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SEMICLASSICS OF THE QUANTUM CURRENT IN A STRONG
CONSTANT MAGNETIC FIELD.

SOREN FOURNAIS

ABSTRACT. We study the current of the Pauli operator in a strong constant magnetic field. We
prove that in the semi-classical limit the persistent current and the current from the interaction
of the spin with the magnetic field cancel, in the case where the magnetic field is very strong.
Furthermore we calculate the next term in the asymptotics and estimate the error. Finally,
we discuss the connection between this work and the semi-classical estimate of the energy in
strong magnetic fields proved by Lieb, Solovej and Yngvason [LSY94].
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2 SOREN FOURNAIS

1. INTRODUCTION

In recent years physicists have been very interested in understanding the current in quantum
systems such as the quantum Hall systems and different types of nanostructures that experi-
mental advances have made possible. In contrast, the current has been studied very little in the
mathematics litterature. The current, however, is as natural a quantity as the density which
has been studied to a great extent in the mathematics litterature, in particular, the integral of
the density, i.e. the particle number (for fixed chemical potential), obeys the celebrated Weyl
law in the semiclassical limit. In the semiclassical limit one cannot expect to see a static current
since there is no classical, persistent or diamagnetic current. In quantum mechanics, however,
there may be a static current. In [Fou98] the semiclassical limit of this current was studied
and it was indeed found that the first term in the semiclassical expansion vanishes. This might
be the reason why the quantum current has not attracted much attention in the mathematics
community.

In this paper we study a different type of semiclassical limit in which the magnetic field
strength may vary as the semiclassical parameter i tends to zero. If the field strength increases
when h decreases in such a way that the magnetic length scale is comparable to the Planck
scale, one should expect to see the effect of the current. In fact, in quantum Hall systems
one has magnetic field strength that make the magnetic field length of the order of the Planck
scale. This type of semiclassical limit was studied by Lieb, Solovej and Yngvason in [LSY94]
and [LSY95], where the limits of the energy and the density were studied. The purpose of this
paper is to extend this analysis to include the persistent quantum current.

It should be noted that this paper deals solely with static situations. This is different from
the situation in quantum Hall systems, where a constant voltage drop creates a stationary and
not just static situation.

The object of study in this paper is the Pauli operator:

P=P(hA V)= (—ihV — A)? + V(z)— hd - B,

acting in L*(R?; C?). Here & = (01,09, 03) is the vector of Pauli spin matrices:
(01
g1 = 1 0 ’
(0 i
2 = i o0 )
/10
= o -1 )

and B = V x A. This operator has, in general, infinitely many negative eigenvalues, even
for V' smooth and compactly supported (and negative), but it was proved in [LSY94] (see
also [ES97] for the case of non-constant magnetic fields) that the sum of the negative eigenval-
ues tr[P1_. q(P)] is finite. The sum of the negative eigenvalues represents the energy I of
a noninteracting electron gas (of chemical potential 0) in the external electric potential V' and
magnetic potential A Furthermore, they proved a semi-classical formula for the energy, uni-
formly in the magnetic field strength, i.e. an expression Esq = Esq(h, %_l), V) (see (1.1) below),
such that if /' = E(h,%_l), V)= tr[Pl(_ 0(P)] then

E(h, AV

0NN
Bt ALV)

as h — 0, uniformly in A.
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Given the energy, two quantities can be calculated: the density and the current.
The density p is defined, as a distribution, as the variational derivative of £/ with respect to V,
ie.

d o
[ pods = GEMAY + 16

In the context of strong magnetic fields, this has been studied in [Sob94], and a formula for the
highest order term in the semi-classical limit was given, with good control of the error term.
The current j is the variational derivative of F with respect to the vector potential A.

- d 7
/] cadr = %E(h,A‘FtC_i; V)|t:07

where the left hand side is to be understood in the sense of distributions. It will be the
objective of this paper to obtain a semi-classical formula for this quantity when the magnetic
field is strong, but constant. By a strong, constant magnetic field we mean that we take the
limit # — 0 but with a magnetic field B = (0,0, 1) so strong that ph > ¢ > 0as h — 0.

To get an idea of what to expect, let us first look at the semiclassical energy:

1.1. The Semiclassical Formula in [LSY94].
The semi-classical formula for the energy given in [LSY94] is:

B = =7 [ PUIB()] V(2] ), (1.1)
where
2 3/2
P(B = — d,B2nB — W]~
and
2] = 0 >0
=71 —¢ = <0
Here dy = i and d, = % for n > 1. If this semiclassical formula contains most of the physics

of the problem then it should also give the current to highest order, so we try to calculate its
functional derivative with respect to the vector potential. Let thus @ be a test function. Then
we have:

. d _—
/.]SCI cadr = EESCI(A + ta)|t:0
_9 =
= 37Th2 Z dn (axl oy — ag;2a1)
n=0
x ([znh,,b + V(2))Y? = 3nhu[2nhy + V(:z;)]l_/2> de, (1.2)
or
- — 1/2 —1/2 OusV
Ju = =y d, ([znh,,b L V(@)]Y? — nhu2nhp 4+ V(2)]C ) 0,V |. (13
n=0 0

In the special case where ph — oo we get:

a,,V

1
Im2h2 [V(x)]l—/z _86’1‘/

Jscl =
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We will prove that the above formulas for the current are correct to highest order, and we will
estimate the error.

Remark 1.1. The corresponding formulas in 2-dimensions are:

B == [ S du|Ba)[2eh|Ba)| + V(o))

;ifl) =—p! / Z dn(Dpyaz — Opyar) ([2nhp + V()= — 2nhu2nhp + V(2)]2).
n=0

1.2. Statement of the Results.
We will fix A = p(—1x2,0,0) in the rest of this paper. We will thus write P = P(h,u, V)

instead of P(h, A, V). A formal computation gives

d B}
G B(h, A413. V)| im0 = ~te[Bl(oc(P)] (1.4)

where .
B =2d-(—ihV — A) — ihdivd + hos(0y, a2 — Oy, a4).

We will take this as our starting point i.e. define the current as

/ j-d de = —tr[Bl_oq(P)].

We shall allow V' to have a Coulomb singularity, i.e. suppose

V(e) = ﬁ + o[z (1.5)
as  — 0, and
0"V ()] < Coy |1, (1.6)

Vx € B(8).
Suppose furthermore that 3C = C'(h, 1) such that
P(h,u,V)> —C.

Then we have the following:

Theorem 1.2. Let the above conditions on V' be satisfied. Suppose
e Jc,1 > 0 such that ph > ¢, 1,
e Jc,o > 0 such that ph® < ¢, 2,
then
2 h=0 7
J = Jscls

in the sense of distributions in the coordinates orthogonal to the magnetic field, i.e.:
aq L aq
/] ay | de 30/j5c1- as | dz,
0 0

Remark 1.3. The condition Jc,2 > 0 such that uh® < ¢, is only necessary if we have
a singularity. In the case where V' is smooth we can allow g to be of any order in h, see
Theorem 2.3 or its improvement Theorem 7.1.

for all ay,ay € CP(B(1)).

If the potential is confining in the direction parallel to the magnetic field, we can also calculate
the current in that direction:
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Theorem 1.4. Let the assumptions be as in Thm 1.2. Assume furthermore that V(xy, 9, x3) >
cy >0, for 1 < |as| <3, and that the spectrum of P below 0 is discrete, then

2 h—0 2
J = Jscls

in the sense of distributions, i.e.:
ax hs0 ax
/.] a2 dx :> /.jscl : a2 dl’,
as
for all ay,aq,as € C(B(1)).

Apart from its obvious physical relevance, the Coulomb potential is mathematically interest-
ing in this kind of problem, since a correct analysis demands asymptotic estimates in both weak
and strong magnetic fields. To see this, one has to realise, that magnetic effects are important if

% < 1 and neglectable if % > 1. This can, for example, be seen from the semiclassical
formula for the energy. Thus we will need to split in two regions, one, close to the singularity,
where [VEL% is big, and one outside, where the ratio is small. In the first region, we have

standard semi-classics, and the analysis from [Fou98] suffices. In the outer region no analysis
of the current exists, therefore the main part of this paper, sections 2 - 8 will deal with finding
the correct estimates in this region. Finally, in section 9, we will prove a more precise version
of theorem 1.2 above. The proof of theorem 1.4 is identical to the proof of theorem 2.6 below
given in section 8 and will therefore be omitted.

1.3. Notations. It will be convenient to use the functions:

9o(7) = Loon(7);
g(r) = (=7)go(7).
For shortness we will sometimes write the current trace as
tr[Bgo(P)] = T (h, 1, d, V'),
and the asymptotic term, as:

. 2 <
Al V) = 25 Y do [(0as(e) = o)
n=0

X ([Zn/,ch + V(:Jc)]:i/2 — 3nph2nhp + V(:L')]l_/2> dx.

We will write & = (x1,x3) and £ = (&1,&5).

Apart from the parameters h, u we will need two other scales:

a=h/u, €= —.
[
We will denote by B> () the set of smooth functions f on the open set Q satisfying
0™ f| < Cp.

for all m.
It is an elementary fact that:

L*(R?) = L*(R{,, ,.,)) © L*(Ry,).
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It is this splitting of L*(R?) that all tensor products will refer to.
Finally, it should be pointed out that the notation 9 f(z) is shorthand for 9% f|. all through
this paper.

2. THE LOCAL ASYMPTOTICS

Our strategy to prove the main theorems of this paper will be that of V. Ivrii: obtain good
local results in regions where everything is smooth, and then use ”scaling” to put the pieces
together. This last ”"cutting-and-pasting” technique has been refined (by Ivrii and others,
see [Ivr98], [1S93], [Sob95]) into what is usually called the "multiscaling” technique and will
be discussed in the last sections of the paper. Here we will just remind the reader that it is
absolutely crucial for the technique to work, that the estimates obtained are indeed local i.e.
depend only on local bounds on, for instance, the potential. The only global assumption, we
need, (and are allowed to impose) is the semi-boundedness (and self-adjointness) of the operator
in question, end even here it is important that the local estimates only depend on the existence
of a lower bound, not on the size of it.

The local result is:

Let £ € Ry, d € CP(B(F/2)). Let furthermore Hy = (—ihV — A’)z — ph. Assume V satisfies:

Assumption 2.1 (See [Sob94][Assumption 1.1). ]

o V/ is a real-valued function such that the self-adjoint operator H = Hy + V' is well defined
on the domain D(H) = D(H,) and is semibounded from below;
o Ve C®(B(4E)).

Remark 2.2. The introduction of this kind of assumption in semi-classical problems is due to

Tvrii [Ivr98).
Let finally
B =2d-(—ihV — A) — ihdivd + hos(0y, a2 — Oy, a1).
Then we have:
Theorem 2.3. Let @ = (ay,a9,0). Suppose that
|02, V(@) " 4105,V ()] + [V(2)] 2 ene. > 0 (2.1)

for all x € B(2E). Suppose further that 0 < h < hg, u < C,h=¢ for some ( > 0 and that there
exists p € (0,1] such that > ¢,h=". Suppose finally that

0™ d(x)| + |07V (2)] < O
on B(8F). Then

tr[Bgo(P)] = 37Th22d /81,1@2 — Op,a1(x))

x ([zn,m +V(2))Y? = 3nph2nhy + V(2 )]1/2> dx

—|—O(h 1 _1—|-h 3 —2_|_h—1)7
where O is uniform in the constants {Cp},enc., ¢, Cuyp, C F

Remark 2.4. The theorem is still true without the "non-critical” condition (2.1). This will
be proved in Section 7.
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First we want to prove this in the case where ph > C where C is some sufficiently big
constant (i.e. p =1 and ¢, sufficiently big). This is mainly for pedagogical reasons. When ph
is big we only have to consider the lowest Landau level. This implies a greater simplicity in the
exposition. Since furthermore, the persistent current and the spin-current cancel on the lowest
Landau level, it becomes clear, why we have to make a somewhat finer analysis, than what is
needed to find the density and the energy.

Thus, we will first prove Theorem 2.5 below, then, in section 6, we will put in the few remaining
arguments to prove Theorem 2.3.

Theorem 2.5. Let @ = (ay,a9,0). Suppose that
100, V()" + 105,V (@) + [V(2)] > ene. > 0

for all x € B(2E). Suppose further that 0 < h < hg, p < C,h™¢ for some ¢ > 0 and that
ph > C. Suppose finally that

0" a(x)| + 10"V (z)| < Cn

on B(8F). Then there exists Cy such that if C > Cy we get
11
3r2h?

where O is uniform in the constants {Cp, },enc,Cu, ( E.

tr[Bgo(P)] (Ooyaz — Deyar)[V ()] 2de + O(h7),

Let us also state a version of 1.4 in the setup of the two theorems above:

Theorem 2.6. Let az € C5°(B(F)) and define d = (0,0,a3). Suppose V- € C*(R?) and that
there exists v > 0 such that iminfj, .. V(x) > . Suppose further that ph > ¢ >0 as h — co.
Then

fB(h, 1, @)90(P)] = O(h ™),
Finally a few words about the following sections. Section 3 below recalls the results from [Sob94]
that we will need in the rest of the paper. Sections 4 and 5 contain the proof of Theorem 2.5.
3. THE BIRKHOFF NORMAL FORM
Let W € C5°(R?), W(x) = V(z) on B(3E). We will perform some reductions on
Hy = (—ih0y, + pas)® — h*02, — h*92, — ph + W (x).

We will later in this section also have to use H from Assumption 2.1, which we will then write
as Hy. Outside this section H will always refer to Hy .

3.1. 1st Reduction.

Let
xTr) = 1 ei/a[(l’—y)f+£152]
(2of)(x) (2ra)? / fy)dydé.

Then it is easy to see that ®¢ is unitary and that
P Hyw Py = Opilh. — a,

where
he(2,6) = (& +a3) + & + W(ar — &, 02 — &, 23).

In general:
O 0pta®y = Opla, (3.1)

where a(z,€) = a(r1 — &, 22 — &1, 23, €).
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3.2. 2nd Reduction.

Using a sequence of canonical transformations Sobolev transforms h. to a form where the
variables (x4, &) almost separate. Then he constructs an almost unitary transformation which
realizes the canonical transformation x on the symbol level. The result is the Theorem 3.1
below ([Sob94][Thm 7.6]). Before we state it we need a bit more notation.

Let K, be the operator on L*(R):

(Kau)(t) = (=00 + 1*)u(t),
below K, will be acting in the x5 variable. We denote by u the three variables (w1, x3,&;), and
by v the remaining variables i.e. v = (22, &2, £3). We denote by 7y = 7ny(2, €, €) any function in
B>=(R2 x R? X [—eg, €0]), which satisfies
» < R
070720 7y (0, €, €)] < Cy(le] 4 0) VT half2imebs

Finally, we choose a C§°(R) function o(t), satisfying o(t) = 1 for |¢| < 1/4 and o(t) = 0 for
[t| > 1, for R > 0 we write og(t) = o(t/R).

Theorem 3.1. For any positive integers N, M, L there exists an operator T' = Ty p r(a,€)
satisfying the following properties:
(1) It is almost unitary:
T*(a,0T(aye) = I+0(ab),
T(a, )T (a,e) = I+ 0(a™).
(2) The representation

holds. Here
BO = Bo(Oé, 6)
N
— _042653 + (I @ K,) —I—GZoz
X Z " {Op® ml; ® Kl o(K,)},
0<m+l+j<M
Wil = a@DRE + 2 e,
with some Yél]), ml] € B>=(R?). In particular, the functions Y(l;,anl)] are defined in
[Sob94|[Theorem 7.4], and
1
Yw(ﬂ; = ZT(nl)] 0

for all m, 1,
The operator By = By(a,¢) in (3.2) has the form By = e¢By + o+t Bs. Here By = By(a,¢) =
OpY7ar41 and the operator Bs = Bs(a,€) can be represented for any integer Ny > 0 as

Ny

By(a,e) =€) a"Oplby, + O(a™H),
n=0
bgn € BOO(Ri X Rg X [—60,60]).
(3) Let k be the canonical transformation constructed in [Sob94][Thm 7.4]. Then for any symbol
v € B¥(R] x RY)
TOpEoT = O (o 1) + O() + O(?).
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(4) Let by, by € B (R} x R) be two symbols b; = i(x,§,¢),j = 1,2,¢ € [—eo, o], such that

dist{supp 11, supp o} > ¢ > 0,
when ¢q s small enough. Then for any Ny > 0

Op iy TOp“py = O(a™).
Remark 3.2. The idea of reducing our operator to this form is due to Ivrii (see [Ivr98]).

3.3. 3rd Reduction.

We define -

Uue) = 1, 2 ),
For any symbol a we then have

U;O0pyald, = Opya, (3.3)
where
CNL(J}, 5) = Cl(l‘l, 27 T3, 5_17 5—27 5_3)
N/ AR/
With the T" from Theorem 3.1 above we define
¢ =P, TU,,

and we get ([Sob94][Theorem 7.7]):
Theorem 3.3. Let R > 0 be an arbitrary number. Suppose p > R. Then
O"Hyd® =P =F+ P,

and for any g € C(R),
bg( i) = g(P) 1 Oa®),

Here
Py = Po(h,p) = =h*&2, 4+ pky, — ph + Wy n(h, ),
where
N
Wun(hop) = Y (h/p)"
n=0
<> RO () 4 p T ) @ Ko (uT R}
O<mtl+i<M
with

Pl (.6) = Yl E pT ) on(€d),
(.6 = 20 ) on(€l),
are from Theorem 3.1. In particular,
poon(E.€) = Wy, —p~ 61, 2a)on(&).
PO = (VW (e, 6, ) Pon(€),
P = T (e, 6 ) €D),

pé%)l(‘%v 5) = Q((J((JJEJ(‘%? 5) = 07

where Y 709

mly? “mly

and
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for all m,l,j. The operator Py = Py(h, ) above has the form Py(h,u) = Py + Py + O(a™ 1) +
O(al=1t). Here Py = Py(h, ) = Op¥py is an operator whose symbol py € B> (R2 x R}) satisfies
the bound

|al’a§p2(x7 57 a, 6)| < CMM_z(M-I—l)v

for x% + a3 —I_Nf% < C, and P = Ps(h,p) is an operator which can be presented in the form
|]23 |: (O}/?}LUQ“)P;),, where ||Ps|| < C and ¢ € B¥(R} x R}) is a function such that ((x,&) =0 for
3| < R/2.

3.4. Consequences.
Of course, this reduction is not worth anything if the operator P; is not "small” in some sense.
This is indeed the case. Sobolev proves the following consequences of the reduction:

Theorem 3.4. ([Sob94]|/Cor.8.5])
Let ® and Hw be as above and let g € C5°(R). Then

O g(Hw)® = g(Fo) + w(h, p),
where we have introduced the notation
why ) = O™ MY 4 (b fp)M* 4 (/)™= + 1)
for all Ny > 0.

Theorem 3.5. ([Sob94|[Theorem 10.2])
Let o € C&(B(E/2)) and g1 € C&(R). Suppose pp > py,h € (0,ho] and pp < ch™¢ for some
¢ > 1. Then there exists T > 0 such that for all |t| < T,

[ogr (Hy )/ — gy (Po)et/h0Wex ||, < Ch=20F0(h, ).

Here ©W s a pseudodifferential cut-off in the variables (xy,xs,&1,&) defined just before the
theorem.

Finally we notice [Sob94][(8.5)]
g(P)= > @gP) o),
0<k<C/(uh)

where I}, is the projection in L*(R,,) on the k-th eigenvalue of K. In particular we get when
ph — oco:

g(Py) = g(P") @ 1,

4. AN EQUIVALENT OPERATOR ON THE LOWEST LANDAU LEVEL

In this section we assume that pyh > €', where ' is some sufficiently big constant. This
assures that only the lowest Landau level plays a role. We find an equivalent operator on this
level which has much nicer a priori properties than B. This is the statement of Lemma 4.1
below. The whole section is devoted to the proof of this Lemma, which is the key to the

calculation of the current.
p_ Hy+V 0
o 0 Ho+V +2uh )7

Since
o gO(Ho + V) 0
90(P) = ( 0 go(Ho +V +2uh) )

we get:
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Now, Hy + V is assumed to be bounded below, thus Hy + V + 2uh > 0 when ph is sufficiently
big. Therefore,

t[Bgo(P)] = tr[B(y, h)gol H)] (4.1)

where B(u, h) = Opy'(2d(§ — %Y) + h(0p az — Opyaq), and H = Hy + V.
Let ¢» € C5°(R?),¢> = 1 on a neighborhood of supp @. We may choose it such that supp ¢ C
B(FE/2). Choose also f € C5°(R), f =1 on a neighborhood of 0.

Lemma 4.1. Suppose d@ = (ay,a2,0). Let

o) = (0. V(0) — VL f (6o 4 40 )
Then
e, g )] = sl ( O}l D]+ O(1/h).
Remark 4.2. The assumption as = 0 is very important for the Lemma.

Proof. We write
holz,6) = (& + 22)? + &4+ 6+ eV (z) — a.
Then OpYh, = M%H, and since go(ct) = go(t) for all ¢ > 0, we get
tr[B(p; h)go(H)] = tx[v B, h) [(Opgha) ¥ go(Opyha)] + O(h™), (4.2)
because f(Op“ha)go(Op“hs) = go(Op“h,) for p sufficiently big'. Since

B(/“Lv h) = M(OPZ(QJ : (51 + L2, 527 53)) + a(ax1a2 - ax2a1)>7

we have
B(p, h) f(Opiha) = pOpy (v0 + am + aya + a’ys) + O(pa®),
Here
Yo — 26 . (51 + Lo, 527 53)f(h0f + Oé), (43)
o= 2 6t 00 8,6) o [Vel@ (6 2 6,6)) - Valha)
Vi (6 72, 6,6)) - Velha)] ) [ (ha + ), (4.4)
V2 = (al’la2 - 81’2a1)f(h0é + Oé) (45)
and
3 o= @, ) f (he + ) +732(2, ) [ (ha + a), (4.6)

where v31,732 € C5°(R] x RE). Since |[sgo(H)|li = O((1t/h)*'?) (see [Sob94][Cor.2.14]), we
get:
tr[B(p, h)go(H)] = tr[ipOp (70 + av1 + a2 + a’ya)dogo( H)] + O(pa®?).  (4.7)
Let now g € C§°(R) such that
9(H)go(H) = go(H),
!The equation (4.2) seems very innocent, but a priori we will need global restrictions on V to prove it,

see [Fou98]. Tt is easy to extend the localisation argument in [Sob95] to the present situation though. This is
done in Appendix A.
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i.e. ¢ =1 on [inf SpecV,0]. Then

tr[pOpy (o + an + ayz 4+ a®v3)go( H)]
= tr[ppOp(yo + oyt + avy + o’ys)g(H )go(H )g(H )]
= ptrlg(H)YOpy (vo + oy + avy + o?53)vg(H)go(H ).
According to Theorem 3.5:

lg(H) = pDg(P)OW @™l < ch™ 2wk, po), (4.8)
and, when ph is sufficiently big:

g(Po) = g(P”) © T,

Thus
G[B(h )go(H)] = ptx|® (opw(“))g(zﬂé“)) © o) ®"Op2 (30 + amy + 4%z + a?95)®
< (g(P)OR(0%) Ty ) " go(H)] + O(pa®?). (4.9)
Now we can apply Cor. 4.10 below to conclude:
te[B(h, p)go( )] = %tr[cb (O (09)g(P) & 116 ) (O} (1) © Tho)
< (o P)0p (09 1) ()] + O(1 + =), (4,10
where
. 2 —& —& —& —& )
r(z = as(xy, —=, 3)0,, V(xy, ——, x3) — ay(x1, ——, x3)0,, V(x1, —, x3
(,6) (<M><M><M><M>

. s <§3 + V(l'l; 751?3))
[

Here the error term was estimated using the fact that

10py (0¥)) @ Lo||y = O(u/h*).

In the same way we can calculate:
[y (Opb)go(H)] = tr[ (H)@/)(Op;”b)@/)g(ﬂ) o H)]
@ (Opi (090)g( ) & TLo) @74:0pl ()10
< (g(POpi(09)) & 1, ) dgo(H),

using (4.8). We apply Lemma 4.4 and get:

%

e[ (Opb)dgo(H)] = tr[@ (Opz”w(“))g(Pé“)) © Mo ) (Op} (1) © o)
< (g(P)Opi(8%)) @ o) Ogol H)] + O(h™).
Comparing with (4.10) we get the lemma. O

Lemma 4.3. Let v € C3°(R] x RY), and let r be the canonical transformation constructed in
Theorem 3.1 then

I/(li(l',f)) = I/(l’,f) + ey + 0(62)7

. al’lj . —8514
Y= 651/ &UA )

where
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where A is given in (4.11) below*.
Proof. We have from [Sob94] [Equation (7.9)] that if (y,n) = k(x, &) then

y = w_ﬁzaﬁ o(x3+&)A (7@)"’0(62)7

n = £+eza 23+ ) Aj(2,6)) + O(¢).

where the A; are given in the deﬁmtlon of k. So
y = x—cdeA(x, )+ 0(e),
n o= &+ edAlr,€) + 0(e),
where

Alz,6) = o(E)o(a; +&) X
<§28 Wiy, z,23)|=—e, —I- W(l‘h —&1,23) + Z nk &) 2k é) .

2<l+n+k<2M+1

(4.11)
Here the ag’jk lie in B> and are part of the definition of £ [Sob96b][Thm. 7.4]. Thus the lemma
follows by taking a Taylor expansion to second order. O
Lemma 4.4. Let v € C3°(R} x R?), then
(1 @ 11o)®"Opz (1)@ (1 © o) = Opj:(e) © Iy + Opj(ex) © Iy + O(a®),
where
. 7 G &G 6y, h o 0 SRS ENRS
e(z,8) =v(xy, ——,x 0, =)+ —(0,, + 0, + 9, — 20,,0¢, ) (21, ——, x3,~—,0, =),
()(1M MM)4M( : 5)(1/«03/«0 M)
and where
L of 1 —& SIS —&1 SEE: >
€ xvf = 5 _al’ll/xv—v 0_ —|—821/:1;,—,:1;,—,0,—
1) [2< (1M Mu)g(lu?’u M)
xaxlvV(xl,_—&,xg)
[
1 4 & & 3, & €
289521/(1'1, [ » L3y 1 707 [ )aZW(thvx?)”Z:% U(Mg) + [ C:(l', M)v

where ( € C5°(R2 x Rz)

Proof. From (3.1) it follows that
®*Opyv® = U T"OpvTU,

where (x, &) = v(xg — &, 12 — &1, 25; ). Part (3) of Theorem 3.1 now tells us that:
T(0pyo)T = Op}y (7 0 &) + O(a?),

and from Lemma 4.3 we get

g

(5(,8)) = (2, &) + ein(w,§) + O(e?),

2Remember that W (z) = V(z) on B(3E), and that W € C§°.
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Because of (3.3) we therefore conclude that

P*Op“v® = Opy'v + cOp}'iy + O(a?),

where
% = v(x &:1; -t &
I/(l’,f) - (17\/ﬁ 3 1 glvﬂvﬂ 53)
% = (x 2 agy ! &
vi(z, &) = i 17\/ﬁ 3 1 flaﬂaﬂ £3).
So

(1 @ 1p)®*Opy (v)@(I @ Ily) = (Opy (€) + €Opj (€1)) @ Iy + O(a?),

where ¢, e have symbols

2 +
5 27Th // 7‘[0 1}2 et (ma—y2,62) ( £ Tg y27§2)7_[0(y2) diy dyy . (4‘12)

and

_a g +
i) = 2rh // Ho(ay)e ™ (27805 (i, i yzafz)}lo(yz) dxs dys dEs.

Let us first analyze e:
We can look upon the expression (4.12) as the expectation value of the operator OpYs(xq, &2)

in the state Ho. Here the symbol s depends on the parameters (z, é) in the sense that
8(1’2,52) = I;(l’,f).

Since 7 depends on (z4,&,) in the form (2%, <), we get from the laws for changing symbol

VBT B
types:

e(2.6) = (Ho,Oprosto) + h{Ho, OprosiHo) + O(a?)
= [1 —|— [2 —|— O(Oz2),
where

1
81(1},5) = Zaléa&lj'

Let us remember that

1 2
HO(:E) = p Trhe_l’ /(2}7‘)7
1 .
Ho(&) = m/e_”g/h%o(x)dx.

So if we look at

L = <7‘[0, Oph,05H0>7

L = 27Th///% e (2, Y Holy) da dy dE
- \/_wh / / e R TNt (1 €)emE R e

we get
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where A is the matrix:

From the theorem of stationary phase ([H90][Lemma 7.7.3]) we get:

<\/det “TA/( 2m)>_1z (h] , (A_11,)7D)]8|(0,0)7

— 2¢)7 7!

in the sense of an asymptotic series. We easily see that
1 o —1
-1+
AT = 2 ( -1 2 ) ’

(A™'D, D) = %[@A — 20,0,

and therefore

and

<\/det “TAJ( 2m)> = \2rh.
So we get:
I = (0,0 + %[@A — 20,0¢]5]00) + O(0?).
By the same method

[2 = <H07h0ph70517_[0>
= hSl(O, 0) ‘|‘ O(a2),

SO
h
I+ I, =s(0,0) + ZAS(O,O) + O(a?).
Thus
. . SIS N SIS 2
— Loy A 5L S8
e(z,§) (21,0, 23, . ,0, . )+ I (x2752)1/(:1;1,0,:1;3, . ,0, p )+ O(a)
G & &y e G & &
= v(xy, ——, 23, —,0,=) + —(0;, +0,, + 0, — 20,0, )v(x1, ——, 23, —,0,
(o1, =@ p 0 T ¢ kool = me n0))
+ O (113)
In the same way we get
(‘% é):I;($1707$37i—170,§ )—I_O( )

Here
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We can thus calculate:

I;l|x2:£2:0: _al’ll; Z 53651%0( 51) (532))

2<I<2M +1

1 .
_81’2D <§aZW(x1727x3)|Z=—51 + Z féa?:é(:z;,fﬁ) 0-(5%)

2<I41<2M +1

_al’sl; ( Z lgl 1a8 é( 751)0-(53) + 0-/(5%)253 Z féagzé(‘%v fl))

2<I<2M +1 2<I<2M +1

00 Y s ag(d,6)o(63)

2<I<2M +1

+0¢,v (%amw(xlv —&1,a3) + Z féﬁ:é(:f;,fﬁ) a(&3)

2<I41<2M +1

00 Y Onagy(d 6)Ea(£3)

2<I<2M +1

1
_ (§<a@ﬂ>amw<xhz,x3>—

‘|‘§3§(§jvé)7
where ( € Cg°(RZ x R}). Now v(z,§) = v(xy — &, 22 — &1, 73,§) so we get:

1
500010V (01,2 )]s ) o€

1 .
’71|x2=£2=0 = b( 8 (51?17 51751?375) + 652 (51?17 —51,:1;3,5))69511/1/(1;1, —51751?3)
1 .
_5(8 (wlv 517x37§))a W(x1727x3)|z_—51 (53) —I' §3C(‘%7§)
Finally, we get
P 1 —& £ —& £
ez, &) = —(=0pv(x1, ——, 23, — Oe,v(x1, ——, 23, =)0, W(x1, =&, 23
(8.8 = |5(-0r(er— ) e = ) W 6123
1 —& £ & &, ¢
—— 81,21/ T1, —, &3, — 8ZW T1,2,23)|,_-& |O\— —Glr, =),
5 Oeavten = S ez o) + 260, S

where ¢ € C§°(RZ x Rz)

Corollary 4.5. Suppose d = (ay, as,0). Then

h N
(1 )@ Opl(30)2(1 & Tho) = —Opi(d) © o + cOpids © Ty + 0(e?),

where
5 & & ) &+ Vi, - :1;3)
d: als2a1 X1, ——, T3 —axlaz X1, ——, T3 5
(Braanors =L aa) = Bugaaton, =L ) FE
and
B &) = (ol 0 e = )~ anfion, — )0, W, L))
§§—|—V(:1;1,—5 ) 53 A é
Xf( Mg ) g (l’, ;)
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Proof. From (4.3) we know that
Yo = 2(a1(& + xa) + a28s) f(ha + @),

SO
70(1'17 _5_17 T3, 5_17 07 5_3) = 07
p T
62170(x17 _5_17 L3, 5_17 07 5_3) = 07
p T
52 + V(x 7_5_171;
893270(1'17 _5_17 L3, 5_17 07 5_3) = 481,2611(1'1, _5_17 l’g)f( & ( 12 - 3))
p T M M
&
51 §§‘|‘V($17—_71’3) 51
—|—46a1($1,—g,$3)f/( e K )axQV(:I:h—E,:I??))a
852270(1;17 _5_17 L3, 5_17 07 5_3) = 07
p T
52 + V(l’l, _5_17 l’g)
—2895165270(:1;1,—%,:1;3,&—1,0, 5_3) = —48951612(1}1,—5—1,1‘3 - Mz - )
52 + Vix 7_5_17 T
—46@2(1’1,—5—1,1'3) 123 (/j? K 3))6951‘/(51?17—%751?3)-
Thus ;
- 52—|—V($1,—_1,$3)
d= (8902@1(:1;1,—%,:1:3)—8951@2(:1;1,—%,:1?3)) f( ’ Iu2 - )

We can also calculate:

— — &+ V(wy, —5, x3)
8x270(x1,i,x3,5—1,0,§_3) = 2a1(:1:1,i,:1:3)f( - 5 . )
o pl o o
— — &+ V(wy, —%, )
Orarofor —a 80,52 = 20y, =S (T
a96’1’)/0(1;17 _—517 L3 5_17 07 5_3) = 07
1 pl
so we get
Jl(‘%vé) = (aQ(xlv 1 7$3)a$1w(x17 5171,3) - Cll(l’l,—1,1’3)8952W($1,—,$3)>
§§+V(x17_£_7x3) S é
X ( 2 . ) + —C(l’, _)
1
0
Remark 4.6. Notice that if as had not been zero then ~o(x1, —%, T3, %, 0, %3) would not have
vanished.
Lemma 4.7. Let § € CSO(R;E), and let 5(“)(§;,§) = 5(:2', %,53), then
w s €\ 0mmin
Opj, (gf(l’a ;))Oph( ) =0(/n).

Proof. This is an easy consequence of the symbolic calculus and the compactness of the support

of 0. O
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Corollary 4.8. Let € C3(RY ), and let 0 (&,6) = 0(2, %, €5), then

(1 @ TLp)®"Op (11)®(Opy (0)) @ Tly) = O(e)
and
(1.® T1o)"OpY (73)®(Opy (0)) @ Tly) = OCe).
Proof. This follows easily from Lemma 4.4 because [/ = 0 on a neighborhood of 0, and therefore

§§‘|‘V=’1/’17—£_17$3
A (2 s ))

1

0

on the support of 8 for w sufficiently big. Same argument works for f”. U
Corollary 4.9.

(1@ o)™ Op (72)@(1 @ o) = Opj (dz) @ Tlo + O(e),
where

. £ £ §§+V(x17_%7x3)

d2(§;7é) = <8x1a2(x17 _ivx?)) - a96’2a1(xl7 _i7x3)> f( M2 )

To summarize the content of the above we have:
Corollary 4.10.

(I @)D" OpY (70 + am + avy + ay3)@(Opy 0™ @ T, )
= ¢(Opy (rOpy (0“)) @ o + O(a® + ¢/p),

~ 2 _51 _51 _51 _51 >
rex = a1y —, T3 &UlW X1, —,T3) — A1\ X1, —, T3 8952W X1, — T3
08 = (o =)0 W =) = oo ) W o1 )

fg + V(xlv —%71}3))
2 .

1

< f(

5. CALCULATION OF THE CURRENT

With the reduced operator it is rather easy to calculate the current:

Choose f1, f» € C§°(R) such that:

o (JI(H)+ f3(H))go(H) = go(H).

e |0, V()] 4+ |0,V (2)]> +|V(2) = A > ¢> 0 for all (z,)\) € B(2E) x supp fa.
Then

e[ (Opy ) go(H)] = te[(Opb) fi(H)go(H)]
+te[(Opy )y f5 (H)go(H)J.
The first part, tr[er(Op“d) fE(H)go(H)], will be calculated directly in Thm 5.1 below. To
handle the second term, tr[¢)(Opb)i f3( H)go( H)], we need a Tauberian argument. The theo-

rems 5.2 and 5.4 will carry this through. From the Theorems 5.1, 5.2 and 5.4 together we get
Theorem 2.5 by a simple integration by parts.
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Theorem 5.1.

%tr[;/;(Op;Ubef(H)gO(H)] =

MIT;LQ// (aa(r1, =1, w3) 00, V(w1, =1, w3) — ax(we, =1, 23) 0,V (w1, =1, 73))
X fUE + Ve, =&, 7a))did + O(h™).
Proof. f2(H)go(H) = f2(H) and we get:
“nl(Opbe D] =l fi(H) (0P (1)
- ;tr ((Om09) L (PYOR (1) (P (Op10)  Tho ) 7]
+O(h™h)

- %n[(()ph 9121, (PO)Opy () f ()] + O(h ™)

1 £ N
- (27h)? // r(2, ul) fi (& + V(wy, —&1,23))didé + O(h™Y),

where we used [Sob94][Lemma 9.2] to get the last equality. O

We need to make a standard "smoothing out”: Let x € Cg°(=T,T) for a "sufficiently small
T satisfy

A1) = x(=1),
X(t) =1/V2m,
o v > 0.
Then we define
X(7) = # € x(t)e'dt.

We assume that y > 0, this is possible since we could have replaced y by y * y. Finally, we
define

and

Now we can state:

Theorem 5.2.
[ (Opb)y f2(H)go(H)] = tr[(Opb)i [3(H ) gy (H)] + O(u/h).
We will need the following lemma:
Lemma 5.3. Jde > 0 such that
l90(7) = go(r — p)| < cha(r),
for all |p| < he. Here ¢ is a constant independent of h and 7.

3See [Sob94][Sec.4] for a more precise statement.
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Proof. Choose 2¢ such that yi(7) > é > 0 for |7| < 2¢. Then, for |7| < 2¢h and |p| < he we
have

6(7) — 90(r = p)| < Txa(7/h) = xa(r),

and for |7| > 2¢h and |p| < he we have

190(T) — go(T — p)| = 0.

Now we can prove Theorem 5.2.

Proof. In this proof (and only here) we will use the notation: [¢] = the integral part of x
= inf{n € Z|n < z}. By cyclicity of trace it is enough to prove

109 ) S 1) (90 H) = o (H)) o(H) ]l = O(u/f ),
Because ||Op®(b)|| = O(1) it is thus enough to prove
e fo ) (g0(H) = o8 (H)) L)l = Oy /).
We now estimate using the lemma above:
o o H)
= |l sa(H)

TN

gol H) — g (H)) fo H)l

Xn(p) (go(H) — go(H — p)) dpf2(H )Y ||y

5 Xu(p) (go(H) = go(H — p)) dpf2(H)lly + O(h™)

< / b (& (i) (g0(H — p) — go(H)) fa H )0 dp

= H@/’fz(H)

T T

¥ / (L) 9o H) = ol = ) L(H)) dp -+ O1)

[ atonr (e (

<R )dp + O(h)
< & [+ 1do+ o)
= Olp/h),

where we used

=

[7e)

z

IA

=0

chxn(H — sign(p)jhe) + chxn(H + [p| — Sign(p)[}i]hé))

[ f2(H)xn(H = 7)lls = O(p/h*)
in the end. That inequality comes from [Sob94][Theorem 10.4]. O



SEMICLASSICS OF THE QUANTUM CURRENT IN A STRONG CONSTANT MAGNETIC FIELD.

Theorem 5.4. Suppose that (2.1) is satisfied. Then

%trwwpzb)w%w)gé“(ﬂ )]

1
= —47T2h2 /( ($17 5171’3)8951‘/(1’1, 5171'3) — a1($1,—§17$3)ax2‘/(x17—§17x3)>

X(f190)(3 + Vw1, —&1, 23))ddE + O(h™).

Proof.

%trwopzb)w%(ﬂ)gé“<H>] - % / gol(m) el (Opb)o S2(H o (H — 7)]dr

\/ﬁuh //90 P(Opb)Y f3(H)e "= d dr
//90 m/htr[fz( )¢(Op$b)¢f2(H)€_itH/h]dtdT,

Y, 27TMh

21

Notice, that since y; is a Schwarz function, we can replace go by li_g, 0. This will only
introduce an error of order O(h™), and makes the integral absolutely convergent. Now we

apply Theorem 3.5:
[ fo(H e~ ™17 — @ fo(Py)e /M@ & ||, < ch?H+Dw(h, ).

Since ®*® ~ [ and ph is large, we thus get:

itrwwpsb)w%w)gé“<H>J

1 1
= ul(Op0U) () (Opr) (B0 (P™)] + OC ),
and we conclude using [Sob94]|[Lemma 9.3].

Now we can prove Theorem 2.5:

Proof. From the Theorems 5.1, 5.2 and 5.4 together we get

e f (Opb)gol H)) =

1
=3
Am2h?

% go(€2 + V (w1, —&1, w5))didE + O(h™).

Clz(l'l, _517 xB)axl V(l’l, _517 1’3) - al(xh _517 1’3)8952‘/(1'1, _517 1’3))
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Now we calculate:

=l
4m2h2

X (&2 + V (21, —&1, x3))didE
7 | v
= — az(2)0;, V(x) —ar(x)0,,V(x)|2 z)dx
Am2h? ng}z() () —al }

a?(xlv _517 1}3)6951‘/(1'1, _517 1’3) - al(xlv _517 1’3)8952‘/(1'1, _517 1’3))

—1 2 2
= 5252 300, (V =V (@) = a1500, (V= V(2))*d
i [y 30T = 0030, (T s
)
S Opy a3 — Opya —V(z))’dz.
372h2 {V(x)go}( 2 1)( ( ))
This finishes the proof of Theorem 2.5. 0

6. THE CURRENT FOR BOUNDED ph.

In the case where ph < C', > ch™ for a p € (0,1] we can use the same type of analysis as
in the case of the very strong magnetic field.

6.1. Projection on the Landau Levels.

Lemma 6.1. Let v € C3°(R) x R}) and let K > 0. Then

sup |[(1 @ 1)@ Op2 ()& (1 @ 1) — Opp (™) @ Ty + cOp (V) @ || = O(? + a?)

kikph<K

where
eld) i’,é = 1/:1;,—5—1, & 05—3
(2,¢) (1 Rk M)
(2k + DA, o 2 2 &1 & &
—I_iax —I-aw2—|-a2—28$1821/$,——,$, 707_7
S, L= 200 et~ S0, %)
and where
- 1 —& ¢ & —¢
e(lk)(x7§) = [5 <_81’1V(x17 7171;37 ;) + 8521/(1'1, 7171;37 ;)) 8x1W(:1:1, 7171;3)
1 — ¢ 2 ¢
50—, S0 (a1, 2, 51]a<—f;>+i—3<<x,§>,

where ¢ € C§°(R2 x Rz)
Proof. As in the proof of Lemma 4.4 we get:
P*Op“v® = Opy'v + cOpyvy + O(a® + €%,

with notation as in that lemma. We now appeal to [Sob94][Lemma A.1] (stated below as
Lemma 6.2) to conclude that

(1 @ 1) ®*Opy ()@ (1 @ 1) = (Op; (o) + Opy (1,4)) @ Ly, + O(¢* + ),
where

2k + 1)h 2k + 1)h
va&flv u

VOk( 5) = Vsy (1'17 ZM ZM

753)7
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and
2k + 1H)h 2k + 1)h
ST )

2/1 2/1 9 53)7

7] k( é) I;l,sym(xlv

By a Taylor expansion of vy we get
S 2k +1
VO,k(x 5) (1'1,0 1}3,51,0 53) %

where the error was estimated using O(k?h*/u?) = O(R*). If we compare this with eq.(4.13)
k)

(8932 T2 + 852 52) (1’1, 0 » L35 517 0 53) + O(h4)

we see that the expression for e®) above is correct.

A Taylor expansion of vy j to first order and comparison with the proof of Lemma 4.4 finishes
the proof. O

We used the following lemma:

Lemma 6.2. Let v € B(R} x R), 6 € (0,1) and define

V@, &) = vy, g, 25, 61,66, 62)
Then the following bound holds:

sup ||(1 @ 1x)Opy (V) (I @ 1) — Opy (ve)(1 @ 11)|| = O(8® + h*),

k:hk<C32
o2 12k 41 12k 41
I/k(l',f) = Vsym((xlv T(Sv 1}3,51, T(Sv 53)

Here we used the notation:
1
asym(xvg) = Z(a(xlvx%xi%flvg?v&%) + Cl(l‘l, —1}2,1’3,51,52,53)

‘|’a($17 T2, 23, 517 _527 53) + Cl(l'l, —Z2, T3, 517 _527 53)) .

where

We get the following corollary (compare with Cor. 4.5).
Corollary 6.3. Suppose @ = (a1, as,0). Then

h N .
(1 @ x)®*OpY (v0)®(1 @ IT;) = ;<2k + 1)Opy (d) @ g + Opjdy + O(¢* + o),

where
- & & ) & + V(e =2 a5
d = als2a1 X1, ——, T3 —al,laz X1, ——, T3 5
(Pesanor =) = st =L ) (P
and
Qi) = (( % )00 W (a1, % vs) — ar(en, % e0)Oh W (a1, % x3>>
&+ Vi, =%, a3) L& €
< f( 2 )+ C(x M)

And we can conclude the projection by statmg:

Corollary 6.4. Suppose d = (ay, az,0), then we get the following estimate uniformly in k where
kph < K.

(1 @ T0,)®*0p” (o + a1 + aya + a’y3)(0pr 0™ @ 11,
h 3
_ ((;%opg(d) T eopz%r)) Op (01 >) ST + 0(a + c/p),
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where d was defined above, and where
T(i’,é) = <a2(x17_7§17x3)al’1w(x17

§—|-V=’1?17_£_1751?3
W EARL L)

1

6.2. Calculation of the Current for the Spin-down Part.
With the notation from Lemma 4.1 and section 5 we have:

tr[B(u, h)go(H)] = ptr[Opy(vo + a(y +72) + oya)0 fH(H)] +
e[ OpY (7o + aly1 + 72) + o® )¢ f3(H ) go(H)] + O(ua™?).

We now analyze each term separately.

_7&7 1’3) - al(xlv _7&7 xS)aach(xlv _7&7 1'3))

Theorem 6.5. Suppose d@ = (ay,as,0) then
Mtr[@/}Opa (’Yo + oy +92) + o) v fi(H)]

B // ph2k[0p,a1(x) — Oy az(2)] + [az(2)0p, W(x) — Gl(l')axzw(f)])

0<k<c/ 1h)
X L& + 2kuh + W (2))dedés + O(h™ ™ + h=2u™?).
Proof. We can calculate:
ptr[Opl (o + alyi +72) + a3 )¢ i (H)]
~ [ fi(H)YOpY (yo + a(yi +72) + a?3s)¢ fi(H)]
~  ptr[®OW fi(H)® 4 OpY (7o ‘|‘ a(y1 +72) 4 a®y3)y @ f1(H)OH 7]
~ o Y u0proW (PR 0P (0 + ol + 72) + a?ys)@ fi () Opi 0]

0<k<e/ (uh)

= Y w{Opre () (gzkopwmeopz(m) & 11( P Op 0]

0<k<c/(uh)
Jr()(/ut/lih(a2 +e/wn/h?)

We used that Pék) > 2kuh — c. The error can be written as O(h™ ! + h™2u™?), so with the
definitions of r and d we get from [Sob94][Lemma 9.2]

MterPa (0 + a(y1 +72) + )¢ [T (H))
= U 2h2 // ( 2]{ amcm ) — &Ulag(:z;)] + G[GQ(Ji)ale(x) — a1($)8x2W($)]>

O<k<c/ wh)

< f1 (&5 + 2kph + W (w))dedés + O(h™ ™" + h72p 7).

Theorem 6.6.

e[ OpE (0 + a1 +32) + @*30) [3(H) (g0 (H) = g3 (H))] = O(h™" + p).

Proof. We cannot use the argument from Theorem 5.2 right away, since || OpY(yo + o(y1 +
¥2) + a*v3)|| = O(1), and using this estimate would lead to a too big error. Therefore we have
to try to improve the estimate:

Let
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o fE CP(R), fNE 1 on supp f.
e b€ C°(R?), ¢ =1 on supp v.

Then we have from [Sob94][Cor.2.14] that |[¢ f(H)(1 — )|y = O(h*). Thus we get:
Y0Py (0 + el +72) + a*1a)0 S (90 H) — 68 (1)
te[f(H

]
(H)$OpY (o + a(1 +72) + a*3)0 F(H )0 fo( H) (go( H) — g (H)) f2(H )@/3]
T f2(H ) (go (H) = g6 (H)) fo(H)

putr|
putr|
< Hf( JWOps (Yo + a(y1 +72) + ?y3)0 f

I

The trace norm was estimated as O(u/h) in the proof of Theorem 5.2, so let us look at the
operator norm. Splitting into Landau levels as in the proof of the last theorem we get:

I F(H)YOPY (o + a1 +72) + ays)¢ f(H)]]
. h . .
> (Opzue e (ﬁ%opz”(d) + eopz%r)) <I>f(Pék))Op};“9(“)> © Tl

0<k<e/ (uh)

= O(h/p+p™?).

I

This finishes the proof. O

Theorem 6.7. Assume d = (ay,as,0) and that (2.1) is satisfied, then

mrwopmo +a(n +72) + o®) v f2(H) g ()]
- =l (Mth [Drscs () — Doy ax()] + (), W () — a1<x>amw<x>])
0<k<c/ 1h)

< (f390)(& + 2kph + W(x))drdés + O(h™ ™ + h™%u™?).

Proof. We calculate as usual:

M“Wpa Yo+l +32) + a®3)e f3(H) gy ()]
= \/_h // Go(T)X(Te M fo(H ) OpY (o 4+ a(y1 + v2) + a?eys ) fo( H)e /") dt dr

I

h .
S wf(Opr (0@ (P (;%Opz”d + eopz”r> F(PIY G (P

O<k<c/(p,h)

. i [ (Bknn(o) = )] -l W) = a1 0]

O<k<c/ wh)

X(f390)(€3 + 2kph + W (x))dedés + O™ u™" 4+ h7%u72).

I
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We can thus conclude that for uh < €',y > ¢h™" and the noncritical condition (2.1) satisfied,
we get up to an error of order O(h™'p™ + h™2u™2 + L1 + p):

B, h)g <H>
- =l (Mth [Dhsar() — Doy a()] + az() 0, W () — a1<x>ax2w<x>])

O<k<c/ wh)

% go(&5 + 2kph + W (x))dudés

1
= Z 1 (/ (th2k[0y, ay () — Oy, an(2)]24/[V () + 2uhk]_dx

0<k<e/ (uh)

‘|‘/[a2($)axlw($) — ay(2) 0, W(2)]2V/[V () + 2uhk]_dz )

= Z MlThz (/ phAk[ Dy, a1 () — Oy as()]/[V () + 2uhk] _dz

0<k<e/ (uh)

4

3 / (Oyaa(2) — Dy (2)][V () + auhkﬁ”dx) (6.1)

6.3. The Spin-up Part. Remember from (1.4) and (4) that the current is given by:

/j-(id:p = tr[<—2

+ u{(-za- (—ihV — A) + ihdivd — h(ds,az — 61,2@1)) go(Ho + V).

(—ihV — A) + ihdiva + h(Dy,as — 61,2@1)) go(Ho + V + 2uh)]

ST

When g is finite we cannot disregard the first term. Having calculated the spin-down part of
the current it is easy to treat the spin-up part though: Define V' =V + 2uh. Then we get

—tr[<—2c_i- (—ihV — A) + ihdivd + h(Ds,as — 61,2@1)) go(Ho + V + puh)]
= te[B(p, h)go(Ho + V — ph)),

where
B(Mvh) = MOP;LU/M(Z&) ) (51 + 1}2752753) - h//“‘(alla? - 81’2a1))‘

It is easy to see that this change of sign on (9,,a2 — 0y,a1) (compare with (4.1)) only has as
consequence that the factor k on the first term in (6.1) should be changed to (k+1). Therefore
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we get:
te[B(p, h)go( Ho + V — ph)]

S ﬁ(/ Gk 4 1)(Orr () — Orss(e)) V() 1 2]

0<k<e/ (uh)

—I-g /(&claz(:ﬁ) — aanl(:z:))[\N/(:z;) T Zth]i/de> O b )

= Z 47rlTh2 (/ phAk(Oyya1(x) = Or,an(w))V/ [V (2) + 2uhk]_da

1<k<e/ (uh)

4
#3 [ Ouae) = eV () + 2uhkﬁ”dw> LU 4 b,
Adding this to (6.1) we get the theorem 2.3.

7. MULTISCALING: THE NON-CRITICAL CONDITION

In this section we will prove that Theorem 2.3 holds without the non-critical condition (2.1):

Theorem 7.1. Let @ = (a1, az,0). Suppose that 0 < h < hg, u < C,h™¢ for some ¢ > 0 and
that there exists 3 € (0,1] such that > czh=". Suppose finally that

0™ d(x)| + |07V (2)] < O
on B(8F). Then

tr[Bgo(P)] = :mzz /amaz — Oppai(z))

X ([Zn/,ch + V(:Jc)]?i/2 3nph2nhp + V(x )]1/2> dx

—I—O(h_l/,c_l _I_ h—SM—Q _I_ h—l)7
where O is uniform in the constants {Cp,},c5,Cy, 3,(, E

To prove this we will need the following version of Theorem 2.3, where the non-criticality
assumption has been slightly modified:

Lemma 7.2 (Reference Problem 1). Let @ = (aq,a4,0). Suppose that
IVV (@) + [V(2)] > enc. > 0 (7.1)

for all x € B(2E). Suppose further that 0 < h < hg, u < C,h=¢ for some ( > 0 and that there
exists 3 € (0,1] such that u > csh™". Suppose finally that

|0™d(x)| + |07V (2)] < O
on B(8F). Then

UIB(h, 1, @)go(P)] = Wzd JICREC R NAE)

x ([zn,m +V(2))Y? = 3nph2nhy + V(x )]1/2> dx

—|—O(h 1 _1—|-h 3 —2_|_h—1)7
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where O is uniform in the constants {Cp},enc.,cs,Cuy B,C E.
The proof follows essentially by a change of gauge:
Proof. Write P = P(A), V). Let U; be the unitary gauge transformation given by:

(UL f)(x) = ezl fe),
and let U; be the unitary change of variables:

(U f)(x) = f(wa, —21, 23).

Notice the following relations:

(U3 N)(x) = fl=w2,21,23)

UsNvU, = Oy,

Oz
Uvu, = V
where ‘N/(l') = V(—x3,21,23). Then:

w

Y

0
UsUrP(AVIUWU, = UP(A4pu| = |, V)0,
0

= U (—h28£1 + (=thdy, — pzy)? — h28£3 — phos + V(:L')) U,
= —h*(—=0p,)* + (—ih0,, + pxq)* — h28£3 — phos + ‘N/(l')

= P(4,V).
Similarly
. 0
UsUra - (—ihV — A)\U Uy, = Ujda- (—thV —p | xp |)Uz
0
—0,,
= UsaUy- | —ith | Oy + pas

O,

= G- (—ihV — A),

az(—$2,$1,$3)
where a(z) = | —ai(—z2,21,23) |.
a3(—:1;2,:1;1,:1;3)
Let us finally notice that:

U;(@xlag — 8952@1)(]2 = 81,1&2 — 81,2&1.

Now we are ready to prove Lemma 7.2:
Choose a partition of unity {¢;} on B(FE) such that supp¢;, C B(x;, £;/2) and that on
B(z;,8F;) we have either

|00, V()]” 4 100, V(@) " + [V(2)] 2 en.c. /4, (7.2)

|00,V (@)* + 102,V (2)]” + V()] = enc./A. (7.3)
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This can obviously be done uniformly in ¢y and the C,’s. Now we write: J(h,pu,d, V) =
tr[B(h, u, d, V)go(P)], and notice that

j(hv Hy 67 V) = Z j(hv Hy quc_iv V)
J
Likewise, we write:

. 2
Al V) = 253 do [(0as(e) = o)
n=0

X ([Zn/,ch + V(:Jc)]:i/2 — 3nph2nhp + V(:L')]l_/2> dz,

and notice the same linearity:

Alh, @ V) =" Alh, i, 66, V).
J

Now, if (7.2) is satisfied on supp ¢; we can use Theorem 2.3 to estimate:
|j(h7/~57 quc_iv V) - A(hvﬂv quc_iv V)| < O(h_lﬂ_l + h_SM_z + h_l)‘

On the other hand, if (7.3) is satisfied on supp ¢; we conjugate by (U;Us;), and find ourselves,
once again, in a situation where Theorem 2.3 is applicable: The above calculation shows that

j(hv Hy quc_iv V) = j(hv Hy quc_iv ‘N/)v
and we see that . .
|00, VI + 102,V + [V(2)] = enc. /4

on B(x;,8FE;). Thus we can apply Theorem 2.3. If we finally notice that

Alh, 1, @, V) = A(h, i, a, V),
we can put the pieces together and obtain Lemma 7.2. O
Remark 7.3. Note that the lemma remains true if (7.1) is replaced by:

0.V +|V(z)|+h>c>0. (7.4)
This is the condition that we will use in the following.

Having cast the reference problem in this form we are facing very much the same problem as
treated in [Sob95][section 5,6]. Our treatment will also be very similar.

Proof. We choose
flo) = 1) = A7 V() + (@,V) + 01
where A is a sufficiently big constant to be determined below. Then
[(@),l(z) >0,
Q@) <p < 1 (7.5)
f(z)
I(y)
if A is sufficiently big. Furthermore, there exist constants ¢,, independent of A, such that
0°V(@)] < eaf (@) l(z) 7"
a0 < cal(e)

on B(8). Now, if we choose a sequence of points {x;} such that

¢<

<
< ¢ VYzeB(8)NByly)),
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° B(l) C UkB(l’k,l(l'k)) = UkBk,

° UkB(xk,8l($k)) C B(8),

e the intersection of more than N = N(p) balls is empty (this is possible due to p < 1 in
(7.5), see [Sob95], [HI0]),

and a corresponding partition of unity:
o Yy € C57(By),
o |0, p(2)| < cal;M, where l, = [(xy),
e > Y =1on B(1),
then
T (hy iy @, V) = T (hopi, Y e, V) =Y T (hy e, V).
k

k
Since also the asymptotic term satisfies

A(h,/,L,C_i, V) = A(hvﬂvz¢k67 V) = ZA(hv/lqubk&)v V)7
k k
we can write
j(h,/,L,C_l), V) - A(h,/,L,C_i, V) = Z (j(hvﬂqubkav V) - A(hv/lqubkc_iv V)) .
k

Now by scaling, dilatation and a gauge-transformation in the J-term:

— — h l ~ o} h l N A
ﬂm%mmw—Awwvawﬁﬂj< B V) = Al B V)
Tl fr Teli” fr
where ag(x) = (¢Ypd)(lpx + 1) and V(:L') = fk_QV(lk:L' + 1) (see [Sob95]). We want to apply the
reference problem to j(f ) % g, V), so we have to check that this is allowed. Let us notice

that by continuity of V/; f,l are bounded on B(8). Therefore it is easy to see that
|0%a(x)] < C,

0°V ()] < Ca,
where the C,’s are independent of k. Let us check the non-critical condition (7.4):

. . h a,.V)(l 24+ V(I h
L fr Ir
< cA* f(lpx + )
- i
>
for x € B(1). We also have to check that % is bounded above, and that y = “lk > cu(fkhlk)_ﬁ.

This is easily seen to be the case.
Now, since we can use the reference problem, we get:

Sl o | RGOS fm>

hy 1,0k @, V) — A(h, e, V)| <
T (hnotud.V) = Al V)| < Cp (BI LT L I

el fx 21 R fklk> _3
= C/ <———|- + [ °dx
ka’“ hoply B3 22T R ) K

1 l(z)* 1
< ~)d
- C/ (hu+hu +h> -

where we used that f(z) = {(x) in the last inequality.
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Thus,

T (b1, @ V) — Alh, 1,3, V)| < CN/ L e 1y,
7/’L7a7 7/’L7a7 — 14 B(S) h/,L h3/,L2 h T

1 1 1
< — =P
_C<hﬂ—|—h3u—|—h>

&. THE CURRENT PARALLEL TO THE MAGNETIC FIELD

In this section we prove Theorem 2.6. We will first prove that the current parallel to the
magnetic field is constant in the zs-variable. This allows us to move the test-function as out
where the potential is positive, and here the current vanishes to all orders in h.

Lemma 8.1. Suppose

/ G3($17$27$3) drs =0,

o0

for all (x1,23). Then
B (s 1 (0,0,05)gu(P)] = O(h™).

Proof. Define d@ = (ay, as,0) € C5°(R?) as
al(x) = _/ 81’1a3(x17x27y) dy

az(l’) = — ax2a3(x17x27y) dy

— 00

Then V x @ =V x (0,0, as3) and therefore we get by the result from Appendix D that:

tI’[B(h, Ky (07 07 a3))90(P)] = tr[B(hv Ky J)QO(P)]

Theorem 2.5 now gives the conclusion of the lemma. O

Let now asr(x) = as(a1, x2, 25 — T'). The lemma above then says that

tr[B(h, 1, (0,0, as))go(P)] = tx[B(h, 1, (0,0, a3,7))go(P)]

locally uniformly in 7.
Let T € R be so big that V' > ~/2 on B(4F) + Tés. The next lemma proves that then
tr[B(h, i, (0,0, a37))g90(P)] = O(h*™), which finishes the proof of the theorem.

Lemma 8.2. Suppose @ € C5°(B(FE)), that V- >~ > 0 on B(4F) and that the hypothesis of
Theorem 2.5 are fullfilled, then

tI’[B(h, Hy J)QO(P)] = O(hoo)

Proof. Choose V satifying
o V=V on B(4E).

o V(x) >~ forall .
o V—veCRY).
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Choose furthermore f € C5°(R), with sup(supp f) < v/2 such that f(P)go(P) = go(P). Let P
denote the Pauli-operator with V' exchanged with V. Then we get:

afB (o, @ul P = [6B(h, 1 @)/ (Pgo(P)]
< 1B, 0,0 (P)]l
= IB(h, @) f(B)] +O(h)
= O(h™).

The last equality is due to the fact that P > ~ and therefore f(f’) = 0. The next to last
equality is a consequence of localisation, see for example [Sob94][Thm 2.13]. O

9. MULTISCALING

In this section we finally want to prove the following more precise version of Theorem 1.2:

Theorem 9.1. Suppose
V(z) == +o(lz[™) (9-1)

as  — 0, and
07V (@) < Cpny || 71717, (9-2)

Vr € B(8).
Suppose furthermore that 3C = C(h,u) such that

P(h,u,V)> —C.

Suppose

e dc,1 > 0 such that ph > ¢,q,
o Jc,2 > 0 such that puh® < ¢,

Let finally @ = (ay,as2,0) € CF(B(1)) satisfy
|0™d| < Cpa,
then for all v > 0

o0

GBa(P)] = 5> d [(Bhaate) - ()

=0

X ([Zn/,ch + V(:Jz:)]?i/2 — 3nph2nhp + V(:L')]l_/2> dx

1
-1
+O(h™ + m),

where O is uniform in the constants {Cp v}, {Cnz}, cu1,cuz.

Remark 9.2. The constants {Cy, 2}, ¢u1,¢u2 do not depend on d@, p. The index is only there
to distinguish them from each other and the other constants in the theorem.

Remark 9.3. The asymptotics does not depend on the lower bound —C' of P.

For the parallel current the corresponding result is
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Theorem 9.4. Let the assumptions be as in Thm 9.1, but with @ = (ay,as,as). Assume that
V() > ey >0, for 1 < |a| <3, and that the spectrum of P below 0 is discrete, then for all
v >0

) B _ 1
1 (i@, V) = Ah 0, V)| = O™ + 7).

where O is uniform in the constants {Cp v}, {Cn.a},cutscuz,cv.

We are going to perform a so-called multiscale analysis invented by Ivrii et al.([Ivr98], [[S93],
see also [Sob94]) Since our problem is very similar to the problem analyzed in [Sob96b] our
choices of scaling functions will be the same.

We will divide space into several regions and obtain asymptotic extimates in each of them.
This is due to the fact that as far as magnetic effects are concerned there is an enormous differ-
ence between the vicinity of the singularity and the rest of the space. Close to the singularity
V' is much bigger than ph and therefore magnetic effects are neglectable. In this region the
analysis performed in [Fou98] is applicable. Further out, ph and V become comparable and we
see a current.

Let us write d = \1d + \2d = @1 + da, where yi(z) = x(x/r?) and ya = 1 — x; (here and in
what follows y will denote a standard smooth cut-off function around 0). The exact choice of
r will be made in the end of this section, here we will just remark that we impose:

r? < (9.3)

1
ph’

which, in a sense, is the condition that, on the support of yi, the electric potential dominates.

9.1. The Inner Region {|z| < r?}.

In the innermost region, we do not see a current. This will be the result of Cor. 9.7 below.

We have to evaluate the trace tr[B(h, i, @1)go(P)], with @, supported on a region of radius .

This we can write as
S w (e X > 0, T
B(h, 1) = Opy (2a(55) - (€ = pA)) + h/r2b( )0,
where @ and b =V x @ are now supported on a region of radius 1.

Lemma 9.5. We have

3 6 3
> -1, BT roHr r
tr[B(h, 1, d1)go(P)] = O(h™ + e + 2 + el + ﬁ)

Lemma 9.5 follows upon collecting the results of the Lemmas 9.9, 9.11 and 9.12 below.
Let us look at the asymptotic term:

Lemma 9.6.
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Proof. We write dy(x) = a(%), and V(x) = 2") Then we can calculate:

||

LT 2 1, . .z
Alha V) = 220 S [ (00 - i)
n=0

X ([Zn/,ch + V(:Jz:)]?i/2 — 3nph2nhp + V(:L')]l_/2> dx

= 37Th22dr /ax1a2 y) — O, a1(y))

O(r? O(r?
x| [2nph + (ry )]3/2 — 3nph2nhp + | (27“ y)]l_/2 dy
r2ly] r2ly|

= 37Th2 Z / al’la2 al’2a1(y))

2y 2
([Zn/,chr + (I)(| | )]3/2 3nuhr? 2nhur? + (I)(| | )]1_/2> dy
Y Y

Now we use Prop. C.1 to conclude:

A(hvﬂva(;_z)7 V) = 0 (% / |0y Gy — Ory 0 |(y) ((hur2)3/z + \/h/lr?| + hpur® m) dy)
= O<h2 \/ h/ﬂ“ )
since hur? < 1. -

From Lemma 9.5 and Lemma 9.6 we get, upon noticing that ur? < h™' and r* <r:

Corollary 9.7.

— — r /,LT
|j(h,/,c,a1,V)—A(h,/,c,al,\/)| :O( —I_ﬁ—l_ﬁ)

Remark 9.8. Notice that we prove that |7 — A| is small by proving that both |7] and |A|
are small.

To prove Lemma 9.5 let us first look at the part of the trace involving b, i.e. the spin current:

Lemma 9.9.

lh /r2b( )00 (P)] = 00 4 £ 4 1)

Proof. If we write V(z) = @'g) and make the change of variables y = x/r* we get, on the spin
down subspace,

e [ (=it fr¥ = s A)? = = L2 |

|y

and correspondingly on the spin up subspace. Let us first concentrate on the spin-down case.
Since (ur®)h/r = phr* < 1 by (9.3), this trace is of the type analyzed in [Sob96a] (It is his case
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number 5). Therefore we get:

e (T =)

2 3/2
= el [ ot |t = EEL] 00004 %),

where the constant ¢ is explicit. If we analyze the spin-up part in the same way, we get:

tr[h/r?b(z/r*) o390 (P)]

o o (e 2 2521

1—|—MT3
+0< . )

O

Remark 9.10. Notice that the result depends only on how the potential V' behaves on a region

of size r2.

Now we look at the remaining term in the trace. Here we have to split into two regions. This
is not due to any fundamental difference between this part and the part considered above. In
fact this splitting is essentially the same as Sobolev uses in his paper, but in the case considered
above we could just go in and use the final result.

The two regions are:

0 = {[z] < h?/0}
and
Qy = {h2/0 < x| < 7“2},

where § is a sufficiently small constant (independent of h, ;) which will be chosen below. Write
dy = ¢1dy + ¢P2dy1, where @1, ¢y are smooth cut-offs to the regions €y, Qs respectively.
On €y we have to analyze

Z —

0P (a(7) - (€~ 1o P)]

where a is supported on a ball of radius 1.

Lemma 9.11.

_, X > —

tr[OPﬁ(a(m) (£ = pA))go(P)] = O(h7H).

Proof. We will only look at the spin down part, the other case follows easily. After the change
of variable y = fx/h* the expression becomes:

ot |op (a6 = 1500 ) oo (05 = L2 - e - EH)
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Choose a function ¢ € Cg°, 0 < 4, pa = a then we get (using the spectral theorem and the
cyclicity of trace)

%tr {Opé” ( (£ = %AO <(_iw - MT?S H)? -k - M”

< % HOpé”(& - ’“‘%Bﬁ)go ((—MV — /“‘Tfﬁg(y))z b h|2yy|/0 )H
X tr [zbgo ((—z'ev — /“‘T?Sg(y))z b %)}
= To0™)
where we used the estimates:
‘Opéu(f - ’”‘Tfﬁﬁ)go ((—wv — /“‘Th?)g(y))z ok ®(h y/e )H e 0
and
! {% (HW B MThS Wy))* - uh” - %)} <o, (©5)

We prove (9.5) by applying once more the result from [Sob96a]. This is possible since uh? is
bounded. The result is, for # sufficiently small:

r {WO ((_wv - ’“‘T?Sff(y))2 —ph’ = M)]

|y

. /¢ {_ - (ﬁzy‘w)ﬁ?dy+0(e—2(1+’“‘—h?))).

This proves (9.5). Notice, that here we only use properties of V on a region of size h?/0.
To prove (9.4) we take W(y) = §(y)M where ( is some C§° function, which is 1 on B(1).

[yl
Using results from Appendix B, we only have to prove the estimate, with (h| 7/6) replaced by

W. Now take ¢ € Ran(go <(—Z(9V — TA(y))2 — ph? — W(y)> with ||¢|| = 1, and write

(-t

< (0. (05 = )7 = W) ) )+ (6 )

< ph’ + (6, W(y)o)

and we finish using the infinitesimal boundedness of the potential. 0

2

Lemma 9.12. e

. > r
0P (6 - (€~ nD)o(P)] = O + 1),
In the proof below, we will write @ instead of ¢ed;. On Q5 we need to multiscale: We have
the following reference problem:

Theorem 9.13 (Reference Problem). Ifd € C§°(B(0,1)) and d, V, satisfy the following bounds:
|0%d| < Cy, |0°V| < C, on B(8), and ph <1, h < hg. Then we have

te[Opj (@ - (€ — pA))go(H)] = O((p + 1)h™?),
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where the O is uniform in the constants bounding the derivatives of @, V.

Using the localisation arguments in Appendix A this theorem is a consequence of the results
of [Fou98]. The proof is identical to sections 4,5 in [Sob95] and will therefore be omitted.
We now define functions f = ﬁ, I(x) = p|z| where p < 1/16. Notice that |0°d@| < e,l(x)~1]

and [0°V] < cof(x)2(2)717] on Qy. Since |,l(x)| < p < 1 we can find a sequence of points
(See [H90] or [Sob95]) xx C Q4 such that

Usesuppa B(@, {(2)) C Qy C U B(w, 8l(2y))

and a number N = N(p) (independent of /) such that the intersection of more than N(p) balls
is empty, and furthermore a corresponding partition of unity {1} satisfying:

o Ui € C5°(B(w, 8l(1))),

o 07 y| < Clp)l(wr)~m,

e > Y =1o0n,.

Using this partition of unity we write

— —

[Opy(@ - (€ = uA))go(H)] = D tr[Opf (vuii - (€ — pA))go( H)]

Il
“Q

Now we have

Lemma 9.14.

IT,] < C/Bk (%f(@? + ZJ(CS;;) de

This will be proved below. We first prove Lemma 9.12 using Lemma 9.14:

Proof. Because only a finite (fixed) number of balls can intersect we thus get that:

Opi (@ - (6 — pa)go(H)| < C/Q (%fu)?ﬂ{iﬁ;)dx

" 1
= o [ (el + e
B2 /0 V7|
4
ILLT T
= O )

In the final estimate we used that 6 is a constant. This proves Lemma 9.12. O

Now we prove Lemma 9.14:

Proof. First we notice the following scaling relations: Let [, f be positive scalars, = € R® and

define Upu(x) = 13 ?u(lx), Tou(x) = u(x + z), then:
JTUTH(A V. h ) T2U; = H(AV, 0.v),

where
o 1{1(:1;) =1 A(lz 4 2) = (—22 — 22/1,0,0)
o Viz)= f2V(lz + 2)
e a=h/(fl),v=upl/f.
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Let now @ be the gaugetransformation ®u(x) = ei%xlz”lu(:p) and let U(l, f,z) be the unitary
transformation U((, f, z) = ®UT., then

PR f 2V HA Vb UL fo2)7 = H(AV R (FL, pl] ).
Let
J(A Vb s @) = te[Opjy (@ - (€ = pA)go(H(A, V. hy )],
then the above proves that J(A,V,h,u,d) = fJ(A, v, ;Ll, *}l, a), where ¢ = d(lx + z). Now
Ty = J(A,V, h,u, rd), which thus means that:

= 5 (A B a4 ).

The following conditions are satisfied:

h ple _
ot = “—h/,c|:1;k|<h/,cr < 1.

h_ — < \/_ < hg if 8, p are chosen properly.

Srlk |xk|

o 0°f, QV(lk —I-J}k)| < ¢, where ¢, is some constant independent of f. [, k
o |0%(¢rd)(ly - +ax)| < C, where the same remark applies to C,.

Therefore we can apply the reference problem (9.13) to conclude that

Tk < fk(/Y((Mf_?"‘l) l)

il FEL 3
fk((fk 4 1)k >l dx

[ 1 )<(/~}l((;)) _|_1)f(x);£(x)2>l(x)—3dx

B p2)? f(x)3> dx
[, G + e ) o
9.2. The Outer Region.

In the outer region the result is the following®

—

C//
C//

Lemma 9.15. Let the assumption be as in Section 1. Then
B B 1+ T_7M_4
|tI’[B(h, Hy QQ)QO(P(hv Ky V))] - A(hv My a2, V(l’))| = O(T)

In the outer region, D = {|x| > r?}, magnetic effects become important and we see a current.

In D we perform a multiscaling with the same scaling functions f(x) = |z|7"/? and (z) = pl|z|,
p < 1= as in 3, but now we use the asymptotics for the current in a strong magnetic field as
reference problem.

We will write @ instead of .

Theorem 9.16 (Ref. Problem in D.). Let @ € C{°(B(0,1)), A(x) = (—x2,0,0), and V be a
function such that
P=PhuAV)=[F (—ihV —uA))+V
is self adjoint and bounded below. Suppose that 3c,,m, M, (, 3, ho > 0 such that
o 0% < cq, |0°V] < ¢, on B(0,8),
o 0 <h < hg,

4Remember that @, is the testfunction @ cut smoothly down to the region {|z| > r?}
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o hu<m,
o hPu>M,

then
te[B(h, p, @)go(P)] = A+ O(h™ ™" + h= ™" + 1Y),

where

A = Al V)

_ 37Th22d / Oyyts(2) — Doyar()

X ([Zn/,ch + V(:L')] — 3nph2nhp + V(x )]1/2> dx.

This is the statement of Thm 7.1. We will use this with ¢ = 3, and 3 such that
phPr3=F > 1. (9.6)

That it is possible to find such a 3 for our choice of r will be proved at the end of this section.
On D we have

o |0%G] < eyl(z)71o,
o |0°V| < eof(x)?(z) 1

Again we can find a partition of unity {¢x} as in the previous multiscaling. We write:
j(hv Hy 67 V) = j(hv Hy Z ¢k67 V)
k
= Z j(hv Hy ¢k67 V)v
k
and also
Alh,p,@ V) = Alh,p, »_ d, V)
k
= > A(h,p i, V).
k

We want to prove that

|j(hvﬂv¢k67 V) - A(hvﬂv¢k67 V)|

@) fe) | J@PU f@P F@l)
< C/J“”( R e R LR

This is proved as the lemma of the previous multiscaling argument and the proof will therefore
be omitted. First we have to check:

wl h? — 13 |=75|1_3 13
7B e T s
and
Y L Y N | A T TNy 8,36
T'W—Mh f1+5~/~0h W—Mh 2] > phr
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Thus we get:

fir rpe e

T, V)= At | = o [ (W e

1
5/2 4
:O< 2|~ / h3zwd

1 1 1 h3
= O(——I— P

uh Rk

1
= —O(L+r"u™).
/mO( +r'u)

Finally, we can finish the proof of theorem 9.1.

Proof. We have the following conditions on r i.e. equations (9.3) and (9.6):

1
1

phr?
33 € (0,3] such that phPr=F

and since we want the error terms to be small we need

<
>

Y

r < 1
ur® < 1
T |
To make the optimal choice of r let § > 0 and write
po= h77
o= p/336=)
This defines v and r. Choose
94
B=—2
1436

Then (9.8) is satisfied, since:

/,Lhﬁr?’_ﬁ —  pHBHE=P)(v/3-8(3-7))
— B35 =)=5v/3+P56(3=7)
B /3)+635(1—/3)~96(1=/3)
_ /3 (B0+35)-95)

= 1.

The other equation, (9.7), holds if just § < 1/6 since:
f—H1H+27/3-26(3-7)
L L=/3-68(1=7/3)
J,(1=/3)(1-68)

phr? =

The conditions (9.9) become
JY/3=8(3=7) < 1

hW—65(3—W) < 1
h1—|—8w/3—|—75(3—w) < 1.

(9.9)

The first two of these get better for small §, and the first is the largest term of the three. This

finishes the proof of theorem 9.1.

O
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APPENDIX A. SOME LOCALISATION ARGUMENTS

In this section we will prove the following localisation result:

Let £/ > 0.

Assumption A.1. e H is a self adjoint operator which is bounded below on L?(RY).
e Jda; [ =1,..d .,V all in C*(RY), such that for all u € C°(B(4E)):

Hu = Hu,
where we have used the notation
H =Y (=ihd — a)* + V.
Let C, be the constants such that
|0°V]
|0%ay|
on B(8E).
Under this assumption we have:
Theorem A.2. Let x € Cg°(B(FE)) and g € C5°(R), then
Ix(=ihd = a)lg(H) — g(H)]]lx = O(r™),
where the O is uniform in E, g,y and the constants C.y in (A.1).

Remark A.3. Let O, be constants so that |¢")| < C,. By uniform we mean that if H,
H = S (—ihd — ap)?* + V satisfy the above assumptions with the same constants €, and the
same F,y, and if § € Cg°(R) with |§(")] < C, (the same constants as in the bounds on |¢{")])
and sup supp g < sup supp ¢, then

IX(=ihdh — an)lg(H) — g(H)]]lx < Cnh™,

VN € N, where the constants Cy are the same as in Theorem A.2. Observe, that we do not
assume supp g C supp g.

Notation:
We will need some results from [Sob95], so we introduce the notation used in that paper:
Let Ag > 1 + 2sup |V(z)| then we define d(z) = dist(z,[—Xg, 20)).
Let furthermore < z >= (1 + |Z|2)1/2. Finally we will write Q; = (—th0; — ;).
We start the proof with the following lemma:

Lemma A.4. Suppose y € Cg°(B(3F)). Then for any N > d/2:

_ _ <212 TR < SV (a2
Ix@ui{(# =)™ = (H - 2) 1}H1§CN[ h ] [ a(z)? ] {WMI}’

where 3(z2) is the imaginary part of z.

Proof. Define x; € Cg°(B(20E/6)) satisfying: xi(«) = 1 on |z| < 19E/6. Thus xi1x = x.
Furthermore we will write ¢ = 1 — y;. Writing (H —z)™' = (H —2)"'x1 + (H — 2) "¢, we get
XQUH = 2)7 = (H —2)7]
XQixi(H —2)" = (H — 2)" '] = xQu(H — 2)7"¢
— T1 —|— TQ.
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The last term is easily estimated using [Sob95][Lemma 3.6] as
<>V [< 512 R < 2 5N
d(z) h d(z)? 7

which is seen to fit the estimate we want to prove.
Using the identity:

T2l = [[xQu(H — 2) 9|l < Cn

where

we get that the first term is

n

Ti=) (—XQu(H = 2)7"ih(Q5(91) + (9x1)Q;)(H — 2)7") .

i=1

This we can estimate as:

Il < Zh{ux@zw—z>-1c2;<ajxl><%—z>—lul

‘|‘HXQI H—z)” ( ix1)Qi(H IH }
S ZZhHXQl ) (]Xl)H1|c\ |+Zh2HXQl _Z) (a Xl)H1|c\ |
<z> <232 < 2> B2 1
Cnh
= N [ h } [ a= } EEl

where we used [Sob95][Lemma 3.6] to get the last estimate.
Now we can prove the theorem:

Proof. We use the representation:

Z/af A= X—1)""dA

T / /am S[i™(A — A —ir) " d) dr,

which holds for all self adJ01nt operators A, g € C5°, m > 2 (See [Sob95], [AdMBGY1]).
Writing

SAT)=(H-XA—ir)" —(H - X —ir)™",
we thus get:

\Qi{g(H) - i - / (9 g) ANQIS[T(A, 1))

Jj=

_|_

mm—1)! / /am M@ (A, 7)]dAdT.
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Choose m = 2N + 3. Using the Lemma the first term is easily estimated by O(h?V+1-4);

1

y —d—1/ /5 1 32 \d/2+N+1/2; 2N+1
HXQl%(Z](S()‘a 1)H1 <ch ( 2+ )‘2) h (1 + |)\|)2N—|—1'

For N sufficiently big, this is integrable in A, and we get

7=0..m

m 1 , y ; -
I3 g L@ONQRIS DN < ¢ sup (gL (A2)
i=0 '
The second integral we split in two:

= m /0 ™ /_ Zo(amm(A)xQz%[imé(A,r)]dAdT,

and

= m/o o /__ (0" g) ONNQIST™ (A 7)ldAd.

Inside the integral in [} we estimate:
3 Z’](S AT < ch—d—l 2 )2 d/2+N+1/2h2N+17—_2N_2.
IXQiS(76(A, 7)1 < Vv
Using our choice of m, [ is easily estimated. [ is estimated just like (A.2). O

As a corollary we get the following generalisation of the result in [Fou98]:

Lemma A.5. Let the notation be as above. Then the currents of H and of H on the set B(F)
are the same up to an error of order O(h'™"), i.e. for all x € C5°(B(FE)) and for all | we have:

tr[xQi(go(H) — go(H))] = O(R'~™).
Again this ts uniform in E,x and the C,’s.

Proof. Choose g € C$°(R) such that ggo = go on Spec H. Notice, that the bounds on |¢(")| do
not depend on inf Spec H. Write, using the spectral theorem:

trixQigo(H)] = tr [xQig(H)go(H)]
= tr[xQig(H)go(H)] + O(h™).

Now we get from [Fou98] that xQ;g(H) is h-admissible. By an expansion of this operator in
powers of h we get:

te[xQigo(H)] = t2[Opj0go(H)] + O(R'™"),
where 8(z, &) = (& — a)g((§ — a;)* + V(x)) € C5°(R™). That this is O(h'™") follows from
[Sob95] and the Tauberian argument given in [Fou98]. O
We will now prove the equation (4.2):

Proof. Let hw be h, with V' changed into W. Remember that W is a locally C§° version of V.
Then Theorem A.2 proves that
B, h)gol H)) = tr[ B h) F(Op gl ).

Since B(p, h)f(OpYhw) is an a-admissible operator (in the sense of [Rob87]) and (1 — ¢)(x)
vanishes on a neighborhood of the support of the symbol of B(u,h)f(OpYhw), the equation
(4.2) is now obvious. O
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APPENDIX B. LOCALISATION IN A NEIGHBORHOOD OF A SINGULARITY

In this appendix we will prove that to study the current close to, for example, a Coulomb sin-
gularity, only the local behaviour of the singularity matters. The result below can be rephrased
as follows:

Let x € C5°(B(1)) and let V' be a potential, such that, if ( € C5°(B(2)), then ¢V is bounded
relatively to the kinetic energy (—iV — A)?. Then 3C > 0 such that:

IX(—iV = A)[go((—1V — A)? + V) — gol(—iV — A)* + (V]| < C,

where C' only depends on local information, i.e. on (V.
Let us now be more precise: Let V' (playing the role of (V in the discussion above) be a
multiplication operator such that 3 0 < ¢ <1 and M > 0:

(u, |V|u) < e{u, —Au) + MJul)?, (B.1)
for all uw € C§°. Observe that this implies, by the diamagnetic inequality, that
(u, [V]u) < elu, (=iV = A)%u) + M|ju]?,
with the same constants ¢, M. Denote by H the selfadjoint operator (—iV — A’)z + V.

Assumption B.1. Let H be a selfadjoint operator in L*(R?), H > —\¢ for some \g > 1 and
satisfying for all ¢ € C§°(B(2)):
e Vu € D[H] (the form domain of H) we have ¢u € D[H] and I¢; € C§(B(2)) such that
(u, H(pv)) = ((p1u), H(¢pv)) for all u,v € D[H].

Remark B.2. The application in this article is to decompose Coulomb singularities, but the
assumption is by far more general.

The result is the following:
Lemma B.3. Let x € C°(B(1)), then
Ix(=10x, = Aj)go(H) — go(H)]|| < C,
where C' depends only on x and on ¢, M in (B.1).
Remark B.4. (' does not depend on the lower bound Ag.
The main ingredient to prove the lemma is the following:

Lemma B.5. Let y € C§°(B(1)), and let z € C with 0 < |3(z)| < 1, then for all N > 0 there
exists C'y > 0 such that

(=8, — A[(H—2)"" = (H—2)7| < o M1t 2] {M + |Z|] |%1

dy(z) dy(z) (=)l
where dy(z) = dist(z,[— M, o0)).
Proof. Choose y1 € C5°(B(2)), xy1 =1 on B(3/2), and write
X(=i0s, = AP[(H = 2)7' = (H = 2)7'] = X(=i0, = Aj)a(H — )™ = (H — 2) 7]
AX(=i0s, — A)(H — 2)7'0,
where ¢ = 1 — x;. Now the lemma follows from the identity

3

(H—2)"" = (H = 2)"x1 = =20 Y _(=id, — A)(Drx1) + Axa,

=1
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and the following result from [Sob96a][LLemma 3.3]:

| . L N (M + |2) ™52 (M 4 2"
HX(_@&U] — AJ) (H — Z) (_Zaxl - Al) QbH <C dM(Z) |:dM(Z)2} )

where my, my € {0,1}.

45

O

The lemma B.3 now follows, using almost analytic extensions, just like in the previous ap-

pendix.

ApPPENDIX C. A CALCULATION WITH POISSON SUMMATION

V()]

TV and

Let us write { =

S = S(V(e)l-hp) = Zd (12 — V()3 = 3/202hp)n(2hpn — [V(2)] 1)

= 2hM3/22d< 1** gn[n—t]l_m).

In this appendix we want to prove the following computational result:
Proposition C.1.
S([V(@)]- hp) = O((hpn)** + \/hulV (2))- + hp[V(2)]-),

uniformly in x.

Proof. Let us write Fi(a) = <[a — t]3/2 — Safa — t]1_/2> , then

We use Poisson Summation and get:

s P [ oo (3 [ o an) |

Let us look at the first term:

/0 " Fla)do = / (1 0o : {[o%(t - L /0"‘( I da}
= 0.

One part of R (f,” Fi(a)e*™*da) was calculated in [Sob96b][p.399]:

R (/ (t _ a)3/2€i27rkozda>
0

— 3 2 L <Cos(27rkt)C(2\/E) + Sin(Zﬂ'kt)S(Z\/E)) \

8m2k? 16m2k>/2
/ cos(mu®[2)du

/ sin(mu®/2)du

where

and
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What we have left to calculate is thus —2 fot av/t — aet?™ da. This we do explicitly:

—g/otamemk“da = _H%/ Vi —ae?™ da
= g e

Oridk dt | 2mik  8m2k?  16mw2k5/?

/2 1 3
2rik? 27Ti Sm2k3\/1 +

1 d 36227rkt _— /2\/ kt _Z'7Tu2/2d 4 \/Et_l/Q —im2kt
- R i) e u (& .
2m1 dk \ 16m2k5/2 0

Here we used the calculation from [Sob96b][p.399] to get the next to last equality. We calculate
the real part and get:

341/2 3 d ' wht ,
- ER el k‘_3/2 227rkt/ —iTu /2d
FETERTR {dk ( “ ) ¢ !

= _ﬁ _I_ 3 i {k_3/2
8n2k? 1672 dk

1 dd { B2 3l/2 izt /2”“f im )2 }
- . - = + — e du
0

= 5:3/2

i

Cos(Zwkt)C(Q\/E) + sin(Zwkt)S(Z\/E)} } )

Thus

- 2h/,c )32 —15
Z {327T2k5/2

k=1

Cos(Zwkt)C(Q\/E) + Sin(Zwkt)S(Z\/E)}

3
T T6nzior dk
Using, that C and & are bounded with bounded first derivatives, we thus see that

S = 0((@)3/22 5/2+W+;§)>

_ 0<<hm3/2<1it+f )
= O((h)*" + \/hu V] + hu[ V1),

Cos(Zwkt)C(Q\/E) + sin(Zwkt)S(Z\/E)} }

APPENDIX D. GAUGE INVARIANCE OF THE CURRENT

In this appendix we will prove that the current J(h, p, @, V') as a function of @ only depends
on the magnetic field b = V x @ generated by d, i.e. that if @ = a + V¢ then J(h,u,d, V) =
T(hyp,a,V):
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Lemma D.1. Suppose V is relatively bounded with respect to —h*A and that Spec(P(h, i, V))
below zero is discrete. Then Vo € C5°(R?) we have J(h, 1, Vo, V) =0.

Proof. Let ¢ be an eigenfunction of P(h, p, V') with eigenvalue A < 0. We may, with a slight
abuse of notation assume that

(H+ W)y =Xy,
where W =V 4+ ph and H = (—ihV — %_1))2 We have to prove that
(1, (V) - (=ihV — A)) + (o, (=ihV — A) - (Vo)) = 0,

or equivalently

(6 (=ihV ) - (=ihV = A)b) + (@, (=ihV = A) - (=ihV)e) = 0.
Notice that (—2hd,, —A;)¢ = ¢(—1thdy;— A;)+(—thd.,;¢), thus we get, using the self-adjointness
of (—=ihd,, — A;) and the relative boundedness of W:

(), (—ihV @) - (=ihV = A)) + (i, (=ihV = A) - (=ih V)
= (¢, [(=ihV = A)g = §(=ihV — A)| - (=ih¥V — A)p)

(W, (—ihV — A) - |(=ihV — A)p — $(—ihV — A)| &)

= ((=ihV = A, $(—ihV = A)) = (v, SA) + (1, SW o)
A, d) — (W, o) = ((=ihV — A)ib, §(—ihV — A)).
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