) score > 5 

calculated by MULTIPOOL [26] (Figure 4.3D; Materials and Methods). To look for causal 

variants, we inspected gene annotations in a region of 2-LOD decrease around each LOD peak. 

The three most significant loci are centered at chrIV:457Kb, chrXIV:457Kb, and chrXVI:81Kb 

and contain the genes GAL3, MKT1, and GAL4, respectively (Figure 4.3D). GAL3 and GAL4 are 

direct regulators of galactose sensing, while MKT1 is known to have pleiotropic effects in 

crosses between S288C and natural isolates . The GAL3-associated locus was significant only in 

the OFF/ON comparison, while the GAL4-associated locus was only significant in the LOW/HI 

comparison, suggesting that the effect of these loci are specific to either bTn or opn. The MKT1-

associated locus was significant in both comparisons but had a higher LOD score in the 

LOW/HI than in the OFF/ON comparison. Unlike the other loci, the GAL4-associated locus was 

enriched for the S288C allele in the DBVPG1106-like segregant pool, suggesting the possibility 

of transgressive segregation. Two other loci, at chrXII:1053Kb and chrXIII:105Kb, were also 
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significant and seemed to have phenotype-specific effects, but did not contain any obvious 

genes for follow-up. Therefore, we focused on the chrIV (GAL3-associated), chrXIV (MKT1-

associated), and chrXVI (GAL4-associated) loci for further investigation. 

GAL3 and GAL4 alleles specifically affect wxv and tuv while MKT1 alleles affect both traits 

To test if GAL3, MKT1, and GAL4 alleles are causal variants in the chrIV, chrXIV, and chrXVI 

loci, we used CRISPR/cas9 to replace the coding region and flanking regions of each gene 

(Materials and Methods) in both DBVPG1106 and S288C with the allele from the other parent 

(Figure S4.4). In DBVPG1106, replacing the endogenous GAL3 allele with GAL3S288C shifted opn 

in the direction of the S288C parent (Figure S4.4A). MKT1 replacement also shifted opn and had 

a small effect on bTn as well. GAL4 replacement had a small but clear effect on bTn and no 

detectable effect on opn. In the S288C background, allele replacements had similar trait-

specificity but much smaller effects (Figure S4.4B-C). In both parental backgrounds, the GAL4 

allele replacement resulted in a change in bTn away from the value of the other parent. This is 

consistent with the sign of allele-frequency differences of the GAL4-containing locus between 

LOW and HI pools (Figure 4.2D) and confirms that GAL4 is a transgressive allele in this cross. 

Overall, these results show that GAL3, MKT1, and GAL4 are causal variants in their respective 

loci and corroborate the allelic effects inferred from our bulk segregant analysis.  

Figure 4.3. Combinatorial effects of strain background and GAL3, MKT1, and GAL4 alleles. 

(A) bTn versus opn for all 16 combinations of S288C (“S”) or DBVPG1106 (“D”) strain background (gray 

letters), GAL3 allele (red), MKT1 allele (green), and GAL4 allele (blue). Effects of switching from 

DBVPG1106 to S288C variant while holding other genetic variables constant are shown as arrows for 

switching (B) GAL3 allele, (C) MKT1 allele, (D) GAL4 allele, or (E) strain background. (F) The effects 

shown in (B)-(E) are plotted as differences in bTn versus differences in opn. 
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Figure 4.3 (Continued). Combinatorial effects of strain background and GAL3, MKT1, and GAL4 

alleles. 
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The single allele replacements only modestly altered the phenotype of the parent strains, 

suggesting that other genes make substantial contributions to the total phenotypic difference. 

Alternatively, there may be genetic interactions between our mapped genes such that allele 

replacement of 2 or 3 of them is sufficient to achieve conversion of one parental phenotype to 

the other. To assess these possibilities, we constructed all 16 combinations of strain background, 

GAL3 allele, MKT1 allele, and GAL4 allele from either the DBVPG1106 or S288C parent, and 

measured bTn and opn of 2 independent isolates of each of the 16 genotypes. We examined the 

resulting phenotypic landscape (Figure 4.3A) in terms of pairs of strains differing in the allelic 

status of one gene (or strain background) while other genetic factors are held constant. The 

effect of switching from the the DBVPG1106 genetic variant to the S288C variant can be 

visualized as a vector in bTn versus opn space (Figure 4.3B-E) or as a trait difference (Figure 

4.3F). 

This analysis reveals that the trait-specificity of single genetic changes are broadly consistent 

across different genotypic backgrounds (i.e. combinations of strain background and alleles at 

the other loci). This can be seen in the fact that effect vectors from DBVPG1106 to S288C variants 

in bTn-opn space are parallel (Figure 4.3B-E), or equivalently, that differential effects cluster by 

angle from the origin (Figure 4.3F). Across the combinatorial allele replacement strains, it is 

clear that GAL3 allele predominantly affects opn, GAL4 mostly affects bTn, and MKT1 affects 

both traits. For example, a strain with GAL4S288C has a lower bTn than the congenic strain with 

GAL4DBVPG1106 for all such strain pairs. These results show that bTn and opn can be tuned 

independently in this cross. 

In contrast to trait-specificity, the effect sizes of single genetic changes across the combinatorial 

landscape are more complicated. In general, GAL3 allele effects on opn are large, spanning up to 
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half the phenotypic distance between the parents. MKT1 allele effects on opn are almost as great, 

and combined with GAL3 allele replacement, can essentially phenoconvert DBVPG1106 to 

S288C, but only along the opn axis (DSSD versus in DDDD in Figure 4.3A). However, the 

reciprocal replacement in the S288C background has a more modest effect (SDDS versus SSSS in 

Figure 4.3A). Consistent with these findings, the strain background effect on opn (which can be 

interpreted as the residual variation after allele replacements) varies widely, from negligible to 

almost as large as that of GAL3 or MKT1. For the bTn trait, GAL4 allele effects span between a 

third and half the phenotypic distance between the parents, but in the opposite direction 

required for phenoconversion. Therefore, triple allele replacement strains DSSS (DBVPG1106 

GAL3S288C MKT1S288C GAL4S288C) and SSSD still differ substantially in bTn from their respective 

wildtype SSSS and DDDD strains. Overall, strain background has effects on both bTn and opn in 

most genotype backgrounds, indicating substantial variation in both traits not accessed by our 

allele swaps. 

Genetic and environmental perturbations that affect wxv do not affect tuv 

Our results above show that opn can be tuned independently of bTn by some genetic variants in 

the S288C x DBVPG1106 cross. To see if this is true over a larger range of opn, we analyzed 

phenotypic data on S288C, BC187, and DBVPG1106 strains whose GAL3 loci have been replaced 

with a panel of natural GAL3 alleles that we previously showed to underlie a spectrum of GAL 

inducibility phenotypes [19]. As expected, opn varied widely as the GAL3 allele is changed 

(Figure 4.4A). However, variation in bTn with GAL3 allele was minimal and driven almost 

entirely by the strain background (Figure 4.4B). 
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Figure 4.4. Perturbations that affect wxv do not affect tuv 

(A) opn and bTn for allele-replacement strains with S288C, BC187, or DBVPG1106 genetic backgrounds but 

containing alleles of GAL3 from various other natural isolates. (B) opn and bTn for 8 natural isolate strains 

induced in glucose+galactose after being cultured in raffinose, glycerol, or acetate. Raffinose pre-culture is 

the standard condition used for the other experiments in this paper. 

Previously, a laboratory yeast strain was found to induce GAL genes bimodally or unimodally 

depending on the carbon source prior to galactose induction [12]. To see how metabolic 

memory affects bTn and opn across our natural isolates, we pre-grew six strains in raffinose, 

acetate, or glycerol prior to induction in glucose + galactose. These carbon sources are neither 

inducers of GAL genes nor signals for glucose catabolite repression [27]. Nevertheless, they 
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caused the yeast strains to exhibit different opn upon subsequent induction in glucose + 

galactose (Figure 4.4C). We did not observe a carbon source pre-conditioning effect on bTn 

(Figure 4.4D). This parallels the effect of GAL3 alleles, and suggests that the independent tuning 

of bTn and opn is a consequence of how the GAL circuit is integrated with carbon metabolism 

more broadly. 

Independent tuning of wxv and tuv modulates the modality of the GAL response 

The definitions of the bTn and opn metrics (Figure 4.1F, S4.2) imply that tuning either parameter 

independently should alter the apparent number of modes in GAL expression distributions. 

Since opn varies over a wider range of glucose concentrations than bTn does under the 

perturbations we tested, we asked if independently tuning opn affects modality.  Indeed, 

plotting GAL reporter distributions shows that a number of allele replacements are able to 

convert strains from being bimodal to unimodal and vice versa. For example, DBVPG1106 is 

bimodal, but replacing alleles with GAL3S288C and MKT1S288C increases its opn and makes it 

unimodal (Figure 4.5A-B). Conversely, BC187 is unimodal, but decreasing its opn by introducing 

GAL3YJM978 makes it bimodal (Figure 4.5C-D). Finally, Y12-WashU, one of the most obviously 

bimodal strains, is rendered unimodal when pre-conditioned in acetate rather than raffinose 

before galactose induction (Figure 4.5E-F).  
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Figure 4.5. Changing wxv changes the number of modes of the GAL response 

Plotted are GAL reporter histogram series on a glucose gradient + galactose, as in Figure 4.1F, with 

induced expression level (blue line), bTn (dotted vertical blue line), induced fraction (orange line), and opn 

(dotted vertical orange line). These plots show one representative experiment for each strain/condition, 

out of the 3-12 replicates plotted in Figures 4.3 and 4.4. Strains: (A) DBVPG1106 with all endogenous 

alleles; (B) DBVPG1106 with replacements by GAL3 and MKT1 alleles from S288C. (C) BC187 with 

endogenous alleles; (D) BC187 with replacement by GAL3 allele from YJM978; (E) Y12-WashU cultured in 

raffinose prior to glucose + galactose (standard protocol); (F) Y12-WashU pre-cultured in acetate. 
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Discussion 

Independent tuning and the molecular mechanism of bimodality 

Our results show that the apparently complex bimodal GAL responses of natural yeast isolates 

can be simplified by being analyzed in terms of the dose-response of the induced fraction, opn, 

and of the induced expression level, bTn. We show that these traits vary independently across 

natural isolates and can be tuned independently by alleles of GAL3 and GAL4 in the 

DBVPG1106 x S288C cross. 

It is known that positive feedback on GAL gene expression through GAL3 tunes the switching 

rate of cells between uninduced and induced states [14] and is a key contributor to the 

bistability of the pathway [13]. Additionally, changes in GAL3 dosage affects the induced 

fraction of GAL genes [16], and a panel of naturally occurring GAL3 variants confers a spectrum 

of GAL induction phenotypes across yeast strains [19]. However, these studies only analyzed 

the effect of GAL3 on induced fraction [14,16,19] or only considered whether a response was 

unimodal or bimodal [20]. Indeed, heterozygous deletion of GAL4 was previously found to 

have no effect on the GAL induced fraction [16]. We put these previous observations in context 

by showing that natural GAL3 alleles specifically affect the sugar threshold where individual 

cells to switch to an induced state, while the level of induction in that state is set by GAL4 and 

other unknown genes. Both these features combine to yield the population level behavior of the 

circuit, including apparent patterns of bimodality. Underscoring this point, we found that GAL3 

allele replacement is sufficient to convert a unimodal response to bimodal, and vice versa, while 

the level of the induced subpopulation remains unchanged. This degree of modularity in the 

quantitative behavior of the GAL circuit was previously unappreciated. 
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GAL4 is the transcription factor activating all inducible GAL genes [10,28]. The S288C variant of 

GAL4 contains a non-conservative R95G mutation, as well as a conservative R508K mutation, 

relative to DBVPG1106 and other natural isolates. Residue 95 is on a loop linking the DNA-

binding and regulatory domains of GAL4 and directly participates in interactions with Gal11p 

[29,30], a component of the RNA polymerase II mediator complex that enhances expression of 

GAL genes [31]. These observations suggest that the S288C and DBVPG1106 GAL4 alleles might 

differ in their ability to activate transcription of GAL genes. This effect could be specific to 

induced level if differences in GAL4 activity only affect GAL promoters that are in an active 

state and the latter variable is separately dictated by feedback loops such as GAL3. An 

important question for future work is whether this scenario is quantitatively plausible in a 

mathematical model of the GAL circuit, and what general features of this and other circuits 

allow for independent tuning. 

Modularity of the GAL pathway, genetic background, and metabolic state 

We also find that MKT1 alleles affect the GAL response and can play almost as large a role as 

GAL3. MKT1 is involved in maintaining killer toxin [32], regulating translation [33], and affects 

numerous traits in crosses between S288C and natural isolates [34–39]. The S288C allele of 

MKT1 is a loss-of-function variant relative to natural alleles and causes lower expression of 

mitochondrial genes [40,41]. In turn, deletion mutants of mitochondrial genes tend to exhibit 

aberrant GAL induction; this effect is more pronounced on the induced fraction than on 

induced level [42], echoing our observations. Therefore, it is likely that the effect of MKT1 allele 

on GAL induction is due to perturbations to mitochondrial function. 

We found that much of the variation in bTn, and to a lesser extent opn, must be attributed to 

unknown alleles in the genetic background. This dovetails with other recent reports that many 
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traits in yeast are dominated by large effects from one or a few loci but can be tuned 

quantitatively by many small-effect loci [19,42–44]. Moreover, MKT1 is not a member of the 

canonical GAL pathway, and nor are any genes in 2 other loci that reached significance in our 

linkage mapping. Combined with observations that deletion mutants of up to quarter of all 

yeast genes have quantitatively perturbed GAL signaling [42], our results indicate that decision-

making circuits are not as modular with respect to genetic variation as is often assumed. 

In addition to genetic effects on GAL induction, we found that culturing cells in raffinose, 

glycerol, or acetate prior to induction in a glucose + galactose led to very different GAL 

phenotypes. Raffinose is commonly used to pre-culture cells for GAL induction studies 

(including most experiments here) because unlike glucose, it does not visibly repress GAL 

genes [14,45]. We chose glycerol and acetate by the same criterion. Otherwise, however, these 

carbon sources elicit very different physiological responses. Raffinose is hydrolyzed to release 

fructose [46], which can then be fermented [47,48]. Glycerol and acetate, by contrast, must be 

utilized via respiration [49], which entails expression changes in many genes [50] as well as 

differences in ATP/ADP ratio and redox state [51]. Therefore, our results suggest that factors 

other than canonical glucose catabolite repression may be important in setting the inducibility 

of GAL genes. 

Our results indicate that memory of metabolic state is encoded by the GAL circuit and persists 

even after the cells have reached steady-state in inducing conditions (Figure 4.5B, Materials and 

Methods). This appears to be a distinct phenomenon from the “memory” of glucose or galactose 

pre-induction conditions previously attributed to bistability of the GAL network [14,52]. 

However, the fact that pre-induction carbon source specifically affects opn, just as GAL3 allele 

does, suggests that this positive feedback loop may be a nexus of regulation of GAL genes by 
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multiple signals in the cell. Indeed, recently it was shown that NAD(P) can directly bind Gal80p 

and thereby impact downstream GAL pathway expression [53,54]. Since these studies relied on 

bulk measurements, it will be interesting to revisit these investigations using quantitative, 

single-cell readouts of pathway behavior. 

Physiological and ecological role of independent tuning 

Our results raise the question of why independent tuning of induced fraction and induced level 

would exist in nature. Previously we showed that natural variation in the timing of GAL 

induction during diauxic growth leads to a fitness tradeoff—some strains prepare for glucose 

exhaustion at an upfront cost while others maximize their growth rate on glucose but suffer a 

diauxic lag [21]. Related work showed that both strategies could be implemented by the same 

strain as part of a bimodal response [20], and that this may be an evolutionarily stable strategy 

[55]. Under this framework, tuning bTn and opn separately would allow the timing of the 

inducing population, and its level of induction, to evolve separately. This could provide fitness 

benefits in certain conditions, although exactly what these conditions are would depend on the 

quantitative details of the costs and benefits of induction, an interesting issue to be explored in 

future work. 

Materials and Methods 

Strains and media 

Strains were obtained as described in [21]. An initial set of 42 strains were assayed in glucose 

gradients + galactose. Strains CLIB324, L-1528, M22, W303, YIIC17-E5, YJM975, YJM981 were 

excluded from downstream analysis due to poor growth in our media conditions. Strain 

378604X was also excluded due to a high basal expression phenotype that was an outlier in our 

collection. The genetic basis of this behavior is likely an interesting topic for follow-up studies. 
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All experiments were performed in synthetic minimal medium, which contains 1.7g/L Yeast 

Nitrogen Base (YNB) (BD Difco) and 5g/L ammonium sulfate (EMD), plus D-glucose (EMD), D-

galactose (Sigma), or raffinose (Sigma). Cultures were grown in a humidified incubator (Infors 

Multitron) at 30°C with rotary shaking at 230rpm (tubes and flasks) or 999rpm (600uL cultures 

in 1mL 96-well plates). 

Flow cytometry assay in glucose gradient 

GAL induction experiments were performed in a 2-fold dilution series of glucose concentration, 

from 20% to 2-9% w/v, with constant 0.25% galactose. 2% glucose and 2% galactose conditions 

were also included with each glucose titration experiment. To assess and control for well-to-

well variation, experiments were performed as a co-culture of a “query” strain to be 

phenotyped and a “reference” strain that was always SLYB93 (natural isolate YJM978 with 

constitutive mCherry segmentation marker). 

To start an experiment, cells were struck onto YPD agar from -80C glycerol stocks, grown to 

colonies, and then inoculated from colony into YPD liquid and cultured for 16-24 hours. Then, 

query and reference strain cultures were mixed 9:1 by volume and inoculated in a dilution 

series (1:200 to 1:6400) in S + 2% raffinose medium. The raffinose outgrowths were incubated for 

16-20 hours, and then their optical density (OD600) was measured on a plate reader (PerkinElmer 

Envision). One outgrowth culture with OD600 closest to 0.1 was selected for each strain, and then 

washed once in S (with no carbon sources). Washed cells were diluted 1:200 into glucose + 

galactose gradients in 96-well plates (600uL cultures in each well) and incubated for 8 hours. 

Then, cells were harvested and fixed by washing twice in Tris-EDTA pH 8.0 (TE) and 

resuspended in TE + 0.1% sodium azide before transferring to a shallow microtiter plate 

(CELLTREAT) for measurement. Flow cytometry was performed using a Stratedigm S1000EX 
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with A700 automated plate handling system. Data analysis was performed using custom 

MATLAB scripts, including Flow-Cytometry-Toolkit (https://github.com/springerlab/Flow-

Cytometry-Toolkit). 

Experiments using glycerol and acetate as pre-induction carbon sources were done as above, 

except S + 3% glycerol or S + 2% potassium acetate were used instead of raffinose medium for 

the outgrowth step. 

Crossing and generating segregants 

To prepare parent strains for crossing and sporulation, we sporulated diploid natural isolates 

bearing the hoΔ::GAL1pr-YFP-hphNT1 reporter cassette and isolated random spores that 

displayed MATa or MATα  phenotypes in test crosses. We then introduced a constitutive 

fluorescent marker in tandem with the GAL reporter, to obtain MATa; hoΔ::GAL1pr-YFP-

mTagBFP2-kanMX4 or MATα; hoΔ::GAL1pr-YFP-mCherry-natMX4 parent strains. To the 

MATa parent we also introduced a pRS413-derived plasmid bearing STE2pr-AUR1-C and 

hphNT1. This plasmid is maintained by hygromycin selection but also allows selection for  

MATa cells by Aureobasidin A [56]. A similar mating-type-selection plasmid was used in a 

recent study [57]. 

To isolate segregants for phenotyping, we crossed a parent with BFP-kanMX + MAT-selection 

plasmid to a parent with mCherry-natMX and isolated a G418RNatRHygR diploid hybrid with 

the plasmid. We sporulated the hybrid by culturing it to saturation in YPD, diluting 1:10 in 

YP+2% potassium acetate and incubating at 30C for 8 hours, and washing and resuspending 

into 2% potassium acetate and incubating at 30C until >20% of cells were tetrads, or about 3 

days. We incubated ~5x106 tetrads in 100uL water with 50U of zymolyase 100T (Zymo Research) 

for 5 hours at 30C, and then resuspended tetrads in 1mL of 1.5% NP-40 and sonicated for 10 
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seconds at power setting 3 on a probe sonicator (Fisher Scientific). The resulting segregants 

were plated on YPD + 0.5ug/mL Aureobasidin A (“AbA”; Clontech) and random colonies were 

picked into YPD liquid and saved as glycerol stocks. Haploidy was confirmed by mating to 

tester strains with known mating type. 90 segregants were phenotyped for GAL induction as 

described above. 

Sorting-based bulk-segregant analysis 

To generate segregant pools, we prepared a diploid hybrid and sporulated it as described 

above. To reduce the size of recombination blocks and improve the resolution of linkage 

mapping [58], we then performed the following “intercross” protocol 4 times: from spore 

suspension, use Sony SH800 Cell Sorter to sort 4x106 BFP+ or mCherry+ (but not +/+ or -/-) cells 

into 100uL YPD + 40ug/mL tetracycline; incubate for 16 hours at 30C without shaking; add 5mL 

YPD + 200ug/mL G418 + 100ug/mL ClonNat + 200ug/mL Hygromycin B and incubate 48 hours 

at 30C with shaking; sporulate cultures and prepare sonicated spore suspension. After the 4th 

sporulation cycle, the sonicated spores were resuspended in YPD + 0.5ug/mL AbA and 

incubated at 30C for 16 hours. This culture was frozen as a glycerol stock, as well as used to 

inoculate the galactose-induction sorting experiment. 

To sort segregant pools for bulk genotyping, we inoculated the intercrossed, MATa-selected 

segregants from a saturated YPD culture into S + 2% raffinose + AbA at dilutions of 1:200, 1:400, 

1:800, and 1:1600, and incubated at 30C for 16-24 hours. We chose the raffinose culture with OD 

closest to 0.1, washed once in S (0.17% Yeast Nitrogen Base + 0.5% Ammonium Sulfate), and 

diluted 1:200 into S + 0.25% glucose + 0.25% galactose + AbA. We incubated the glucose-

galactose culture at 30C for 8 hours, and then used a Sony SH800 sorter to isolate pools of 30,000 

cells with the 5% lowest (“OFF”) and highest (“HI”) YFP expression, among cells whose Back 
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Scatter (BSC) signal was between 105 and 3x105. The “LOW” pool was similarly obtained, but 

from the 5% of cells with lowest non-basal expression (Figure S4.3). The sorted cells were 

resupended in YPD + AbA and incubated at 30C until saturation, about 16-24 hours. An aliquot 

of this culture was saved for -80C glycerol stocks, and another was used to prepare sequencing 

libraries. 

To sequence the segregant pools, we extracted genomic DNA from 0.5mL of saturated YPD 

culture of each segregant pool using the PureLink Pro 96 kit (Thermo Fisher K182104A). From 

these genomic preps, we made sequencing libraries using Nextera reagents (Illumina FC-121-

1030) following a low-volume protocol [59]. We adjusted the input DNA concentration so that 

resulting libraries had mean fragment sizes of 200-300bp as measured on a BioAnalyzer. 

Libraries were multiplexed and sequenced in an Illumina NextSeq flow cell to a depth of 16-33x.  

Reads from the Illumina sequencing were aligned to the sacCer3 reference genome using bwa 

mem, and SNP counts were generated using samtools mpileup, on the Harvard Medical School 

Orchestra cluster . These outputs were processed in MATLAB using custom code as follows: 

SNPs with coverage less than 2 or more than 1000 were removed. The LOW and HI pools were 

computationally merged into an ON pool. To make sure the two pools contributed equally to 

the merged pool, at each SNP, allele counts in the pool with higher coverage were randomly 

subsampled to the coverage of the other pool. The final allele counts in each pool were output to 

text files by chromosome and given as inputs to the MULTIPOOL algorithm (mp_inference.py 

version 0.10.2) [60] to compute LOD scores. Loci with maximal LOD>5 were considered 

significant; previous work showed that this corresponded to an FDR of 5% [57,61]. This 

correspondence may differ under our experimental conditions; therefore, the 2 loci that we did 

not validate experimentally should be interpreted with caution. 
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CRISPR/Cas9 allele replacement 

Allele replacement strains were constructed using 3 rounds of gene knockout followed by 

CRISPR/Cas9-mediated markerless integration of heterologous allele. Initially, strains were 

prepared by introducing Cas9 on a CEN/ARS plasmid (SLVF11); this plasmid is derived from a 

previous one [63], but we replaced the auxotrophic URA3 marker with AUR1-C to allow 

Aureobasidin A selection on prototrophic natural isolates. In each round of allele replacement, a 

gene plus upstream and downstream flanking sequences (-784bp to +815bp for GAL3, -449bp to 

+372bp for MKT1, -191bp to +139bp for GAL4) was deleted by integration of a kanMX6 marker 

with 40bp flanking homology. Then, a donor DNA, a guide RNA insert, and a guide RNA 

backbone were simultaneously transformed into the strain [62]. The donor DNA  contains the 

new allele, its flanking sequences, and an additional 40bp of homology to target it to the correct 

genomic locus. The guide RNA insert was a linear DNA containing a SNR52 promoter driving a 

guide RNA gene containing a 20bp CRISPR/Cas recognition sequence linked to a crRNA 

scaffold sequence, plus 40bp of flanking homology on both ends to a guide RNA backbone. The 

guide RNA backbone was a 2u plasmid containing natMX4 (pRS420). This was linearized by 

NotI + XhoI digestion before transformation. Allele re-integration transformations were plated 

on cloNAT to select for in vivo assembly of the guide RNA into a maintainable plasmid, and 

Aureobasidin A to select for presence of Cas9. Successful re-integration was verified by colony 

PCR and Sanger sequencing was performed on a subset of strains and on all donor DNAs to 

verify the sequence of allelic variants. 
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Appendix I. 

Supporting Information for Chapter 2 

Natural Variation in Preparation for Nutrient Depletion Reveals a Cost–Benefit 

Tradeoff 

Figure S2.1. Growth curves of all 43 strains assayed. 

Plots of log2 (OD600) versus time for 43 strains, after subtracting background (0.03) from the raw OD600 

readings. Two replicates are shown in each panel. Time axes have been adjusted so that OD = 2-6 at time 

zero, to exclude an initial interval of 0-12 hours during which data can be noisy due to low OD (examples 

shown in Figure S2.2B). The strains are shown sorted from shortest to longest diauxic lag time from top 

left to bottom right. Plots with an asterisk “*” in top-right corner are strains shown in Figure 2.1B-C based 

on their galactose growth rate (Figure S2.3). Plots outlined in green represent the 15-strain subset used for 

GAL induction measurements (Table S1; Figure 2.3-2.4). 
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Figure S2.1 (Continued). Growth curves of all 43 strains assayed. 
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Figure S2.2. Diauxic lag and minimum mid-diauxic growth rate metrics correlate across replicates. 

(A) Measured optical density (i.e. absorbance at 600nm) versus actual culture density, obtained by serial 

dilution of a yeast culture saturated under growth curve assay conditions. Dilution series were prepared 

in triplicate. OD600 was linear with culture density in this range, and displayed a background (y-

intercept) value of ~0.03. (B) Example growth curves (top) and growth rate plots (bottom) for 2 strains. 

Light gray lines show raw discrete derivatives computed from the growth curve data (Materials and 

Methods), blue lines show cubic spline fits to the discrete derivatives, and red lines show derivatives of 

the splines, or the smoothed 2nd derivative of the growth curves. Both replicates are shown for each strain. 

Strain Bb32 (left) did not have a local growth rate minimum, and therefore its diauxic lag duration was 

defined to be zero and its minimum mid-diauxic growth rate was defined to be the time of the inflection 

point in growth rate (Materials and Methods). More often, strains displayed a phenotype like SLYG78 

(right), a S288C derivative, which had a clear minimum rate during diauxic shift. (C) Scatter plots of the 

diauxic lag time (left) and minimum mid-diauxic growth rate (middle) across 2 replicate experiments, and 

between diauxic lag time and minimum rate (right). All 3 plots are strongly correlated, showing that our 

metrics were robust to measurement noise and that the continuous phenotypic variation in diauxic 

growth is not an artifact of the lag time metric used in Figure 2.1. (D) Diauxic lag time and minimum 

mid-diauxic growth rate were calculated from a sliding-window average on the discrete derivatives of 

growth curves (as opposed to the cubic spline fit used for Figure 2.1). This method yielded almost 

identical results, showing that the metrics were not sensitive to the method of calculation. 
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Figure S2.2 (Continued). Diauxic lag and minimum mid-diauxic growth rate metrics correlate across 

replicates. 
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Figure S2.3. Diauxic lag time is not correlated with growth rate in glucose-only or galactose-only 

medium. 

Scatterplots of diauxic lag time (top) and minimum mid-diauxic growth rate (bottom) versus steady-state 

growth rates in galactose alone (left) or in glucose alone (right). Steady-state growth rates were measured 

in a separate growth curve experiment (Materials and Methods). In general, the diauxic lag metrics 

correlated poorly with steady-state growth rates, suggesting that the phenotypic variation in diauxic 

growth cannot be solely explained by differences in glucose or galactose metabolism. Strains with growth 

rates between 0.5 and 0.6 doublings/hour in galactose are shown in Figure 2.1B-C (filled dots). This 

includes BC187 (blue) and YJM978 (red). 
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Figure S2.4. Determination of absolute cell concentration by flow cytometric counting. 

(A) Absolute cell concentration as measured by flow cytometer versus actual relative culture density of a 

dilution series of a yeast culture, prepared in triplicate. Gray line shows predicted results extrapolated 

from the lowest density measurement, which agrees well with observed values. Absolute cell 

concentration was determined during the diauxic growth experiments in Figure 2.2B-C and 2.5A-B, and 

are plotted versus time for (B) BC187, (C) YJM978, and (D) a co-culture of BC187 and YJM978. Data for 

both replicates are shown—these are almost overlapping. The time axis is adjusted so that the culture is at 

106 cells/mL at time zero. This time was determined by interpolation on a linear fit to four consecutive 

datapoints. The same adjustment was applied to the time axis for all plots in Figures 2.2 and 2.5. 
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Figure S2.5. Strain BC187 can consume galactose and glucose simultaneously. 

(A) Glucose and galactose concentrations versus time for (left) a culture of BC187, and (right) a culture of 

YJM978, from the same experiment as in Figure 2.2. Both replicates are plotted. Time zero corresponds to 

culture density of 106 cells/mL. To determine whether either strain begins to consume galactose prior to 

glucose exhaustion, we computed (B) the sugar depletion rate by taking discrete derivatives (circles) of 

the sugar concentrations, or slopes between consecutive data points, for both replicate datasets. We then 

binned the time axis into 1-hour intervals and computed, via a one-tailed t-test, the probability of 

observing the discrete derivatives in each time interval given a null hypothesis that the mean discrete 

derivative in that interval is 0 or positive. Mean sugar depletion rate for each bin is shown as lines in (B) 

and the log10 p-value for the significance test is shown in (C). Dotted black lines in (C) indicate where 

p=0.05. For BC187, there is a 2-hour interval over which there is statistically significant depletion of both 

glucose and galactose, at a significance threshold of 0.05. By contrast, the time intervals of significant 

glucose and galactose depletion for YJM978 do not overlap temporally. These conclusions are robust to 

the width or position of time bins.  
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Figure S2.6. GAL1pr-YFP expression is highly variable across natural isolates in glucose + galactose 

but not in glucose alone. 

Steady-state GAL1pr-YFP expression histograms for 15 strains showing partial expression in 0.0625% 

glucose + 0.25% galactose (black), basal expression in 2% glucose (purple), and maximal expression in 2% 

galactose (orange). Additionally, the parent strains without a GAL1pr-YFP reporter cassette were assayed 

in 2% glucose (red). Partial expression varies widely across strains in glucose + galactose, yet YFP signal 

above autofluorescence is undetectable from most strains in glucose-only medium (compare purple and 

red histograms). A number of strains (YJM981, Y12-WashU, Y9-WashU, YJM975) display bimodal 

expression in glucose+galactose. Measurements were taken at steady-state (as in Figure 2.4D; see 

Materials and Methods); distributions are unsmoothed histograms of 20,000 or more cells. 

  



 
 

134 

Figure S2.7. Co-culture method to determine timing of GAL induction relative to glucose depletion. 

(A) Example scatterplot of YFP versus mCherry signal by flow cytometry. Reference strain and query 

strain cells are distinguished by mCherry (red vs gray) and the YFP of each subpopulation is used to 

compute induction time. (B) Median GAL1pr-YFP expression of YJM978 with or without constitutive 

fluorophore in a co-culture of the two strains. Both strains contain the GAL reporter, which is unaffected 

by the constitutive fluorophore. (C) Start time of GAL induction tlow in BC187yb and YJM978ym cultured 

alone or in co-culture with each other, mean and range of 2 replicates. There is no significant difference in 

induction timing between separate and mixed cultures. (D) Median GAL1pr-YFP profiles for 15 strains 

from the co-culture experiment of Figure 2.3. Query and reference strain were mixed at three initial ratios. 

Density plot in background shows full YFP distributions of the query strain for the 1:4 query:reference 

condition (except for strain SLYG78, where 4:1 is shown). (E) Scatterplot of preparation time from 

different inoculating ratios. Preparation time was nearly identical across different inoculating ratios. The 

three ratios were used as replicates in Figure 2.3D-E. (F) Scatterplot of preparation time calculated as the 

time difference between query and reference strains at 1/32 or at 1/16 of maximal induction. The metric is 

robust to this difference (Spearman correlation = 0.97). (G) Definition of “ON fraction” as the fraction of 

cells with YFP signal higher than 1/32 of the maximal median YFP. (H) Possible ON fraction profiles. If a 

single population completely induces from basal to maximal (“Coherent induction”), the ON fraction will 

increase monotonically from 0 to 1. If the a culture splits into subpopulations with different induction 

times (“Early & late subpopulations”), the ON fraction will in two distinct phases, as in Venturelli et al. 

[23]. If a subset of cells never induce (“Non-inducing subpopulation”), the ON fraction will saturate 

below 1. (I) ON fraction versus time of the 15 strains in (D), from the 1:4 inoculation. Each strain is a 

different colored line, and strains BC187 and YJM978 are highlighted. Most profiles are consistent with 

“coherent induction”, although in some strains, a small subpopulation consisting of less than 10% of all 

cells may have pre-induction before sampling. In some strains, the ON fraction decreases after saturating 

(see also panel D) – this is likely due to an experimental artifact (Materials and methods). 

  



 
 

135 

 

Figure S2.7 (Continued). 
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Figure S2.8. GAL1pr-YFP expression reaches steady-state after 8 hours of growth in galactose medium. 

GAL1pr-YFP expression distributions over time in repressing (0.25% glucose), inducing (0.25% 

galactose), and mixed-sugar (0.0625% glucose + 0.25% galactose) conditions for BC187yb (blue) and 

YJM978ym (red). Cultures were pre-grown in 2% raffinose to minimize the induction delay upon starting 

the experiment. Cells were diluted every two hours to maintain a density of less than 105 cells/mL. After 

12 hours, the dilution factor was increased and dilution / sampling interval increased to 12 hours, and the 

cultures were monitored up to 48 hours. In conditions where either strain induces, expression stops 

increasing after eight hours. 
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Figure S2.9. Strains induce GAL1pr-YFP at quasi-steady-state levels during gradual glucose depletion. 

(A) Scatterplot of median GAL1pr-YFP expression of query strains three hours before reference strain 

mid-induction time (computed from data in Figure 2.3) versus the median GAL1pr-YFP expression of the 

same strains growing at steady-state in 0.0625% glucose + 0.25% galactose. (B) Steady-state GAL1pr-YFP 

distributions for strains BC187 and YJM978 (Bottom) in glucose + galactose conditions chosen from 

different moments of diauxic growth (Top schematic). BC187 induces at intermediate levels at steady-state 

in glucose + galactose mixtures, rather than at basal or maximal levels, as would be expected if the level 

of GAL expression responds in a switch-like manner to decreasing glucose. 
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Figure S2.10. Pre-growth of YJM978 in a non-inducing galactose concentration accelerates GAL 

induction in subsequent medium shift. 

Median GAL1pr-YFP expression versus time for YJM978ym cells suddenly transferred from glucose to 

galactose (purple), or from glucose + galactose to galactose (black). This strain induces GAL genes 

significantly earlier (p=0.008 by 2-sample t-test) in response to sudden galactose induction when pre-

grown in the presence of some galactose. 
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Figure S2.11. Short-lag strains reach saturation faster, but BC187 exhausts glucose more slowly than 

YJM978.  

(A) Example calculation of saturation time, which is defined as the time for a strain to grow from the 

diauxic shift to saturation. (B) Scatterplot of saturation time versus diauxic lag time. The two metrics are 

strongly correlated, showing that strains that have a shorter diauxic lag also reach saturation sooner after 

diauxic shift. (C) Time to exhaustion of glucose or galactose in cultures of BC187yb (blue) or YJM978ym 

(red). YJM978 exhausts glucose significantly before BC187, even though BC187 exhausts galactose—and 

therefore both sugars—much faster than YJM978 under the assay conditions. Data are mean and range of 

n=2 replicates. P-value was calculated by 2 sample t-test. 
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Figure S2.12. Absolute and relative fitness of BC187 and YJM978. 

(A) Log2 absolute cell concentration versus time of strains BC187yb (blue) and YJM978ym (red) in 

0.0625% glucose (left) and 0.0625% glucose + 0.25% galactose (right). Cultures were sampled every two 

hours after they had reached steady-state GAL1pr-YFP expression. Cultures were periodically diluted so 

that raw cell densities (light color) did not exceed 220 or 106 cells/mL. Dilution-corrected data (dark color) 

were used to calculate growth rates. (B) Log2-ratio of BC187yb cell count to YJM978ym cell count in the 

same cultures as shown in (A). Relative fitnesses (i.e. growth rate differences) reported in Figure 2.5C are 

computed from line fits to these plots. (C) Steady-state growth rates of BC187yb (blue) and YJM978ym 

(red) in 0.0625% glucose + 0.25% galactose, 0.0625% glucose, or 0.15% galactose, as determined by linear 

fit to plots as in (A). Bar graphs are mean and s.e.m. of 3-6 replicates. P-values are computed by 2-sample 

t-test; “n.s.” indicates p > 0.05. (D) Steady-state GAL1pr-YFP expression distributions of BC187 (blue 

lines) and YJM978 (red lines) in the conditions from (C). Only one timepoint and replicate is shown; 

others had identical fluorescence distributions. 
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Figure S2.13. Single-cell growth rate correlates negatively with GAL1pr-YFP expression 

(A) Example time-lapse microscopy images of BC187ym microcolonies (1-10 cells) at initial (top) and final 

(bottom) timepoints. Segmentation boundaries (red) were determined by analyzing mCherry images, and 

GAL1pr-YFP reporter concentration was determined as the final average YFP signal per pixel of each 

microcolony (Materials and methods). (B) Scatterplots of growth rate versus YFP concentration for 

microcolonies pre-induced in 0.125% glucose (n=165 microcolonies), 0.125% glucose + 0.25% galactose 

(n=196), or 0.25% galactose (n=223) prior to transferring to 0.125% glucose + 0.25% galactose for imaging. 

Growth rate displayed a significant negative correlation with GAL1pr-YFP concentration. (C) 

Distributions of growth rate (top) and YFP concentration (bottom) across microcolonies from the 3 pre-

growth conditions. For clarity, plotted are smoothed probability densities estimated using a Gaussian 

kernel (Materials and methods). P-values are computed by a Kolmogorov-Smirnov test against the null 

hypothesis that growth rates of microcolonies from two pre-growth conditions have the same 

distribution. 
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Figure S2.14. Galactose cost and GAL expression change in a correlated way between different media 

conditions. 

Scatterplot of galactose cost versus mean GAL1pr-YFP expression at steady-state in two different sets of 

glucose or glucose + galactose media. Black circles are the same data as in Figure 2.7B, whereas red circles 

are data obtained from 0.125% glucose and 0.125% glucose + 0.25% galactose, which induces GAL genes 

to a lesser extent. Gray arrows connect strains between the 2 conditions. Most arrows point toward the 

lower left, indicating that as galactose stays constant and glucose decreases (such as during diauxic 

growth), GAL expression increases at the same time that the growth cost due to the presence of galactose 

increases. 
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Table S2.1. Strains used in this study. 

Available at 10.1371/journal.pbio.1002041.s015. 

This file contains three worksheets. Worksheet (A) lists the 43 natural isolates assayed by growth curves 

in Figure 2.1. Worksheet (B) lists the GAL1pr-YFP reporter strains constructed from a subset of 15 natural 

isolates. Worksheet (C) lists strains used in time-lapse microscopy and synthetic GAL induction 

experiments. 

Table S2.2. Phenotypic measurements of natural isolates.  

Available at 10.1371/journal.pbio.1002041.s016. 

This file contains four worksheets. Worksheet (A) summarizes the metrics used in the paper and 

describes how they are defined and inter-related. Worksheet (B) contains values of the diauxic lag time 

and minimum mid-diauxic growth rate metrics from both replicates of the growth curve experiments in 

Figure 2.1. Worksheet (C) contains values of preparation time and other metrics measured on a subset of 

15 natural isolates and used in Figures 2.3-2.4. Worksheet (D) contains growth rate measurements used to 

determine the galactose cost, as well as GAL expression data, plotted in Figures 2.7 and S2.14. 
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Appendix II. 

Supporting Information for Chapter 3 

Polymorphisms in the Yeast Galactose Sensor Underlie a Natural Continuum of Nutrient-

Decision Phenotypes 

Table S3.1. List of strains used in this study. 

Strain ID Genotype 

SLL16-A01 Bb32 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-B01 BC187 MATa/x; hoΔ::GAL1pr-YFP-kanMX4 

SLL16-C01 CLIB215 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-D01 CLIB324 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-E01 CLIB382 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-F01 DBVPG1106 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-G01 DBVPG1373 MATa/x; hoΔ::GAL1pr-YFP-kanMX4 

SLL16-H01 DBVPG1788 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-A02 DBVPG1853 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-B02 DBVPG6040 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-C02 DBVPG6765 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-D02 FL100 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-E02 I14 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-F02 IL-01 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-G02 L-1374 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-H02 M22 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-A03 NC-02 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-B03 s288c MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-C03 T7 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-D03 UC5 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-E03 UWOPS03-461.4 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-F03 UWOPS87-2421 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-G03 WE372 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-H03 Y12-SGRP MATa/x; hoΔ::GAL1pr-YFP-kanMX4 

SLL16-A04 Y12-WashU MATa/x; hoΔ::GAL1pr-YFP-hphNT1 
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SLL16-B04 Y9-WashU MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-C04 YJM421 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-D04 YJM428 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-E04 YJM653 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-F04 YJM975 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-G04 YJM978 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-H04 YJM981 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-A05 YPS1009 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-B05 YPS128 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-C05 YPS163 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-D05 YPS606 MATa/x; hoΔ::GAL1pr-YFP-hphNT1 

SLL16-A06 I14 MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-B06 BC187 MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-C06 YPS606 MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-D06 S288C MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-E06 Y12-WashU MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-F06 DBVPG1106 MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-G06 YJM978 MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-H06 YJM421 MATa; hoΔ::GAL1pr-YFP-TDH3pr-BFP-kanMX4 

SLL16-A07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM421 

SLL16-B07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3Y12-WashU 

SLL16-C07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3DBVPG1106 

SLL16-D07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM978 

SLL16-E07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3S288C 

SLL16-F07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM428 

SLL16-G07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3BC187 

SLL16-H07 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3NC-02 

SLL16-A08 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3I14 

SLL16-B08 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YPS606 

SLL16-C08 YJM978 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3WE372 

SLL16-D08 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM421 

SLL16-E08 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3Y12-WashU 

SLL16-F08 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3DBVPG1106 
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SLL16-G08 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM978 

SLL16-H08 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3S288C 

SLL16-A09 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM428 

SLL16-B09 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3BC187 

SLL16-C09 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3NC-02 

SLL16-D09 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3I14 

SLL16-E09 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YPS606 

SLL16-F09 BC187 MATx; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3WE372 

SLL16-G09 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM421 

SLL16-H09 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3Y12-WashU 

SLL16-A10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3DBVPG1106 

SLL16-B10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM978 

SLL16-C10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3S288C 

SLL16-D10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM428 

SLL16-E10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3BC187 

SLL16-F10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3NC-02 

SLL16-G10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3I14 

SLL16-H10 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YPS606 

SLL16-A11 S288C MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3WE372 

SLL16-B11 YJM421 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM978 

SLL16-C11 YJM421 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3S288C 

SLL16-D11 YJM421 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3BC187 

SLL16-E11 DBVPG1106 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM978 

SLL16-F11 DBVPG1106 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3S288C 

SLL16-G11 DBVPG1106 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3BC187 

SLL16-H11 Y12-WashU MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM978 

SLL16-A12 Y12-WashU MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3S288C 

SLL16-B12 Y12-WashU MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3BC187 

SLL16-C12 I14 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3YJM978 

SLL16-D12 I14 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3S288C 

SLL16-E12 I14 MATa; hoΔ::GAL1pr-kanMX4; gal3∆::GAL3BC187 

SLYB93  YJM978 MATa/x; ho∆::GAL1pr-YFP-kanMX4/ ho∆::TDH3pr-mCherry-natMX4 
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Table S3.2. List of significant loci and associated genes at LOD > 5. 

This table lists genomic regions for which peak LOD > 5 in the bulk segregant analysis. 2-LOD support intervals are shown for each peak in each 

cross, as well as averaged support intervals that combine information from “clusters” of peaks within 20kb of each other from different crosses. A 

subset of genes with sacCer3 (SGD R64-1-1) annotations in the support intervals for each locus are shown. 

Cross 
Chromosom

e 
Max. 
LOD 

Max. LOD 
Location 
(bp on 

chromosom
e) 

2-LOD Support 
Interval (start 

and end in bp) 

Clustered locus 
2-LOD S.I. 

(mean start & 
end) 

Genes in (clustered) 2-LOD S.I. 

YJM978 x BC187 4 
197.7

1 465800 459600 470600 
449750 468638 NTH1, YRB1, RCR2, RAD57, MAF1, 

SOK1, TRP1, ARS1, GAL3, SNQ2, 
YDR003W-A, YDR008C, YDR010C YPS606 x Y12 4 164.7 451600 446100 458300 

YPS606 x S288C 4 92.99 461600 451300 469900 
DBVPG1106 x 

YJM421 4 69.24 462200 450700 467000 

I14 x BC187 4 69.12 461800 452700 472600 

I14 x YJM421 4 40.79 467400 463800 474100 
DBVPG1106 x 

S288C 4 32.96 457600 444700 469300 

YJM978 x Y12 4 24.49 449300 429100 467300 

I14 x BC187 13 37.28 183200 173600 193600 163867 201367 SUP5, SUR7, GAL80, AIM32, RSE1, GSF2, 
PRM6, PRP39, RRN11, CAT2, and 17 more 
annotations… 

DBVPG1106 x 
YJM421 13 7.03 176200 164800 197400 

YJM978 x Y12 13 6.76 185100 153200 213100 

YJM978 x Y12 13 15.68 609800 594700 621600 578233 629467 CEP3, ALD3, ALD2, EAR1, HOT1, 
DDR48, PAI3, SIP18, ECM5, and 20 more 
annotations… 

YPS606 x Y12 13 7.85 611200 566600 629300 
I14 x BC187 13 5.83 608200 573400 637500 
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DBVPG1106 x 
S288C 14 31.85 460200 451800 469400 

450500 472850 TOP2, TCB2, SNN1, MKT1, END3, and 4 
more annotations… 

YPS606 x S288C 14 12.35 464000 449200 476300 

YPS606 x S288C 4 13.95 1155900 
114720

0 
116890

0 
114485

0 
117695

0 
HXT7, HXT6, HXT3, SVF1, and 17 more 
annotations… 

DBVPG1106 x 
YJM421 4 8.66 1153700 

114250
0 

118500
0 

YPS606 x S288C 16 9.43 81200 71800 94000 74300 92400 GYP5, GAL4, RBD2, HUT1, SRP68, and 5 
more annotations… I14 x YJM421 16 7.46 81900 76800 90800 

YPS606 x S288C 15 7.55 746100 730800 760700 730800 760700 MGM1, STE4, SAS5, SPR2, and 3 more 
annotations… YPS606 x S288C 15 7.55 746700 730800 760700 

I14 x YJM421 4 7.41 365400 342500 373800 339500 474650 STP4, SIT4, NPC2, MRP10, FAD1, MTF2, 
and 20 more annotations… I14 x YJM421 4 5.97 384100 374800 425700 

YPS606 x Y12 2 7.04 568200 537700 601000 537700 601000  ICS2, AMN1, IFA38, CDC28, and 16 more 
annotations… YPS606 x Y12 2 7.04 568600 537700 601000 

YPS606 x Y12 8 6.87 287400 249100 324400 251400 318450 MSR1, HXT4, AHT1, HXT1, HXT5, and 24 
more annotations… I14 x BC187 8 5.79 287600 253700 312500 

YPS606 x Y12 13 15.64 357400 339800 363700 N/A N/A 
IMP2,  MIH1,  MSN2,  CCS1 and 14 
more... 

DBVPG1106 x 
S288C 12 11.61 1053400 

104210
0 

106500
0 N/A N/A 

FMP27,  PDP3,  NBP1,  GAB1 and 7 
more... 

YJM978 x Y12 7 11 781500 766200 812800 N/A N/A 
CBF2,  VPS62,  BTN2,  SKN1 and 30 
more... 

YPS606 x S288C 8 9.68 112500 96100 125900 N/A N/A 
SHU1,  MRP4,  LAG1,  HSE1 and 21 
more... 

YJM978 x Y12 2 8.76 451100 408500 474400 N/A N/A 
TEC1,  MIS1,  RPL19A,  AAC3 and 35 
more... 

YPS606 x S288C 10 8.74 668000 649000 688900 N/A N/A 
IBA57,  RPS5,  ENT3,  VPS70 and 16 
more... 

YPS606 x S288C 16 8.17 878100 858000 898000 N/A N/A GPH1,  SGV1,  ORC4,  TIF3 and 28 more... 

YPS606 x S288C 15 7.89 375500 314700 393600 N/A N/A RPB11,  SIN3,  PFA4,  IZH2 and 45 more... 
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I14 x YJM421 4 7.57 297900 284300 312100 N/A N/A 
SNU23,  RPN6,  PMT1,  OPI6 and 16 
more... 

DBVPG1106 x 
YJM421 1 7.23 143900 129800 162300 N/A N/A 

CYS3,  SWC3,  MDM10,  SPO7 and 20 
more... 

DBVPG1106 x 
S288C 2 7.17 416700 395000 469500 N/A N/A RPG1,  SEC18,  SPT7,  UBC4 and 40 more... 

YPS606 x S288C 13 6.66 108100 97600 122000 N/A N/A TUB1,  ATP18,  TDA9,  DUS1 and 9 more... 

I14 x BC187 15 6.38 796200 755100 822400 N/A N/A 
RCN2,  MCT1,  ODC2,  SNR35 and 48 
more... 

YPS606 x Y12 15 5.92 210100 148100 248300 N/A N/A 
HAL9,  MPD2,  DUF1,  MHF1 and 52 
more... 

DBVPG1106 x 
S288C 9 5.85 117500 91200 139800 N/A N/A 

OM45,  VHS2,  SNR68,  FLX1 and 19 
more... 

I14 x BC187 7 5.5 321200 262800 344500 N/A N/A 
CEG1,  RSM23,  CWC23,  SOH1 and 48 
more... 

DBVPG1106 x 
S288C 12 5.36 653200 633200 682100 N/A N/A 

RCK2,  YEF3,  SSP120,  SYM1 and 28 
more... 

YPS606 x S288C 16 5.26 577300 533100 605700 N/A N/A TAF3,  RET3,  RQC2,  CHL1 and 39 more... 

YJM978 x BC187 8 5.25 31500 5100 82100 N/A N/A 
COS8,  ARN2,  PAU13,  ECM34 and 45 
more... 

YPS606 x S288C 14 5.2 149400 122300 189700 N/A N/A TOF1,  SEC2,  BNI1,  ALP1 and 28 more... 

YJM978 x BC187 13 5.14 568600 498400 649000 N/A N/A 
SNR24,  ASC1,  SPC24,  SHH3 and 98 
more... 
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Figure S3.1. Phylogenetic tree of S. cerevisiae used in this study. 

Phylogenetic tree of common natural isolates of S. cerevisiae constructed based on sequencing data from 

Cromie et al. 2013 [36]. Strains highlighted in red were used in this study, while strains in black were not.   
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Figure S3.2. Quality control for query strains based on the reference strain.  

Each experiment contained a reference strain. The decision threshold of the reference strain was roughly 

normally distributed, with a long tail. Based on technical measurements, the tails are due to unintended 

variation in the assay, e.g. cells grown at too high of an OD, as opposed to biological variation. To 

eliminate this variation, we truncated the 5% highest and lowest values (red dashed lines). The standard 

deviation of the remaining, roughly normal, distribution was calculated and used to eliminate samples.  
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Figure S3.3.  Determining a cut-off for query outliers.  

(A) Remaining strains were plotted, replicate #1 vs. replicate #2-n, where n is the total number of 

replicates. A total of 68 strains out of 480 experiments were removed in our quality control. (B) The 

absolute value of the difference between each distinct measurement of a sample and the mean of all other 

replicate for that sample is plotted (blue). The same technique was used on simulated derived from a 

normal distribution of standard deviation 0.75 (red). Based on this a 1.5 standard deviation was chosen to 

eliminate samples that were likely due to some unintended source of bias.  
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Figure S3.4. Steady-state expression of GAL1pr-YFP from a panel of natural isolates in mixtures of 

glucose and galactose.  

Representative YFP induction profiles of the diploid natural isolates assayed in Figure 3.1. Cells were 

grown for 8 hours, a time previously determined to be sufficient for expression to reach steady-state [21], 

in a titration from 1% to 0% glucose (two-fold dilution series) in constant background 0.25% galactose. 

Flow cytometry profiles are plotted for each glucose concentration. Each panel contains 10 distinct 

glucose and galactose concentrations and 2% pure glucose or galactose. The color density represents the 

probability density function across of cells for different fluorescent intensity levels. Strains are ordered by 

increasing decision threshold. 
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Figure S3.5. Growth rate in 0.5% glucose or 0.5% galactose is not strongly correlated with decision 

threshold.  

Cells were grown in medium containing 0.5% glucose or 0.5% galactose and the OD600 was measured 

every 15 minutes by plate reader (Materials and methods). The growth rate was then calculated for each 

strain and condition (Materials and methods). The growth rate in glucose (blue) or galactose (green) of 

natural isolates is plotted versus the decision threshold (from Figure 3.1). Error represents S.E.M. of three 

replicates for growth rate and at least two replicates for decision threshold. The line is a linear least 

squared fit.  
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Figure S3.6. Correlation between genetic distance and phenotypic distance for decision threshold and 

traits from literature.  

Genetic distance [36] and phenotypic distance for a number of traits [4] had been previously measured 

and determined to be weakly correlated [4]. The histogram of correlation between genetic and phenotypic 

distance is plotted. The correlation between genetic distance and decision threshold is denoted with the 

red arrow. 
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Figure S3.7. Relationship of decision threshold with phylogeny and ecological niche.  

Phylogenetic tree was constructed based on the Cromie et al. distance matrix (Materials and methods) 

with the bar plot indicating decision threshold (from Figure 3.1). Color of bars indicate the ecological 

niche of strain. 

 



 
 

8 

Figure S3.8. Significance and effect size of detected loci. 

(A) Allele frequency of the ON parent (BC187) in the YJM978xBC187 cross across a region of chromosome 

IV spanning the chrIV:460Kb locus. The difference in allele frequency between ON and OFF pools at the 

locus can be used as a proxy for its effect size on the GAL induction phenotype. (B) Scatterplot of 

significance (LOD score) versus effect size (allele frequency difference) for all 49 LOD peaks where LOD > 

5. Significant LOD peaks from different crosses were “clustered” into a single locus if they lay within 

20kb of each other. Dots representing LOD peaks are colored by clustered locus. 
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Figure S3.9. Representative YFP induction profiles of GAL3 allele replacements.   

Homologous GAL3 allele replacement strains were assayed in a gradient of glucose in a background of 

0.25% galactose (Figure 3.3A-C). The alleles were assayed in three backgrounds (A) YJM978, (B) BC187, 

and (C) S288C. (D) The parental strain is shown for comparison.  
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Figure S3.10. Hemizygous hybrids YFP density plots. 

Homologous GAL3 allele replacement strains were assayed in a gradient of glucose in a background of 

0.25% galactose (Figure 3.3D). Three different alleles (A) YJM978, (B) BC187, and (C) S288C were assayed 

in seven genetic backgrounds.  
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Figure S3.11. Phenotypic variation of hybrid (and hybrid conversion) segregants.  

(A) Plot of the decision threshold for replicate 1 and replicate 2 from each segregant assayed. Inset: 

probability density function of the difference of replicate 1 and replicate 2. The variance from this 

distribution was used to determine the measurement error. (B) Decision threshold of segregants 

produced from hybrid conversion (Error represents range of the two segregants).  
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Figure S3.12. Scatter plot of decision threshold versus GAL1-YFP steady state expression [35]. 

Scatter plot of steady state GAL1 expression levels versus decision threshold of a subset of strains from 

Figure 3.1. We previously showed that GAL1 expression levels before the diauxic lag are inversely 

correlated with the diauxic lag length [35]. We extend that show that the decision threshold is correlated 

to these GAL1 expression levels.  
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Figure S3.13. Growth curves of GAL3 allele replacement strains. 

Replicate data of growth curves of GAL3 allele replacement strains in the YJM978, BC187, and S288C 

background in glucose+galactose (top) or glucose+maltose (bottom). Wild-type growth curves are shown 

for each background strain in black. Each color represents a different color GAL3 donor allele. Time is 

shown relative to Log2(OD600) reaching -5. 
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Appendix III. 

Supporting Information for Chapter 4 

Natural genetic variation can independently tune the induced fraction and induction 
level of a bimodal signaling response 

Figure S4.1. GAL response phenotypes for 34 natural isolates 

Plotted are series of GAL1pr-YFP fluorescence (normalized to side scatter “SSC”) histograms from 12 

sugar conditions for 34 strains. One replicate experiment (out of 3-10 replicates) is shown for each strain. 

Data from all replicates is used to calculate !"# and $%# for the scatterplot in Figure 4.1G. 
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Figure S4.1 (Continued). GAL response phenotypes for 34 natural isolates 
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Figure S4.2. Bimodal phenotypes simulated using a subpopulation decomposition framework 

(A) Two simulated subpopulations, where the mean of the induced population is shown in 

blue. (B) 3 possible functions for the dependence of induced fraction on glucose. (C) Simulated 

population behaviors using the 3 induced fraction functions. 
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Figure S4.3. Sorting strategy for bulk-segregant analysis 

(A) Backscatter versus forward scatter of unsorted segregant pool, obtained on Sony SH800 cell 

sorter. (B) Backscatter versus FITC (YFP), showing mixture of uninduced and induced cells. 

Backscatter was used as a proxy for cell size; therefore, it is correlated with fluorescence. Gating 

on backscatter (rectangle) isolates differences in GAL1pr-YFP reporter among the cells. (C) 

Gates for OFF, LOW, and HI cells were drawn after gating on backscatter and shaped to follow 

the backscatter-FITC correlation. (D) View of gated populations as histogram on FITC axis. 
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Figure S4.4. Effect of allele replacement of GAL3, MKT1, or GAL4 in DBVPG1106 and S288C 

backgrounds. 

Scatterplots of !"# versus $%# for (A) DBVPG1106 strains where the indicated genes (and 

flanking regions) have been replaced by their S288C alleles; (B) S288C strains containing 

replacements by DBVPG1106 alleles. (C) Enlargement of region in (B) outlined by dotted 

rectangle. Small circles are individual replicates (12 replicates per genotype, comprising 6 

replicates each for 2 independently constructed isolates – see Materials and Methods); large 

circles indicate the mean. These plots show a subset of the same data as in Figure 4.3. 
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