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S�REN FOURNAIS

Abstract. We study the current of the Pauli operator in a strong constant magnetic �eld. We
prove that in the semi-classical limit the persistent current and the current from the interaction
of the spin with the magnetic �eld cancel, in the case where the magnetic �eld is very strong.
Furthermore we calculate the next term in the asymptotics and estimate the error. Finally,
we discuss the connection between this work and the semi-classical estimate of the energy in
strong magnetic �elds proved by Lieb, Solovej and Yngvason [LSY94].
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1. Introduction

In recent years physicists have been very interested in understanding the current in quantum
systems such as the quantum Hall systems and di�erent types of nanostructures that experi-
mental advances have made possible. In contrast, the current has been studied very little in the
mathematics litterature. The current, however, is as natural a quantity as the density which
has been studied to a great extent in the mathematics litterature, in particular, the integral of
the density, i.e. the particle number (for �xed chemical potential), obeys the celebrated Weyl
law in the semiclassical limit. In the semiclassical limit one cannot expect to see a static current
since there is no classical, persistent or diamagnetic current. In quantum mechanics, however,
there may be a static current. In [Fou98] the semiclassical limit of this current was studied
and it was indeed found that the �rst term in the semiclassical expansion vanishes. This might
be the reason why the quantum current has not attracted much attention in the mathematics
community.
In this paper we study a di�erent type of semiclassical limit in which the magnetic �eld

strength may vary as the semiclassical parameter h tends to zero. If the �eld strength increases
when h decreases in such a way that the magnetic length scale is comparable to the Planck
scale, one should expect to see the e�ect of the current. In fact, in quantum Hall systems
one has magnetic �eld strength that make the magnetic �eld length of the order of the Planck
scale. This type of semiclassical limit was studied by Lieb, Solovej and Yngvason in [LSY94]
and [LSY95], where the limits of the energy and the density were studied. The purpose of this
paper is to extend this analysis to include the persistent quantum current.
It should be noted that this paper deals solely with static situations. This is di�erent from

the situation in quantum Hall systems, where a constant voltage drop creates a stationary and
not just static situation.
The object of study in this paper is the Pauli operator:

P = P(h; ~A; V ) = (�ihr� ~A)2 + V (x)� h~� � ~B;
acting in L2(R3;C2). Here ~� = (�1; �2; �3) is the vector of Pauli spin matrices:

�1 =

�
0 1
1 0

�
;

�2 =

�
0 �i
i 0

�
;

�3 =

�
1 0
0 �1

�
;

and ~B = r � ~A. This operator has, in general, in�nitely many negative eigenvalues, even
for V smooth and compactly supported (and negative), but it was proved in [LSY94] (see
also [ES97] for the case of non-constant magnetic �elds) that the sum of the negative eigenval-
ues tr[P1(�1;0](P)] is �nite. The sum of the negative eigenvalues represents the energy E of
a noninteracting electron gas (of chemical potential 0) in the external electric potential V and

magnetic potential ~A. Furthermore, they proved a semi-classical formula for the energy, uni-
formly in the magnetic �eld strength, i.e. an expression Escl = Escl(h; ~A; V ) (see (1.1) below),

such that if E = E(h; ~A; V ) = tr[P1(�1;0](P)] then

E(h; ~A; V )

Escl(h; ~A; V )
! 1;

as h! 0, uniformly in ~A.
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Given the energy, two quantities can be calculated: the density and the current.
The density � is de�ned, as a distribution, as the variational derivative of E with respect to V ,
i.e. Z

�� dx =
d

dt
E(h; ~A; V + t�)jt=0:

In the context of strong magnetic �elds, this has been studied in [Sob94], and a formula for the
highest order term in the semi-classical limit was given, with good control of the error term.
The current ~j is the variational derivative of E with respect to the vector potential ~A.Z

~j � ~a dx = d

dt
E(h; ~A+ t~a; V )jt=0;

where the left hand side is to be understood in the sense of distributions. It will be the
objective of this paper to obtain a semi-classical formula for this quantity when the magnetic
�eld is strong, but constant. By a strong, constant magnetic �eld we mean that we take the
limit h! 0 but with a magnetic �eld ~B = (0; 0; �) so strong that �h � c > 0 as h! 0.
To get an idea of what to expect, let us �rst look at the semiclassical energy:

1.1. The Semiclassical Formula in [LSY94].
The semi-classical formula for the energy given in [LSY94] is:

Escl = �h�3
Z
P (hj ~B(x)j; [V (x)]�)dx; (1.1)

where

P (B;W ) =
2

3�

1X
n=0

dnB[2nB �W ]
3=2
� ;

and

[x]� =

�
0 x � 0
�x x � 0

Here d0 =
1
2� and dn = 1

�
for n � 1. If this semiclassical formula contains most of the physics

of the problem then it should also give the current to highest order, so we try to calculate its
functional derivative with respect to the vector potential. Let thus ~a be a test function. Then
we have: Z

~jscl � ~a dx =
d

dt
Escl( ~A+ t~a)jt=0

=
�2
3�h2

1X
n=0

dn

Z
(@x1a2 � @x2a1)

�
 
[2nh� + V (x)]3=2� � 3nh�[2nh� + V (x)]1=2�

!
dx; (1.2)

or

~jscl =
1

�h2

1X
n=0

dn

�
[2nh� + V (x)]

1=2
� � nh�[2nh� + V (x)]

�1=2
�

�0@ @x2V
�@x1V

0

1A : (1.3)

In the special case where �h!1 we get:

~jscl =
1

2�2h2
[V (x)]1=2�

0@ @x2V
�@x1V

0

1A :
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We will prove that the above formulas for the current are correct to highest order, and we will
estimate the error.

Remark 1.1. The corresponding formulas in 2-dimensions are:

E
(2)
scl = �h�1

Z 1X
n=0

dnj ~B(x)j[2nhj ~B(x)j+ V (x)]�dx;

~j
(2)
scl = �h�1

Z 1X
n=0

dn(@x1a2 � @x2a1)
�
[2nh�+ V (x)]� � 2nh�[2nh� + V (x)]0�

�
:

1.2. Statement of the Results.
We will �x ~A = �(�x2; 0; 0) in the rest of this paper. We will thus write P = P(h; �; V )

instead of P(h; ~A; V ). A formal computation gives

d

dt
E(h; ~A+ t~a; V )jt=0 = �tr[B1(�1;0](P)]; (1.4)

where
B = 2~a � (�ihr� ~A)� ihdiv~a+ h�3(@x1a2 � @x2a1):

We will take this as our starting point i.e. de�ne the current asZ
~j � ~a dx = �tr[B1(�1;0](P)]:

We shall allow V to have a Coulomb singularity, i.e. suppose

V (x) =
q

jxj + o(jxj�1) (1.5)

as x! 0, and

j@mV (x)j � Cm;V jxj�1�jmj; (1.6)

8x 2 B(8).
Suppose furthermore that 9C = C(h; �) such that

P(h; �; V ) � �C:
Then we have the following:

Theorem 1.2. Let the above conditions on V be satis�ed. Suppose

� 9c�;1 > 0 such that �h � c�;1,
� 9c�;2 > 0 such that �h3 � c�;2,

then
~j

h!0! ~jscl;

in the sense of distributions in the coordinates orthogonal to the magnetic �eld, i.e.:Z
~j �
0@ a1
a2
0

1A dx
h!0!

Z
~jscl �

0@ a1
a2
0

1A dx;

for all a1; a2 2 C1
0 (B(1)).

Remark 1.3. The condition 9c�;2 > 0 such that �h3 � c�;2 is only necessary if we have
a singularity. In the case where V is smooth we can allow � to be of any order in h, see
Theorem 2.3 or its improvement Theorem 7.1.

If the potential is con�ning in the direction parallel to the magnetic �eld, we can also calculate
the current in that direction:
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Theorem 1.4. Let the assumptions be as in Thm 1.2. Assume furthermore that V (x1; x2; x3) �
cV > 0, for 1 � jx3j � 3, and that the spectrum of P below 0 is discrete, then

~j
h!0! ~jscl;

in the sense of distributions, i.e.:Z
~j �
0@ a1

a2
a3

1A dx
h!0!

Z
~jscl �

0@ a1
a2
a3

1Adx;

for all a1; a2; a3 2 C1
0 (B(1)).

Apart from its obvious physical relevance, the Coulomb potential is mathematically interest-
ing in this kind of problem, since a correct analysis demands asymptotic estimates in both weak
and strong magnetic �elds. To see this, one has to realise, that magnetic e�ects are important if
[V (x)]�

�h
� 1 and neglectable if [V (x)]�

�h
� 1. This can, for example, be seen from the semiclassical

formula for the energy. Thus we will need to split in two regions, one, close to the singularity,

where [V (x)]�
�h

is big, and one outside, where the ratio is small. In the �rst region, we have

standard semi-classics, and the analysis from [Fou98] su�ces. In the outer region no analysis
of the current exists, therefore the main part of this paper, sections 2 - 8 will deal with �nding
the correct estimates in this region. Finally, in section 9, we will prove a more precise version
of theorem 1.2 above. The proof of theorem 1.4 is identical to the proof of theorem 2.6 below
given in section 8 and will therefore be omitted.

1.3. Notations. It will be convenient to use the functions:

g0(� ) = 1(�1;0](� );

g1(� ) = (�� )g0(� ):
For shortness we will sometimes write the current trace as

tr[Bg0(P)] = J (h; �;~a; V );

and the asymptotic term, as:

A(h; �;~a; V ) =
2

3�h2

1X
n=0

dn

Z
(@x1a2(x)� @x2a1(x))

�
 
[2n�h+ V (x)]3=2� � 3n�h[2nh� + V (x)]1=2�

!
dx:

We will write x̂ = (x1; x3) and �̂ = (�1; �3).
Apart from the parameters h; � we will need two other scales:

� = h=�; � =
1

�2
:

We will denote by B1(
) the set of smooth functions f on the open set 
 satisfying

j@mf j � Cm:

for all m.
It is an elementary fact that:

L2(R3) = L2(R2
(x1;x3))
 L2(Rx2):
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It is this splitting of L2(R3) that all tensor products will refer to.
Finally, it should be pointed out that the notation @�f(z) is shorthand for @�f jz all through
this paper.

2. The Local Asymptotics

Our strategy to prove the main theorems of this paper will be that of V. Ivrii: obtain good
local results in regions where everything is smooth, and then use "scaling" to put the pieces
together. This last "cutting-and-pasting" technique has been re�ned (by Ivrii and others,
see [Ivr98], [IS93], [Sob95]) into what is usually called the "multiscaling" technique and will
be discussed in the last sections of the paper. Here we will just remind the reader that it is
absolutely crucial for the technique to work, that the estimates obtained are indeed local i.e.
depend only on local bounds on, for instance, the potential. The only global assumption, we
need, (and are allowed to impose) is the semi-boundedness (and self-adjointness) of the operator
in question, end even here it is important that the local estimates only depend on the existence
of a lower bound, not on the size of it.
The local result is:

Let E 2 R+, ~a 2 C1
0 (B(E=2)). Let furthermore H0 = (�ihr� ~A)2 � �h. Assume V satis�es:

Assumption 2.1 (See [Sob94][Assumption 1.1). ]

� V is a real-valued function such that the self-adjoint operator H = H0 + V is well de�ned
on the domain D(H) = D(H0) and is semibounded from below;

� V 2 C1(B(4E)).

Remark 2.2. The introduction of this kind of assumption in semi-classical problems is due to
Ivrii [Ivr98].

Let �nally

B = 2~a � (�ihr� ~A)� ihdiv~a+ h�3(@x1a2 � @x2a1):

Then we have:

Theorem 2.3. Let ~a = (a1; a2; 0). Suppose that

j@x1V (x)j2 + j@x3V (x)j2 + jV (x)j � cN:C: > 0 (2.1)

for all x 2 B(2E). Suppose further that 0 < h � h0, � � C�h
�� for some � > 0 and that there

exists � 2 (0; 1] such that � � c�h
��. Suppose �nally that

j@m~a(x)j+ j@mV (x)j � Cm

on B(8E). Then

tr[Bg0(P)] =
2

3�h2

1X
n=0

dn

Z
(@x1a2(x)� @x2a1(x))

�
 
[2n�h + V (x)]3=2� � 3n�h[2nh� + V (x)]1=2�

!
dx

+O(h�1��1 + h�3��2 + h�1);

where O is uniform in the constants fCmg; cN:C:; c�; C�; �; �; E.

Remark 2.4. The theorem is still true without the "non-critical" condition (2.1). This will
be proved in Section 7.
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First we want to prove this in the case where �h � C where C is some su�ciently big
constant (i.e. � = 1 and c� su�ciently big). This is mainly for pedagogical reasons. When �h
is big we only have to consider the lowest Landau level. This implies a greater simplicity in the
exposition. Since furthermore, the persistent current and the spin-current cancel on the lowest
Landau level, it becomes clear, why we have to make a somewhat �ner analysis, than what is
needed to �nd the density and the energy.
Thus, we will �rst prove Theorem 2.5 below, then, in section 6, we will put in the few remaining
arguments to prove Theorem 2.3.

Theorem 2.5. Let ~a = (a1; a2; 0). Suppose that

j@x1V (x)j2 + j@x3V (x)j2 + jV (x)j � cN:C: > 0

for all x 2 B(2E). Suppose further that 0 < h � h0, � � C�h
�� for some � > 0 and that

�h � C. Suppose �nally that

j@m~a(x)j+ j@mV (x)j � Cm

on B(8E). Then there exists C0 such that if C > C0 we get

tr[Bg0(P)] =
1

3�2
1

h2

Z
(@x1a2 � @x2a1)[V (x)]

3=2
� dx+O(h�1);

where O is uniform in the constants fCmg; cN:C:; C�; �; E.

Let us also state a version of 1.4 in the setup of the two theorems above:

Theorem 2.6. Let a3 2 C1
0 (B(E)) and de�ne ~a = (0; 0; a3). Suppose V 2 C1(R3) and that

there exists  > 0 such that lim infjxj!1 V (x) > . Suppose further that �h � c > 0 as h!1.
Then

tr[B(h; �;~a)g0(P)] = O(h�1):

Finally a few words about the following sections. Section 3 below recalls the results from [Sob94]
that we will need in the rest of the paper. Sections 4 and 5 contain the proof of Theorem 2.5.

3. The Birkhoff Normal Form

Let W 2 C1
0 (R3), W (x) = V (x) on B(3E). We will perform some reductions on

HW = (�ih@x1 + �x2)
2 � h2@2x2 � h2@2x3 � �h +W (x):

We will later in this section also have to use H from Assumption 2.1, which we will then write
as HV . Outside this section H will always refer to HV .

3.1. 1st Reduction.
Let

(�0f)(x) =
1

(2��)3

Z
ei=�[(x�y)�+�1�2]f(y)dyd�:

Then it is easy to see that �0 is unitary and that

���
0HW�0 = Opw�h� � �;

where

h�(x; �) = (�22 + x22) + �23 + �W (x1 � �2; x2 � �1; x3):

In general:

��
0Op

w
�a�0 = Opw�~a; (3.1)

where ~a(x; �) = a(x1 � �2; x2 � �1; x3; �).



8 S�REN FOURNAIS

3.2. 2nd Reduction.
Using a sequence of canonical transformations Sobolev transforms h� to a form where the
variables (x2; �2) almost separate. Then he constructs an almost unitary transformation which
realizes the canonical transformation � on the symbol level. The result is the Theorem 3.1
below ([Sob94][Thm 7.6]). Before we state it we need a bit more notation.
Let K� be the operator on L2(R):

(K�u)(t) = (��2@2t + t2)u(t);

below K� will be acting in the x2 variable. We denote by u the three variables (x1; x3; �1), and
by v the remaining variables i.e. v = (x2; �2; �3): We denote by �N = �N (x; �; �) any function in
B1(R3

x �R3
� � [��0; �0]), which satis�es

j@m1

u @m2

v @m3

� �N (x; �; �)j � CN (j�j+ v2)(N�jm2j=2�jm3j)+:

Finally, we choose a C1
0 (R) function �(t), satisfying �(t) = 1 for jtj � 1=4 and �(t) = 0 for

jtj � 1, for R > 0 we write �R(t) = �(t=R).

Theorem 3.1. For any positive integers N;M;L there exists an operator T = TN;M;L(�; �)
satisfying the following properties:
(1) It is almost unitary:

T �(�; �)T (�; �) = I +O(�L);

T (�; �)T �(�; �) = I +O(�L):

(2) The representation

T �Opw�h�T = B = B0 +B1 (3.2)

holds. Here

B0 = B0(�; �)

= ��2@2x3 + (I 
K�) + �

NX
n=0

�n

�
X

0�m+l+j�M
�mfOpw�W (n)

mlj 
K l
��(K�)g;

W
(n)
mlj = �(�23)[Y

(n)
mlj (u)�

2j
3 + Z

(n)
mlj(u)�

2j+1
3 ];

with some Y (n)
mlj ; Z

(n)
mlj 2 B1(R3). In particular, the functions Y (0)

mlj; Z
(0)
mlj are de�ned in

[Sob94][Theorem 7.4], and

Y
(1)
mlj = Z

(1)
mlj = 0

for all m; l; j.
The operator B1 = B1(�; �) in (3.2) has the form B1 = �B2 + �N+1B3. Here B2 = B2(�; �) =
Opw� �M+1 and the operator B3 = B3(�; �) can be represented for any integer N1 > 0 as

B3(�; �) = �

N1X
n=0

�nOpw�b3n +O(�N1+1);

b3n 2 B1(R3
x �R3

� � [��0; �0]):
(3) Let � be the canonical transformation constructed in [Sob94][Thm 7.4].Then for any symbol
 2 B1(R3

x �R3
�)

T �Opw� T = Opw� ( � �) +O(�2) +O(�2):
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(4) Let  1;  2 2 B1(R3
x �R3

�) be two symbols  j =  j(x; �; �); j = 1; 2; � 2 [��0; �0], such that

distfsupp 1; supp 2g � c > 0;

when �0 is small enough. Then for any N1 > 0

Opw� 1TOp
w
� 2 = O(�N1 ):

Remark 3.2. The idea of reducing our operator to this form is due to Ivrii (see [Ivr98]).

3.3. 3rd Reduction.
We de�ne

(U�f)(x) = �1=4f(x1;
x2p
�
; x3):

For any symbol a we then have

U�
�Op

w
�aU� = Opwh ~a; (3.3)

where

~a(x; �) = a(x1;
x2p
�
; x3;

�1
�
;
�2p
�
;
�3
�
):

With the T from Theorem 3.1 above we de�ne

� = �0TU�;
and we get ([Sob94][Theorem 7.7]):

Theorem 3.3. Let R > 0 be an arbitrary number. Suppose � � R. Then

��HW� = P = P0 + P1;

and for any g 2 C1
0 (R),

��g(HW )� = g(P ) +O(�L):

Here
P0 = P0(h; �) = �h2@2x3 + �Kh � �h +WM;N(h; �);

where

WM;N(h; �) =

NX
n=0

(h=�)n

�
X

0�m+l+j�M
��2m�l�2jfOpwh (p(n)mlj + ��1q(n)mlj)
K l

h�(�
�1Kh)g;

with

p
(n)
mlj(x̂; �̂) = Y

(n)
mlj (x̂; �

�1�1)�
2j
3 �R(�

2
3);

q
(n)
mlj(x̂; �̂) = Z

(n)
mlj(x̂; �

�1�1)�
2j+1
3 �R(�

2
3);

where Y (n)
mlj ; Z

(n)
mlj are from Theorem 3.1. In particular,

p
(0)
000(x̂; �̂) = W (x1;���1�1; x3)�R(�23);
p
(0)
100(x̂; �̂) = �1

4
(r2W (x1;���1�1; x3))2�R(�23);

p
(0)
010(x̂; �̂) =

1

4
�2W (x1;���1�1; x3)�R(�23);

p
(0)
001(x̂; �̂) = q

(0)
000(x̂; �̂) = 0;

and
p
(1)
mlj = q

(1)
mlj = 0;
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for all m; l; j. The operator P1 = P1(h; �) above has the form P1(h; �) = P2 + P3 +O(�N+1) +
O(�L�1). Here P2 = P2(h; �) = Opwh p2 is an operator whose symbol p2 2 B1(R3

x�R3
�) satis�es

the bound

j@x@�p2(x; �; �; �)j � CM�
�2(M+1);

for x23 + x22 + �22 � C, and P3 = P3(h; �) is an operator which can be presented in the form
P3 = (Opwh �)

~P3, where k ~P3k � C and � 2 B1(R3
x �R3

�) is a function such that �(x; �) = 0 for
j�3j � R=2.

3.4. Consequences.
Of course, this reduction is not worth anything if the operator P1 is not "small" in some sense.
This is indeed the case. Sobolev proves the following consequences of the reduction:

Theorem 3.4. ([Sob94][Cor.8.5])
Let � and HW be as above and let g 2 C1

0 (R). Then

��g(HW )� = g(P0) + !(h; �);

where we have introduced the notation

!(h; �) = O(��2(M+1) + (h=�)N+1 + (h=�)L�1 + hN1)

for all N1 > 0.

Theorem 3.5. ([Sob94][Theorem 10.2])
Let  2 C1

0 (B(E=2)) and g1 2 C1
0 (R). Suppose � � �1; h 2 (0; h0] and � � ch�� for some

� � 1. Then there exists T > 0 such that for all jtj � T ,

k g1(HV )e
�itHV =h �  �g1(P0)e

�itP0=h�(�)��k1 � Ch�
3

2
(1+�)!(h; �):

Here �(�) is a pseudodi�erential cut-o� in the variables (x1; x3; �1; �3) de�ned just before the
theorem.

Finally we notice [Sob94][(8.5)]

g(P0) =
X

0�k�C=(�h)
�(g(P (k)

0 )
�k);

where �k is the projection in L2(Rx2) on the k-th eigenvalue of Kh. In particular we get when
�h!1:

g(P0) = g(P
(0)
0 )
�0:

4. An Equivalent Operator on the Lowest Landau Level

In this section we assume that �h > C, where C is some su�ciently big constant. This
assures that only the lowest Landau level plays a role. We �nd an equivalent operator on this
level which has much nicer a priori properties than B. This is the statement of Lemma 4.1
below. The whole section is devoted to the proof of this Lemma, which is the key to the
calculation of the current.
Since

P =

�
H0 + V 0

0 H0 + V + 2�h

�
;

we get:

g0(P) =

�
g0(H0 + V ) 0

0 g0(H0 + V + 2�h)

�
:
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Now, H0 + V is assumed to be bounded below, thus H0 + V + 2�h > 0 when �h is su�ciently
big. Therefore,

tr[Bg0(P)] = tr[B(�; h)g0(H)]; (4.1)

where B(�; h) = Opwh (2~a(� � ~A) + h(@x1a2 � @x2a1), and H = H0 + V .
Let  2 C1

0 (R3);  � 1 on a neighborhood of supp~a. We may choose it such that supp �
B(E=2). Choose also f 2 C1

0 (R), f � 1 on a neighborhood of 0.

Lemma 4.1. Suppose ~a = (a1; a2; 0). Let

b(x; �) = [a2(x)@x1V (x)� a1(x)@x2V (x)] f

�
(�1 + x2)

2 + �22 + �23 +
V (x)

�2

�
:

Then

tr[B(�; h)g0(H)] =
1

�
tr[ (Opw�b) g0(H)] +O(1=h):

Remark 4.2. The assumption a3 � 0 is very important for the Lemma.

Proof. We write

h�(x; �) = (�1 + x2)
2 + �22 + �23 + �V (x)� �:

Then Opw�h� = 1
�2
H, and since g0(ct) = g0(t) for all c > 0, we get

tr[B(�; h)g0(H)] = tr[ B(�; h)f(Opw�h�) g0(Op
w
�h�)] +O(h1); (4.2)

because f(Opw�h�)g0(Op
w
�h�) = g0(Opw�h�) for � su�ciently big1. Since

B(�; h) = �
�
Opw� (2~a � (�1 + x2; �2; �3)) + �(@x1a2 � @x2a1)

!
;

we have

B(�; h)f(Opw�h�) = �Opw� (0 + �1 + �2 + �23) +O(��3);

Here

0 = 2~a � (�1 + x2; �2; �3)f(h� + �); (4.3)

1 = 2
�
~a � (�1 + x2; �2; �3) +

1

2i

�r�(~a � (�1 + x2; �2; �3)) � rx(h�)

�rx(~a � (�1 + x2; �2; �3)) � r�(h�)
��
f 0(h� + �); (4.4)

2 = (@x1a2 � @x2a1)f(h� + �) (4.5)

and

3 = 3;1(x; �)f
0(h� + �) + 3;2(x; �)f

00(h� + �); (4.6)

where 3;1; 3;2 2 C1
0 (R3

x � R3
�). Since k g0(H)k1 = O((�=h)3=2) (see [Sob94][Cor.2.14]), we

get:

tr[B(�; h)g0(H)] = tr[� Opw� (0 + �1 + �2 + �23) g0(H)] +O(��3=2): (4.7)

Let now g 2 C1
0 (R) such that

g(H)g0(H) = g0(H);

1The equation (4.2) seems very innocent, but a priori we will need global restrictions on V to prove it,
see [Fou98]. It is easy to extend the localisation argument in [Sob95] to the present situation though. This is
done in Appendix A.
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i.e. g � 1 on [inf SpecV; 0]. Then

tr[� Opw� (0 + �1 + �2 + �23) g0(H)]

= tr[� Opw� (0 + �1 + �2 + �23) g(H)g0(H)g(H)]

= �tr[g(H) Opw� (0 + �1 + �2 + �23) g(H)g0(H)]:

According to Theorem 3.5:

k g(H)�  �g(P0)�
(�)��k1 � ch�

3

2
(1+�)!(h; �); (4.8)

and, when �h is su�ciently big:

g(P0) = g(P (0)
0 )
�0:

Thus

tr[B(h; �)g0(H)] = �tr
h
�
�
Opwh (�

(�))g(P
(0)
0 )
�0

�
�� Opw� (0 + �1 + �2 + �23) �

�
�
g(P (0)

0 )Opwh (�
(�))
�0

�
��g0(H)

i
+O(��3=2): (4.9)

Now we can apply Cor. 4.10 below to conclude:

tr[B(h; �)g0(H)] =
1

�
tr[�

�
Opwh (�

(�))g(P (0)
0 )
�0

�
(Opwh (r)
�0)

�
�
g(P (0)

0 )Opwh (�
(�))
�0

�
�g0(H)] +O(1 +

1

�h2
); (4.10)

where

r(x̂; �̂) =

�
a2(x1;

��1
�
; x3)@x1V (x1;

��1
�
; x3)� a1(x1;

��1
�
; x3)@x2V (x1;

��1
�
; x3)

�
� f

 
�23 + V (x1;� �1

�
; x3)

�2

!
Here the error term was estimated using the fact that

kOpwh (�(�))
�0k1 = O(�=h2):

In the same way we can calculate:

tr[ (Opw�b) g0(H)] = tr[g(H) (Opw�b) g(H)g0(H)]

� tr[�
�
Opwh (�

(�))g(P (0)
0 )
�0

�
�� Opw� (b) �

�
�
g(P (0)

0 )Opwh (�
(�))
�0

�
�g0(H)];

using (4.8). We apply Lemma 4.4 and get:

tr[ (Opw�b) g0(H)] = tr[�
�
Opwh (�

(�))g(P (0)
0 )
�0

�
(Opwh (r)
�0)

�
�
g(P (0)

0 )Opwh (�
(�))
�0

�
�g0(H)] +O(h�1):

Comparing with (4.10) we get the lemma.

Lemma 4.3. Let � 2 C1
0 (R3

x �R3
�), and let � be the canonical transformation constructed in

Theorem 3.1 then
�(�(x; �)) = �(x; �) + ��1 +O(�2);

where

�1 =

�
@x�
@��

�
�
� �@�A

@xA

�
:
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where A is given in (4.11) below2.

Proof. We have from [Sob94][Equation (7.9)] that if (y; �) = �(x; �) then

y = x� �

MX
j=0

@�
�
�(�23)�(x

2
2 + �22)Aj(x; �)

�
+O(�2);

� = � + �

MX
j=0

@x
�
�(�23)�(x

2
2 + �22)Aj(x; �)

�
+O(�2):

where the Aj are given in the de�nition of �. So

y = x� �@�A(x; �) +O(�2);

� = � + �@xA(x; �) +O(�2);

where

A(x; �) = �(�23)�(x
2
2 + �22)� 

�2
2
@zW (x1; z; x3)jz=��1 +

x2
2
W (x1;��1; x3) +

X
2�l+n+k�2M+1

a0;ln;k(x̂; �1)�
n
2x

k
2�

l
3

!
:

(4.11)

Here the a0;ln;k lie in B1 and are part of the de�nition of � [Sob96b][Thm. 7.4]. Thus the lemma
follows by taking a Taylor expansion to second order.

Lemma 4.4. Let � 2 C1
0 (R3

x �R3
�), then

(I 
�0)�
�Opw� (�)�(I 
�0) = Opwh (e)
�0 + �Opwh (e1)
�0 +O(�2);

where

e(x̂; �̂) = �(x1;��1
�
; x3;

�1
�
; 0;

�3
�
) +

h

4�
(@2x1 + @2x2 + @2�2 � 2@x1@�2)�(x1;�

�1
�
; x3;

�1
�
; 0;

�3
�
);

and where

e1(x̂; �̂) =

"
1

2

�
�@x1�(x1;

��1
�
; x3;

�1
�
; 0;

�3
�
) + @�2�(x1;

��1
�
; x3;

�1
�
; 0;

�3
�
)

�
�@x1W (x1;

��1
�
; x3)

�1

2
@x2�(x1;

��1
�
; x3;

�1
�
; 0;

�3
�
)@zW (x1; z; x3)jz=��1

�

#
�(
�23
�2
) +

�3
�
�(x̂;

�̂

�
);

where � 2 C1
0 (R2

x̂ �R2
�̂
).

Proof. From (3.1) it follows that

��Opw��� = U�
�T

�Opw� ~�TU�

where ~�(x; �) = �(x1 � �2; x2 � �1; x3; �). Part (3) of Theorem 3.1 now tells us that:

T �(Opw� ~�)T = Opw� (~� � �) +O(�2);

and from Lemma 4.3 we get

~�(�(x; �)) = ~�(x; �) + �~�1(x; �) +O(�2);

2Remember that W (x) = V (x) on B(3E), and that W 2 C1
0
.
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Because of (3.3) we therefore conclude that

��Opw��� = Opwh �� + �Opwh ��1 +O(�2);

where

��(x; �) = ~�(x1;
x2p
�
; x3;�

�1�1;
�2p
�
; ��1�3)

��1(x; �) = ~�1(x1;
x2p
�
; x3;�

�1�1;
�2p
�
; ��1�3):

So
(I 
�0)�

�Opw� (�)�(I 
�0) = (Opwh (e) + �Opwh (e1))
�0 +O(�2);

where e, e1 have symbols

e(x̂; �̂) =
1

2�h

ZZZ
H0(x2)e

ih�1(x2�y2;�2)��(x̂; �̂;
x2 + y2

2
; �2)H0(y2) dx2 dy2 d�2; (4.12)

and

e1(x̂; �̂) =
1

2�h

ZZZ
H0(x2)e

ih�1(x2�y2;�2)��1(x̂; �̂;
x2 + y2

2
; �2)H0(y2) dx2 dy2 d�2:

Let us �rst analyze e:
We can look upon the expression (4.12) as the expectation value of the operator Opwh s(x2; �2)

in the state H0. Here the symbol s depends on the parameters (x̂; �̂) in the sense that

s(x2; �2) = ��(x; �):

Since �� depends on (x2; �2) in the form ( x2p
�
; �2p

�
), we get from the laws for changing symbol

types:

e(x̂; �̂) = hH0; Oph;0sH0i+ hhH0; Oph;0s1H0i+O(�2)

= I1 + I2 +O(�2);

where

s1(x; �) =
1

2i
@x2@�2��:

Let us remember that

H0(x) =
1

4
p
�h
e�x

2=(2h);

H0(�) =
1p
2�h

Z
e�ix�=hH0(x)dx:

So if we look at
I1 = hH0; Oph;0sH0i;

we get

I1 =
1

2�h

ZZZ
H0(x)e

ih�1(x�y;�)s(x; �)H0(y) dx dy d�

=
1p
2�h

ZZ
e�x

2=(2h)eih
�1x�s(x; �)e��

2=(2h)dxd�

=
1p
2�h

ZZ
eih

�1(2x�+i(x2+�2)=2)s(x; �)dxd�

=
1p
2�h

ZZ
eih

�1h(x;�);A(x;�)i=2s(x; �)dxd�;
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where A is the matrix:

A =

�
i 1
1 i

�
:

From the theorem of stationary phase ([H�90][Lemma 7.7.3]) we get:

I1 � 1p
2�h

�p
det(h�1A=(2�i)

��1 1X
j=0

hj

(2i)j
(A�1D;D)j

j!
sj(0;0);

in the sense of an asymptotic series. We easily see that

A�1 = �1

2

�
i �1
�1 i

�
;

and therefore

(A�1D;D) =
1

2
[i�� 2@x@�];

and �p
det(h�1A=(2�i)

��1
=
p
2�h:

So we get:

I1 = s(0; 0) +
h

4i
[i�� 2@x@�]sj(0;0)+O(�2):

By the same method

I2 = hH0; hOph;0s1H0i
= hs1(0; 0) +O(�2);

so

I1 + I2 = s(0; 0) +
h

4
�s(0; 0) +O(�2):

Thus

e(x̂; �̂) = ~�(x1; 0; x3;
�1
�
; 0;

�3
�
) +

h

4�
�(x2;�2)~�(x1; 0; x3;

�1
�
; 0;

�3
�
) +O(�2)

= �(x1;��1
�
; x3;

�1
�
; 0;

�3
�
) +

h

4�
(@2x1 + @2x2 + @2�2 � 2@x1@�2)�(x1;�

�1
�
; x3;

�1
�
; 0;

�3
�
)

+ O(�2): (4.13)

In the same way we get:

e1(x̂; �̂) = ~�1(x1; 0; x3;
�1
�
; 0;

�3
�
) +O(�)

Here

~�1 =

�
@x~�
@�~�

�
�
� �@�A

@xA

�
:
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We can thus calculate:

~�1jx2=�2=0 = �@x1~�
X

2�l�2M+1

�l3@�1a
0;l
0;0(x̂; �1)�(�

2
3)

�@x2~�
 
1

2
@zW (x1; z; x3)jz=��1 +

X
2�l+1�2M+1

�l3a
0;l
1;0(x̂; �1)

!
�(�23)

�@x3~�
 X

2�l�2M+1

l�l�13 a0;l0;0(x̂; �1)�(�
2
3) + �0(�23)2�3

X
2�l�2M+1

�l3a
0;l
0;0(x̂; �1)

!
+@�1~�

X
2�l�2M+1

�l3@x1a
0;l
0;0(x̂; �1)�(�

2
3)

+@�2~�

 
1

2
@x1W (x1;��1; x3) +

X
2�l+1�2M+1

�l3a
0;l
1;0(x̂; �1)

!
�(�23)

+@�3~�
X

2�l�2M+1

@x3a
0;l
0;0(x̂; �1)�

l
3�(�

2
3)

=

�
1

2
(@�2~�)@x1W (x1; z; x3)� 1

2
(@x2~�)@zW (x1; z; x3)jz=��1

�
�(�23)

+�3�(x̂; �̂);

where � 2 C1
0 (R2

x �R2
�). Now ~�(x; �) = �(x1 � �2; x2 � �1; x3; �) so we get:

~�1jx2=�2=0 =
h1
2
(�@x1�(x1;��1; x3; �̂) + @�2�(x1;��1; x3; �̂))@x1W (x1;��1; x3)

�1

2
(@x2�(x1;��1; x3; �̂))@zW (x1; z; x3)jz=��1

i
�(�23) + �3�(x̂; �̂):

Finally, we get

~e1(x̂; �̂) =
h1
2
(�@x1�(x1;

��1
�
; x3;

�̂

�
) + @�2�(x1;

��1
�
; x3;

�̂

�
))@x1W (x1;��1; x3)

�1

2
(@x2�(x1;

��1
�
; x3;

�̂

�
))@zW (x1; z; x3)jz=��1

�

i
�(
�23
�2
) +

�3
�
�(x̂;

�̂

�
);

where � 2 C1
0 (R2

x̂ �R2
�̂
).

Corollary 4.5. Suppose ~a = (a1; a2; 0). Then

(I 
�0)�
�Opw� (0)�(I 
�0) =

h

�
Opwh ( ~d)
�0 + �Opwh

~d1 
�0 +O(�2);

where

~d =

�
@x2a1(x1;�

�1
�
; x3)� @x1a2(x1;�

�1
�
; x3)

�
f(
�23 + V (x1;� �1

�
; x3)

�2
);

and

~d1(x̂; �̂) =

�
a2(x1;

��1
�
; x3)@x1W (x1;

��1
�
; x3)� a1(x1;

��1
�
; x3)@x2W (x1;

��1
�
; x3)

�
�f(

�23 + V (x1;� �1
�
; x3)

�2
) +

�3
�
�(x̂;

�̂

�
):
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Proof. From (4.3) we know that

0 = 2 (a1(�1 + x2) + a2�2) f(h� + �);

so

0(x1;��1
�
; x3;

�1
�
; 0;

�3
�
) = 0;

@2x10(x1;�
�1
�
; x3;

�1
�
; 0;

�3
�
) = 0;

@2x20(x1;�
�1
�
; x3;

�1
�
; 0;

�3
�
) = 4@x2a1(x1;�

�1
�
; x3)f(

�23 + V (x1;� �1
�
; x3)

�2
)

+ 4�a1(x1;��1
�
; x3)f

0(
�23 + V (x1;� �1

�
; x3)

�2
)@x2V (x1;�

�1
�
; x3);

@2�20(x1;�
�1
�
; x3;

�1
�
; 0;

�3
�
) = 0;

�2@x1@�20(x1;�
�1
�
; x3;

�1
�
; 0;

�3
�
) = �4@x1a2(x1;�

�1
�
; x3)f(

�23 + V (x1;� �1
�
; x3)

�2
)

� 4�a2(x1;��1
�
; x3)f

0(
�23 + V (x1;� �1

�
; x3)

�2
)@x1V (x1;�

�1
�
; x3):

Thus

~d =

�
@x2a1(x1;�

�1
�
; x3)� @x1a2(x1;�

�1
�
; x3)

�
f(
�23 + V (x1;� �1

�
; x3)

�2
):

We can also calculate:

@x20(x1;
��1
�
; x3;

�1
�
; 0;

�3
�
) = 2a1(x1;

��1
�
; x3)f(

�23 + V (x1;� �1
�
; x3)

�2
)

@�20(x1;
��1
�
; x3;

�1
�
; 0;

�3
�
) = 2a2(x1;

��1
�
; x3)f(

�23 + V (x1;� �1
�
; x3)

�2
)

@x10(x1;
��1
�
; x3;

�1
�
; 0;

�3
�
) = 0;

so we get:

~d1(x̂; �̂) =

�
a2(x1;

��1
�
; x3)@x1W (x1;

��1
�
; x3)� a1(x1;

��1
�
; x3)@x2W (x1;

��1
�
; x3)

�
�f(

�23 + V (x1;� �1
�
; x3)

�2
) +

�3
�
�(x̂;

�̂

�
):

Remark 4.6. Notice that if a3 had not been zero then 0(x1;� �1
�
; x3;

�1
�
; 0; �3

�
) would not have

vanished.

Lemma 4.7. Let ~� 2 C1
0 (R4

x̂;�̂
), and let ~�(�)(x̂; �̂) = ~�(x̂; �1

�
; �3), then

Opwh (
�3
�
�(x̂;

�̂

�
))Opwh (

~�(�)) = O(1=�):

Proof. This is an easy consequence of the symbolic calculus and the compactness of the support
of ~�.
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Corollary 4.8. Let ~� 2 C1
0 (R4

x̂;�̂
), and let ~�(�)(x̂; �̂) = ~�(x̂; �1

�
; �3), then

(I 
�0)�
�Opw� (1)�(Op

w
h (~�

(�))
�0) = O(�)

and

(I 
�0)�
�Opw� (3)�(Op

w
h (~�

(�))
�0) = O(�):

Proof. This follows easily from Lemma 4.4 because f 0 � 0 on a neighborhood of 0, and therefore

f 0(
�23 + V (x1;� �1

�
; x3)

�2
) � 0

on the support of ~�(�) for � su�ciently big. Same argument works for f 00.

Corollary 4.9.

(I 
�0)�
�Opw� (2)�(I 
�0) = Opwh (

~d2)
�0 +O(�);

where

~d2(x̂; �̂) =

�
@x1a2(x1;�

�1
�
; x3)� @x2a1(x1;�

�1
�
; x3)

�
f(
�23 + V (x1;� �1

�
; x3)

�2
):

To summarize the content of the above we have:

Corollary 4.10.

(I 
�0)�
�Opw� (0 + �1 + �2 + �23)�(Op

w
h �

(�) 
�0)

= �(Opwh (r)Op
w
h (�

(�)))
�0 +O(�2 + �=�);

where

r(x̂; �̂) =

�
a2(x1;

��1
�
; x3)@x1W (x1;

��1
�
; x3)� a1(x1;

��1
�
; x3)@x2W (x1;

��1
�
; x3)

�
�f(

�23 + V (x1;� �1
�
; x3)

�2
):

5. Calculation of the Current

With the reduced operator it is rather easy to calculate the current:
Choose f1; f2 2 C1

0 (R) such that:

� (f21 (H) + f22 (H))g0(H) = g0(H).
� j@x1V (x)j2 + j@x3V (x)j2 + jV (x)� �j � c > 0 for all (x; �) 2 B(2E)� supp f2.

Then

tr[ (Opw�b) g0(H)] = tr[ (Opw�b) f
2
1 (H)g0(H)]

+tr[ (Opw�b) f
2
2 (H)g0(H)]:

The �rst part, tr[ (Opw�b) f
2
1 (H)g0(H)], will be calculated directly in Thm 5.1 below. To

handle the second term, tr[ (Opw�b) f
2
2 (H)g0(H)], we need a Tauberian argument. The theo-

rems 5.2 and 5.4 will carry this through. From the Theorems 5.1, 5.2 and 5.4 together we get
Theorem 2.5 by a simple integration by parts.
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Theorem 5.1.

1

�
tr[ (Opw�b) f

2
1 (H)g0(H)] =

1

4�2h2

ZZ
(a2(x1;��1; x3)@x1V (x1;��1; x3)� a1(x1;��1; x3)@x2V (x1;��1; x3))

� f21 (�
2
3 + V (x1;��1; x3))dx̂d�̂ +O(h�1):

Proof. f21 (H)g0(H) = f21 (H) and we get:

1

�
tr[ (Opw�b) f

2
1 (H)] =

1

�
tr[f1(H) (Opw�b) f1(H)]

=
1

�
tr[�

�
(Opwh �

(�))f1(P
(0)
0 )Opwh (r)f1(P

(0)
0 )(Opwh �

(�))
�0

�
��]

+O(h�1)

=
1

�
tr[(Opwh �

(�))2f1(P
(0)
0 )Opwh (r)f1(P

(0)
0 )] +O(h�1)

=
1

(2�h)2

ZZ
r(x̂; ��̂)f21 (�3 + V (x1;��1; x3))dx̂d�̂ +O(h�1);

where we used [Sob94][Lemma 9.2] to get the last equality.

We need to make a standard "smoothing out": Let �̂ 2 C1
0 (�T; T ) for a "su�ciently small

3" T satisfy

� �̂(t) = �̂(�t),
� �̂(t) = 1=

p
2�,

� �̂ � 0.

Then we de�ne

�(� ) =
1p
2�

2 �̂(t)ei�tdt:
We assume that � � 0, this is possible since we could have replaced �̂ by �̂ � �̂. Finally, we
de�ne

�h(� ) =
1

h
�(
�

h
);

and

g
(h)
0 (� ) =

Z
g0(�)�h(� � �)d�:

Now we can state:

Theorem 5.2.

tr[ (Opw�b) f
2
2 (H)g0(H)] = tr[ (Opw�b) f

2
2 (H)g

(h)
0 (H)] +O(�=h):

We will need the following lemma:

Lemma 5.3. 9� > 0 such that

jg0(� )� g0(� � �)j � ch�h(� );

for all j�j � h�. Here c is a constant independent of h and � .

3See [Sob94][Sec.4] for a more precise statement.



20 S�REN FOURNAIS

Proof. Choose 2� such that �1(� ) � ~c > 0 for j� j � 2�. Then, for j� j � 2�h and j�j � h� we
have

jg0(� )� g0(� � �)j � 1

~c
�1(�=h) =

h

~c
�h(� );

and for j� j � 2�h and j�j � h� we have

jg0(� )� g0(� � �)j = 0:

Now we can prove Theorem 5.2.

Proof. In this proof (and only here) we will use the notation: [x] = the integral part of x
= inffn 2 Zjn � xg. By cyclicity of trace it is enough to prove

kOpw� (b) f2(H)
�
g0(H) � g

(h)
0 (H)

�
f2(H) k1 = O(�=h):

Because kOpw� (b)k = O(1) it is thus enough to prove

k f2(H)
�
g0(H) � g

(h)
0 (H)

�
f2(H) k1 = O(�=h):

We now estimate using the lemma above:

k f2(H)
�
g0(H) � g

(h)
0 (H)

�
f2(H) k1

= k f2(H)

Z
�h(�) (g0(H)� g0(H � �)) d�f2(H) k1

= k f2(H)

Z �

��
�h(�) (g0(H) � g0(H � �)) d�f2(H) k1 +O(h1)

�
Z �

0

tr ( f2(H)�h(�) (g0(H � �)� g0(H)) f2(H) ) d�

+

Z 0

��
tr ( f2(H)�h(�) (g0(H)� g0(H � �)) f2(H) ) d� +O(h1)

�
Z �

��
�h(�)tr ( f2(H)

0@ [ j�j
h�

]X
j=0

ch�h(H � sign(�)jh�) + ch�h(H + j�j � sign(�)[
j�j
h�

]h�)

1A
�f2(H) )d� +O(h1)

� c
�

h

Z
�h(�)(

j�j
h

+ 1)d�+O(h1)

= O(�=h);

where we used

k f2(H)�h(H � � )k1 = O(�=h2)

in the end. That inequality comes from [Sob94][Theorem 10.4].
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Theorem 5.4. Suppose that (2.1) is satis�ed. Then

1

�
tr[ (Opw�b) f

2
2 (H)g

(h)
0 (H)]

=
1

4�2h2

Z  
a2(x1;��1; x3)@x1V (x1;��1; x3)� a1(x1;��1; x3)@x2V (x1;��1; x3)

!
�(f22 g0)(�23 + V (x1;��1; x3))dx̂d�̂ +O(h�1):

Proof.

1

�
tr[ (Opw�b) f

2
2 (H)g(h)0 (H)] =

1

�

Z
g0(� )tr[ (Op

w
�b) f

2
2 (H)�h(H � � )]d�

=
1p
2��h

ZZ
g0(� )�̂(t)tr[ (Op

w
�b) f

2
2 (H)e�it(H��)=h]dt d�

=
1p
2��h

ZZ
g0(� )�̂(t)e

it�=htr[f2(H) (Opw�b) f2(H)e�itH=h]dt d�:

Notice, that since �h is a Schwarz function, we can replace g0 by 1[�E0 ;0]. This will only
introduce an error of order O(h1), and makes the integral absolutely convergent. Now we
apply Theorem 3.5:

k f2(H)e�itH=h �  �f2(P0)e
�itP0=h�(�)��k1 � ch

3

2
(1+�)!(h; �):

Since ��� � I and �h is large, we thus get:

1

�
tr[ (Opw�b) f

2
2 (H)g(h)0 (H)]

=
1

�
tr[(Opwh �

(�))2f2(P
(0)
0 )(Opwh r)f2(P

(0)
0 )g

(h)
0 (P

(0)
0 )] +O(

1

�h
);

and we conclude using [Sob94][Lemma 9.3].

Now we can prove Theorem 2.5:

Proof. From the Theorems 5.1, 5.2 and 5.4 together we get

1

�
tr[ (Opw�b) g0(H)] =

1

4�2h2

ZZ "
a2(x1;��1; x3)@x1V (x1;��1; x3)� a1(x1;��1; x3)@x2V (x1;��1; x3))

#
� g0(�

2
3 + V (x1;��1; x3))dx̂d�̂ +O(h�1):
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Now we calculate:

1

4�2h2

ZZ "
a2(x1;��1; x3)@x1V (x1;��1; x3)� a1(x1;��1; x3)@x2V (x1;��1; x3))

#
� g0(�

2
3 + V (x1;��1; x3))dx̂d�̂

=
1

4�2h2

Z
fV (x)�0g

h
a2(x)@x1V (x)� a1(x)@x2V (x)

i
2
p
�V (x)dx

=
�1

2�2h2

Z
fV (x)�0g

a2
2

3
@x1(

p
�V (x))3 � a1

2

3
@x2(

p
�V (x))3dx

=
1

3�2h2

Z
fV (x)�0g

(@x1a2 � @x2a1)(
p
�V (x))3dx:

This �nishes the proof of Theorem 2.5.

6. The Current for Bounded �h.

In the case where �h � C, � � ch�� for a � 2 (0; 1] we can use the same type of analysis as
in the case of the very strong magnetic �eld.

6.1. Projection on the Landau Levels.

Lemma 6.1. Let � 2 C1
0 (R3

x �R3
�) and let K � 0. Then

sup
k:k�h�K

k(I 
�k)�
�Opw� (�)�(I 
�k)�Opwh (e

(k))
�k + �Opwh (e
(k)
1 )
�kk = O(�2 + �2)

where

e(k)(x̂; �̂) = �(x1;��1
�
; x3;

�1
�
; 0;

�3
�
)

+
(2k + 1)h

4�
(@2x1 + @2x2 + @2�2 � 2@x1@�2)�(x1;�

�1
�
; x3;

�1
�
; 0;

�3
�
);

and where

e
(k)
1 (x̂; �̂) =

"
1

2

 
�@x1�(x1;

��1
�
; x3;

�̂

�
) + @�2�(x1;

��1
�
; x3;

�̂

�
)

!
@x1W (x1;

��1
�
; x3)

�1

2
@x2�(x1;

��1
�
; x3;

�̂

�
)@zW (x1; z; x3)jz=��1

�

#
�(
�23
�2
) +

�3
�
�(x̂;

�̂

�
);

where � 2 C1
0 (R2

x̂ �R2
�̂
).

Proof. As in the proof of Lemma 4.4 we get:

��Opw��� = Opwh �� + �Opwh ��1 +O(�2 + �2);

with notation as in that lemma. We now appeal to [Sob94][Lemma A.1] (stated below as
Lemma 6.2) to conclude that

(I 
�k)�
�Opw� (�)�(I 
�k) = (Opwh (��0;k) + �Opwh (��1;k))
�k +O(�2 + �2);

where

��0;k(x̂; �̂) = ��sym(x1;

s
(2k + 1)h

2�
; x3; �1;

s
(2k + 1)h

2�
; �3);



SEMICLASSICS OF THE QUANTUM CURRENT IN A STRONG CONSTANT MAGNETIC FIELD. 23

and

��1;k(x̂; �̂) = ��1;sym(x1;

s
(2k + 1)h

2�
; x3; �1;

s
(2k + 1)h

2�
; �3);

By a Taylor expansion of ��0;k we get

��0;k(x̂; �̂) = ��(x1; 0; x3; �1; 0; �3) +
(2k + 1)h

4�
(@2x2;x2 + @2�2;�2)��(x1; 0; x3; �1; 0; �3) +O(h4);

where the error was estimated using O(k2h2=�2) = O(h4). If we compare this with eq.(4.13)
we see that the expression for e(k) above is correct.
A Taylor expansion of ��1;k to �rst order and comparison with the proof of Lemma 4.4 �nishes
the proof.

We used the following lemma:

Lemma 6.2. Let � 2 B(R3
x �R3

�), � 2 (0; 1) and de�ne

�(�)(x; �) = �(x1; �x2; x3; �1; ��2; �3)

Then the following bound holds:

sup
k:hk�C�2

k(I 
�k)Op
w
h (�

(�))(I 
�k)�Opwh (�k)(I 
�k)k = O(�8 + h4);

where

�k(x̂; �̂) = �sym((x1;

r
2k + 1

2
�; x3; �1;

r
2k + 1

2
�; �3):

Here we used the notation:

asym(x; �) =
1

4

�
a(x1; x2; x3; �1; �2; �3) + a(x1;�x2; x3; �1; �2; �3)

+a(x1; x2; x3; �1;��2; �3) + a(x1;�x2; x3; �1;��2; �3)
�
:

We get the following corollary (compare with Cor. 4.5).

Corollary 6.3. Suppose ~a = (a1; a2; 0). Then

(I 
�k)�
�Opw� (0)�(I 
�k) =

h

�
(2k + 1)Opwh ( ~d)
�k + �Opwh

~d1 +O(�2 + �2);

where

~d =

�
@x2a1(x1;�

�1
�
; x3)� @x1a2(x1;�

�1
�
; x3)

�
f(
�23 + V (x1;� �1

�
; x3)

�2
);

and

~d1(x̂; �̂) =

�
a2(x1;

��1
�
; x3)@x1W (x1;

��1
�
; x3)� a1(x1;

��1
�
; x3)@x2W (x1;

��1
�
; x3)

�
�f(

�23 + V (x1;� �1
�
; x3)

�2
) +

�3
�
�(x̂;

�̂

�
):

And we can conclude the projection by stating:

Corollary 6.4. Suppose ~a = (a1; a2; 0), then we get the following estimate uniformly in k where
k�h � K.

(I 
�k)�
�Opw� (0 + �1 + �2 + �23)�(Op

w
h �

(�) 
�k)

=

��
h

�
2kOpwh (

~d) + �Opwh (r)

�
Opwh (�

(�))

�

�k +O(�2 + �=�);
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where ~d was de�ned above, and where

r(x̂; �̂) =

�
a2(x1;

��1
�
; x3)@x1W (x1;

��1
�
; x3)� a1(x1;

��1
�
; x3)@x2W (x1;

��1
�
; x3)

�
�f(

�23 + V (x1;� �1
�
; x3)

�2
):

6.2. Calculation of the Current for the Spin-down Part.

With the notation from Lemma 4.1 and section 5 we have:

tr[B(�; h)g0(H)] = �tr[ Opw�(0 + �(1 + 2) + �23) f
2
1 (H)] +

�tr[ Opw�(0 + �(1 + 2) + �23) f
2
2 (H)g0(H)] +O(��3=2):

We now analyze each term separately.

Theorem 6.5. Suppose ~a = (a1; a2; 0) then

�tr[ Opw� (0 + �(1 + 2) + �23) f
2
1 (H)]

=
X

0�k�c=(�h)

1

4�2h2

ZZ �
�h2k[@x2a1(x)� @x1a2(x)] + [a2(x)@x1W (x)� a1(x)@x2W (x)]

�
�f21 (�23 + 2k�h +W (x))dxd�3 +O(h�1��1 + h�3��2):

Proof. We can calculate:

�tr[ Opw� (0 + �(1 + 2) + �23) f
2
1 (H)]

' �tr[f1(H) Opw� (0 + �(1 + 2) + �23) f1(H)]

' �tr[��(�)f1(H)�� Opw� (0 + �(1 + 2) + �23) �f1(H)�(�)��]

' �
X

0�k�c=(�h)
tr[Opwh �

(�)f1(P
(k)
0 )��Opw� (0 + �(1 + 2) + �23)�f1(P

(k)
0 )Opwh �

(�)]

= �
X

0�k�c=(�h)
tr[Opwh �

(�)f1(P
(k)
0 )��

�
h

�
2kOpwh (

~d) + �Opwh (r)

�
�f1(P

(k)
0 )Opwh �

(�)]

+O(�
c

�h
(�2 + �=�)�=h2)

We used that P
(k)
0 � 2k�h � c. The error can be written as O(h�1��1 + h�3��2), so with the

de�nitions of r and ~d we get from [Sob94][Lemma 9.2]

�tr[ Opw�(0 + �(1 + 2) + �23) f
2
1 (H)]

= �
X

0�k�c=(�h)

�

4�2h2

ZZ �
h

�
2k[@x2a1(x)� @x1a2(x)] + �[a2(x)@x1W (x)� a1(x)@x2W (x)]

�
�f21 (�23 + 2k�h+W (x))dxd�3 +O(h�1��1 + h�3��2):

Theorem 6.6.

�tr[ Opw�(0 + �(1 + 2) + �23) f
2
2 (H)(g0(H)� g

(h)
0 (H))] = O(h�1 + �):

Proof. We cannot use the argument from Theorem 5.2 right away, since k Opw� (0 + �(1 +
2)+�23) k = O(1), and using this estimate would lead to a too big error. Therefore we have
to try to improve the estimate:
Let
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� ~f 2 C1
0 (R), ~f � 1 on supp f2.

� ~ 2 C1
0 (R3), ~ � 1 on supp .

Then we have from [Sob94][Cor.2.14] that k ~f(H)(1 � ~ )k1 = O(h1). Thus we get:

�tr[ Opw� (0 + �(1 + 2) + �23) f
2
2 (H)(g0(H)� g

(h)
0 (H))]

' �tr[ ~f(H) Opw� (0 + �(1 + 2) + �23) ~f(H) ~ f2(H)(g0(H) � g
(h)
0 (H))f2(H) ~ ]

� �k ~f (H) Opw� (0 + �(1 + 2) + �23) ~f(H)kk ~ f2(H)(g0(H)� g
(h)
0 (H))f2(H) ~ k1:

The trace norm was estimated as O(�=h) in the proof of Theorem 5.2, so let us look at the
operator norm. Splitting into Landau levels as in the proof of the last theorem we get:

k ~f(H) Opw� (0 + �(1 + 2) + �23) ~f(H)k
' k

X
0�k�c=(�h)

�
Opwh �

(�) ~f(P
(k)
0 )��

�
h

�
2kOpwh (

~d) + �Opwh (r)

�
� ~f(P

(k)
0 )Opwh �

(�)

�

�kk

= O(h=� + ��2):

This �nishes the proof.

Theorem 6.7. Assume ~a = (a1; a2; 0) and that (2.1) is satis�ed, then

�tr[ Opw�(0 + �(1 + 2) + �23) f
2
2 (H)g(h)0 (H)]

=
X

0�k�c=(�h)

1

4�2h2

ZZ  
�h2k[@x2a1(x)� @x1a2(x)] + [a2(x)@x1W (x)� a1(x)@x2W (x)]

!
�(f22 g0)(�23 + 2k�h +W (x))dxd�3 +O(h�1��1 + h�3��2):

Proof. We calculate as usual:

�tr[ Opw�(0 + �(1 + 2) + �23) f
2
2 (H)g(h)0 (H)]

=
�p
2�h

ZZ
g0(� )�̂(�e

it�=htr[f2(H) Opw� (0 + �(1 + 2) + �2c3) f2(H)e�itH=h] dt d�

' �
X

0�k�c=(�h)
tr[(Opwh (�

(�))2f2(P
(k)
0 )

�
h

�
2kOpwh

~d + �Opwh r

�
f2(P

(k)
0 )g(h)0 (P (k)

0 )

' �
X

0�k�c=(�h)

�

4�2h2

ZZ �
h

�
2k[@x2a1(x)� @x1a2(x)] + �[a2(x)@x1W (x)� a1(x)@x2W (x)]

�
�(f22g0)(�23 + 2k�h +W (x))dxd�3 +O(h�1��1 + h�3��2):
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We can thus conclude that for �h � C, � � ch�� and the noncritical condition (2.1) satis�ed,
we get up to an error of order O(h�1��1 + h�3��2 + h�1 + �):

tr[B(�; h)g0(H)]

=
X

0�k�c=(�h)

1

4�2h2

ZZ  
�h2k[@x2a1(x)� @x1a2(x)] + [a2(x)@x1W (x)� a1(x)@x2W (x)]

!
�g0(�23 + 2k�h +W (x))dxd�3

=
X

0�k�c=(�h)

1

4�2h2

 Z
�h2k[@x2a1(x)� @x1a2(x)]2

p
[V (x) + 2�hk]�dx

+

Z
[a2(x)@x1W (x)� a1(x)@x2W (x)]2

p
[V (x) + 2�hk]�dx

!

=
X

0�k�c=(�h)

1

4�2h2

 Z
�h4k[@x2a1(x)� @x1a2(x)]

p
[V (x) + 2�hk]�dx

+
4

3

Z
[@x1a2(x)� @x2a1(x)][V (x) + 2�hk]3=2� dx

!
(6.1)

6.3. The Spin-up Part. Remember from (1.4) and (4) that the current is given by:

Z
~j � ~adx = tr[

�
�2~a � (�ihr� ~A) + ihdiv~a+ h(@x1a2 � @x2a1)

�
g0(H0 + V + 2�h)]

+ tr[
�
�2~a � (�ihr� ~A) + ihdiv~a� h(@x1a2 � @x2a1)

�
g0(H0 + V )]:

When �h is �nite we cannot disregard the �rst term. Having calculated the spin-down part of
the current it is easy to treat the spin-up part though: De�ne ~V = V + 2�h. Then we get

�tr[
�
�2~a � (�ihr� ~A) + ihdiv~a+ h(@x1a2 � @x2a1)

�
g0(H0 + V + �h)]

= tr[ ~B(�; h)g0(H0 + ~V � �h)];

where

~B(�; h) = �Opwh=�(2~a � (�1 + x2; �2; �3)� h=�(@x1a2 � @x2a1)):

It is easy to see that this change of sign on (@x1a2 � @x2a1) (compare with (4.1)) only has as
consequence that the factor k on the �rst term in (6.1) should be changed to (k+1). Therefore



SEMICLASSICS OF THE QUANTUM CURRENT IN A STRONG CONSTANT MAGNETIC FIELD. 27

we get:

tr[ ~B(�; h)g0(H0 + ~V � �h)]

=
X

0�k�c=(�h)

1

4�2h2

 Z
�h4(k + 1)(@x2a1(x)� @x1a2(x))

q
[ ~V (x) + 2�hk]�dx

+
4

3

Z
(@x1a2(x)� @x2a1(x))[ ~V (x) + 2�hk]

3=2
� dx

!
+O(h�1��1 + h�3��2)

=
X

1�k�c=(�h)

1

4�2h2

 Z
�h4k(@x2a1(x)� @x1a2(x))

p
[V (x) + 2�hk]�dx

+
4

3

Z
(@x1a2(x)� @x2a1(x))[V (x) + 2�hk]

3=2
� dx

!
+O(h�1��1 + h�3��2):

Adding this to (6.1) we get the theorem 2.3.

7. Multiscaling: The Non-critical Condition

In this section we will prove that Theorem 2.3 holds without the non-critical condition (2.1):

Theorem 7.1. Let ~a = (a1; a2; 0). Suppose that 0 < h � h0, � � C�h
�� for some � > 0 and

that there exists � 2 (0; 1] such that � � c�h
��. Suppose �nally that

j@m~a(x)j+ j@mV (x)j � Cm

on B(8E). Then

tr[Bg0(P)] =
2

3�h2

1X
n=0

dn

Z
(@x1a2(x)� @x2a1(x))

�
 
[2n�h+ V (x)]

3=2
� � 3n�h[2nh� + V (x)]

1=2
�

!
dx

+O(h�1��1 + h�3��2 + h�1);

where O is uniform in the constants fCmg; c�; C�; �; �; E.

To prove this we will need the following version of Theorem 2.3, where the non-criticality
assumption has been slightly modi�ed:

Lemma 7.2 (Reference Problem 1). Let ~a = (a1; a2; 0). Suppose that

jrV (x)j2 + jV (x)j � cN:C: > 0 (7.1)

for all x 2 B(2E). Suppose further that 0 < h � h0, � � C�h
�� for some � > 0 and that there

exists � 2 (0; 1] such that � � c�h
��. Suppose �nally that

j@m~a(x)j+ j@mV (x)j � Cm

on B(8E). Then

tr[B(h; �;~a)g0(P)] =
2

3�h2

1X
n=0

dn

Z
(@x1a2(x)� @x2a1(x))

�
 
[2n�h + V (x)]3=2� � 3n�h[2nh� + V (x)]1=2�

!
dx

+O(h�1��1 + h�3��2 + h�1);
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where O is uniform in the constants fCmg; cN:C:; c�; C�; �; �; E.

The proof follows essentially by a change of gauge:

Proof. Write P = P( ~A; V ). Let U1 be the unitary gauge transformation given by:

(U1f)(x) = e�i�x1x2=hf(x);

and let U2 be the unitary change of variables:

(U2f)(x) = f(x2;�x1; x3):
Notice the following relations:

(U�
2f)(x) = f(�x2; x1; x3)

U�
2rU2 =

0@ �@x2
@x1
@x3

1A
U�
2V U2 = ~V ;

where ~V (x) = V (�x2; x1; x3). Then:

U�
2U

�
1P( ~A; V )U1U2 = U�

2P( ~A+ �

0@ 0
x1
0

1A ; V )U2

= U�
2

��h2@2x1 + (�ih@x2 � �x1)
2 � h2@2x3 � �h�3 + V (x)

�
U2

= �h2(�@x2)2 + (�ih@x1 + �x2)
2 � h2@2x3 � �h�3 + ~V (x)

= P( ~A; ~V ):

Similarly

U�
2U

�
1~a � (�ihr� ~A)U1U2 = U�

2~a � (�ihr� �

0@ 0
x1
0

1A)U2

= U�
2~aU2 �

0@�ih
0@ �@x2
@x1 + �x2

@x3

1A1A
= ~a � (�ihr� ~A);

where ~a(x) =

0@ a2(�x2; x1; x3)
�a1(�x2; x1; x3)
a3(�x2; x1; x3)

1A.
Let us �nally notice that:

U�
2 (@x1a2 � @x2a1)U2 = @x1~a2 � @x2~a1:

Now we are ready to prove Lemma 7.2:
Choose a partition of unity f�jg on B(E) such that supp �j � B(xj; Ej=2) and that on
B(xj; 8Ej) we have either

j@x1V (x)j2 + j@x3V (x)j2 + jV (x)j � cN:C:=4; (7.2)

or

j@x2V (x)j2 + j@x3V (x)j2 + jV (x)j � cN:C:=4: (7.3)



SEMICLASSICS OF THE QUANTUM CURRENT IN A STRONG CONSTANT MAGNETIC FIELD. 29

This can obviously be done uniformly in cN:C: and the Cm's. Now we write: J (h; �;~a; V ) =
tr[B(h; �;~a; V )g0(P)]; and notice that

J (h; �;~a; V ) =
X
j

J (h; �; �j~a; V ):

Likewise, we write:

A(h; �;~a; V ) =
2

3�h2

1X
n=0

dn

Z
(@x1a2(x)� @x2a1(x))

�
 
[2n�h+ V (x)]3=2� � 3n�h[2nh� + V (x)]1=2�

!
dx;

and notice the same linearity:

A(h; �;~a; V ) =
X
j

A(h; �; �j~a; V ):

Now, if (7.2) is satis�ed on supp �j we can use Theorem 2.3 to estimate:

jJ (h; �; �j~a; V )�A(h; �; �j~a; V )j � O(h�1��1 + h�3��2 + h�1):

On the other hand, if (7.3) is satis�ed on supp �j we conjugate by (U1U2), and �nd ourselves,
once again, in a situation where Theorem 2.3 is applicable: The above calculation shows that

J (h; �; �j~a; V ) = J (h; �;g�j~a; ~V );
and we see that

j@x1 ~V j2 + j@x3 ~V j2 + jV (x)j � cN:C:=4

on B(xj; 8Ej). Thus we can apply Theorem 2.3. If we �nally notice that

A(h; �;~a; V ) = A(h; �; ~a; ~V );
we can put the pieces together and obtain Lemma 7.2.

Remark 7.3. Note that the lemma remains true if (7.1) is replaced by:

j@xV j2 + jV (x)j+ h � c > 0: (7.4)

This is the condition that we will use in the following.

Having cast the reference problem in this form we are facing very much the same problem as
treated in [Sob95][section 5,6]. Our treatment will also be very similar.

Proof. We choose

f(x) = l(x) = A�1 �V (x)2 + (@xV )
4 + h2

�1=4
;

where A is a su�ciently big constant to be determined below. Then

f(x); l(x) > 0;

j@xl(x)j � � < 1 (7.5)

c � f(x)

f(y)
� C 8x 2 B(8) \B(y; l(y));

if A is su�ciently big. Furthermore, there exist constants c�, independent of h, such that

j@�V (x)j � c�f(x)
2l(x)�j�j

j@�~a(x)j � c�l(x)
�j�j

on B(8). Now, if we choose a sequence of points fxkg such that



30 S�REN FOURNAIS

� B(1) � [kB(xk; l(xk)) � [kBk,
� [kB(xk; 8l(xk)) � B(8),
� the intersection of more than N = N(�) balls is empty (this is possible due to � < 1 in
(7.5), see [Sob95], [H�90]),

and a corresponding partition of unity:

�  k 2 C1
0 (Bk),

� j@� k(x)j � c�l
�j�j
k , where lk = l(xk),

� P k � 1 on B(1),

then

J (h; �;~a; V ) = J (h; �;
X
k

 k~a; V ) =
X
k

J (h; �;  k~a; V ):

Since also the asymptotic term satis�es

A(h; �;~a; V ) = A(h; �;
X
k

 k~a; V ) =
X
k

A(h; �;  k~a; V );

we can write

J (h; �;~a; V )�A(h; �;~a; V ) =
X
k

(J (h; �;  k~a; V )�A(h; �;  k~a; V )) :

Now by scaling, dilatation and a gauge-transformation in the J -term:

J (h; �;  k~a; V )�A(h; �;  k~a; V ) = fk

�
J (

h

fklk
;
�lk
fk
; âk; V̂ )�A( h

fklk
;
�lk
fk
; âk; V̂ )

�
;

where âk(x) = ( k~a)(lkx+xk) and V̂ (x) = f�2k V (lkx+xk) (see [Sob95]). We want to apply the

reference problem to J ( h
fklk

; �lk
fk
; âk; V̂ ), so we have to check that this is allowed. Let us notice

that by continuity of V ; f; l are bounded on B(8). Therefore it is easy to see that

j@�â(x)j � C�

j@�V̂ (x)j � C�;

where the C�'s are independent of k. Let us check the non-critical condition (7.4):

j@xV̂ j2 + jV̂ (x)j+ h

lkfk
=

j(@xV )(lkx+ xk)j2 + V (lkx+ xk) + h

f2k

� cA2f(lkx+ xk)

f2k
� c;

for x 2 B(1). We also have to check that h
fklk

is bounded above, and that � = �lk
fk
� c�(

h
fklk

)��:
This is easily seen to be the case.
Now, since we can use the reference problem, we get:

jJ (h; �;  k~a; V )�A(h; �;  k~a; V )j � Cfk

�
fklk
h

fk
�lk

+
f3k l

3
k

h3
f2k
�2l2k

+
fklk
h

�
= C

Z
Bk

fk

�
fklk
h

fk
�lk

+
f3k l

3
k

h3
f2k
�2l2k

+
fklk
h

�
l�3k dx

� C

Z
Bk

�
1

h�
+
l(x)4

h3�2
+

1

h

�
dx;

where we used that f(x) = l(x) in the last inequality.
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Thus,

jJ (h; �;~a; V )�A(h; �;~a; V )j � CN�

Z
B(8)

�
1

h�
+
l(x)4

h3�2
+

1

h

�
dx

� C

�
1

h�
+

1

h3
�2 +

1

h

�
:

8. The Current Parallel to the Magnetic Field

In this section we prove Theorem 2.6. We will �rst prove that the current parallel to the
magnetic �eld is constant in the x3-variable. This allows us to move the test-function a3 out
where the potential is positive, and here the current vanishes to all orders in h.

Lemma 8.1. Suppose Z 1

�1
a3(x1; x2; x3) dx3 = 0;

for all (x1; x2). Then

tr[B(h; �; (0; 0; a3))g0(P)] = O(h�1):

Proof. De�ne ~a = (a1; a2; 0) 2 C1
0 (R3) as

a1(x) = �
Z x3

�1
@x1a3(x1; x2; y) dy

a2(x) = �
Z x3

�1
@x2a3(x1; x2; y) dy

Then r� ~a = r� (0; 0; a3) and therefore we get by the result from Appendix D that:

tr[B(h; �; (0; 0; a3))g0(P)] = tr[B(h; �;~a)g0(P)]:

Theorem 2.5 now gives the conclusion of the lemma.

Let now a3;T (x) � a3(x1; x2; x3 � T ). The lemma above then says that

tr[B(h; �; (0; 0; a3))g0(P)] = tr[B(h; �; (0; 0; a3;T))g0(P)]

locally uniformly in T .
Let T 2 R be so big that V > =2 on B(4E) + T ~e3. The next lemma proves that then
tr[B(h; �; (0; 0; a3;T ))g0(P)] = O(h1), which �nishes the proof of the theorem.

Lemma 8.2. Suppose ~a 2 C1
0 (B(E)), that V �  > 0 on B(4E) and that the hypothesis of

Theorem 2.5 are full�lled, then

tr[B(h; �;~a)g0(P)] = O(h1):

Proof. Choose ~V satifying

� ~V � V on B(4E).
� ~V (x) �  for all x.
� ~V �  2 C1

0 (R3).
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Choose furthermore f 2 C1
0 (R), with sup(supp f) � =2 such that f(P)g0(P) = g0(P). Let ~P

denote the Pauli-operator with V exchanged with ~V . Then we get:

jtr[B(h; �;~a)g0(P)]j = jtr[B(h; �;~a)f(P)g0(P)]j
� kB(h; �;~a)f(P)k1
= kB(h; �;~a)f( ~P)k1 +O(h1)

= O(h1):

The last equality is due to the fact that ~P �  and therefore f( ~P) = 0. The next to last
equality is a consequence of localisation, see for example [Sob94][Thm 2.13].

9. Multiscaling

In this section we �nally want to prove the following more precise version of Theorem 1.2:

Theorem 9.1. Suppose

V (x) =
q

jxj + o(jxj�1) (9.1)

as x! 0, and

j@mV (x)j � Cm;V jxj�1�jmj; (9.2)

8x 2 B(8).
Suppose furthermore that 9C = C(h; �) such that

P(h; �; V ) � �C:
Suppose

� 9c�;1 > 0 such that �h � c�;1,
� 9c�;2 > 0 such that �h3 � c�;2

Let �nally ~a = (a1; a2; 0) 2 C1
0 (B(1)) satisfy

j@m~aj � Cm;~a;

then for all � > 0

tr[Bg0(P)] =
2

3�h2

1X
n=0

dn

Z
(@x1a2(x)� @x2a1(x))

�
 
[2n�h + V (x)]3=2� � 3n�h[2nh� + V (x)]1=2�

!
dx

+O(h�1 +
1

�1=3h2+�
);

where O is uniform in the constants fCm;V g; fCm;~ag; c�;1; c�;2.
Remark 9.2. The constants fCm;~ag; c�;1; c�;2 do not depend on ~a; �. The index is only there
to distinguish them from each other and the other constants in the theorem.

Remark 9.3. The asymptotics does not depend on the lower bound �C of P.

For the parallel current the corresponding result is
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Theorem 9.4. Let the assumptions be as in Thm 9.1, but with ~a = (a1; a2; a3). Assume that
V (x) � cV > 0, for 1 � jxj � 3, and that the spectrum of P below 0 is discrete, then for all
� > 0

jJ (h; �;~a; V )�A(h; �;~a; V )j = O(h�1 +
1

�1=3h2+�
);

where O is uniform in the constants fCm;V g; fCm;~ag; c�;1; c�;2; cV .

We are going to perform a so-called multiscale analysis invented by Ivrii et al.([Ivr98], [IS93],
see also [Sob94]) Since our problem is very similar to the problem analyzed in [Sob96b] our
choices of scaling functions will be the same.
We will divide space into several regions and obtain asymptotic extimates in each of them.

This is due to the fact that as far as magnetic e�ects are concerned there is an enormous di�er-
ence between the vicinity of the singularity and the rest of the space. Close to the singularity
V is much bigger than �h and therefore magnetic e�ects are neglectable. In this region the
analysis performed in [Fou98] is applicable. Further out, �h and V become comparable and we
see a current.
Let us write ~a = �1~a+ �2~a = ~a1 + ~a2; where �1(x) = �(x=r2) and �2 = 1 � �1 (here and in

what follows � will denote a standard smooth cut-o� function around 0). The exact choice of
r will be made in the end of this section, here we will just remark that we impose:

r2 � 1

�h
; (9.3)

which, in a sense, is the condition that, on the support of �1, the electric potential dominates.

9.1. The Inner Region fjxj � r2g.
In the innermost region, we do not see a current. This will be the result of Cor. 9.7 below.
We have to evaluate the trace tr[B(h; �;~a1)g0(P)], with ~a1 supported on a region of radius r2.
This we can write as

B(h; �;~a1) = Opwh

�
2~a(

x

r2
) � (� � � ~A)

�
+ h=r2b(

x

r2
)�3;

where ~a and b = r� ~a are now supported on a region of radius 1.

Lemma 9.5. We have

tr[B(h; �;~a1)g0(P)] = O(h�1 +
�r3

h
+

r

h2
+
�r6

h2
+
r3

h2
):

Lemma 9.5 follows upon collecting the results of the Lemmas 9.9, 9.11 and 9.12 below.
Let us look at the asymptotic term:

Lemma 9.6.

A(h; �;~a1; V ) = O(
r�

h
):
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Proof. We write ~a1(x) = ~a( x
r2
), and V (x) = �(x)

jxj . Then we can calculate:

A(h; �; ~a( x
r2
); V ) =

2

3�h2

1X
n=0

dn

Z
1

r2
(@x1~a2(

x

r2
)� @x2~a1(

x

r2
))

�
 
[2n�h + V (x)]3=2� � 3n�h[2nh� + V (x)]1=2�

!
dx

=
2

3�h2

1X
n=0

dnr
4

Z
(@x1~a2(y)� @x2~a1(y))

�
 
[2n�h +

�(r2y)

r2jyj ]
3=2
� � 3n�h[2nh� + [

�(r2y)

r2jyj ]
1=2
�

!
dy

=
2r

3�h2

1X
n=0

dn

Z
(@x1~a2(y)� @x2~a1(y))

�
 
[2n�hr2 +

�(r2y)

jyj ]3=2� � 3n�hr2[2nh�r2 +
�(r2y)

jyj ]1=2�

!
dy:

Now we use Prop. C.1 to conclude:

A(h; �; ~a( x
r2
); V ) = O

�
r

h2

Z
j@x1~a2 � @x2~a1j(y)

�
(h�r2)3=2 +

p
h�r2

1

jyj + h�r2
1

jyj
�
dy

�
= O(

r

h2

p
h�r2);

since h�r2 � 1.

From Lemma 9.5 and Lemma 9.6 we get, upon noticing that �r2 � h�1 and r3 � r:

Corollary 9.7.

jJ (h; �;~a1; V )�A(h; �;~a1; V )j = O(h�1 +
r

h2
+
�r6

h2
):

Remark 9.8. Notice that we prove that jJ � Aj is small by proving that both jJ j and jAj
are small.

To prove Lemma 9.5 let us �rst look at the part of the trace involving b, i.e. the spin current:

Lemma 9.9.

tr[h=r2b(x=r2)�3g0(P)] = O(h�1 +
�r3

h
+

r

h2
):

Proof. If we write V (x) = �(x)
jxj and make the change of variables y = x=r2 we get, on the spin

down subspace,

h=r2tr

�
b(y)g0

�
(�ih=rr� �r3 ~A(y))2 � (�r3)h=r � �(r2y)

jyj
��

;

and correspondingly on the spin up subspace. Let us �rst concentrate on the spin-down case.
Since (�r3)h=r = �hr2 � 1 by (9.3), this trace is of the type analyzed in [Sob96a] (It is his case
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number 5). Therefore we get:

h=r2tr

�
b(y)g0

�
(�ih=rr� �r3 ~A(y))2 � (�r3)h=r � �(r2y)

jyj
��

= c(h=r)�3
Z
b(y)

�
��hr2 � �(r2y)

jyj
�3=2
�
dy +O((h=r)�2(1 + �r3));

where the constant c is explicit. If we analyze the spin-up part in the same way, we get:

tr[h=r2b(x=r2)�3g0(P)]

= cr=h2
Z
b(y)

 �
��hr2 � �(r2y)

jyj
�3=2
�
�
�
�hr2 � �(r2y)

jyj
�3=2
�

!
dy

+O

�
1 + �r3

h

�
:

Remark 9.10. Notice that the result depends only on how the potential V behaves on a region
of size r2.

Now we look at the remaining term in the trace. Here we have to split into two regions. This
is not due to any fundamental di�erence between this part and the part considered above. In
fact this splitting is essentially the same as Sobolev uses in his paper, but in the case considered
above we could just go in and use the �nal result.
The two regions are:


1 = fjxj � h2=�g
and


2 = fh2=� � jxj � r2g;
where � is a su�ciently small constant (independent of h; �) which will be chosen below. Write
~a1 = �1~a1 + �2~a1, where �1; �2 are smooth cut-o�s to the regions 
1;
2, respectively.
On 
1 we have to analyze

tr[Opwh (�a(
x

h2=�
) � (� � � ~A))g0(P)];

where �a is supported on a ball of radius 1.

Lemma 9.11.

tr[Opwh (�a(
x

h2=�
) � (� � � ~A))g0(P)] = O(h�1):

Proof. We will only look at the spin down part, the other case follows easily. After the change
of variable y = �x=h2 the expression becomes:

h�1tr
�
Opw�

�
�a � (� � �h3

�
~A)

�
g0

�
(�i�r� �h3

�
~A(y))2 � �h3 � �(h2y=�)

jyj
��

:
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Choose a function  2 C1
0 , 0 �  ,  �a = �a then we get (using the spectral theorem and the

cyclicity of trace)

1

h
tr

�
Opw�

�
�a � (� � �h3

�
~A)

�
g0

�
(�i�r� �h3

�
~A(y))2 � �h3 � �(h2y=�)

jyj
��

� 1

h

Opw� (� � �h3

�
~A)g0

�
(�i�r� �h3

�
~A(y))2 � �h3 � �(h2y=�)

jyj
�

�tr
�
 g0

�
(�i�r� �h3

�
~A(y))2 � �h3 � �(h2y=�)

jyj
��

=
1

h
O(��3);

where we used the estimates:Opw� (� � �h3

�
~A)g0

�
(�i�r� �h3

�
~A(y))2 � �h3 � �(h2y=�)

jyj
� � C; (9.4)

and

tr

�
 g0

�
(�i�r� �h3

�
~A(y))2 � �h3 � �(h2y=�)

jyj
��

� C��3: (9.5)

We prove (9.5) by applying once more the result from [Sob96a]. This is possible since �h3 is
bounded. The result is, for � su�ciently small:

tr

�
 g0

�
(�i�r� �h3

�
~A(y))2 � �h3 � �(h2y=�)

jyj
��

= c��3
Z
 (y)

�
��h3 � �(h2y=�)

jyj
�3=2
�
dy +O(��2(1 +

�h3

�
)):

This proves (9.5). Notice, that here we only use properties of V on a region of size h2=�.

To prove (9.4) we take W (y) = �(y)�(h
2y=�)
jyj , where � is some C1

0 function, which is 1 on B(1).

Using results from Appendix B, we only have to prove the estimate, with �(h2y=�)
jyj replaced by

W . Now take � 2 Ran(g0
�
(�i�r� �h3

�
~A(y))2 � �h3 �W (y)

�
with k�k = 1, and write��i�r� �h3

�
~A(y)

�
�

2
� h�;

�
(�i�r� �h3

�
~A(y))2 � �h3 �W (y)

�
�i+ �h3 + h�;W (y)�i

� �h3 + h�;W (y)�i
and we �nish using the in�nitesimal boundedness of the potential.

Lemma 9.12.

tr[Opwh (�2~a1 � (� � � ~A))g0(P)] = O(
�r6

h2
+
r3

h2
):

In the proof below, we will write ~a instead of �2~a1. On 
2 we need to multiscale: We have
the following reference problem:

Theorem 9.13 (Reference Problem). If ~a 2 C1
0 (B(0; 1)) and ~a, V , satisfy the following bounds:

j@�~aj � C�, j@�V j � C� on B(8), and �h � 1, h � h0. Then we have

tr[Opwh (~a � (� � � ~A))g0(H)] = O((� + 1)h�2);
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where the O is uniform in the constants bounding the derivatives of ~a, V .

Using the localisation arguments in Appendix A this theorem is a consequence of the results
of [Fou98]. The proof is identical to sections 4,5 in [Sob95] and will therefore be omitted.
We now de�ne functions f = 1p

jxj, l(x) = �jxj where � < 1=16. Notice that j@�~aj � c�l(x)�j�j

and j@�V j � c�f(x)2l(x)�j�j, on 
2. Since j@xl(x)j � � < 1 we can �nd a sequence of points
(See [H�90] or [Sob95]) xk � 
2 such that

[x2supp~aB(x; l(x)) � 
2 � [kB(xk; 8l(xk))
and a number N = N(�) (independent of h) such that the intersection of more than N(�) balls
is empty, and furthermore a corresponding partition of unity f kg satisfying:
�  k 2 C1

0 (B(xk; 8l(xk))),
� j@m kj � C(�)l(xk)�jmj,
� P k = 1 on 
2.

Using this partition of unity we write

tr[Opwh (~a � (� � � ~A))g0(H)] =
X

tr[Opwh ( k~a � (� � � ~A))g0(H)]

�
X
k

Tk:

Now we have

Lemma 9.14.

jTkj � C

Z
Bk

�
�

h2
f(x)2 +

f(x)3

l(x)h2

�
dx

This will be proved below. We �rst prove Lemma 9.12 using Lemma 9.14:

Proof. Because only a �nite (�xed) number of balls can intersect we thus get that:

jtr[Opwh (~a � (� � �~a))g0(H)]j � C

Z

2

�
�

h2
f(x)2 +

f(x)3

l(x)h2

�
dx

= Ch�2
Z r2

h2=�

(�jxj+ 1p
jxj)djxj

= O(
�r4

h2
+

r

h2
):

In the �nal estimate we used that � is a constant. This proves Lemma 9.12.

Now we prove Lemma 9.14:

Proof. First we notice the following scaling relations: Let l; f be positive scalars, z 2 R3 and
de�ne Ulu(x) = l3=2u(lx), Tzu(x) = u(x+ z), then:

f�2UlTzH(A;V; h; �)T �
z U�

l = H(Â; V̂ ; �; �);

where

� Â(x) = l�1A(lx+ z) = (�x2 � z2=l; 0; 0)

� V̂ (x) = f�2V (lx+ z)
� � = h=(fl), � = �l=f .
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Let now � be the gaugetransformation �u(x) = ei
h
fl
x1z2=lu(x) and let U(l; f; z) be the unitary

transformation U(l; f; z) = �UlTz, then
f�2U(l; f; z)H(A;V; h; �)U(l; f; z)� = H(A; V̂ ; h=(fl); �l=f):

Let
J(A;V; h; �;~a) = tr[Op�h (~a � (� � �A)g0(H(A;V; h; �))];

then the above proves that J(A;V; h; �;~a) = fJ(A; V̂ ; h
fl
; �l
f
; â); where â = ~a(lx + z). Now

Tk = J(A;V; h; �;  k~a), which thus means that:

Tk = fkJ

�
A;

V (l �+xk)
f2k

;
h

fklk
;
�lk
fk
; ( k~a)(lk �+xk)

�
:

The following conditions are satis�ed:

� h
fklk

�lk
fk

= h�
f2k

= h�jxkj � h�r2 � 1.

� h
fklk

= h

�
p
jxkj

�
p
�
�
� h0 if �; � are chosen properly.

� j@�f�2k V (lk �+xk)j � c�, where c� is some constant independent of f; l; k.
� j@�( k~a)(lk �+xk)j � C� where the same remark applies to C�.

Therefore we can apply the reference problem (9.13) to conclude that

jTkj � fkC

�
(
�lk
fk

+ 1)
f2k l

2
k

h2

�
= C 0

Z
Bk

fk

�
(
�lk
fk

+ 1)
f2k l

2
k

h2

�
l�3k dx

� C 00
Z
Bk

f(x)

�
(
�l(x)

f(x)
+ 1)

f(x)2l(x)2

h2

�
l(x)�3dx

= C 00
Z
Bk

�
�

h2
f(x)2 +

f(x)3

l(x)h2

�
dx:

9.2. The Outer Region.
In the outer region the result is the following4

Lemma 9.15. Let the assumption be as in Section 1. Then

jtr[B(h; �;~a2)g0(P(h; �; V ))]�A(h; �;~a2; V (x))j = O(
1 + r�7��4

�h
)

In the outer region, D = fjxj � r2g, magnetic e�ects become important and we see a current.
InD we perform a multiscaling with the same scaling functions f(x) = jxj�1=2 and l(x) = �jxj,

� < 1
16 as in 
2, but now we use the asymptotics for the current in a strong magnetic �eld as

reference problem.
We will write ~a instead of ~a2.

Theorem 9.16 (Ref. Problem in D.). Let ~a 2 C1
0 (B(0; 1)), A(x) = (�x2; 0; 0), and V be a

function such that
P = P(h; �;A; V ) = [~� � (�ihr� �A)]2 + V

is self adjoint and bounded below. Suppose that 9c�;m;M; �; �; h0 > 0 such that

� j@�~aj � c�, j@�V j � c� on B(0; 8),
� 0 < h � h0,

4Remember that ~a2 is the testfunction ~a cut smoothly down to the region fjxj > r2g
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� h�� � m,
� h�� �M ,

then

tr[B(h; �;~a)g0(P)] = A+O(h�1��1 + h�3��2 + h�1):

where

A = A(h; �;~a; V )

=
2

3�h2

1X
n=0

dn

Z
(@x1a2(x)� @x2a1(x))

�
 
[2n�h+ V (x)]

3=2
� � 3n�h[2nh� + V (x)]

1=2
�

!
dx:

This is the statement of Thm 7.1. We will use this with � = 3, and � such that

�h�r3�� � 1: (9.6)

That it is possible to �nd such a � for our choice of r will be proved at the end of this section.
On D we have

� j@�~aj � c�l(x)
�j�j,

� j@�V j � c�f(x)2l(x)�j�j.

Again we can �nd a partition of unity f kg as in the previous multiscaling. We write:

J (h; �;~a; V ) = J (h; �;
X
k

 k~a; V )

=
X
k

J (h; �;  k~a; V );

and also

A(h; �;~a; V ) = A(h; �;
X
k

 k~a; V )

=
X
k

A(h; �;  k~a; V ):

We want to prove that

jJ (h; �;  k~a; V )�A(h; �;  k~a; V )j
� C

Z
Bk

f(x)

�
f(x)l(x)

h

f(x)

�l(x)
+
f(x)3l(x)3

h3
f(x)2

�2l(x)2
+
f(x)l(x)

h

�
l(x)�3dx:

This is proved as the lemma of the previous multiscaling argument and the proof will therefore
be omitted. First we have to check:

�l

f
� h

3

l3f3
� �h3

jxj1�3
jxj�(1+3)=2

= �h3 � m;

and

�l

f
� h�

l�f�
= �h�

l1��

f1+�
� �h�

jxj1��
jxj�(1+�)=2 = �h�jxj3��=2 � �h�r3��
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Thus we get:

jJ (h; �;~a; V )�A(h; �;~a; V )j = O

�Z
D1

f

�
fl

h

f

�l
+
f3l3

h3
f2

�2l2

�
l�3dx

�
= O

�Z 1

r2

1

�h
jxj�5=2 + 1

h3�2
1

jxj3djxj
�

= O

�
1

�h
+

1

h3�2
1

�h
r�3

h3

�2
r�4
�

=
1

�h
O(1 + r�7��4):

Finally, we can �nish the proof of theorem 9.1.

Proof. We have the following conditions on r i.e. equations (9.3) and (9.6):

�hr2 � 1 (9.7)

9� 2 (0; 3] such that �h�r3�� � 1; (9.8)

and since we want the error terms to be small we need

r � 1

�r6 � 1

hr�7��5 � 1 (9.9)

To make the optimal choice of r let � > 0 and write

� = h�

r = h=3��(3�):

This de�nes  and r. Choose

� =
9�

1 + 3�
:

Then (9.8) is satis�ed, since:

�h�r3�� = h�+�+(3��)(=3��(3�))

= h�+�+�3�(3�)��=3+��(3�)

= h�(1�=3)+�3�(1�=3)�9�(1�=3)

= h(1�=3)(�(1+3�)�9�)

= 1:

The other equation, (9.7), holds if just � < 1=6 since:

�hr2 = h�+1+2=3�2�(3�)

= h1�=3�6�(1�=3)

= h(1�=3)(1�6�):

The conditions (9.9) become

h=3��(3�) � 1

h�6�(3�) � 1

h1+8=3+7�(3�) � 1:

The �rst two of these get better for small �, and the �rst is the largest term of the three. This
�nishes the proof of theorem 9.1.
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Appendix A. Some Localisation Arguments

In this section we will prove the following localisation result:
Let E > 0.

Assumption A.1. � H is a self adjoint operator which is bounded below on L2(Rd).
� 9al l = 1; ::d ,V all in C1

0 (Rd), such that for all u 2 C1
0 (B(4E)):

Hu = Hu;

where we have used the notation

H =
X

(�ih@l � al)
2 + V:

Let C� be the constants such that

j@�V j � C�

j@�alj � C�; (A.1)

on B(8E).
Under this assumption we have:

Theorem A.2. Let � 2 C1
0 (B(E)) and g 2 C1

0 (R), then

k�(�ih@l� al)[g(H)� g(H)]k1 = O(h1);

where the O is uniform in E; g; � and the constants C� in (A.1).

Remark A.3. Let Cr be constants so that jg(r)j � Cr. By uniform we mean that if ~H,
~H =

P
(�ih@l � ~al)2 + ~V satisfy the above assumptions with the same constants C� and the

same E;�, and if ~g 2 C1
0 (R) with j~g(r)j � Cr (the same constants as in the bounds on jg(r)j)

and sup supp ~g � sup supp g, then

k�(�ih@l � ~al)[g( ~H)� g( ~H)]k1 � CNh
N ;

8N 2 N, where the constants CN are the same as in Theorem A.2. Observe, that we do not
assume supp ~g � supp g.

Notation:
We will need some results from [Sob95], so we introduce the notation used in that paper:
Let �0 � 1 + 2 sup jV (x)j then we de�ne d(z) = dist(z; [��0;1)).
Let furthermore < z >= (1 + jzj2)1=2. Finally we will write Ql = (�ih@l � al).
We start the proof with the following lemma:

Lemma A.4. Suppose � 2 C1
0 (B(3E)). Then for any N > d=2:�Ql

�
(H� z)�1 � (H � z)�1

	
1
� CN

�
< z >1=2

h

�d �
h2 < z >

d(z)2

�N+1=2�
< z >1=2

j=zj + h�1
�
;

where =(z) is the imaginary part of z.

Proof. De�ne �1 2 C1
0 (B(20E=6)) satisfying: �1(x) = 1 on jxj � 19E=6. Thus �1� = �.

Furthermore we will write � = 1� �1. Writing (H � z)�1 = (H � z)�1�1+ (H � z)�1�, we get

�Ql[(H� z)�1 � (H � z)�1]

= �Ql[�1(H� z)�1 � (H � z)�1�1]� �Ql(H � z)�1�

= T1 + T2:
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The last term is easily estimated using [Sob95][Lemma 3.6] as

kT2k1 = k�Ql(H � z)�1�k1 � CN
< z >1=2

d(z)

�
< z >1=2

h

�d �
h2 < z >

d(z)2

�N
;

which is seen to �t the estimate we want to prove.
Using the identity:

�(H� z)�1 = (H � z)�1�� (H � z)�1Z(H� z)�1;

where

Z = �[H;�] =
nX

j=1

ih(Q�
j(@j�) + (@j�)Qj);

we get that the �rst term is

T1 =
nX

j=1

���Ql(H � z)�1ih(Q�
j(@j�1) + (@j�1)Qj)(H� z)�1

�
:

This we can estimate as:

kT1k1 �
nX

j=1

h
n�Ql(H � z)�1Q�

j(@j�1)(H� z)�1

1

+
�Ql(H � z)�1(@j�1)Qj(H� z)�1


1

o
�

nX
j=1

2hk�Ql(H � z)�1Q�
j(@j�1)k1 1

j=zj +
nX

j=1

h2k�Ql(H � z)�1(@2j�1)k1 1

j=zj

� CNh
< z >

d(z)

�
< z >1=2

h

�d �
< z > h2

d(z)2

�N
1

j=zj ;

where we used [Sob95][Lemma 3.6] to get the last estimate.

Now we can prove the theorem:

Proof. We use the representation:

g(A) =
mX
j=0

Z
(@jg)(�)=[ij(A� � � i)�1]d�

1

�(m� 1)!

Z 1

0

�m�1
Z
R

(@mg)(�)=[im(A� �� i� )�1]d� d�;

which holds for all self adjoint operators A, g 2 C1
0 , m � 2 (See [Sob95], [AdMBG91]).

Writing

�(�; � ) = (H� �� i� )�1 � (H � � � i� )�1;

we thus get:

�Qlfg(H) � g(H)g =
mX
j=0

1

�(m� 1)!

Z
R

(@jg)(�)�Ql=[ij�(�; 1)]d�

+
1

�(m� 1)!

Z 1

0

�m�1
Z
R

(@mg)(�)�Ql=[im�(�; � )]d�d�:
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Choose m = 2N + 3. Using the Lemma the �rst term is easily estimated by O(h2N+1�d):

k�Ql=(ij�(�; 1)k1 � ch�d�1(
p
2 + �2)d=2+N+1=2h2N+1 1

(1 + j�j)2N+1
:

For N su�ciently big, this is integrable in �, and we get

k
mX
j=0

1

�(m� 1)!

Z
R

(@jg)(�)�Ql=[ij�(�; 1)]d�k1 � c sup
j=0::m

fjg(j)jgh2N�d: (A.2)

The second integral we split in two:

I1 =
1

�(m� 1)!

Z 1

0

�m�1
Z 1

�2�0
(@mg)(�)�Ql=[im�(�; � )]d�d�;

and

I2 =
1

�(m� 1)!

Z 1

0

�m�1
Z �2�0

�1
(@mg)(�)�Ql=[im�(�; � )]d�d�:

Inside the integral in I1 we estimate:

k�Ql=(ij�(�; � )k1 � ch�d�1(
p
2 + �2)d=2+N+1=2h2N+1��2N�2:

Using our choice of m, I1 is easily estimated. I2 is estimated just like (A.2).

As a corollary we get the following generalisation of the result in [Fou98]:

Lemma A.5. Let the notation be as above. Then the currents of H and of H on the set B(E)
are the same up to an error of order O(h1�n), i.e. for all � 2 C1

0 (B(E)) and for all l we have:

tr[�Ql(g0(H)� g0(H))] = O(h1�n):

Again this is uniform in E;� and the C�'s.

Proof. Choose g 2 C1
0 (R) such that gg0 = g0 on SpecH. Notice, that the bounds on jg(r)j do

not depend on inf SpecH. Write, using the spectral theorem:

tr[�Qlg0(H)] = tr [�Qlg(H)g0(H)]
= tr [�Qlg(H)g0(H)] +O(h1):

Now we get from [Fou98] that �Qlg(H) is h-admissible. By an expansion of this operator in
powers of h we get:

tr[�Qlg0(H)] = tr[Opwh �g0(H)] +O(h1�n);

where �(x; �) = �(�l � al)g((� � al)2 + V (x)) 2 C1
0 (Rn). That this is O(h1�n) follows from

[Sob95] and the Tauberian argument given in [Fou98].

We will now prove the equation (4.2):

Proof. Let hW be h� with V changed into W . Remember that W is a locally C1
0 version of V .

Then Theorem A.2 proves that

tr[B(�; h)g0(H)] = tr[B(�; h)f(Opw�hW )g0(H)]:

Since B(�; h)f(Opw�hW ) is an �-admissible operator (in the sense of [Rob87]) and (1 �  )(x)
vanishes on a neighborhood of the support of the symbol of B(�; h)f(Opw�hW ), the equation
(4.2) is now obvious.
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Appendix B. Localisation in a Neighborhood of a Singularity

In this appendix we will prove that to study the current close to, for example, a Coulomb sin-
gularity, only the local behaviour of the singularity matters. The result below can be rephrased
as follows:
Let � 2 C1

0 (B(1)) and let V be a potential, such that, if � 2 C1
0 (B(2)), then �V is bounded

relatively to the kinetic energy (�ir� ~A)2. Then 9C > 0 such that:

k�(�ir� ~A)[g0((�ir� ~A)2 + V )� g0((�ir� ~A)2 + �V )]k � C;

where C only depends on local information, i.e. on �V .
Let us now be more precise: Let V (playing the role of �V in the discussion above) be a

multiplication operator such that 9 0 < � < 1 and M > 0:

hu; jV jui � �hu;��ui+Mkuk2; (B.1)

for all u 2 C1
0 . Observe that this implies, by the diamagnetic inequality, that

hu; jV jui � �hu; (�ir� ~A)2ui +Mkuk2;
with the same constants �;M . Denote by H the selfadjoint operator (�ir� ~A)2 + V .

Assumption B.1. Let H be a selfadjoint operator in L2(R3), H � ��0 for some �0 > 1 and
satisfying for all � 2 C1

0 (B(2)):

� 8u 2 D[H] (the form domain of H) we have �u 2 D[H] and 9�1 2 C1
0 (B(2)) such that

hu;H(�v)i = h(�1u);H(�v)i for all u; v 2 D[H].
Remark B.2. The application in this article is to decompose Coulomb singularities, but the
assumption is by far more general.

The result is the following:

Lemma B.3. Let � 2 C1
0 (B(1)), then

k�(�i@xj �Aj)[g0(H)� g0(H)]k � C;

where C depends only on � and on �;M in (B.1).

Remark B.4. C does not depend on the lower bound �0.

The main ingredient to prove the lemma is the following:

Lemma B.5. Let � 2 C1
0 (B(1)), and let z 2 C with 0 < j=(z)j � 1, then for all N > 0 there

exists CN > 0 such that

k�(�i@xj �Aj)[(H� z)�1 � (H � z)�1]k � CN
M + 1 + jzj
dM (z)

�
M + jzj
dM (z)

�N
1

j=(z)j;

where dM (z) = dist(z; [�M;1)).

Proof. Choose �1 2 C1
0 (B(2)), �1 � 1 on B(3=2), and write

�(�i@xj �Aj)[(H� z)�1 � (H � z)�1] = �(�i@xj �Aj)[�1(H� z)�1 � (H � z)�1�1]

+�(�i@xj �Aj)(H � z)�1�;

where � = 1� �1. Now the lemma follows from the identity

(H� z)�1 � (H � z)�1�1 = �2i
3X
l=1

(�i@xl �Al)(@xl�1) + ��1;
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and the following result from [Sob96a][Lemma 3.3]:

k�(�i@xj �Aj)
m1(H � z)�1(�i@xl �Al)

m2�k � C
(M + jzj)m1+m2

2

dM (z)

�
M + jzj
dM (z)2

�N
;

where m1;m2 2 f0; 1g.
The lemma B.3 now follows, using almost analytic extensions, just like in the previous ap-

pendix.

Appendix C. A Calculation with Poisson Summation

Let us write t = [V (x)]�
2�h

, and

S = S([V (x)]�; h�) =

1X
n=0

dn

�
[2h�n� [V (x)]�]

3=2
� � 3=2(2h�)n[2h�n � [V (x)]�]

1=2
�
�

= (2h�)3=2
1X
n=0

dn

�
[n� t]3=2� � 3

2
n[n� t]1=2�

�
:

In this appendix we want to prove the following computational result:

Proposition C.1.

S([V (x)]�; h�) = O((h�)3=2 +
p
h�[V (x)]� + h�[V (x)]�);

uniformly in x.

Proof. Let us write Ft(�) =
�
[�� t]

3=2
� � 3

2
�[� � t]

1=2
�
�
; then

S =
(2h�)3=2

�

 
Ft(0)

2
+

1X
k=1

Ft(k)

!
:

We use Poisson Summation and get:

S =
(2h�)3=2

�

(Z 1

0

Ft(�)d� + 2<
 1X

k=1

Z 1

0

Ft(�)e
i2�k�d�

!)
:

Let us look at the �rst term:Z 1

0

Ft(�)d� =

Z t

0

(t� �)3=2d� � 3

2

�
[�
2

3
(t� �)3=2]t�=0 �

2

3

Z t

0

(t� �)3=2d�

�
= 0:

One part of < �R10 Ft(�)ei2�k�d�
�
was calculated in [Sob96b][p.399]:

<
�Z 1

0

(t� �)3=2ei2�k�d�

�
=

3

8�2k2
t1=2 � 3

16�2k5=2

�
cos(2�kt)C(2

p
kt) + sin(2�kt)S(2

p
kt)
�
;

where

C(x) =
Z x

0

cos(�u2=2)du;

and

S(x) =
Z x

0

sin(�u2=2)du:
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What we have left to calculate is thus �3
2

R t
0 �
p
t� �ei2�k�d�. This we do explicitly:

�3

2

Z t

0

�
p
t� �ei2�k�d� = � 3

4�i

d

dk

Z t

0

p
t� �ei2�k�d�

= � 1

2�i

d

dk

Z t

0

d

dt
(t� �)3=2ei2�k�d�

= � 1

2�i

d

dk

�
d

dt

�Z t

0

(t� �)3=2ei2�k�d�

�
� (t� �)3=2ei2�k�

���
�=t

�
= � 1

2�i

d

dk

d

dt

Z t

0

(t� �)3=2ei2�k�d�

= � 1

2�i

d

dk

d

dt

(
t3=2

2�ik
+

3t1=2

8�2k2
� 3ei2�kt

16�2k5=2

Z 2
p
kt

0

e�i�u
2=2du

)

=
1

2�i
3=2

t1=2

2�ik2
+

1

2�i

3

8�2k3
p
t
+

1

2�i

d

dk

 
3ei2�kt

16�2k5=2

(
2�ik

Z 2
p
kt

0

e�i�u
2=2du+

p
kt�1=2e�i�2kt

)!
:

Here we used the calculation from [Sob96b][p.399] to get the next to last equality. We calculate
the real part and get:

� 3t1=2

8�2k2
+

3

16�2
<
(
d

dk

 
k�3=2ei2�kt

Z 2
p
kt

0

e�i�u
2=2du

!)

= � 3t1=2

8�2k2
+

3

16�2
d

dk

n
k�3=2

h
cos(2�kt)C(2

p
kt) + sin(2�kt)S(2

p
kt)
io

:

Thus

S =
1X
k=1

(2h�)3=2

�
2
n �15
32�2k5=2

h
cos(2�kt)C(2

p
kt) + sin(2�kt)S(2

p
kt)
i

+
3

16�2k3=2
d

dk

h
cos(2�kt)C(2

p
kt) + sin(2�kt)S(2

p
kt)
io
:

Using, that C and S are bounded with bounded �rst derivatives, we thus see that

S = O

 
(h�)3=2

1X
k=1

(k�5=2 +
t

k3=2
+

p
t

k2
)

!
= O((h�)3=2(1 + t+

p
t))

= O((h�)3=2 +
p
h�[V ]� + h�[V ]�):

Appendix D. Gauge Invariance of the Current

In this appendix we will prove that the current J (h; �;~a; V ) as a function of ~a only depends

on the magnetic �eld ~b = r� ~a generated by ~a, i.e. that if ~a = ~a +r� then J (h; �;~a; V ) =
J (h; �; ~a; V ):
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Lemma D.1. Suppose V is relatively bounded with respect to �h2� and that Spec(P(h; �; V ))
below zero is discrete. Then 8� 2 C1

0 (R3) we have J (h; �;r�; V ) = 0.

Proof. Let  be an eigenfunction of P(h; �; V ) with eigenvalue � < 0. We may, with a slight
abuse of notation assume that

(H +W ) = � ;

where W = V � �h and H = (�ihr� ~A)2. We have to prove that

h ; (r�) � (�ihr� ~A) i+ h ; (�ihr� ~A) � (r�) i = 0;

or equivalently

h ; (�ihr�) � (�ihr� ~A) i+ h ; (�ihr� ~A) � (�ihr�) i = 0:

Notice that (�ih@xj�Aj)� = �(�ih@xj�Aj)+(�ih@xj�); thus we get, using the self-adjointness
of (�ih@xj �Aj) and the relative boundedness of W :

h ; (�ihr�) � (�ihr� ~A) i+ h ; (�ihr� ~A) � (�ihr�) i
= h ;

h
(�ihr� ~A)�� �(�ihr� ~A)

i
� (�ihr� ~A) i

+h ; (�ihr� ~A) �
h
(�ihr� ~A)�� �(�ihr� ~A)

i
 i

= h(�ihr� ~A) ; �(�ihr� ~A) i � h ; �� i+ h ; �W i
+h� ; � i � hW ;� i � h(�ihr� ~A) ; �(�ihr� ~A) i:
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