Species Richness in Time and Space:
a Phylogenetic and Geographic Perspective

by

Pascal Olivier Title

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Ecology and Evolutionary Biology)
in The University of Michigan
2018

Doctoral Committee:

Assistant Professor and Assistant Curator Daniel Rabosky, Chair
Associate Professor Johannes Foufopoulos

Professor L. Lacey Knowles

Assistant Professor Stephen A. Smith



Pascal O Title
ptitle@Qumich.edu
ORCID iD: 0000-0002-6316-0736
(© Pascal O Title 2018



DEDICATION

To Judge Julius Title, for always encouraging me to be inquisitive.

1



ACKNOWLEDGEMENTS

The research presented in this dissertation has been supported by a number of research
grants from the University of Michigan and from academic societies. I thank the Society of
Systematic Biologists, the Society for the Study of Evolution, and the Herpetologists League
for supporting my work. I am also extremely grateful to the Rackham Graduate School,
the University of Michigan Museum of Zoology C.F. Walker and Hinsdale scholarships, as
well as to the Department of Ecology and Evolutionary Biology Block grants, for generously
providing support throughout my PhD. Much of this research was also made possible by
a Rackham Predoctoral Fellowship, and by a fellowship from the Michigan Institute for
Computational Discovery and Engineering.

First and foremost, I would like to thank my advisor, Dr. Dan Rabosky, for taking me
on as one of his first graduate students. I have learned a tremendous amount under his
guidance, and conducting research with him has been both exhilarating and inspiring. I am
also grateful for his friendship and company, both in Ann Arbor and especially in the field,
which have produced experiences that I will never forget.

I would also like to thank my dissertation committee members: Dr. Johannes Foufopou-
los, Dr. Lacey Knowles, and Dr. Stephen Smith. Their support, advice and encouragement
has been greatly appreciated.

I would like to acknowledge my collaborators, both within and outside of my dissertation.
In particular, I thank Michael Alfaro, Jordan Bemmels, Jonathan Chang, Alison Davis
Rabosky, Lacey Knowles, Dan Rabosky, Sonal Singhal and Miriam Zelditch, for involving

me on exciting projects, and for being such thoughtful coauthors. It has been a real pleasure

1l



to work with all of you, and I hope to continue to do so into the future.

I feel incredibly fortunate to have been involved in a significant amount of fieldwork in
Australia and Peru during my time as a PhD student. These incredible experiences would
not have been possible without support from the University of Michigan Museum of Zoology
(UMMZ), Australia National University (ANU) and the Asociacion para la Conservacion
de la Cuenca Amazonica. Furthermore, I am grateful to Dan Rabosky and Alison Davis
Rabosky, Greg Schneider at the UMMZ, Craig Moritz and Gaye Bourke at ANU, and Rudolf
von May for making these experiences run incredibly smoothly and productively, and for
inviting me to be part of these transformative experiences.

The Rabosky lab has been a wonderful, friendly, and intellectually stimulating group to
be a part of, and I would like to emphasize how lucky I have felt to be a part of it. Thank
you to all members, past and present: Carlos Anderson, Jonathan Chang, Gabriel Costa,
Maggie Grundler, Michael Grundler, Michael Harvey, Iris Holmes, Huateng Huang, Joanna
Larson, Jonathan Mitchell, Talia Moore, Jeff Shi, Sonal Singhal, Rudolf von May and Erin
Westeen. I feel like I owe Michael Grundler a bonus note of gratitude for being my desk
neighbor and therefore within range of an endless barrage of questions and conversations.
Both in the lab and in the field, Mike has been a fantastic and thoughtful friend.

Special thanks to Kevin Bakker, Paul Glaum, Celia Miller and Jeff Shi for the countless
hours spent hunkering down and studying for prelims, and for simply being great friends
and for always being there for me.

I have made too many wonderful friends in Ann Arbor to list them all here, but at the very
least, I would like to thank the following people for making Ann Arbor so much fun: Anat
Belasen, Jordan Bemmels, Kevin Boehnke, Cindy Bick, Rachel Cable, Susan Cheng, Dori
Cross, Alison Gould, Thomas Jenkinson, Dan Katz, Jeff May, Jill Myers, Marian Schmidst,
Alex Taylor, Andrea Thomaz, Lauren Trimble, and Joe Walker.

Although it has now been years, I would not be where I am today had it not been for

the encouragement, mentorship and friendship from Dr. Kevin Burns at San Diego State

v



University, as well as from the Museum of Vertebrate Zoology community at the University
of California, Berkeley.

I would also like to thank my family for nurturing a love for wildlife and the outdoors,
and for encouraging my pursuit of a career in the sciences.

Last of all, but absolutely not least, I would like to thank Tara Smiley for her love and
unwavering support, for challenging me intellectually, for being my adventure partner, and

my best friend.



TABLE OF CONTENTS

DEDICATION . . . . . . e ii
ACKNOWLEDGEMENTS . . . . .. ... o iii
LIST OF TABLES . . . . . . . . . e ix
LIST OF FIGURES . . . . . . . . . o o X
ABSTRACT . . . . e xiii
CHAPTER
I. Introduction . . . . .. ... oo 1
1.1 Overview of chapters . . . . . . . .. ... .. ... ... ....... 5)

II. Do macrophylogenies yield stable macroevolutionary inferences?

An example from squamate reptiles . . . . . . . .. ... ... ... .. 12
2.1 Abstract . . . ... 12
2.2 Introduction . . . .. . ... .. 13
2.3 Methods . . . . . . .. 17
24 Results . . .. .. 21

2.4.1 Pairwise comparisons of phylogenetic datasets . . . . . .. 21
2.4.2 Implications for drivers of diversity . . . .. ... .. ... 22
2.4.3 Power analysis of the richness — clade age relationship . . . 22
2.4.4  Comparisons of topology . . . . . . .. ... ... .. 22
2.5 Discussion . . . ... 23
2.6 Conclusions . . . . . . . .. 29
2.7 Data Archiving . . . . . . . ... 30
2.8 Acknowledgements . . . . . ... 30
2.9 Funding . . . . . .. 31

vi



III. ENVIREM: an expanded set of bioclimatic and topographic vari-
ables increases flexibility and improves performance of ecological

niche modeling . . . . . . . ... 65
3.1 Abstract . . . . ... 65
3.2 Imtroduction . . . . .. ... 66
3.3 Methods . . . . . . . .. 69

3.3.1 Casestudies . . . . .. ... 71
3.3.2 Data deposition . . . . .. ... ... ... 75
34 Results . . . . .. 5
34.1 Casestudies . . . . .. .. ..o 7
3.5 Discussion . . . . . ... 79
3.5.1 Potential applications . . . . . .. ... ... 80
3.5.2 Biological relevance of ENVIREM variables . . . . . . . .. 82
3.5.3 Incorporating ENVIREM variables into SDM best practices 83
3.5.4 Utility of topographic variables in SDM . . . . . . ... .. 85
3.6 Conclusions . . . . . . . . .. ... 87
3.7 Acknowledgements . . . . . ... 88
3.8 Funding . . . . . ... 88
IV. Diversification rates and phylogenies: what are we estimating, and

how good are the estimates? . . . . . . . ... ... ... ... . .... 108
4.1 Abstract . . . . ... 108
4.2 Introduction . . . . . . .. ... 109
4.3 Methods . . . . . . .. 113

4.3.1 Tiprate metrics . . . . . . . . . ... L 113

4.3.2 Tip rate metrics estimate speciation, not net diversification 114

4.3.3 Assessment of tip rate metrics . . . . .. ... ... L. 116

4.4 Results . . . . . .. 117
4.4.1 Speciation or net diversification? . . . . . . . .. ... ... 117

4.4.2 Tip rate accuracy across rate-variable phylogenies . . . . . 118

4.4.3 Effects of regime size on performance . . . ... .. .. .. 119

4.5 Discussion . . . . . ... 120
4.5.1 Acknowledgements . . . ... ... 125

V. Dispersal and the latitudinal diversity gradient in marine fishes . . 142
5.1 Abstract . . . . . .. 142
5.2 Introduction . . . . . . ... ... 143
5.3 Methods . . . . . . ... 146
5.3.1 Data acquisition . . . . . .. ... oL 146

5.3.2  Geographic partitioning . . . . .. .. ..o 147

5.3.3 Biogeographic transition rates . . . ... .. .. ... ... 147

5.3.4 Ancestral state reconstruction . . . . ... ... L. 150

vii



5.3.5 Sisterpairs . . . . . ... 151

5.4 Results . . . . . . 152

5.4.1 Biogeographic modeling . . . . . . ... ... .. ... ... 152

5.4.2 Ancestral state reconstructions . . . . . . . .. ... .. .. 153

5.4.3 Sisterpairs . . . . . . ... 154

5.5 Discussion . . . . .o 155

5.6 Conclusion . . . . . . . 161

5.6.1 Acknowledgements . . . ... .. ... L 162

VI. Conclusion . . . . . . . . . . 180
BIBLIOGRAPHY . . . . s, 186

viil



Table

2.1
2.2
S52.1

S52.2
3.1
3.2
3.3

3.4
S3.1
S3.2

53.3
S53.4
S3.5
S3.6
4.1
5.1
5.2
2.3
5.4
S5.1
55.2
55.3

LIST OF TABLES

Summary of the macrophylogenies examined in this study. . . . .. .. .. 37
Crown clade ages and species richness for each clade. . . . . . .. .. ... 38
Taxon pairs used to identify the nodes defining each Australian squamate

clade, for each macrophylogeny. . . . . . .. . ... ... 0. 62
Diversification metrics for all clades and all phylogenetic datasets. . . . . . 64
Summary of the variables in the ENVIREM dataset. . . . . . . ... .. .. 92
Pearson correlations between ENVIREM and WorldClim variables. . . . . . 93
Pearson correlation coefficients between ENVIREM topographic variables

and elevation. . . . . . . ... 94
Variables included in final models for four case study species. . . . . . . .. 95

Bioclimatic variables with the strongest correlation with ENVIREM variables.102
Pearson correlations between ENVIREM and WorldClim variables for cur-

rent and mid-Holocene climate. . . . . . . .. .. ... ... ... ... .. 103
Variables included in final models for 16 case study species. . . . . . . . .. 104
Variables included in final models for 16 case study species. . . . . . . . .. 105
Optimized Maxent parameters for all 20 case study species. . . . . . . . .. 106
Schoener’s D niche overlap for all case study species. . . . ... ... ... 107
Summary of simulated phylogenies. . . . . . . ... ... ... ... ... 133
Richness and speciation rate values for the different latitudinal regions. . . 167
Model fit comparison for the northern and southern hemispheres. . . . . . . 168
Transition rate parameters from the best fit, unconstrained model. . . . . . 169
Counts of within-region speciation events and sister pairs. . . . . . . . . .. 170
Transition matrix Q as defined for the Mk model. . . . . . . . ... .. .. 177
Model fit and parameter estimates for all transition rate models. . . . . . . 178
Dispersal and within-region sister species counts. . . . . . . . . . .. .. .. 179

X



Figure

2.1
2.2
2.3
24
2.5

S2.1
52.2
52.3
S52.4
S2.5
S2.6
S2.7
52.8
52.9
52.10
S2.11
S52.12
52.13

S2.14
52.15
52.16

S2.17
52.18

52.19

52.20

LIST OF FIGURES

Pairwise comparisons of crown clade ages and net diversification rates. . . . 32
Influence of dataset selection on macroevolutionary hypotheses. . . . . . . . 33
Impact of uncertainty in clade age on the analysis of age-richness relationships. 34
Comparisons of phylogenies in terms of Robinson-Foulds distances. . . . . . 35
Relationship between divergence time estimates for Australian squamate

clades using Pyron and Wright phylogenies. . . . . . .. ... .. ... ... 36
Phylogenies for Agamidae. . . . . . . . . .. ... L. 39
Phylogenies for Carphodactylidae. . . . . . . . ... ... ... ... .... 40
Phylogenies for Diplodactylidae. . . . . . . . . .. .. ... ... .. .... 41
Phylogenies for Egernia. . . . . . . . . ..o 42
Phylogenies for Elapidae. . . . . . . . . . . ... 43
Phylogenies for Eugongylus. . . . . . . . . .. ... 44
Phylogenies for Gehyra. . . . . . . . . .. L 45
Phylogenies for Pygopodidae. . . . . . . . . ... ... L. 46
Phylogenies for Pythonidae. . . . . . . . . . . ... ... L. 47
Phylogenies for Sphenomorphinae. . . . . . . . ... ... 48
Phylogenies for Typhlopidae. . . . . . . . .. . ... ... ... ... 49
Phylogenies for Varanidae. . . . . . . . .. ... .. L. 50
Geographic affinities of species belonging to, and closely related to the

Egernia group clade. . . . . . ..o 51
Geographic affinities of species belonging to, and closely related to the

Gehyra clade. . . . . . . . . . 52
Geographic affinities of species belonging to, and closely related to the Ty-

phlopidae clade. . . . . . . . . . ... 53
Geographic affinities of species belonging to, and closely related to the Fu-

gongylus group clade. . . . . . . ... 54
Comparison of crown clade ages between clade literature and Tonini et al. . 55
Pairwise comparisons of BAMM speciation rates for Australian squamate

clades. . . . . L 56
Pairwise comparisons of the DR statistic, averaged by Australian squamate

clade. . . . . L 57

Pairwise comparisons of the per-species DR statistic for all Australian taxa. 58



52.21
52.22
52.23
3.1
3.2
3.3
53.1
S3.2
S3.3
53.4
53.5
53.6
4.1

4.2
4.3

4.4
4.5
4.6
4.7

S4.1
54.2
S54.3
S4.4
S4.5

54.6
S54.7

S54.8
0.1
5.2

2.3

Comparison of per-species DR statistic for Australian taxa from complete
and pruned trees. . . . . . ...
Examination of the influence of dataset selection on the relationship between
species richness and various predictors. . . . . . . . ... ... .. ... ..
Pairwise comparisons of the rank order positions of different clades in terms
of net diversification rate. . . . . . . . .. ... oL
Ecological niche model performance with and without the ENVIREM vari-
ables for four selected case study species. . . . . . ... ... ... ...
Predicted habitat suitability during the current time period for four case
study species. . . . . ..
Predicted habitat suitability during the Last Glacial Maximum for four case
study species. . . . . ..
Occurrence records and training regions. . . . . . . . . .. . ... ... ..
Model performance for 16 case study species. . . . . . . . . . ... ... ..
Model performance for 16 case study species. . . . . . . . . ... ... ..
Model performance for 16 case study species. . . . . . . . .. ... ... ..
Model performance for 16 case study species. . . . . . . ... ... ... ..
Predicted habitat suitability in the present for 16 case study species not
highlighted in the main text. . . . . . . . ... ... ... ... ... ...
Mean absolute error in tip rate metrics for speciation and net diversification
rate. ..o
True tip rates (Arryg) in relation to estimated tip rates. . . . . . . . . ..
Mean per-tip absolute error in speciation rates as a function of the magnitude
of rate heterogeneity in each simulated phylogeny. . . . . . . ... ... ..
Performance of tip rate metrics as a function of minimum regime size. . . .
Mean per-regime absolute error in relation to true rate regime size. . . . . .
Examination of true and estimated tip rates in a single rate-shift tree. . . .
Examination of true and estimated tip rates in a simulated “evolving rates”
tree. . . Lo e e e
Details of simulations for disentangling speciation from net diversification
rate. ..o e e
Log proportional accuracy in A (top) and r (bottom) for different tip rate
metrics. . . . . . L e
Mean absolute error in A (top) and r (bottom) for App. . . . . . . .. ...
True tip rates (top row: Arryg, bottom row: rrryg) in relation to Arp. . .
Comparison of A\pr and Apay to true tip rates for separate simulation

True net diversification tip rates (rrryg) in relation to estimated tip rates.
Mean per-tip absolute error in Arg as a function of the magnitude of rate
heterogeneity in each simulated phylogeny. . . . . . . ... ... ... ...
Performance of tip rate metrics as a function of minimum regime size. . . .
Latitudinal regions and latitudinal diversity gradients. . . . . . . . . . . ..
Conceptual diagram of the biogeographic transition model that had the best
model fit. . . ..
Rate and count differentials across latitudes and depth. . . . . . . . .. ..

x1

89

132
134
135
136
137

138
139



0.4

55.1
55.2
S5.3
55.4
55.5
55.6

Ratios of dispersal to within-region speciation, based on parsimony. . . . . 166

Global variation in sea temperature, as a function of depth. . . . . . . . .. 171
Relationship between species richness and speciation rates. . . . . . . . .. 172
Transition rates from the best-fit biogeographic model. . . . . . . . . . .. 173
Dispersal and speciation event counts from parsimony. . . . . . . . . .. .. 174
Dispersal and speciation event counts from maximum likelihood. . . . . . . 175
Relative importance of dispersal vs in situ speciation events from ML joint

ancestral state reconstruction. . . . . ... ..o L0000 176

xii



ABSTRACT

Biodiversity varies dramatically across geographic space and across the tree of life, yet active
debate among biologists remains regarding the underlying causes of these diversity patterns.
By integrating phylogenies with species geographic range information and environmental or
climatic datasets, we can explore questions relating to the assembly of communities and
diversity gradients at continental to global scales.

In Chapter 1, T introduce major themes uniting macroevolution and macroecology. I
describe the underlying conceptual framework that links my different research chapters to-
gether. I explain how these efforts advance our understanding of large-scale patterns of
diversity, while providing critical assessments of tools and resources that facilitate the study
of diversification across environmental and geographic gradients.

In Chapter 2, I highlight the recent availability of several large-scale phylogenies for
squamate reptiles, and explore how they might affect macroevolutionary research. Using
Australian squamates as a case study, I find that a great deal of conflict exists across phylo-
genies, both in terms of divergence times and topology. I demonstrate that these differences
can be severe enough to alter conclusions drawn from downstream macroevolutionary anal-
yses. | further explore the potential sources of and solutions for these discrepancies.

To properly test hypotheses pertaining to limits on species’ geographic distributions, we

need accurate geographic range estimates. A majority of studies currently rely on a set of
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19 bioclimatic variables for species distribution modeling and related ecological research. In
Chapter 3, I assemble a new bioclimatic dataset from variables described in the literature,
in order to increase the number of predictors that are easily accessible to ecologists and
evolutionary biologists. I find that incorporating these predictors into species distribution
modeling workflows leads to noticeably improved models, and I anticipate that they will
prove useful in macroecological studies as well.

In Chapter 4, I evaluate the performance of a number of approaches for estimating species-
specific “tip rates” of speciation. These metrics, which quantify recent variation in rates of
speciation across a phylogeny, are key for the study of trait-dependent diversification as well
as spatial variation in rates across biomes and latitudinal gradients. Under a number of sim-
ulation scenarios, I assess the performance of three model-free tip rate metrics, and compare
them to BAMM, a Bayesian model-based approach for estimating diversification rates. I
find that BAMM exhibits the least amount of error in speciation rates in all diversification
scenarios evaluated. One of the model-free metrics, DR, also performs well, although its
performance is hampered by high variance in rate estimates.

Finally, in Chapter 5, I explore how biogeographic rates of dispersal have contributed
to the latitudinal diversity gradient in marine fishes. There are dramatically more species
in the tropics than at high latitudes, but prior research has found that speciation rates
exhibit an inverse relationship with latitude, with the lowest rates in the tropics. I sought
to determine whether or not global patterns in biogeographic immigration in marine fishes
conform to an “out of the tropics” scenario, where lineages disperse out from the tropics
and enrich higher latitude assemblages. I find that dispersal rates are strongly biased in a
poles-to-tropics direction. However, given the strong latitudinal species richness gradient,
estimated per-lineage rates of dispersal translate to greater net movement from the tropics to
high latitudes, confirming that high latitude assemblages are enriched by tropical diversity

over macroevolutionary timescales.
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CHAPTER I

Introduction

Phylogenetic patterns coupled with the geographic distributions of species unlock a crit-
ical dimension of biodiversity. Spatial patterns in species richness provide a wealth of in-
formation that allows us to test a range of hypotheses pertaining to the ecological controls
on the size of regional species pools (Belmaker and Jetz 2012) as well as the environmental
correlates of species richness gradients (Hawkins et al. 2003, Currie et al. 2004). Integrating
phylogenetic information makes it possible to additionally examine the historical and biotic
factors, as well as the macroevolutionary processes, shaping the accumulation of diversity
across space and through time (Graham and Fine 2008, Freckleton and Jetz 2009, Morlon et
al. 2011). By evaluating both ecological and evolutionary hypotheses, biologists can assess
the relative roles of a number of potential predictors contributing to the spatial biodiversity
patterns that we observe today (Mittelbach et al. 2007, Belmaker and Jetz 2015, Holt et al.
2017).

Until relatively recently, the scale of analysis has been limited by the size of available
phylogenies, typically restricted to families or orders, as well as by the availability of large-
scale primary occurrence data. However, over the last decade, the emergence of new datasets
and analytical methods has led to a “big data” revolution in ecology and evolutionary biology;,
with exciting opportunities for scientific inquiry. Natural history museums and collections

have made tremendous efforts to digitize their holdings, and digital aggregators have been



brought online, making it possible to query and download millions of species occurrence
records on a global scale (Constable et al. 2010, Jetz et al. 2012, Robertson et al. 2014).
Additionally, high resolution, global environmental and climatic datasets have been made
available. Although global climatic data have been available for some time (Booth et al.
2014), a number of new and complementary datasets have been published in the last few
years (Tuanmu et al. 2015, Wilson and Jetz 2016, Karger et al. 2017, Hengl et al. 2017, Fick
and Hijmans 2017, Amatulli et al. 2018) that should make it possible to test more targeted
hypotheses and construct better geospatial models.

Alongside the increased availability of museum data and environmental data products,
great strides have been made in computational biology and phylogenetics. Improvements in
genetic sequence data acquisition and alignment (Smith et al. 2009, Thomson and Shaffer
2009, Hinchliff and Roalson 2013), as well as advances in computational phylogenetics (Zwickl
2006, Stamatakis 2014) have led to the recent inference of phylogenies with thousands, if not
tens of thousands of species. The development of supermatrix and megaphylogeny inference
methods, in particular, which typically involve large but mostly incomplete data matrices,
has made it possible to take greater advantage of sequence data repositories like GenBank.
Although concerns regarding the quality of these very large phylogenies have been raised
(Misof et al. 2013, Hinchliff and Smith 2014), the incorporation of genomic data is a very
active and promising topic of research (Zheng and Wiens 2016).

As large phylogenies become available for different groups of organisms and primary
occurrence data become more accessible and complete, it is increasingly feasible to test
hypotheses at broad spatial scales. This allows us to explore questions that were until recently
out of reach, or for which researchers previously had to rely on sister species pairs to control
for time since divergence (Cardillo 1999, Cardillo et al. 2005, Ricklefs 2006). Different
combinations of phylogenetic, trait and environmental turnover can help distinguish the
relative roles of conservatism versus lability in trait and niche evolution, in situ diversification

and environmental filtering. The power of such analyses emerges at the continental to global



scale, where the replication of large biomes and spatial diversity patterns of large clades
enables direct comparison. For example, to examine the relationship between phylogeny,
traits and environment in desert ecosystems requires several large, independent desert biomes
across a continent (e.g., Sonoran vs. Chihuahuan vs. Mojave Deserts of North America).
For analyses that require different species communities and /or phylogenetic clades, a global
approach would further be necessary (e.g., North American deserts vs. Australian deserts)
to acquire a sufficient number of observations and thus data points for robust analyses.
Large-scale approaches such as these allow us to extract meaningful generalities about the
underlying macroecological and macroevolutionary processes shaping diversity across the
Earth’s major biomes.

Expanding analyses to a global scale with more inclusive phylogenies also has the po-
tential to fundamentally change our understanding of major patterns of biodiversity. For
example, the tropical Indo-Pacific has long been presumed to be a center of origination for
marine fishes (Briggs 2000, Briggs 2003, Cowman and Bellwood 2013), with greater rates of
speciation associated with coral reefs (Alfaro et al. 2007, Siqueira et al. 2016). However,
equipped with a large phylogeny and geographic data for thousands of marine fish species,
Rabosky et al. (2018) recovered a striking pattern of elevated speciation rates in the high
latitudes, and depressed speciation rates in the tropics. This inverse relationship between
species richness and speciation rates directly contradicts other studies, and leads us to re-
think our understanding of the factors generating and maintaining the latitudinal diversity
gradient over geologic timescales (Jablonski et al. 2006, Mittelbach et al. 2007, Weir and
Schluter 2007).

In order to test hypotheses that relate phylogenetic information to spatial diversity pat-
terns, appropriate metrics are required to summarize the most relevant aspects of species’
evolutionary history. Although the specifics will depend on the particular hypotheses being
tested, the unit of analysis is typically either taxonomic or geographic. If the unit of anal-

ysis is taxonomic, then geographic or environmental data are summarized by species or by



clade (e.g., species-level mean annual temperature then averaged across a clade or latitu-
dinal range of the clade). From these clade-level data, diversification parameters can then
be calculated across the phylogenetic tree. There have been considerable methodological
developments in the estimation of speciation or net diversification rates for clades. Simple
metrics, such as “method-of-moments” estimators of net diversification rate (Magallon and
Sanderson 2001) that rely only on stem age and species richness to estimate rates have been
used in a number of studies (Adams et al. 2009, Castro-Insua et al. 2018, and many others).
Although these metrics are valuable, especially when the goal is to estimate rates for clades
that are phylogenetically highly incomplete, their performance can be unreliable (Stadler
et al. 2014). In such cases, model-based approaches to estimating diversification rates are
preferable, given a phylogeny with reasonably complete species sampling (Rabosky 2017).
A number of model-based approaches exist for inferring diversification rates (Alfaro et al.
2009, Morlon et al. 2011, Etienne and Haegeman 2012, Rabosky 2014, Lewitus and Morlon
2016), and the particulars of the phylogeny and the question at hand will determine which
approach is most appropriate.

If the unit of analysis is geographic, such as with ecoregions or grid cells, then the
goal is to summarize phylogenetic information for assemblages of species in each geographic
area, which will most likely not be monophyletic groups. Within this framework, biologists
have most often relied on phylogenetic diversity indices derived from either the variance-
covariance matrix (e.g., phylogenetic species variability; Helmus et al. 2007) or from the
patristic distance matrix (e.g., mean patristic distance, nearest neighbor distance; Webb et
al. 2002, Graham and Fine 2008) of the phylogeny to acquire species-specific or pairwise
values. These measures reflect different aspects of the phylogenetic relationships between
the species in a geographic region of interest as well as characteristics of those species in
relation to the full phylogeny (Fritz and Rahbek 2012, Tucker et al. 2016).

Certain biological questions are therefore best addressed at large spatial scales and across

large taxonomic groups. By querying phylogenetic relationships, rates of diversification, and



the spatial configuration of species on a continental or global scale, we can test fundamental
hypotheses pertaining to factors driving the generation and maintenance of species assem-
blages, the roles of equilibrial and non-equilibrial forces in shaping species richness patterns,
and the ways in which traits or environmental attributes might promote or hinder diversifi-
cation. I explore these concepts in my dissertation in four major data chapters, as described

in greater detail below.

1.1 Overview of chapters

The primary goal of the dissertation research presented herein is to robustly evaluate vari-
ous aspects of spatial macroevolution and macroecology — both methodological and empirical
— that relate to the different components required in the study of diversity at continental and
global scales. In this context, I first perform critical assessments of large phylogenies in terms
of their value for macroevolutionary study. I then produce and apply a novel global biocli-
matic dataset to the study of species distributions today and in the past. I further explore
and evaluate macroevolutionary methods, focusing on approaches for estimating speciation
rates. Finally, I investigate how biogeographic rates of speciation and dispersal have shaped

the latitudinal diversity gradient in marine fishes.

An essential component to the study of geographic patterns of diversification is, of course,
the phylogeny. Time-calibrated phylogenies provide the historical framework from which we
can make inferences regarding the tempo of diversification. Furthermore, relationships be-
tween species and within geographic units, can tell us a great deal about the dispersal and
colonization history of a group. Due in part to methodological advances in phylogenetic
inference, and to ongoing sequencing efforts by many research labs, a number of large phylo-
genies have been published over the last decade, primarily for vertebrate groups (birds: Jetz
et al. 2012, Burleigh et al. 2105; amphibians: Pyron and Wiens 2011, Jetz and Pyron 2018;

squamates: Pyron et al. 2013, Tonini et al. 2016, Zheng and Wiens 2016; fish: Rabosky et



al. 2013, Rabosky et al. 2018), plant groups (flowering plants: Zanne et al. 2014, Smith
et al. 2018; seed plants: Smith and Brown 2018), and even all of life (Hedges et al. 2015,
Hinchliff et al. 2015). With the availability of such phylogenies growing, biologists interested
in diversification, biogeography and trait evolution, have found these to be very attractive
resources for both large-scale analyses and targeted analysis of particular clades of interest.
However, many tend to take these trees at face value, unaware of topological constraints
that may have been applied or of the conflict that may exist between these trees and other
studies. A number of studies that use these trees have now been published on a vast range
of topics, making a critical evaluation of the consequences of the differences between these
trees for macroevolutionary analyses important and timely.

In Chapter 2 (Title and Rabosky 2017) we evaluated all large phylogenies that have been
published for squamate reptiles (Pyron and Burbrink 2014, Wright et al. 2015, Hedges et al.
2015, Zheng and Wiens 2016, Tonini et al. 2016), to explore and highlight these potential
issues. We focused on 12 in situ radiations of squamates that have occurred in Australia.
We first explored topological differences among these trees, as well as compared the crown
clade ages of these radiations to those reported in the Australian squamate literature. We
then examined how differences in clade ages translate to differences in diversification rates.
Furthermore, we assessed whether or not the choice of phylogeny would influence the results
of macroevolutionary tests, such as whether or not species richness can be explained by the
estimated amount of time clades have diversified.

We found discordance in terms of the crown clade ages of Australian squamate radiations,
in particular when the clade ages of these large trees were compared to the more targeted
literature on Australian squamates. These differences in clade age resulted in significant
differences in net diversification rate estimates. Thus, hypotheses regarding the role of time
since divergence or diversification rate evaluated with different phylogenies had the potential
to lead to different results and interpretations. We also found some disagreement in topology,

with the phylogenies from Tonini et al. (2016) and Hedges et al. (2015) having the greatest



number of differences from the other trees as well as from each other. Ultimately, a number
of factors contribute to the differences in the phylogenies that we explored. Two factors
with a large impact on tree inconsistencies were 1) the lack of overlap in calibration data
used to time-calibrate phylogenies and 2) differences in topological constraints imposed on
the backbone of some of the trees. At least some of the issues discussed in the context of
squamate reptiles are likely also present in large phylogenies for other groups (for instance,
topological constraints were imposed for the bird phylogeny in Jetz et al. 2012). It is
important that biologists using these trees be aware of the benefits and potential drawbacks
that accompany these otherwise fantastic resources. Over time, we expect that many of the
issues discussed in this chapter will be resolved or lessened, as we continue to make progress in
developing more robust phylogenetic inference approaches, and as fossil calibration datasets

are improved, evaluated and assessed.

At macroecological scales, environmental and climatic conditions have been hypothesized
to play a role in generating variation in species richness (Hawkins et al. 2003, Currie et
al. 2004). Ecological hypotheses have been proposed that suggest a role for climate in
determining the number of individuals or the number of niches that various regions can
support (Currie et al. 2004). whereas macroevolutionary hypotheses have been proposed
where higher temperatures can lead to greater rates of speciation (Rohde 1992). At finer
spatial scales, differences in environmental and climatic conditions are thought to play a role
in allopatric speciation via niche conservatism (Peterson et al. 1999, Kozak and Wiens 2010,
Hua and Wiens 2013, Jezkova and Wiens 2018). Different species may have different climatic
preferences and physiological tolerances, and their ranges may be limited by different factors
(Barbet-Massin and Jetz 2014). Therefore, it is important to have access to relevant climatic
and environmental datasets in order to properly characterize species’ environmental niches.

The vast majority of studies that have modeled species distributions, or that have em-
ployed climatic data in macroecological analyses, have relied on the WorldClim dataset

(Hijmans et al. 2005, Fick and Hijmans 2017), and in particular on a set of 19 bioclimatic



variables. Although this climatic dataset has and continues to be an important resource, re-
cent research on species distribution modeling has pointed to better performance for models
built with variables that are a priori considered to be ecologically relevant to the species in
question (Kearney et al. 2008, Doswald et al. 2009, Rodder et al. 2009, Synes and Osborne
2011).

In Chapter 3 (Title and Bemmels 2018), we viewed this reliance on the 19 bioclimatic
variables as a limiting factor in biologists’ ability to select the most ecologically relevant
variables for species distribution modeling. Other climatic and environmental indices have
been described and are used in the literature (Synes et al. 2011, Braunisch et al. 2013, Met-
zger et al. 2013), but the advantage with WorldClim is the ready availability of global, high
resolution datasets under past, present and future climatic conditions. We therefore identi-
fied an additional set of 16 climatic and two topographic indices that have been described
in the literature and built a comprehensive dataset that makes these variables accessible for
multiple spatial resolutions and time periods, globally. We named this dataset ENVIREM
(ENVIronmental Rasters for Ecological Modeling).

Using 20 North American vertebrate species as case studies, we then assessed whether or
not the availability of the ENVIREM dataset in the pool of potential variables resulted in
improved species distribution modeling performance. Through the use of several evaluation
metrics, we found that the inclusion of this new dataset led to improvements in a majority
of cases. It is worth noting that an improvement in even a single species’ distribution model
should be viewed as justifying the value of the ENVIREM dataset, as the goal is to provide

a greater range of predictor options.

In testing hypotheses regarding the relationship between diversification and geographic
or environmental gradients, it is becoming increasingly commonplace to quantify relevant
patterns in phylogenetic measures in terms of geographic units, such as grid cells or ecore-
gions. Although phylogenetic indices based on pairwise patristic distance matrices have been

useful for quantifying geographic patterns in phylogenetic relationships and branch length



distributions (Graham and Fine 2008, Tucker et al. 2016), it may be desirable to geograph-
ically represent speciation or net diversification rates. This enables us to more explicitly
test hypotheses that relate diversification processes to patterns of species richness, such as
the latitudinal diversity gradient (Mittelbach et al. 2007). A number of approaches now
exist to estimate species-specific “tip rates” of diversification that can be summarized for
geographic regions. Despite the growing appeal and use of such approaches (Freckleton et
al. 2008, Jetz et al. 2012, Kennedy et al. 2016, Harvey and Rabosky 2017, Quintero and
Jetz 2018, Rabosky et al. 2018), there is significant confusion in the literature regarding
whether these tip rates represent net diversification or speciation rates, and there has, as of
yet, not been a thorough evaluation of the relative performance of available tip rate met-
rics. A commonly utilized metric, the DR statistic (Jetz et al. 2012) is a model-free metric
based on the number of splitting events and internode distances from the root to the tips
of a phylogeny. This metric was originally described as a measure of net diversification rate
(speciation minus extinction rate); however, Belmaker and Jetz (2015) have since found it
to be a better measure of speciation rate. Despite this, studies still continue to use the DR
statistic to represent net diversification rate, a fundamentally different measure.

In Chapter 4, we compared a number of tip rate metrics, including the inverse of the
terminal branch lengths, the node density metric (Freckleton et al. 2008), the DR statistic
(Redding and Mooers 2006, Jetz et al. 2012) and BAMM, a model-based approach (Bayesian
Analysis of Macroevolutionary Mixtures; Rabosky 2014). We evaluated whether or not the
model-free metrics more tightly tracked the rate of speciation or net diversification, and
then evaluated the performance of each tip rate approach across a broad range of simulated
phylogenies. We found that all tip rate metrics are more accurately tracking speciation
rate than net diversification rate. This has implications for the interpretation of large-scale
diversity dynamics, as high speciation rates can be coupled with high extinction rates to lead
to low net diversification rates. In terms of performance, we found that in all tests, BAMM

performed better than the model-free tip rate metrics, exhibiting the greatest accuracy and



the lowest amount of error. The DR statistic also performed reasonably well, and may
perform best for very small clades, where BAMM lacks the statistical power to accurately

detect rate shifts.

Finally, in Chapter 5, we explore the factors that have shaped the latitudinal diversity
gradient (LDG) in marine fishes. This group exhibits a strong richness gradient across
latitudes, with an order of magnitude more species in the tropics than in the polar regions
(Tittensor et al. 2010, Stuart-Smith et al. 2013, Rabosky et al. 2018). Geographic patterns
of species richness across regions are thought to have been influenced by the interplay between
speciation, extinction and dispersal (Ricklefs 2004, Wiens and Donoghue 2004, Goldberg et
al. 2005), as well as by variation in effective carrying capacities (MacArthur 1969, Mittelbach
et al. 2007). Several hypotheses have been proposed to explain how these different factors
may have generated and continue to maintain this richness gradient. One prominent model
is the “out of the tropics” model (Jablonksi et al. 2006), which suggests that speciation
rates are highest in the tropics and that there is a net movement of species out from the
tropics towards the poles. Rabosky et al. (2018) inferred a large phylogeny for ray-finned
fishes and acquired marine fish distribution data for thousands of marine taxa. They found
that, paradoxically, rates of speciation exhibit an inverse relationship with latitude, where
the highest rates are in the regions with the lowest species richness. Although Jablonski’s
“out of the tropics” model involves greater tropical speciation rates, the net movement of
species is still a core feature of the model, thereby marking the tropics as a major source
of diversity shaping the LDG. To test for the predominance of poleward movement of taxa
over evolutionary timescales, we modeled transition rates between tropical, temperate and
polar regions, based on the phylogenetic and geographic dataset of Rabosky et al. (2018).

In addition to latitudinal transitions, there is reason to believe that global source-sink
dynamics in marine fish biogeography might be different for shallow-water and deep-water
species. The shallow waters of the oceans exhibit a strong thermal gradient across latitudes,

but this gradient becomes weaker with ocean depth, as the environment becomes increas-
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ingly homogeneous. Evolutionary transitions from shallow to deep-water are also thought to
be relatively infrequent as they require significant adaptations to the lack of light, greater
pressure and other major environmental differences that deep-water taxa experience (Brown
and Thatje 2014, Priede 2017). Therefore, we might expect that the migration of taxa across
tropical, temperate and polar regions would be different at depth.

We found that rates of dispersal, both in shallow and deep-water, are generally biased in
a poles-to-tropics direction. Each rate of dispersal in deep-water was faster than its shallow-
water counterpart, which lends support to the notion that deep-water species experience
a more environmentally homogeneous landscape, with fewer biogeographic barriers than at
the surface. In particular, we found that rates of dispersal were greatest out of the Arctic
(Briggs 2003, Mecklenburg et al. 2011). This region has a long history of acting as a region
of biotic interchange between major ocean basins, especially before climate cooling in the
Middle Miocene, thus fueling southward species dispersal to temperate regions and to deeper
waters (Mecklenburg et al. 2011).

We additionally found that if we quantify dispersal events, rather than rates, through
ancestral state reconstruction, net movement of species does follow an “out of the tropics”
scenario, both for shallow and deep-water. Taken together, we view the net movement of
species as reflecting tropical inertia, where even with a slow rate of dispersal poleward, the
tremendous richness of the tropics increases the frequency of dispersal events over geologic

time, thus overcoming the expected pattern based on per-lineage rates alone.
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CHAPTER II

Do macrophylogenies yield stable macroevolutionary

inferences? An example from squamate reptiles!

2.1 Abstract

Advances in the generation, retrieval and analysis of phylogenetic data have enabled
researchers to create phylogenies that contain many thousands of taxa. These “macrophy-
logenies” — large trees that typically derive from megaphylogeny, supermatrix, or supertree
approaches — provide researchers with an unprecedented ability to conduct evolutionary
analyses across broad phylogenetic scales. Many studies have now used these phylogenies to
explore the dynamics of speciation, extinction, and phenotypic evolution across large swaths
of the tree of life. These trees are characterized by substantial phylogenetic uncertainty on
multiple levels, and the stability of macroevolutionary inferences from these datasets has
not been rigorously explored. As a case study, we tested whether five recently published
phylogenies for squamate reptiles — each consisting of more than 4000 species — yield congru-
ent inferences about the processes that underlie variation in species richness across replicate
evolutionary radiations of Australian snakes and lizards. We find discordance across the five
focal phylogenies with respect to clade age and several diversification rate metrics, and in

the effects of clade age on species richness. We also find that crown clade ages reported in
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the literature on these Australian groups are in conflict with all of the large phylogenies ex-
amined. Macrophylogenies offer an unprecedented opportunity to address evolutionary and
ecological questions at broad phylogenetic scales, but accurately representing the uncertainty

that is inherent to such analyses remains a critical challenge for our field.

2.2 Introduction

It is increasingly possible to conduct macro- evolutionary analyses across broad phylo-
genetic scales, thanks to the recent development of phylogenies that include thousands of
species. These data sets enable biologists to explore patterns that may be missed at smaller
scales and to test long-standing hypotheses that pertain to continental or global patterns.
For the purposes of this article, we use the term “macrophylogeny” to describe phylogenies
that (i) are typically produced via supermatrix (typically very large and often sparse genetic
data matrices; Driskell et al. 2004), supertree (the grafting of multiple phylogenies to one
another; Sanderson et al. 1998), or megaphylogeny (the use of automated pipelines to as-
semble genetic data matrices; Smith et al. 2009) methods, (ii) include several thousand or
more species-level taxa, and (iii) are sufficiently large that it is challenging or impossible to
adequately account for numerous sources of phylogenetic uncertainty during tree construc-
tion and time calibration. Macrophylogenies provide standardized phylogenetic frameworks
from which clades can be extracted and compared and several such trees have been used by
many hundreds of studies as a starting point for “downstream” comparative analyses. Such
macrophylogenies have been generated for birds (Jetz et al. 2012; Burleigh et al. 2015),
mammals (Bininda-Emonds et al. 2007; Faurby and Svenning 2015), amphibians (Pyron
and Wiens 2011), squamate reptiles (Pyron et al. 2013; Pyron and Burbrink 2014; Tonini
et al. 2016; Zheng and Wiens 2016), ray-finned fishes (Rabosky et al. 2013), flowering
plants (Zanne et al. 2014), and all of life (Hedges et al. 2015; Hinchliff et al. 2015). The
appearance of such large phylogenies for a broad range of taxa within the last few years can

be attributed to advances in sequence data acquisition and alignment (Smith et al. 2009;
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Thomson and Shaffer 2009; Hinchliff and Roalson 2013) and computational improvements
in phylogeny estimation (Zwickl 2006; Stamatakis 2014).

In this article, we ask a simple question: do different macrophylogenies yield congru-
ent macroevolutionary inferences? Our question is motivated by the observation that the
phylogenies listed above have been used by hundreds of subsequent studies involving charac-
ter evolution, biogeography, comparative analysis, and species diversification. We focus on
a single group of organisms—squamate reptiles—because multiple large- scale phylogenies
now exist for the group (Pyron and Burbrink 2014; Wright et al. 2015; Hedges et al. 2015;
Tonini et al. 2016; Zheng and Wiens 2016).

Although most researchers acknowledge that accommodating phylogenetic uncertainty
is important, phylogenies produced by different research groups may differ in fundamental
ways, and these differences may not be captured by simply considering posterior distributions
of phylogenies (when available) produced by a single research group. In addition, phyloge-
netic uncertainty is itself rather poorly defined at the scale of macrophylogenies, even when
researchers have made comprehensive distributions of phylogenies available for subsequent
analyses. For example, a number of studies have used Kuhn et al.’s (2011) distribution of
phylogenetic trees for all mammalian species for macroevolutionary analyses (e.g., Price et
al. 2012; Rolland et al. 2014). However, this distribution of phylogenies accounts for a very
weak form of uncertainty, as the only variation among trees comes from imputation, or the
randomized resolution of nodes using taxonomic constraints, for which there were polytomies
in the original Bininda-Emonds (2007) tree. Moreover, macrophylogenies are often distinct
from smaller phylogenies, in that their size has required researchers to implement strong
constraints on taxon monophyly (e.g., Rabosky et al. 2013; Zanne et al. 2014) or to fix the
topological backbone of their phylogenies (e.g., Jetz et al. 2012). Finally, computational
considerations can lead to challenges in validating tree optimizations due to the size of the
data sets (Misof et al. 2013; Wright et al. 2015). Particular genetic samples can cause

instability in phylogenetic inference (“rogue taxa’”; Thomson and Shaffer 2009) and inference
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complications can arise from the fact that data matrices for macrophylogenies constructed
with supermatrix approaches often contain mostly missing data, leading to the presence of
“tree terraces”, or regions of tree space that cause ambiguity in phylogenetic inference (Misof
et al. 2013; Hinchliff and Smith 2014; Sanderson et al. 2015).

In this article, we compare macroevolutionary correlates of species richness using five
macrophylogenies (Table 1), that have recently been generated for squamate reptiles, to test
whether these phylogenies yield congruent results. The Pyron, Wright, Zheng and Tonini
trees were similarly inferred via supermatrix approaches. Specifically, Wright et al. (2015)
provided a reanalysis of the DNA sequence alignment from Pyron et al. (2013), which they
then further optimized in terms of both topology and branch length, thereby generating
several alternative phylogenies based on the same sequence data, fossil calibrations and time
calibration methodology (in this study, we use their “best” phylogeny with optimized topology
and branch lengths). Hedges et al. (2015) produced a timetree of life (TTOL), which was
generated by taking a tree representation of the NCBI taxonomy and repeatedly applying
time and topological constraints to nodes, iteratively moving from the tips of the tree to
the root. These constraints were taken from a database of phylogenies and divergence times
that Hedges et al. (2015) compiled from the scientific literature. Although the TTOL has
been presented as a resource for studying all of life, a number of studies have used taxonomic
subsets for phylogenetic analysis (see Oliveira et al. 2016; Marin and Hedges 2016; Rolland
and Salamin 2016). Zheng and Wiens (2016) combined the genetic data matrix from Pyron
et al. (2013) with the matrix from another study (Wiens et al. 2012) that sampled up to
44 nuclear genes for 161 squamate species, to generate their phylogeny. Finally, Tonini et
al. (2016) generated a squamate phylogeny for 9574 species, 5415 of which had genetic data,
the rest of which were imputed using PASTIS (Thomas et al. 2013). In this study, we focus
on a posterior distribution of 1000 trees for those taxa with genetic data only, where the
topology has been constrained to the maximum likelihood estimate, but where divergence

times vary.
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Multiple studies have now used these phylogenies as “point estimates” for studying
macroevolutionary patterns (Pyron and Burbrink 2014, Hedges et al. 2015, Scharf et al.
2015), and our goal in this article is to address whether these macrophylogenies yield con-
gruent inferences about evolutionary and ecological processes. As a focal question, we in-
vestigated the determinants of continental-scale patterns of species richness, a conceptual
issue of broad interest to evolutionary biologists and ecologists alike (Mittelbach et al. 2007;
Fritz and Rahbek 2012; Kennedy et al. 2014). We focus on Australia, because it is home
to multiple distinct radiations of squamate reptiles that differ greatly in species richness
(Table 2). To cross-reference these phylogenetic datasets, we also compiled phylogenetic
and biogeographic information on Australian squamate clades from the literature (Table
2). We assessed the influence that dataset choice might have on evaluating two hypotheses
that pertain to drivers of diversity: the relationship between species richness and clade age
and between species richness and diversification rate. Correlations between clade age and
species richness have often been examined to assess support for the “time-for-speciation”
effect (Stephens and Wiens 2003), which would imply that non-equilibrial factors play an
important role in maintaining diversity. The second hypothesis follows from the simple as-
sumption that clades with higher speciation rates should be more diverse than clades with
lower speciation rates, although correlations between speciation and extinction rates can
potentially weaken or even eliminate such relationships.

In evaluating these hypotheses, we show that these phylogenies are characterized by con-
siderable discord in clade age, with important consequences for macroevolutionary inference.
The incongruence that we find appears to be due to many factors, including time-calibration
methodology and topological differences. Phylogenetic uncertainty is typically highly condi-
tional on specific datasets and phylogenetic methodology, and our findings suggest an acute

need to both quantify and conceptualize uncertainty in its absolute sense.
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2.3 Methods

We identified 12 clades of Australian squamates that have radiated in situ by identifying
groups in which the majority of the species occur on the Australian continent (Greer 1979;
Hugall et al. 2008; Rawlings et al. 2008; Sanders et al. 2008; Oliver and Sanders 2009;
Skinner et al. 2011; Vidal et al. 2012; Marin et al. 2013; Rabosky et al. 2014a; Sistrom
et al. 2014). These clades account for roughly 93 percent of squamate species that occur in
Australia (Reptile Database, Uetz and Hosek 2015). For each of these squamate radiations,
we identified analogous clades in each of the five phylogenies, as well as in the literature
(taxa used to define these clades can be found in Table S1, available on Dryad at http:
//dx.doi.org/10.5061/dryad.60js5). In most cases, we were able to identify equivalent
clades across the three phylogenies that represent the Australian radiations. Phylogenies for
each clade and for each phylogenetic dataset can be found in the supplement (Figures S1 —
S12). The ease with which we identified clades across phylogenies can be categorized into
three scenarios.

In the first scenario, we identified in each phylogeny an equivalent node that represents
the Australian radiation, and that contains the same set of species (barring sampling dispar-
ities). This was the case for Agamidae, Carphodactylidae, Diplodactylidae, Pygopodidae,
Sphenomorphinae and Varanidae. In the second scenario, a node was identified that repre-
sents the Australian radiation, but due to topological differences, the group was not always
monophyletic. This situation arose for the Egernia group, the Fugongylus group, Gehyra and
Typhlopidae. Therefore, the node that identifies the clade with the most Australian species
was found, sometimes at the expense of either leaving out Australian species or by including
a few non-Australian species. Details regarding how we selected nodes for these clades can
be found in the supplementary materials (Figures S13 — S16). Finally, the third scenario
involved more problematic clades. For Elapidae and Pythonidae, Australian radiations were
easily identified for the Pyron, Wright, Zheng and Tonini phylogenies, but equivalent nodes

could not be found in the TTOL, where the topology was greatly different from the other
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macrophylogenies, and from the literature on these groups, such that no Australian radiation
node existed. For the TTOL, we chose the node that is the most recent common ancestor
to the species that are thought to belong to the Australian radiation, however, as a result,
other non-Australian species were included (Figures S5 and S9 for Elapidae and Pythonidae,
respectively). When calculating diversification metrics for these two clades from the TTOL,
we used sampled richness rather than known species richness (154 for Elapidae and 78 for
Pythonidae) as these clades no longer represent a subset of the set of species described in
the literature.

Once equivalent clades were identified, we then extracted the crown clade age of each
of these clades, and paired these ages with the known species richness of these clades (as
opposed to species richness as sampled in the phylogenies). Where species richness was not
found in the literature, we relied on species listings from the Reptile Database (Uetz and
Hosek 2015).

We extracted crown clade ages from the five macrophylogenies, and identified crown clade
ages from clade-specific literature (hereafter referred to as the “by-clade literature” dataset;
Table 2), for a total of six datasets. As Tonini et al. (2016) generated a distribution of 10000
trees, we calculated the mean crown clade age across 1000 trees for each Australian radiation
for our analyses, and report both the mean and 95 percent confidence interval (Table 2).
We compared these crown clade ages across phylogenetic datasets and used a t-test to assess
significance in Pearson correlation coefficients.

For each clade and for each dataset, we calculated three diversification metrics (Table
S2). We computed per-lineage net diversification rate, as per equation seven in Magallon
and Sanderson (2001), with a relative extinction rate of 0.5. As these clades might not be
diversifying under a constant-rate scenario, we also estimated speciation rates using BAMM
v2.5 (Rabosky 2014). BAMM is a Bayesian approach which requires an ultrametric phy-
logeny and identifies shifts in diversification, while allowing for temporal rate heterogeneity.

We performed separate BAMM analyses on each Australian squamate clade as extracted
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from each of the three phylogenies. We identified appropriate priors for speciation and ex-
tinction with BAMMtools (Rabosky et al. 2014b), and defined the prior for the distribution
of rate shifts by setting the expected number of shifts at ten. We accounted for incom-
plete sampling by setting the global sampling fraction according to the known richness for
each clade (Table 2), and ran BAMM for 30 million generations (100 million generations for
Sphenomorphinae, the largest clade). As the divergence times (but not the topology) vary
in the Tonini et al. (2016) distribution of trees, we extracted the clades of interest from 100
trees from the posterior distribution, and ran BAMM on each separately. To get an overall
estimate of speciation rate for a given clade from the BAMM analyses, we calculated mean
time-integrated rates across each clade phylogeny, averaged across the posterior distribution
of BAMM results (Rabosky et al. 2014b). For the Tonini dataset, the clade-specific esti-
mate was simply the median time-integrated rate taken from the distribution of 100 such
rates that were estimated for each focal clade. Finally, we calculated the DR statistic, a
species-specific measure of speciation rate at the tips of the tree (Jetz et al. 2012; Belmaker
and Jetz 2015). We predicted that the DR statistic would be more sensitive to variation
in branch lengths near the tips of the tree rather than to uncertainty in crown age. We
calculated the DR statistic on phylogenies pruned to the set of taxa with matching names
across all phylogenies in order to avoid any influence of sampling intensity. We made one
manual adjustment, where we changed the genus of the Australian blindsnakes in all phy-
logenies to Anilios in order to avoid the loss of all Australian blindsnakes in the common
set. For the Tonini dataset, we took the average of the DR statistic, calculated across 1000
trees from the posterior distribution. We then calculated the mean DR statistic for each
Australian radiation. We examined the congruence across datasets in several predictors of
species richness (clade age, diversification rate) and tested whether the relationship between
these macroevolutionary predictors and species richness differed across the focal phylogenies.

Many researchers are interested in the relationship between clade age and species richness

as well as the effect of time on lineage diversification within geographic regions (McPeek
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and Brown 2007; Rabosky et al. 2012, Tank et al. 2015), but the power to detect this
relationship from imperfect data on clade ages has rarely been addressed. We explored the
effects of uncertainty in clade age on our ability to recover true correlations between crown
clade age and species richness by performing a set of power simulations where we empirically
parameterized the error variance in clade age from the variance in ages observed across the
six empirical datasets. We simulated crown clade ages with fixed correlations to the observed
species richness (Table 2), such that the observed variance in age among clades was equal
to the mean among-clade variance across the six datasets in this study (variance = 94.595).
We then computed the variance in ages for each clade across the focal datasets (e.g., elapids:
variance = 182.82). We treated these clade-specific variances as the error distribution for
“true” clade age, and — for each simulation — added noise to each simulated age by drawing
normal random variables from these distributions. We performed this test across 20 true
correlations (1000 simulations per correlation), ranging from zero to 0.95, and tabulated
the frequency with which we observed a significant correlation between (log-transformed)
richness and clade age.

Topological differences across these macrophylogenies might influence comparisons of
crown clade ages, particularly if these differences lead to inconsistencies in how equivalent
clades are identified across phylogenies. Furthermore, topological differences can impact time
calibration and ultimately diversification analyses, as fossils or secondary calibrations will
interact with tree topology in the calibration process. We compared the topologies of the
macrophylogenies examined in this study to each other as well as to a maximum likelihood,
161-taxon phylogeny of squamates that was inferred from up to 46 genes (Reeder et al. 2015).
We pruned all phylogenies to the set of common taxa and calculated pairwise Robinson-
Foulds symmetric distances (Robinson and Foulds 1981) with the phangorn package v2.0.4
(Schliep 2011) in R. This metric determines the total number of branches that would need to
be removed or added in order to transform one phylogeny into the other. We then projected

these pairwise distances into two-dimensional space using multidimensional scaling.
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2.4 Results

2.4.1 Pairwise comparisons of phylogenetic datasets

The pairwise relationships in crown clade ages exhibit large amounts of noise (Figure
1), with some pairs exhibiting negative correlations. Significant positive correlations were
observed in only four of 15 possible comparisons. The TTOL and the by-clade literature
crown clade ages were not found to be significantly positively correlated with any other
dataset. Even if we omit Pythonidae — a clade that was highlighted as being problematic
during the analogous clade selection process — four pairwise comparisons retain negative
correlation coefficients. As Tonini et al. (2016) generated a distribution of trees, we were
also able to compare the by-clade literature clade ages to the 95 percent confidence interval
from the divergence times of the Tonini trees. Only six of the 12 clades showed overlap in
these two datasets (Figure S17).

Pairwise comparisons of diversification metrics exhibit a similar pattern to the compar-
ison of clade ages (Figure 1). This is expected, as crown clade age is a key component of
diversification metrics. Net diversification rates for the Pyron, Wright, Zheng and Tonini
phylogenies were significantly correlated (or nearly so with Wright — Tonini). Net diver-
sification rates for the TTOL and clade literature were also significantly correlated, likely
due to some of this literature being incorporated in the construction of the TTOL. Similar
patterns were found with speciation rates from BAMM (Figure S18), and net diversification
rates were highly correlated with BAMM speciation rates (Pearson’s correlation r = (.88).
Mean clade values for the DR statistic were poorly correlated across phylogenies (Figure
S19), although individual species values showed relatively high correlations (Figure S20).
The DR statistic assumes that phylogenies are fully sampled, but we found that the metric

is relatively robust to levels of incomplete sampling in the focal phylogenies (Figure S21).
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2.4.2 Implications for drivers of diversity

We observed some conflict across the focal datasets regarding the roles of clade age
and diversification rate in the generation of species richness patterns. As the Pyron and
Wright trees generally behaved similarly to Zheng and Tonini, we present a subset of the
datasets (Figure 2), but all are presented in the supplementary material (Figure S22). Only
the Wright phylogeny led to significant relationships between crown clade age and species
richness for Australian squamates (Figure S22a). Net diversification rate had a significant
positive relationship with species richness for the TTOL and by-clade literature datasets
(Figure 2b). Time-variable speciation rates from BAMM exhibited a lack of a relationship
with species richness across datasets (Figure 2¢), and the DR statistic was positively related

to species richness for the TTOL exclusively (Figure 2d).

2.4.3 Power analysis of the richness — clade age relationship

We found that a true correlation between clade age and species richness must be rel-
atively high to detect such a relationship in the presence of estimation error in clade age
(Figure 3). For example, even with a true correlation of 0.8, which would be considered a
strong relationship in the empirical literature, we would have failed to recover a significant
correlation in at least 50 percent of datasets, given the discordance in clade ages across the

focal datasets.

2.4.4 Comparisons of topology

We calculated Robinson-Foulds distances for two sets of trees: the macrophylogenies
presented throughout this study (3487 taxa in common) and these phylogenies in addition
to a backbone phylogeny from Reeder et al. (2015) for 118 taxa in common, representing 113
genera and 57 families. Topological discordance is highlighted across all taxonomic levels in
the first analysis, and across deeper parts of the trees in the second analysis. We found that

for both tree sets, the TTOL and Tonini trees tended to be most distant from each other
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and from all other datasets (Figure 4).

2.5 Discussion

We found that macrophylogenies for squamate reptiles that have been produced by dif-
ferent research groups do not lead to predictable and consistent inferences on the causes of
macroevolutionary patterns. Moreover, divergence times generally do not agree with those
found in the literature on particular squamate groups, nor are they consistent across macro-
phylogenies. Our motivation for this study is the observation that published phylogenies —
with or without uncertainty — are widely used as primary data for “downstream” macroevo-
lutionary analyses involving diversification, phenotypic evolution, and comparative analyses.
It is widely appreciated that calibrating phylogenies to an absolute timescale is a challenging
task (Graur and Martin 2004; Hugall et al. 2007; Lee et al. 2009; Smith et al. 2010), al-
though many significant advances have been made (Pyron 2011; Heath et al. 2014; Warnock
et al. 2015). Additionally, the inference of macrophylogenies poses inherent difficulties be-
cause of the typical sparseness of genetic data for large taxon sets (e.g., Hinchliff and Smith
2014), and the computational challenges of optimizing topologies and branch lengths when
the universe of possible trees is large (but see Smith et al. 2010; Sanderson et al. 2015;
Wright et al. 2015).

We documented a lack of consistency in both absolute and relative clade ages for Aus-
tralian squamates across several recent large phylogenetic datasets and the literature. These
differences can have a significant impact on macroevolutionary analyses, as shown here with
evaluations of the “time-for-speciation” effect and of the potential correlation between species
richness and diversification rates, where conclusions varied across datasets (e.g., Figure 2).
Similar inconsistencies would likely manifest themselves in the application of comparative
methods with trait data. For example, after Pyron and Burbrink (2014) found support for
viviparity as the reconstructed root state in squamates, Wright et al. (2015) showed that an

improved phylogeny — obtained from the same sequence alignment — led to decreased support
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for this controversial finding. If the primary difference between the five macrophylogenies
considered here was simply the relative divergence time of a common set of clades, we would
have observed highly concordant inferences across all datasets. However, this is not what we
find. In the by-clade literature, the 95 percent confidence interval on the crown clade age
has been reported for ten clades. Interestingly, out of 50 comparisons (ten clades and five
macrophylogenies), we find 25 cases where the macrophylogeny clade age is outside of the
95 percent confidence interval from the clade-specific literature.

Even if clade age was a dominant contributor to species richness patterns across the
Australian squamate clades, our analyses suggest that power to infer this relationship would
be relatively low given the variance in clade ages observed across the focal datasets (Figure
3). This lack of statistical power would presumably influence measures of diversification.
The rank ordering of Australian squamate clades by net diversification rate varies consider-
ably across datasets (Figure S23), which would likely impact any analyses relating traits to
diversification across the focal clades.

Why do we observe such discrepancies in clade ages across these datasets? This is a
difficult question to answer as the fossil calibrations, genetic markers, calibration method-
ology, tree topology and error associated with each of these has the potential to lead to
differences in node ages. Pyron and Burbrink (2014) constrained the divergence time for
Lepidosauria, and applied point estimate constraints for six suprafamilial groups, applying
secondary calibrations as inferred by Wiens et al. (2006). Wright et al. (2015) applied
the same constraints as Pyron and Burbrink (2014). Zheng and Wiens (2016) applied 13
primary fossil calibrations, mostly as minimum age constraints, which were summarized and
employed in a previous study (Mulcahy et al. 2012). Tonini et al. (2016) applied uniform
prior distributions on the 95 percent highest posterior densities for ten clade ages reported
by Jones et al. (2013). Pyron and Burbrink (2014), Wright et al. (2015) and Zheng and
Wiens (2016) used treePL (Smith and O’Meara 2012) to render their phylogenies ultrametric

and infer divergence times with these constraints. Tonini et al. (2016) time-calibrated their
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phylogenetic backbone using the independent gamma rates model (Ronquist et al. 2012b)
in MrBayes (Ronquist et al. 2012a), a relaxed-clock model that is similar to the one im-
plemented in BEAST. As Pyron and Burbrink (2014) and Wright et al. (2015) employed
the same genetic data, calibrations and calibration method, we wanted to determine how
much of the differences in clade ages between these two trees is due to treePL optimization
versus tree topology and branch length differences. We therefore re-calibrated the Pyron
phylogeny with the same treePL parameters used by Wright et al. (2015), as provided in
their supplementary material. We found that the resulting re-calibrated Pyron phylogeny
has virtually identical crown clade ages to the Wright phylogeny (Figure 5) and exhibited
very similar patterns and results to the Wright phylogeny in all analyses. Presumably, we
would have found an equivalent result had we recalibrated the Wright phylogeny with Pyron
et al.’s treePL parameters. This indicates that the majority of the Pyron — Wright discrep-
ancies appears to be due to how the different research teams optimized and ran treePL, or to
differences in the versions of treePL that were used for analysis. However, these differences
are consequential: clade ages differ by up to 25 million years between these trees; the rank
order of clades by diversification rate is in conflict; and clade age was a significant predictor
of species richness in Wright but not Pyron.

Although the Pyron, Zheng and Tonini phylogenies have been inferred from similar data
matrices of GenBank sequence data, the information used for time calibration is quite dis-
similar. Zheng and Wiens applied primary fossil calibrations, whereas Pyron and Burbrink
(2014) and Tonini et al. (2016) applied secondary calibrations, as they used clade ages de-
rived in Wiens et al. (2006) and Jones et al. (2013), respectively. If we compare the fossil
calibrations used by the source publications — Wiens et al. (2006), Mulcahy et al. (2012) and
Jones et al. (2013) — only one fossil was shared in all three, two were shared by Wiens et al.
(2006) and Mulcahy et al. (2012), and one was shared by Mulcahy et al. (2012) and Jones
et al. (2013). However, as the Pyron and Tonini phylogenies were calibrated with secondary

calibrations, use of the same fossil did not lead to use of the same date, or calibration of
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the same node. Therefore, despite highly overlapping genetic data, we would not necessarily
expect the node ages to be highly concordant.

Overall, there is little overlap between the set of fossil calibrations used in the Pyron,
Wright, Zheng and Tonini phylogenies and those used in the clade-specific literature (the
TTOL was not calibrated in the same way and therefore cannot be directly compared). The
original clade-specific studies for six out of 12 Australian clades (Diplodactylidae, Carpho-
dactylidae, Pygopodidae, Pythonidae, Typhlopidae, Elapidae) did not use any of the same
fossil calibrations as the macrophylogenies. Skinner et al. (2011), Sistrom et al. (2014) and
Vidal et al. (2012) shared some fossil calibrations with Wiens et al. (2006), and Hugall et
al. (2008) shared a fossil calibration with Jones et al. (2013), however the dates used were
not always the same. Most significantly, a fossil anguimorph, Parviraptor, representing the
split between Iguania and Anguimorpha, was used by Skinner et al. (2011) as well as by
Sistrom et al. (2014) in the calibration of four of the clades (FEgernia, Eugongylus, Sphe-
nomorphinae and Gehyra), and by Wiens et al. (2006), the study from which Pyron and
Burbrink (2014) acquired their age constraints. However, Wiens et al. (2006) applied an age
that is substantially younger (24 million years) than that used by the other studies, and the
identity of Parviraptor has since become controversial (Hugall et al. 2007, Sanders and Lee
2008; Caldwell et al. 2015). The use of this potentially problematic earlier date has therefore
propagated to the Pyron and Wright phylogenies. The overlap in fossil calibrations between
datasets also does not necessarily lead to more or less congruence in clade ages, as Gehyra
and Varanidae, which share calibrations with Wiens et al. (2006) are not particularly more
stable in age across phylogenies. If we were to calculate the standard deviation of the clade
ages across datasets as a rough measure of stability of clade age, Gehyra and Varanidae
would rank tenth and fourth out of 12, respectively.

A worrisome finding is that none of the five macrophylogenies examined here, which
represent all of the available large-scale species-level phylogenies for squamates at the time

of writing, have crown clade ages that correspond to those found in the literature on these
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particular groups of Australian squamates (Figure 1). The lack of congruence with the lit-
erature is such that analyses of diversification or trait evolution will likely be at odds with
the literature on these groups, for example relating to the timing of biogeographic events.
Although detailed analyses focused on particular clades will be necessary to gain a full un-
derstanding of the source of these discrepancies, the minimal overlap in calibrations used
by the macrophylogeny studies in comparison to the clade-specific studies might play a role.
Overall, the TTOL had clade ages that were most consistent with the literature on particu-
lar clades, although the relationship was not statistically significant (Figure 1). This is not
surprising, as the divergence times in the TTOL are taken directly from the literature. How-
ever, in our examination of the TTOL topology, we found many phylogenetic relationships
that are at odds with current understanding of squamate relationships, and this may be due
to the fact that construction of the TTOL started with a tree representation of the NCBI
taxonomy, with the subsequent random resolution of polytomies using a birth-death poly-
tomy resolver (Hedges et al. 2015). Two of the more extreme examples that we identified
are Pythonidae and Elapidae (the two clades in our “third scenario”). It has been established
that Indo-Australian pythons form a monophyletic group (Rawlings et al. 2008; Reynolds
et al. 2014). In the TTOL, we found that the Australian pythons are polyphyletic; the
MRCA of Australian pythons in this tree defines a clade that also contains a biogeograph-
ically disparate set of taxa from another family (Boidae, Figure S9). Similarly, all previous
analyses have suggested monophyly of Australian elapid snakes (Keogh 1998). However, in
the TTOL, we found South American coral snakes, African and Asian cobras, and other
non-Australian elapid species interspersed throughout the Australian elapids, rendering this
group polyphyletic (Figure S5). We found a number of other surprising relationships in
Typhlopidae and Fugongylus-clade skinks. These issues in the TTOL were also captured by
our tree topology analyses, with the TTOL having the greatest Robinson-Foulds distance
from all other trees (Figure 4). Considering that all trees exhibit such large distances with

the TTOL, it is quite possible that other major topological problems exist in the TTOL
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outside of the Australian clades.

It is critical to recognize that “phylogenetic uncertainty”, as presented in the empirical
literature, is a metric that is highly conditional on the data, models, and other constraints
that enter a particular analysis. The distinction between absolute and conditional uncer-
tainty is likely to be especially acute for macrophylogenies, which frequently utilize a number
of constraining assumptions to ensure computational tractability. To illustrate this point,
we compared the Tonini phylogeny with the squamate phylogeny from Reeder et al. (2015).
Tonini et al. (2016) generated a distribution of 10000 trees to accommodate phylogenetic
uncertainty. However, the backbone of these phylogenies is constrained in terms of topology
(but not divergence times) and as a result does not vary across the posterior distribution.
The topology of this constrained backbone is different from Reeder et al. (2015; Figure
4b). Therefore, any diversification or phenotypic evolution study that integrates across the
posterior distribution of trees from Tonini et al. (2016) will not include the topology inferred
by Reeder et al. (2015). A similar situation can be found with recent phylogenies for birds,
where Jetz et al. (2012) also constrained the backbone of their tree to a topology of higher-
level avian relationships that ultimately was not recovered by a more recent genomic study
of avian phylogenetics (Prum et al. 2015). These two cases provide examples of phylogenetic
uncertainty that reflect built-in constraints (in this case, of the backbone) and therefore fail
to capture topologies that ultimately are being found to be more probable with larger or more
complete data matrices. Incorporating uncertainty in backbone topologies into the final dis-
tribution of trees would allow one to account more thoroughly for phylogenetic uncertainty.
Approaches that assess absolute phylogenetic uncertainty can potentially help assuage these
issues (Brown 2014b), including the use of posterior predictive simulations (Brown 2014a),
but the sheer size of the datasets considered here may render such approaches impractical

in many cases.
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2.6 Conclusions

We found that differences in timing and topology across the phylogenies we examined led
to considerable variation in the crown clade ages of Australian squamate groups, both in an
absolute and relative sense. This variation in age, in turn, influences our ability to recover
macroevolutionary determinants of species richness. As Australian squamates belong to dis-
tantly related clades that span the squamate tree, it is very likely that similar problems exist
for comparisons of other groups as well. Depending on the phylogenetic breadth of the group
being analyzed, and the ages of the nodes involved, the severity of such problems might vary,
as the age of nodes of interest can become less reliable with distance from the calibration
nodes if molecular rate variation is high (Duchéne et al. 2014). As we found that the fossil
calibrations used in the clade-specific literature were almost entirely non-overlapping with
the calibrations used by the macrophylogeny studies, it would appear that there is an oppor-
tunity to evaluate and incorporate more of these calibrations into large-scale phylogenetic
analyses for squamates, as incorporating calibration nodes throughout the tree should lead
to more reliable estimates of node ages at both deep and shallow timescales (Duchéne et
al. 2014). Ultimately, however, fossil calibrations need to be critically evaluated in terms
of both their placement and age, and further research into identifying the most appropriate
fossils for time calibration of phylogenies should be a priority (Near et al. 2005; Warnock
et al. 2015). Additionally, the vast majority of sensitivity and simulation-based studies on
divergence dating has focused on the program BEAST (Drummond and Rambaut 2007),
whereas phylogenies like those discussed here are too large to be calibrated with this pro-
gram. Simulation studies are needed to assess the performance and behavior of programs
that can work with large phylogenies, such as treePL (Smith and O’Meara 2012). We sus-
pect that, on account of constraints and other factors commonly used in macrophylogeny
construction, phylogenetic uncertainty is generally more conditional than typically acknowl-
edged. The conditional nature of this uncertainty can give a false sense of confidence in

both phylogenies and inferences derived from those phylogenies, as we have shown with the
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comparison of the macrophylogenies to Reeder et al. (2015).

Ultimately, the issues discussed in this study are likely to be resolved with the careful
evaluation and placement of fossil calibrations, larger, more complete molecular data matri-
ces, and a more rigorous presentation of phylogenetic uncertainty in the absolute sense, for
example through the use of posterior predictive simulations (Brown 2014a). In the mean-
time, we recommend that the Tonini or Zheng phylogenies be used over the Pyron or Wright
phylogenies, as the Wright tree was demonstrated to be an improvement over the Pyron tree,
and the Tonini and Zheng trees were inferred from larger genetic data matrices and improved
fossil information. Additionally, given the method of construction of the TTOL and the dis-
crepancies in topology observed here, we generally do not recommend use of this phylogeny
for downstream comparative analyses involving squamates. Finally, in conducting analyses
with macrophylogenies, concordance with the taxon-specific literature should be evaluated

if the timing of biogeographic events is important for the interpretation of results.
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Figure 2.1: Pairwise comparisons of crown clade ages (Ma) and net diversification rates (species
per million years), for Australian squamate clades in each of six different phylogenetic datasets.
A line of best fit was plotted when the t-test p-value was below 0.05. We generally find noisy
relationships between datasets, with negative trends in several cases.

32



Zheng Tonini by-clade literature
a)
- o L] L]
%] o . o . o .
] _ >
O Te) . 0 . © o
c - L] L] L]
ey . . Y
9O o | o S
;) N e o ~ o ® e ¥ * . °
Q e Y ° e © . ° .,
o _| o o
L] (] &
® T T T T T T 1 @ T T T T T 1 @ T T T T 1
15 25 35 45 15 25 35 15 20 25 30 35
clade age
] o
a >
@ n
c
Ny
(&) o
= <
(@]
S
<
™
0.04 0.08 0.12 0.10 0.15 0.20 0.06 0.10 0.14
net diversification rate
C)
L]
0 o °
0 S .
o “ o
c .
< 0
Q o
;) < ° 3 .
oS oo .
<
™
T T T T T T 1
0.06 0.10 0.14 0.18 0.10 0.15 0.20 0.25 0.06 0.10 0.14

BAMM speciation rate

o
A —

log richness

T 1
0.06 0.08 0.10 0.12 0.05 010 015 020

DR statistic

Figure 2.2: Influence of dataset selection on macroevolutionary hypotheses. Examination of the
influence of dataset selection on (a) the relationship between clade age, (b) net diversification rate,
(c) BAMM speciation rates and (d) the DR net diversification rate statistic on log species richness,
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tenophorus fionni
tenophorus caudicinctus
tenophorus ornatus
tenophorus isolepis
tenophorus scutulatus
tenophorus mckenziei
tenophorus pictus
tenophorus maculatus
tenophorus fordi
tenophorus femoralis
Lophognathus temporalis
Lophognathus longirostris
hlamydosaurus kingii
Lophognathus gilberti
-Amphibolurus muricatus
Amphibolurus norrisi
-Tympanocryptis uniformis
Tympanocryptis intima
Tympanocryptis tetraporophora

Rankinia diemensis
Pogona barbata
Pogona nullarbor
Pogona henrylawsoni
Pogona minima

i tenophorus reticulatus
tenophorus nuchalis
tenophorus cristatus
tenophorus gibba
tenophorus salinarum
tenophorus rufescens
tenophorus vadnappa
tenophorus tjantjalka
tenophorus decresii
tenophorus fionni
tenophorus ornatus
tenophorus caudicinctus
tenophorus isolepis
tenophorus mckenziei
tenophorus scutulatus
tenophorus pictus
tenophorus maculatus
tenophorus femoralis
tenophorus fordi

tenoph maculosus
tenophorus clayi

hlamydosaurus kingii
Lophognathus gilberti
-Amphibolurus muricatus
-Amphibolurus norrisi
Lophognathus longirostris
Lophognathus temporalis
—Rankinia diemensis
Pogona nullarbor
Pogona barbata
Pogona minima
Pogona henrylawsoni
Pogona vitticeps
Pogona minor
Tympanocryptis uniformis
Tympanocryptis tetraporophora
Tympanocryptis inima
Tympanocryptis cephalus
-Tympanocryptis lineata
-Tympanocryptis pinguicolla
Diporiphora superba

Diporiphora linga
Diporiphora winneckei
Diporiphora reginae
Diporiphora valens
Diporiphora pindan

Diporiphora magna
Diporiphora bilineata

Diporiphora australis
Amphibolurus nobbi

Diporiphora lalliae

nobbi
Diporiphora australis
aimanops amphiboluroides
Diporiphora bennettii
Diporiphora albilabris
Diporiphora lalliae
Diporiphora arnhemica

tenophort
:glenophorus maculosus
tenophorus clayi
tenophorus cristatus
tenophorus gibba
tenophorus salinarum
tenophorus reticulatus
tenophorus nuchalis

tenophorus rufescens
tenophorus decresii
tenophorus fionni
tenophorus vadnappa
tenophorus tjantjalka
tenophorus ornatus
tenophorus caudicinctus
tenophorus isolepis
tenophorus mckenziei
tenophorus scutulatus
tenophorus pictus
tenophorus maculatus
tenophorus fordi
tenophorus femoralis

_:Lophognalhus temporalis
Lophognathus longirostris

Tonini et al. 2016

-Physignathus cocincinus

Hypsilurus spinipes
—EHypsilurus boydﬁ
Hypsilurus dilophus

Moloch horridus
helosania brunnea
Hypsilurus modestus
Hypsilurus papuensis
Hypsilurus bruijnii
Hypsilurus nigrigularis
Intellagama lesueurii
tenophorus maculosus
tenophorus clayi

chapmani
garvi:eps
utlerorum
nuchalis
reticulatus
cristatus
gibba
rufescens
tiantalka

fionni
decresii
ornatus
caudicinctus
salinarum
isolepis

cutulatu
pictus
maculatus
femoralis
rdi
hlamydosaurus kingii
Amphibolurus norrisi
-Amphibolurus muricatus
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hlamydosaurus kingii L ilberti
Lophognathus gilberti L urnsi
-Amphibolurus muricatus h longirostris
Amphibolurus norrisi o superba
Rankinia diemensis ) reginae
Pogona nullarbor D
Pogona barbata D linga
Pogona minor Di nagna
Pogona vitticeps D pindan
Pogona henrylawsoni I': valens
Pogona minima D Hobbi 10sa
Tympanocryptis uniformis B ostalis
Tympanocryptis intima D bilineata
-Tympanocryptis tetraporophora D i ides
-Tympanocryptis cephalus D bennettii
-Tympanocryptis pinguicolla Di albilabris
Tympanocryptis lineata D arnhemica
Diporiphora superba Diporiphora lalliae
D oide:
Diporiphora nobbi Pogona nularbor
Diporiphora australis Pogona minima
Diporiphora bennettii Pogona henrylawsoni
Diporiphora albilabris Pogona minor
Diporiphora arnhemica Pogona vitticeps
Diporiphora lalliae Pogona mitchelli
Diporiphora reginae Y tis tetraporophora
Diporiphora linga Y ypu hO“S'O"'"
Diporiphora winneckei Y TP tie s
Diporiphora valens —'; : cephalus
Diporiphora pindan y ocryptis intima
Diporiphora magna y yptis centralis
Diporiphora bilineata y tis lineata

Hedges et al. 2015

Physignathus cocincinus
Physignathus lesueurii
_:Chelosania brunnea
Moloch horridus
Hypsilurus spinipes
Hypsilurus boydii
Hypsilurus dilophus
Hypsilurus modestus
Hypsilurus papuensis
Hypsilurus nigrigularis
Hypsilurus bruijnii
tenophorus maculosus
tenophorus clayi
tenophorus adelaidensis
tenophorus caudicinctus
tenophorus ornatus
tenophorus reticulatus
tenophorus nuchalis
tenophorus cristatus
tenophorus gibba
tenophorus salinarum
tenophorus rufescens
tenophorus fionni
tenophorus decresii
tenophorus vadnappa
tenophorus tjantjalka

tenophorus pictus
tenophorus isolepis
tenophorus scutulatus
tenophorus mckenziei
tenophorus maculatus
tenophorus fordi
tenophorus femoralis
——Chlamydosaurus kingii
-Amphibolurus muricatus
-Amphibolurus norrisi
Lophognathus gilberti
:Lophogna(hus longirostris
Lophognathus temporalis
—Rankinia diemensis
Pogona nullarbor
Pogona barbata
Pogona minor
Pogona vitticeps
- Pogona minima
Pogona henrylawsoni
Tympanocryptis uniformis
Tympanocryptis tetraporophora
Tympanocryptis inima
Tympanocryptis cephalus
-Tympanocryptis pinguicolla
-Tympanocryptis lineata
——Caimanops amphiboluroides
—Diporiphora superba
Diporiphora australis
Diporiphora nobbi
Diporiphora bennettii
Diporiphora albilabris
Diporiphora lalliae
Diporiphora arnhemica
Diporiphora reginae
EDlponphora winneckei
Diporiphora linga
Diporiphora valens
Diporiphora pindan
Diporiphora magna
Diporiphora bilineata

Figure S2.1: Phylogenies for Agamidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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hyllurus kabikabi

hyllurus platurus

hyllurus amnicola
-Saltuarius cornutus
Saltuarius salebrosus
Saltuarius wyberba
Saltuarius kateae
-Saltuarius swaini
-Saltuarius moritzi

rraya occultus

arphodactylus laevis

nderwoodisaurus sphyrurus

nderwoodisaurus milii

lephrurus wheeleri

lephrurus asper

lephrurus amyae

ephrurus sheai

ephrurus levis

ephrurus stellatus

lephrurus vertebralis

lephrurus laevissimus

lephrurus deleani
elma torquata
elma australis
elma labialis
elma concinna
elma borea
elma pax
elma tincta
elma mitella
elma molleri
elma impar
elma nasuta
elma butleri
elma inornata
elma fraseri
elma grayii

phldlocepha\us taeniatus
|a||s burtonis
ialis jicari

letholax gracilis

aradelma orientalis

ygopus nigriceps

ygopus lepidopodus

prasia aurita

prasia striolata

prasia inaurita

prasia parapulchella
-Aprasia pseudopulchella
Aprasia picturata
-Aprasia pulchella

prasia fusca

prasia smithi

prasia repens

elma labialis
elma concinna
elma torquata
elma australis
elma borea
elma tincta
elma pax
elma mitella
elma impar
elma molleri
elma nasuta
elma butleri
elma inornata
elma fraseri
elma grayii

Wright et al. 2015

hyllurus kabikabi
hyllurus platurus
hyllurus amnicola
-Saltuarius cornutus
Saltuarius salebrosus
Saltuarius wyberba
Saltuarius kateae
-Saltuarius moritzi
-Saltuarius swaini

rraya occultus
arphodactylus laevis
nderwoodisaurus sphyrurus
nderwoodisaurus milii
lephrurus wheeleri
lephrurus asper
lephrurus amyae
ephrurus sheai
ephrurus levis
ephrurus stellatus
lephrurus vertebralis
lephrurus laevissimus
lephrurus deleani

phidiocephalus taeniatus
Lialis jicari
ialis burtonis

letholax gracilis
aradelma orientalis
ygopus nigriceps
ygopus lepidopodus
prasia aurita
prasia striolata
prasia inaurita
prasia pseudopulchella
-Aprasia parapulchella
Aprasia picturata
-Aprasia pulchella
prasia fusca
prasia repens
prasia smithi

Delma labialis
Delma concinna
Delma australis
Delma torquata
Delma borea
Delma pax
Delma tincta
Delma mitella
Delma impar
-Delma molleri
Delma butleri
Delma nasuta
Delma inornata
Delma grayii
Delma fraseri

Zheng & Wiens 2016

Phyllurus kabikabi
Phyllurus platurus
Phyllurus amnicola
Saltuarius cornutus
Saltuarius salebrosus
Saltuarius wyberba
Saltuarius swaini
Saltuarius kateae
Saltuarius moritzi

rraya occultus
Carphodactylus laevis
Uvidicolus sphyrurus
Underwoodisaurus milii
Nephrurus wheeleri
Nephrurus asper
Nephrurus sheai
Nephrurus amyae
Nephrurus levis
Nephrurus stellatus
Nephrurus vertebralis
Nephrurus deleani
Nephrurus laevissimus

Ophidiocephalus taeniatus
Lialis burtonis

Lialis jicari

Pletholax gracilis
Paradelma orientalis
Pygopus nigriceps
Pygopus lepidopodus
-Aprasia picturata
-Aprasia pulchella
-Aprasia rostrata

-Aprasia repens

-Aprasia smithi

Aprasia aurita

-Aprasia inaurita

Aprasia striolata
-Aprasia pseudopulchella
-Aprasia parapulchella

Tonini et al. 2016

Phyllurus platurus

Nephrurus laevissimus
-Aprasia picturata
-Aprasia pulchella
-Aprasia repens

Aprasia smithi

-Aprasia aurita

-Aprasia striolata
-Aprasia inaurita

Aprasia parapulchella
-Aprasia pseudopulchella
Paradelma orientalis
Pygopus

Hedges et al. 2015

Orraya occultus
Phyllurus kabikabi
Phyllurus amnicola
Phyllurus platurus
Saltuarius salebrosus
Saltuarius cornutus
Saltuarius wyberba
Saltuarius kateae
Saltuarius moritzi
Saltuarius swaini
Carphodactylus laevis
Uvidicolus sphyrurus
Underwoodisaurus milii
Nephrurus amyae
Nephrurus asper
Nephrurus sheai
Nephrurus wheeleri
Nephrurus stellatus
Nephrurus levis
Nephrurus vertebralis
Nephrurus laevissimus
Nephrurus deleani
Delma labialis

Delma concinna
Delma torquata
Delma australis
Delma pax

Delma tincta

Delma borea

Delma mitella

-Delma molleri

Delma impar

Delma nasuta

Pygopus nigriceps
Pygopus schraderi
Ophidiocephalus taeniatus
Pletholax gracilis
Lialis burtonis
Lialis jicari

Delma labialis
Delma concinna
Delma torquata
Delma australis
Delma borea
Delma pax

Delma tincta
Delma mitella
Delma molleri
Delma impar
Delma nasuta
Delma butleri
Delma haroldi
Delma inornata
Delma petersoni
Delma grayii
Delma fraseri

Delma butleri
Delma petersoni
Delma inornata
Delma grayii
Delma fraseri
Lialis jicari
Lialis burtonis

-Aprasia repens

Figure S2.2: Phylogenies for Carphodactylidae. The node used to define the clade is indicated in
red, and taxa in black occur in Australia.
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{oplodactylus duvauceli
oplodactylus maculatus
oploda
oplodactylus pacificus
oplodactylus stephensi
oplodactylus kahutarae
oplodactylus granulatus
ioplodactylus nebulosus
ioplodactylus cryptozoicus
oplodactylus rakiurae
aultinus gemmeus
aultinus grayii

aultinus elegans

autinus stellatus
aultinus tuberculatus
aultinus manukanus
aultinus rudis
auttinus poecilochiorus
edura robusta

Strophurus taenicauda
eduralesueuri

[————Oedura reticulata

edura monilis
edura tryoni
L— edura coggeri
edura castelnaui
edura gracilis
edura filicipoda.
edura marmorata
edura gemmata
trophurus memillani
trophurus taeniatus
trophurus jeanae
trophurus elderi
trophurus assimilis
trophurus strophurus
Strophurus krisalys
Strophurus wellingtonae
Strophurus ciliaris
Strophurus williamsi
trophurus intermedius
trophurus spinigerus
trophurus rankini

hynchoedura omata
ucasium byrei
ucasium alboguttatum
ucasium damaeum
ucasium maini
ucasium steindachneri
ucasium immaculatum
ucasium wombeyi
ucasium squarrosum
ucasium stenodactylum

ylus chrysosireticus

Wright et al. 2015

Zheng & Wiens 2016

foplodactylus duvauceli
Woodworthia chrysosireticus
Woodworthia maculatus
actylocnemis pacificus

oplodactylus duvauceli
foplodactylus chrysosireticus
oplodactylus maculatus
stephensi
oplodactylus pacificus
lus granulatus
ctylus kahutarae
ioplodactylus nebulosus
ctylus cryptozoicus
oplodactylus rakiurae
aultinus gemmeus
aultinus grayii
aultinus elegans
aultinus stellatus
aultinus tuberculatus
aultinus manukanus
aultinus poecilochlorus
aulinus rudis

iplodactylus granariensis
iplodactylus fulleri
iplodactylus vittatus
iplodactylus tessellatus
iplodactylus galeatus
iplodactylus polyophthalmus
iplodactylus ornatus
iplodactylus conspicilatus
iplodactylus capensis
iplodactylus mitchelli
iplodactylus savagei
iplodactylus pulcher
iplodactylus Klugei

Figure S2.3: Phylogenies for Diplodactylidae. The node
red, and taxa in black occur in Australia.

edura robusta
Strophurus taenicauda
edura lesueu
edura hombifer
edura obscura

[————Oedura reticulata

edura coggeri
edura castelnaui
edura tryoni
edura monilis
edura gracilis
edura filicipoda.
edura gemmata
edura marmorata
trophurus memillani

trophurus taeniatus
trophurus jeanae
trophurus elderi
trophurus strophurus
trophurus assimilis
Strophurus krisalys
Strophurus wellingtonae
Strophurus ciliaris
Strophurus williamsi
trophurus intermedius
trophurus spinigerus
trophurus rankini
hynchoedura omata
ucasium byrei
ucasium alboguttatum
ucasium damaeum
ucasium maini
ucasium steindachneri
ucasium immaculatum
ucasium wombeyi
ucasium stenodactylum
ucasium squarrosum
iplodactylus granariensis
iplodactylus fulleri
iplodactylus vittatus
iplodactylus tessellatus
iplodactylus galeatus

[——Dilodactyus omatus

“Toropuku stephensi
Mokopirirakau granulatus
fokopirirakau kahutarae
fokopirirakau cryptozoicus
fokopirirakau nebulosus
Tukutuku rakiurae

aultinus gemmeus
aultinus grayii
aultinus elegans
aultinus tuberculatus
autinus stellatus
aultinus manukanus
aultinus rudis
aultinus tuberculatus2
Strophurus taenicauda
iebulifera robusta
malosia lesueurii
malosia hombifer
malosia obscura
(——————————Hesperoedura reticulata

edura coggeri
edura castelnaui
edura tryoni
edura monilis
edura gracilis
edura filicipoda.
edura gemmata
edura marmorata

trophurus taeniatus
trophurus elderi
trophurus jeanae
trophurus assimilis
Strophurus strophurus
Strophurus krisalys
Strophurus wellingtonae
Strophurus ciliaris
Strophurus williamsi
trophurus intermedius
trophurus spinigerus
trophurus rankini
hynchoedura omata
casium byrnei
ucasium alboguttatum
ucasium damaeum
ucasium maini
ucasium steindachneri
ucasium immaculatum
ucasium wombeyi
ucasium stenodactylum
ucasium squarrosum
iplodactylus granariensis
iplodactylus vittatus
iplodactylus fulleri

iplodactylus tessellatus
iplodactylus galeatus
iplodactylus ornatus

iplodactylus mitcheli
iplodactylus capensis.
iplodactylus savagei
iplodactylus pulcher
iplodactylus Klugei

iplodactylus capensis.
iplodactylus mitchelli
plodactylus savagei
iplodactylus pulcher
iplodactylus Klugei

T
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Tonini et al. 2016

{oplodactylus duvaucelii

Hedges et al. 2015

Woodworthia maculatus

joplodactylus duvaucelii
joplodactylus kahutarae
joplodactylus nebulosus
Hoplodactylus cryptozoicus
joplodactylus rakiurae
ioplodactylus pacificus
ioplodactylus stephensi
Mokopirirakau granulatus
jaultinus gemmeus
aultinus grayii

jaultinus elegans

Dactylocnemis pacificus
fokopirirakau granulatus
Mokopirirakau kahutarae
Mokopirirakau nebulosus
Mokopirirakau cryptozoicus
“Toropuku stephensi
aultinus gemmeus
aultinus grayii
aultinus elegans
aultinus punctatus laultinus twberculatus
aultinus stellatus
jaultinus manukanus
laultinus rudis
jaultinus poecilochiorus
-Strophurus taenicauda
Strophurus memillani
Strophurus taeniatus
trophurus elderi
trophurus jeanae
Strophurus strophurus
Strophurus krisalys
Strophurus wellingtonae
trophurus ciliaris
trophurus williamsi

Strophurus taenicauda
[ Sebuitera obusia
Strophurus spinigerus

edura tryoni
edura monilis
edura coggeri
edura castelnaui
edura gemmata
edura marmorata
edura gracilis
edura filicipoda. Strophurus ranki

lesperoedura reticulata dura robusta
trophurus taeniatus dura lesueurii
trophurus jeanae dura obscura
twophurus horneri dura thombifer
Strophurus momillani dura reticulata
trophurus robinsoni dura coggeri
trophurus elderi dura castelnaui
tophurus assimilis dura monilis
Strophurus strophurus — dura tryoni
trophurus krisalys dura gemmata
trophurus cillaris dura marmorata
tophurus wellingtonae dura gracls
Strophurus williamsi dura ficipoda

Strophurus intermedius
".,Emus rankini iplodactylus intermedius
trophurus spinigerus ln\ud:a:ldus assimilis
hynchoedura omata hynchoedura omata.
ucasium byrnei

ucasium byrnei
ucasium alboguttatum casium alboguttatum
ucasium maini ucasium maini
ucasium immaculatum ucasium damaeum
ucasium steindachneri ucasium steindachneri
ucasium immaculatum
ucasium wombeyi
ucasium stenodactylum
ucasium squarrosum
iplodactylus granariensis
iplodactylus cf. granariensis
iplodactylus fulleri
iplodactylus vittatus
iplodactylus galeatus
iplodactylus tessellatus
iplodactylus polyophthalmus

jaultinus tuberculatus
aultinus rudis
Jaultinus manukanus
jaultinus stellatus

il

ucasium sienodaclylum
ucasium damaeum
iplodactylus tessellatus
iplodactylus fulleri
iplodactylus galeatus
iplodactylus vitatus
iplodactylus p

iplodactylus cansp.cnmus
iplodactylus Klugei
iplodactylus galaxias

©§

iplodactylus savagei iplodactylus oratus
iplodactylus oratus iplodactylus conspicillatus
iplodactylus polyophthalmus: iplodactylus capensis
iplodactylus mitchelli iplodactylus mitchelli
iplodactylus granariensis iplodactylus savagei

iplodactylus nebulosus
iplodactylus capensis

iplodactylus Klugei
iplodactylus pulcher

used to define the clade is indicated in
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Tribolonotus novaeguineae
Tribolonotus gracilis
Tribolonotus blanchardi
Tribolonotus schmidti
Tribolonotus brongersmai
Tribolonotus ponceleti
Tribolonotus pseudoponceleti
-Corucia zebrata

Egernia saxatilis
Bellatorias major

Egernia depressa

Egernia kingii

Bellatorias frerei

{Egerma richardi
Egernia napoleonis

Egernia luctuosa
Egernia stokesii

Egernia hosmeri

Cyclodomorphus michaeli
Cyclodomorphus casuarinae
Cyclodomorphus branchialis
-Tiliqua adelaidensis

-Tiliqua rugosa

-Tiliqua occipitalis

-Tiliqua nigrolutea

Tiliqua gigas

-Tiliqua scincoides

Egernia striata

Egernia inornata

Egernia multiscutata
Egernia kintorei

Egernia pulchra

Egernia modesta

Egernia margaretae
Egernia whitii

Egernia guthega

Egernia montana

Wright et al. 2015
Tribolonotus novaeguineae
Tribolonotus gracilis
Tribolonotus blanchardi
Tribolonotus schmidti
Tribolonotus brongersmai
Tribolonotus ponceleti
Tribolonotus pseudoponceleti
Bellatorias frerei
Corucia zebrata

Egernia saxatilis

H——Bellatorias major

——Egernia depressa
———Egernia kingii
Egernia hosmeri
{Egerma stokesii
Egernia luctuosa
<EEgerma napoleonis
Egernia richardi

Cyclodomorphus michaeli

i Cyclodomorphus casuarinae
Cyclodomorphus branchialis
-Tiliqua adelaidensis
-Tiliqua rugosa
-Tiliqua occipitalis
-Tiliqua nigrolutea
-Tiliqua scincoides
Tiliqua gigas
Egernia margaretae
Egernia modesta
Egernia whitii
Egernia montana
Egernia guthega
Egernia inornata
Egernia striata
Egernia multiscutata
Egernia kintorei
Egernia pulchra

Tribolonotus novaeguineae
Tribolonotus gracilis
Tribolonotus blanchardi
Tribolonotus schmidti
Tribolonotus brongersmai
Tribolonotus ponceleti
Tribolonotus pseudoponceleti
—Bellatorias frerei
[—Corucia zebrata
Bellatorias major
E@ema saxatilis

Zheng & Wiens 2016

Egernia richardi
Egernia napoleonis
Egernia depressa
Lissolepis luctuosa
Egernia kingii
Egernia stokesii

Egernia hosmeri

-Cyclodomorphus michaeli
Cyclodomorphus casuarinae
Cyclodomorphus branchialis
-Tiliqua adelaidensis

Tiliqua rugosa

-Tiliqua occipitalis

-Tiliqua nigrolutea

-Tiliqua scincoides

Tiliqua gigas

Liopholis margaretae
Liopholis modesta
Liopholis whitii
Liopholis guthega
Liopholis montana
Liopholis striata
Liopholis inornata
Liopholis multiscutata
Liopholis kintorei
Liopholis pulchra

Tribolonotus novaeguineae
Tribolonotus gracilis
Tribolonotus blanchardi
Tribolonotus schmidti
Tribolonotus brongersmai
Tribolonotus pseudoponceleti
Tribolonotus ponceleti

Tonini et al. 2016

-Corucia zebrata

Lissolepis coventryi
Liopholis pulchra
Liopholis modesta
Liopholis margaretae
Liopholis whitii
Liopholis montana
Liopholis guthega
Liopholis multiscutata
Liopholis inornata
Liopholis kintorei
Liopholis striata

-Tiliqua rugosa
<EBellamnas major
Bellatorias frerei

Tiliqua adelaidensis

Cyclodomorphus branchialis

-Cyclodomorphus michaeli

. Cyclodomorphus casuarinae

Cyclodomorphus praealtus

Hemisphaeriodon gerrardii

-Tiliqua nigrolutea

-Tiliqua occipitalis

-Tiliqua scincoides

Tiliqua gigas
Egernia saxatilis
Egernia cunninghami
Egernia striolata
Lissolepis luctuosa
Egernia kingii
Egernia hosmeri
Egernia stokesii
Egernia napoleonis
Egernia richardi
Egernia epsisolus
Egernia depressa
Egernia cygnitos
Egernia eos

Hedges et al. 2015
Tribolonotus novaeguineae
Tribolonotus gracilis
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Figure S2.4: Phylogenies for Egernia. The node used to define the clade is indicated in red, and
taxa in black occur in Australia.
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Figure S2.5: Phylogenies for Elapidae. The node used to define the clade is indicated in red, and
taxa in black occur in Australia.
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Figure S2.6: Phylogenies for Fugongylus. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Figure S2.7: Phylogenies for Gehyra. The node used to define the clade is indicated in red, and
taxa in black occur in Australia.
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Figure S2.8: Phylogenies for Pygopodidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Phylogenies for Sphenomorphinae. The node used to define the clade is indicated

in red, and taxa in black occur in Australia.
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Figure S2.11: Phylogenies for Typhlopidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Pyron & Burbrink 2014
—Lanthanotus borneensis

Varanus griseus
Varanus niloticus
Varanus exanthematicus
Varanus albigularis
Varanus yemenensis
Varanus olivaceus

Varanus keithhornei
Varanus beccarii
M Varanus boehmei
Varanus macraei
‘aranus prasinus

Varanus rainerguentheri
Varanus indicus
Varanus melinus
‘Varanus cerambonensis
Varanus caerulivirens
Varanus jobiensis
Varanus yuwonoi
“Varanus doreanus

Varanus finschi

Varanus marmoratus
Varanus salvator
Varanus rudicollis
Varanus dumerilii
Varanus flavescens
Varanus bengalensis

Varanus mertensi
Varanus spenceri
Varanus giganteus

Varanus gouldii
Varanus salvadorii
Varanus varius
Varanus komodoensis
Varanus glebopalma
Varanus pilbarensis
Varanus tristis
Varanus glauerti
Varanus scalaris
Varanus timorensis
Varanus mitchelli
Varanus semiremex
Varanus brevicauda
Varanus eremius
Varanus caudolineatus
—EVaranus gilleni
Varanus bushi
Varanus kingorum
Varanus primordius
Varanus storri
Varanus acanthurus
Varanus baritji

Wright et al. 2015

—Lanthanotus borneensis

Varanus griseus
Varanus niloticus
Varanus exanthematicus
Varanus yemenensis
Varanus albigularis
Varanus olivaceus

Zheng & Wiens 2016
—Lanthanotus borneensis

Varanus niloticus
Varanus exanthematicus
D évaranus albigularis
Varanus yemenensis

Varanus griseus

Varanus beccarii
1 Varanus boehmei
Varanus prasinus
Varanus macraei
Varanus rainerguentheri
Varanus indicus
Varanus cerambonensis
— Varanus melinus
[—Varanus caerulivirens
Varanus jobiensis
Varanus yuwonoi
Varanus doreanus
Varanus finschi

Varanus dumerilii
Varanus flavescens
Varanus bengalensis
Varanus salvator
Varanus marmoratus
Varanus rudicollis

Varanus mertensi
Varanus spenceri
Varanus giganteus
Varanus rosenbergi
Varanus panoptes

Varanus gouldii
Varanus salvadorii
Varanus varius
Varanus komodoensis
Varanus glebopalma
Varanus pilbarensis
Varanus glauerti
Varanus tristis
Varanus scalaris
Varanus timorensis
Varanus semiremex
Varanus mitchelli
Varanus eremius
Varanus brevicauda
Varanus caudolineatus
—EVaranus gilleni
Varanus bushi
Varanus primordius
Varanus klngorum
-Varanus sto
Varanus bar
Varanus acanthurus

Varanus olivaceus
Varanus beccarii
Varanus keithhornei
Varanus boehmei
(Varanus prasinus
\aranus macraei
Varanus rainerguentheri
Varanus indicus
(Varanus melinus
‘Varanus cerambonensis
Varanus caerulivirens
Varanus jobiensis
Varanus yuwonoi
Varanus doreanus

Varanus finschi

Varanus dumerilii
Varanus flavescens
Varanus bengalensis
Varanus salvator
Varanus rudicollis

Varanus marmoratus
Varanus salvadorii
Varanus varius
Varanus komodoensis

‘Varanus mertensi
Varanus SpEﬂCEI'I
Varanus giganteus
Varanus msenhergl
Varanus gouldii
Varanus panoptes

Varanus glebopalma
Varanus pilbarensis
Varanus tristis
Varanus glauerti
Varanus scalaris
Varanus timorensis
Varanus semiremex
Varanus mitchelli
Varanus eremius
Varanus brevicauda

Varanus caudolineatus
—EVaranus gilleni
Varanus bushi

Varanus kingorum
Varanus primordius
Varanus storri
Varanus acanthurus
Varanus baritji

Tonini et al. 2016

—Lanthanotus borneensis

Varanus griseus
Varanus niloticus
Varanus exanthematicus
Varanus yemenensis
Varanus albigularis

\/aranus salvadorii
Varanus varius
Varanus komodoensis

Varanus spenceri
-Varanus mertensi
Varanus giganteus
Varanus rosenbergi

Varanus gouldii
Varanus panoptes

Varanus glebupalma
Varanus tristis
Varanus glauerti
Varanus scalaris
Varanus timorensis
Varanus semiremex
Varanus mitchelli
Varanus eremius
Varanus brevicauda
Varanus caudolineatus
‘EVaranus bushi
\aranus gilleni
Varanus kingorum
Varanus primordius
Varanus storri
Varanus acanthurus
Varanus baritji
Varanus dumerilii
Varanus flavescens
Varanus bengalensis
Varanus nebulosus
Varanus rudicollis
Varanus cumingi
Varanus marmoratus
(Varanus nuchalis
Varanus togianus
{varanus salvator
/aranus palawanensis
— [ Varanus bitatawa
Varanus olivaceus
Varanus kordensis
Varanus keithhornei
Varanus beccarii
Varanus boehmei
Varanus prasinus
‘Varanus macraei
—Varanus finschi
E\/aranus jobiensis

Varanus doreanus
Varanus yuwonoi
Varanus caerulivirens
Varanus rainerguentheri
Varanus indicus
fVaranus cerambonensis
‘aranus melinus

Hedges et al. 2015

—Lanthanotus borneensis

Varanus griseus
Varanus niloticus
Varanus exanthematicus
Varanus yemenensis
Varanus albigularis
Varanus marmoratus
Varanus rudicollis
Varanus salvator
Varanus dumerilii
Varanus flavescens
Varanus bengalensis
Varanus olivaceus
Varanus beccarii

Varanus rainerguentheri
Varanus indicus
Varanus cerambonensis
Varanus melinus
Varanus caerulivirens
Varanus jobiensis
Varanus yuwonoi
Varanus finschi

Varanus doreanus

Varanus salvadorii
Varanus komodoensis
Varanus varius
Varanus spenceri
-Varanus mertensi
Varanus giganteus
Varanus rosenbergi
Varanus panoptes
Varanus gouldii

Varanus pilbarensis
Varanus glauerti
Varanus tristis
Varanus scalaris
Varanus timorensis
— Varanus semiremex
Varanus mitchelli
Varanus caudolineatus
Varanus bushi
Varanus gilleni
_EVaranus eremius

Varanus brevicauda
Varanus primordius
Varanus kingorum
-Varanus storri
Varanus bari
Varanus acanthurus

Figure S2.12: Phylogenies for Varanidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Pyron + Tonini + TTOL Wright + Zheng

—< Tribolonotus < Tribolonotus

Bellatorias frerei

Corucia zebrata ;
dispersal to Melanesia Corucia zebrata

Egernia Egernia

Figure S2.13: Geographic affinities of species belonging to, and closely related to the Egernia
group clade. The node highlighted in red is the node that was used to define the Australian
radiation. Different biogeographic scenarios are inferred from different phylogenies, such as the
dispersal of Corucia zebrata out of Australia with the Wright and Zheng phylogenies. Clades and
species in gray occur in Australia.
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Pyron + Zheng + Tonini Wright TTOL

Gehyra membranacruralis
SE Asia + Pacific (Melanesia)
SE Asia + Pacific

SE Asia + Pacific

SE Asia + Pacific SE Asia + Pacific

— SE Asia + Pacific

Gehyra membranacruralis
(Melanesia)

Australia

dispersal to Melanesia

Australia Gehyra membranacruralis Australia

Australia

Figure S2.14: Geographic affinities of species belonging to, and closely related to the Gehyra
clade. The node highlighted in red is the node that was used to define the Australian radiation.
Different biogeographic scenarios are inferred from different phylogenies, such as the dispersal of
Gehyra membranacruralis out of Australia with the Wright phylogeny.
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Pyron + Wright Zheng

Philippines Philippines
S Asia S Asia
SE Asia
Australasia
———————————————————————"""1 Papua New Guinea
. Ramphotyphlops polygrammicus
Ramphotyphlops polygrammicus X

Australia < Australia

Tonini TTOL

Philippines

S Asia
Africa

SE Asia

Lemuriatyphlops microcephalus

————————— | Papua New Guinea
Ramphotyphlops polygrammicus ———————————— ] SAsia
(Indonesia) — 1 Papua New Guinea

Australia
Australia F————""|sEAsa
e — Rampho(tjyphlops polygrammicus
(Indonesia)
— Australia

Figure S2.15: Geographic affinities of species belonging to, and closely related to the Typhlopidae
clade. The node highlighted in red is the node that was used to define the Australian radiation. Dif-
ferent biogeographic scenarios are inferred from different phylogenies. In the TTOL, the Australian
blind snakes are separated into two clades. Clades in gray occur on the Australian mainland.
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Pyron Wright
Australia (2) Australia (2)
Africa Africa

Australia (4)

S. Pacific (7)
New Zealand

Australia (58)
New Caledonia

S. Pacific (3)

New Zealand

Australia (59)

New Caledonia

A

Zheng Tonini
New C i itius Australia (2)
p: Caledonia/Mauritius Africa »
S. Pacific (3) Africa ~Mauritius
Australia (2)
New Zealand

Australia (58)

New Caledonia

S. Pacific
S. Pacific (3)

New Zealand

Australia (72)

New Caledonia

Al

TTOL

S. Pacific (5)
Africa
Australia (2)

Australia (56)

New Zealand

New Caledonia

Al

Figure S2.16: Geographic affinities of species belonging to, and closely related to the Eugongylus
group clade. The node highlighted in red is the node that was used to define the Australian
radiation. Different biogeographic scenarios are inferred from different phylogenies, specifically
the phylogenetic placement of non-core-clade Australian species. Species numbers in parentheses
indicate the number of Australian species. Clades in gray occur on the Australian mainland.
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crown clade age (Ma)
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|
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Agamidae —
Carphodactylidae —
Diplodactylidae —
Egernia —

Elapidae —
Eugongylus —
Gehyra —
Pygopodidae —
Pythonidae —
Sphenomorphinae —
Typhlopidae —
Varanidae —

Figure S2.17: Comparison of crown clade ages between clade literature and Tonini et al. Clade
ages from the by-clade literature are shown as red points, and are compared to the 95 percent
confidence interval of crown clade ages from Tonini et al. (2016), as summarized from 1000 trees.
In a majority of cases, the divergence dates from the clade-literature are outside of, or close to the
edge of the 95 percent confidence intervals.
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Figure S2.18: Pairwise comparisons of BAMM speciation rates for Australian
Pearson correlation statistics are displayed in the top left corner of each plot.
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Figure S2.19: Pairwise comparisons of the DR statistic, averaged by Australian squamate clade.
Pearson correlation statistics are displayed in the top left corner of each plot.
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Figure S2.20: Pairwise comparisons of the per-species DR statistic for all Australian taxa. Cor-
relation coeflicients are listed in the top left corner.
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Figure S2.21: Comparison of per-species DR statistic for Australian taxa from complete and
pruned trees. The pruned phylogenies were redued to a common set of 3487 taxa. Correlation
coefficients are listed in the bottom right corner of each plot.
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Figure S2.22: Examination of the influence of dataset selection on the relationship between species
richness and various predictors: a) the relationship between clade age, (b) net diversification rate,
(c) BAMM speciation rates and (d) the DR net diversification rate statistic on log species richness.
Each column represents the same phylogenetic dataset. BAMM speciation rates and the DR statistic
are not available for the by-clade literature as separate, well-sampled clade phylogenies were not
available. The line of best fit is only plotted for those relationships that are statistically significant,
according to linear regression.
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Figure S2.23: Pairwise comparisons of the rank order positions of different clades in terms of net
diversification rate. Best-fit lines have been plotted when the Spearman’s rank correlation test was

statistically significant (p < 0.05).
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clade dataset cladeAge richness net div. rate BAMM A DR

Agamidae Pyron 39.74 98 0.09  0.082 0.066
Wright 51.84 0.07  0.064 0.048
Zheng 37.94 0.10 0.08 0.066
Tonini 38.74 0.09 0.08 0.068
TTOL 25.30 0.14 0.142 0.115
cladeLiterature 22.00 0.16

Carphodactylidae ~ Pyron 36.35 30 0.07  0.085 0.064
Wright 42.58 0.06 0.076 0.059
Zheng 45.19 0.05 0.067 0.048
Tonini 40.13 0.06 0.084 0.059
TTOL 44.15 0.06  0.082 0.063
cladeLiterature 33.40 0.07

Diplodactylidae Pyron 35.34 77 0.10 0.08 0.062
Wright 36.70 0.09 0.082 0.064
Zheng 46.81 0.07  0.056 0.042
Tonini 38.88 0.09 0.077 0.06
TTOL 35.70 0.10 0.079 0.068
cladeLiterature 34.50 0.10

Egernia Pyron 44.01 48 0.07  0.059 0.036
Wright 52.37 0.06 0.054 0.036
Zheng 29.43 0.10  0.092 0.06
Tonini 23.76 0.12  0.113 0.083
TTOL 26.60 0.11  0.104 0.053
cladeLiterature 18.00 0.16

Elapidae Pyron 28.13 164 0.15 0.152 0.091
Wright 53.47 0.08 0.077 0.043
Zheng 29.44 0.14 0.147 0.08
Tonini 26.04 0.16  0.143 0.095
TTOL 28.20 0.14  0.152 0.198
cladeLiterature 11.50 0.36

Eugongylus Pyron 41.54 113 0.09  0.091 0.063
Wright 50.21 0.07  0.075 0.05
Zheng 37.00 0.10 0.082 0.056
Tonini 24.03 0.16 0.143 0.102
TTOL 32.50 0.12  0.115 0.08
cladeLiterature 20.00 0.19

Gehyra Pyron 39.25 19 0.05 0.071 0.056
Wright 40.49 0.05 0.064 0.052
Zheng 50.31 0.04  0.059 0.043
Tonini 31.50 0.06 0.076 0.066
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TTOL 37.56 0.05  0.069 0.054
cladeLiterature 11.24 0.18

Pygopodidae Pyron 29.89 44 0.09 0.09 0.066
Wright 34.62 0.08 0.075 0.056
Zheng 38.81 0.07  0.07 0.051
Tonini 26.90 0.10 0.12 0.081
TTOL 31.69 0.09 0.077 0.06
cladeLiterature 31.30 0.09

Pythonidae Pyron 17.83 28 0.13  0.159 0.08
Wright 25.36 0.09 0.109 0.058
Zheng 16.19 0.15 0.177 0.088
Tonini 11.50 0.21 0.264 0.121
TTOL 72.98 0.05  0.062 0.081
cladeLiterature 35.00 0.07

Sphenomorphinae  Pyron 34.24 254 0.13  0.105 0.097
Wright 50.37 0.09  0.065 0.056
Zheng 33.65 0.14  0.099 0.086
Tonini 38.60 0.12  0.092 0.09
TTOL 36.50 0.12 0.114 0.101
cladeLiterature 24.24 0.19

Typhlopidae Pyron 27.87 42 0.10 0.138 0.06
Wright 38.55 0.07  0.093 0.041
Zheng 32.69 0.09 0.12 0.053
Tonini 16.36 0.17 0.179 0.112
TTOL 33.69 0.08 0.1 0.081
cladeLiterature 21.90 0.13

Varanidae Pyron 22.85 30 0.11  0.096 0.077
Wright 31.33 0.08 0.07 0.058
Zheng 28.01 0.09 0.076 0.059
Tonini 16.39 0.15 0.141 0.111
TTOL 29.97 0.08 0.119 0.092
cladeLiterature 27.04 0.09

Table S2.2: Diversification metrics for all clades and all phylogenetic datasets. “Clade age” is in
millions of years, “richness” is in number of species, “net div. rate”, “BAMM X\’ and “DR stat” are in
number of species per million years. “Net div. rate” is net diversification rate, assuming a relative
extinction rate of 0.5.
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CHAPTER III

ENVIREM: an expanded set of bioclimatic and
topographic variables increases flexibility and improves

performance of ecological niche modeling'

3.1 Abstract

Species distribution modeling is a valuable tool with many applications across ecology
and evolutionary biology. The selection of biologically meaningful environmental variables
that determine relative habitat suitability is a crucial aspect of the modeling pipeline. The
19 bioclimatic variables from WorldClim are frequently employed, primarily because they are
easily accessible and available globally for past, present and future climate scenarios. Yet,
the availability of relatively few other comparable environmental datasets potentially limits
our ability to select appropriate variables that will most successfully characterize a species’
distribution. We identified a set of 16 climatic and two topographic variables in the litera-
ture, which we call the ENVIREM dataset, many of which are likely to have direct relevance
to ecological or physiological processes determining species distributions. We generated this
set of variables at the same resolutions as WorldClim, for the present, mid-Holocene, and

Last Glacial Maximum (LGM). For 20 North American vertebrate species, we then assessed

1Title, P.O. and Bemmels, J.B. (2017). ENVIREM: an expanded set of bioclimatic and topographic
variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, 291-307.
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whether including the ENVIREM variables led to improved species distribution models com-
pared to models using only the existing WorldClim variables. We found that including the
ENVIREM dataset in the pool of variables to select from led to substantial improvements in
niche modeling performance in 13 out of 20 species. We also show that, when comparing mod-
els constructed with different environmental variables, differences in projected distributions
were often greater in the LGM than in the present. These variables are worth consideration
in species distribution modeling applications, especially as many of the variables have direct
links to processes important for species ecology. We provide these variables for download at
multiple resolutions and for several time periods at envirem.github.io. Furthermore, we have
written the ‘envirem’ R package to facilitate the generation of these variables from other

input datasets.

3.2 Introduction

The ability to model a species’ geographic distribution, given occurrence records and
environmental information, is based on the assumption that abiotic factors directly or indi-
rectly control species distributions (Austin 2002). Species distribution modeling (SDM) has
led to a surge in research on topics such as species’ potential invasiveness (Thuiller et al.
2005), the impacts of climate change on species distributions (Thuiller 2004, Hijmans and
Graham 2006, Morin and Thuiller 2009), the relative importance of various predictors in
determining species range boundaries (Glor and Warren 2011), historical reconstructions of
species distributions (Svenning et al. 2011), conservation applications such as the identifi-
cation of suitable habitats for undiscovered populations or reintroductions (Martinez-Meyer
et al. 2006), analysis of broadscale patterns of species richness (Pineda and Lobo 2009),
and spatially-explicit demographic simulations (Chan and Brown 2011, He et al. 2013).
The ability to conduct such analyses at increasingly broad taxonomic and spatial scales has
largely been facilitated by successful efforts to digitize museum specimen records, georef-

erence associated localities (Guralnick et al. 2006, Ellwood et al. 2015) and provide this
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information in a standardized format through easily accessible data portals (Constable et al.
2010, Wieczorek et al. 2012). While progress has been made in these efforts to make high
quality occurrence records widely available (e.g. Global Biodiversity Information Facility,
www.gbif.org), additional progress is still needed in providing and exploring the utility of
different environmental datasets for modeling geographic distributions. In particular, it is
unknown if currently available and widely used environmental datasets are sufficient and
optimal for modeling distributions of terrestrial species.

The generation and projection of species distribution models requires data layers of en-
vironmental information that provide discriminatory power regarding presence and absence
of species. As we typically do not know the true distribution of a species, it can be chal-
lenging to determine when an appropriate set of environmental variables has been chosen.
Ideally, these variables should have direct relevance to ecological or physiological processes
determining species distributions, but for many species this information is not generally
available (Alvarado-Serrano and Knowles 2014). Correlative niche modeling approaches that
rely on statistical associations between species occurrences and environmental variables are
frequently used (Peterson et al. 2011, Alvarado-Serrano and Knowles 2014), in which the
environmental determinants of habitat suitability are not known a priori. The 19 bioclimatic
variables from WorldClim (Hijmans et al. 2005) are perhaps the most broadly employed set
of environmental data layers for this purpose, on account of their high resolution, global
coverage, and availability for both historical and future climate scenarios. However, the bi-
ological suitability of these bioclimatic variables and other such environmental datasets for
modeling the distribution of the species in question is often not thoroughly assessed.

In the absence of specific knowledge about the environmental variables most likely to
determine species distributions, it may be tempting to construct models using a large num-
ber of predictor variables, but such models run the risk of poor performance. For example,
models built with several highly collinear variables are at an increased risk of overfitting

and overparameterization (Dormann et al. 2012, Wright et al. 2014), and may behave
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unexpectedly when projected to other time periods or geographic regions where they may
encounter combinations of variables that have no analog in model training (Dormann et al.
2012, Owens et al. 2013, Warren et al. 2014). Additionally, whether large sets of environ-
mental variables or smaller subsets of environmental data are used can greatly impact model
predictions (Rédder et al. 2009, Synes and Osborne 2011, Braunisch et al. 2013). Vari-
able reduction approaches can reduce model overfitting and improve model transferability
(Warren et al. 2014, Wright et al. 2014), yet the relative merits of various approaches are
poorly characterized and continue to be explored (Aradjo and Guisan 2006, Braunisch et
al. 2013). In general, variables may be reduced either statistically, or by selecting variables
from ecological theory that are likely to be important given the physiology of the organism in
question (Kearney et al. 2008, Doswald et al. 2009, Rédder et al. 2009, Synes and Osborne
2011).

Given the recognized importance of variable selection in constructing ecological niche
models (Synes and Osborne 2011, Braunisch et al. 2013), increasing the availability of easily
accessible datasets of environmental variables that may be ecologically and physiologically
important to a variety of organisms should be a priority for improving flexibility and perfor-
mance of SDM. Several environmental datasets are already available with which to perform
SDM (e.g. WorldClim (Hijmans et al. 2005), PRISM (www.prism.oregonstate.edu; Daly
et al. 2002), ClimateNA (Wang et al. 2012, Hamann et al. 2013, Wang et al. 2016)),
but not all of these datasets are transferable among time periods or geographic regions or
easily integrated with other variables. Additional environmental data layers that conceptu-
ally complement and are formatted for easy use alongside the 19 bioclimatic variables from
WorldClim (Hijmans et al. 2005) — one of the most widely used environmental datasets
for SDM — would broaden the options available for selection of environmental variables
(whether based on ecological theory or through statistical variable reduction) and may lead
to improved model performance for some species. Despite the description in the literature

of formulae for many such variables that could be computed for particular regions or time
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periods (see Synes and Osborne 2011 as an example), the use of such variables is limited to
those researchers with the GIS skills necessary to generate these datasets and the desire to
assemble them from several disparate sources.

To help satisfy this need, we introduce the ENVIREM dataset (ENVIronmental Rasters
for Ecological Modeling): specifically, we provide a set of biologically relevant climatic and
topographic variables (all of which have previously been described in the literature) at mul-
tiple resolutions and time periods. The variables we include were selected in particular
because we hypothesize they are likely to have direct relevance to ecological or physiolog-
ical processes determining distributions of many species. They should therefore facilitate
ecologically-informed variable selection, and may also result in improved model performance
using statistical variable-thinning approaches. As these variables are intended to comple-
ment the existing WorldClim dataset (Hijmans et al. 2005), we provide the ENVIREM
dataset at the same extents and resolutions as WorldClim, for the present, mid-Holocene,
and Last Glacial Maximum (LGM). We also provide an R package (R Core Team) that will
enable users to generate these variables from primary sources for any resolution, geographic
area, or time period, including for future time periods of interest (for which we have not
provided static rasters due to the large number of climate change models in existence that
are continually updated as climate-change projections improve). Finally, through several
case studies, we show that the ENVIREM variables can improve model performance and be
valuable additions to the set of variables that are currently widely used in species distribution

modeling.

3.3 Methods

We compiled a list of biologically relevant climatic variables (Tablel) that could be derived
from monthly temperature and precipitation data (WorldClim ver. 1.4, Hijmans et al. 2005)
and monthly extraterrestrial solar radiation (available from www.cgiar-csi.org). These

variables are described by Thornthwaite (1948), Daget (1977), Hargreaves and Hargreaves

69


www.cgiar-csi.org

(1985), Willmott and Feddema (1992), Vorosmarty et al. (2005), Zomer et al. (2006, 2008),
Rivas-Martinez and Rivas-Saenz (2009), Sayre et al. (2009) and Metzger et al. (2013). We
additionally produced two elevation-derived topographic variables, terrain roughness index
(Wilson et al. 2007) and topographic wetness index (Boehner et al. 2002, Conrad et al.
2015), generated from a global 30 arc-second elevation and bathymetry digital elevation
model (Becker et al. 2009). All variables were produced at the same resolutions as the
bioclimatic variables that are currently available through WorldClim: 30 arc-seconds, and
2.5, 5 and 10 arc-minutes. Topographic variables were produced at a 30 arc-second resolution,
and subsequently coarsened to match the lower resolutions, rather than constructed directly
from lower-resolution elevation data. As such, the topographic variables of large grid cells
at coarser scales represent the average fine-scale (i.e. 30 arc-second) values within each
grid cell. Calculating the topographic variables in this manner was particularly important
to avoid loss of information regarding terrain roughness index when scaling up to coarser
resolutions. For the two climate variables related to growing degree-days (GDD), we note
that GDD are accumulated on a daily basis, whereas our estimates are approximations based
on mean monthly temperature (Table 1).

We generated rasters for all variables at multiple spatial resolutions for current climatic
conditions, the mid-Holocene (approximately 6000 yr ago) and the Last Glacial Maximum
(LGM, approximately 22000 yr ago). For the paleoclimate datasets, we generated variables
from three global general circulation models (GCMs): the Community Climate System Model
ver. 4 (CCSM4, Collins et al. 2006), the Model for Interdisciplinary Research On Climate
(MIROC-ESM, Hasumi and Emori 2004), and the model of the Max Planck Inst. for Meteo-
rology (MPI-ESM-P, Stevens et al. 2013). Fine-scale monthly rasters for these paleoclimate
scenarios were generated from coarse-resolution GCM output using the delta downscaling
method (Ramirez-Villegas and Jarvis 2010, and www.worldclim.org/downscaling) and are
available with the WorldClim dataset. As the formulae for some ENVIREM variables require

mean monthly temperature, which is available from the WorldClim dataset in the present
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but not for other time periods, we calculated mean monthly temperature in all time periods
as the mean of the maximum and minimum temperatures. In the present, this calculation is
highly correlated with the available mean monthly temperatures (Pearson correlation coef-
ficient > 0.99). All raster manipulation and variable creation was carried out in R with the
raster package 2.5-2 (Hijmans et al. 2016).

Additional variables derived from and complementing the 19 bioclimatic variables from
WorldClim (Hijmans et al. 2005) will only be of value in SDM applications if they represent
information not currently contained in the 19 bioclimatic variables. To assess the degree of
novelty of these new variables, we calculated the Pearson correlation coefficient between each
of the ENVIREM variables and the 19 bioclimatic variables from WorldClim, at a global
scale (10 arc-minute resolution), and also by biogeographic realm (Olson et al. 2001, Table
2, Table S2), for both the present and the past (CCSM4 global circulation model). Similarly,
we also calculated correlation coefficients between terrain roughness index and topographic
wetness index with elevation (Table 3) to explore whether these variables contain topographic

information not captured by elevation alone.

3.3.1 Case studies

To investigate how the inclusion of the ENVIREM variables could affect the performance
and predictions of species distribution models, we generated species distribution models with
Maxent ver. 3.3.3k (Phillips et al. 2006) for 20 North American terrestrial vertebrate species,
using the curated occurrence dataset from Waltari et al. (2007). Specifically, we generated
niche models using three different sets of initial environmental predictor variables. Firstly,
we generated models using only the 19 bioclimatic variables from WorldClim (referred to
hereafter as the bioclim model). Secondly, we built models using the 19 bioclimatic vari-
ables plus 14 of the climatic ENVIREM variables (hereafter referred to as the bioclim +
envirem-clim model). Finally, we generated niche models with the 19 bioclimatic variables

and 16 ENVIREM variables, including 14 climatic variables and the two topographic vari-
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ables (the bioclim + envirem-all model). Note that none of the models, including bioclim +
envirem-all, included elevation as a predictor variable. We chose not to include two variables,
aridityIndexThornthwaite as it was conceptually redundant with the climaticMoisturelndex,
and monthCountByTempl0 because it is a categorical variable that would not have been
amenable to the variable selection procedure that we applied. Finally, we did not generate
any models using only the ENVIREM variables without the 19 bioclimatic WorldClim vari-
ables, as the ENVIREM variables are intended to supplement, not replace, the bioclimatic
variables. All distribution modeling was performed in the dismo package ver. 1.0-15 in R
(Hijmans 2016) from rasters at a 2.5 arc-minute resolution. This resolution is likely a rea-
sonable match to the locational accuracy of the species occurrences, as these come primarily
from museum collections, and is the resolution used for SDM in the original study (Waltari
et al. 2007).

To construct each model, we first spatially thinned the occurrence records, retaining
only occurrences that were greater than ten kilometers in proximity to one another, using
the spThin package in R (Aiello-Lammens et al. 2015). For each species individually, we
defined the model-training region by adding a 1000 km buffer around all occurrence records
(Figure S1). All occurrence data and rasters were transformed and projected to the North
America Albers Equal Area Conic projection, as it has been shown that a failure to account
for changing grid-cell area across latitudes can negatively impact SDM results (Budic et al.
2015). We statistically thinned variables to include in each model for each species using the
‘corSelect’ function in the fuzzySim package ver. 1.6.3 in R (Barbosa 2015) where each pair
of variables that is correlated above a set threshold is tested against the response variable
(species presence and absence) with a bivariate model. The variable with a better fit as
measured with AIC is selected while the other is dropped, and the procedure is repeated
until all pairwise correlations are below the threshold. We applied a correlation threshold of
0.75, and generated pseudo-absences from 10000 randomly sampled points throughout the

training region (excluding grid cells with known occurrence records) because there were no
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true absence records in our data.

For each species, we measured SDM performance for the bioclim, the bioclim + envirem-
clim and the bioclim + envirem-all models (with reduced sets of variables via statistical
thinning as described above, Table 4) using three threshold-independent evaluation metrics:
AUCrgst, AUCprrr, and the size-corrected Akaike information criterion (AIC.). AUCTgsT
is a metric that measures the discriminatory ability of the species distribution model at test
localities withheld during model construction, and thus represents the ability of the model
to predict species presence (Peterson et al. 2011). AUCppr is the difference between the
AUC calculated from training localities and AUCrggt, and is a measure of model overfitting,
with higher values of AUCppr representing more overfit models (Warren and Seifert 2011).
AIC, is an information theoretic metric that balances model fit against degrees of freedom
from parameterization (i.e. model complexity), such that lower values of AIC. correspond to
models with better goodness-of-fit accounting for model complexity (Burnham and Anderson
2004, Warren and Seifert 2011). For AUC metrics, we partitioned calibration and evaluation
data via the masked geographically-structured partitioning scheme described by Radosavlje-
vic and Anderson (2014), implemented in the R package ENMeval ver. 0.2.1 (Muscarella et
al. 2014), which leads to more realistic and less biased estimates of SDM performance than
the more traditionally used random k-fold partitioning scheme. This partitioning scheme
divides occurrence records into four geographic regions with an equal number of occurrence
records, and calculates AUC metrics as the average of those metrics calculated individually
using each of the four possible partitions of geographic regions into one region of evaluation
data and three regions of calibration data. AIC, was calculated from the full, non-partitioned
models.

The complexity of SDMs built with Maxent can be adjusted with the regularization
multiplier, increased values of which lead to less parameterized models, as well as with the
inclusion of additional feature classes (i.e. transformations of the original predictor variables)

that allow for increasingly complex models. We evaluated distribution models across different
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sets of permissible feature classes, and for each of these, across a range of regularization
multiplier values. The evaluation metrics described above were used to determine optimal
feature class and model complexity for each model individually (Muscarella et al. 2014).

After selecting optimal feature class and model complexity for each model, we also com-
pared performance of the optimal models across each of the three variable sets (i.e. bioclim,
bioclim + envirem-clim, and bioclim + envirem-all) using the same evaluation metrics. The
AUC metrics describe absolute performance of the models (ranging from 0 to 1). AIC,,
however, describes relative performance of candidate models. For this metric, we define a
model as having substantial support over another if it has a difference in AIC. greater than
or equal to four, as models with AIC, values more similar than this are generally considered
to have equivalent support (Burnham and Anderson 2004). Although we present results for
all evaluation metrics, we ultimately favor AIC, for selecting the optimal model and variable
set for each species, as the focus of our case studies is on model comparison, and AIC, has
been shown to perform better than AUC metrics according to a range of criteria, including
the selection of optimal levels of model complexity, model transferability in space and time,
and the relative ranking of variable importance (Warren and Seifert 2011, Warren et al.
2014, Moreno-Amat et al. 2015).

Theimpact of using different environmental variables in niche modeling may not be ap-
parent if two sets of variables lead to similar projected distributions in the present. However,
if the degree of correlation between two different sets of variables differs in the past compared
to in the present, then variable choice might have a greater effect on SDM projections to
other time periods. To explore this possibility, we calculated niche similarity in the present
and in the LGM using Schoener’s D (Schoener 1968, Warren et al. 2008), a metric that
quantifies the degree of niche overlap in geographic space. Values of D range from 0 (com-
pletely different niches across geographic space) to 1 (identical niches over geographic space).
Overlap was quantified with the fuzzySim package in R (Barbosa 2015). For each case-study

species we focused the niche overlap calculation on the geographic regions of the model pro-
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jections where comparisons among models are most meaningful, rather than across broad
regions of the continent where all models predict low habitat suitability and are thus very
similar. In particular, we calculated niche overlap statistics only over the geographic region
predicted to contain suitable habitat in at least one of the models. To define this region,
we first reduced the geographic extents of interest for both the projected bioclim and bio-
clim + envirem-clim models individually using a habitat suitability threshold that preserved
95% of the training presences. We further excluded areas outside the model training region,
except for a few species where the majority of the predicted LGM distribution lay outside
the training region. Finally, we combined these regions for both the bioclim and bioclim +
envirem-clim models and calculated niche overlap from (non-thresholded) model projections
within this combined region. We did not project the bioclim + envirem-all model to the
LGM, because topographic variables are difficult to interpret for the LGM in glaciated re-
gions of North America. These regions have experienced substantial changes in topography
since the LGM due to glacial erosion (Bell and Laine 1985). However, we note that models
using topographic variables could be projected to the LGM in particular regions of interest
where topographic variables can be assumed to have remained static since the LGM (e.g.

unglaciated regions of California, Bemmels et al. 2016).

3.3.2 Data deposition

The ENVIREM dataset has been deposited through the Univ. of Michigan Deep Blue
Data repository http://dx.doi.org/doi:10.7302/Z2BR8Q40 (Title and Bemmels 2017),

and can be accessed through the project website at www.envirem.github.io. The ‘envirem’

R package is available on CRAN.

3.4 Results

The ENVIREM dataset comprises variables that were generated for three time periods

(present, mid-Holocene and the LGM), using several different general circulation models
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(CCSM4, MIROC-ESM, MPI-ESM-P) at multiple resolutions, so as to facilitate integration
with rasters from WorldClim (Hijmans et al. 2005). All rasters are available for download at
envirem.github.io. To enable users to generate these variables from other circulation models
or time periods, we have provided all code in an R package ‘envirem’, available from CRAN.

At a global scale, most new climatic variables were highly correlated with at least one
of the 19 bioclimatic variables from WorldClim (Table 2). The aridity-related variables (i.e.
climatic moisture index and Thornthwaite’s aridity index) and some of the PET-related
variables were the least redundant at the global scale. However, many of the new variables
were less highly correlated with the 19 bioclimatic variables within specific biogeographic
realms. Oceania and the Afrotropics were the realms with the greatest number of new
variables with lower maximum correlation coefficients (<0.85), indicating that niche models
of species from those regions may benefit most from the inclusion of these new variables. More
often than not, correlations were lower during the mid-Holocene and LGM than in the present
(Table S2, Table 2), which indicates that even if specific sets of variables are redundant in
the present, they may not necessarily be redundant in other time periods and variable choice
could have greater impacts on model projections to other time periods. All new climatic
variables had a maximum correlation of < 0.85 in at least one biogeographic realm during
at least one time period, with the exception of continentality, thermicity index, maximum
temperature of the coldest month and minimum temperature of the warmest month. Some
new variables were consistently most highly correlated with the same bioclimatic variable
from WorldClim across regions, while other new variables were most highly correlated with
different bioclimatic variables across different regions (Table S1).

In terms of topographic variables derived from elevation, terrain roughness index was not
highly correlated with elevation globally or in any biogeographic region (Table 3). Topo-
graphic wetness index was also not highly correlated with elevation (Table 3), even though
higher values of topographic wetness are conceptually associated with lower elevations at a

local scale (i.e. within a given watershed; Boehner et al. 2002).

76



3.4.1 Case studies

Statistical thinning of the sets of variables prior to ecological niche modeling substantially
reduced the number of variables, with three to 11 variables retained in each model (Table
4 S3, S4). For all species, at least one ENVIREM variable was retained in the bioclim +
envirem-clim models. For the bioclim + envirem-all models, at least one topographic variable
was retained for 19 of 20 species. For most species, one or more bioclimatic variables that
were retained in the bioclim model were dropped from the bioclim + envirem-clim and
bioclim + envirem-all models and were replaced by one or more of the ENVIREM variables,
indicating that these variables are more strongly predictive of the presence and absence of
the species than the dropped bioclim variables (Table S3, S4). The impact of including
ENVIREM variables on model performance varied among species, but models containing
ENVIREM variables performed substantially better (according to the AIC. metric) than the
bioclim model in 13 of 20 species.

In Figure 1, we highlight results for four species that show particularly distinct improve-
ment with the ENVIREM variables: the spotted salamander Ambystoma maculatum, the
blue grouse Dendragapus obscurus, the California gnatcatcher Polioptila californica and the
mountain chickadee Poecile gambeli. In these four species, inclusion of ENVIREM variables
led to improvements in all metrics of model performance, although differences in AIC, val-
ues were more substantial than differences in AUC metrics for these species. Across the
16 other case study species (Figure S2-S5), an improvement in performance when includ-
ing ENVIREM variables was found for ten species according to greater AUCTEST values
(Arborimus longicaudus, Chamaea fasciata, Desmognathus wrighti, Dicamptodon tenebro-
sus, Elaphe obsoleta, Glaucomys sabrinus, Glaucomys volans, Lampropeltis zonata, Martes
americana and Myodes gapperi). However, substantial improvements in model performance
(improvement by more than four AIC, units) were found for all but seven species according to
AIC, values, with no substantial difference for Dicamptodon tenebrosus, Elaphe obsoleta and

Lepus arcticus, and a substantial decrease in performance for four species (Crotalus atroz,
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Dicrostonyzx groenlandicus, Glaucomys volans and Myodes gapperi). Inclusion of ENVIREM
topographic variables specifically led to especially notable improvements in AIC,. scores for
Poecile gambeli (Figure 1), Eumeces fasciatus, Blarina brevicauda and Plethodon idahoensis
(Figure S2-S5).

The optimal Maxent parameters identified by the model evaluation metrics were typically
not concordant across the bioclim, bioclim + envirem-clim, and bioclim + envirem-all models
(Table S5). Similarly, as the different metrics evaluate the niche models using conceptually
different criteria, AUC-based evaluations did not identify the same Maxent parameters as
AIC.-based evaluations (Table S5). As the focus of our case studies is on the choice of
variables employed, an in-depth examination of the differences between AUC and AIC.-
based optimization of Maxent is beyond the scope of our study. We therefore focus the rest
of our results and discussion on comparing predictions of models that were optimized based
on AIC,. (see Methods).

Projections of the AIC -optimized species distribution models constructed with and with-
out the ENVIREM variables generally did not differ greatly at continental scales for the
current time period, but regional-scale differences in habitat suitability were observed. For
the four case-study species showing greatest improvement in all evaluation metrics, the over-
all suitable ranges are very similar, though not identical, at the continental scale (Figure
2). In finer-scale maps focusing on a particular region of interest, however, there are more
substantial differences in suitability across the landscape at a regional scale (Figure 2). For
example, suitability of the California Central Valley for Polioptila californica is much higher
in the bioclim model than in the bioclim + envirem-clim model. Similarly, regions of the
California coast and northwestern Great Basin for Dendragapus obscurus are also consider-
ably different across models, as well as large areas of the interior range of Poecile gambeli.
Niche overlap (Schoener’s D) between the two models averaged 0.9 for these four species and
0.91 across all modelled species (Figure S6, Table S6).

Differences between the predictions of the AIC.-optimized bioclim and bioclim + envirem-
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clim models become more pronounced when projected to the LGM (Figure 3, Table S5). In
particular, Schoener’s D niche overlap scores are much lower in the LGM (mean = 0.71, 0.71
and 0.72 for GCM CCSM4, MPI-ESM-P and MIROC-ESM, respectively) compared to the
present, and for many species there are considerable differences between models in predicted
distribution in the LGM (Figure 3). For Ambystoma maculatum, habitat suitability in the
bioclim model was highest on exposed continental shelf off the coast of North Carolina,
whereas in the bioclim + envirem-clim model the highest habitat suitability was in the
Lower Mississippi River Valley. For Dendragapus obscurus, connectivity between regions was
greater in the bioclim + envirem-clim model, and areas of high habitat suitability included
the Columbia Plateau and northern Cascades. Both models for this species also showed
marginally to moderately suitable habitat in western Canada and Alaska, although this may
be an overprediction as at least part of this region was covered by the Cordilleran ice sheet
during the LGM (Dyke et al. 2002). For Polioptila californica, the bioclim model predicted
large regions of California to be suitable, including California’s Central Valley, whereas in the
bioclim + envirem-clim model, higher suitability was primarily restricted to Baja California
and coastal regions of southern California. For Poecile gambeli, visual differences between
model projections were even greater, with high habitat suitability in the Rocky Mountains
in the bioclim + envirem-clim model only, and much higher habitat suitability throughout

most of the species’ range overall, and the Great Basin in particular.

3.5 Discussion

We have generated 18 climatic and topographic variables that will be valuable in a broad
array of applications for species distribution modelling, and have made these variables easily
available and complementary to an existing widely-used environmental dataset. Although
they are largely derived from the same underlying dataset as the bioclimatic variables from
WorldClim, we have demonstrated that including the ENVIREM variables in SDM can lead

to notable improvements in performance and differences in projections of species distribution
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models. Inclusion of these new variables led to substantial improvement in SDM performance
(AIC. metric) in 13 out of 20 species, and substantially worse performance in only four
species. Although inclusion of the ENVIREM variables did not always lead to significantly
improved performance, the fact that they were beneficial to many species indicates that
they are generally worth consideration when constructing species distribution models. The
species-specific nature of our results also highlight the importance of following best practices
for variable selection and parameter optimization, as we have done here. The importance
of particular variables in SDM will be a function of the species under study, its distribution
in geographic and climatic space, the time period and geographic region of interest, and the
ultimate question being addressed. Nonetheless, the links to ecological and physiological
processes represented in many of the ENVIREM variables mean that they will likely be

particularly useful for a wide variety of applications.

3.5.1 Potential applications

As we have showcased here, the ENVIREM dataset will be of immediate value in SDM
applications and will potentially lead to the generation of better species distribution mod-
els. If variable selection is done via statistical approaches, then inclusion of these variables
will allow researchers to start with a larger pool of biologically relevant options, thereby
increasing the odds that variables that are highly informative regarding the presence and
absence of a species will be discovered. If the goal is to select variables a priori based on
the ecology and natural history of the organism, then the ENVIREM variables will provide
valuable options, as they are likely to be ecologically relevant to certain species and may
have specific ties to biological processes for many species. SDM has been employed as a tool
in a large variety of studies, and the inclusion of new variables has the potential to impact
their conclusions. Identifying better sets of predictor variables for certain species could,
among other things, potentially alter projections of species’ invasiveness for particular re-

gions (Peterson and Nakazawa 2008), alter our understanding of potentially suitable habitat
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for species introductions (Martinez-Meyer et al. 2006), lead to identification of new areas
of high habitat suitability for conservation interest, affect predictions of shifts in habitat
suitability in response to future climate change (Thuiller 2004, Hijmans and Graham 2006,
Morin and Thuiller 2009), lead to new phylogeographic hypotheses about where species may
have been distributed in the past (Chan and Brown 2011, He et al. 2013, Bemmels et al.
2016), and impact our understanding of the evolution of climatic tolerances across related
species (Title and Burns 2015, Kozak and Wiens 2016).

With these additional variables, ecologists and evolutionary biologists will also be able to
craft more specific hypotheses that are informed by the ecology of the organisms under study.
For example, in an integrative distributional, demographic and coalescent (iDDC) framework
(Knowles and Alvarado-Serrano 2010, Brown and Knowles 2012, He et al. 2013), these
variables will allow for the specification of competing hypotheses pertaining to the relative
importance of different climatic and topographic variables in constraining the distribution of
species over time (Bemmels et al. 2016), giving researchers greater flexibility than currently
exists in modeling spatial and genetic patterns over time. Another example would be the
inclusion of these additional variables in the spatial mapping of the velocity of climate
change, which can tell us how organisms must move to track their current climatic conditions
(Hamann et al. 2015). To our knowledge, this is the only existing multi-variable dataset that
is truly complementary to WorldClim in its geographic breadth, application and accessibility.
The Climond dataset (Kriticos et al. 2011) provides an extended suite of bioclimatic variables
only at 10 and 30 arc-minutes for current and future climate scenarios, while the Ecoclimate
dataset (Lima-Ribeiro et al. 2015) provides only the standard 19 bioclimatic variables for
multiple past, present and future time periods at 30 arc-minutes. Other variables potentially
useful for biodiversity modeling have been released, such as habitat heterogeneity (Tuanmu
and Jetz 2015), global cloud cover (Wilson and Jetz 2016) and region-specific variables, such
as ClimateNA (Wang et al. 2012, Hamann et al. 2013, Wang et al. 2016), but these variables

are either not transferrable to other time periods, not available globally or not available at
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finer spatial resolutions. In contrast, the ENVIREM dataset includes additional variables
(some of which overlap with the Climond dataset) at all of the resolutions currently available
from WorldClim, for past and current time periods. If researchers wish to perform SDM using
occurrences that have high spatial precision in areas where region-specific datasets for all
desired time periods are available, then alternatives to the ENVIREM dataset may prove
most useful (e.g. ClimateNA; Wang et al. 2016). However, such a situation is likely to
represent only a small minority of SDM applications, making the ENVIREM dataset more
generally applicable. In addition, the envirem R package makes it possible to generate these
variables for other time periods, or from alternative input datasets (for example PRISM;

Daly et al. 2002), allowing users to easily customize their use of these variables.

3.5.2 Biological relevance of ENVIREM variables

Although the potential applications of these variables to SDM are vast, one unique ben-
efit of the ENVIREM variables is their potential for improving our ability to construct niche
models informed by ecological knowledge and natural history. Biologically informed niche
models may be constructed for species for which the conceptual relationships between par-
ticular variables and biological processes relevant to determining a species’ distribution are
known a priori (Kearney et al. 2008, Doswald et al. 2009, Rédder et al. 2009, Synes and
Osborne 2011), or may be constructed with the intention of exploring and testing different
hypotheses about these relationships (Bemmels et al. 2016).

The potential mechanisms by which the ENVIREM variables may determine distribu-
tions are numerous and will be specific to the species of interest. In general, subsets of the
ENVIREM variables may directly control species distributions, or (more commonly) may
impact other processes that in turn determine distributions (Austin 2002). The particular
variables included in the ENVIREM dataset were selected because of their clear concep-
tual links to particular ecological processes and indices. For example, growing degree-days

are predictive of plant phenology and growth rate (McMaster and Wilhelm 1997), processes
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which impact species range limits (Morin et al. 2007) and drive local adaptation (Howe et al.
2003). Evapotranspiration not only describes climate generally, but is also physiologically
linked to plant growth potential due to its impact on gas exchange with the atmosphere and
temperature regulation (Thornthwaite 1948, Katul et al. 2012). The more complex climatic
indices included in the ENVIREM variables (e.g. thermicity, aridity, moisture, Emberger’s
pluviothermic quotient) may characterize environmental conditions that are more directly
physiologically relevant to given species than simple descriptors of climate such as tempera-
ture or precipitation alone (Daget 1977). Finally, the topographic ENVIREM variables could
conceivably be important predictors of habitat types associated with local- to regional-scale
relief that may be key predictors of species distributions at these spatial scales (Lassueur et
al. 2006, Austin and Van Niel 2011). We have provided just a few examples of potential links
to biological factors that could determine species distributions, but the ecological relevance
of any of the ENVIREM variables is likely to be species-specific and different species’ dis-
tributions may be associated with environmental variables because of different mechanisms.
Nonetheless, it is this type of conceptual relevance and these potential links to physiological
and ecological processes that will make the ENVIREM variables particularly useful for many

SDM applications.

3.5.3 Incorporating ENVIREM variables into SDM best practices

Ideally, the choice of variables for niche modeling should be informed by knowledge of the
natural history and ecology of the organism under study, as this approach has been shown
to produce more realistic niche models (Rodder et al. 2009, Saupe et al. 2012). However,
it is most often the case that such information is not readily known (Alvarado-Serrano and
Knowles 2014). How one should go about choosing bioclimatic variables is still an open
question, the impact of which can be considerable (Peterson and Nakazawa 2008, Synes and
Osborne 2011, Braunisch et al. 2013). It is generally not considered best practice to include

all bioclimatic variables, as they exhibit a high degree of collinearity. This collinearity tends
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to lead to overly complex, overfit models (Rodda et al. 2011). Additionally, the nature of the
correlation between bioclimatic variables may differ across time periods, potentially leading
to unexpected behavior in SDM projections (Rodda et al. 2011, Synes and Osborne 2011,
Dormann et al. 2012, Warren et al. 2014). While we expect that many researchers will find
the ENVIREM variables extremely useful for a variety of applications, we recommend that
the merits of including all or some of the ENVIREM variables should be carefully considered
relative to the specific application, and that variable thinning, model optimization, and other
best practices in ecological niche modeling should be followed (Merow et al. 2013, Alvarado-
Serrano and Knowles 2014). For example, as we do not have in-depth ecological information
about the species whose ecological niches were modeled in our case studies, we employed a
statistical approach to variable thinning in order to reduce the number of correlated variables,
while retaining the variables with the greatest explanatory power.

An important finding of our case studies was that the difference between the bioclim and
bioclim + envirem-clim models, as measured with Schoener’s D, was small in the present,
but greater in the LGM. Choice of predictor variables has previously been shown to have
large impacts on model projections to other time periods or geographic regions (Peterson
and Nakazawa 2008, Synes and Osborne 2011, Braunisch et al. 2013). The impact of
variable selection points both to the utility of additional variables for developing and testing
hypotheses about shifts in species distributions across different time periods and in novel
spatial contexts, but also to the need for caution when making modeling decisions. Ideally,
models could be evaluated in past time periods with independent fossil occurrences (Davis
et al. 2014, Gavin et al. 2014, Moreno-Amat et al. 2015), but their availability will depend
on the taxon under study.

In addition to the question of which environmental variables to use, a growing number
of studies have demonstrated that species-specific tuning of virtually all steps in the niche
modeling pipeline can lead to improved results, and that Maxent’s default behavior is often

not sufficient to achieve optimal performance (Anderson and Gonzalez 2011, Warren and
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Seifert 2011, Merow et al. 2013, Radosavljevic and Anderson 2014, Moreno-Amat et al.
2015). Although we could have held all aspects save the predictor variables constant in the
generation of niche models in order to be able to compare the results directly, generating
models in this way is considered poor practice. Instead, we chose to independently generate
the best possible models, given current best practices. We found that Maxent’s default
parameters were rarely optimal (Table S5), which echoes the findings of others that parameter
tuning is an important step toward generating less overfit and more transferable species
distribution models (Anderson and Gonzalez 2011, Warren and Seifert 2011, Merow et al.
2013, Radosavljevic and Anderson 2014, Moreno-Amat et al. 2015). Different evaluation
metrics most often did not lead to the selection of the same optimized parameters (Table
S5). This is expected, as AIC, is intended to minimize the number of necessary parameters,
while AUC metrics are not. Regardless of the environmental variables selected for SDM,
the optimization of model parameters should always be considered, as model parameters can

have a large impact on model performance and predictions (Figure 2, Figure S2-S5).

3.5.4 Utility of topographic variables in SDM

In addition to climatic variables, we also generated two topographic indices: topographic
roughness and topographic wetness. These variables offer novel information as they are
not redundant with elevation (Table 3), an environmental variable which is already broadly
available for SDM. The use of elevation in SDM has been controversial (Hof et al. 2012),
and may be particularly problematic when projecting to other time periods or geographic
contexts where relationships between elevation and the climatic factors determining a species’
niche may be different than the relationships in the context in which the model was built.
However, the topographic roughness and topographic wetness indices are less likely to suffer
from this complication because they are less causally linked than elevation to regional-scale
climate, and they contain topographic information that may be useful for determining species

distributions independent of climate. In particular, topographic roughness index may be
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a reasonable surrogate for habitat heterogeneity and microsite availability that could be
relevant to determining geographic distributions of some species, and topographic wetness
index may help distinguish between areas that experience similar regional climate but differ
markedly in microhabitat due to relative drainage position within a watershed.

However, it is important to consider whether topographic variables are available at an
appropriate geographic scale for predicting species distributions. Variation in topographic
features associated with microhabitats may occur at a much finer scale than that at which
topographic variables are assessed, which could reduce their utility for SDM (Lassueur et al.
2006, Austin and Van Niel 2011, Pradervand et al. 2014). Since all topographic ENVIREM
variables at all resolutions are ultimately averaged from values calculated from the finest-
scale (30 arc-second) elevational model (see Methods), we have minimized concerns about
the potential mismatch between the scale at which the indices were generated and at which
topography is relevant to a species. However, it is still important to consider whether
variation in topographic roughness and wetness at the 30 arc-second scale (approximately
926 m at the equator) is likely to be meaningful for the species in question for the particular
geographic region of interest and intended modeling application.

Nonetheless, our case studies revealed that including topographic variables led to distinct
improvement in SDM performance for several species, in some cases significantly exceeding
the improvement gained by adding only the climatic ENVIREM variables (Figure 1, Figure
S2-S5). These results once again emphasize the species-specific nature of the degree of utility
of any new variable. Topographic variables are likely to be particularly useful for exploring
competing hypotheses regarding whether local- to regional-scale factors such as microsite
availability are important in determining species’ distributions (Bemmels et al. 2016).

Beyond general considerations about whether or not topographic variables are important
for modeling a species’ distribution, care should also be taken in assessing whether or not
static variables (i.e. variables that do not change over time) are appropriate to use for a given

SDM application. The topographic variables we derive can be assumed to be largely static
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through time (especially in unglaciated regions, with the exception of changes in coastline
reflecting sea-level changes). Stanton et al. (2012) explored the inclusion of static variables
in SDM and found that including such variables when projecting to future climate-change
scenarios typically improved, and rarely hindered, SDM performance when the variables were
known to influence species distributions. Nonetheless, we recommend particular caution
when projecting to contexts where topography may have changed substantially over the
timescale of interest, for example due to Pleistocene glacial erosion in North America (Bell

and Laine 1985).

3.6 Conclusions

The ENVIREM variables constitute a valuable dataset for species distribution model-
ing for a variety of applications. Although they are complementary to and largely derived
from the WorldClim database that is already widely in use, they contain novel information
not captured by this database. In particular, the ENVIREM variables include conceptually
novel climatic variables that may more closely reflect specific ecological and physiological
processes, as well as topographic variables distinct from elevation that may represent non-
climatic local- to regional-scale aspects of a species’ niche. In our exploration of case studies
for 20 North American vertebrate species, the impact of including the ENVIREM variables
was species-specific: in 13 out of 20 cases model performance substantially improved com-
pared to a model using only WorldClim variables, particularly when topographic ENVIREM
variables were included; in seven cases model performance was not substantially different
or declined. In general, models built with and without the ENVIREM variables produced
habitat suitability predictions differing only modestly and at local scales in the current time
period, but sometimes resulted in dramatic regional-scale differences in predicted habitat
suitability when projected to a different time period. Overall, our results highlight how the
ENVIREM variables often improve model performance, even when biological information

about the variables that are most relevant to determining habitat suitability for a given
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species is not known a priori. Furthermore, when knowledge about the determinants of
species distributions is available from ecological theory, the ENVIREM variables may be
particularly useful for developing and testing the predictions of species-specific hypotheses.
The significant improvements in model performance we observed for many species when fol-
lowing best practices in species distribution modeling suggest that the ENVIREM variables
are worth general consideration for SDM, as their main benefit is providing a more compre-
hensive set of environmental variables to choose from, whether through statistical variable

thinning or variable selection informed by ecological knowledge.
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BIOCLIM BIOCLIM + ENVIREM-CLIM
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Figure 3.2: Predicted habitat suitability during the current time period for four case study species,
from Maxent models optimized in terms of feature class and regularization parameter according to
the AIC. metric, for models constructed with and without the ENVIREM variables. Suitability
scores range from 0 (blue) to 1 (red). The central, continental-scale maps show habitat suitability
within the training region only (see text for explanation), with predicted habitat suitability below
a 95% training presence threshold considered to be unsuitable (grey). The outer maps show detail
from the region within the box on the continental maps, selected to highlight local-scale differences
between the models. Occurrence records are shown as black points. Schoener’s D niche overlap
is calculated between the bioclim and the bioclim + envirem-clim models, exclusively within the

thresholded training regions (Figure S1; see the Methods section for additional details).
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Figure 3.3: Predicted habitat suitability during the Last Glacial Maximum for four case study
species, for models constructed with and without the ENVIREM variables. Suitability scores range
from 0 (blue) to 1 (red). Optimization of model parameters and thresholding are as in Figure
2. Schoener’s D niche overlap is calculated between the bioclim and the bioclim + envirem-clim
models, exclusively within the thresholded training regions (Figure S1; see the Methods section
for additional details). Habitat suitability is shown within the training region only, with predicted
habitat suitability below a 95% training presence threshold considered to be unsuitable (grey).
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monthCountByTemp10 087 2% | 0es %% 0oz %% | o7a %% oae % loee %7 | 07 %% | 0es ¥
PETColdestQuarter 008 22 los7 % losr %7 l0e1 %% |os2 %% |oss %% | 0es ¥ | 09 O
PETDriestQuarter 0.83 0.84 0.92 0.91 0.87 0.87 089 0.9 0.84 0.87 074 -0.57 0.74 0.73 0.87 0.87
PETseasonality 008 0T [ 07a 085 | 097 | OS094 | 094 | OSS058 | 095 | OS048
PETWarmestQuarter 074 °% | oes %% 000 %% 004 %™ | 0ss %% | 0ss %7 004 %% | o001 O
PETWettestQuarter 079 2% | 0se %% 005 %™ loes %% | 0e2 %% |0s2 ¥ | 0o %% 0as ¥
thermicitylndex . 099 | | o098 | 089 | 007 | 099 | 1 097 098 | og 090

Table 3.2: Pearson correlations between ENVIREM and WorldClim variables. The correlation is
shown between each of the climatic ENVIREM variables and the WorldClim bioclimatic variable
with which the ENVIREM variable is most strongly correlated (Table S1), globally and in separate
biogeographic realms. For each variable and realm, the bottom-left triangle contains the correlation
coefficient in the present, and the top-right triangle contains the correlation coefficient in the LGM
(CCSM4) for the same bioclimatic variable. Grey shading indicates that the absolute value of the
correlation is <0.85.
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annual mean temp [biol]

mean diurnal temp range [bio2] + + + + +|+ +

isothermality [bio3] +

temp seasonality [bio4] +

max temp warmest month [bio5]

min temp coldest month [bio6]

temp annual range [bio7] + 4+ +|+ + +

mean temp of wettest quarter [bio8] + + + + + +

mean temp of driest quarter [bio9] + + +

mean temp of warmest quarter [biol0] | + + + +

mean temp of coldest quarter [bioll]

annual precip [biol2] +

precip of wettest month [bio13]

precip of driest month [biol4] + o+ + |+ + o+

precip seasonality [biol5] + + +|+ + + + o+ o+

precip of wettest quarter [biol6] + + +

precip of driest quarter [biol7] +

precip of warmest quarter [bio18] 4+ + +|+ + +|+ + +

precip of coldest quarter [biol9] + + + |+ + o+ o+

annualPET

climaticMoisturelndex + 4+ + + + o+

continentality + +

embergerQ

growingDegDays0

growingDegDaysb

max TempColdest

minTempWarmest + + + o+

PETColdestQuarter

PETDriestQuarter + o+

PETseasonality + + + 4+ + o+

PETWarmestQuarter + +

PETWettestQuarter + + + + + 4+

thermicity Index

topoRoughness

topoWetness + + + +

Table 3.4: Variables included in final models for four case study species. Variables included in
each model were selected using a statistical variable selection approach (see Methods section for
additional details).
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Ambystoma maculatum Blarina brevicauda Chamaea fasciata

Dendragapus obscurus Desmognathus wrighti Dicamptodon tenebrosus

Dicrostonyx groenlandicus Elaphe obsoleta

Glaucomys voféns

Lepus arcticus Martes americana

Myodes gapperi Plethodon idahoensis Poecile gambeli Polioptila californica

Figure S3.1: Occurrence records and training regions, for the 20 case study species (occurrence
records from Waltari et al. 2007).
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Figure S3.2: Model performance for 16 case study species. Model performance is shown for those
16 case study species not highlighted in the main text. Each line represents the set of feature
classes that led to the best performance according to either AUCTggT (top and middle panels) or
AIC, (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCprpr is a measure of model overfitting for the model selected by maximizing AUCtggT. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AIC, plots,
the grey shading represents a AAIC, of 4 from the best (lowest) AIC, score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson
2004).
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Figure S3.3: Model performance for 16 case study species. Model performance is shown for those
16 case study species not highlighted in the main text. Each line represents the set of feature
classes that led to the best performance according to either AUCTggT (top and middle panels) or
AIC, (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCprpr is a measure of model overfitting for the model selected by maximizing AUCtggT. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AIC, plots,
the grey shading represents a AAIC, of 4 from the best (lowest) AIC, score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson
2004).
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Figure S3.4: Model performance for 16 case study species. Model performance is shown for those

16 case study species not highlighted in the main text.

Each line represents the set of feature

classes that led to the best performance according to either AUCTggT (top and middle panels) or
AIC, (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCprpr is a measure of model overfitting for the model selected by maximizing AUCtggT. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AIC, plots,
the grey shading represents a AAIC, of 4 from the best (lowest) AIC, score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson

2004).

99



Lepus arcticus Martes americana Myodes gapperi Plethodon idahoensis

2 o o 8 |
3 3 3 S
S =)
i e
P =] X —
3 1 2 4 o - =
3 8 |
& 3
m e o s |
=] S 3
O R SR S BBy oy 8
A ]
2 5 A—n a8 | ©
< aat S A
s
3
3 o | e
S S
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
w0 0 0 0
8 8 8 8
S S S S o
—— bioclim
o o e . '
84 - 9 | & 4 —A— bioclim + envirem—clim
S S bioclim + envirem-all
TR \ w0
4 3 %\ g
w3 3
3 N—a—a 2 |
SR e =3 ° g |
S} © o
< 8 \—N E 7\&*"@& A A8
3 ° 8 |
o o =}
g
=] P N
8 g g T STttt
° M T T T T T T T T T T T T T T T ° M T T T T T T T ° M T T T T T T T
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
2 8
g S °
3 3 8 8
o - =
0 2
8 3
© =3 (=]
. g 4 8
3 3 7 -
°
O 27 o 2 4 2
& ] )4 N
< 3 2 4
5
w0
S g | °
1Y 8 2 X
g
8 2 -
3 7 3
—T T T T T —T T T T T —T T T T T T — T T T T T
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40

regularization multiplier

Figure S3.5: Model performance for 16 case study species. Model performance is shown for those
16 case study species not highlighted in the main text. Each line represents the set of feature
classes that led to the best performance according to either AUCTggT (top and middle panels) or
AIC, (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCprpr is a measure of model overfitting for the model selected by maximizing AUCtggT. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AIC, plots,
the grey shading represents a AAIC, of 4 from the best (lowest) AIC, score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson
2004).
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Figure S3.6: Predicted habitat suitability in the present for 16 case study species not highlighted in
the main text, from Maxent models optimized in terms of feature class and regularization parameter
according to the AIC. metric, for models constructed with and without the ENVIREM variables.
Suitability scores range from 0 (blue) to 1 (red). Habitat suitability is shown within the training

region only, with predicted habitat suitability below a 95% training presence threshold considered
to be unsuitable (grey). 101
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annualPET | 088 | - 083| - 096 | . 079| 086 | - 087 | 083 - 001
ariditylndexThornthwaite o -0.85 078 -0.74 073 -0.73 0.89 0.88 083 -0.81 08 -0.86 o001 -0.9 os1 -0.81
climaticMoisturelndex | o, 098 | ;) 08 | 50 <09 (0109 | 1o 0% | hgg %% | ggs 0% | g O
continentality ) 1 1 1 0.99 0.99 0.99 0.99 0.99 0.99 . 0.99 ) 1 . 1
embergerQ 005 2% 1 oo1 %% | oas 2% | 0ss %% | 00s %% 002 %% | 007 %Y | ges 0¥
growingDegDays0 1 L oo %P 0m ¥ ! 1 ! 1 ! 1 L] g7 Y
growingDegDays5 . 1 001 0.9 - 0.84 . 0.99 . 1 . 1 . 1 0.96 0.96
maxTempColdest 008 | ! 1 ! oo % | 0o %% | 0es %% | 007 2| !
minTempWarmest 008 % | ooe %% | 0es %Y | 005 %% 0es M| 4 L loos %% | 0es %Y
monthCountByTemp10 0.87 0.87 0.95 0.94 0.93 0.92 072 0.79 0.49 0.58 062 0.73 07 0.74 0.95 0.95
PETColdestQuarter | ~-093 | '~ 087 | -~ 088 | ' =092 | - 079| = 043 092 ' 08
PETDriestQuarter 0.83 084 0.92 292 0.87 086 0.89 85 0.84 28 -0.74 28 0.74 ot 0.87 087
PETseasonality 0.98 0.97 - 0.75 091 0.93 0.97 0.97 0.93 0.91 P -0.62 0.96 0.95 - 0.69
PETWarmestQuarter 074 7 loos % [ 0o %% | 00s %% 0as %% |oss %% |00s ¥ | 0e %
PETWettestQuarter — 0.8 0.89 0.89 0.95 0.95 - 0.66 - 0.45 P -0.82 01 0.89 - 0.81
thermicitylndex . R P e P e 1| oy 0T | g 098

Table S3.2: Pearson correlations between ENVIREM and WorldClim variables for current and
mid-Holocene climate. Correlations are shown between each of the climatic ENVIREM variables and
the WorldClim bioclimatic variable with which the ENVIREM variable is most strongly correlated
(Table S1), globally and in separate biogeographic realms. For each variable and realm, the bottom-
left triangle contains the correlation coefficient in the present, and the top-right triangle contains
the correlation coefficient in the mid-Holocene (CCSM4) for the same bioclimatic variable. Grey
shading indicates that the absolute value of the correlation is < 0.85.
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temp seasonality [bio4] + + +
max temp warmest month [bio5] + + + + +
min temp coldest month [bio6] + + + + 4+ +
temp annual range [bio7] + + + + + + + o+
mean temp of wettest quarter [bio8] + + + + + +|+ + + |+ + + +
mean temp of driest quarter [bio9] + + + + + + +
mean temp of warmest quarter [bio10] + + + + +
mean temp of coldest quarter [bioll]
annual precip [biol2] + o+ o+
precip of wettest month [bio13] +
precip of driest month [bio14] + + + + + +
precip seasonality [biol5] + 4+ +|+ + +|+ + +|[+ + +|+ + +|+ + +|+ + +
precip of wettest quarter [biol6] + 4+ +
precip of driest quarter [biol7] + + + + o+ o+
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annualPET + +
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embergerQ 4+ o+
growingDegDays0
growingDegDays5
maxTempColdest
minTempWarmest + + + + + +
PETColdestQuarter + +
PETDriestQuarter + + + +
PETseasonality + 4+ + o+ + o+ + 4+
PETWarmestQuarter + +
PETWettestQuarter + + + + + + + +
thermicityIndex
topoRoughness + 4
topoWetness + + + + 4 +

Table S3.3: Variables included in final models for 16 case study species. Variables to include in
each model were selected using a statistical variable selection approach (see Methods section for
additional details).

104



o o
2 2 g
2 2 2 2 2 i
5] 5]
flees fleet 2 3 Ble g ¢
g £ ¢2|l= © oflg ¢ |5 ¢ 8 S v 215 > >
= 5 5|8 2 2| s 5|8 2 2 YIE 5 & w Hle £ 2
8 2 I|8 % ®|8 X 2|25 Slgee|gzzlfEs |l
5 % ®|—— —|3 % ®|— — —|= ¢ 5|25 F|3 2 %
i I B BB el I <SSR - B ) el - B B -
PRI PRPRP L E N PR R I
2 3 &S 8 5|2 2T SRR K|, & /83 8 8|8 & 5|1 < <
28 33 8 &5 % Sle 9 el3 3 3|5 % 5|s 8 g|eEI
S 8 8y v vl v o5 5 5|5 5 Ble g g|lg & ol = ¢
R RS g_ “i g o 0 © & &|® w w|§ § §
¢ 8 8[E E E|E §E E|lg ¢ Sfls s |0 o oly g8 o3 = 3
¢ 8 [8 8 8|8 8 8|3 8§ dfle v o8 & 8| 8 S[L £ 2
£ E E[3 2 3|3 3 3|g £ |3 & 2|t £ £fo ¢ o s % 0%
33 5|2 & |2 & %l 8 o R|T T TSNS
U W Ww(G © G|C © O|ad 4 d|w o 2= S S|S S |2 © o
annual mean temp [biol] +
mean diurnal temp range [bio2] + + + o+ + |+ + |+ + +
isothermality [bio3] + o+ 4|+
temp seasonality [bio4] + + + +
max temp warmest month [bio5]
min temp coldest month [bio6] + 4+ +
temp annual range [bio7] + o+ 4|+ + ++ + +
mean temp of wettest quarter [bio8] | + + + + + + + + |+
mean temp of driest quarter [bio9] + + + + + o+ o+
mean temp of warmest quarter [biol0]| + + + + +
mean temp of coldest quarter [bioll]
annual precip [bio12] + o+ o+
precip of wettest month [biol3] + o+ o+
precip of driest month [biol4] + + o+ + + o+
precip seasonality [bio15] + + |+ + |+ + 4+ +l+ + +|+ + +|+ + +
precip of wettest quarter [bio16] +
precip of driest quarter [biol7] + + 4|+ + + + o+ o+ + o+ o+
precip of warmest quarter [biol8] + + + + 4+ +l+ + +|+ + +|+ + +|+ + +
precip of coldest quarter [bio19] + 4+ 4+ + 4+ o+ + o+ o+
annualPET
climaticMoisturelndex + + + + + + + + + + 4+ 4+
continentality + +
embergerQ + o+
growingDegDays0
growingDegDaysb + + + 4+ + 4+
max TempColdest
minTempWarmest + + + + + + + + + +
PETColdestQuarter +
PETDriestQuarter + +
PETseasonality + + + + + + + o+ + o+
PETWarmestQuarter
PETWettestQuarter + + + + + + + + + o+ + o+
thermicityIndex
topoRoughness +
topoWetness + + + + + + +

Table S3.4: Variables included in final models for 16 case study species. Variables to include in
each model were selected using a statistical variable selection approach (see Methods section for
additional details).
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AUC AlIC.
Species Variable Set Feature Class RM  Feature Class RM
Ambystoma maculatum bioclim LQH 2.50 LQHPT 3.00
bioclim + envirem-clim LQHP 2.50 LQHPT 3.00
bioclim + envirem-all LQHP 1.00 LQHP 3.50
Dendragapus obscurus bioclim H 2.50 LQHPT 2.00
bioclim + envirem-clim LQ 2.50 LQHP 4.00
bioclim + envirem-all LQHP 0.50 LQHP 4.00
Polioptila californica bioclim L 4.00 LQ 2.00
bioclim + envirem-clim LQHP 4.00 LQHP 4.00
bioclim + envirem-all LQHP 4.00 LQHP 4.00
Poecile gambeli bioclim H 2.00 LQHPT 4.00
bioclim + envirem-clim  LQ 3.00 LQ 2.00
bioclim + envirem-all LQ 1.00 LQ 2.00
Arborimus longicaudus bioclim LQH 0.50 LQ 0.50
bioclim + envirem-clim H 1.00 LQHP 2.00
bioclim + envirem-all H 1.50 LQHPT 2.00
Blarina brevicauda bioclim H 2.00 LQHPT 1.00
bioclim + envirem-clim H 2.50 LQHPT 1.00
bioclim + envirem-all H 2.00 LQHPT 1.00
Chamaea fasciata bioclim LQHPT 3.50 LQHP 3.00
bioclim + envirem-clim LQH 3.00 LQHP 4.00
bioclim + envirem-all LQHP 4.00 LQHPT 3.50
Crotalus atrox bioclim H 2.50 LQHP 4.00
bioclim + envirem-clim LQH 4.00 LQ 2.00
bioclim + envirem-all LQHPT 3.50 LQ 2.50
Desmognathus wrighti bioclim LQH 1.00 LQH 2.00
bioclim + envirem-clim LQ 0.50 LQ 1.50
bioclim + envirem-all LQH 2.00 LQ 2.00
Dicamptodon tenebrosus bioclim H 4.00 LQ 1.00
bioclim + envirem-clim LQH 3.00 LQ 1.00
bioclim + envirem-all LQH 3.00 LQ 1.00
Dicrostonyx groenlandicus  bioclim H 1.00 LQ 0.50
bioclim + envirem-clim H 1.00 LQ 0.50
bioclim + envirem-all H 1.50 LQ 1.00
Elaphe obsoleta bioclim H 4.00 LQHPT 1.50
bioclim + envirem-clim H 4.00 LQHPT 2.50
bioclim + envirem-all LQHP 4.00 LQHPT 1.50
Eumeces fasciatus bioclim LQ 3.00 LQHPT 2.00
bioclim + envirem-clim L 4.00 LQH 3.50
bioclim + envirem-all L 4.00 LQ 2.50
Glaucomys sabrinus bioclim LQH 4.00 LQHP 3.00
bioclim + envirem-clim LQHPT 1.00 LQHPT 2.50
bioclim + envirem-all LQHPT 1.00 LQHPT 3.00
Glaucomys volans bioclim H 4.00 LQHPT 2.00
bioclim + envirem-clim LQHP 0.50 LQHPT 1.00
bioclim + envirem-all LQHP 1.00 LQHP 4.00
Lampropeltis zonata bioclim LQHP 3.50 LQ 2.50
bioclim + envirem-clim LQHP 4.00 LQHPT 3.50
bioclim + envirem-all LQHP 4.00 LQ 3.50
Lepus arcticus bioclim LQHP 4.00 LQ 1.00
bioclim + envirem-clim H 4.00 LQ 2.00
bioclim + envirem-all H 0.50 LQ 4.00
Martes americana bioclim LQHP 3.50 LQHPT 2.50
bioclim + envirem-clim  LQ 1.00 LQHPT 4.00
bioclim + envirem-all LQHPT 3.00 LQHPT 4.00
Myodes gapperi bioclim LQHP 1.50 LQHPT 1.00
bioclim + envirem-clim LQHPT 1.00 LQHPT 1.50
bioclim + envirem-all LQHPT 1.00 LQHPT 1.00
Plethodon idahoensis bioclim H 3.00 LQ 0.50
bioclim + envirem-clim H 4.00 LQ 1.00
bioclim + envirem-all H 4.00 LQ 1.00

Table S3.5: Optimized Maxent parameters for all 20 case study species, using AUC and AIC..
The possible feature classes are linear (L), quadratic (Q), hinge (H), product (P) and threshold (T).
The regularization multiplier (RM) controls the complexity of the model.
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Species Schoener’s D
Current LGM CCSM4 LGM MPI-ESM-P LGM MIROC-ESM

Ambystoma maculatum 0.91 0.84 0.76 0.89
Arborimus longicaudus 0.88 0.61 0.47 0.55
Blarina brevicauda 0.94 0.78 0.80 0.77
Chamaea fasciata 0.97 0.96 0.97 0.97
Crotalus atrox 0.93 0.76 0.89 0.75
Dendragapus obscurus 0.93 0.79 0.79 0.83
Desmognathus wrighti 0.82 0.26 0.18 0.41
Dicamptodon tenebrosus 0.96 0.93 0.85 0.86
Dicrostonyx groenlandicus 0.92 0.77 0.79 0.72
Elaphe obsoleta 0.93 0.86 0.83 0.84
FEumeces fasciatus 0.93 0.81 0.77 0.80
Glaucomys sabrinus 0.88 0.68 0.77 0.66
Glaucomys volans 0.88 0.60 0.65 0.62
Lampropeltis zonata 0.88 0.77 0.86 0.86
Lepus arcticus 0.95 0.89 0.90 0.90
Martes americana 0.90 0.78 0.76 0.73
Myodes gapperi 0.90 0.62 0.67 0.53
Plethodon idahoensis 0.91 0.01 0.01 0.02
Poecile gambeli 0.87 0.73 0.54 0.79
Polioptila californica 0.87 0.85 0.89 0.84

Table S3.6: Schoener’s D niche overlap for all case study species, between the bioclim and bioclim
+ envirem-clim models, in both the present and during the LGM with three GCMs.
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CHAPTER IV

Diversification rates and phylogenies: what are we

estimating, and how good are the estimates?

4.1 Abstract

Species-specific diversification rates, or “tip rates”, can be computed quickly from phylo-
genies and are widely used to study diversification rate variation in relation to geography,
ecology, and phenotypes. These tip rates provide a number of theoretical and practical
advantages, such as the relaxation of assumptions of rate homogeneity in trait-dependent
modeling approaches. However, there is significant confusion in the literature regarding
whether these metrics estimate speciation or net diversification rates. Additionally, no study
has yet compared the relative performance and accuracy of tip rate metrics.

We compared the statistical performance of three model-free rate metrics (inverse termi-
nal branch lengths; node density metric; DR statistic) and a model-based approach (BAMM).
We applied each method to a large set of simulated phylogenies that had been generated
under different diversification processes; scenarios included multi-regime time-constant and
diversity-dependent trees, as well as trees where the rate of speciation evolves under a dif-
fusion process. We summarized performance in relation to the type of rate variation, the
magnitude of rate heterogeneity and rate regime size. We also compared the ability of the

metrics to estimate both speciation and net diversification rates.
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We show decisively that model-free tip rate metrics estimate the rate of speciation and
not net diversification. FError in net diversification rate estimates is high and increases
dramatically as a function of the relative extinction rate. In contrast, error in speciation rate
estimates is low and relatively insensitive to extinction. Across all diversification scenarios,
BAMM inferred the most accurate tip rates and exhibited lower error than non-model-based
approaches. DR was highly correlated with true speciation rates but exhibited high sample
variance, and was the best metric for very small rate regimes.

We found that DR and BAMM are useful metrics for studying speciation rate dynamics
and trait-dependent diversification. Although BAMM was more accurate than DR overall,
the two approaches have complementary strengths. Because tip rate metrics are more reliable
estimators of speciation rate, we recommend that empirical studies using these metrics ex-
ercise caution when drawing biological interpretations in any situation where the distinction

between speciation and net diversification is important.

4.2 Introduction

Rates of speciation and extinction vary through time and among lineages (Nee et al. 1992,
Sanderson and Donoghue 1996, Etienne and Haegeman 2012, Jetz et al. 2012, Moen and
Morlon 2014, Alfaro et al. 2018), contributing to dramatic heterogeneity in species richness
across the tree of life (Alfaro et al. 2009, Jetz et al. 2012, Barker et al. 2013). By character-
izing variation in rates of speciation and extinction, we can better understand the dynamics
of biological diversity through time, across geographic and environmental gradients (Zink et
al. 2004, Ricklefs 2006, Mittelbach et al. 2007, Silvestro et al. 2011, Rabosky, Title and
Huang 2015), and in relation to traits and key innovations (FitzJohn et al. 2009, Near et al.
2012, Beaulieu and O’Meara 2016). Consequently, there has been great interest in statistical
methods for inferring rates of speciation and extinction from molecular phylogenies.

Although rates of diversification have traditionally been quantified for clades, there has

been a growing interest in estimating species-specific rates of diversification, which we refer
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to here as “tip rates”. Tip rates are increasingly used to describe patterns of geographic and
trait-associated variation in diversification (Freckleton et al. 2008, Jetz et al. 2012, Kennedy
et al. 2016, Harvey and Rabosky 2017, Quintero and Jetz 2018, Rabosky et al. 2018). It
may seem strange to view evolutionary rates as a property of individual lineages, but such
rates emerge naturally from the birth-death model we typically use to conceptualize the
diversification process (Nee et al. 1992, Nee et al. 1994). Under the birth-death process,
individuals (species) are characterized by per-lineage rates of species origination (speciation,
A) and extinction (u). For the purposes of inference, these rates are typically assumed
to be constant among contemporaneous members of a focal clade. However, tip rates can
be viewed as our best estimate of the present-day rate of speciation or extinction for an
individual lineage, conditional on past (usually recent) evolutionary history. As such, they
provide information about the expected amount of time that will elapse before a lineage
splits or becomes extinct.

A number of approaches have been used to estimate tip rates, including both model-based
and non-model-based approaches. These approaches vary in terms of how much information
they derive from a focal species relative to the amount of information they incorporate from
other regions of the phylogeny. On one end of the spectrum, tree-wide estimates of speciation
and extinction rates under a constant-rate birth-death (CRBD) model provides tip rates that
are maximally auto-correlated across species in the clade; such rates for any given species
are not independent of rates for any other species in the group of interest. On the other end
of the spectrum, terminal branch lengths can be used to derive a censored estimate of the
rate of speciation that is minimally autocorrelated with rates for other species in the focal
clade. Terminal branch lengths are largely unique to each species (rates might be identical
only for sister taxa), but provide a noisy measure of speciation, due to the stochasticity
inherent in the diversification process (Nee et al. 1994). In contrast to single (terminal)
branch estimates, tree-wide estimates should be less susceptible to stochastic noise, because

they incorporate information from the entirety of the tree (e.g., multiple branches are used
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in the estimates). Of course, the tree-wide estimate necessarily assumes that all tips share a
common underlying diversification process. Other tip rate metrics fall somewhere between
these two extremes, incorporating some tree-wide information but relaxing the assumption
of homogeneous rates across all lineages (node density metric: Freckleton et al. 2008, DR:
Jetz et al. 2012). The estimation of tip-specific rates thus entails a tradeoff between the
precision of individual estimates and the stochastic error associated with those estimates.

BAMM (Bayesian Analysis of Macroevolutionary Mixtures, Rabosky 2014) is a model-
based approach that can accommodate heterogeneity in the rate of diversification through
time and among lineages. BAMM simulates a posterior distribution of macroevolutionary
rate shift configurations given a phylogeny of interest; marginal rates of speciation and
extinction for individual taxa can then be extracted from this distribution. In this framework,
the correlation in rates between any pair of species is a function of the posterior probability
that they share a common macroevolutionary rate regime (Rabosky et al. 2014). If the
tree-wide posterior probability of rate variation is low, the marginal rates estimates for
individual species will be similar across the entire tree, as under a CRBD model. Likewise,
any pair of taxa that are consistently assigned to the same macroevolutionary rate regime
will necessarily have perfectly autocorrelated rates.

Tip rates are best suited to a host of questions and hypotheses where the diversifica-
tion dynamics over the evolutionary history of a group are either less relevant, or no more
relevant, than the rates of diversification closer to the present day. For example, many
hypotheses involving trait-dependent diversification implicitly assume a time-homogeneous
effect of the trait on diversification rate (Coyne and Orr 2004, Kay et al. 2006, Jablonski
2008, FitzJohn 2010, Claramunt et al. 2011). Harvey and Rabosky (2017) found that the use
of tip rates for assessing correlations between continuous traits and diversification has good
performance across a range of diversification scenarios. Furthermore, hypotheses pertain-
ing to non-historical geographic patterns of diversity are also better addressed with recent

rates of diversification. For example, many hypotheses for the latitudinal diversity gradient
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propose time-homogeneous effects of particular environmental factors (temperature, energy,
geographic area) on rates of diversification (Mittelbach et al. 2007, Kennedy et al. 2014,
Rabosky et al. 2015, Rabosky et al. 2018). Put simply, if such time-homogeneous processes
have shaped the latitudinal diversity gradient (e.g., correlation between speciation and tem-
perature: Rohde 1992), then the effect should be manifest in the distribution of present-day
evolutionary rates.

At present, there is significant confusion in the literature over what quantity various tip
rate metrics actually measure. The DR statistic (Jetz et al. 2012) was originally described
as a measure of net diversification rate, where net diversification rate (r) is the difference
between the rate of speciation (A) and extinction (u). However, subsequent work suggested
that DR was a better measure of speciation rate (Belmaker and Jetz 2015). Many studies
have nonetheless continued to describe DR as an estimate of the lineage-level net diversi-
fication rate (Marin and Hedges 2016, Oliveira et al. 2016, Cai et al. 2017, Quintero and
Jetz 2018, and many others). The node density metric of Freckleton et al. (2008) has also
been described as a measure of net diversification. Whether these metrics more accurately
measure speciation or net diversification is critically important for interpreting biodiversity
patterns (e.g., two regions might differ dramatically in speciation rate, but net diversifica-
tion rates in each might nonetheless be zero). An initial objective of our study is thus to
compare the ability of DR, node density, and other metrics to estimate speciation and net
diversification rates.

Despite the potential utility of tip rates in geographic and trait-based analyses of spe-
ciation rate heterogeneity (Jetz et al. 2012, Belmaker and Jetz 2015, Oliveira et al. 2017,
Quintero and Jetz 2018), there has yet been no comparative assessment of the accuracy and
precision of the estimates. BAMM has low power to infer small rate regimes (Rabosky et
al. 2017, Meyer and Wiens 2017), leading to the possibility that other approaches might
perform better for smaller phylogenies or when the variation in rates among clades is subtle.

However, DR and related methods will always identify variation in tip rates, even when
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none exists, provided there is stochastic variation in branch lengths. A goal of this study
is therefore to evaluate the trade-off between the stochastic noise inherent in non-model-
based approaches, and the conservative but less noisy estimates from model-based metrics.
We compare the performance of these metrics across a range of simulation scenarios, which

include both discrete and continuous variation in rates.

4.3 Methods

4.3.1 Tip rate metrics

We assessed the accuracy of four tip rate metrics in this study at quantifying rates of
speciation. As we demonstrate below (see also Belmaker and Jetz 2015), these metrics are
estimators of speciation rate and not net diversification rate, and we refer to them as such
throughout. The first metric is the inverse of the equal splits measure (Redding and Mooers
2006), also called the DR statistic (Jetz et al. 2012), DivRate (Belmaker and Jetz 2015,
Oliveira et al. 2017), or tip DR (Quintero and Jetz 2018), which we denote in this study
as Apg. This species-specific measure incorporates the number of splitting events and the
internode distances along the root-to-tip path of a phylogeny, while giving greater weight
to branches closer to the present (Redding and Mooers 2006, Jetz et al. 2012). Apg is

computed as:

SN
Aor, = ligi
j=1
where App, is the tip rate for species i, N; is the number of branches between species 7
and the root, [; is the length of branch j, starting at the terminal branch (5 = 1) and ending
with the root.
We also considered a simpler metric, node density (Freckleton et al. 2008, denoted by
Anp). This is simply the number of splitting events along the path between the root and tip of

a phylogeny, divided by the age of the phylogeny. While Apr down-weights the contribution
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of branch lengths that are closer to the root, Ayp equally weights the contributions of all
branches along a particular root-to-tip path, regardless of where they occur in time. Under
a pure-birth model (z = 0), both Apr and Ayp should yield unbiased estimates of the rate
of speciation.

The third measure we considered is the inverse of the terminal branch lengths (Arp).
Rapid speciation rates near the present should be associated with proportionately shorter
terminal branches, smaller values of Arp should thus characterize species with faster rates
of speciation. This measure has recently been used as a summary statistic to assess model
adequacy in trait-dependent diversification studies (Bromham et al. 2016, Gomes, Sorenson
and Cardoso 2016, Harvey and Rabosky 2017). It should be noted that Arp is theoretically
expected to overestimate the rate of speciation. Under a pure-birth process, the set of
waiting times between successive speciation events can be thought of as draws from an
exponential distribution with rate A\. However, terminal branches are not waiting times
between successive events: they are censored observations, in that they are random samples
of times that are necessarily less than the next speciation event, which has not yet occurred
at the present.

Finally, we considered a Bayesian, model-based approach to estimating tip rates. BAMM
(Rabosky 2014) assumes that phylogenies are generated by set of discrete diversification
regimes. Using MCMC, the program simulates a posterior distribution of rate shift regimes,
from which marginal posterior rate distributions can be extracted for each tip in the phy-
logeny. We denote BAMM tip speciation rates (mean of the marginal posterior) as Aganras-
As BAMM also estimates extinction rates for each regime, we also calculated tip-specific net

diversification rate as Apanyar - piBanv, denoted as rgansis-

4.3.2 Tip rate metrics estimate speciation, not net diversification

As suggested previously (Belmaker and Jetz 2015), DR and presumably other tip-based

measurements, more accurately estimate the rate of speciation than the rate of net diversifi-
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cation. However, numerous studies continue to refer to DR as a measure of net diversification
(Marin and Hedges 2016, Oliveira et al. 2016, Cai et al. 2017, Quintero and Jetz 2018, and
many others). This is incorrect and it is straightforward to demonstrate that Arp, Ayp and
Apr are more reliable measures of speciation rates and not net diversification rates, at least
when extinction is moderate to high.

To illustrate this property of the metrics, we applied all approaches to constant-rate
birth-death phylogenies simulated across a range of relative extinction rates (¢ = A/u) ,
including pure-birth trees (¢ = 0) as well as trees exhibiting very high turnover (¢ = 1). To
evaluate accuracy of speciation estimates as a function of €, we generated 1000 phylogenies
with 100 tips each, where A and ¢ were drawn from uniform distributions (A: [0.05, 0.3];
e: 0, 1]). Importantly, when X is sampled uniformly with respect to e, the distribution of
r is not uniform: the mean, range and variance in r decrease dramatically as € increases.
To evaluate the accuracy of r as a function of €, we thus generated a second set of trees
by sampling r and ¢ from uniform distributions (r: [0.05, 0.3|, € [0, 1]). As a result, A has
constant mean and variance with respect to ¢ in the first set of simulations, and the same
is true for r in the second set of simulations (Figure S1). All phylogeny simulations were
conducted with the TreeSim package in R (Stadler 2011).

We compared tip rate metrics to true speciation rates A\rgry g (with the first simulation set)
and to true net diversification rates rrryp (with the second simulation set). We evaluated

mean per-tip accuracy of the tip rate metrics with two measures of error:

N;
mean absolute error = |I\i — AMrruE,|/N
i=1
N;
. Ai — ATRUE,
mean proportional error = E — /N
~  Mrrug,

where ); is the estimated tip rate for species i out of N total species, A\rryg is the

true tip rate. Mean absolute error captures the magnitude in error in tip rates, and mean
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proportional error quantifies the bias in tip rates, as a function of the true tip rates (Rabosky

et al. 2014).

4.3.3 Assessment of tip rate metrics

We tested the performance of the metrics by compiling publicly-available datasets from
a number of simulation-based studies (Table 1). These simulated trees include rate het-
erogeneity in time and across lineages. Together, these phylogenies present a wide range
of tree sizes and diversification rate shifts, providing an ideal comparative dataset for our
purposes. To more easily distinguish between these tree types in the text, we refer to
the BAMM-type, multi-regime time-constant phylogenies simply as “multi-regime”, and the
multi-regime diversity-dependent phylogenies simply as “diversity-dependent”, even though
discrete rate shifts are present in both types of trees. In addition to discrete-shift scenar-
ios (e.g., BAMM-type process), we simulated phylogenies under an “evolving rates” model of
diversification (Rabosky 2010; as corrected in Beaulieu and O’Meara 2015) to explore perfor-
mance of tip rate metrics when diversification rates change continuously and independently
along branches, as might occur if diversification rates are correlated with an underlying con-
tinuous trait (FitzJohn 2010). In these simulations, we allowed the logarithm of A to evolve
across the tree under a Brownian motion process, while holding € constant. The magnitude of
rate heterogeneity among branches is controlled by the diffusion parameter o, where greater
values lead to greater heterogeneity in speciation rates. Although published phylogenies
with rate data were unavailable for this simulation scenario, we used simulation code and
parameters taken directly from Beaulieu and O’Meara (2015) to generate trees with similar
statistical properties to those in their study. Simulations were performed with the following
parameters: A = 0.078, 0.103, 0.145, 0.249 and ¢ = 0.0, 0.25, 0.50, 0.75. We simulated
100 phylogenies for each (A , €) pair, and for three values of o (¢ = 0.03, 0.06, 0.12). We
evaluated tip rate accuracy by comparing estimated to true tip rates, using the absolute and

proportional error metrics described above. We also examined the correlation between true
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and estimated tip rates, combining tip rates from all phylogenies generated under the same
class of diversification process, and visualizing these data as density scatterplots, generated
with the LSD package in R (Schwalb et al. 2018), where colors indicate the density of points.

Size of diversification rate regimes might be an important factor in a tip rate metric’s
ability to accurately estimate rates. For example, BAMM’s statistical power in detecting a
shift to a new rate regime is a function of the number of taxa in that rate regime, and tip
rates for taxa from small regimes will more likely be parameterized according to the larger
parent regime or the tree-wide average rate (Rabosky et al. 2017); this is the expected
behavior when BAMM fails to identify a rate shift. However, non-model-based approaches
such as those examined in this study might be more accurate for small regimes. To explore
how rate regime size influences the accuracy of tip rate metrics, we calculated the mean tip
rate for each true rate regime from all multi-regime phylogenies (simulation datasets from
Moore et al. 2016, Rabosky et al. 2017, Meyer and Wiens 2017, Mitchell et al. 2018). We
then calculated the Pearson correlation coefficient and the slope of a linear model between
true and estimated mean regime rates. We explored the performance of all metrics with
respect to regime sample size, as in Rabosky et al. (2017: Figure 13). For comparison, we
repeated all performance summaries on tip rates estimated by applying a simple constant-
rate birth-death (CRBD) process to each simulated phylogeny. This exercise is an important
control, because it indicates how much error we would expect for each simulated phylogeny
under the simplifying (incorrect) assumption that rates are constant among lineages and

through time for each dataset.

4.4 Results

4.4.1 Speciation or net diversification?

As expected, the tip rate metrics examined in this study are more accurate estimators

of the rate of speciation () and not the net rate of species diversification (7). Mean abso-
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lute error increased exponentially with respect to the relative extinction rate £ (Figure 1).
However, mean absolute error in speciation rate was largely invariant with respect to € (0.95
quantile of r-based and A-based mean absolute error for Apg: 2.28 and 0.17, respectively).
Note that r and A for these simulations were drawn from identical uniform distributions, and
absolute error in the rates is thus comparable. Proportional error generally exhibited the
same pattern, and in terms of A\ versus r, differences in speciation-based error varied across
e (Figure S2). Ayp and Apg had a tendency to overestimate A when relative extinction was
low, and underestimate A when relative extinction was high. This trend was not present in
Aamn- Overall, error was highest for Arp by two orders of magnitude (Figure S3), and
decreased progressively with Ayp and Apg, with the lowest overall error in Agaprp. BAMM
estimates of net diversification rate were relatively accurate, except at the highest values of

e (Figure 1, Figure S2).

4.4.2 Tip rate accuracy across rate-variable phylogenies

Tip rates estimated with BAMM were consistently more accurate than those obtained us-
ing the other methods across all diversification scenarios considered, including multi-regime,
diversity-dependent and evolving rates trees (Figure 2). Apr was the second-most accurate
metric, although its relationship with true rates was substantially weaker than Aganar. Anp
and Arp were correlated with true rates but performed relatively poorly in all scenarios,
with Arp massively overestimating tip rates (Figure S4). All metrics performed best for
multi-regime trees, followed by evolving rates and diversity-dependent trees, respectively.
For diversity-dependent trees, Ayp rates are effectively uncorrelated with the true rates
(Figure 2). Additionally, the performance of the different tip rate metrics for multi-regime
phylogenies is not sensitive to the source of the simulated phylogenies (Figure S5). We found
that BAMM substantially outperformed all other metrics on datasets from studies that inde-
pendently assessed BAMM’s performance (Figure S5: Moore et al. 2016, Meyer and Wiens

2017). Tip rates were also generally but more weakly correlated with true net diversification
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rates, with the exception of Ayp, which was not at all correlated with true rates (Figure S6).

In terms of mean per-tip error, Agaarns consistently outperformed the other metrics for
multi-regime, diversity-dependent and evolving rates trees (Figure 3). Error in Apaym
increased as a function of rate heterogeneity for evolving rate phylogenies, but was largely
independent of the magnitude of rate heterogeneity for the other scenarios. Apgr generally
exhibited greater error than Ay, and this error increased as a function of the level of
heterogeneity for both the evolving rates and multi-regime trees. Error in Apg was generally
invariant to the number of rate regimes for the diversity-dependent scenarios. However,
Apr tended to have greater error than tree-wide estimates of speciation rates from a simple
model that assumes no variation in rates through time or among lineages (Acrpp). AnD
performed somewhat similarly to Apg for constant-rate and evolving rates trees, but worse
for diversity-dependent trees. Error in Arp increased with increasing rate heterogeneity for
constant-rate and evolving rates trees, but was relatively unaffected by rate heterogeneity in
diversity-dependent trees (Figure S7). However, error for this metric was far greater than

for all other tip metrics.

4.4.3 Effects of regime size on performance

Both metrics of performance assessment — the Pearson correlation and OLS slope —
generally increased with increasing regime size (Figure 4). This was found to be true for all tip
rate metrics, although Arp and \yp never achieved high performance. Apg tended to perform
better than other metrics when small rate regimes were included (e.g., 10 tips or fewer);
however, the slope between estimated and true rates was greater than 1 across the majority
of minimum regime sizes, indicating that Apr overestimates speciation rates (see also Figure
S2). Similar patterns were observed for net diversification rates with Apg, but the magnitude
of the overestimation was greater than for speciation (Figure S8). Apaaas, in contrast,
approached a slope of 1 when estimating speciation rates and slightly underestimated net

diversification rates (regimes with > 30 tips: OLS slope = 0.96 for A, 0.87 for r).
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Absolute error in regime mean tip rates was lowest for A\pr and Aganrps, regardless of the
size of the rate regime (Figure 5). BAMM’s ability to accurately estimate tip rates improved
with regime size, whereas absolute error was relatively consistent across regime sizes for Apr
for regimes greater than 10 species. We also found that Apg slightly outperformed Agans
for small rate regimes.

Note that, in Figures 4 and 5, each rate regime is treated as a single data point. Rate
regimes of sizes 1000, 100, and 1 tip are equivalent under this method of error assessment.
Figure 4 assesses how well these methods estimate rates for individual regimes, regardless of
the size of those regimes. In contrast, Figures 1-3 ask how well these methods perform at

estimating rates for a given tip.

4.5 Discussion

We assessed several tip rate metrics and confirmed that these are more accurate esti-
mators of the rate of speciation, rather than net diversification (Figures 1, 4, S6, S8; see
also Belmaker and Jetz 2015). This distinction was especially pronounced at high relative
extinction rates, where the rate of lineage turnover is high, and rates of speciation and net di-
versification have the potential to be most differentiated. Net diversification rate is a critical
determinant of species richness, yet this quantity is potentially independent of the underlying
rate of speciation. Misinterpretation of tip rate metrics could therefore lead to highly mis-
leading perspectives on large-scale diversity dynamics. As we demonstrate (Figures 1, S2),
tip rate metrics (Axp, Apr) provide relatively little information about net diversification,
and high values of these metrics are fully consistent with equilibrial models of speciation
where the true net diversification rate is zero. Thus, Apg and Ayp should not be used to
support claims about the dynamics of species richness or net diversification per se without
independent evidence bearing on plausible levels of extinction.

In terms of accuracy, we found that BAMM performed better than non-model-based

metrics across all datasets we considered: estimated tip rates were most highly correlated
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with true tip rates, and mean per-tip error in rates was lower across a range of rate-variable
simulation scenarios. BAMM is expected to perform well for phylogenies with discrete shifts
in diversification rates as this type of rate variation is most consistent with BAMM'’s as-
sumptions (Rabosky 2014, Mitchell and Rabosky 2016, Rabosky et al. 2017, Mitchell et
al. 2018). However, BAMM performed surprisingly well for the evolving rates phylogenies,
which conform poorly to the assumptions of the inference model. In these trees, the rate
of speciation changes continuously under a diffusion process, and as a result, the phylogeny
exhibits rate heterogeneity without discrete rate shifts.

On evolving rates phylogenies, Apan s performed better than Apgr (Figure 2; Spearman’s
p for Apapy = 0.83, p for Apr = 0.62), despite the fact that A\pr does not rely on the
detection of distinct rate regimes to estimate tip rates (Figure 5). Aganns also exhibited the
lowest mean per-tip error across varying levels of rate heterogeneity (Figure 3).

Why do Apama and Apr exhibit such striking differences in performance across the
simulation scenarios considered here? To illustrate the differences between inference under
these metrics, we compared true tip rates to Agayy and to Apgr on a simulated birth-death
tree with a single rate shift (Figure 6), as well as on one evolving rates tree simulated for this
study (Figure 7). It is clear that if BAMM has the statistical power to detect true rate shifts,
then it will perform well under rate shift scenarios. In contrast, Apgr tracks true rate shifts
but exhibits high sample variance. With an evolving rates tree (Figure 7), the simulation
model is very different from the inference model in BAMM. However, it conservatively places
rate shifts in order to accommodate rate heterogeneity that is spread across the phylogeny
under a rather different model of rate variation. Apg also broadly tracks the overall pattern
of the true rates, but the variance in the corresponding estimates is so high that performance
is negatively affected. If we calculate mean (absolute) per-tip error in Agann and Apg, the
error is relatively similar between Agaaras and Apgr, but the variance in per-tip error for Apr
is higher. Overall, BAMM exhibited substantially lower error than A\pr under precisely this

scenario (Figure 3).
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Thus, although BAMM is conservative in the estimation of tip rates relative to Apg,
the method exhibits lower overall error. It appears that Apr can recover more subtle rate
heterogeneity relative to BAMM (see Rabosky et al. 2017 for discussion of power in BAMM),
but this apparent power advantage comes at the cost of increased variance (error) in the
resulting estimates. Remarkably, on a per-tip basis, we find that a simple constant-rate
birth-death process (Acrpp) frequently yields tip estimates that are more accurate than
those obtained with Apr (Figure 3), despite the simplifying (and incorrect) assumption
that rates are identical across all tips in a given tree. Given that A\pgr can and does track
true heterogeneity in speciation rate (Figures 6, 7), this pattern suggests that the metric is
especially sensitive to the stochastic variation in branch lengths that can emerge even when
all tips have the same underlying speciation rate.

Regardless of the performance summaries presented in this article, important questions
remain with respect to how well tip rate metrics can estimate the true rate of speciation
from empirical phylogenies. The phylogenies analyzed in this study were simulated under
idealized processes and neglect potential biases and sources of uncertainty that are present
in real datasets. For example, if the process of speciation takes time to complete, as is gen-
erally believed to be the case (i.e., the protracted speciation process; Rosindell et al. 2010,
Etienne and Rosindell 2012), then the most recent speciation events may still be on-going
at the present and typical species-level molecular phylogenies may fail to recognize these
events. This will lead to an overestimation of terminal branch lengths, as some terminal
branches potentially include incipient species. A related bias might arise due to incomplete
taxon sampling, which disproportionately affects the length of terminal (or otherwise recent)
branch lengths (Pybus and Harvey 2000). Likewise, variation in taxonomic practice across a
phylogeny might lead to spurious rate variation, particularly if different species concepts are
used, or if some clades in the phylogeny — but not others — have been subject to population
genetic analysis or screens for cryptic species diversity. Additionally, it has been shown that

BAMM and other methods may fail to infer accurate speciation rate dynamics if the phy-
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logeny is in diversity decline — that is, when extinction rates increase towards the present
and ultimately exceed speciation rates (Quental and Marshall 2011, Burin et al. 2018). A
major, if obvious, caveat in the interpretation of tip rates is that they apply to recent spe-
ciation rates and are necessarily limited with respect to inferences about historical variation
in speciation rate.

The greater the importance of the terminal branches in tip rate metrics, the greater the
impact these biases might have on tip rate estimates. On one end of the spectrum, metrics
such as A\rg will be very sensitive to such biases as they rely exclusively on terminal branch
lengths. Such approaches may retain utility as summary statistics (e.g., Bromham et al.
2016), but we did not find Arp to be an accurate estimate of speciation rates in any of
our analyses. On the other end of the spectrum, a metric like A\yp would be minimally
impacted as this metric is attempting to capture an average speciation rate over an entire
root-to-tip path and does not upweight the contribution of recent branch lengths. Appg is
likely somewhere in the middle of this spectrum, as it gives decreasing weight to branches
towards the root. Agaarns is potentially sensitive to such issues as well, although it may be
possible to analytically correct for some biases in the mechanics of the model itself (e.g.,
Rosindell et al. 2010, Etienne and Rosindell 2012).

Potential empirical biases aside, tip rates present a number of practical advantages in
the study of diversification rate variation. First, tip rates can be summarized and compared
across non-monophyletic assemblages of species (Jetz et al. 2012, Kennedy et al. 2016,
Belmaker and Jetz 2015, Oliveira et al. 2017, Quintero and Jetz 2018, Rabosky et al.
2018), making it possible to summarize rate characteristics of entire communities or regional
assemblages of species. Second, estimation of rates at the present should be more robust
to the influence of extinction, as extinction can erase the history of lineage splitting deeper
in the phylogeny (Nee et al. 1994, Nee et al. 1994, Rabosky and Lovette 2008). Third,
tip-specific rates can be paired with species-specific trait values or geographic attributes in

order to test potential trait- or geography-dependent speciation rates (Freckleton et al. 2008,
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Jetz et al. 2012, Rabosky and Goldberg 2017, Harvey and Rabosky 2017). Tip rates make
it possible to relax strong assumptions of rate homogeneity within character states, which
are inherent to certain trait-dependent models, including BiSSE and GeoSSE (Maddison
et al. 2007, Goldberg et al. 2011, Ng and Smith 2014). Recent work has provided a
conceptually rich and robust interpretive framework for SSE models that does not assume
rate-constancy within character states (Beaulieu and O’Meara 2016, Caetano et al. 2018),
but tip rates nonetheless can provide an important check on results obtained with SSE
models by providing a direct means of visualizing the relationship between branch lengths
and character states (Bromham et al. 2016, Hua and Bromham 2016, Harvey and Rabosky
2017). Visual inspection of data in this fashion has the potential to reduce false positives by
calling attention to potential outliers and other sources of model inadequacy (Maddison and
FitzJohn 2014, Rabosky and Goldberg 2015). A final advantage for non-model based tip
rates, especially Apg, is that they can profitably be applied to extremely large phylogenies:
there are few computational limits to using them on phylogenies with tens of thousands of
tips or more, in contrast to formal model-based approaches for which BAMM, HiSSE, and
other methods are poorly suited.

In summary, tip rates offer a number of theoretical and practical advantages, particularly
in the study of associations between traits and diversification. We found that Agaasys out-
performed other metrics evaluated in this study and proved to be relatively accurate, even
under diversification scenarios that depart from the BAMM inference model. Apr underper-
formed in comparison to Agaarar, but in many cases still did reasonably well, particularly
for small rate regimes. Despite our performance results, Apg is likely to remain a useful tool
in the study of trait- and geography-dependent diversification (Rabosky and Goldberg 2017,
Harvey and Rabosky 2017).
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mean absolute error in A
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Figure 4.1: Mean absolute error in tip rate metrics for speciation and net diversification rate.
Error in A is shown in top panels, and error in 7 in bottom panels, for three different tip rate
metrics, across a range of relative extinction rates. For BAMM, the estimated speciation and net
diversification rates are presented in the top and bottom panels, respectively. Absolute error of
zero implies perfect accuracy. Inset plots show error in A\ with truncated y-axis scale to facilitate
comparison among metrics. All tip rate metrics track A more accurately than they track r. See
Figure S3 for Arp, which performed much worse than the other metrics.
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Figure 4.2: True tip rates (Arryp) in relation to estimated tip rates. Tip rates were compared
separately for different major categories of phylogeny simulations (rows). Plotting region is restricted
to the 99th percentile of true rates, but Spearman correlations between true and estimated rates
(lower right of each figure panel) are based on the full range of the data. Colors indicate the density
of points in the scatter plots. The horizontal gaps in Ayp for diversity-dependent trees are an
artefact of all trees having the same crown age. Apanras exhibited the strongest correlation with
true rates for all simulation categories.
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Figure 4.3: Mean per-tip absolute error in speciation rates as a function of the magnitude of rate
heterogeneity in each simulated phylogeny. Results are presented separately for different categories
of rate variation (Table 1); left column shows estimates from a constant-rate birth-death model
for reference. The boxes and whiskers represent the 0.25 — 0.75, and the 0.05 — 0.95 quantile
ranges, respectively. In some cases, Ayp and Apr had more error than a simple CRBD model
with no variation in tip rates. Aganmnm had the least amount of error across all amounts of rate
heterogeneity. See Figure S7 for Arp.
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simulation model

number tree regime  source
of trees size number
single-regime, constant-rate birth-death 100 100 1 Mitchell & Rabosky 2016
single- and multi-regime, constant-rate 100 51- 1-6  Moore et al. 2016
birth-death 148
single- and multi-regime, constant-rate 400 10- 1-67 Rabosky et al. 2017
birth-death 4296
multi-regime, constant-rate birth-death 20 939- 11 Meyer & Wiens 2017
3708
single- and multi-regime, constant-rate 188 4- 1-73  Mitchell, Etienne & Rabosky 2018
birth-death 3955
single-regime, constant-rate birth-death, 1000 100 1  this study
uniform lambda
single-regime, constant-rate birth-death, 1000 100 1 this study
uniform net diversification
pure birth root regime, 1-4 discrete shifts to 1200 54- 1-5 Rabosky 2014, Mitchell & Rabosky 2016
diversity-dependent regimes 882
speciation rate evolves via diffusion process 1200 25- 1 Rabosky 2010, Beaulieu & O’Meara
1208 2015, Rabosky 2016, this study

Table 4.1: Summary of simulated phylogenies.
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simulations for evaluating speciation rate
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Figure S4.1: Details of simulations for disentangling speciation from net diversification rate. From
the top row, it is clear that when A is sampled uniformly with respect to €, the distribution of r is
not uniform: the mean, range and variance in r decrease dramatically as € increases. The reverse
is true for the distribution of A when r is sampled uniformly with respect to e (bottom row). Our
simulation design ensures that A and 7 are sampled from identical uniform distributions with respect
to € and ensures comparability of the resulting error estimates.

134



log prop. errorin A

I'sAMM

log prop. errorinr
1

-1
|
1

-1

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

w/A TURN w/A

Figure S4.2: Log proportional accuracy in A (top) and r (bottom) for different tip rate metrics,
across a range of relative extinction rates. For BAMM, the estimated net diversification rate is
presented. Proportional error of 0 implies perfect accuracy. Inset plots reveal greater detail in error
for A\ to ease metric comparison. All tip metrics track A much more accurately than they track r,
and Aganrar does so with the least amount of error. See Figure S3 for Arp.
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Figure S4.4: True tip rates (top row: Argypg, bottom row: rrryg) in relation to Arp. Tip rates
were compared separately for different major categories of phylogeny simulations (rows). Plotting
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Figure S4.5: Comparison of A\pr and Apaarar to true tip rates for separate simulation datasets.
Data are separated by source, to confirm that patterns described in the main text are not driven by
any one simulation study. Spearman’s correlation is presented in the bottom right corner. Colors
indicate the density of points in the scatter plots. Regardless of the dataset, Apanras performs
noticeably better than Apg.
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Figure S4.6: True net diversification tip rates (rrryg) in relation to estimated tip rates. Tip rates
were compared separately for different major categories of phylogeny simulations (rows). Plotting
region is restricted to the 99th percentile of true rates, but Spearman correlations between true and
estimated rates (lower right of each figure panel) are based on the full range of the data. Colors
indicate the density of points in the scatter plots. The horizontal gaps in Ay p for diversity-dependent
trees are an artefact of all trees having the same crown age. Relative performance comparison aside,
correlations with rpry g are lower than with Arrpy e (Figure 2).
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Figure S4.7: Mean per-tip absolute error in Arp as a function of the magnitude of rate heterogene-
ity in each simulated phylogeny. Apr and Apapras are included on the same scale for comparison.
Results are presented separately for different categories of rate variation (Table 1). The boxes
and whiskers represent the 0.25 — 0.75, and the 0.05 — 0.95 quantile ranges, respectively. Error in
Arp generally increases with increasing rate heterogeneity, and this error is almost two orders of
magnitude greater than error in other tip rate metrics.
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Figure S4.8: Performance of tip rate metrics as a function of regime size, including Pearson
correlation (a) and OLS regression slope (b) for mean rates with respect to rrryr. Apr and rpans
outperform the other metrics when summarized in this fashion, although Apgr overestimates the
rate of net diversification (more so than it overestimated A\rry g, Figure 4). The x-axis denotes the
minimum regime size across which performance was summarized. For example, x = 20 corresponds
to the correlations and slopes computed for all regimes with 20 or more tips; a value of x = 1 is the
corresponding results for all regimes. The OLS slope for Arp is not visible as it ranges between 10
and 25.
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CHAPTER V

Dispersal and the latitudinal diversity gradient in marine

fishes

5.1 Abstract

Marine fishes exhibit a striking latitudinal diversity gradient (LDG), with far more species
occurring in the tropics than in extratropical regions. Speciation rates are substantially el-
evated in polar and high-latitude temperate regions relative to the tropics, suggesting that
faster tropical speciation cannot explain the LDG in marine fish diversity. However, we do
not yet understand the role of lineage dispersal over macroevolutionary timescales in gen-
erating and maintaining the LDG. The “out of the tropics” model posits that tropical taxa
expand their ranges and disperse out, thereby enriching high latitude regions. However,
extratropical diversification and environmental niche conservatism might be expected to in-
fluence the strength of the gradient as well as the movement of species from polar-temperate
to tropical regions. We assessed latitudinal source-sink dynamics in marine fishes by esti-
mating biogeographic transition rates and dispersals between tropical, temperate and polar
regions while distinguishing between taxa with predominately shallow versus deep-water dis-
tributions. We find that biogeographic transition rates are greatest out of the Arctic and
towards the tropics. Although rates are strongest in the opposing direction, the total num-

ber of dispersal events out of the tropics exceeds that of dispersal events out of the poles.
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These results indicate that, even with relatively low dispersal rates, high species richness
and ‘tropical’ inertia will drive macroevolutionary source-sink dynamics. We also find a
strong pattern of greater movement of deep-water lineages than shallow-water lineages in
either direction, suggesting that environmental conservatism and the depth distribution of
biogeographic corridors likely play important roles in shaping global patterns of marine fish

diversity.

5.2 Introduction

The latitudinal diversity gradient (LDG), whereby species richness is highest in the tropics
and declines towards the poles, is one of the best-known yet poorly-understood biodiversity
patterns observed today (Hillebrand 2004). Over macroevolutionary timescales, geographic
patterns of species richness and endemism have been shaped by the interplay between vari-
ation in speciation and extinction rates, regional carrying capacities (MacArthur 1969, Mit-
telbach et al. 2007, Rabosky and Hurlbert 2015), and biogeographic dispersal (Ricklefs 2004,
Wiens and Donoghue 2004, Goldberg et al. 2005, Fine 2015, Antonelli et al. 2018). Due to
the spatial configuration and environmental characteristics of geographic regions, some will
tend to exchange species more readily than others (Donoghue and Edwards 2014). Certain
regions can thus behave as macroevolutionary sources, or centers of origination which then
export species to other regions (Briggs 2003, Goldberg et al. 2005, Jablonski et al. 2006,
Roy and Goldberg 2007). Likewise, other regions may be characterized as macroevolutionary
sinks, where a significant proportion of the within-region diversity has originated elsewhere
and arrived through dispersal.

Jablonski et al. (2006) described a “out of the tropics” model (OTT), where they pro-
posed that species origination is greater in the tropics, and that, through tropical species
range expansion, there is a net migration of species out of the tropics and into extratropical
regions. This model assumes that 1) speciation rates are greater in the tropics, 2) extinction

rates are no greater in the tropics than outside of the tropics, and 3) dispersal out of the
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tropics is greater than dispersal into the tropics. An implication of this model is also that
most extratropical lineages will have tropical ancestors. A related model — the “tropical
conservatism hypothesis” (TCH; Wiens and Donoghue 2004) — suggests that, like the OTT
model, there is greater speciation in, and greater dispersal out of the topics, but that dis-
persal is less frequent and limited to those lineages that are capable of adapting to novel
environmental conditions (Smith et al. 2012, Kerkhoff et al. 2014).

The geography of marine fish richness is characterized by a strong LDG (Tittensor et al.
2010, Stuart-Smith et al. 2013, Rabosky et al. 2018). However, marine richness is not equally
distributed near the equator, but tends to be concentrated in shallow tropical continental
shelf environments (Briggs and Bowen 2013). The tropical Indo-Pacific in particular has
the greatest species richness globally (Tittensor et al. 2010, Rabosky et al. 2018) and has
been described as a center of origination for reef-associated fishes, where species diversity
has both accumulated and been exported to neighboring regions (Briggs 2003, Alfaro et al.
2007, Cowman and Bellwood 2013, Siqueira et al. 2016). In comparison, the highly endemic
fish fauna of the Antarctic has been characterized by origination at near off-shore islands
and export to other regions of the Southern Ocean (Briggs 2003, Dornburg et al. 2017).

A number of hypotheses for the LDG predict faster speciation in the tropics (Rohde
1992, Allen et al. 2002, Jablonski et al. 2006, Mittelbach et al. 2007), yet Rabosky et al.
(2018) found that rates of speciation for marine fishes exhibit an inverse latitudinal gradient.
Significantly elevated rates at high latitudes indicate that, paradoxically, the regions with
the fewest species are those characterized by the highest rates of speciation. The OTT and
TCH hypotheses were framed around the assumption that rates of speciation are highest in
the tropics. An additional core feature of these models is higher net movement of species
from the tropics to higher latitudes and thus an appreciable fraction of extratropical diversity
with tropical origins. Even if rates of speciation are not systematically higher in the tropics
(Rabosky et al. 2018), the tropics might still be a dominant source of high-latitude species

richness, thus helping to “flatten” what would otherwise be an even more severe LDG in
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species richness.

Regardless of regional variation in diversification, a comprehensive understanding of the
contributions of tropical conservatism and OTT dynamics to the LDG requires that we char-
acterize the dynamics of inter-regional dispersal in the marine realm. It is thus important to
characterize the extent to which tropical and extratropical regions serve as sources or sinks
for species originating elsewhere. In this study, we quantify the magnitude and directionality
of dispersal between major latitudinal zones to assess the roles of speciation rates and immi-
gration in the shaping of the LDG. To do so, we characterize both the numbers of dispersals
and regional transition rates, and the number of within-region speciation events.

We maintain a distinction between shallow and deep-water species composition in our
analyses in order to account for the major environmental, ecological and biogeographic differ-
ences these marine regions entail. Species can be found in all regions of the ocean, from the
surface to the abyssal depths, where the temperature, pressure, dissolved oxygen and light
environment that those species experience is so dramatically different that it requires ma-
jor physiological adaptations for survival (Portner 2002, Rogers 2015, Priede 2017). Ocean
temperature is greatest at the surface, but drops precipitously at the thermocline and then
exhibits relatively little variation throughout the remaining depth. Because of this depth
stratification, the surface waters within the first 200 meters exhibit a strong latitudinal gra-
dient in temperature, but this gradient is markedly weaker at depth. Deep-water ocean
temperatures are therefore notably more homogeneous on a global scale (standard deviation
of global marine temperature at 0, 200, and 500m: 11.3, 7.0 and 3.9°C, respectively; Figure
S1; Boyer et al. 2013). The environmental differences between shallow and deep-water trans-
late into strong ecological and physiological barriers for marine fishes (Brown and Thatje
2014, Priede 2017). As a result, colonization of deeper ocean waters is likely to be relatively
rare, as evidenced by the fact that over 70 percent of extant marine fish diversity occurs
within the first 500m from the surface (Priede and Froese 2013). As the deep-water marine

environment is globally more environmentally homogeneous (Figure S1), it is thought that
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species will experience fewer biogeographic barriers at depth; indeed, 82 percent of marine
fish species with circumglobal distributions are bathypelagic or bathydemersal (Gaither et
al. 2016).

If the OTT model is contributing to the LDG, then we expect to observe a high ratio of
dispersals from low to high latitudes relative to within-region speciation events in temperate
and polar regions, as well as greater transition rates from the tropics to those extratropical
regions. Given the greater environmental homogeneity in deep water, we expect to maintain

the same predictions for deep-water regions, only with greater magnitude.

5.3 Methods

5.3.1 Data acquisition

We obtained geographic range data for 12,018 out of approximately 15,500 known marine
fish species (Mora et al. 2008) at a grid cell resolution of 150 x 150 km from Rabosky et
al. (2018). The majority of these ranges were acquired from AquaMaps (Ready et al. 2010,
Kaschner et al. 2016) in the form of vetted species distribution models, and were expanded
upon by incorporating geographic range data from IUCN as well as from other literature
sources (Coll et al. 2010, Mecklenburg et al. 2016, Rabosky et al. 2018). We also obtained
a phylogeny of ray-finned fishes from Rabosky et al. (2018), containing 11,638 taxa with
genetic data and 5,231 marine species (available at https://fishtreeoflife.org). We obtained
depth classifications from FishBase (http://fishbase.org), where species were classified as
shallow-water if the FishBase descriptor included pelagic, pelagic-neritic, pelagic-oceanic,
reef-associated or demersal. Conversely, species were classified as deep-water if they were
described as bathy-demersal, bathy-pelagic or bentho-pelagic. Taken together, we were able

to combine geographic, phylogenetic and depth data for 4,987 marine fish species.
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5.3.2 Geographic partitioning

We partitioned the globe into tropical, north temperate, south temperate, north polar
and south polar regions. We opted to not use strict latitudinal thresholds, as major oceanic
currents (e.g., the Gulf Stream) cause extensive regional variation in the latitudinal extent of
both warm-water and cold-water; it is thus difficult to select any single latitudinal threshold
that remains appropriate on a global scale. Additionally, as marine environmental conditions
and fish taxonomic composition differ markedly between continental shelf regions and open
ocean, we combined two marine regionalization datasets: Marine Ecoregions of the World
(MEOW; Spalding et al. 2007) and Pelagic Provinces of the World (PPOW; Spalding et
al. 2012). We manually modified pelagic province boundaries for the Leeuwin Current,
Agulhas Current and the Non-gyral Southwest Pacific pelagic provinces by dividing them
at 25 degrees latitude into tropical (northern) and temperate (southern) halves so that they
more naturally align with the latitudinal ranges of the neighboring MEOW realms (Figure
1).

We rasterized these latitudinal zones to the same equal area grid as the species geographic
range data, and classified each species in terms of which latitudinal zones it occurs in. A
species was coded as occupying a region if its geographic range occupied 20 percent or more
of the region grid cells, or if 50 percent or more of the species’ range was found in that region.
The latter criterion allowed us to account for small-ranged endemics. In the rare case where
a species did not match either criterion, we assigned it to the region which overlapped with a
minimum of ten percent of its range. This assignment was done for shallow and deep-water
species separately, and a species could only be in shallow or deep regions, but never both,

due to the FishBase depth categories.

5.3.3 Biogeographic transition rates

We developed a biogeographic transition model for tropical, temperate and polar re-

gions (Figure 2) that closely follows the logic for the dispersal-extinction-cladogenesis (DEC)
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model as developed by Ree and Smith (2008). We chose to model transitions between these
states for the northern and southern hemispheres separately, in order to avoid producing a
model with an unwieldy number of parameters. Specifically, we allow transitions between
regions in single-step increments; i.e., a tropical species must first disperse to the temper-
ate region, and then undergo local extinction (range contraction) in the tropics in order to
become a purely temperate species, rather than entirely shift its range in one step. As dis-
cussed above, we maintain a distinction between shallow and deep-water species. Therefore,
tropical-shallow and tropical-deep are separate states in our model. A species can only be
either shallow-water or deep-water, but can undergo an evolutionary shift between those
states. As species can occur in multiple geographic regions simultaneously, our complete
list of states that species can occupy is: tropical-shallow, temperate-shallow, polar-shallow,
tropical+temperate-shallow, temperate+polar-shallow, tropical+temperate-+polar-shallow,
and those same states for deep-water, totaling 12 states. We did not include a tropical+polar
state, as this would have necessitated a discontinuity in the species’ range, and no species in
our dataset appear to show such a distribution.

To differentiate between transitions to and from particular regions, we parameterized
the model such that transition rates included directional information to track “gain of the

A4

temperate state”, “gain of the tropical state” and “gain of the polar state”. These parameters
were defined separately for shallow-water and deep-water transitions between geographic
states. We included a range contraction parameter (local extinction), which defines the
loss of a region, but constrained it to be identical for all regions, as Ree and Smith (2008)
found that this parameter had relatively low accuracy. We also defined two pairs of vertical
transition rates — shallow to deep, and deep to shallow — for tropical /temperate regions and
for polar regions. We opted to define separate vertical transition rates for the polar regions,
as the difference in temperature between shallow and deep water is minimized and therefore,

we might expect transitions to be more frequent than in tropical or temperate waters, where

the vertical temperature gradient is stronger.
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We implemented this model as an asymmetric Markov k-state model (Mk; Lewis 2001)
for discrete character evolution using the diversitree package (FitzJohn 2012) in R (R Core
Team 2018). We supplied a 12x12 state matrix which defined parameter constraints (Table
S1). We also considered multiple constrained submodels (Table 1) to test specific hypotheses
about the directionality of inter-regional dispersal. In particular, we designed several models
to specifically represent OTT scenarios, where transition rates from tropical to temperate
and temperate to polar were constrained to be greater than transition rates from temperate
to tropical and polar to temperate regions. By fitting these models, we were able to estimate
per-lineage biogeographic transition rates between regions, and also assess support for partic-
ular scenarios through a statistical model selection framework. We fitted these models with
a bounded Nelder-Mead optimization approach, as implemented in the dfoptim R package
(Varadhan et al. 2018). In order to identify reasonable starting parameters, we first sampled
2000 initial values from a uniform distribution [0.001, 2|, and calculated the likelihood for
those parameters. We then selected the 100 sets of starting values that returned the highest
log likelihood, and performed the optimization with lower and upper bounds of le-6 and 10,
in order to find the maximum likelihood parameter estimates. By performing 100 optimiza-
tions per model, we could ensure with reasonable confidence that the optimization had in
fact found the global optimum in parameter space.

A concern has been raised that maximum likelihood methods to estimate transition rates
will tend to be biased by the frequency and distribution of states at the tips (Nosil and
Mooers 2005), with a tendency for greater transition rates toward the more frequent state.
Unlike state-dependent diversification models, such as BiSSE and GeoSSE (Maddison et
al. 2007, Goldberg et al. 2011), the Mk models we employ do not incorporate speciation
and extinction, which can lead to biased transition rate estimates (Goldberg and Igic 2008).
Given that a majority of marine fish species occur in the tropics, it is possible that these
issues might manifest themselves in our analyses. However, certain comparisons of rates

should still be appropriate.
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5.3.4 Ancestral state reconstruction

Although per-lineage transition rates between geographic regions are informative, they
do not necessarily bear on the net exchange of species counts between those regions, as the
actual number of events will depend on species richness patterns. It is entirely possible,
for example, for the per-lineage rate of dispersal from temperate to tropical regions to be
greater than tropical to temperate, but for the total number of species transition events to be
greater out of the tropics, simply because there are more species in the tropics (i.e., the same
realized dispersal of 5 species can hypothetically result from a low per-lineage dispersal rate
of 0.001 from a 5000-species region, or from a high dispersal rate of 0.5 from a 10-species
region). We therefore reconstructed biogeographic ancestral states under both parsimony
and likelihood (ML) in order to enumerate speciation events within a region (no dispersal)
and speciation coupled with dispersal events. Parsimony approaches have been shown to
perform well, especially when there is heterogeneity in the rate of character evolution across
the phylogeny (Tuffley and Steel 1997, King and Lee 2015, Davis Rabosky et al. 2016).
We implemented a parsimony-based version of our biogeographic transition matrix through
Sankoff parsimony (Sankoff 1975), which makes use of a cost matrix. This allowed us to
define the number of steps required to move from one state to another. For example, a shift
from tropical-shallow to temperate-shallow has a cost of 2: a new region must be gained by
dispersal (temperate), and an ancestral region must be lost (tropical). We assumed that gain
or loss of any single region (tropical, temperate, polar) entails unit cost. For these analyses,
we reconstructed ancestral geographic states for northern and southern hemisphere regions
within the same parsimony framework. To account for uncertainty in ancestral character
states, we generated 1,000 equally parsimonious reconstructed histories. Parsimony analyses
were run with the R package rbor (https://www.github.com/blueraleigh/rbor).

From the parsimony reconstructions, we visited each internal node and examined the
reconstructed state of that node (the parent node) and of its two descendant nodes. We

counted the number of within-region speciation events by tallying the number of times a
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biogeographic state was shared between the node and both descendant nodes. We also
counted the number of dispersal events, by tracking states present in a descendant node but
not the parent node. If the parent node had multiple states that were not present in the
descendant node, then we employed the cost matrix described above for parsimony in order to
identify the more likely dispersal source. If more than one region was equally likely, the count
was split (for instance, if a parent node was found in tropical-+temperate and a descendant
node had states tropical+temperate+polar, then the cost matrix would identify temperate-
to-polar as more likely than tropical-to-polar, adding a tally to temperate — polar).

We generated 1000 joint ancestral reconstructions, under the best-fit Mk transition rate
model, with the asr.joint function in diversitree (FitzJohn 2012). Similarly to the event
counting approach under parsimony, we then visited all reconstructed internal node states
and tracked dispersal and within-region speciation events. As the transition rate models
were fit for each hemisphere separately, we counted events for each hemisphere separately as
well. If multiple dispersal sources were possible, we again used the cost matrix.

We also calculated, for each region, the ratio of dispersal events to within-region speci-
ation events, as counted through ancestral state reconstruction. This quantity allows us to
more explicitly evaluate the influence of an OTT scenario, where dispersal events should be

an important contributor to species assembly in the extratropics.

5.3.5 Sister pairs

As an additional check on relative counts of dispersal and within-region speciation, we
also identified all sister species pairs in the phylogeny, and tallied the regions they occur
in. This exercise has the benefit of not requiring reconstructed states at internal nodes.
We would expect that the counts of sister pairs within the same region would follow the
pattern we recover in within-region speciation event counts from ancestral state reconstruc-
tion. Additionally, although there is no directionality of dispersal in the sister pair data, we

would expect the region pairs that share more sister species to also be the region pairs that
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exchange species more frequently.

5.4 Results

The intersection of the geographic dataset for marine fishes, the phylogenetic sampling,
and the depth classifications from FishBase resulted in a total of 4987 species, with 4475
occurring in the tropics and northern hemisphere, and 3916 species occurring in the tropics
and southern hemisphere. Of the 4987 species, 3918 were classified as shallow-water and
1069 as deep-water, according to the FishBase depth categories. A majority of species were
found to occur exclusively in tropical, temperate or polar regions, with 92.6 percent of species
occupying a single geographic state, 3.9 percent occurring in two states (tropical+temperate
or temperate-+polar) and 3.3 percent occurring in all three states. Species richness as sum-
marized by region reflected the general pattern observed in the full gridded dataset (Figure
1, Table 1), with large, successive drops in richness from the tropics to the poles for shallow-
water, and a less pronounced drop in richness between tropics and temperate regions for
deep-water. When considering the intersection of species with both geographic and phylo-
genic data, the deep-water north temperate region had slightly greater species richness than
the deep-water tropical region. Mean speciation rates, computed as the average species-
specific rate from a BAMM analysis performed in Rabosky et al. (2018), for those species in
each geographic region, produced an inverse relationship with richness (Figure S2; correla-
tion test of richness and mean speciation rates for both hemispheres combined: Spearman’s

p = -0.866).

5.4.1 Biogeographic modeling

We fit 10 biogeographic transition models to the northern and southern hemisphere sub-
sets of the dataset. In both cases, we found overwhelming support for the most parameter-
rich model (depicted in Figure 2, Table 2, Table S2), for which the transition rates were

unconstrained in both direction and value, with the exception of vertical transitions for
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tropical and temperate regions, which were constrained to have the same value. Notably,
models that enforced poleward dispersal, and therefore emulated the OTT model, were re-
jected with significantly lower model fit than the best-fit model.

Dispersal rates from poles-to-tropics were each greater than their corresponding tropics-
to-poles transition rates except for the rate from the shallow southern polar to temperate
region, which was zero (Figure 3, Figure S3, Table 3). Dispersal rates out of the shallow-
water Arctic were estimated to be 20 times faster than dispersal into the Arctic region.
For deep-water, dispersal out of the Arctic was over 100 times greater than in the opposite
direction. The bias towards poleward dispersal was not quite as extreme in the southern
hemisphere, but rates out of the deep-water Southern Ocean were still several times greater
than rates in the opposite direction.

Statistical model selection also favored the best-fit model over a model where vertical
transition rates from shallow to deep were constrained to be identical to rates from deep to
shallow (Table 2). Parameter estimates indicate that dispersals at high latitudes are more
likely from shallow to deep (Figure 3, Table 3), but the opposite in tropical and temperate
waters. The greatest vertical transition rates were the polar shallow to deep rates, which

were many times the equivalent tropical/temperate rates.

5.4.2 Ancestral state reconstructions

We generated ancestral state reconstructions using Sankoff parsimony and maximum like-
lihood. By generating 1000 ancestral reconstructions, and tracking the frequency with which
each state transitioned to another, we were able to summarize dispersal event and within-
region speciation event counts, while accounting for uncertainty in identity and placement
of the state transitions.

With parsimony, we recovered dispersal event counts that were consistently biased to-
wards movement away from the tropics, for both shallow and deep-water species (Figure

3, S4). Dispersal counts were greatest for both shallow and deep-water dispersals from the
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tropics to both northern and southern temperate regions. With the maximum likelihood re-
constructions (Figure S5), there wasn’t as much of a clear pattern in direction or magnitude
of counts. Generally speaking, dispersals occurred more frequently in deep-water, except
into and out of the north polar region. Parsimony counts for vertical dispersals were more
numerous from shallow to deep waters for all regions, with the exception of the southern
temperate region, where the opposite was found. Vertical transition counts were not as
consistent with the ML-based counts (Figure S5).

The number of within-region speciation events from either reconstruction approach was
highly correlated with species richness, with the greatest number in the tropics, and de-
creasing towards the poles (Table 4). In deep-water, the number of speciation events within
temperate regions was much more similar to the tropics, with slightly greater counts for the
north temperate, which reflects our species counts (Table 1).

Ratios of dispersals to within-region speciation events led to significant differences be-
tween regions. From our parsimony analysis, we found that all regions were more influenced
by OTT dispersals than by dispersals in the other direction (Figure 4), in both shallow and
deep water. The Arctic is heavily dominated by dispersal out of the north temperate. In
contrast, dispersal plays a much more minor role for the Southern Ocean, especially in shal-
low water. Ratios based on the ML reconstructions were very different (Figure S6), with the

pattern in deep-water essentially opposite from what was found with parsimony.

5.4.3 Sister pairs

We identified 1414 sister pairs. Of these pairs, 75 percent were found to occur within the
same geographic region, and 25 percent were found to occur in non-overlapping geographic
regions. The shallow tropics and shallow temperate regions contained the greatest number
of same-region sister pairs (Table 4). Vicariant sister pairs were most frequently found in
the shallow-tropics / shallow-temperate and shallow-tropics / deep-tropics (Table S3). We

also normalized the sister species counts by region, by dividing the number of within-region
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sister species by the number of sister species pairs that were in that region and any other
(Table 4). The shallow-water tropics still had more within-region sister pairs than pairs that
were not both within the tropics. However, the deep-water north temperate had the most

within-region sister pairs, relative to the number of pairs shared with other regions.

5.5 Discussion

The biogeographic flux of marine fishes at a global scale is characterized by a pattern of
greater rates of dispersal from the poles to the tropics. However, parsimony-derived counts
of realized dispersal events depict the opposite pattern, with the net movement of species
out from the tropics, towards the poles. This pattern was evident for both shallow-water and
deep-water species. Model selection and parameter estimates strongly favored the poles-to-
tropics directionality of rates over OT'T models, as well as over other models that constrained
various rates to be identical (Table 2). Caution is warranted in interpreting the importance
of directionality in transition rates however, as we generally find greater transition rates
towards the more frequent state (the tropics).

The most striking pattern to emerge from our transition rate estimates was the magnitude
of the asymmetry in immigration and emigration rates into and out of the polar regions
(Figure 3, Figure S3), for both the shallow and deep ocean, and in particular the Arctic.

The high latitudes are currently harsh environments dominated by ice and high season-
ality; however, the northern and southern polar regions have been shaped by independent
geologic and climatic histories, leaving indelible marks on the current makeup of the regional
fish faunas. When the Bering seaway opened up 3.0-3.5 mya, the Arctic was ice-free and
characterized by a temperate climate, thus the seaway provided a habitable dispersal route
between the northern Pacific and northern Atlantic Ocean basins (DeVries and Steffensen
2005, Mecklenburg et al. 2011). The region was then dominated by a number of young
and phylogenetically disparate families (such as the zoarcid eelpouts). As the Arctic cooled,

species either adapted to these colder conditions, shifted their distributions to the northern
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temperate regions, shifted to warmer, deeper waters, or shifted their habitat preferences
to the mouths of rivers (Mecklenburg et al. 2011). In contrast, the Southern Ocean has
likely maintained its current state of freezing water temperatures and continental glaciers
for approximately the last 25 mya (Kennett 1982). Whereas Arctic marine environments are
connected to temperate regions via shallow continental shelves, the Antarctic continental
shelf and the Southern Ocean are separated from the southern temperate region by deep
waters and the Antarctic Circumpolar Current. The fish fauna in the Antarctic is highly
endemic, with the majority of species belonging to the notothens (icefishes), as well as rep-
resentatives from the Liparidae (snailfishes) and Zoarcidae (eelpouts). Physiological studies
have found that a number of notothen species have extremely narrow temperature and salin-
ity tolerance (Somero and DeVries 1967, O’Grady and DeVries 1982), as they have evolved
in isolation in an environmentally stable region for tens of millions of years. In contrast,
the Arctic fauna is characterized by broader environmental tolerances and lower endemicity
(DeVries and Steffensen 2005).

The differences in dispersal rates out of the high latitudes and into the temperate regions
are consistent with these contrasting biogeographic histories. The Southern Ocean’s highly
endemic, environmentally specialized fauna does not have a history of dispersing out to
warmer waters, except in a few rare cases (Cheng et al. 2003, Eastman 2005). In contrast,
the cooling of the Arctic region has led to many dispersals out to the north temperate
Pacific and Atlantic (Mecklenburg et al. 2011, Briggs and Bowen 2012). The contrast in
migration rates from the polar to temperate regions in the northern and southern hemispheres
might also reflect the greater temperature seasonality of the Arctic, compared to the relative
stability of the Antarctic (Clarke and Crame 2010). Arctic species’ broad thermal tolerance
ranges may be related to wide annual range in temperature in the region, predisposing
them to the warmer temperatures of the north temperate waters and imparting greater
dispersal capability. In contrast, Antarctic species, and in particular the perciform notothens,

have developed highly specialized adaptations (such as antifreeze mechanisms; Portner 2002,
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Eastman 1993, Near et al. 2012) to inhabit an extreme, narrow range of thermal conditions.
Such adaptations may have lessened these species’ ability to disperse across the Antarctic
Circumpolar Current into warmer southern temperate waters. We see further evidence of
these hemisphere differences in the ratios of dispersal to speciation events in the polar regions
(Figure 4). The Arctic has had a dynamic history of acting as a region of species exchange,
whereas the Southern Ocean has been a stable region with relatively low immigration and
emigration, and the host of in situ diversification. These parsimony-based ratios show greater
influence of dispersal in the Arctic and greater influence of within-region speciation in the
Southern Ocean.

There are a number of reasons why the transition rates estimated in this study may
provide an inadequate description of the tempo and directionality of inter-regional disper-
sal. Major sources of bias include state-dependent diversification, non-equilibrium dynamics
of trait evolution, and heterotachy. By employing Mk models to estimate transition rates,
we do not account for the possibility of regional (e.g., “state-dependent”) differences in di-
versification rates that might bias both transition rates and ancestral area reconstructions
(Maddison et al. 2007, Goldberg and Igic 2008, Goldberg et al. 2011). For instance, if
species in the tropical state have a greater net diversification rate than species outside of
the tropics, then we would potentially overestimate the transition rate toward the tropical
state, as that state is rising in frequency due to increased diversification rates, not dispersals.
Likewise, if high extinction rates prevent the accumulation of diversity at high latitudes, we
might find low transition rates towards the high latitudes.

Additionally, the distribution of character states might not be at equilibrium. Transi-
tion rate models, as well as trait-dependent diversification models, generally assume that the
distribution of character states is the product of long-term rates of character evolution, speci-
ation and extinction rates (Goldberg and Igic 2008, O’Meara et al. 2016). If species richness
is still accumulating in the high latitudes, then marine fish diversity is not at equilibrium,

and estimated transition rates can be biased as a result.
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Transition rate models also do not explicitly account for heterogeneity in rates of character
evolution (King and Lee 2015). However, as analyses are conducted on trees of increasing
size, the likelihood that rates do vary across the tree increases as well. Across a phylogeny
of global fish diversity that spans almost 200 mya, it is more likely than not that rates of
dispersal have not been constant, and that heterotachy is present.

Given these potential issues, we hesitate to attach too much importance to the poles-
to-tropics directionality of rates in our analyses, and some of the unexpected patterns in
ML ancestral reconstructions (Figure S6) might be related to these issues. However, certain
contrasts in rates probably do represent biological results. The strong contrast in rates of
exchange between the Arctic and Southern Ocean are consistent with the climatic history of
these regions, as discussed above. Furthermore, the differences in rates between shallow and
deep-water regions are also not likely to be an artefact.

We recovered a very clear pattern of greater dispersal rates for deep-water species, relative
to shallow-water species (Figure 3, S4). Every inter-regional deep-water rate was greater
than its shallow-water counterpart, save for the dispersal rate from the north temperate to
polar region. This is consistent with the idea that with greater depth, marine environmental
conditions are more homogeneous (Figure S1; Gaither et al. 2016, Priede 2017). Features
such as ocean fronts, that act as significant barriers to dispersal in surface waters, are more
permeable at depth (as was found, for example, with the North Atlantic Subpolar Front,
Vecchione et al. 2015), and the overall latitudinal gradient in temperature is less extreme
at depth. This is supported by the finding that a majority of species with circumglobal
distributions are deep-water species (Gaither et al. 2016). Additionally, there have been
multiple instances of interhemispheric dispersal events of deep-water lineages, particularly in
the families Scorpaenidae, Liparidae and Zoarcidae, dispersing from the North Pacific to the
south temperate and Southern Ocean, through the tropics via cold deep waters (“isothermic
submersion”, Briggs 2003, Mecklenburg et al. 2011). Furthermore, in the Southern Ocean,

the composition of species in the shallow-waters is dominated by the endemic notothen
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icefishes. In deep-water, however, representatives of other families are a larger percentage of
the diversity, thus reducing Arctic endemism at depth.

Rates of dispersal from shallow to deep water were much greater in the high latitudes
than all other vertical dispersal rates. In the Arctic, this is consistent with adaptation to
deeper, ice-free waters documented for a number of lineages in response to regional cooling
over the last several million years (Mecklenburg et al. 2011). We might also expect rates of
dispersal to be greater in the high latitudes simply because the sea temperature of shallow
and deep water is more similar in these regions than anywhere else on the planet. Evidence
of this can be found in the average depth ranges of tropical and polar species, where polar
species generally have broader depth ranges, according to FishBase depth data (median
tropical and polar depth range: 50m and 700m, across 8291 and 282 species, respectively).

Taken together, we find that rates of dispersal seem to reflect historical and current en-
vironmental similarity across latitudinal regions. Rates are low between the tropics and the
high latitudes, where the environmental conditions are exceedingly harsh and colonization
necessitates specialized adaptations. In contrast, rates between the high latitudes and the
temperate regions are drastically higher for the Arctic. We see lower immigration and em-
igration rates out of the shallow Southern Ocean, which is inhabited primarily by species
that have evolved narrow environmental niches. Perhaps most convincing is that dispersal
rates are substantially higher for deep-water species, which experience greater environmental
homogeneity than at the surface. Additionally, rates from shallow to deep-water in the high
latitudes, which are most similar in terms of temperature, are the highest vertical dispersal
rates.

Counts of dispersal events via parsimony analysis capture a pattern that is in stark
contrast to the pattern in transition rates across latitudinal zones (Figure 3). These event
counts are strongly correlated with species richness of the dispersal source regions (Spearman
r = 0.833). If we take speciation as an example, the tropics have significantly lower rates of

speciation than the higher latitudes (Figure 1, Rabosky et al. 2018); however, we count a
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much greater number of speciation events in the tropical region (Figure S4). If a lineage has
on average a relatively low probability of undergoing speciation, but there are many such
lineages, then the realized outcome will be many speciation events. Likewise, if there is a
low probability that a species would disperse out of the tropics, but there are thousands
of tropical taxa, the realized outcome will be more dispersal events than in the opposite
direction. Therefore, we may find a strong pattern of rates of dispersal biased in a “poles to
tropics” direction, but tropical inertia due to high species richness results in a net realized
dispersal pattern out of the tropics. In their original description of the OTT model, Jablonski
et al. (2006) considered counts of range expansion out of the tropics, and commented on
the events that allowed for extratropical expansion likely being infrequent (Jablonski et al.
2013). Our results are thus in agreement with the dispersal aspect of the OTT model.

Our results add to a growing number of studies that have found support for niche con-
servatism as a key concept in the generation and maintenance of the latitudinal diversity
gradient. In similar studies that explored the LDG in different groups of organisms, dis-
persal rates as inferred with GeoSSE (Goldberg et al. 2011) were found to be greater from
extratropical to tropical regions in amphibians (Pyron and Wiens 2013), squamates (Pyron
2014), and in the Pheidole genus of ants (Economo et al. 2018). Although rates of dispersal
were not explicitly estimated, a significant role for niche conservatism in the LDG was found
for birds (Duchene and Cardillo 2015) and for new world woody angiosperms (Kerkhoff et
al. 2014). Additionally, Jablonski et al. (2013) found in marine bivalves that species with
broad latitudinal ranges appeared to be tracking regions of similar temperature, providing
another indication that thermal niche conservatism may be an important mechanism in the
shaping of the LDG. No other study has examined the role of dispersal in the generation
and maintenance of the LDG for marine fishes as a whole. Siqueira et al. (2016) focused
on four coral reef-associated fish families, and found that speciation rates were greater in
the tropics, while dispersal rates were greater out of the tropics. Cowman and Bellwood

(2013) characterized the Indo-Australian Archipelago as a region of diversity accumulation
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and a subsequent source of species movement into neighboring regions; however, their analy-
ses focused only on three reef-associated families and longitudinal lineage exchange between
major ocean basins. These studies do not contradict our findings, but rather differ from our

analyses in both taxonomic and geographic scope.

5.6 Conclusion

The tropics contain the greatest number of marine fish species, and over the evolutionary
history of the group, more species have dispersed out of the tropics, into the temperate,
and ultimately into the polar regions. However, biogeographic rates of dispersal are greatest
in the opposite direction: from the poles towards the tropics. The frequency and direction
of dispersal events reflect the realized movement of lineages, resulting from species richness
inertia despite the directionality of the biogeographic transition rates. But high rates of
dispersal associated with the Arctic, indicate that the assembly of regional communities in
the northern high latitude regions is dominated by dispersal. In contrast, regional assembly
in the Southern Ocean has been dominated by in situ diversification. This is likely due to
the contrast in biogeographic and climatic histories of these regions.

Our results also highlight the importance of environmental niche conservatism in shaping
global patterns of diversity, and in determining the most likely dispersal routes. We found
that, the more environmentally similar regions are, the greater the rate of transition be-
tween them. This was particularly clear in the distinction between shallow and deep-water
transition rates. With recent anthropogenic climate change, the Arctic is warming faster
than the global average (Hoegh-Guldberg and Bruno 2010). With this shift, there are al-
ready documented cases of northern temperate species dispersing north into regions that
were once outside their tolerance ranges, and this is expected to increase dramatically over
the next century (Fossheim et al. 2015, Wisz et al. 2015). The biogeographic response to
climate change points to the sensitivity of marine species to sea temperature as determining

geographic range limits and provides an example of the global biogeographic repercussions
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that are likely to accompany a rapidly changing climate.
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Figure 5.1: Latitudinal regions and latitudinal diversity gradients. Tropical (red), temperate
(orange) and polar (blue) regions, as delineated from the MEOW (Spalding et al. 2007) and PPOW
(Spaling et al. 2012) datasets. Polygons visible within the colored regions show the MEOW marine
realms that separate marine shelf from open ocean regions. Latitudinal gradients for species richness
(dark orange) and speciation rates (light blue) are shown for shallow-water species (left) and for
deep-water species (right).
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have been scaled to reflect the magnitude of the differences, following a quantile transformation.
Actual rate and count values can be found in Figure S3 and S4. The circles representing each
region have been scaled according to the region’s species richness. Transition rates dominate in a
poles-to-tropics direction, whereas net movement based on dispersal events is in a tropics-to-poles
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Figure 5.4: Ratios of dispersal to within-region speciation, based on parsimony. In (a) and (b),
out-of-the-Tropics (OTT) dispersals were used, therefore there is no ratio for the Tropics. In (c) and
(d), poles-to-Tropics (PTT) dispersals were used, hence there are no ratios for the polar regions,
and there is both a south Temperate — Tropics and a north Temperate — Tropics ratio. Boxplots
represent the distribution of ratios from 1000 parsimony-based ancestral state reconstructions, in
terms of their 5-95 and 25-75% quantiles. The Arctic exhibits a signature of dispersal-dominated
assembly, whereas in the Southern Ocean, within-region speciation is the dominant process of lineage
accumulation.
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hemisphere region depth full richness subset richness mean speciation rate

northern tropical shallow 6167 2796 0.09
northern temperate shallow 1412 968 0.14
northern polar shallow 96 78 0.14
northern tropical deep 2149 579 0.09
northern temperate deep 1230 591 0.13
northern polar deep 108 75 0.17
southern tropical shallow 6167 2796 0.09
southern temperate shallow 971 452 0.10
southern polar shallow 67 52 0.20
southern tropical deep 2149 579 0.09
southern temperate deep 1242 458 0.09
southern polar deep 430 185 0.17

Table 5.1: Richness and speciation rate values for the different latitudinal regions. Richness was
calculated as the number of species whose range is in each region (but not exclusively). Counts
from our geographic dataset are shown as ‘full richness’, and as ‘subset richness’ when intersected
with the taxa in the phylogeny.

167



hemisphere model K logLik AICc AAICc wtAICc

north unconstrained 13 -3898.55 7823.18 0.00 1.00
north all shallow transitions equal 10 -3915.05 7850.15 26.96 0.00
north OTT model enforced for shallow 13 -3915.05 7856.18 32.99 0.00
north deep — shallow = shallow — deep for tropical/tem- 12 -3916.63 7857.33 34.15 0.00
perate only
north deep — shallow = shallow — deep 11 -3917.75 7857.55 34.37 0.00
north OTT model enforced for deep 13 -3921.88 7869.83 46.65 0.00
north shallow polar import = export, deep polar import 11 -3952.11 7926.27 103.09 0.00
— export
north OTT model enforced for shallow and deep 13 -3964.81 7955.70 132.52  0.00
north all deep transitions equal 10 -4056.26 8132.57 309.39 0.00
north shallow transitions equal, deep transitions equal 7 -4102.63 8219.29 396.11  0.00
south unconstrained 13 -2993.12 6012.31 0.00 1.00
south deep — shallow = shallow — deep for tropical/tem- 12 -2999.86 6023.77 11.47 0.00
perate only
south deep — shallow = shallow — deep 11 -3007.91 6037.87 25.56 0.00
south shallow polar import = export, deep polar import 11 -3014.66 6051.37 39.06 0.00
= export
south all shallow transitions equal 10 -3016.47 6052.98 40.67 0.00
south OTT model enforced for shallow 13 -3013.72 6053.51 41.20 0.00
south OTT model enforced for deep 13 -3025.80 6077.68 65.37 0.00
south OTT model enforced for shallow and deep 13 -3058.92 6143.92 131.61 0.00
south all deep transitions equal 10 -3102.04 6224.12 211.81 0.00
south shallow transitions equal, deep transitions equal 7 -3117.34 6248.69 236.38  0.00

Table 5.2: Model fit comparison for the northern and southern hemispheres. We found strong
support in each hemisphere for the unconstrained model.
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hemisphere region depth within-region speciation events  within-region sister species  normalized sister pairs

parsimony ML

tropical shallow  2701.49 2580.73 702 0.60

tropical deep 403.4 272.35 93 0.20
northern temperate  shallow  543.72 547.14 133 0.25
northern polar shallow  12.53 25.9 3 0.07
northern temperate  deep 292.21 197.21 82 0.21
northern polar deep 6.47 11.02 3 0.08
southern temperate shallow  159.83 264.91 53 0.20
southern polar shallow  25.15 4.04 5 0.15
southern temperate  deep 223.67 146.1 46 0.15
southern polar deep 40.44 32.93 11 0.12

Table 5.4: Counts of within-region speciation events and sister pairs. We also calculated normalized
sister pair counts, which represent the percent of within-region pairs, compared to the number of
pairs pairs that include that region. There is a latitudinal gradient in all of these quantities.
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Figure S5.1: Global variation in sea temperature, as a function of depth. The light gray and dark
gray polygons delineate the 5 to 95%, and 25 to 75% quantile ranges in temperature, respectively,
and the black line represents the median. Temperature information from the NOAA World Ocean
Atlas 2013 v.2 (Boyer et al. 2013).
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Figure S5.3: Transition rates from the best-fit biogeographic model. Vertical transition rates for
tropical and temperate regions were constrained to the same value, which is why those arrows are
placed midway between those regions.
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Figure S5.4: Dispersal and speciation event counts from parsimony. Arrows represent counts of
dispersal events from one region to another. Counts within boxes represent the number of within-
region speciation events. All counts are averaged across 1000 ancestral reconstructions.
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Figure S5.5: Dispersal and speciation event counts from maximum likelihood. Arrows represent
counts of dispersal events from one region to another. Counts within boxes represent the number
of within-region speciation events. Counts within boxes represent the number of within-region
speciation events. All counts are averaged across 1000 ancestral reconstructions.
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Figure S5.6: Relative importance of dispersal vs in situ speciation events from ML joint ancestral
state reconstruction. In (a) and (b), out-of-the-Tropics (OTT) dispersals were used, therefore there
is no ratio for the Tropics. In (c) and (d), poles-to-Tropics (PTT) dispersals were used, hence there
are no ratios for the polar regions, and there is both a south Temperate — Tropics and a north
Temperate — Tropics ratio. Boxplots represent the distribution of ratios from 1000 ML ancestral

state reconstructions.
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CHAPTER VI

Conclusion

The work that I have presented in this dissertation touches on a wide range of topics
that are linked in their relevance to the study of spatial patterns of biodiversity. In addition
to the findings presented in these four research chapters, it is clear that there are countless
potential extensions of the topics discussed herein and many exciting opportunities to further
interweave phylogenetic history and geographic information across taxonomic, temporal and
spatial scales.

In Chapter 2 (Title and Rabosky 2017), we drew attention to a number of potential issues
that are in many ways unique to the large phylogenies currently being produced. With Aus-
tralian squamates as a case study, we demonstrated that differences in estimated divergence
times and topologies across existing large squamate phylogenies result in discrepancies that
can have a meaningful impact on downstream analyses. This is largely due to the inherent
difficulties in phylogenetic inference with thousands of taxa when the genetic data are sparse,
and when the tree space that needs to be searched is large. However, this field is rapidly
experiencing improvements and methodological advances that will mitigate some of these
issues in the future (Smith et al. 2010, Sanderson et al. 2015, Wright et al. 2015, Smith and
Brown 2018).

The different squamate phylogenies also differed substantially in terms of crown clade ages

for the different Australian groups. Perhaps more worrisome, none of the large phylogenies
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were consistent with the crown clade ages reported in the literature on these groups. A closer
look at the fossil calibration datasets employed in the time calibration of each phylogeny
revealed that only one fossil calibration was shared amongst all of them, and there was little
overlap with the fossil datasets used in the Australian squamate literature. Given these
findings, the conflict in divergence times may not be particularly surprising. Fortunately, a
number of recent works have since been published that present promising fossil calibrations
for use in squamate phylogenetics (Head et al. 2015, Head et al. 2016), including the oldest
known fossil stem squamate (Siméoes et al. 2018).

In Chapter 3 (Title and Bemmels 2018), we developed a comprehensive, open-source
bioclimatic resource that we believe will be useful for a number of applications. As we
demonstrated with several case studies, simply having a greater number of climatic variables
to select from gives us greater flexibility in choosing predictors appropriate to the species
under study, either through ecologically-informed manual selection or statistical variable
reduction (Warren et al. 2014). Additionally, some of the climatic variables we generated
have more direct relevance to ecological and physiological processes that may be important
in determining species range limits (for example, growing degree-days is linked to plant
phenology and growth rate; McMaster and Wilhelm 1997). These variables also make it
possible to craft more targeted hypotheses in a statistical phylogeographic framework. For
instance, Bemmels et al. (2016) used the ENVIREM dataset, in conjunction with the typical
19 bioclimatic variables from WorldClim (Hijmans et al. 2005), to test spatially-explicit
phylogeographic hypotheses.

Perhaps equally important, but somewhat lacking, is the development of evaluation met-
rics that can accurately identify biologically relevant predictors. Although it is essential to
have an adequate set of predictors to select from, current approaches are hindered by issues
of variable collinearity and spatial autocorrelation, where species distribution models will ap-
pear to perform well simply because true presences that are close in geographic space were

correctly classified as present (Lobo et al. 2008, Veloz 2009). Fourcade et al. (2017) went
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so far as to demonstrate that predictors entirely generated from classical paintings, and not
environmental data, could lead to species distribution models with reasonable performance,
using current approaches. Therefore, although we view the ENVIREM dataset as a valuable
new resource, other advances are desperately needed so that we may take full advantage of
these climatic predictors and fit biologically meaningful models.

In Chapter 4, we evaluated the accuracy of a number of model-free tip rate metrics, as well
as a Bayesian model-based approach, BAMM (Rabosky 2014). We tested these approaches
against a number of different simulated diversification scenarios, including time-constant
trees with multiple rate regimes, diversity-dependent trees, and trees where the rate of
speciation evolves continuously, rather than via discrete shifts (Rabosky 2010, Beaulieu and
O’Meara 2015). We demonstrated that model-free approaches (inverse of the terminal branch
lengths, node density from Freckleton et al. 2008, DR from Jetz et al. 2012) all clearly track
the rate of speciation and not diversification rates. This became notably apparent when the
rate of lineage turnover was high. In such a scenario, the rate of speciation can theoretically
take on a range of values, but net diversification (speciation minus extinction) must be low.
This has important implications for the interpretation of these metrics in diversification
dynamic studies, as a large tip rate value can still imply that equilibrial dynamics are in
effect (it can be matched by high rates of extinction), whereas if tip rates represent net
diversification rates, this would not be true.

We found that BAMM performed best in all of our evaluations. Furthermore, BAMM had
the least amount of error with trees where the rate of speciation changes continuously, which
is quite different from BAMM’s inference model. The DR metric also performed reasonably
well in our evaluations, outperforming BAMM for small rate regimes. However, whereas
BAMM might be conservative in its placement of diversification rate shifts, DR suffers from
high variance in tip rate estimates.

Overall, tip rates estimated with both BAMM and DR are proving to be valuable ap-

proaches to quantifying diversification rate variation across phylogenies. Of obvious relevance
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to the major themes of this dissertation, tip rates lend themselves well to the study of diversi-
fication in a geographic context, as these rates can be summarized across species assemblages
by grid-cell (Jetz et al. 2012, Kennedy et al. 2016, Oliveira et al. 2017, Quintero and Jetz
2018, Rabosky et al. 2018). Additionally, tip rates can be useful in the study of trait-
dependent diversification (Rabosky and Goldberg 2017, Harvey and Rabosky 2017), as they
make it possible to relax certain assumptions regarding rate homogeneity within character
states. They are also easy to calculate, and can therefore be applied to very large phylo-
genies. Future research could explore how DR performs for very large phylogenies, where
BAMM is incapable of converging due to the extremely large number of potential rate shift
locations. Although the same issues with DR that were found in this study would persist,
it would be important to assess whether or not this has any notable effect on hypothesis
testing, especially when the phylogeny contains thousands of species.

Several biases may exist in empirical phylogenies that were not explored in this study.
For instance, phylogenies rarely contain complete species representation, and there may be
bias in terms of the phylogenetic placements of those missing species. BAMM can account
for missing species analytically by incorporating the fraction of included species for different
nodes in the tree (Rabosky 2014). Despite these analytical corrections, BAMM may still
have lower statistical power to detect rate shifts, as power is related to the number of species
in a potential rate regime (Rabosky et al. 2017). Stochastic polytomy resolution, whereby
missing species are added to the phylogeny according to taxonomic constraints, may provide
a way to improve performance. By generating many possible trees with complete species
sampling, tip rate metrics can be calculated while integrating across alternative placements
of missing taxa. Estimates of DR should improve (Rabosky et al. 2018) and BAMM should
benefit from increased statistical power to identify rate shifts.

In Chapter 5, we explored how biogeographic dispersal has contributed to the latitudinal
diversity gradient in marine fishes. We found that rates of dispersal are higher in a poles-to-

tropics direction. Additionally, we recovered greater dispersal rates in deep-water, compared
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to shallow-water lineages. This supports the notion that biogeographic barriers in shallow
versus deep-water are not equivalent, and that there is greater environmental homogeneity on
a global scale at depth (Vecchione et al. 2015, Gaither et al. 2016, Priede 2017). We found
a strong contrast in rates between the northern and southern high latitudes, with dispersal
rates out of the Arctic being the greatest, and relatively low dispersal rates assoeciated with
the Southern Ocean, thus reflecting the Arctic’s history as an area of biotic interchange
between the north Pacific and north Atlantic oceans (Mecklenburg et al. 2011).

Counts of dispersal, as estimated through ancestral state reconstruction, show that direc-
tionality of dispersal rates does not imply realized net movement of species in that direction.
Rather, the strong latitudinal gradient in species richness is such that a lower rate of migra-
tion from a large species pool still leads to more dispersals than a higher rate of migration
from a small pool of species.

Overall, we find that the net migration of species across latitudes does support a key
prediction of the “out of the tropics” model of Jablonski et al. (2006); however, latitudinal
gradients in speciation rates do not (Rabosky et al. 2018). A critical piece of the puzzle
that is currently missing is an understanding of how rates of extinction vary across latitudes.
Previous research indicates that rates of extinction are likely to be elevated at high latitudes
(Weir and Schluter 2007, Clarke and Crame 2010, Botero et al. 2014, Weir 2014) and that
the high latitudes might therefore be characterized as regions of increased lineage turnover.
A number of studies have investigated the differences in diversification and dispersal in and
out of the tropics in a number of groups of organisms (Pyron and Wiens 2013, Pyron 2014,
Rolland et al. 2014, Economo et al. 2018, Pulido-Santacruz and Weir 2016) and have found
that rates of extinction are typically higher outside of the tropics. Although it is difficult
to accurately estimate rates of extinction from extant-only molecular phylogenies (Rabosky
2010, Mitchell et al. 2018), information from groups with a robust fossil record (such as
marine bivalves, Jablonski et al. 2017) and knowledge of past environmental change (Clarke

and Crame 2010, Mecklenburg et al. 2011) support the possibility that rates of extinction
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might be high at high latitudes, but a thorough understanding of how rates of extinction
and net diversification rate vary with latitude is needed.

The dispersal rate patterns that we present appear to indicate that environmental toler-
ances might be important in determining which species are more likely to disperse between
particular regions (Kerkhoff et al. 2014, Duchéne and Cardillo 2015), as we find greater dis-
persal in deep waters. Additional analyses that estimate dispersal rates for different groups
within marine fishes would allow us to take a more detailed look at these patterns, and
incorporate information on evolutionary lability and conservatism in species environmental
preferences as well as ecological attributes of these diverse groups.

This body of work, along with other studies, strengthens the call to link phylogenetic
information with species distributions. These studies also highlight the insights that can be
gained through the formal evaluation of phylogenetic methods and geospatial datasets in a
comparative framework. Finally, this work demonstrates the importance of global scale and
phylogenetically comprehensive analyses. Surprising findings that arise from this integrated
viewpoint challenge some of our former conceptions about the processes underlying major

biodiversity patterns across broad spatial and taxonomic scales.
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