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ABSTRACT

Extra-terrestrial ocean worlds like Europa offer tantalizing targets in the search for extant life be-
yond the confines of Earth’s atmosphere. However, reaching and exploring the underwater environ-
ments of these alien worlds is a task with immense challenges. Unlike terrestrial based missions,
the exploration of ocean worlds necessitates robots which are capable of fully automated operation.
These robots must rely on local sensors to interpret the scene, plan their motions, and complete
their mission tasks. Manipulation tasks, such as sample collection, are particularly challenging
in underwater environments, where the manipulation platform is mobile, and the environment is
unstructured.

This dissertation addresses some of the challenges in visual scene understanding to support
autonomous manipulation with underwater vehicle manipulator systems (UVMSs). Specifically,
this work addresses the problems of tool detection and pose estimation, 3D scene reconstruction,
underwater camera system design, underwater dataset collection, and UVMS manipulator automa-
tion. The developed visual methods are demonstrated with a lightweight vision system, composed
of a vehicle mounted stereo pair and a manipulator wrist mounted fisheye camera, that can be eas-
ily integrated on existing UVMSs. While the stereo camera primarily supports 3D reconstruction
of the manipulator working area, the wrist mounted camera enables dynamic viewpoint acquisition
for detecting objects, such as tools, and extending the scene reconstruction beyond the fixed stereo
view. A further objective of this dissertation was to apply deep learning with the developed visual
methods. While deep learning has greatly advanced the state-of-the-art in terrestrial based visual
methods across diverse applications, the challenges of accessing the underwater environment and
collecting underwater datasets for training these methods has hindered progress in advancing visual
methods for underwater applications.

Following is an overview of the contributions made by this dissertation. The first contribution is
a novel deep learning method for object detection and pose estimation from monocular images. The
second contribution is a general framework for adapting monocular image-based pose estimation
networks to work on full fisheye or omni-directional images with minimal modification to the
network architecture. The third contribution is a visual SLAM method designed for UVMSs that
fuses features from both the wrist mounted fisheye camera and the vehicle mounted stereo pair
into the same map, where the map scale is constrained by the stereo features, and the wrist camera

xv



can actively extend the map beyond the limited stereo view. The fourth contribution is an open-
source tool to aid the design of underwater camera and lighting systems. The fifth contribution
is an autonomy framework for UVMS manipulator control and the vision system that was used
throughout this dissertation work, along with experimental results from field trials in natural deep
ocean environments, including an active submarine volcano in the Mediterranean basin. The sixth
contribution is a large scale annotated underwater visual dataset for object pose estimation and
3D scene reconstruction. The dataset was collected with our vision system in natural deep ocean
environments and supported the development of the visual methods contributed by this dissertation.
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CHAPTER 1

Introduction

1.1 Motivation

Since ancient times, humans have sought to penetrate the depths of the oceans and probe what
lies beneath the surface. As in modern times, much of the early ocean diving was driven by com-
mercial exploitation, salvage, and military operations [60]. Efforts to map and understand the
deeper ocean, beyond the limits of human divers, began in the mid 19th century, driven largely
by an initiative to survey the Gulf Stream [1]. Dredging from the H.M.S Lightning during the
Gulf Survey recovered sea life from a depth exceeding 4km, discrediting previous speculation that
the sea was lifeless below 549m and sparking scientific interest in deep ocean exploration [197].
In the late 19th century, the H.M.S. Challenger set the groundwork for modern oceanography by
circumnavigating the globe while conducting scientific research. Until the early 20th century,
deep ocean surveys were carried out from surface vessels using primitive sampling methods. The
invention of acoustic sounders was a giant leap forward for oceanographic mapping technology,
and the pioneering work of William Beebe and Otis Barton with the first manned bathysphere in
1934 heralded an era of manned submersible exploration of the deep ocean. The 1960s saw the
first use of unmanned submersibles for oceanography with the development the Deep Tow System
by Scripps Institution of Oceanography. This period also saw the construction of Alvin, the first
of its ship class of Deep Submersible Vehicles, designed to replace bathyscaphes and other less
maneuverable oceanographic vehicles [2]. The Alvin, operated by Woods Hole Oceanographic
Institution (WHOI), was outfitted with a dexterous manipulator for performing pilot guided inter-
ventions. Building on this technology, the unmanned work-class ROV was developed for offshore
oil and gas, becoming a crucial part of the industry for performing operations at depths exceeding
the limits of human divers [3]. In the following decades, ROVs outfitted with pilot operated ma-
nipulator systems also became the primary tool in oceanography for deep ocean exploration and
sample collection.

Despite rapid advancements in underwater vehicle and manipulator system technology from the
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late 20th century to the present time, ROV field operations remain exclusively pilot controlled. The
state of the art practice for ROV manipulation is direct teleoperation, typically through a miniature
master arm acting as a joystick controller [169]. In the last decade, more attention has been given to
automating underwater manipulation. However, demonstrations have mostly been limited to pools
and shallow water environments, with manipulation tasks focused on interactions with man-made
structures. The lag of underwater manipulation autonomy behind terrestrial based manipulation
systems can be at least partly attributed to the expense of building underwater systems, the risk of
operating in unstructured underwater environments, and the challenges of using visual sensors in
underwater environments for localization, scene reconstruction and semantic understanding [102].
This dissertation seeks to address some of the challenges of using optical sensors in the underwater
domain and to develop a framework for automating existing work-class manipulator systems while
minimizing the risk of operation.

1.1.1 Commercial and Military Applications

Work-class ROVs have become an essential tool of modern sub-sea industry [31, 169]. In the
energy, oil and gas sectors, they are used heavily for sub-sea pipe and structure construction, in-
spection, maintenance and repair. They have also found use in the civil field for bridge and pier
inspections and servicing, aquaculture for net inspection and dead fish removal, and other sec-
tors of industry. Most commercial ROV operations involve a manipulation task, typically in a
structured environment. Some examples of common tasks include turning a valve, plugging a con-
nector, cleaning a surface or salvaging an object. Though ROV technology has become integral
to commercial exploitation of the ocean, substantial infrastructure is required for their operation,
including a team of trained pilots maintaining constant oversight and control of the vehicle during
operation, an array of monitoring equipment and interfacing hardware to provide adequate visual,
sensory, and system state feedback for pilot control, and a surface vessel from which the ROV is
tethered and operated. Operational costs for a single ROV system, including personnel time, fuel
consumption, and ship operations, can run up to a five or six figure sum per day.

Automating common ROV manipulation tasks for the sub-sea industry would reduce the need
for trained pilots, minimize the required topside control center infrastructure, and enable inte-
gration of manipulators on AUVs and resident vehicles that do not require a surface vessel for
operation. Besides the associated direct operational cost savings, an autonomous system can also
reduce operational risk from human error, which may result in lost time or mission failure in the
worst case.

Work-class ROVs also have a long history with the U.S. military. The first work-class ROV,
the CURV-I, was developed by the Navy for recovering torpedoes and other ordinances from the
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seabed [146] and was made famous in 1966 for recovering a hydrogen bomb, lost from a B-52
bomber collision over the Mediterranean Sea, at a depth of 880m. Recently, with the DARPA An-
gler program, the Navy has been pushing for unmanned underwater vehicles capable of performing
fully autonomous search and manipulation objectives in deep ocean environments [142].

1.1.2 Scientific Exploration and Sampling of The Deep Ocean

ROVs have become the workhorse for deep-sea oceanography. Modern ROVs used in oceanog-
raphy are outfitted with high definition science cameras, an array of scientific instruments, and
tools for collecting and returning samples. Figure 1.1 shows a still frame from the science camera
on the SuBastian ROV, operated by Schmidt Ocean Institute (SOI), captured while exploring and
collecting biological samples on the Costa Rica shelf break. While ROVs have unlocked the deep
ocean for scientific research, their cost of operation is prohibitive for many projects, and only lim-
ited numbers of deep ocean rated ROVs are dedicated to oceanographic research, making it highly
competitive to procure research time with one of these vehicles.

Figure 1.1: Still frame from the HD science camera of the SuBastian ROV, operated by Schmidt
Ocean Institute, while collecting a push core sample at a depth exceeding 1,000m.

Automating underwater manipulation tasks common to oceanography would enable manipula-
tors to be integrated onto AUVs, which are less costly to build, maintain and operate compared
to ROVs. By removing the cost overhead of ship time, pilots, and operating infrastructure, AUV
based manipulation would greatly enhance the field of oceanography and open the way for many
projects where funding or ship time might otherwise be a barrier.
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1.1.3 Extraterrestrial Exploration in The Search for Life

In 1977, Robert Ballard comfirmed the existence of hydrothermal vents [197] in the deep ocean
with thriving ecosystems of chemolithoautotrophic organisms, which survive in the absence of
light by obtaining energy through chemical processes [7]. This discovery not only vitalized the
field of deep sea oceanography but also captured the attention of astrobiologists; similar geother-
mal processes which drive hydrothermal venting could operate in the extreme environments of
extraterrestrial oceans, such as that believed to exist beneath the ice bound surface of Europa.
These environments are a prime target to search for extraterrestrial life, which may have developed
beyond the reach of the sun’s harsh radiation.

Planning for a Europa lander mission is well under way [66], and the vehicle concept includes
a sample manipulation system, which will operate under similar hardware constraints to deep-sea
manipulator systems, due to the extreme environments of space. Because of the high communica-
tion delay between the Earth and Europa and the risk of intermittent communication failure, it is
critical that the manipulation system be capable of conducting a fully autonomous sampling cycle.
In the eventuality that a probe is deployed into the sub-surface ocean, communication with Earth
will be completely cut off, and the sample search, identification and collection processes must
operate fully autonomously.

1.1.4 Challenges of Underwater Vision

There are unique challenges when using visual sensors underwater, compared to terrestrial based
applications. Figure 1.2 shows some example images that illustrate how visual sensor data can
be degraded in underwater environments. The fundamental challenge is that photons propagating
through the water column are scattered and absorbed in a wavelength dependent manner [171]. For
imaging sensors, these physical processes induce haze and distortions in the collected images and
reduce the overall photometric and color contrast. These effects are also highly variable with the
water column properties and the quality of the scene lighting, making them extremely challenging
to model. Visual methods that operate on RGB image data largely depend on either extracting and
matching features or making direct photometric comparisons of images. However, the wavelength
dependent attenuation of light signals in the water column breaks the photometric consistency
assumption, which underlies many feature representations or methods that make direct pixel com-
parisons between images. For example, an image patch that is imaged underwater with the same
camera and lighting system at 1m distance will have a significantly different color and contrast
when imaged at 2m. These underwater imaging effects result in many visual methods that perform
very well in terrestrial based environments to have very brittle performance in the underwater do-
main. There is a large visual domain shift between in-air and underwater environments, so visual
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methods must be designed specifically for the underwater domain to achieve robust performance.

Figure 1.2: Examples of degraded images in underwater environments, due to water column ef-
fects, showing suspended particulates, poor lighting, low scene contrast, and haze due to backscat-
ter.

1.2 Problem Statement

This dissertation addresses the following problems in automating underwater manipulation

1. ROVs generally carry an array of tools for performing various sampling and intervention
tasks. An autonomous system must be able to localize these tools accurately in order to
grasp and manipulate them.

2. An autonomous manipulator system must be able to reconstruct the local workspace in real-
time to safely perform manipulation tasks in the environment. While much attention has
been given to visual based underwater localization and large-scale post-processed recon-
structions from surveys, there is a lack of works that address real-time SLAM and scene
reconstruction to support autonomous underwater manipulation in unstructured and diverse
seafloor environments.

3. Hydraulic manipulators are standard for work-class ROVs because of their reliability in un-
derwater environments, superior power to weight ratio, and generally greater depth rating,
compared to electric alternatives. However, hydraulic manipulators provide a minimal com-
mand interface with limited joint feedback and are less precise than electric manipulators.
To be widely adoptable, a framework for autonomous underwater manipulation should be
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largely agnostic to the particular hardware configuration and be readily integrated with ex-
isting work-class hydraulic manipulator systems.

4. Deep learning has greatly advanced the field of computer vision but relies on visual datasets
to learn the computation models. However, annotated datasets from the underwater domain
are scarce, due to the expense and challenges of gathering and annotating underwater data. In
order to advance the state-of-the-art in visual methods for the underwater domain, annotated
datasets collected in natural and diverse sub-sea environments are needed to support the
development of learning based methods.

1.3 Contributions

The following list enumerates the specific contributions of this dissertation with the corresponding
chapters.

• SilhoNet: a novel deep learning method to estimate object pose and occlusion in cluttered
scenes from monocular images. A key novelty of SilhoNet is the use of an intermediate sil-
houette representation to bridge the sim-to-real domain shift and facilitate learning a model
from synthetic data. (Chapter 2)

• SilhoNet-Fisheye: a mathematical framework for adapting ROI-based networks for predict-
ing 6D object pose from monocular images to work on full fisheye and omni-directional
images. This method builds on prior work in object detection from omni-directional images
to extend the application of the gnomonic projection from an intermediate spherical mapping
to compensate for image distortions and viewpoint ambiguities when predicting object pose.
(Chapter 3)

• A SLAM method designed for underwater vehicle manipulator systems that fuses an inde-
pendent monocular wrist mounted fisheye camera with a vehicle mounted perspective stereo
pair, enabling active extension of the scene map with the manipulator camera beyond the
limited view of the stereo pair. (Chapter 4)

• An open source tool to aid underwater optical system design. The tool incorporates an
experimentally verified underwater image formation model to enable parametric exploration
of the system design space through an intuitive graphical user interface. (Chapter 5)

• A camera system and automation framework for underwater vehicle manipulator systems.
Demonstrations were made on a manipulator testbed and in natural deep seabed habitats of
the Costa Rica Shelf Break, the Santa Monica Basin, and Kolumbo, an active submarine
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volcano in the Mediterranean basin. This work culminated in planner controlled biological
sample collection with an ROV and hydraulic manipulator system. Full planner controlled
pick-and-place of a tool handle was also demonstrated on the manipulator testbed. (Chap-
ter 6)

• UWHandles: an underwater fisheye dataset and annotation tool for 6D object pose estima-
tion. This dataset addresses a lack of widely available annotated fisheye datasets and the
general lack of publicly available underwater image datasets for deep learning applications.
(Chapter 6)

Work presented in this dissertation, as well as related research, has been published in the
following manuscripts:

G. Billings and M. Johnson-Roberson, ”SilhoNet: An RGB Method for 6D Object Pose Estima-
tion,” in IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3727-3734, Oct. 2019.

G. Billings and M. Johnson-Roberson, ”SilhoNet-Fisheye: Adaptation of A ROI Based Object
Pose Estimation Network to Monocular Fisheye Images,” in IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 4241-4248, July 2020.

G. Billings, E. Iscar and M. Johnson-Roberson, ”Parametric Design of Underwater Optical
Systems.” in IEEE Global OCEANS: Singapore-U.S. Gulf Coast, 2020.

G. Billings, R. Camilli, M. Walter, O. Pizarro and M. Johnson-Roberson, ”Towards Automated
Sample Collection and Return in Extreme Underwater Environments.” Under review. Submitted
to Field Robotics

G. Billings, R Camilli and M. Johnson-Roberson, ”Hybrid Visual SLAM for Underwater Vehicle
Manipulator Systems.” Under review. Submitted to IEEE Robotics and Automation Letters

Some of my work has been a collaborative effort. Dr. Eduardo Iscar had equal contribution
in the experiments and development of the underwater optical system design tool presented in
Ch. 5. Prof. Mathew Walter developed the natural language network and code that interfaced with
the automated system presented in ch. 6. Dr. Oscar Pizarro aided in the design and mounting
configuration of the camera system used throughout my dissertation work. Dr. Richard Camilli led
the field expeditions where the automated system was trialed and the datasets were collected that
supported the development of the visual methods in this dissertation.
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CHAPTER 2

6D Object Pose Estimation in RGB Perspective
Images

2.1 Motivation

Robots are revolutionizing the way technology enhances our lives. From helping people with
disabilities perform various tasks around their house to autonomously collecting data in humanly
inaccessible environments, robots are being applied across a spectrum of exciting and impactful
domains. Many of these applications require the robot to grasp and manipulate an object in some
way (e.g., opening a door by a handle, or picking up an object from the seafloor), but this poses
a challenging problem. Specifically, the robot must interpret sensory information of the scene to
localize the object. Beyond robot manipulation, there are also applications, such as augmented
reality, which require accurate localization of an object in an image.

Previous methods for object pose estimation largely depend on RGB-D data about the 3D work-
ing environment [19, 145, 128, 11]. However, there are cases where such depth information is not
readily available. Some examples include systems that operate outdoors where common depth sen-
sors like the Kinect do not work well because of projection range limitations, embedded systems
where space and cost may limit the size and number of sensors, and underwater vehicles where
the variable absorption and scattering properties of the water column attenuates light signals and
degrades the performance of active depth sensors and stereo matching can be sparse and noisy due
to water column effects. In these scenarios, methods that operate on monocular camera data are
needed. When the sensor modality is limited to monocular images, estimating the pose of an object
in a natural setting is a challenging problem due to variability in scene illumination, the variety of
object shapes and textures, and occlusions caused by scene clutter.

Recently, there has been progress in state-of-the-art methods for monocular image pose es-
timation on difficult datasets, where the scenes are cluttered and objects are often heavily oc-
cluded [30, 151, 188, 177, 97, 113, 117]. The presented work improves on the performance of
these recent methods to deliver a novel deep learning based method for 6D object pose estimation
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on monocular images. Unlike prior methods, we explicitly incorporate prior knowledge of the 3D
object appearance into the network architecture, and we make use of an intermediate silhouette
based object viewpoint representation to improve on orientation prediction accuracy. Further, this
method provides occlusion information about the object, which can be used to determine which
parts of an object model are visible in the scene. Knowing how the target object is occluded in the
monocular image can be important for certain applications, such as augmented reality, where it is
desirable to project over only the visible portion of an object.

In this chapter, we present the following contributions: 1. SilhoNet, a novel RGB-based deep
learning method to estimate pose and occlusion in cluttered scenes; 2. The use of an intermediate
silhouette representation to facilitate learning a model on synthetic data to predict 6D object pose
on real data, effectively bridging the sim-to-real domain shift [33]; 3. A method to determine which
parts of an object model are visually unoccluded, using the projection of inferred silhouettes, in
novel scenes; 4. An evaluation on the visually challenging YCB-Video dataset [188] where the
proposed approach outperforms two state-of-the-art RGB method.

The rest of this chapter is organized in the following sections: section 2.2 discusses related
work; section 2.3 presents our method with an overview of the CNN design for 6D pose estima-
tion and occlusion mask prediction; section 2.4 presents the experimental results; and section 2.5
concludes the chapter.

2.2 Related Work

Extensive research has focused on 6D object pose estimation using RGB/̄D data. Several works
rely on feature- and shape-based template matching to locate the object in the image and coarsely
estimate the pose [74, 153, 30]. This is often followed by a refinement step using the Iterative Clos-
est Point (ICP) algorithm with the 3D object model and a depth map of the scene [74]. While these
methods are computationally efficient, their performance often degrades in cluttered environments.
Other methods have exploited point cloud data to match 3D features and fit the object models into
the scene [50, 75, 75]. While point cloud based methods achieve state-of-the-art performance, they
can be very computationally expensive. Recent works have demonstrated the power of machine
learning for object detection and pose estimation using RGB/̄D data. [162] used a CNN pretrained
on ImageNet to extract features from an RGB image and a colorized depth map. They learned a
series of Support Vector Machines (SVM) on top of these extracted features to predict the object
category and a single axis rotation about a planar surface normal. In [21], they trained a decision
forest to regress every pixel from an RGB/̄D image to an object class and a coordinate position
on the object model. Other work has used a CNN to map the pose of an object in an observed
RGB/̄D image to a rendered pose of the model through an energy function [104]. The minimiza-
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Figure 2.1: Overview of the SilhoNet pipeline for silhouette prediction and 6D object pose esti-
mation. The 3D translation is predicted in parallel with the silhouettes. The predicted unoccluded
silhouette is fed into a second stage network to predict the 3D rotation vector.

tion of the energy function gives the object pose. [127] trained a Conditional Random Field (CRF)
to output a number of pose-hypotheses from a dense pixel wise object coordinate prediction map
computed by a random forest. A variant of ICP was used to derive the final pose estimate. While
these learning-based methods are powerful, efficient, and give state-of-the-art results, they rely on
RGB/̄D data to estimate the object pose.

There are several recent works extending deep learning methods to the problem of 6D object
pose estimation using RGB data only. [151, 177] used a CNN to predict 2D projections of the
3D object bounding box corners in the image, followed by a PnP algorithm to find the corre-
spondences between the 2D and 3D coordinates and compute the object pose. [188] proposed
a multistage, multibranch network with a Hugh Voting scheme to directly regress the 6D object
pose as a 3D translation and a unit quaternion orientation. [97] predicted 2D bounding box detec-
tions with a pool of candidate 6D poses for each box. After a pose refinement step, they choose
the best candidate pose for each box. [113] used an end-to-end CNN framework to predict dis-
cretely binned rotation and translation values with corrective delta offsets. They proposed a novel
method for infusing the class prior into the learning process to improve the network performance
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for multi-class prediction. [117] proposed a deep-learning-based iterative matching algorithm for
RGB based pose refinement, which achieves performance close to methods that use depth informa-
tion with ICP and can be applied as post refinement to any RGB based method. These RGB-based
pose estimation methods demonstrate competitive performance against state-of-the-art approaches
that rely on depth data. Our work extends these recent advancements in monocular pose estima-
tion by combining the power of deep learning with prior knowledge of the object model to estimate
pose from silhouette predictions. Also, our method provides information about how the object is
visually occluded in the form of occlusion masks, which can be projected onto the object model,
given the predicted 3D orientation.

2.3 Method

We introduce a novel method that operates on monocular color images to estimate the 6D object
pose. The 3D orientation is predicted from an intermediate unoccluded silhouette representation.
The method also predicts an occlusion mask which can be used to determine which parts of the
object model are visible in the image. The method operates in two stages, first predicting an inter-
mediate silhouette representation and occlusion mask of an object along with a vector describing
the 3D translation and then regressing the 3D orientation quaternion from the predicted silhouette.
The following sections describe our method in detail.

2.3.1 Overview of the Network Pipeline

Figure 2.1 presents an overview of the network pipeline. The input to the network is an RGB
image with ROI proposals for detected objects and the associated class labels. The first stage uses
a VGG16 [167] backbone with deconvolution layers at the end to produce a feature map from
the RGB input image. This feature extraction network is the same as used in PoseCNN [188].
Extracted features from the input image are concatenated with features from a set of rendered
object viewpoints and then passed through three network branches, two of which have identical
structure to predict a full unoccluded silhouette and an occlusion mask. The third branch predicts a
3D vector encoding the object center in pixel coordinates and the range of the object center from the
camera. The second stage of the network passes the predicted silhouette through a ResNet-18 [70]
architecture with two fully connected layers at the end to output an L2-normalized quaternion,
representing the 3D orientation.
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2.3.1.1 Predicted ROIs

We trained an off-the-shelf Faster-RCNN implementation from Tensorpack [187] on the YCB-
video dataset [188] to predict ROI proposals. This network was trained across two Titan V GPUs
for 3,180,000 iterations on the training image set with the default parameters and without any
synthetic data augmentation. The ROI proposals are provided as input to the network after the
feature extraction stage, where they are used to crop the corresponding region out of the input
image feature map. The cropped feature map is then resized to a width and height of 64x64 by
either scaling down the feature map or using bi-linear interpolation to scale it up.

2.3.1.2 Rendered Model Viewpoints

We were able to boost the silhouette prediction performance by generating a set of synthetic pre-
rendered viewpoints associated with the detected object class as an additional input to the first stage
of the network. For each class, We rendered a set of 12 viewpoints from the object model, each with
dimension 224x224. These viewpoints were generated using Phong shading at azimuth intervals
from 0° to 300° with elevation angles of -30° and 30°. As the intermediate goal is silhouette
prediction, these synthetic renders are able to capture the shape and silhouette of real objects,
in different orientations, despite the typical domain shift in the visual appearance of simulated
objects [33].

All the viewpoints for the detected object class are passed through the feature extraction stage
and then resized to 64x64 with channel dimension 32 by passing them through a max-pooling layer
with width 4 and stride 4, followed by two deconvolution layers that each increase the feature map
size by 4. In this implementation, we extracted the feature maps of the rendered viewponts on-the-
fly for each object detection. However, to reduce computation time, these extracted feature maps
can be precomputed and stored offline. These rendered viewpoint feature maps were provided to
the network by stacking them on the channel dimension and then concatenating with the cropped
and resized input image feature map (Fig.2.1).

2.3.1.3 Silhouette Prediction

The first stage of the network predicts an intermediate silhouette representation of the object as a
64x64 dimensional binary mask. This silhouette represents the full unoccluded visual hull of the
object as though it were rendered with the same 3D orientation but centered in the frame. The size
of the silhouette in the frame is invariant to the scale of the object in the image and is determined
by a fixed distance of the object from the camera at which the silhouette appears to be rendered.
This distance is chosen for each object so that the silhouette just fits within the frame for any 3D
orientation. Given the smallest field of view of the camera A, determined by the minimum of the
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width and height of the image sensor, and the 3D dimensions of the object as the width, height and
depth (w, h, d), we calculate the render distance r as

r = 1.05

√
w2 + h2 + d2

2 tan(A/2)
. (2.1)

This stage of the network also has a parallel branch that outputs a similar silhouette, with only the
unoccluded parts of the object visible. We refer to this occluded output as the ‘occlusion mask’.

The first part of the network is a VGG16 feature extractor [167], which generates feature maps
at 1/2, 1/4, 1/8, and 1/16 scale. The 1/8 and 1/16 scale feature maps both have an output channel
dimension of 512. The channel dimension for both is reduced to 64 using two convolution layers,
after which the 1/16 scale map is upscaled by a factor of 2 using deconvolution and then summed
with the 1/8 scale map. The summed map is upscaled by a factor of 8 using a second deconvolution
to get a final feature map of the same dimension as the input image with a feature channel width
of 64 (Fig.2.1).

After the input image is passed through the feature extractor, the input ROI proposal for the
detected object is used to crop out the corresponding area of the resulting feature map and resize it
to 64x64. This feature map is concatenated with the rendered viewpoint feature maps, resulting in
a single feature vector matrix with size 64x64x448.

The feature vector matrix is fed into two identical network branches, one of which outputs the
silhouette prediction and the other outputs the occlusion mask. Each branch is composed of 4
convolution layers, each with a filter width, channel dimension, and stride of (2, 1024, 1), (2, 512,
2), (3, 256, 1), and (3, 256, 1) respectively, followed by a deconvolution layer with filter width,
channel dimension, and stride of (2, 256, 2). The output of the deconvolution layer is fed into
a dimension reducing convolution filter with a single channel output shape of 64x64. A sigmoid
activation function is applied at the output to produce a probability map.

2.3.1.4 3D Translation Regression

The 3D translation is predicted as a three dimensional vector, encoding the object center location
in pixel coordinates and range from the camera center in meters. Other region proposal based pose
estimation methods [188, 48] regress the Z coordinate directly from the ROI. However, this suffers
from ambiguities. If an object at a given range is shifted along the arc formed by the circle with the
camera center as the focus, the Z coordinate will change while the object appearance in the shifted
ROI will be unchanged. This ambiguity is especially prevalent in wide field of view cameras. By
predicting the object range rather than directly regressing the Z coordinate, our method does not
suffer from ambiguities and can recover the Z coordinate with good accuracy. Given the camera
focal length f , the pixel coordinates of the object center (px, py) with respect to the image center,
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and the range r of the object center form the camera center, similar triangles can be used to show
that the 3D object translation, (X, Y, Z), can be recovered as

Z =
rf√

px2 + py2 + f 2
, (2.2)

X = Z ∗ px/f, Y = Z ∗ py/f. (2.3)

The pixel coordinates of the object center are predicted with respect to the ROI box as an offset
from the lower box edge bounds normalized by the box dimensions and passed through a sigmoid
function. Given a ROI with width w, height h, lower x and y coordinate bounds (bx, by), the
coordinates of the image principal point (cx, cy) and the predicted normalized output from the
network (nx, ny), the object center pixel coordinates (px, py) are recovered as

rx = − log(1/nx− 1), ry = − log(1/ny − 1), (2.4)

px = bx+ rx ∗ w − cx, px = by + ry ∗ h− cy. (2.5)

Note that only the pixel coordinates of the object center are offset by the principal point in these
equations. While other methods limit the prediction of the object center to lie within the ROI [188]
or treat the ROI center as the coordinates of the object center [48], if the object is not completely in
the image frame, the center may not lie within the ROI, and because ROI predictions are imperfect,
the object center rarely lies at the ROI center. Our formulation for predicting the object center does
not constrain the point to lie within the ROI and is robust to imperfect ROI proposals.

The translation prediction branch is identical to the silhouette prediction branches, except the
deconvolution layer is replaced with a 5th convolution layer with filter width, channel dimension,
and stride of (2, 64, 2) followed by max pooling. The output is fed into a fully connected layer of
dimension 1024 followed by a fully connected layer of dimension 3x(# classes), where each class
has a separate output vector. The predicted vector for the class of the detected object is extracted
from the output, and the first two entries are normalized with a sigmoid activation (Fig.2.1).

2.3.1.5 3D Orientation Regression

We use a quaternion representation for the 3D orientation, which can represent arbitrary 3D rota-
tions in continuous space as a unit vector of length 4. The quaternion representation is especially
attractive, as it does not suffer from gimbal lock like the Euler angle representation. Predicting ori-
entation from a ROI gives rise to visual ambiguities, as the true object orientation varies depending
on the location within the image from which the ROI is extracted. To address these ambiguities,
the network predicts the apparent orientation as though the ROI were extracted from the center of
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the image. Given the predicted object translation, the true orientation is recovered by applying a
pitch, δθ, and roll, δϕ, adjustment to the predicted orientation. These adjustments are calculated as

δθ = arctan(X/Z), δϕ = − arctan(Y/Z), (2.6)

The second stage of the network takes in the predicted silhouette probability maps, thresholded
at some value into binary masks, and outputs a quaternion prediction for the object orientation.
This stage of the network is composed of a ResNet-18 [70] backbone, with the layers from the
average pooling and below replaced with two fully connected layers. The last fully connected
layer has output dimension 4x(# classes), where each class has a separate output vector. The
predicted vector for the class of the detected object is extracted from the output and normalized
using an L2-norm (Fig.2.1).

Because the silhouette representation of objects is featureless, this method treats symmetries in
object shape as equivalent symmetries in the 3D orientation space. In many robotic manipulation
scenarios, this is a valid assumption. For example, a tool such as a screwdriver that may not be
symmetric in RGB feature space is symmetric in shape and equivalently symmetric in grasp space.

By regressing the 3D orientation from an intermediate silhouette representation, we were able
to train this stage of the network using only synthetically rendered silhouette data. In the results,
we show that the network generalized well to predicting pose on real data, showing that this inter-
mediate representation as an effective way to bridge the domain shift between real and synthetic
data.

2.3.1.6 Occlusion Prediction

Given the predicted apparent 3D orientation of the object, the predicted occlusion mask can be
projected onto the object model to determine which portions of the model are visible in the scene.
Mathematically, this can be accomplished by taking every vertex v of the object model and project-
ing it onto the occlusion mask. We construct a transform matrix T with a z translation component
equal to the render distance r for the corresponding object class and the x and y translation com-
ponents set to 0. The rotation sub-matrix is formed from the predicted apparent orientation. Using
the following equation, each vertex of the object model can be projected onto the occlusion mask,
which is scaled up to fit the minimum dimension of the input image,

γ = KTv (2.7)

where K is the camera intrinsic matrix, v is the 3D homogeneous coordinates of the vertex in the
object frame, and γ is the homogeneous pixel coordinates of the projected vertex on the scaled
occlusion mask. Not accounting for object self occlusions, those vertices which lie on the visible
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portion of the occlusion mask are predicted to be visible in the image.

2.3.2 Dataset

We evaluated our method on the YCB-video dataset [188], which consists of 92 video sequences
composed of 133,827 frames, containing a total of 21 objects, appearing in different arrangements
with varying levels of occlusion. Twelve of the video sequences were withheld from the training
set for validation and testing. In the silhouette space, the objects in this dataset are characterized by
five different types of symmetry: non-symmetric, symmetric about a plane, symmetric about two
perpendicular planes, symmetric about an axis, symmetric about an axis and a plane. We applied
a rotation correction to the coordinate frame of all objects that exhibit any form of symmetry so
that each axis or plane of symmetry aligns with a coordinate axis. Ground truth quaternions were
generated from the labeled object poses such that only one unique quaternion is associated with
every viewpoint that produces the same visual hull. Having a consistent quaternion label for all
matching silhouette viewpoints enabled the pose prediction network to be trained effectively for
all types of object symmetries using a very simple distance loss function.

Supplementing the real image data in the YCB-video dataset are 80,000 synthetically rendered
images, with all of the 21 objects appearing in various combinations and random poses over a
transparent background. We supplement the training data by randomly sampling images from the
COCO-2017 dataset [24] and applying them as background to these synthetic images at training
time.

2.3.3 Network Training

All networks were trained with the Adam optimizer on either a Titan V or Titan X GPU. The
VGG16 backbone was initialized with ImageNet pre-trained weights, and the silhouette prediction
network without the translation branch was trained using cross entropy loss with a batch size of
6 for 325,000 iterations. We trained the network with ground truth ROIs and tested against both
ground truth ROIs and predicted ROIs from a Faster-RCNN network [187] trained on the YCB-
video dataset. The translation prediction branch was then added, and all network weights not part
of this branch were frozen. The translation branch was trained for 230,000 iterations using an l2
loss. All network weights were then unfrozen and the entire network was fine-tuned for 208,000
iterations.

The orientation regression network was trained using the following log distance function be-
tween the predicted and ground truth quaternions

QLoss(q̃, q) = log(ϵ+ 1− |q̃ · q|), (2.8)
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where q is the ground truth quaternion, q̃ is the predicted quaternion, and ϵ is a small value for
stability, in our case e−4. The orientation regression network was trained for 380,000 iterations
with a batch size of 16, using only perfect ground truth silhouettes for training. Testing was done
on the predicted silhouettes from the first stage network.

To reduce overfitting during training of the networks, dropout was applied at a rate of 0.5 before
the last deconvolution layer of the feature extraction network, on the fourth convolutional layer of
each silhouette prediction branch, and after the max pooling layer of the translation branch. During
training of the orientation regression network, dropout was applied at a rate of 0.8 before the first
fully connected layer. As a further strategy to reduce overfitting and extend the training data, the
hue, saturation, and exposure of the training images were randomly scaled by a factor of up to 1.5

Table 2.1: Mean IoU accuracy for predicted silhouettes

Object Unoccluded GT
ROI

Occluded GT ROI Unoccluded Pred
ROI

Occluded Pred ROI

master chef can 96.75 91.08 96.84 88.42
cracker box 92.94 82.20 90.50 68.91
sugar box 94.28 91.79 92.32 88.27
tomato soup can 96.41 93.25 96.73 94.09
mustard bottle 95.02 94.49 94.68 94.25
tuna fish can 95.96 93.81 96.06 93.95
pudding box 90.08 79.57 88.73 71.58
gelatin box 95.72 94.65 95.31 94.78
potted meat can 92.53 87.11 93.77 87.18
banana 88.48 87.23 81.76 78.05
pitcher base 94.63 93.80 94.58 93.71
bleach cleanser 92.48 89.64 91.74 87.95
bowl 79.74 67.01 82.03 76.63
mug 93.92 86.84 90.97 84.24
power drill 86.61 85.08 78.57 73.64
wood block 89.30 74.92 90.72 78.84
scissors 52.20 65.12 61.70 65.97
large marker 84.37 84.15 83.96 82.65
large clamp 84.03 79.50 85.73 80.93
extra large clamp 86.16 82.34 76.13 70.14
foam brick 91.00 86.17 89.99 82.78

ALL 89.17 85.23 88.23 82.71

2.4 Results

The following sections present the performance of SilhoNet, tested on the YCB-video dataset [25].
Section A presents the accuracy of the silhouette prediction stage, and section B compares the 6D
pose estimation performance of SilhoNet against the performance of PoseCNN [188]. We also
compare performance against the method in [113] for RGB input.
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Table 2.2: Mean 3D orientation error in degrees. The Sym tag indicates orientation predictions are
reduced by geometric symmetries.

RGB RGB-D

Object PoseCNN
[188]

PoseCNN
Sym [188]

SilhoNet-
GT ROI

SilhoNet-
Pred ROI

PoseCNN
+ICP [188]

PoseCNN
+ICP Sym [188]

master chef can 50.71 7.57 1.11 1.21 51.88 1.06
cracker box 19.69 19.69 9.53 19.86 9.51 9.23
sugar box 9.29 9.29 11.50 12.28 1.06 1.06
tomato soup can 18.23 8.40 1.82 1.91 31.74 1.98
mustard bottle 9.94 9.59 5.07 5.78 2.72 2.22
tuna fish can 32.80 12.74 1.50 1.46 37.70 6.28
pudding box 10.20 10.20 18.39 20.95 2.27 2.26
gelatin box 5.25 5.25 8.48 12.52 1.03 1.03
potted meat can 28.67 19.74 10.93 7.27 23.06 13.93
banana 15.48 15.48 5.70 16.29 12.17 12.17
pitcher base 11.98 11.98 6.61 6.64 2.55 2.55
bleach cleanser 20.85 20.85 48.42 51.28 11.02 11.02
bowl 75.53 75.53 53.95 49.95 55.71 55.71
mug 19.44 19.44 7.02 18.14 23.11 23.11
power drill 9.91 9.91 10.66 30.54 1.64 1.64
wood block 23.63 23.63 23.23 25.52 15.12 15.12
scissors 43.98 43.98 154.82 155.53 30.77 30.76
large marker 92.44 13.59 10.72 10.44 84.34 3.38
large clamp 38.12 38.12 6.03 3.54 33.99 33.99
extra large clamp 34.18 34.18 7.30 29.18 37.89 37.89
foam brick 22.67 22.67 17.36 13.84 18.82 18.82

ALL 27.79 17.82 13.48 16.04 24.54 10.94

Table 2.3: Mean 3D translation error in centimeters

RGB RGB-D

Object PoseCNN [188] SilhoNet-GT ROI SilhoNet-Pred ROI PoseCNN
+ICP [188]

master chef can 3.29 3.14 3.02 0.52
cracker box 4.02 2.38 5.24 1.28
sugar box 3.06 1.67 2.10 0.26
tomato soup can 3.02 2.24 2.40 0.33
mustard bottle 1.72 1.41 1.65 0.14
tuna fish can 2.41 1.49 1.57 0.37
pudding box 3.69 1.91 7.15 0.31
gelatin box 2.49 0.79 1.09 0.19
potted meat can 3.65 2.74 4.30 1.06
banana 2.43 2.59 4.12 0.63
pitcher base 4.43 1.29 1.31 0.14
bleach cleanser 4.86 3.99 3.60 0.49
bowl 5.23 4.08 3.30 3.73
mug 4.00 1.43 2.61 0.97
power drill 4.59 3.19 6.77 0.17
wood block 6.34 3.23 5.59 2.68
scissors 6.40 2.59 9.91 1.49
large marker 3.89 2.31 3.24 0.89
large clamp 9.79 3.51 6.27 5.25
extra large clamp 8.36 2.12 4.86 4.19
foam brick 2.48 2.31 3.98 0.48

ALL 4.16 2.45 3.49 1.06
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Table 2.4: Area under accuracy-threshold curve for 6D pose evaluation using ADD-S metric

Object PoseCNN [188] SilhoNet-
GT ROI

SilhoNet-
Pred ROI

MCN [113] MV5-
MCN [113]

master chef can 82.6 83.6 84.0 87.8 90.6
cracker box 77.2 88.4 73.5 64.3 72.0
sugar box 84.0 88.8 86.6 82.4 87.4
tomato soup can 81.7 89.4 88.7 87.9 91.8
mustard bottle 91.1 91.0 89.8 92.5 94.3
tuna fish can 84.0 89.9 89.5 84.7 89.6
pudding box 79.4 89.1 60.1 51.0 51.7
gelatin box 85.7 94.6 92.7 86.4 88.5
potted meat can 78.5 84.8 78.8 83.1 90.3
banana 85.9 88.7 80.7 79.1 85.0
pitcher base 76.9 91.8 91.7 84.8 86.1
bleach cleanser 71.5 72.0 73.6 76.0 81.0
bowl 63.5 72.5 79.6 76.1 80.2
mug 78.1 92.1 86.8 91.4 93.1
power drill 72.7 82.9 56.5 76.0 81.1
wood block 61.5 79.2 66.2 54.0 58.4
scissors 56.6 78.3 49.1 71.6 82.7
large marker 68.3 83.1 75.0 60.1 66.3
large clamp 55.3 84.5 69.2 66.8 77.5
extra large clamp 42.8 88.4 72.3 61.1 68.0
foam brick 86.7 88.4 77.9 60.9 67.7

ALL 75.3 85.8 79.6 75.1 80.2

Figure 2.2: Example prediction of occluded and unoccluded silhouettes from a test image
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2.4.1 Silhouette Prediction

We tested the performance of the silhouette prediction stage of SilhoNet with both ground truth
ROI inputs from the YCB dataset and predicted ROI inputs from the FasterRCNN network. Fig-
ure 2.2 shows an example of the silhouette predictions for one of the images in the test set. Ta-
ble 2.1 presents the accuracy for the occluded and unoccluded silhouette predictions, measured as
the mean intersection over union (IoU) of the predicted silhouettes with the ground truth silhou-
ettes. Overall, the performance degrades by a few percent when the predicted ROIs (Pred ROI) are
provided as input rather than the ground truth (GT ROI), but in general, the predictions are robust
to the ROI input.

2.4.2 6D Pose Regression

We compare the accuracy of the 6D pose predictions from SilhoNet against the published results
of PoseCNN. We include the performance of PoseCNN with depth based Iterative Closest Point
(ICP) refinement as an RGB-D method reference point. To provide greater insight into the model
performance, we first analyze the orientation and translation prediction results separately. Because
our method predicts orientation in a space reduced by geometric symmetries, we compare against
the performance of PoseCNN both before and after reducing the PoseCNN predictions to the same
symmetry invariant space. Figure 2.3 shows the accuracy curves for PoseCNN before and af-
ter ICP refinement and SilhoNet with YCB ground truth ROI input (GT ROI) and FasterRCNN
predicted ROI input (Pred ROI). SilhoNet shows a visually higher area under the accuracy curve
than PoseCNN before ICP refinement. The improvement of SilhoNet in area under the accuracy
curve is especially obvious for the rotation angle prediction accuracy, demonstrating the effective-
ness of the intermediate silhouette representation for orientation prediction. Table 2.2 presents
the mean orientation errors for each class across both the PoseCNN and SilhoNet methods. The
classes with the worst prediction accuracy for SilhoNet relative to PoseCNN are ”bleach cleanser”
and ”scissors”. SilhoNet treats both of these objects as non-symmetric in silhouette space, but
the shape of both objects is nearly planar symmetric, especially if they are partially occluded, so
pose predictions from silhouettes may be easily confused. SilhoNet shows the strongest perfor-
mance on cylindrical objects like ”master chef can” and ”tomato soup can”, which exhibit the
highest reduction in orientation space through symmetries. Across every type of geometric sym-
metry exhibited in the dataset, there are objects where SilhoNet performs significantly better than
PoseCNN, demonstrating the general effectiveness of silhouettes as an intermediate representation
for object 3D orientation estimation. The orientation prediction accuracy of SilhoNet is reduced
when predicted ROIs are provided as input, but overall there is still significant improvement over
PoseCNN, showing that SilhoNet is robust to the quality of region proposals.
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Figure 2.3: 6D pose accuracy curve across all objects in the YCB-video dataset. Accuracy is
percentage of errors less than the error threshold. The PoseCNN orientation predictions are reduced
by the same geometric symmetries as SilhoNet.

Table 2.3 presents the mean translation errors for each object class. SilhoNet outperforms
PoseCNN across most classes before ICP refinement. The translation prediction accuracy of Sil-
hoNet is also reduced when predicted ROIs are provided as input, but there is still significant
improvement over PoseCNN.

In Table 2.4, we compare the full 6D pose prediction performance of SilhoNet against PoseCNN
(without depth refinement) [188] and another recently proposed RGB based method [113]. We
use the area under the accuracy-threshold curve (ADD-S) metric proposed in [188]. The ADD-S
metric is particularly suited to SilhoNet, as it is invariant to geometric symmetries. We note that
the method MV5-MCN [113] is a multiview variant of MCN [113] and requires that each input
image is labelled with a camera pose. Typically, labelling camera pose would require some extra
sensory input besides a monocular RGB camera in order to disambiguate the scale of motion in a
SLAM system. The results in the table show that SilhoNet outperforms PoseCNN and MCN by
a large margin with both ground truth and predicted ROIs as input. SilhoNet performs better than
MV5-MCN with ground truth ROIs as input and performs on par with predicted ROIs as input.
Overall, SilhoNet shows a significant performance improvement over related methods when the
input is limited to RGB images only.

As an ablation study, we performed an experiment to determine the contribution of the rendered
viewpoint image priors to the network performance. Table 2.5 shows the results of this experiment.
Note that the network was trained without the translation prediction branch, and ground truth ROIs
were given as input. When no rendered viewpoints are provided as a prior input, the network
performance drops with nearly twice the error in orientation predictions for both shared and class
specific output. However, providing more than one rendered viewpoint image as a prior input does
not significantly affect the network performance. This result motivates future investigation into
how the network incorporates the rendered viewpoint inputs into the learned network structure.
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Table 2.5: Silhouette and orientation accuracy vs # of model images

# Model Images Unoccluded (IoU) Occluded (IoU) Mean Angle Error
(Degrees)

0 (class output) 78.85 77.15 29.90
0 (shared output) 77.87 74.95 31.32

1 89.20 86.31 14.27
4 89.38 86.05 13.60
6 89.54 86.36 15.19
12 88.68 85.25 13.48

2.5 Conclusion

In this chapter, we presented a method for object 6D pose estimation from monocular camera
images, where detected object ROI proposals are provided as input. We showed that this method
outperforms the state-of-the-art PoseCNN network and another recent RGB based method across
the majority of object classes in the YCB-video dataset. The most significant contribution of this
method is an intermediate silhouette representation for object viewpoints, which is shown to be a
robust and effective abstraction from which to predict 3D orientation and also greatly reduces the
sim-to-real domain shift when learning a model on synthetic data. This silhouette abstraction is
demonstrated to improve accuracy of orientation predictions over previous methods. Also, by using
an intermediate silhouette representation for detected objects, this method enables determining
which parts of an object model are unoccluded in the scene. We proposed a novel strategy for
predicting 3D translation from ROI proposals, which does not suffer from ambiguities in apparent
viewpoint, leading to improved translation accuracy over previous methods.
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CHAPTER 3

6D Object Pose Estimation in Fisheye and
Omnidirectional Images

3.1 Motivation

The advantages of fisheye imaging systems in robotics applications has long been recognized. With
technological improvements in imaging sensor resolution and dynamic range, fisheye cameras can
capture significantly greater information about the surrounding environment without appreciably
increasing the imaging sensor footprint, compared to their perspective model counterparts. How-
ever, little work has been done on applying CNN based methods to the problem of 6D object pose
estimation on full fisheye images. Dealing with fisheye images is challenging, due to the large
distortions and viewpoint ambiguities arising from the wide field of view. We address the problem
of 6D object pose estimation in full fisheye images by proposing a method whereby the image is
first projected to the surface of a sphere, where we mathematically define a consistent apparent
viewpoint which the network is trained to predict. The true orientation relative to the fisheye frame
can then be recovered using the predicted translation. The gnomonic projection is used in our
method to undistort the ROI from the sphere surface, and we investigate applying this projection
both before and after the feature extraction stage.

In summery, the main contribution of this chapter is a framework for adapting ROI-based
networks for predicting 6D object pose from monocular images to work on full fisheye images,
through an intermediate mapping onto a sphere and ROI processing through the gnomonic projec-
tion. This adaptation is demonstrated with the SilhoNet method presented in [14].

The rest of this chapter is organized in the following sections: Section 3.2 discusses related
work; Section 3.3 presents our method for adapting SilhoNet to the fisheye domain; Section 3.4
presents the experimental results; and Section 3.5 concludes the chapter.

23



3.2 Related Work

In general, state-of-the-art works that apply CNN methods to full fisheye images process the raw
images directly through the network without special consideration of the fisheye distortions [46,
64, 156]. These networks are mostly applied to the problems of segmentation or ROI detection
in the fisheye images. Due to the sparsity of available benchmarking datasets for fisheye images,
these works report their results on synthetic datasets, generated by projecting perspective images to
distorted fisheye images. [195] used a CNN in the prediction of ground vehicle positions relative
to an aerial fisheye imaging platform. They directly train the CNN on the raw fisheye images
to generate ROI proposals. They assume the detected object is on the ground plane and fuse
measurements from height and orientation sensors on the camera platform to recover only the
object’s 3D translation in the world. [158] extended the Cascaded Pose Regression algorithm to
estimate the 3D pose of mice in fisheye images from detected 3D keypoints. However, their method
incorporates priors about the structured lab environment, and the fisheye camera is fixed in the
scene, allowing them to easily segment the mice from the background image. In contrast to these
works, our method incorporates knowledge of the fisheye distortion model through a spherical
mapping, which improves network performance and is also necessary to create visually consistent
pose annotations which can be regressed directly from ROI proposals across the full fisheye field
of view. Further, we report the performance of our method on a real fisheye dataset captured in a
natural unstructured environment.

Closely related to fisheye image processing is the extensive body of work on omni-directional
imaging, as both fisheye and omni-directional image distortions can be represented on a sphere.
Beyond naively applying CNNs directly to a flattened equirectangular projection of an omni-
directional image, which has been shown to suffer from the nonlinear distortions of the spheri-
cal mapping to the plane and attain sub-optimal performance [163], the methods of dealing with
omni-directional distortions can be roughly categorized under three approaches: generating mul-
tiple perspective projections from the sphere, such as cube map, and processing each projection
separately through the CNN [130]; adapting the kernel sampling locations based on a spherical
distortion model or a learned mapping [194, 40, 174, 175]; re-sampling the spherical image based
on a uniform sampling geometry such as the icosahedron, and processing the spherical represen-
tation with specialized convolution operations [89, 53, 108, 192]; or transforming the spherical
feature signals and convolution operations into the spectral domain, typically by representation of
the spherical image as a graph [147, 98, 38]. Methods that operate on multiple perspective pro-
jections suffer from discontinuities at the projection borders, due to variance in feature appearance
on different tangent plane mappings. Methods that operate on graphical representations of the
sphere in the spectral domain are memory limited in scaling to full resolution images and have
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some level of rotation invariance in the convolution response function, which is undesirable when
regressing 6D object pose. Methods that re-sample the convolution kernel sampling location based
on a learned or distortion based mapping are most relevant to our work. The methods of [40] and
[194] sample regular kernel locations on a tangent plane and then project the sampling locations
to the spherical surface, encoding the spherical distortions directly into the convolution operation.
[193] adapts a region proposal network with the distortion aware convolutions of [40, 194] in a
two-stage architecture to predict region proposals from omni-directional images. However, these
distortion aware convolutions are designed to operate on full 360°images. Because fisheye images
represent only a partial view of the sphere, they can also be analyzed under different planar projec-
tions than omni-directional images. Further, application of omni-directional CNNs to 6D object
pose estimation is so far lacking in the literature. Our method takes inspiration from these prior
works [40, 194] that incorporate a mapping to a spherical surface and the Gnomonic projection
to a tangent plane to deal with feature distortions in omni-directional images. The main technical
contribution of our work is the mathematical formulation of applying a spherical mapping and
the Gnomonic projection to the problem of 6D object pose estimation in wide field-of-view im-
agery. Though we developed the method assuming the equidistant fisheye projection model, the
formulation is valid for any camera projection that can be mapped to a spherical surface, including
omni-directional images.

The body of work applying CNN methods to underwater imagery is mostly limited to the prob-
lems of species detection and classification [55, 36, 152, 118, 101, 189, 124, 159, 129], or underwa-
ter image correction [115, 114] on perspective images. [105] used a simple color distortion model
based on image depth to generate a synthetic dataset of omni-directional images that were color
cast as though captured underwater. They trained a distortion aware CNN to predict image depth
from an omni-directional image, and reported results on their synthetic dataset. While they did not
test with real omni-directional data, the perspective image equivalent of their method performed
very poorly on real underwater images. Most related to our work in the underwater domain is the
work of [87], who proposed a CNN based method for underwater object detection and pose esti-
mation, using a synthetic dataset generated from CAD models to train the network. However, the
objects used in their dataset were very simple, and their tests were limited to tank environment with
high contrast between the object models and the scene background. Further, they only regressed
the 3D orientation of the detected objects. Also related to our work is [137], where a PoseNet
CNN was trained to regress the 6D pose of a mock-up sub-sea connector relative to a small ROV.
The dataset was collected in a tank environment, with high contrast between the connector target
and the low featured background. In contrast to these works, our method addresses the problem of
full 6D object pose estimation from monocular underwater images captured in wild unstructured
environments. Further, our method is applied to full view fisheye images, which capture a signif-
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Figure 3.1: Overview of the three different SilhoNet adaptations for processing full fisheye images.
The Baesline method processes the raw fisheye image directly through the unmodified network.
The Projective variant processes the raw fisheye image through the feature extraction stage and then
projects the features within the ROI through a spherical mapping to the tangent plane centered on
the ROI, before processing the features through the ROI-pooling stage. The Perspective adaptation
maps the fisheye image to a sphere and then generates a virtual perspective image for each object
detection using a gnomonic projection, centered on the ROI. Each virtual image is then processed
through the network.

icantly greater field of view over perspective images. Also, our dataset is composed with visually
challenging handle objects used to manipulate ROV tools in real life applications.

3.3 Method

Special care must be taken in regressing 6D pose from full fisheye images, as there can be large
distortions and ambiguity in the object viewpoint (Fig. 3.2). In the following sections, we outline
how we use an intermediate spherical representation and the gnomonic projection to attain visually
consistent pose annotations, followed by an overview of three different adaptions of the SilhoNet
method [14] for 6D pose prediction from full fisheye images (Fig.3.1).

3.3.1 Spherical Mapping and Gnomonic Projection

While a class of different projection models exist for fisheye cameras [4], the model followed by
the camera system used in this work, and the most common model in practice, is the equidistant
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Figure 3.2: These objects have the same orientation relative to the rendered fisheye image frame but
different translations, resulting in drastically different apparent orientations. Also, objects appear
more distorted as they move from the image center.

projection
R = fθ (3.1)

where θ is the angle in radians from a point in the world to the optical axis, f is the lens focal
length, and R is the radial position of the point projected on the imaging plane. A major challenge
of fisheye images when regressing the object orientation is the large space of visual ambiguity.
We define the global reference frame as coincident with the fisheye camera frame. As the angle
between the object center in the world to the camera optical axis increases, there is increasing
discrepancy between the object orientation relative to the global frame and the apparent orientation
relative to a cropped ROI (Fig. 3.2). We deal with this visual ambiguity by first mapping the fisheye
image onto the unit sphere. The mapping between the pixel coordinates (x, y) on the fisheye image
with focal length f and the polar coordinates (θ, ϕ) on the unit sphere is given as

r =
√

x2 + y2; ρ = r/f ; z =
r

tan ρ
(3.2)

θ = sin−1 (
y√

x2 + y2 + z2
); ϕ = tan−1 x

z
. (3.3)

The inverse mapping can also be calculated by first converting the spherical coordinates to cartesian
and then projecting onto the image plane with the fisheye model

xs = cos θ sinϕ; ys = sin θ; zs = cos θ cosϕ (3.4)

ρ = cos−1 (
zs√

x2
s + y2s + z2s

); r = fρ (3.5)

x =
xsr√
x2
s + y2s

; y =
ysr√
x2
s + y2s

. (3.6)
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By mapping the fisheye image to a unit sphere centered on the global origin, we can define the
apparent viewpoint of the object as the appearance of the object when projected onto a tangent
plane centered on the vector extending from the sphere center to the center of the object. The
projection from the sphere onto the tangent plane is known as a gnomonic projection and has a
long history in mapping as well as recent application in omni-directional CNN methods [40, 194].
Given a spherical mapping of an image and the tangent plane centered on the sphere at polar
coordinates (θ0, ϕ0), the gnomonic projection of the spherical point (θ,ϕ) onto the tangent plane is
given as

x =
cos θ sin (ϕ− ϕ0)

sin θ0 sin θ + cos θ0 cos θ cos (ϕ− ϕ0)
(3.7)

y =
cos θ0 sin θ − sin θ0 cos θ cos (ϕ− ϕ0)

sin θ0 sin θ + cos θ0 cos θ cos (ϕ− ϕ0)
, (3.8)

and an optimized inverse mapping from the tangent plane onto the sphere is given as

θ = sin−1 (
sin θ0 + y cos θ0√

1 + x2 + y2
) (3.9)

ϕ = ϕ0 + tan−1 (
x

cos θ0 − y sin θ0
), (3.10)

where x and y are the coordinates of the pixel on the tangent plane normalized by the virtual
perspective camera focal length fp [41, 185]. The gnomonic projection is core to our method of
regressing the object 6D pose from ROI proposals on the distorted fisheye image. The orientation
of the object Rp relative to a virtual perspective camera frame centered on the apparent viewpoint
can be calculated as a rotation correction to the object orientation R that is referenced to the global
frame. The rotation correction matrix Radj can be constructed as follows. First, the polar coor-
dinates (θ0, ϕ0) of the intersection of the virtual camera optical axis with the sphere is calculated
based on the 3D translation (x, y, z) of the object relative to the global frame

θ0 = sin−1 (
y√

x2 + y2 + z2
) (3.11)

ϕ0 = tan−1 (
x

z
). (3.12)

The rotation adjustment matrix is then constructed column-wise using the coordinates of the rotated
virtual camera frame axes in the global reference frame

X = [cosϕ0, 0, − sinϕ0] (3.13)

Y = [− sin θ0 sinϕ0, cos θ0, − sin θ0 cosϕ0] (3.14)
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Z = [cos θ0 sinϕ0, sin θ0, cos θ0 cosϕ0] (3.15)

Radj = [X; Y ; Z] (3.16)

The orientation of the object relative to the virtual camera frame is then given as

Rp = RadjR (3.17)

The orientation branch of the network is trained to regress the apparent orientation Rp. The pre-
dicted true orientation R can be recovered using the predicted object translation by constructing
the inverse Radj matrix.

3.3.2 SilhoNet Adaptation to Fisheye

We compare three different variants of SilhoNet adapted for processing full fisheye im-
ages (Fig.3.1). For all variants, the size of the predicted silhouettes was increased to 128x128,
because the handle objects in the UWHandles dataset have very thin features. The translation
prediction output was also modified to predict the normalized pixel offset of the object center rela-
tive to the ROI directly without passing through a sigmoid function, and the predicted offsets were
thresholded to lie within the ROI bounds. Because the dataset does not include segmentation anno-
tations, the occluded silhouette branch was removed from the network. The orientation predictions
of the handle objects were also reduced by their shape symmetries, as described in the SilhoNet
paper [14]. Under these symmetry reductions, the network predicts orientations unique to shape
symmetries only, which is appropriate for many object manipulation tasks, such as grasping tool
handles, which are generally agnostic in feature space to how they are grasped. Also, because the
symmetry reduction is applied directly to the training labels, no special care is needed to deal with
symmetric objects in the training, and a simple distance loss function for orientation regression is
used, as in the original method. The annotated ROIs were used as input to the network for both
training and testing.

The first variant we consider as a baseline, which is essentially the vanilla SilhoNet architecture
with the orientation branch output modified to regress the apparent orientation Rp, as described in
the previous section. All variants of the network retain this prediction strategy. The second variant,
which we refer to as ”projective”, processes the raw fisheye image through the feature extraction
stage and then projects the features within the ROI through a spherical mapping to the tangent
plane centered on the ROI, using the gnomonic projection. The projected features are then passed
to the ROI-pooling stage. The motivating idea behind this projective strategy is that local features
do not appear heavily distorted in fisheye images, but the spacial relationship of features across
the ROI can be significantly distorted. The local feature map is thus generated directly on the raw
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fisheye image and then the spacial relationship of these local features is corrected through the pro-
jection onto the tangent plane. This projection operation is implemented as a Tensorflow layer for
efficient and simple integration into the original network. The third variant, which we refer to as
”perspective”, projects a region of the fisheye image to a virtual perspective image centered on the
ROI using the gnomonic projection. We chose the virtual image dimension to be 400x400 with a
pixel relative focal length of 350. These virtual perspective image parameters are tunable per the
target application and should take into consideration the desired field of view of the perspective
image, the mapping of the fisheye resolution onto the virtual perspective plane, and the compu-
tational efficiency in relation to image size for processing the virtual image through the network.
This virtual perspective image is processed through the feature extraction stage and then the ROI is
cropped from the center of the feature map and passed to the ROI-pooling stage. Essentially, this
method generates a virtual perspective image for each detected object and processes each of these
virtual images separately through the network. This methods corrects for the fisheye distortions
through the entire network pipeline. However, the computation scales with the number of detected
objects, as a separate virtual image is processed for each one.

As a further comparison point, we take each of the three variants described above and replace
the silhouette prediction branch with a branch that directly regresses the quaternion orientation,
rather than first predicting a silhouette and passing it to a second stage network for orientation
prediction. This orientation branch has the same structure as the translation branch, but with the
output size equal to 4x(# classes). The predicted quaternion for the class of the detected object
is extracted from the output and normalized using an L2-norm. These methods which bypass the
silhouette prediction to directly regress the orientation are referred to in the following sections by
appending ” direct” to the name of the associated variant: ”baseline direct”, ”projective direct”,
and ”perspective direct”.

3.3.3 Network Training

The networks were trained with the same loss functions and dropout rates as in [14] on Titan V
GPUs. All networks were trained for 400,000 iterations on the training set except for the ”perspec-
tive direct” method which was only trained for 356,000 iterations because of time constraints. Due
to GPU memory limitations, the raw fisheye images of dimension 2,448x2,048 were downsampled
by a factor of 3 for the baseline and projective variants and by a factor of 2 for the perspective
variant. The baseline and projective variants were trained with a batch size of 2 and the perspec-
tive variant with a batch size of 3. As with the original SilhoNet method, the second stage network
which regresses orientation from silhouettes was trained using only perfect rendered silhouettes.
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3.3.4 Dataset

We analyzed the method performance on the UWHandles dataset, which is discussed in chapter 6
of this thesis. The dataset is composed of underwater fisheye images of graspable handle objects
and was collected in natural seafloor environments of the deep ocean.

3.4 Results

The following section presents the performance of the different SilhoNet adaptations on the
UWHandles dataset. Table 3.1 and Table 3.2 show the percentage of translation and orientation
predictions under different error thresholds, respectively. Table 3.3 shows the overall 6D pose
prediction accuracy using the ADD-S metric from [188].

Table 3.1: Percentage of translation predictions under the threshold error, where a higher percent-
age under a lower threshold means better accuracy.

Method < 5cm < 10cm < 20cm < 30cm

Baseline 69.88 90.81 98.48 99.92
Projective 71.91 87.35 96.22 98.39
Perspective 74.63 90.61 96.73 98.14

Baseline-Direct 47.55 72.04 94.56 99.21
Projective-Direct 46.71 73.56 93.54 98.36
Perspective-Direct 57.69 81.29 96.11 99.07

Table 3.2: Percentage of orientation predictions under the threshold error, where a higher percent-
age under a lower threshold means better accuracy.

Method < 5° < 10° < 20° < 30°

Baseline 12.75 34.77 62.78 75.31
Projective 11.26 35.33 63.03 74.89
Perspective 16.05 39.08 66.08 77.28

Baseline-Direct 22.58 45.58 69.00 81.31
Projective-Direct 28.91 50.45 69.48 83.19
Perspective-Direct 29.81 55.01 74.21 85.02

Table 3.3: Area under accuracy-threshold curve for 6D pose evaluation using ADD-S metric, where
a higher area means better accuracy. Proj. is short for Projective and Persp. is short for Perspective

Handle Type Baseline Proj. Persp. Baseline
Direct

Proj.
Direct

Persp.
Direct

umichhandle 72.71 69.53 78.81 61.70 61.79 64.46
soihandle 71.48 79.98 75.11 47.51 53.33 60.77
whoihandle 61.82 57.34 61.95 48.54 47.39 59.90

ALL 68.65 68.92 71.94 52.57 54.15 61.69
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For translation prediction errors under 5cm, which is a common measure of interest for pose
estimation methods, the perspective variant shows significant performance improvement over the
baseline method, while the projective method shows some improvement. All of the direct variants
that remove the intermediate silhouette prediction branch show a drastic drop in translation pre-
diction accuracy, indicating that even though the silhouettes are not directly used in the translation
prediction, they enhance the networks ability to learn accurate feature scaling. The perspective-
direct variant still shows significant improvement over the baseline-direct method, indicating that
compensating for distortions in the fisheye image rather than directly predicting from the raw im-
age is important for accurate pose predictions.

For orientation prediction errors under 5°, the perspective variant also shows significant per-
formance improvement over the baseline method, while the projective variant does not perform as
well as the baseline. In contrast to the translation predictions, all of the direct methods improve
on the orientation prediction accuracy by approximately a factor of two across all variants, while
the perspective-direct method still outperforms the baseline-direct method by a large margin. We
observe that these initial results for orientation prediction fall short of the general target accuracy
of less than 5deg error for manipulation applications. The UWHandles dataset is especially chal-
lenging for several reasons: the amount of training data is relatively small compared to terrestrial
datasets, due to the expense of gathering underwater imagery; images are degraded by underwater
back-scatter and lighting effects; the variance in camera viewpoints across an image sequence is
high, due to the relatively low image collection frame-rate and large manipulator motions. Though
these attributes make the dataset very challenging, they also motivate the development of methods
that can work in real-world underwater environments with sparse training data. Future work could
explore incorporating explicit methods of dealing with underwater effects, such as color correction
and haze removal. We also note that the performance of the original SilhoNet [14] method was
greatly improved through additional training on rendered data. Synthetically generated data can
fill gaps in camera viewpoint representation missing in the real training data, allowing the network
to better learn the full manifold of viewpoint representation.

The ADD-S results also show a strong improvement in performance for the perspective vari-
ant against the baseline, both with and without the silhouette predictions, while the projective
and baseline methods perform similarly. Because the ADD-S metric is generally most sensitive
to translation errors, the results show stronger performance for the methods that retain the inter-
mediate silhouette prediction over the direct methods. However, taking into account the separate
orientation and translation results, better overall performance on this dataset might be achieved by
a method which directly predicts the orientation but retains a silhouette prediction branch during
training to boost the translation accuracy. Overall, the results indicate that accounting for fisheye
distortions before feature extraction, as the perspective method does, gives the best performance.
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Figure 3.3: Qualitative results with the perspective method on some sample test images for the
whoihandle object. Predicted silhouettes and pose errors are shown for a range of errors from low
to high.

Figure 3.3 shows some qualitative results with the perspective method for the whoihandle ob-
ject on some test samples, exhibiting a range of prediction errors. It is evident that the network
successfully learns the silhouette representation of the handle object. However, some silhouette
predictions are distorted or regress to offset viewpoints. We conjecture that these issues reflect the
sparse coverage of the training data over the full viewpoint manifold of the objects and could be
addressed through additional training on synthetic data.

3.5 Conclusion

In this chapter, we presented a framework for adapting a ROI-based 6D object pose estimation
method to work on full fisheye images. We demonstrated the adaptation of the SilhoNet [14]
method on a new dataset of annotated fisheye images, called UWHandles, collected in natural un-
derwater seafloor environments. The objects in the dataset are visually challenging handles, used in
ROV operations to manipulate tools. The testing results on this dataset show that directly account-
ing for the fisheye distortions in the network before feature extraction is important for improving
pose prediction accuracy, where the best performance was obtained with a method that generates
a virtual perspective image centered on each ROI detection and processes these virtual undistorted
images separately through the network. The results also show that the intermediate silhouette pre-
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dictions of the SilhoNet method are important for the network to learn feature scaling to accurately
predict translation. However, for this dataset, directly regressing the orientation rather than predict-
ing from an intermediate silhouette achieves the greatest orientation accuracy. Supplementing the
training with synthetic data could be an effective method for boosting the network performance.
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CHAPTER 4

Hybrid Visual SLAM for Underwater Vehicle
Manipulator Systems

4.1 Motivation

Exploration vehicles for remote environments, such as rovers, planetary landers, or underwater
Remotely Operated Vehicles (ROVs) are often equipped with manipulator systems for collecting
samples, placing sensors, or otherwise interacting with the environment. These systems largely
rely on direct tele-operation or manually scripted commands to execute manipulation tasks, due to
the risks associated with acting in unstructured and often complex remote environments. Despite
these risks, there are some remote environments, such as Europa, the ice moon of Jupiter, so
extreme that any kind of tele-operation or pre-scripted manipulator control is highly impractical.
Considering environments closer to home, the deep ocean is a hot-bed of scientific research and
exploration, but the expense of operating existing depth rated ROVs with their supporting ships and
pilot teams is extravagant, while gaining operational time with one of these vehicles is also highly
competitive. These considerations motivate the automation of manipulator systems for exploration
vehicles, to enable complex scene interactions in communication denied environments, reduce the
expenses associated with human operational teams or supporting tele-operation infrastructure, and
increase the availability of these systems for scientific research. Critical to achieving safe and
robust autonomy of such vehicle-manipulator systems is scene perception and reconstruction. In
this chapter, we address the problem of feature based 3D scene mapping for underwater vehicle-
manipulator systems (UVMSs). A key novelty of the mapping system is the fusion of feature points
from both a vehicle mounted stereo camera and a dynamically positioned manipulator mounted
fisheye camera into the same mapping framework. In situations where a UVMSs movement is
limited or risky, this method addresses the problems of having limited viewpoints from the vehicle
mounted cameras and incomplete scene reconstruction due to shadowing from scene structure by
enabling the wrist mounted camera to dynamically extend the map beyond the vehicle fixed camera
views and fill in shadowed areas of the scene.
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This chapter makes the following contributions: 1. To our knowledge, the first SLAM system,
designed for manipulator systems, that fuses a manipulator mounted fisheye camera into the same
map with a vehicle mounted stereo camera. 2. An adaptation of the ORB-SLAM2 framework
to GPU accelerated SIFT features, with improved odometer based tracking and real-time perfor-
mance. 3. An evaluation of the SLAM method on both shallow reef and natural deep seafloor
environments, where the method achieves good performance and standard ORB-SLAM2 fails.
The evaluation datasets are also contributed with this work.

The rest of this chapter is organized as follows. Section 4.2 provides the background of re-
lated works. Section 4.3 describes our method. Section 4.4 presents an analysis of our method
performance on underwater datasets. Section 4.5 concludes the chapter.

4.2 Related Work

3D scene mapping is a very mature problem in computer vision and robotics, and a rich body
of literature has been generated from decades of study on the topic. Here we present a review
of the works which we consider most relevant to the developed method and from which we took
inspiration in the approach.

4.2.1 Feature Based Visual SLAM

Since its inception, ORB-SLAM [131] and its later adaptation to stereo, ORB-SLAM2 [132],
remains one of the most widely adopted and complete feature based SLAM systems. ORB-SLAM
demonstrated that a bundle adjustment approach can attain more accurate camera localization than
direct methods or ICP, with the advantage of being less computationally expensive. Given the
proven robustness of ORB-SLAM across a variety of applications and camera systems, the efficient
computational performance based on a parallel thread architecture, and the demonstrated accuracy
of keyframe based bundle adjustment for pose estimation, we chose to develop the method based
on the ORB-SLAM2 framework.

CoSLAM [196] proposed an innovative solution for fusing multiple synchronized but inde-
pendently moving monocular cameras into a single framework that can also differentiate between
dynamic and static feature points. We took inspiration from this approach in the method design,
with the key differences being the use of stereo features to constrain the map scale, the fusion of
independent hybrid camera frames into the same map (i.e. the manipulator mounted fisheye cam-
era and a vehicle mounted perspective stereo camera), and the specific adaptations of the method
to underwater environments.
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4.2.2 Underwater SLAM

Significant progress has been made in underwater vision applied to large scale survey reconstruc-
tions [91, 92], terrain aided navigation [134, 56, 72], and ship hull inspection [76, 144]. However,
dense scene reconstruction methods generally process the image data offline, and methods de-
signed for navigation generally provide very sparse feature maps if any. In contrast, our method
emphasises real-time scene mapping, suitable for natural seafloor environments, that is robust to
underwater visual effects and provides an optimized feature map and camera pose graph that can
underlie dense reconstruction methods.

[134] proposed a stereo based SLAM method specifically designed for operating in underwater
feature-poor environments. The map is constructed as a pose graph connecting to feature clus-
ters. For inter-frame pose estimation of non keyframes, they used the VISO2 stereo odometer [63],
which they found to perform better than the tracking stage in ORB-SLAM. For detecting loop
closures, they generated a HALOC [34] signature for each feature cluster, which can be efficiently
matched across very large image sets and does not require a prior training step like a bag of words
representation. This work informed our choice of using a modified version of VISO2 for the initial
inter-frame pose estimations. While their method was tailored specifically to the problem of local-
ization through the optimization of keypoint cluster locations, our method, based on ORB-SLAM2,
optimizes the location of the individual map points, which is desirable for scene reconstruction.
[72] studied off the shelf monocular ORB-SLAM applied in different shallow oceanic underwater
environments. Their results showed that ORB-SLAM performed very well in structured or feature
rich environments, with adequate lighting and low flickering. ORB-SLAM performed poorly in
areas with highly dynamic lighting, large numbers of moving objects, or low textured regions such
as sand beds.

4.2.3 Kinematics in SLAM

Some prior work has been done on eye-in-hand based SLAM, where a camera is mounted near the
endeffector of a manipulator. ARM-SLAM [100] used a Kinect depth sensor mounted on a manip-
ulator with a fixed base to capture point clouds of the scene and fused them into a reconstruction
using a method based on Kinect Fusion. SKCLAM [116] used feature based pose tracking with
an RGB-D camera on the endeffector to calibrate the full kinematic parameters of an industrial
manipulator with a fixed base. Point clouds from the RGB-D camera were integrated to con-
struct a 3D map. [35] used ORB-SLAM3 and a stereo camera on a mobile manipulator to map an
orchard. Novel to these prior works, our method fuses features from both an independent manipu-
lator mounted fisheye camera and a vehicle mounted stereo in a common feature graph. We use a
monocular camera on the wrist rather than relying on a depth sensor, which would be very bulky to
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fit in a pressure rated housing for mounting on the manipulator. [42] proposed a method for cali-
brating a dynamic camera cluster, where one camera is articulated with respect to the other cameras
in the rig. They demonstrated multi-camera SLAM with one camera mounted on a pan-tilt unit.
However, their method assumed accurate calibration of the pan-tilt unit’s extrinsics. In contrast,
our method is demonstrated with the manipulator mounted camera having 5-DoF actuation and a
very large baseline to the vehicle mounted cameras relative to the stereo baseline, and our method
does not assume accurate extrinsic measurements of the articulated camera. This method is also,
to our knowledge, the first to demonstrate eye-in-hand SLAM on mobile underwater manipulator
platforms in natural deep ocean environments.

4.3 Method

The hybrid SLAM system builds on top of the ORB-SLAM2 framework [132]. In this section, we
highlight the changes made to adapt the ORB-SLAM2 system to SIFT features, the underwater
environment, and the hybrid camera system. For details on the system architecture that remain
unchanged from ORB-SLAM2, we defer the reader to [132].

Figure 4.1 shows a high level block diagram of the hybrid SLAM system, where our method
retains the same four threaded architecture as the original ORB-SLAM2 system. The most signif-
icant modifications were made in the tracking thread, which follows the top horizontal flow of the
diagram, with separate functional flow branches for stereo and monocular fisheye frames. Both
stereo and fisheye frames share a common keyframe representation which is processed through
the local mapping, loop closing, and full bundle adjustment threads. The core of the system is
the feature based stereo mapping framework, which can be operated stand-alone or in a hybrid
mode, where frames from an independently moving fisheye camera are fused into the same map.
In our collected datasets, the fisheye camera is synchronized with the stereo camera. However,
this synchronization is not a requirement of our current method. However, future work may ex-
tend the method with a kinematic factor between the stereo and fisheye camera, in which case
synchronizing the cameras with the joint state feedback would be important.

The constructed map is represented as a covisibilty graph of optimized keyframe and keypoint
poses, with factors between keyframes formed through common keypoint observations. Like ORB-
SLAM2, the covisibility graph is used to retrieve a local neighborhood of keypoints for the tracking
and local mapping stages and forms the graph structure for the bundle adjustment optimizations.
A minimum spanning tree is also maintained, which connects every keyframe to the neighbor with
the maximum number of shared keypoint observations. The spanning tree is used to propagate
keyframe pose optimizations from full bundle adjustment to new keyframes that were not included
during the optimization. A DBoW2 module [62], adapted to SIFT features, is used for place
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Figure 4.1: System block diagram

recognition during relocalization and loop closing.

4.3.1 Hybrid Camera System

The hybrid camera system is specifically tailored to mobile manipulator systems, with a stereo
camera mounted on the vehicle and an independent fisheye camera mounted on the manipulator
wrist. In our evaluations, the stereo pair uses a pinhole camera model and the fisheye camera uses
the Kannala-Brandt [95] model. We adapted the camera model code from ORB-SLAM3 [29] to
support the hybrid camera system.

4.3.2 Feature Representation

While ORB-SLAM2 uses ORB [154] features, ORB performs poorly in many underwater environ-
ments compared to other feature types. We conducted an analysis of the matching performance of
different feature types in the underwater domain, presented in the results section, which motivated
our choice of the SIFT [119] feature for the system. We adopted CudaSIFT [18], which is one of
the fastest GPU accelerated SIFT implementations, for real-time feature extraction.

4.3.3 System Initialization

On system startup, the first keyframe is created from the first stereo frame that retains at least 8%
of the maximum number of features that can be extracted. This keyframe is set as the origin of the
map and the initial map is constructed from all of the stereo keypoints of the frame. After the map
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is initialized, new keyframes can be added from both the stereo and monocular fisheye frames,
with the map scale constrained by the initial and new stereo map points.

4.3.4 Stereo Odometery

Similar to [134], we found that the tracking stage of ORB-SLAM2 failed on the underwater
datasets, even when adapted to SIFT features. A considerable limitation of the ORB-SLAM2
tracking stage is a constant velocity model, which has poor accuracy at the low frame rates typical
for underwater imaging systems. [134] used the VISO2 stereo odometer for initial frame pose
estimation. We took inspiration from this and also adopted VISO2 for our system. However, we
found that off-the-shelf VISO2 failed to track the underwater stereo dataset, due to poor perfor-
mance of the simple blob and corner response features, described in the Sobel operator space.
We modified VISO2 to use CudaSIFT features, which are extracted once for each image and then
propagated through the rest of the SLAM pipeline for efficient computation. While the original
VISO2 implementation used a search window to circularly match features across the current and
previous stereo pair, we use GPU accelerated brute force matching, followed by circular filtering
for improved computational performance. In this scheme, brute force matching is applied between
the previous left and previous right frames, previous right and current right frames, current right

and current left frames, and current left and previous left frames. A feature is accepted only if the
same feature is matched across all image pairs in a circular fashion. Like in the original VISO2
implementation, feature matches between a left and right stereo image pair are further filtered by
an epipolar constraint of 1 pixel error tolerance. However, we found the outlier removal step of
the original VISO2 by 2D Delaunay triangulation to be too restrictive in high rugosity coral reef
imagery, resulting in the filtering of many correct feature correspondences.. Through extensive
experimentation, we found the circular matching and epipolar constrained filtering steps were suf-
ficient for removing the majority of outliers before processing the matches through the ego-motion
estimation stage.

4.3.5 Tracking

Given the current stereo frame with an initial pose estimate from odometery relative to the pre-
vious frame, the map points observed in the previous frame are tracked in the current frame by
projecting them into the current left stereo image and searching for feature correspondences within
a small window. If enough map point correspondences are found, the keyframe pose is optimized
based on the reprojection error of the map points. If not enough correspondences are found, the
current stereo frame is tracked relative to the map points observed in its reference keyframe, using
the BoW vocabulary levels to guide the matching, and the pose is optimized if enough correspon-
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dences are found. If not enough inlier matches with the reference keyframe map points are found
but the odometery estimate has enough feature match inliers with the previous frame, then the pose
of the current frame is set to the odometery estimate with no initial map matches. Given the initial
pose estimate from this tracking step, the system proceeds to track the current stereo frame to a
local map of keypoints observed by a neighborhood of keyframes, as in ORB-SLAM2, with the
difference that neighborhood keyframes can be both monocular fisheye or stereo keyframes. If
tracking fails, the system enters relocalization mode until tracking is recovered for a stereo frame.

In hybrid mode, the current monocular fisheye frame is only tracked if the current stereo frame
was successfully tracked. If a fisheye keyframe has already been added to the map, the current
fisheye frame is first tracked relative to the map points of its reference keyframe, using BoW
guided matching, and the pose is optimized if enough correspondences are found. For the iterative
optimization procedure, the pose is initialized to the previous fisheye frame pose. If tracking the
reference keyframe fails or no fisheye keyframe has yet been added to the map, the current fisheye
frame is tracked relative to the map points of the current reference stereo keyframe. If tracking
succeeds, the system proceeds to track the current fisheye frame to the local neighborhood of
keyframes in the same way as the stereo frame, and, if no fisheye keyframe has yet been added to
the map, a new fisheye keyframe is created and added to the map. If tracking fails for the fisheye
frame but not the current stereo frame, the system enters relocalization mode for only the fisheye
camera, while continuing mapping of the stereo frames. In this relocalization mode, the current
fisheye frame is first attempted to be matched against all keyframes in the map using the BoW place
recognition to identify match candidates. If place recognition fails, tracking of the current fisheye
frame is then attempted against the current stereo reference keyframe. If this tracking succeeds,
the fisheye frame is processed through the local mapping step.

During the local mapping stage for both stereo and fisheye frames, the reference keyframe
for each is updated to the keyframe that shares the most feature matches, agnostic to the type
of keyframe (i.e. stereo or fisheye). When a new keyframe is inserted, it is made the reference
keyframe for the next frame of the same type.

During relocalization or when the fisheye frame is tracked against the reference stereo frame,
a perspective-n-point (PnP) solver is constructed to estimate an initial pose. Like ORB-SLAM3,
we adopt the Maximum Likelihood Perspective-n-Point algorithm (MLPnP) [181], which uses
projective rays in the optimization that are agnostic to the camera model, in order to accurately
optimize the feature correspondences between the hybrid fisheye and perspective stereo frames.
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4.3.6 Inserting New Keyframes

New stereo and fisheye keyframes are decided following the same scheme as ORB-SLAM2 for
stereo and monocular keyframes respectively, with some thresholds tuned for lower framerates
and higher keypoint counts.

When a new keyframe is inserted, new map points are triangulated and added into the map. For
each of these keypoints the maximum and minimum distances that the point can be detected in a
frame are calculated based on the scale of the keypoint in the reference keyframe. With the hybrid
camera system, the scale of the keypoint can be different at the same distance, depending on which
type of frame observes the keypoint. We resolve this ambiguity by normalizing the keypoint scale
factor by the focal length of the observing frame. This normalization enables consistent keypoint
scale prediction and comparison between hybrid frames.

4.3.7 Loop Closing

For place recognition, we adapted DBoW2 to SIFT features and trained a million word vocabulary
with ten branching factors and six levels, like the ORB vocabulary used in ORB-SLAM2. The
vocabulary was trained on an extensive set of underwater imagery data, including the UWHandles
and LizardIsland datasets presented in this paper, plus three large imagery datasets from the Aus-
tralian Center for Field Robotics: Tasmania CSP [12], Scott Reef 25 [173], and Tasmania O’Hara
7 [172]. 2000 CudaSIFT features were extracted per image, with the image upscaled by a factor of
2 for the first scale pyramid level, the initial blur set to 1.6, and the difference of Guassian threshold
set to 1.0.

4.3.8 Datasets

4.3.8.1 Stereo Survey Dataset

A stereo SLAM evaluation dataset was collected with a diver operated camera rig on a shallow
coral reef of Lizard Island in Australia (fig. 4.2). The dataset was collected using a spiral survey
technique [150] that fully covered a circular area of approximately 14m in diameter, with natural
sunlight providing the only illumination. The rectified stereo image size is 1355x1002 pixels and
the images were collected at 5Hz. We refer to this dataset as LizardIsland.

To obtain a ground truth comparison for evaluating the stereo SLAM method, we processed
the dataset through COLMAP [161] to generate a sparse 3D reconstruction with optimized camera
poses. COLMAP does not fix the scale during optimization, so the reconstruction was scaled in
post-process to match the mean left and right stereo pair baseline to the calibrated value.
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(a) Left stereo image (b) COLAMP reconstruction

Figure 4.2: The LizardIsland spiral survey dataset was collected with a diver operated stereo rig.
The ground truth reconstruction was generated with COLMAP.

4.3.8.2 Hybrid Vehicle-Manipulator Dataset

During a cruise in 2019, a hybrid dataset of synchronized vehicle mounted stereo and wrist
mounted fisheye imagery was collected in natural deep ocean environments of the Costa Rican
continental shelf with the SuBastian ROV, operated by Schmidt Ocean Institute. The fisheye im-
agery portion of this data was published as the UWHandles dataset [15]. For this work, we have
extended this dataset by further processing four environmentally unique stereo and fisheye image
sequences for evaluation of the hybrid SLAM method. We refer to these sequences as Mounds1,
Mounds2, Seeps1, and Seeps2 (fig. 4.3). For these sequences, TagSLAM [149] was used to obtain
ground truth pose estimates for the stereo and fisheye cameras, based on the detection of AprilT-
ags [184] distributed in the scenes.

4.4 Results

All evaluations were run on a desktop computer with an AMD Ryzen Threadripper 2990WX CPU
and an NVIDIA Titan V GPU.

4.4.1 Comparative Feature Analysis

We conducted an evaluation to determine which feature representation is best adapted to the visual
degradation of underwater environments and can be robustly matched between hybrid perspective
and fisheye frames with variable relative poses. We sampled every fifth hybrid frame from each
of the UWHandles dataset sequences and, to reduce any bias from artificial features, we used the
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(a) Mounds1 (b) Mounds2

(c) Seeps1 (d) Seeps2

Figure 4.3: Four hybrid image sequences were collected in deep seafloor environments of the Costa
Rican shelf margin. Shown here is a sample left stereo image from each sequence. Mounds1 ((a))
is an area of rocks and bacterial matting. Mounds2 ((b)) is a mud flat with rubble. Seeps1 ((c)) is a
dense bed of clams with bacterial matting. Seeps2 ((d)) is a mud flat with a small patch of bacterial
matting.
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tracked AprilTag poses from TagSLAM to project circular masks over the tags in the image frames.
For each feature type, 2000 features were extracted from each image, and the features were brute
force matched across each hybrid fisheye and left stereo image pair. Lowe’s ratio test was applied to
remove ambiguous matches, with a ratio threshold of 0.8 for all feature types except ContextDesc,
which achieved significantly improved performance with a ratio of 0.9. OpenCV’s RANSAC
based essential matrix fitting was used to filter the matches and recover a relative pose estimate
between each fisheye and stereo frame. Table 4.1 shows the results of this evaluation. Given that
an essential matrix based pose estimate does not provide scale, both the orientation and translation
errors of the pose estimates were evaluated as angular errors. For translation, this error is the
angular difference between the translation direction vector from the left stereo frame to the fisheye
frame. The performance was evaluated using the area under the accuracy-threshold curve (AUC)
with a max angular error of 180°. While most of the tested feature types were popular conventional
features, we also tested two deep learned feature variants: ContextDesc and SuperPoint. We note
that the learned features were used with their provided model weights and were not fine-tuned
on underwater data. Of the conventional feature types, ROOT SIFT and SIFT perform the best,
achieving significantly better performance than ORB. Of the deep learned features, SuperPoint had
highly variable performance across the different sequences, and the mean number of inlier matches
was lower than other conventional features. Interestingly, ContextDesc performed the best overall
out of all the feature types, consistently matching more than double the features of ROOT SIFT and
achieving very high AUC scores. It is noteworthy that ContextDesc uses SIFT interest points but
learns the descriptor, so all of the best performing features are based on the SIFT detector. These
results merit further investigation into the application of learned features for underwater vision.
For our initial implementation in this work, we chose to use a highly optimized GPU accelerated
implementation of SIFT, but we note that the learned descriptors of ContextDesc are 128-d, like
SIFT, and are directly compatible with the entire method pipeline.

4.4.2 Stereo SLAM

The core of our system is a stereo SLAM pipeline, which must be robust to underwater envi-
ronments. We used the LizardIsland survey dataset to evaluate the stereo SLAM performance.
We tested ORB-SLAM2 on this dataset, both with and without loop closing enabled, but it lost
track after only a few frames and was unable to relocalize. We also tested the vanilla VISO2
stereo odometer, but, even with extensive tuning, VISO2 failed to track the dataset with sensible
accuracy. We evaluated our stereo SLAM method with both 2000 and 4000 CudaSIFT features
extracted each frame, with an interest point Difference of Gaussian threshold of 1.2. Figure 4.5
shows the results for 4000 features, both with and without loop closing enabled, and table 4.2 gives
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Table 4.1: Area under accuracy-threshold curve evaluation of feature matching performance on
the UWHandles underwater hybrid image sequences. Accuracy is evaluated as angular error in the
predicted rotation (AUC Rot) and translation direction vector (AUC Trans) between each hybrid
left stereo and fisheye image pair. Also reported is the mean number of inlier feature matches
across each sequence.

Sequence SIFT [119] ROOT SIFT[8] ORB [155] SURF [13] AKAZE [6] CONTEXTDESC [121] SUPERPOINT [47]

Mounds1
AUC Trans 0.949 0.936 0.856 0.877 0.922 0.970 0.98
AUC Rot 0.937 0.948 0.750 0.812 0.858 0.951 0.964
Mean Matches 91 101 25 34 46 210 74

Mounds2
AUC Trans 0.946 0.940 0.864 0.886 0.906 0.976 0.947
AUC Rot 0.810 0.853 0.488 0.676 0.629 0.959 0.873
Mean Matches 31 33 14 21 21 80 41

Seeps1
AUC Trans 0.964 0.980 0.885 0.869 0.904 0.986 0.938
AUC Rot 0.944 0.965 0.745 0.770 0.811 0.980 0.885
Mean Matches 64 73 23 28 43 150 53

Seeps2
AUC Trans 0.960 0.964 0.935 0.930 0.954 0.974 0.917
AUC Rot 0.942 0.953 0.894 0.891 0.926 0.965 0.763
Mean Matches 89 100 60 50 92 146 39

(a) 4k features/frame (b) 2k features/frame

Figure 4.4: Final stereo SLAM maps on the LizardIsland dataset, showing the densely connected
keyframe graphs.
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Table 4.2: Stereo SLAM performance on the LizardIsland dataset, with the number of extracted
features is set to 4000 and 2000. Performance is evaluated as RMSE of the absolute trajectory
error. Results are reported with and without loop closing enabled. Also reported is the number of
keyframes (KFs) and map points (MPs) in the final map and the average frame processing time in
the tracking thread.

System Mode RMSE (cm) KFs MPs Avg Time (ms)
Tracking Only (4000) 49.1 - - 94.2
Loop Closing (4000) 1.4 562 190,474 117.9
Tracking Only (2000) 58.2 - - 55.7
Loop Closing (2000) 1.8 622 98,812 64.8

Table 4.3: Evaluation of hybrid SLAM on the UWHandles dataset. Error is evaluated on the es-
timated pose difference between the left stereo and fisheye cameras for each synchronized hybrid
frame, where ∆t is translation error and ∆q is rotation error. The ”hybrid matches” column gives
the number of fisheye frames registered in the map over the total number of frames in the se-
quence. The error is only evaluated over the registered frames. The ”KFs” column is the number
of keyframes in the final map for the hybrid SLAM mode versus stereo only mode, and the ”MPs”
column is the same format for the number of final keypoints in the map.

Sequence ∆t mean (cm) ∆t median (cm) ∆q mean (deg) ∆q median (deg) hybrid matches KFs hybrid/stereo MPs hybrid/stereo
Mounds1 2.04 2.06 0.58 0.50 652 / 783 21 / 11 4271 / 2671
Mounds2 1.38 1.22 0.98 0.82 713 / 756 24 / 11 4086 / 1773
Seeps1 2.82 2.02 1.17 0.46 1059 / 1089 24 / 11 4636 / 2847
Seeps2 2.12 1.84 1.38 0.97 778 / 802 23 / 16 4320 / 2365

the performance of the system in all tests. The test trajectories were aligned with the COLMAP
ground truth using the Horn method [77] without scaling. The figure shows that the visual odome-
ter based tracking method without loop closing tracks very well in the horizontal plane with most
of the drift error being accumulated in the z-depth estimate. For both extracted feature counts, the
table shows that a high accuracy, with less than 2cm root mean squared absolute trajectory error
(RMSE), is attained by the full SLAM system with loop closing. For 4000 features per frame,
the number of map points in the final map is approximately double the map point count for 2000
features per frame, showing that the system scales well with the number of extracted features. The
system can achieve >10Hz for 2000 features per frame, which is a high framerate for underwa-
ter systems. Figure 4.4 shows the densely connected keyframe graphs for the final SLAM maps,
demonstrating consistent loop closing between neighboring spiral trajectories.

4.4.3 Hybrid SLAM

We evaluated the performance of the hybrid SLAM system on the four sequences of the UWHan-
dles dataset. The results are reported in table 4.3. For all sequences, every stereo frame was
successfully registered in the SLAM map. Given that the stereo camera is mostly stationary across
these image sequences, and to reduce the effect of noise in the imperfect ground truth, we evalu-
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(a) Tracking top view (b) Tracking side view

(c) SLAM top view (d) SLAM side view

Figure 4.5: Stereo SLAM results for the LizardIsland dataset when loop closing is disabled ((a),(b))
and enabled ((c),(d)).
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(i) Mounds1 (j) Mounds2 (k) Seeps1 (l) Seeps2

Figure 4.6: Snapshots of hybrid SLAM running on the UWHandles sequences. Top row is the left
stereo camera frame, middle row is the manipulator mounted fisheye frame, and bottom row is the
map with the keypoints and keyframes.
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Table 4.4: Hybrid SLAM timing evaluation, measured as the mean frame processing time in the
tracking thread.

# Features / Frame 2k 4k 6k
Mean Time 179ms 249ms 314ms

ated the hybrid SLAM error using the relative pose estimates between the left stereo and fisheye
cameras for each synchronized hybrid frame. Only hybrid frames where the fisheye frame was
successfully registered into the map were included in the error evaluation. According to the ta-
ble, the system generated approximately twice as many keyframes and map points when running
in hybrid mode versus stereo only mode, demonstrating the ability to extend the map beyond the
limited stereo camera viewpoint. Also, the majority of fisheye frames were successfully registered
into the map for all sequences. Despite the sequences varying significantly in environment type,
the hybrid SLAM mode is able to generate a similar amount of keyframes and map points for each
sequence, and the estimated pose errors are very similar across each sequence, demonstrating the
system can operate in challenging and diverse, natural seafloor environments. Figure 4.3 shows a
frame capture from running hybrid SLAM on each of the sequences. Table 4.4 gives the timing
evaluation for processing a hybrid stereo and fisheye frame pair through the tracking thread for
different feature count settings. For 4000 features extracted per image, the system can easily attain
3hz, which is the rate that the UWHandles data was collected.

4.5 Conclusion

In this chapter, we have presented a novel hybrid SLAM method, targeting deployment on un-
derwater vehicle manipulator systems, that can operate in real-time. The method can fuse fea-
tures from both a vehicle mounted stereo camera and a manipulator mounted fisheye camera into
the same map, enabling dynamic viewpoint acquisition and map extension with the manipulator
mounted camera. We have demonstrated the robustness of the method on both a shallow reef
stereo image survey dataset and on four hybrid image sequences captured in natural, deep seafloor
environments.

There are several promising directions for future development of this SLAM system. First, a
kinematic factor could be formulated on the optimization graph from the manipulator joint states
between the manipulator camera and the vehicle mounted stereo to improve registration of the
manipulator camera into the map and the overall robustness of the mapping method. This factor
would also enable real-time feedback for the kinematic calibration of the manipulator, which is a
challenging problem for the imprecise hydraulic manipulators common for underwater systems.
Second, the use of learned feature descriptors such as ContextDesc could be explored to improve
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system performance. Finally, the system could be extended with a dense reconstruction stage that
is optimized on the sparse feature maps and camera poses to build a complete real-time scene
reconstruction method for UVMSs.

51



CHAPTER 5

Design of Underwater Optical Systems

5.1 Motivation

Optical cameras are increasingly being applied in the underwater domain for a range of applications
including inspection tasks [26], ecosystem monitoring [186] and vehicle navigation [54]. Cameras
represent low cost, low power sensors that provide rich information about the underwater scene
and frequently complement other sensors deployed on autonomous underwater vehicles (AUVs)
or ROVs. However, the design of an underwater camera system presents a very large space of
possible design choices and system configurations, with many inter-dependencies. Additionally,
field tuning of the camera settings is frequently cumbersome and time consuming due to reduced
equipment accessibility when deploying underwater.

In this chapter we review a simplified underwater image formation model that allows the esti-
mation of the average camera sensor response given different lens, light, water and seafloor char-
acteristics. The sensor response is the average intensity of pixels in a camera image and is a metric
that can be used to determine correct image exposure. A user-friendly interface for the model is
developed that will allow researchers and scientists to narrow down the equipment requirements
and operational settings for an underwater imaging system by parametrically exploring the design
space.

In order to estimate the camera response, a model of underwater image formation is required.
One of the main drivers for the study of the underwater image formation process and the devel-
opment of models has been the need to correct underwater image degradation such as haze, low
contrast and color cast due to water impurities and wavelength dependent attenuation. Early efforts
by Duntley [52] laid the foundation for modelling underwater light propagation. Computer models
developed by McGlamery [125, 126] were extended by Jaffe in 1990 [82], leveraging advances in
computational processing capabilities to create the UNCLES computer simulation system, which
is capable of analyzing the performance of underwater camera systems. The UNCLES simulator
helped guide the design of the video equipment for the ARGO underwater imaging platform [83],
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Figure 5.1: Schematic of underwater light propagation from light source to camera sensor, where
the light signal is affected by scattering and absorption through the water column and the reflection
characteristics of the seafloor.

but the tool was not released for public use. The theory for underwater light propagation has
previously been developed, but there lacks a consolidation of this knowledge into a framework
broadly usable by the science and engineering communities for the design of underwater camera
systems. The tool introduced in this chapter incorporates the model developed through these prior
works with an interface focused on user friendliness and minimal complexity. Some assumptions
are made to simplify the model, based on common characteristics of underwater imaging systems,
and the validity of this model is demonstrated through experimentation. The contributions pre-
sented in this work are 1. A review of the underwater image formation model with a procedure to
characterize underwater camera systems. 2. An open source tool3 to aid the design process for an
underwater camera system through exploration of the parameter space. 3. Validation experiments
supporting the presented model as a good characterization of an underwater camera system.

The rest of the chapter is structured as follows: Section 5.2 introduces the underwater image
formation model used in the software toolbox to compute sensor responses underwater; Section 5.3
presents the developed software toolbox, with an overview of the intended design use and user
interface; Section 5.4 presents the experiments validating the proposed image formation model;
and Section 5.5 concludes the chapter.

5.2 Underwater Image Formation

In this section we introduce the underwater image formation model. As light travels from a source
through the water column, it is attenuated through absorption and scattering. The light that reaches
the seafloor or other obstacle is reflected by a fractional amount, dependant on the albedo of the

3https://github.com/gidobot/UWOpticalSystemsDesignTools
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surface. The reflected light is further attenuated in the water column as it travels back towards the
camera. Light is refracted at the water interface of the camera housing viewport before reaching
the camera lens. Photons passing through the lens generate electrical signals on the camera sensor
that are amplified and digitized to form the final image. This process is illustrated in figure 5.1, and
figure 5.2 provides an overview of how the model equations describe the image formation pipeline.

5.2.1 Artificial Light systems

Natural light is attenuated exponentially in the oceans and frequently does not penetrate deeper
than 100m. The model assumes all light in the scene is generated from artificial light sources
mounted on the vehicle. This situation represents the worst case scenario, as constraints on camera
systems are relaxed if natural light is present. The presented model describes a light source by
three main parameters:

1. Luminous flux emitted by the light source, measured in lumens: This can be obtained for
most underwater lights, strobes or LED modules in custom designs.

2. Normalized light spectrum: The spectrum of the light source describes how the luminous
flux is spread over the different wavelengths. When the spectrum is not available, it can be
approximated based on known spectra for common light sources. Figure 5.3 shows spectrum
characteristics of common light types such as LED, fluorescent or natural sunlight.

3. Beam pattern: The beam pattern describes how the light spreads as it travels away from the
source. We assume a simple conical beam pattern defined by its aperture half-angle β, which
is typical for most underwater strobes.

5.2.2 Underwater Light Propagation

Light traveling underwater from the strobe to the camera sensor is modified through absorption,
scattering, reflection, and refraction at optical interfaces. We describe how each of these effects is
modeled in the system.

5.2.2.1 Attenuation

The Jaffe-McGlamery model describes the propagation of light underwater as the sum of direct,
backscatterred and forward-scatterred light. Attenuation of the light signal is modeled as an ex-
ponential decay, with function parameters depending on the water type and clarity. Coefficients
describing the attenuation effects for different classes of water, known as Jerlov water bodies, have
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Light Source

Underwater Attenuation (Eq. 5.1)

Scene Reflectance (Eq. 5.2)

Underwater Attenuation (Eq. 5.1)

Lens (Eq. 5.4)

Image Sensor (Eq. 5.5)

Digitization (Eq. 5.6)

Digital Image

Figure 5.2: Image formation pipeline describing the different steps through which light is subjected
to form the underwater digital image.

been cataloged [171]. The exponential decay modeling attenuation of the light signal in water is
given as

L = Re−b(λ)d (5.1)

where R is the initial irradiance, b(λ) the wavelength dependent attenuation coefficient and d
the distance of propagation. Absorption and scattering coefficients are mostly dependent on
chlorophyll and dissolved organic matter in the water column [171]. Experiments performed by
Jerlov [88] established a set of attenuation profiles for different types of water bodies, both coastal
and oceanic, with varying clarity levels. These profiles are provided with the model as default
selections. The user also has the option to load custom profiles.

5.2.2.2 Object reflectivity

The reflectance of light by a surface is modeled by the Bidirectional Reflectance Distribution Func-
tion (BRDF) [136] that relates the outgoing radiance L of the surface with the incoming irradiance
E. Assuming diffuse reflection in the model, where θi is the light incident angle and M(λ) is the
material and wavelength dependent reflection coefficient, the BRDF is simplified to:
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L = E
M(λ)

π
cos(θi) (5.2)

5.2.2.3 Light refraction

Underwater cameras are housed inside enclosures that protect the electronic systems from water
damage and pressure. In order for light to reach the sensor, these enclosures employ an optical port
made of translucent material such as glass or acrylic, most frequently in either a spherical or flat
geometry. As light travels through the port, it is refracted at each optical interface as a function of
the change in index of refraction and the direction of the incident ray relative to the surface normal.
In effect, the optical port of the housing must be considered as part of the camera lens system.

In the case of a domed viewport, the dome is treated as a thick lens formed by two concen-
tric hemispherical surfaces. Analysis of the thick lens equations show that objects at infinity
are mapped to a virtual image in the front of the dome that is curved concentrically with the
dome [86, 5]. A camera housed with a dome viewport must be focused at the distance of the
virtual image when immersed in water rather than the distance to the imaging target in air. The
distance of the virtual image from the front of the dome is derived in [86, 5], and we incorporate
these equations into the camera system design tool.

When the camera lens principal point is aligned with the dome center of curvature, the field
of view of the camera remains unchanged [86, 5]. A common method to verify the camera is
correctly aligned with the center of the dome is to look at an image of a checkerboard taken with
the camera in the housing while only half immersed in water. There should be no magnification
difference between the part of the image below the water and the part above the water if the camera
is centered.

For the case of flat viewports, the effects of refraction result in a change in the effective lens
focal length [106], given as

fuw = 1.33fair (5.3)

where fuw is the effective focal length in water and fair the focal length in air. This increase in the
effective focal length of the system reduces the camera field of view and must be accounted for
when computing the lens aperture number.

5.2.3 Lensing effects

The fundamental radiometric relation expresses the amount of light incident on the lens that reaches
a pixel at the sensor surface [176]:

EI = L
π

4

1

N2
cos4(α) (5.4)
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where L is the scene radiance, N is the lens aperture number and α is the angle between the
principal ray and the ray through the pixel. The cos4(α) term models natural vignetting, a process
by which illumination decays towards the sensor edges. Additionally, some light is lost as it travels
through the lens. This transmission loss depends on the quality and construction of the lens and
usually ranges between 5% and 20% [143].

5.2.4 Camera response

Light that reaches the camera sensor is converted into an electrical signal. In the model, we assume
the use of machine vision cameras with linear sensor response functions, though we note some
consumer cameras have non-linear camera response functions, designed to mimic the chemical
response of analog film. Grossberg et al. [65] studied the space of camera response functions. De-
bevec et al. [44] presented experimental methods to determine the camera response function from
a set of images. Jiang et al. [90] further modelled spectral sensitivity functions of color camera
sensors and proposed experimental methods to obtain them from color board images. The model
assumes the sensor response is linearly dependent on the light intensity, with varying sensitivity to
different wavelengths. The dependency of the sensor response on wavelength is described by the
quantum efficiency curve. The total number of absorbed photons can be computed by dividing the
spectrum energy, weighted with the quantum efficiency curve, by the energy of a photon:

µe =
Atexp

hc

∫ λb

λa

Φ(λ) · λ · η (λ) dλ (5.5)

where A is the pixel area [m2], Φ is the irradiance spectrum [W/(m2nm)], texp [s] is the exposure
time, h is Planck’s constant, c is the speed of light in air [m/s], λ is the wavelength [m] and
η (λ) is the sensor quantum efficiency as a function of wavelength. Following the EMVA1288
standard [84], the digital sensor response signal µy can be computed as:

µy = µy.dark +Kµe (5.6)

where µy.dark is the sensor mean dark signal, and K is the system gain.
The physical parameters for each sensor are published by camera manufacturers (eg. [57]) or

can be obtained experimentally.

5.2.5 Gain and Signal to Noise Ratio

Similar to changing the ISO for film cameras, digital machine vision cameras can have a gain
applied to the sensor response signal. This decreases the amount of scene light necessary to expose
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Figure 5.3: Radiance spectrum for different light types

the image. However, the image noise is also amplified when a gain is applied, resulting in a
reduction of the image Signal to Noise Ratio (SNR). SNR is an important consideration, especially
for image tasks requiring feature matching [107], and should be a parameter decided by the camera
system designer. There are three sources of image noise: dark current noise, described by the
normally distributed variance σ2

d; quantization noise from the analog digital conversion, described
by the normally distributed variance σ2

q and the overall system gain K; and shot noise inherent
to light, described by the number of incident photons on the sensor µp and the sensor quantum
efficiency η. The image SNR is calculated as [84]

SNR =
ηµp√

σ2
d + σ2

q/K + ηµp

. (5.7)

The camera system design tool allows setting a gain value and will display the calculated image
SNR for the target average exposure value.

5.2.6 Operational Considerations

Besides the physical characteristics of the water and selected equipment (camera, lens and lights),
the operational requirements also highly influence the design space. The most significant of these
requirements include:

1. Minimum overlap between images: Overlap between consecutive images is required in order
to perform photomosaics, 3D reconstructions or visual navigation. The amount of required
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overlap, together with the vehicle speed and working distance will determine the image
acquisition frequency f :

f =
v

FOVx/y(1−OV R)
(5.8)

where v is vehicle speed [m/s], FOVx/y is the spacial field of view of the image in the
direction of motion [m], and OVR is the fraction of consecutive image overlap.

2. Focal depth of field (DoF): When running AUV imaging surveys over rocky bottoms or
coral reefs, it is frequent for the terrain height to vary significantly. It is desirable that
the entire image remains in focus, so the required focal DoF must be selected accordingly.
Whether a pixel is in focus or not is determined by the circle of confusion, which describes
the area of the sensor across which a point source of light is spread. Light rays originating
within the focal range will project a circle of confusion on the sensor under an acceptable
area threshold. The DoF is controlled by an inverse relationship with the camera aperture.
However, there is a trade off, as decreasing the size of the camera aperture decreases the
amount of light that reaches the lens and therefore increases the required amount of light in
the scene. The DoF can be computed as:

DoF =
2Ncf 2s2

f 4 −N2c2s2
(5.9)

where N is the lens aperture number, c is the diameter of the circle of confusion, f is the focal
length, and s is the distance at which the camera is focused.

3. Motion blur: Motion blur is a great concern for underwater imaging platforms operating in
low light. The amount of blur is dependent on the speed of the vehicle v [m/s], the camera
field of view in the direction of motion FOVx/y, the sensor resolution in the direction of
motion RESx/y, and the exposure time. The maximum exposure time texp [s] to keep motion
blur less than a set number of pixels PIXblur is given as:

texp =
PIXBlur · FOVx/y

v ·RESx/y

(5.10)

4. Spacial field of view (FOV): The camera spacial FOV or area covered by the image is
influenced by lens selection and distance to the target D [m]. It can be computed as:

FOVx/y = D ∗
SSx/y

f
(5.11)

where f is the lens focal length [mm], and SSx,y is the physical dimension of the sensor in x
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Figure 5.4: Depth of field as a function of focus distance and aperture

or y [mm].

5.3 Software

Taking the previously defined relations between sensors, lenses, light sources and water light prop-
agation into account, users and designers of underwater camera systems may wish to answer ques-
tions like what sensor is best for a given operational profile? What are the lighting requirements for
a specific camera? Or what aperture and shutter speed should be used for a given deployment sce-
nario? In order to quickly answer questions like these we have developed an open source software
design tool that performs parametric analysis of an underwater camera system.

The tool allows the user to either input the light type and lumen intensity or load a custom
light spectrum if available. Three Jerlov oceanic water types and five coastal water profiles are
provided to analyze different attenuation rates, with an option to also load custom attenuation pro-
files. Lenses are defined by their focal length and their transmission loss, which may be specified
either as a constant or by loading a custom wavelength dependent attenuation profile. Profiles are
included with the program for five different camera sensors, and new sensors can easily be added
if EMVA specifications are available from the manufacturer. The operational requirements of the
camera system are specified in terms of the maximum acceptable motion blur, the minimum accept-
able DoF, the expected vehicle altitude and speed above the seafloor, and the desired percentage
overlap of consecutive images. Other selectable parameters include the camera orientation with
respect to the direction of vehicle motion, and the geometry of the camera housing viewport. With
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Figure 5.5: Spectrum of light as it propagates through the water, attenuates, reflects and travels
through the lens onto the sensor.

a given set of these parameters, the software computes the average camera response, minimum
operational framerate, minimum exposure time, and minimum aperture number. In addition to the
average camera response, the software can also generate visualizations of the parameter space for
the given configuration. Figure 5.4 shows an example plot over a set of parameters, where the
dependence of the DoF on aperture and the distance to the imaged target is visualized. Figure 5.5
shows an example plot of how the light spectrum is decayed as it propagates from the light source
to the camera, helping contextualize the main sources of light reduction for a specified water envi-
ronment. Similar plots may be generated by the software for the camera frame rate, exposure time
or water attenuation profiles.

5.4 Validation Experiments

The camera response simulation pipeline is validated experimentally in a lab environment. We
tested with two monochrome cameras, a Blackfly BFS-U3-51S5M from FLIR with a Sony
IMX250 sensor and a Prosilica GT-1380 from Allied Vision with a Sony ICX285 sensor. The
cameras were mounted on the outside of an 46 cm x 46 cm x 46 cm freshwater tank, with the
camera axial direction perpendicular to the clear acrylic tank wall. A diffuse white target board
was placed on the opposite side of the tank. Figure 5.6 illustrates the experimental setup. Mea-
surements were taken in dark ambient light conditions, with scene light being provided by a Fix-
Neo25000DX 25 klm diving light positioned above the camera and against the outside tank wall.

61



Figure 5.6: Experimental setup for verifying image formation model.

Figure 5.7: Comparison of measured and estimated light spectrum at both the target board as well
as the camera position
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Figure 5.8: Measured and model predicted camera response curves for two different sensors under
the same experimental conditions.

Figure 5.9: Camera response for two different lenses and without a lens.
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The light spectrum incident on the camera sensor was measured using a Sekonic SpectroMaster
C-7000 lightmeter. The spectrometer was placed in a waterproof enclosure to perform spectrum
measurements inside the tank

Figure 5.7 shows the measured light spectra versus those predicted by the model for a generic
LED light source. The spectra are plotted for the light that was incident on the target surface, in
red, and the light reflected back to the camera lens, in green. The model source light spectrum
was calculated with the nominal luminous intensity provided by the manufacturer and a half beam
angle of 40deg, accounting for the change in beam angle from the manufacturer stated value due
to refraction. The predicted model spectra, both at the target surface and at the camera lens, are
very similar to the measured spectra in shape and size. Figure 5.8 shows the response of the two
different cameras to the light spectrum shown in Figure 5.7. Both cameras had the same 30mm

lens mounted with the aperture set at F2.0. The predicted responses from the model closely follow
the measured values. We also compared the response of one camera with different lens and aperture
configurations, including no lens, a 30mm lens with aperture F2.0, and a 12mm lens with aperture
F4.0. Figure 5.9 shows the measured versus the model predicted average camera responses for this
experiment. For all camera experiments, the predicted responses from the model closely follow
the measured responses, demonstrating the model is a good approximation of the real system and
will give reliable predictions over the design space.

5.5 Conclusion

In this chapter we have shown how underwater optical systems can be coarsely simulated by a set
of simple equations, and we have developed a user-friendly interface to guide the component and
parameter selections of such systems. The presented tool will enable researchers and engineers
tasked with the development of underwater camera systems to better understand the available de-
sign space, analyze trade-offs in light, sensor and lens selection, and guide early design choices.

‘
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CHAPTER 6

Automating Underwater Vehicle Manipulator
Systems

6.1 Motivation

A growing body of evidence suggests that the Earth is not unique in containing liquid wa-
ter [112, 61, 122, 99], an essential ingredient for carbon-based life. Recent indications of water
geysers emanating from moons of Saturn and Jupiter, including Enceladus [138] and Europa [9],
suggest that they may contain subsurface oceans with active hydrothermal venting [120, 79]. Here
on Earth, ocean floor hydrothermal systems and cold seep sites have long been known to host
diverse chemosynthetic ecosystems that rely on the redox potentials of deep Earth fluids emitted
from these sites to derive biochemical energy [85, 22], and may serve as analogs for oases of life
elsewhere in our solar system and beyond. However, exploration for life within the distant oceans
of Europa and Enceladus remains a daunting technological challenge. Robotic submersible ve-
hicles equipped with manipulators provide a practical means for sample analysis and collection,
enabling flexibility and dexterity without requiring precise and energetically costly positioning of
the vehicle. Planetary landers such as the Mars Rovers have historically relied on human teleop-
erated manipulation using manually generated scripts [110, 58, 109] to collect samples. However,
teleoperation of robotic subsea vehicles within these putative ocean worlds is impractical because
of high communication latencies (e.g., on the order of an hour for Europa). Thus, robotic missions
must be capable of fully automated manipulation.

Marine robotic platforms such as remotely operated vehicles (ROVs) equipped with ma-
nipulators provide a useful testbed to develop automated manipulation and sampling technolo-
gies as analogs for space missions. Although Earth’s gravitational constant is higher than Eu-
ropa and Enceladus, these moons’ estimated ice thicknesses of up to 30 km [80, 16] are ex-
pected to present operational challenges, such as extreme pressure, near-freezing temperatures,
and corrosion that are similar to Earth’s deep ocean environments. While autonomous under-
water vehicles (AUVs) have been used for under-ice surveys for nearly 50 years [59], deep
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ocean missions that require sample collection and return using manipulator arms are generally
conducted using ROVs under direct human piloted control with cable-tethered communication.
Only limited attempts at autonomous manipulation have been made in natural ocean environ-
ments [123, 164, 43, 160, 148, 170]. The comparative lag in subsea manipulator autonomy be-
hind terrestrial systems can be at least partly attributed to commercial systems being historically
designed for direct teleoperation, with limited command modes and feedback, low control loop
frequency, and poor repeatability [169]. Despite these challenges, we demonstrate an automation
framework that is compatible with existing commercial manipulator systems and that automates
many high level tasks, while reducing risk through visual based scene understanding and pilot
supervision.

In this paper, we consider the challenge of automated subsea manipulation and sample collec-
tion using existing ROV platforms as a technology analog for an under-ice exploration missions
to Europa or Enceladus. We discuss the challenges that deep seafloor environments pose to auto-
mated robotic intervention and propose an architecture that overcomes many of these challenges.
The system that we describe can be integrated on existing ROVs with minimal hardware require-
ments, namely, a vehicle-mounted stereo camera and a manipulator-mounted fisheye camera. We
investigate the practical use of our perception methods to estimate the vehicle configuration, dy-
namically localize tools, and ground the transform between the natural scene reconstruction and
the structured vehicle workspace. The manipulator control and vision processes that serve as the
basis of this automation framework can be readily adapted to a variety of hardware configurations,
making them suitable for a wide range of robotic platforms, including space flight systems. We
demonstrate the flexibility of this framework through separate field trials performed with two dif-
ferent classes of ROVs equipped with substantively different manipulators. Figure 6.1 shows a
conceptual diagram of how our system integrates with an ROV. In the current system implementa-
tion, a topside machine performs all processing using camera and manipulator data streamed from
the vehicle over a high-bandwidth tether.

We conducted testing and field trials in progressively challenging environments, initially in
laboratory settings and tank testing, followed by 11 dive missions at the Central American Pacific
shelf margin of Costa Rica to operational depths of approximately 1800 m. This area of the Costa
Rican accretionary prism is a well studied region with localized ocean floor fluid expulsion sites
that host diverse assemblages of extremophile organisms [71, 103, 111, 157, 165]. Following the
completion of the Costa Rica expedition, our team conducted a series of five dive missions to
depths of 500 m within the potentially hazardous craters of the Kolumbo and Santorini calderas.
These sites of active volcanism contain localized areas of high-temperature hydrothermal venting
causing environmental hypercapnia [27, 32], which host non-calcifying chemosynthetic organisms
that may resemble those that arose early on Earth, prior to the advent of its oxidizing atmosphere.
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Figure 6.1: Conceptual graphic of the our control system for an underwater intervention vehicle.
The autonomy system runs on a topside desktop computer with visual sensor data and manipula-
tor coms streamed over a high bandwidth tether from the vehicle. Solid red flow lines represent
standard teleoperated control from a surface ship. Blue flow lines represent our automated system.
Red dashed lines represent interfacing between the pilot and the autonomous system, where, in
this work, the pilot acts as the high level task planner and interfaces with the automated system
through a graphical scene representation and task level controller. Eventually, the pilot would be
replaced with an automated mission planner that could issue high level tasks.
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The paper is organized as follows. We begin in Section 6.2 with an overview of previous work
on automated underwater manipulation. Section 6.3 briefly outlines our strategy for mission plan-
ning and operations, and describes in detail the architecture of our automated manipulation system.
Section 6.4 examines the results of experimental missions during field demonstrations using the
SuBastian ROV [28] and NUI Hybrid Remotely Operated Vehicle (HROV) [20]. Section 6.5 draws
on these field results and experiences to discuss advances as well as the limitations and potential
failure modes of our perception and control methods and examines how this research may help
to advance both automated ROV operations here on Earth and future space flight missions to ex-
plore for life within ocean worlds elsewhere. Section 6.6 identifies promising directions for future
research.

6.2 Background

There is a rich body of literature on underwater vehicle manipulator system (UVMS) control. This
section provides a brief review of the work most related to our approach which have demonstrated
their methods in experimental trials. For a thorough discussion of the prior work on UVMS sys-
tems, we refer the reader to [169].

[81] and [23] describe some of the pioneering work on automating UVMSs, where demon-
strations included 3D graphical renderings of an ROV’s configuration and workspace, real-time
visualization of manipulator motion plans, and Cartesian space end-effector control. More re-
cent works under the large-scale research projects RAUVI [43], TRIDENT [160], TRITON [148],
PANDORA [37], and MARIS [166] focus on tightly coupled control of the 140 kg displacement
Girona 500 AUV outfitted with a customized electric manipulator to perform free-floating inter-
vention tasks. The PANDORA project explores the ability to learn the vehicle and manipulator
trajectories by demonstration. The other projects combine vehicle and manipulator motion genera-
tion under a task priority framework, where the manipulator control law is a function of the vehicle
velocity. Building on these works, the MERBOTS project [190] offers a significant advancement
towards automated UVMS control by integrating the ROS-based MoveIt! motion planning frame-
work with the intervention AUV to generate combined vehicle and manipulator motion trajectories
in Cartesian space for free-floating intervention tasks. While this body of work provides key ad-
vancements towards automated free-floating intervention, limitations make it difficult for many
actively operated UVMSs to adopt these methods. Among them, integrating such a tightly cou-
pled control system with existing UVMS platforms would require significant modification to the
software architecture, which is particularly problematic for commercial systems. Additionally,
the dynamic coupling effect between the vehicle and manipulator during free-floating intervention
can strongly affect the trajectory tracking performance, necessitating very slow actuation of the
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vehicle and manipulator. Lastly, this control approach is designed for high-precision electric ma-
nipulators that support velocity-based control, whereas most manipulators on operational UVMS
platforms are hydraulic and support only position set point commands with limited precision and
repeatability.

Hydraulic manipulators have orders of magnitude higher power-to-weight ratios compared to
their electric counterparts and are generally more reliable, making them the manipulator of choice
for commercial ROV systems. Though recent commercial electric manipulators have entered the
market, their significantly higher power requirements make them practical only for ROVs that have
power supplied over a tether. For vehicles like the NUI HROV, which carries all power onboard,
low-power hydraulic manipulators remain the most practical choice. However, the limited pre-
cision and feedback of hydraulic manipulators present challenges for automation, and little work
exists that addresses these challenges. [73] demonstrated precision control of a hydraulic manipu-
lator to plug a deep-sea connector. [164] perform pre-programmed motion following and operator
control of a hydraulic work class manipulator. Using Cartesian space end-effector control, they
demonstrate operator-guided push-core sampling in the deep ocean. [191] perform visual servoing
and target grasping with a custom 7-DoF hydraulic manipulator. [170] demonstrate impressive
visual servoing of a working class hydraulic manipulator using position-based control, with feed-
back provided by fiducials detected from a wrist-mounted camera. Their results include grasping
and turning T-bar valves and tracking targets in motion with the end-effector.

Our system builds on these prior approaches to UVMS control, where we demonstrate the effec-
tive integration of the MoveIt! motion planning framework [39] with a work class ROV manipula-
tor system for automated planning and control in obstructed scenes. We take a decoupled approach
to manipulator control that assumes the vehicle holds station (i.e., rests on the bottom) during the
manipulation task. This assumption is motivated by the goal of having the system widely trans-
ferable among existing ROV systems. This decoupled approach enables our manipulator control
system to be integrated externally from the existing UVMS control systems, providing high-level
autonomy with flexibility to be integrated onto a wide array of ROV classes and manipulator arms,
including both electric and hydraulic systems.

Important to automating UVMSs are the problems of visual scene understanding and target
localization, whether the target be a tool to grasp, a valve to turn, or a sample location in an un-
structured environment. Subsea perception is a particularly challenging problem for a number
of reasons: turbidity degrades image quality; evenly lighting the scene is very difficult; variable
wavelength-dependent absorption and scattering properties of the water column attenuate light and
reduce color and photometric contrast; and gathering underwater datasets for developing computer
vision methods is expensive. Despite these challenges, computer vision remains the primary means
of performing target localization for automated UVMS platforms. Most prior works on UVMS au-
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tomation rely on fiducials or known geometric shapes that retain high contrast underwater. [123]
use large spherical markers attached to a target and a circle shape edge detector algorithm to lo-
calize the marker from a video feed. [160] localize a black box object on a harbor seabed by first
constructing a visual mosaic from a pre-intervention survey dive with a downward-facing stereo
camera, and then matching an image template of the black box to the mosaic. [37] localize a known
panel during intervention operations by registering interest points against a template image. They
then estimate the orientation of valves on the panel based on edge detection. [148] and [190]
use fiducial markers to localize a panel with a priori known relative positions of the turn valves
and connector plugs. [190] also use fiducials on the end-effector of the manipulator to update the
manipulator calibration in real-time. [166] use color and geometric shape segmentation of RGB
images to detect the pose of a cylindrical pipe of known size. Under the DexROV project, [17]
process stereo point clouds into a 3D occupancy map, while also using fiducial markers to detect
and localize a panel with known structure that was projected into the planning scene.

Building on the long history of fiducials as a robust visual cue for underwater computer vi-
sion methods, our work extends the use of fiducials to detect the pose of graspable tools carried
on-board the ROV, estimate dynamic vehicle configurations in real-time, and ground the relative
reference frames in the planning environment. We demonstrate the use of fiducials in a way that
is practical for field deployments with an underlying vision system that can effectively localize
tools and target objects within the workspace, as well as reconstruct the workspace for obstructed
motion planning. Fiducials also enable the collection of annotated image datasets in natural deep
seabed environments that support the development of advanced perception methods for scene re-
construction, and target detection and localization.

6.3 System Overview

The following sections provide an overview of the different components of our system, including
the mission architecture for field operations and the methods for perception and control.

6.3.1 Mission and Vehicle Platform Architecture

Field demonstration and validation include two research cruises, conducted east of the Cocos and
Caribbean tectonic subduction zone along Central America’s Pacific continental margin (9.0 N
84.5 W), and within the Kolumbo and Santorini Calderas of the Hellenic volcanic arc in the south-
ern Aegean Sea (36.52 N 25.48 E and 36.45 N 25.39 E, respectively). The sites, which are known to
host oases of chemosynthetic communities associated with hydrothermal and seafloor hydrocarbon
seeps, were chosen as NASA TRL-6 demonstration locations for analog astrobiology exploration
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Figure 6.2: Photograph taken by the NUI vehicle within the Kolumbo volcano crater that shows
an overhanging vertical wall of columnar lava. Colonization of the lava surfaces by relatively
uncommon lollipop sponges (Stylocordyla pellita) are visible as white dots within the image.

missions. These campaigns utilized a sequentially nested survey method with a coordinated team
of heterogeneous robotic platforms that relied on automated planing tools to rapidly synthesize
vehicle missions in response to newly acquired information [183, 10]. To better approximate an
analog space flight mission scenario, surface ships operated as orbiters, conducting multibeam
sonar bathymetric mapping of the Pacific [182] and Aegean [141] campaign sites, with cover-
age areas of 2.000 km2 at 30 m resolution and 48 km2 at 10 m resolution, respectively. These
maps informed the mission planning for autonomous underwater gliders (AUG), which acted as
long-range in-situ reconnaissance drones, conceptually similar to NASA’s Ingenuity and Dragonfly

vehicles, conducting reconnaissance missions of between 1 km and 500 km in length at standoff
distances to within 15 m of ocean floor obstacles in order to identify potential areas of scientific
interest [183, 51]. Automated AUG mission planning considered resource (e.g., time and power)
and risk constraints [179, 178], and adaptively replanned missions based on inferred sites of sci-
entific interest that correlated with the presence of active ocean floor hydrocarbon cold seeps and
hydrothermal vents. Using information gained by the surface ship sonar and AUG missions, the
automated planning process then generated viable mission sequences that the ROV used to inves-
tigate areas of highest estimated information gain [183]. During these missions, the ROV acted as
a lander, outfitted with a manipulator for automated sample collection and return. The hazardous
deep ocean environments explored as part of these ROV missions are considered probable analogs
for environments (Fig. 6.2) that may exist on other ocean worlds.
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Table 6.1: Comparison of SuBastian and NUI configurations.

Depth rating
meters

Displacement
kilograms

Lateral excursion
(tethered) meters

Power draw
(typical) watts

Endurance
hours

Manipulator
type

Manipulator reach
meters

Payload capacity
kilograms

SuBastian 4500 3200 < 500 40000 unlimited 2 x 7-DoF 1.9 200
NUI 2000 2000 20000 2500 6 to 8 7-DoF 1.3 100

The two ROVs used for these demonstration campaigns, SuBastian and Nereid Under Ice (NUI)

are substantially different in design and purpose (Table 6.1). SuBastian is an exemplar of modern
deep ocean work class ROVs, with its power, communications, and navigation net provided via
an armored cable by its attendant surface ship, the R/V Falkor. SuBastian is equipped with twin
7-DoF Schilling Titan-4 hydraulic manipulator arms (Schilling Robotics, Davis, California) and
is a fully teleoperated vehicle that can operate at horizontal excursions of up to 500 m laterally
from the R/V Falkor. In contrast, NUI is a HROV that relies on its own battery power and uses
an un-armored fiber optic link (roughly the diameter of a human hair) for optional communication
with an attendant surface ship, and can operate as both an ROV and an AUV. When in tethered
ROV mode, NUI’s power and telemetry architecture enables lateral excursions of up to 20 km
from the attendant surface ship. To aid hydrodynamic efficiency, NUI has articulating bow doors
that can be closed and act as a fairing during transits and AUV missions. In contrast to SuBastian’s
twin Titan-4 architecture, which is configured to maximize ROV work area and dexterity, NUI’s
starboard door is equipped with a single, custom 7-DoF hydraulic manipulator (Kraft Telerobotics,
Overland Park, Kansas) that is optimized for energy efficiency. This emphasis on efficiency comes
at the expense of reductions in available payload and work space, the usable range of motion,
control precision, lighting field, and available viewing perspectives.

6.3.2 Perception

A vehicle capable of automated intervention must have an effective means to self-localize within
the environment and visually reconstruct the workspace to complete the mission tasks. We adopt
a vision system consisting of computer vision cameras, that takes into consideration three primary
criteria. First, the system must be capable of generating a 3D reconstruction of the manipulator
workspace, enabling the motion planner to avoid obstacles and generate safe, collision-free paths.
Second, the system must be able to localize a set of known objects, such as tools, and guide the
manipulator to grasp them. Third, the system must easily integrate with existing robotic platforms.
Our vision system is composed of a vehicle chassis-mounted stereo camera pair with a fixed-
baseline and a manipulator wrist-mounted fisheye camera (Fig. 6.3). The stereo pair observes the
manipulator workspace, including part of the tool tray and the scene working area. The system
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(a) Wrist-mounted fisheye camera (b) Vehicle-mounted stereo camera

Figure 6.3: The vision system for autonomy is composed of (a) a wrist-mounted fisheye camera
and (b) a vehicle-mounted stereo pair (shown here mounted on the SuBastian ROV). The vision
system can be easily integrated onto existing vehicles.

uses the stereo to generate 3D point clouds of the workspace for scene reconstruction, assist with
localizing tools in the tool tray, and visually track dynamic vehicle reference frames that are oth-
erwise not observable (e.g., the position of the NUI HROV doors). The wrist-mounted fisheye
camera provides a wide-angle view of the scene, and is used to detect objects and acquire dynamic
viewpoints of the scene, which may be occluded or outside the field-of-view of the stereo pair. The
wide field-of-view of the fisheye compared to a perspective camera enables clear views of objects
and scene context at both close and far range (Fig. 6.4), which is advantageous for manipulation.

All three cameras are Blackfly model BFLY-PGE-50S5C-C (FLIR, Wilsonville, OR). The stereo
cameras use the VS Technology SV-0614H 6 mm f/1.4 lens (VS Technology Corporation, Tokyo,
JP), and the fisheye lens is the Fujinon FE185C086HA-1 2.7 mm f/1.8 (Fujinon, Tokyo, JP). The
camera housings are custom fabricated with titanium shells and dome viewports (Sexton Corpora-
tion, Salem, OR), with a depth rating of 6000 m. A hardware trigger synchronizes the cameras. We
calibrate the cameras using images of a checkerboard that the ROV manipulator moves throughout
each camera’s field-of-view while the vehicle is submerged. We calibrate the stereo cameras us-
ing the ROS stereo camera calibration package. We calibrate the fisheye camera using the Kalibr
toolbox [94]. Because the usable field-of-view for the fisheye camera is less than 180° due to oc-
clusions from the housing, we use the pinhole projection model with equidistant distortion. We
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(a) Far fisheye view (b) Close fishye view

(c) Far perspective view (d) Close perspective view

Figure 6.4: A comparison of (top) the full view of the wrist-mounted fisheye camera in an un-
derwater scene at close and far range compared to (bottom) a 60°perspective rectification, which
illustrates the significant increase in the field-of-view provided by a fisheye lens compared to a
conventional perspective lens. This increased field-of-view provides significantly better contextual
awareness to the vision and manipulation systems, especially when working at close range to the
target, which is typical for manipulation tasks.

verify that both the stereo and fisheye calibrations achieve sub-pixel reprojection errors for the
checkerboard corners.
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(a) AprilTag mount for tools (b) Fisheye view of tools in tool tray

Figure 6.5: A single type of t-handle was used to manipulate the different tools. The vision system
localizes the t-handles using (a) AprilTags affixed to 3D-printed mounts located beneath the t-
handle. These tags are detected in (b) images of the ROV tool tray from the wrist-mounted fisheye
camera.

6.3.2.1 Tool Handle Pose Estimation

Tools carried by the ROV must be localized by the vision system before they can be grasped.
It is general practice in ROV operations to use a single type of handle on every tool to provide
consistency for ROV pilots. Given a known type of tool and its model, the vision system need only
localize the handle for a tool to be grasped and manipulated.

Using data collected with our vision system during the field trials, we developed a novel deep
learning-based method, SilhoNet [14] and SilhoNet-Fisheye [15], that estimates the pose of tool
handles detected from the wrist-mounted fisheye camera, without the need for fiducials. SilhoNet
uses an intermediate silhouette representation to regress the detected object poses. This silhou-
ette representation improves pose regression performance and facilitates training the network on
synthetic data, which is especially beneficial when real training data is limited, as is the case for
underwater environments. This method achieves promising results on the recorded datasets, but
was not ready for integration with the system during the field trials.

During our field demonstrations, we relied on AprilTag markers [?] to localize the tool handles.
Our choice of the AprilTag marker was motivated by the results of [49], which show that AprilTags
yield the best performance in underwater environments, with the lowest sensitivity to turbidity
and variable lighting conditions in comparison to other popular fiducial markers. In this study,
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the minimum marker size detectable in an image was approximately 20 pixels, which, for the
50 × 50mm markers used in our system, equates to an expected maximum detection range of
approximately 1.0 m for the fisheye camera and 2.4 m for the stereo cameras. These distances are
within the typical working ranges of the manipulators used in our demonstrations. We designed
3D printed mounts that screw onto the t-handle bases and hold AprilTag vinyl stickers (Fig. 6.5,
right).

We use the ROS TagSLAM package [149] to detect the fiducials from the wrist-mounted fisheye
camera. TagSLAM is built on the GTSAM [45] factor graph library and uses the ISAM2 [93]
incremental optimizer for efficient run-time performance. TagSLAM operates in a transform tree
completely separate from the world planning environment. Within the TagSLAM environment,
the fisheye camera is set as the origin, while the tools with the tag mounts are set as dynamic
objects. We optimize the pose of each detected tool with respect to the fisheye camera frame using
TagSLAM. The optimized tool pose with respect to the fisheye frame is projected into the world
frame through the manipulator kinematics. If the fisheye camera loses sight of a tool, the tool pose
within the world scene remains static until the tool is tracked again with TagSLAM.

6.3.3 Control

While many existing methods tightly couple vehicle and manipulator motion planning and control,
our approach decouples the manipulator and imaging system from other systems on the ROV. This
makes it easier to integrate the system with different ROVs and also minimizes risk to the vehicle,
as the automation system runs independently of the vehicle’s software stack. This approach also
mimics standard ROV operation procedures, in which one pilot controls the vehicle while another
pilot controls the manipulator. Our system seeks to replace the direct pilot control of the manipula-
tor with a high-level automation interface that naturally integrates with standard ROV operational
procedures. A current limitation of this control approach is a fixed-base assumption while the ma-
nipulator is activated. During manipulator operations, the ROV is assumed to be set down on the
seabed and essentially acts as a fixed-base manipulator platform during a sampling tasks. When
a manipulator command is executed, our system assumes that the scene state remains static until
the activation is completed. This assumption of fixing the vehicle position before activating the
manipulator follows the standard practice for operating work-class ROVs.

Figure 6.6 shows a diagram of our system architecture. We use the MoveIt! Motion Planning
Framework [39] to integrate the outputs of the perception system into the planning scene and to
generate collision-free motion plans. MoveIt! directly supports a diverse set of state-of-the-art mo-
tion planners and inverse kinematic (IK) solvers. For this work, we used the RRT∗ planner [96]
with the KDL IK solver. We visualize the planning scene using RVIZ, with out-of-the-box inte-
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Figure 6.6: A diagram of the overall system, where rectangular blocks represent processes and
diamond-shaped blocks represent hardware. Blocks in blue relate to perception. Blocks in red re-
late to (left) high- and (right) low-level control. Blocks in green are part of the MoveIt! framework
around which our system is built. Our system uses the stereo camera to estimate the vehicle config-
uration (e.g., the pose of the doors on the NUI HROV), generate point clouds of the scene that can
be fused to produce a 3D reconstruction of the scene, and assist with tool localization. The fisheye
camera is used to localize tools, obtain dynamic viewpoints of the workspace, and extend the scene
reconstruction. For low-level control, a driver implements a position-based trajectory controller,
which integrates between MoveIt! and the manipulator valve controller. For high-level control, we
implemented an automation interface to MoveIt! that supports high-level commands. In this work,
we implement this interface using a graphical front-end as well as a preliminary demonstration
using natural language.

gration with MoveIt!. We generated a kinematic description of the manipulator and vehicle from
CAD models, and configured a motion planning environment with MoveIt!. A low-level driver for
the manipulator exposes a position trajectory control interface to MoveIt! and interprets motion
plans as command packets that it sends to the manipulator. Most work class hydraulic manipula-
tors support only position setpoint commands. For this work, the system encodes the target joint
positions and sends them directly to the manipulator valve controller.

6.3.3.1 Calibration Procedure

Figure 6.7 illustrates the coordinate frame transforms that must be calibrated for motion planning
and kinematic-based control of the manipulator. The end-effector pose follows from the kinematic
chain of transforms from the manipulator base frame through each consecutive link, where each
transform is parameterized by the joint angle. Hydraulic manipulators generally provide limited
joint feedback from position sensors like potentiometers or resolvers, which must be calibrated to
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Figure 6.7: (right) An image of our testbed consisting of a Kraft TeleRobotics manipulator, a
fisheye camera mounted to the end-effector, and a overhead stereo camera. Together with the
manipulator base frame, there are four references frames (left) which must be calibrated in order
to fuse sensor data into a common reference frame and to plan the motion of the arm. Calibration
is performed in the order shown on the left, where each transform enables calibrating the next in a
bootstrapping manner. The fiducial in the image is included to indicate that AprilTags were placed
statically in the workspace to obtain the Gripper-to-Fisheye and Base-to-Stereo calibrations.

the kinematic model. For this work, we assume a linear interpolation between the feedback values
at the joint limits. We calibrate the hand-eye transform between the fisheye camera and the wrist
link by detecting the fisheye-relative pose of an AprilTag positioned at a fixed location relative to
the manipulator base. We perform these detections for a set of different kinematic configurations
and then optimize the hand-eye transform using the ROS easy_handeye package [180]. When
the manipulator base is rigidly fixed relative to the stereo pair, as would be the case for most
ROV configurations, the transformation between the stereo pair and the manipulator base frame is
calibrated by detecting the pose of a vehicle-affixed AprilTag in the scene in both the left stereo
and the wrist-mounted fisheye cameras. We transform the pose of the fiducial from the fisheye
camera frame to the manipulator base frame through the kinematic chain, giving the stereo-to-base
frame transform as the difference in the tag pose between the two frames. For the NUI vehicle,
where the stereo is not fixed relative to the manipulator, we used a different approach to estimate
the stereo-to-base transform in real-time (see Section 6.4.3).
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Figure 6.8: A simple interface to the automated system allows the user to configure and step
through the automated pick-and-place pipeline. The motion plan for each step is visualized in the
planning scene and is only executed upon confirmation by the user, which provides a high-level of
safety for the system to be deployed on ocean-going systems.

6.3.3.2 Pick-and-Place Interface

Our autonomy framework targets manipulation operations that involve pick-and-place tasks, such
as taking a push-core sample. We implement a simple front-end interface (Fig. 6.8) that allows
a user to step through a pick-and-place state machine that automates each step of the process,
while maintaining a high level of safety through human oversight. The interface visualizes the
manipulator motion plan at each step and only proceeds to execute the plan after the operator
provides confirmation. The interface allows the user to select a target among a set of tools detected
in the scene and then activate a sequence of automated steps to grasp and manipulate the target
using pre-defined grasp points. An interactive marker enables the user to indicate the desired
sample location in the 3D planning scene. Besides the pick-and-place state machine controller, the
interface enables one-click planning of the manipulator to a set of pre-defined poses, immediate
stopping of any manipulator motion, and opening and closing of the gripper. The MoveIt! planning
environment also allows the operator to command the manipulator to an arbitrary configuration
within the workspace through an interactive 3D visualization.
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6.3.4 System Precision

The maximum precision of our system is limited by both kinematic and visual factors. The KRAFT
manipulator uses 11 bit encoders, for an approximate per-joint angular resolution of 0.176°. When
the arm is fully extended to 1.3 m, the angular resolution for the shoulder joints equates to a met-
ric arc length resolution of 4 mm at the end-effector. However, this estimate does not account for
non-linear effects in the hydraulic actuators, bias in the joint actuation, inaccurate feedback from
the joint sensors, or flexing of the arm’s mounting base/vehicle door, any of which may signifi-
cantly reduce the kinematic accuracy of the system. The visual factors that limit precision include
the accuracy of localizing the AprilTags from the fisheye camera and the resolution of the stereo
reconstruction. Visual precision is dependent on the metric resolution of a pixel projected into the
world. For a tag that is 1 m from the fisheye camera, the pixel metric resolution is 1.3 mm, which is
the expected best precision for localizing the tags. High distortion of tags near the edges of the fish-
eye image is expected and has been observed to reduce the localization accuracy. When processing
the stereo images to produce depth maps, the maximum working distance can be tuned based on
the maximum disparity over which a feature match is searched across a rectified image pair. In our
system, the maximum practical distance we target for stereo reconstruction is 3 m, which is well
beyond the manipulator reach and beyond which lighting and haze effects severely degraded the
image quality. For a viewing range of 3 m, the metric pixel resolution in the stereo view is 1.7 mm.
Due to feature smoothing by the SGM correlation window, the actual reconstructed spatial resolu-
tion is coarser. In practice, we have observed that the kinematic accuracy is the limiting factor on
the precision of our system, due to the many sources of kinematic error in hydraulic manipulator
systems.

6.4 Experiments and Field Results

6.4.1 Automated Pick-and-Place Demonstration on Testbed

To prove the viability of our system before deploying it in the field, we demonstrated the full
pick-and-place pipeline on a hardware testbed (Fig. 6.9) that mimics the configuration of the vi-
sion system and manipulator as they would be mounted on an ROV. The testbed includes a Kraft
TeleRobotics manipulator identical to the one that we use for the field deployments with the NUI

vehicle. The planning environment simulates the manipulator being mounted on the NUI HROV.
The stereo point cloud is projected into the planning scene to inform placement of the sample
marker. As described previously, we estimate the t-handle pose from the wrist-mounted fisheye
camera by detecting the AprilTags mounted below the handle. We executed each step of the au-
tomated pick-and-place interface successfully, with no manual control input. The system grasped
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the t-handle based on the detected pose, and the planner found and executed a manipulation path to
the sample location marker, which was placed at a non-trivial angle, touching a rock in the scene.
The rock was placed on its end in a delicately balanced position, and the manipulator was able to
bring the tool into contact with the rock with enough precision that the rock remained standing.
The tool was then returned to the position from where it was grasped. This full experiment was
repeated multiple times, though not without some grasp failures, due to noise in the visually esti-
mated pose of the t-handle. However, the interface made it easy to recover from any failed step of
the state-machine without ever requiring the operator take manual control of the manipulator.

6.4.2 Real-Time Scene Reconstruction and Data Collection at the Costa Ri-
can Pacific Shelf Margin

Demonstrations at the Pacific continental margin were conducted during a two-week research
cruise aboard the R/V Falkor using the SuBastian ROV. The automated manipulation component
of this expedition focused on a demonstration of the vision system and data collection to aid the
development of visual methods. The integration time of our system took approximately two days
during cruise mobilization, highlighting the relative ease and flexibility with which the system can
be implemented on a variety vehicles and manipulators. Camera image data was streamed over a
GigE interface at 3 Hz to a topside workstation, which handled all processing and visualization.
Joint encoder feedback from the manipulator was obtained by passively monitoring the serial com-
munication between the manipulator and the ship’s control computer. We visualized the real-time
configuration of the manipulator in the 3D planning environment with the stereo point clouds pro-
jected into the scene. The point clouds were generated from the stereo imagery using the standard
semi-global matching (SGM) method built into the ROS image processing pipeline, and the pa-
rameters were hand-tuned to achieve the best results. Figure 6.10 shows a frame from the real-time
visualization captured on the seafloor during one of the dives. A good camera calibration combined
with high water clarity, rich seafloor texture, and evenly distributed scene lighting resulted in high
quality point clouds. These early results demonstrated the effectiveness of the vision system to
capture the 3D structure of the workspace and the ability to fuse the information into a real-time
scene representation that is useful for both manipulation planning and 3D visualization of the ROV
configuration and planning environment.

During this expedition we collected an extensive dataset [15] of synchronized stereo and wrist
mounted fisheye images along with the manipulator joint feedback from a diverse set of seafloor
environments (Fig. 6.11). AprilTags mounted on plates were dispersed into the scenes to provide
ground truth for the camera poses, and three different types of graspable handle objects were also
randomly placed into the scenes. This dataset supported the development of our visual methods
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(a) Detecting the t-handle (b) Grasping the t-handle

(c) Moving to the sample location (d) Replacing the t-handle

Figure 6.9: We demonstrated fully autonomous pick-and-place with a t-handle on a testbed with
the same camera and manipulator hardware used on the NUI HROV. First, (a) the t-handle was
detected from the fisheye camera using the AprilTags, and the handle pose was projected into the
planning scene. Next, (b) the manipulator was commanded to grasp the t-handle via the autonomy
interface. Subsequently, (c) a sample location was set in the planning scene with an interactive
marker based on the projected stereo point cloud, the manipulator planned a motion to reach the
sample location, and executed the plan after the user verified it. The manipulator was then (d)
commanded to return the t-handle to the location where it was first grasped. The rock in the
environment was placed in a delicate balance on its end, yet the manipulator was controlled with
enough precision to bring the tool into direct contact without knocking it over.

and is also intended to serve the underwater research community for the development of scene
reconstruction, object detection, and pose estimation methods that work robustly in real seafloor
environments.

The fisheye images were processed into a standalone dataset with annotated 2D bounding boxes
and 6D poses for the handle objects visible in each frame. This dataset was released with the
SilhoNet-Fisheye publication [15]. Figure 6.12 shows sample images from this dataset. The com-
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Figure 6.10: The vision system was integrated on the SuBastian ROV operated by Schmidt Ocean
Institute, where we demonstrated real-time visualization of the planning scene with a Schilling
Titan-4 manipulator and the projected stereo point clouds. This also demonstrates the flexibility of
the system to be integrated with different vehicles and manipulators.

bined dataset of stereo and fisheye imagery with synchronized manipulator joint feedback sup-
ported our development of visual methods for scene reconstruction.

6.4.3 Automated Sample Collection and Return within Active Submarine
Volcanoes

For exploration of the Kolumbo and Santorini calderas, NUI’s manipulator was mounted to the
starboard door and the stereo cameras were mounted to the port door (Fig. 6.14). Having the ma-
nipulator and stereo camera on opposite articulating doors allowed for flexibility in configuring the
position of the arm according to the specific manipulation task and enabled on-the-fly adjustment
of the manipulator and stereo positions separately. Unfortunately, the doors are actuated using
hydraulic rams that lack position feedback. For safe motion planning, it was necessary to estimate
the door positions in real-time. The estimated door positions were used to update the kinematic
configuration of the vehicle in the planning scene. However, we observed that the doors could
flex, introducing some error in the kinematic estimates that negatively impacted the accuracy of
the stereo point cloud projection into the planning scene. To minimize accumulated error in the
transform between the stereo camera frame and the manipulator base frame, the stereo frame was
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Figure 6.11: Bathymetric map of the survey area from the 2018 cruise on the Pacific continental
margin showing data collection locations at seven different science goal sites, spanning over 62 km
(linear distance between Locations 1 and 4) and ranging in depth from 600 m to 1100 m. Depth
contours are spaced at 250 m intervals and the map is oriented with North up.

referenced directly to the base frame in the ROS transform tree. The base frame was accurately
localised directly from the stereo camera through detection of tags fixed to the manipulator base.

To estimate the door positions in real-time, we affixed AprilTags to the starboard door and to the
bow of the vehicle’s payload bay (Fig. 6.15 (left)). The tags on the vehicle bow were mounted at a
measured location relative to the vehicle reference frame, with the reference tag’s Z-axis aligned
with the Z-axis of the vehicle reference frame. The door joint axes of rotation were also aligned
to the Z-axis of the vehicle frame, enabling a simple trigonometric calculation of the door angles
based on the relative tag locations in the X-Y plane. We used the left stereo camera to track the
relative pose of the AprilTags and used these estimates as observations in AprilTag-based visual
SLAM [149] (Fig. 6.15). Figure 6.16 shows a schematic of the vehicle and visual SLAM system
with the relevant transforms in the X-Y plane used to calculate the door angles. The visual SLAM
provided the relative translations between the vehicle tag frame and the starboard tag frame, Tvs,
and between the vehicle tag frame and the stereo camera frame, Tvp. Given that the translations
between the vehicle tag and the door joint frames, Tos and Top, were measured and known, the
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(a) Sample raw fisheye images from different sequences of the dataset

(b) Sample annotations from a single sequence of the dataset

Figure 6.12: The fisheye imagery collected during the Costa Rica cruise was processed into a
stand-alone dataset [15]. The images are annotated with the bounding box and six-DoF pose of
the tool handles placed in the workspace. The top row (a) shows sample raw fisheye images from
different sequences of the dataset, and the bottom row (b) shows sample annotations from a single
sequence in the dataset. The images are center rectified here only for purposes of visualization.

angle of the starboard and port doors, θs and θp respectively, were recovered as

θs = arctan
Ts,y

Ts,x

− θs0 (6.1a)

θp = arctan
Tp,y

Tp,x

− θp0 , (6.1b)

where

Ts = Tvs − Tos (6.2a)

Tp = Tvp − Top, (6.2b)

where the x and y subscripts indicate the corresponding component of the translation vector, and
θs0 and θp0 are the measured angle offsets.
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Figure 6.13: Map of automated sample collection locations, with regional bathymetry adapted from
[140, 139]. The sea level contour is indicated in black. The dashed line indicates the Christiana-
Santorini-Kolumbo tectonic line [140]. Locations marked A, B, and D indicate automated sample
collection and return sites, and location C indicates the site where a natural language proof-of-
concept demonstration was conducted. Sampling depths ranged from 240 m to 501 m

6.4.3.1 Planner Controlled Biological Sample Collection

The Kolumbo-Santorini expedition resulted in several scientific achievements, including verifica-
tion of the persistence of Kalliste Limnes [27], 3D reconstruction of extremophile habitats within
the calderas’ craters, and sampling of benthic fluids, seafloor sediments, and biological materi-
als. One of the most useful subsea tools for sample collection and return is a ”slurp gun” vacuum
sampler. For these operations, the slurp nozzle is in close proximity to the sample of interest and
a vacuum pump sucks the sample through the hose into a collection chamber. To demonstrate
automated slurp collection, we attached the slurp hose to the side of the manipulator, so that the
end-effector could be commanded to the desired location to collect the slurp sample. We completed
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Figure 6.14: The NUI vehicle is outfitted with clam shell doors that can be closed to reduce drag
when cruising and opened to perform manipulation tasks. The manipulator is mounted to the
starboard door and the stereo cameras are mounted to the port door.

Figure 6.15: Fiducial-based visual SLAM from the left stereo camera was used to estimate the
door angles in real-time using (left) tags mounted to the front of the vehicle frame and at the
base of the manipulator on the starboard door. SLAM provided estimates of (middle) the relative
transformations between the camera and the tag frames that were used (right) to estimate the door
angles and update the vehicle model in the planning scene. The left stereo camera was also used
in conjunction with the wrist mounted fisheye for (left) fiducial-based localization of tools.
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Figure 6.16: A 2D schematic of the NUI HROV that relates the visual SLAM from the left stereo
camera to the door positions. The green dashed lines represent transformations estimated from
SLAM. The red dashed lines denote known transformations computed from the vehicle kinematic
model and the measured position of the tags. The grey dashed lines represent the calculated trans-
forms with respect to each door reference frame, which have a trigonometric relation to the door
angles, θs and θp.

multiple successful sample collections, including that shown in Figure 6.17, where a slurp sample
of a sediment microbial mat was collected using the planner interface to command the manipulator
to the desired sample location, after which the manipulator was returned to the home position.

6.4.3.2 Natural Language Control

Subsea ROV missions require close collaboration between the ROV pilots and scientists. The
primary means by which pilots and scientists communicate is through spoken language—scientists
use natural language to convey specific mission objectives to ROV pilots (e.g., requesting that a
sample be taken from a particular location), while the pilots engage in dialogue to coordinate their
efforts. Natural language provides a flexible, efficient, and intuitive means for people to interact
with our automated manipulation framework. The inclusion of a natural language interface would
support our goal to realize a framework that can be integrated seamlessly with standard ROV
operating practices and may eventually mitigate the need for a second pilot.

Using the NUI HROV, we performed a proof-of-concept demonstration of an architecture that
allows user control of an ROV manipulator using natural language provided as text or speech using
a cloud-based speech recognizer. We frame natural language understanding as a symbol grounding
problem [69], whereby the objective is to map words in the utterance to their corresponding refer-
ents in a symbolic representation of the robot’s state and action spaces. Consistent with contem-
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(a) Taking slurp sample

(b) Returning to home position

Figure 6.17: An example of a successful planner controlled slurp collection of a bacterial mat,
with the yellow slurp hose attached to the manipulator. The manipulator was (a) commanded to
the desired slurp location through the automated planning interface and then (b) directed to return
to its home position following the slurp collection.

porary approaches to language understanding, we formulate grounding as probabilistic inference
over a learned distribution that models this mapping. In particular, given the syntactic parse of a
natural language command Λ, we employ maximum a posteriori inference over the power set of
referent symbols P(Γ)

Γ∗ = arg max
P

p(Γ|Λ, S). (6.3)
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Figure 6.18: A visualization of (top) the DCG factor graph for the expression “get the pushcore
from the tooltray” aligned with (bottom) the associated parse tree. Shaded nodes denote observed
random variables, while those rendered in white are latent.

where S is a variable that denotes the robot’s model of the environment (e.g., the type and loca-
tion of different tools). We model this distribution using the Distributed Correspondence Graph
(DCG) [78], a factor graph (Fig. 6.18) that approximates the conditional probabilities of a Boolean
correspondence variable ϕij that indicates the association between a specific symbol γij ∈ Γ,
which may correspond to an object, action, or location, and each word λi ∈ Λ. Critically, the
composition of the DCG factor graph follows the hierarchical structure of language. The model is
trained on corpora of annotated examples (i.e., words from natural language utterances paired with
their corresponding groundings), whereby we independently learn the conditional probabilities for
the different language elements, such as nouns (e.g., “the pushcore”, “tool”, and “tool tray”), verbs
(e.g., “retrieve”, “release”, and “stow”), and prepositions (e.g., “inside” and “towards”). Together
with the fact that the factor graph exploits the compositional nature of language, the DCG model
is able to generalize beyond the specific utterances present in the training data.

For our initial implementation, the space of symbols Γ included the tools that the arm was able
to grasp and the different steps that comprised the state machine underlying the pick-and-place
pipeline. Figure 6.19 presents an example from a deployment at the Kolumbo caldera in which
natural language was used to initiate path planning to the sample location and then to command
the manipulator to execute the planned path. Several tests were conducted in which the manipula-
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(a) Language commands the system to plan a path to the sample location

(b) Language command to execute planned path

Figure 6.19: Demonstration of a proof-of-concept framework that enabled operators to interact
with our autonomous manipulation architecture using natural language. Given input in the form
of free-form text, either entered by the operator or output by a cloud-based speech recognizer, we
(left) infer the meaning of the command using a probabilistic language model. (a) In the case of the
command to “go to the sample location”, our system (top-right) determines the goal configuration
and solves for a collision-free path in configuration space. (b) Given the command to “execute
now”, the manipulator then (bottom-right) executes the planned path to the goal.

tor was commanded through natural language input to move to a location specified by the sample
marker in the planning interface and then return to the home position. These tests demonstrated
the flexibility of our system to incorporate different operational modalities through high level ab-
straction.
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6.4.4 Performance Analysis

We evaluated the overall accuracy of the calibrated kinematic and visual system on the testbed. For
this evaluation, we placed an AprilTag grid in the scene and activated every joint of the manipulator
while keeping the tag grid in view of the fisheye camera. We used TagSLAM [149] to generate
a visual SLAM estimated trajectory of the fisheye camera, and we used the manipulator joint
feedback to also generate a kinematic based trajectory. These trajectories are plotted against each
other in figure 6.20. The overall mean error between the kinematic and visual based trajectories
is 1.16cm, the maximum trajectory error is 3.27cm, and the standard deviation is 0.65cm. These
results are a conservative estimate of the system calibration accuracy as there are several sources
of error: the visual SLAM accuracy degrades when the tags are near the edge of the fisheye image;
the agreement between the kinematic and visual based pose of the fisheye camera depends on the
accuracy of the hand-eye calibration; the joint feedback and fisheye images are not synchronized;
and the SLAM and kinematic reference frames were mapped to each other through a single fisheye
frame estimate of the tag grid pose, projected from the fisheye frame through the kinematic chain
to the manipulator base frame. However, we have demonstrated in our experimental trials that the
system accuracy is good enough to perform high level automation tasks.

Figure 6.20: Plot of the TagSLAM estimated trajectory (visual) of the fisheye camera versus the
trajectory estimated from the manipulator joint feedback (kinematic). The trajectory is plotted
separately for each coordinate axis with respect to the manipulator base frame.

The first five joints of the KRAFT manipulator are controlled through joint position set-point
commands. We analyzed the manipulator control response for bias or hysteresis, as these are
known issues with hydraulic actuation. Figure 6.20 shows plots of the commanded versus feed-
back positions during actuation of each joint of the testbed manipulator. The figure also shows a
histogram of errors, binned at 0.5°, between the commanded and followed joint trajectories. All
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of the joints except the wrist pitch exhibit small bias and no major hysteresis is evident. The wrist
pitch exhibits a bias of approximately 1.5°, which is significant, but did not prevent completion
of high level automation tasks. Figure 6.20 shows the same plots for the NUI HROV manipula-
tor made from data recorded during the field trials in Greece. The elbow and wrist joints exhibit
little bias or hysteresis. However, both of the shoulder joints exhibited high bias, particularly the
shoulder yaw joint, which had a bias of approximately 8°. This high bias prevented the completion
of a pick-and-place manipulation task during the field trial. Our current control system relies on
the manipulator valve controller to move to the desired set-point and does not account for bias in
the control response. It will be critical in the future to incorporate an adaptive controller into the
system that can account for bias and hysteresis in the hydraulic actuators.

6.5 Discussion and Future Work

During the course of our field trials, we identified operational challenges and failure modes for
both the manipulator and vision systems. Addressing these issues is necessary to improve the
robustness of the system and is the objective of ongoing research.

Underwater hydraulic manipulators have inherent characteristics which make them especially
challenging to automate and can lead to mission failure if they are not accommodated by the plan-
ning and control systems. We identify three particular challenges. The first challenge is the senors
that provide joint position feedback (e.g. potentiometers or encoders) can be noisy and prone
to drift, resulting in an inaccurate estimate of the manipulator configuration, which can lead to
self-collisions or collision with the vehicle or obstacles in the environment. This issue could be
mitigated by continuously calibrating the arm using the vision system to detect and compensate
for proprioceptive sensor drift. Such a fully automated kinematic calibration procedure is also a
practical necessity for a system to be deployed on a space flight mission and would improve cali-
bration accuracy over the manual procedure used in this report. Our ongoing work seeks to apply
a feature-based mapping/structure-from-motion framework that jointly performs scene reconstruc-
tion and kinematic calibration of the manipulator using features from the fisheye camera. The
second challenge is that hydraulic actuators can be imprecise. Typical hydraulic actuator character-
istics include a bias between the commanded and reached joint positions, which we observed in the
KRAFT manipulator, and hysteresis, where the offset between commanded and reached positions
is variable with the direction of joint actuation and the position of the joint. These actuator effects
could be mitigated through an adaptive control strategy that adjusts the joint commands to account
for detected anomalies or offsets between the commanded and reached configurations. [170] re-
ported hysteresis as high as 1.5° in a Schilling Titan 2 manipulator and subsequently learned joint
command offsets in a calibration procedure to compensate for it. The third challenge is that com-
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(b) Shoulder Yaw Error Histogram
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(d) Shoulder Pitch Error Histogram
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(f) Elbow Error Histogram
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(h) Wrist Pitch Error Histogram
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(j) Wrist Yaw Error Histogram

Figure 6.20: Plot of commanded versus followed joint trajectories for the testbed manipulator.

plete joint failure is common for underwater manipulators, reducing the degrees-of-freedom by
at least one. Mitigation of this failure would require planning level adaptation to determine what
manipulation tasks are still feasible. In this under-actuated operational state, the vehicle mobil-
ity might be considered within the kinematic planning to compensate for the loss of manipulator
dexterity, drawing from the prior work on free-floating intervention.

Existing visual reconstruction methods are typically sensitive to lighting, image contrast, and
the presence of texture, all of which are highly variable in underwater environments. Figure 6.21
compares point clouds generated using a standard SGM method from the same stereo camera un-
der two different visual conditions. Under near-ideal conditions that include clear water, uniform
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(l) Shoulder Yaw Error Histogram
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(n) Shoulder Pitch Error Histogram
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(p) Elbow Error Histogram
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(r) Wrist Pitch Error Histogram
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(t) Wrist Yaw Error Histogram

Figure 6.20: Plot of commanded versus followed joint trajectories for the NUI HROV manipulator
during the Greece field trials.

illumination, and a richly textured seafloor as was the case during our Costa Rica expedition, the
point cloud is highly detailed and exhibits a low amount of noise, resulting in a reconstruction
that captures fine details of the scene. During the Kolumbo caldera operations, however, fine-grain
unconsolidated sediments and amorphous microbial mats blanketed the seafloor, providing little
texture for stereo matching. The illumination was uneven and particulates suspended in the water
column caused turbidity and light scattering effects that degraded the quality of the images. Un-
der these conditions, stereo matching is only able to recover the well defined edges of the vehicle,
while very little of the seafloor is reconstructed. While these examples represent different extremes
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(u) Good image quality and dense point cloud

(v) Poor image quality and sparse point cloud

Figure 6.21: The quality of stereo reconstruction is highly dependent on underwater conditions.
Here, we compare stereo point clouds generated using the same camera system and stereo matching
method, but with images captured within very different seafloor environments. The left images
show the view from the left stereo camera, and the right images show the generated point clouds
using a SGM-based stereo method. (u) The top row was captured in the clear waters off Costa
Rica, with even scene lighting and highly textured seafloor. (v) The bottom row was captured in
the Kolumbo caldera, with high backscatter and low texture microbial mats on the seafloor.

in underwater visual conditions, it is critical to develop scene reconstruction algorithms that can
operate reliably across this range of conditions to achieve robust autonomy. We are currently inves-
tigating information-theoretic ways to exploit our ability to control the pose of the wrist-mounted
fisheye camera and an adjacent light source to acquire targeted views and actively illuminate the
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scene in order to improve and extend reconstruction under both good and degraded visual con-
ditions. Our system implementation currently assumes that the scene is semi-static, i.e., that the
ROV position and scene state remain constant during the execution of a manipulator command.
For example, if a command is given to grasp a detected tool, the pose of the tool in the scene is
assumed to remain fixed during the execution of the grasp. If the tool were to move due to some
disturbance before the grasp was completed, the grasp action would likely fail. Future work may
integrate an obstacle-aware visual servoing controller to complete grasps or perform precise tool
placement, which would reject disturbances to either the scene or the manipulator during task ex-
ecution. Because our system relies on visual sensing, any disturbance to the scene that results in
degraded water clarity, such as stirring up bottom sediment, can necessitate waiting for the water
column to clear before the manipulation task can continue. While the KRAFT manipulator used in
our field trials is particularly low power when idle, minimizing the energy cost of waiting for visual
conditions to improve, future research may improve robustness of the system to degraded visual
conditions by fusing acoustic imaging sonar data into the scene mapping framework. Compared to
visual sensors, acoustic signals are not dependent on lighting conditions and are not degraded by
haze in the water column or a sparsely textured seafloor.

The technology presented in this report can be directly integrated onto terrestrial-based under-
water manipulation platforms in order to decrease operational risk, reduce system complexity, and
increase overall efficiency. The current standard for ROV manipulation requires one or more pilots
to operate the UVMS based on image feeds from an array of cameras on the vehicle that are dis-
played on a set of monitors in a ship-side control van. Existing systems do not provide pilots with
an estimate of the 3D scene structure, putting the system at risk of collision between the arm and
the vehicle or workspace objects. This, together with the cognitive load imposed by having to in-
terpret multiple sensor streams makes it extremely challenging for pilots to establish and maintain
situational awareness. The technology presented in this report can be integrated at three different
levels with existing ROV systems. At the first and most basic level, the system can act as a de-
cision support tool that provides a detailed real-time 3D visualization of the scene, including the
vehicle and manipulator configuration and a reconstruction of the workspace, enabling a pilot to
position the manipulator with greater accuracy, speed, and safety. At the second level, the system
can be integrated into the manipulator control system for execution monitoring to limit the motion
of the manipulator based on scene structure, preventing the pilot from moving the manipulator into
collision or a risky configuration [168]. At the third and highest level, manipulation tasks may be
fully automated so that a pilot simply selects a desired function or indicates an intent through some
mode of communication such as natural language, whereupon the system plans and executes the
task while providing visual feedback to the pilot. In this case, it is critical that the pilot be able to
override the automated process and take over control of the arm at will.
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Table 6.2: Comparison of the bandwidth requirements for direct teleoperation (top two rows) of
an ROV manipulator system compared to operating our high-level autonomy system (bottom two
rows), running onboard the vehicle with communication through natural language commands and
only the necessary scene state feedback to inform the high-level commands.

Mode Data Type Bandwidth

Teleoperation Cameras Compressed SD or HD @ 10–30 Hz 100 KB/s–3 MB/s
Teleoperation Manipulator Coms 2 way ×15− 200Hz × 18B 540 B/s–7.2 KB/s
Natural Language 1 B/letter ×∼7 letters/word ×∼2.5 words/s 17.5 B/s
Scene State Feedback State and Compressed Images @ 0.1–1 Hz 3–30 KB/s

For teleoperation of ROV manipulators, it is standard practice to stream multiple high-definition
(HD) camera feeds at 30 Hz to the operating pilots. In the most bandwidth constrained circum-
stances, Compressed standard-definition (SD) cameras can be streamed at 10 Hz to the pilots. At
lower image resolutions or framerates, it becomes difficult for pilots to teleoperate the manipulator
safely. Our system enables high-level command of the manipulator and mitigates the need for con-
tinuous image streams back to the controlling pilot. Single image frames need only be sent when a
scene change is detected or on request. Future work on the vision system will develop methods for
semantic-level scene understanding, which will further reduce the need for direct image streams
back to the pilot. For a semantic aware system, natural language is well suited for human-machine
interaction and can drastically reduce the data communication load between the vehicle platform
and a remote operator by on-boarding data heavy computation (e.g., image processing) onto the
vehicle’s local compute system and interfacing with the remote operator through small bandwidth
language packets. For our system to operate with pilot oversight, high level commands and sensory
feedback need only be streamed at rates which match the dynamics of the scene. In the scenario
where the vehicle is set down on the seafloor to collect samples, the relevant scene dynamics can
be on the order of seconds, minutes or longer, enabling significant reduction of the communication
bandwidth which is vital for remote operations over bandwidth limited connections, such as satel-
lite links. Table 6.2 shows estimated bandwidth range requirements for the manipulator coms and
image streams necessary to support direct teleoperation of an ROV manipulator system compared
to the bandwidth requirements for natural language communication with the vehicle and only the
necessary scene state feedback to inform the high level commands. In the case of direct teleop-
eration, the manipulator coms can range from 15 Hz to 200 Hz two-way communication with a
typical packet size of 18 B. We estimate the image bandwidth for a single SD or HD camera with
compressed data streamed at 10 Hz–30 Hz, though generally multiple camera views are streamed
simultaneously back to the pilot for safe manipulator control. In the case of our high-level automa-
tion system, the natural language data rates are based on approximate estimates for the average
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letter count per word and the speech rate. This data rate represents the expected maximum band-
width load when transmitted in real-time, as language based communication is intermittent and
can be compressed. The scene state feedback includes the vehicle state such as the manipulator
joint states and semantic information, such as the type and pose of detected tools. However, the
visual scene state feedback takes up the bulk of the bandwidth and is assumed to be encoded as a
compressed camera frame or view of the 3D scene reconstruction. As demonstrated in the table,
communication requirements to support our high-level system reduce the necessary bandwidth
load by at least an order of magnitude compared to the requirements of the most limited direct
teleoperation modality.

Despite the technological challenges in reaching extraterrestrial worlds, the NASA Science
Mission Directorate (SMD) sets its first priority “to discover the secrets of the universe, to search
for life, and to protect and improve life on Earth” [133] and “is undertaking a flagship mission to
Jupiter’s moon Europa, as its subsurface ocean has great potential to harbor extraterrestrial life.”
A Europa mission concept for a surface lander has reached relative maturity, having passed its
delta Mission Concept Review [68]. The sampling system is recognized as being critical to the
success of the mission and relies on a robotic arm for “excavation, collection, and presentation (or
transfer) of samples to scientific instruments for observation and analysis” [67]. Due to the antici-
pated communication limitations, it is likely that the lander will be required to self-select sampling
sites, in which “the sampling system would be capable of conducting a sampling cycle in a fully
autonomous fashion with no input from ground operators, from target selection to sample delivery.
This autonomous capability is to guard against a prolonged telecommunications fault during the
short mission lifetime, and will be in place to provide added assurance that the mission threshold
science would be met” [67]. Challenges to the sampling system will be exacerbated by “poorly-
characterized terrain at small scales”, and “the terrain immediately in front of the landing spot must
suffice for sampling locations; there is no mobility system that can be used to search for a better
site” [67]. The methods we demonstrated in this report for automated manipulator control and
sample collection are directly applicable to operations focused on a Ladder of Life detection mis-
sion scenario [135]. With the exception of the wrist mounted camera, the manipulator and imaging
system used in our demonstrations are very similar to the hardware for the Europa lander concept,
consisting of a multi-DoF manipulator and vehicle-mounted stereo pair. A primary limiting factor
on the integration of our autonomy methods with the lander would be the available computational
power. However, for a stationary lander, the visual processing, which is the primary computational
bottleneck, could operate at low-frame rates suitable for extraterrestrial exploration, assuming the
environment dynamics are sufficiently slow. The methods we describe are also suitable to run on
embedded systems and may be optimized accordingly.
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6.6 Conclusions

An exobiology search mission to distant ocean worlds will require a highly automated exploratory
vehicle, capable of operating in extreme conditions for an extended period of time. Such a plat-
form will likely be outfitted with a manipulator to maximize the types of samples that could be
collected. In this report we describe a vision system and control framework for automating an
ROV manipulator. This architecture is readily integrated onto a wide array of vehicle platforms,
and we have demonstrated the viability of the system in the field on two ROVs with different ma-
nipulators, including the NUI HROV which is dynamically reconfigurable. In November of 2019,
we demonstrated planner-controlled sample collection and return within active submarine volca-
noes that host diverse assemblages of extremophile organisms. These operation locations served as
analogs to environments that may exist within other ocean worlds in our solar system and beyond.

A current limitation of our approach is a semi-static vehicle and scene assumption, where the
ROV is held stationary and the scene does not change during execution of a manipulator motion,
though the vehicle and scene state may change between motions. The vehicle is typically kept
stationary by setting it down on the seafloor before manipulation is initiated. This assumption
limits the type of sampling tasks that may be performed with the described system. For example
collecting samples from a vertical wall, the underside of an ice shelf, or other moving objects
would require free-floating control. Free-floating manipulation is an open problem in robotics, and
a promising research direction that directly builds on our demonstrated system is obstacle aware
disturbance rejection control of the manipulator. This method is similar to obstacle aware visual
servoing, using feature based SLAM with the vision system to compensate for vehicle motions
and stabilize the end-effector. A disturbance rejection approach would enhance the flexibility of
the system to be easily integrated on different vehicles and manipulators without requiring the
generation of complex vehicle and manipulator dynamic models.

While the demonstrated system represents a significant step towards autonomous sample col-
lection and return from seafloor environments, more advancements are required before the system
can be deployed reliably in a fully automated fashion. In particular, visual methods must be de-
veloped that are robust to the optical challenges of the underwater environment in order to enable
safe and targeted sample collection and precision tool handling. These methods must be robust to
dynamic scenes, insensitive to the intensity inconsistency of underwater lighting and perform well
in sparsely featured and low-textured environments. Fusion of sparse feature based methods for
SLAM with learning-based methods for dense scene reconstruction and high-level semantic scene
understanding, such as segmentation, object detection and tool pose estimation may provide an
appropriate path forward to overcome this challenge.

In summary, automated exploration of unstructured seafloor environments is within reach of
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current underwater robotic technology. More development is needed, particularly in methods for
scene reconstruction and understanding, to make this technology sufficiently reliable for fully auto-
mated deployment, but results from our oceanographic expeditions described in this report demon-
strate that a wide range of existing ROVs and manipulator systems can be adapted, with moderate
effort, for high level automation capabilities.
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CHAPTER 7

Conclusions and Future Directions

7.1 Conclusions

This dissertation addresses some of the challenges of applying visual methods for robotic systems
in underwater environments. In particular, the developed visual methods improve scene under-
standing to support high level automation of underwater vehicle manipulator systems (UVMSs).
First, this dissertation contributes a novel deep learning based method for object pose estimation
from monocular cameras and an extension of this method to fisheye and omni-directional cameras,
which can aid UVMSs in tool detection and grasping. The method uses an intermediate silhouette
abstraction to improve learning performance and mitigate the feature domain shift when training on
synthetic datasets. Second, this dissertation contributes a feature based SLAM method that fuses
features from an independent fisheye camera with a perspective stereo pair. This method is partic-
ularly suited to UVMSs or other mobile manipulator systems, where the stereo is mounted on the
vehicle frame and provides scale accurate feature points of the workspace, while the fisheye cam-
era is mounted near the manipulator wrist to enable active viewpoint acquisition and extension of
the map beyond the stereo viewpoint. Third, this dissertation contributes an open source software
tool that aids the design of underwater camera systems. The tool combines physics based models
with practitioner knowledge acquired from working in the field to guide design choices through
parametric selection. Fourth and finally, this dissertation contributes an automation framework for
UVMSs, with validation from field trials conducted in natural deep ocean environments. Imagery
datasets collected during these field trials supported the development of the visual methods in this
dissertation and have been made publicly available for the underwater research community.

Ultimately, this work has advanced the state-of-the-art for underwater perception, and brings us
closer to the realization of automated UVMSs, which can operate across our terrestrial oceans and
explore the oceans of other worlds.

104



7.2 Future Directions

There are several immediate goals for future work that should be addressed before UVMSs can be
deployed safely and reliably in natural and unstructured ocean environments. In particular, future
work should focus on the development of dense real-time scene reconstruction methods that can
inform safe, goal oriented, manipulation planning. Also, future work should develop fault-tolerant
control methods that can adapt to the systematic failures of subsea manipulator hardware. Some
particular future research directions are outlined below.

Synthetic Datasets for Learning in Underwater Domains
Collecting underwater image datasets in natural environments is a challenging and expensive task,
especially for datasets which require localized annotations referenced to some ground truth, such
as object poses. Image appearance and quality in the underwater domain is also highly variable and
dependent on both lighting and camera hardware design choices, as well as uncontrollable envi-
ronmental parameters of the water column. These challenges have hindered progress in developing
deep learning methods for the underwater domain. A promising direction for future research is the
development of synthetic image rendering processes which incorporate the physics of underwater
image formation, through either modeling or learning. These rendering engines could be combined
with recent advancements in domain transfer methods, which facilitate the learning of features that
bridge the appearance gap between simulated and real data.

Robust and Dense Real-Time Scene Reconstruction
In field robotics, sensor fusion is an effective way to improve the robustness and accuracy of vi-
sual methods. For underwater vehicle SLAM systems, it is common to fuse measurements from
localization sensors like an IMU or DVL. In the case of UVMSs, the vehicle remains relatively
stationary while the manipulator is activated to complete the mission task. Building on our hybrid
SLAM system, which enables active mapping with a wrist mounted camera, the fusion of a kine-
matic factor between the manipulator camera and the vehicle mounted cameras would improve the
robustness of the system and enable real-time kinematic calibration of the manipulator.

Another direction to improve underwater scene reconstruction is the application of learned fea-
tures and descriptors to the underwater domain, to improve feature matching and place recognition
in diverse underwater environments. Experimental results in chapter 4 of this dissertation showed
that deep learned descriptors can greatly improve feature matching performance. Deep learning
could also be applied to the problem of dense mapping, by using depth estimation networks for
monocular images to generate depth maps from the manipulator camera that are constrained by the
sparse but optimized feature map.
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Free-Floating Manipulation
So far, free-floating manipulation demonstrations with UVMSs have been limited to pools or calm
shallow water environments, with generally very slow execution of the manipulation task. For
work class ROV, such as those used in the field trials for this dissertation, the weight of the vehicle
is much greater than the manipulator, so dynamic coupling between the vehicle and manipulator
is almost negligible. Also, it is general practice during ROV operations to set down the vehicle on
the seafloor or rigidly secure it to a structure before performing the manipulation task, so the ve-
hicle essentially becomes a stationary platform. However, when a manipulator is integrated onto a
lighter weight AUV, the dynamic coupling between the vehicle and manipulator can be significant.
Further, manipulation tasks may be performed above the seafloor, such as when collecting samples
from a delicate reef, working under ice, or inspecting offshore infrastructure. In these scenarios,
control methods which support free-floating manipulation are needed. A promising research di-
rection that builds on the autonomy framework developed in this dissertation is obstacle aware
disturbance rejection control of the manipulator, using feature based SLAM to compensate for
vehicle motions and stabilize the end-effector. This approach to manipulator stabilization would
not require complex dynamic models for the vehicle and manipulator, maintaining the flexible
integration of the system with diverse UVMSs.

Fault-Tolerant Control
Underwater manipulator systems are subjected to extended exposure to corrosive salt water, high
pressures, and low temperatures, leading to inevitable hardware failures. These failures can ex-
press in loss of precise joint feedback and control or, in the worst case, complete loss of a joint’s
actuation. For an autonomously deployed UVMS, such a failure might cascade into aborting the
mission, unless the vehicle and manipulator control system can adapt to such failures. Future re-
search should focus on fault tolerant control of UMVSs, that can adapt to known types of system-
atic failures. In such a control architecture, the mobility of the vehicle might be used to compensate
for a manipulator joint failure. Also, the 3D scene understanding provided by the vision system
could inform what mission tasks are still viable, given the degraded system state.

106



BIBLIOGRAPHY

[1] Historical timeline. https://oceanexplorer.noaa.gov/history/
timeline/welcome.html?page=1.

[2] 2013. https://www.bluebird-electric.net/submarines/alvin_dsv_
submersible_woods_hole_oceongraphic_institution_us_navy.htm.

[3] A brief history of rovs sea technology magazine, Sep 2019. https://
sea-technology.com/a-brief-history-of-rovs.

[4] Fisheye projection, 2019.

[5] Optics of dome ports, 2019. https://www.scubageek.com/articles/wwwdome.html.

[6] Pablo F Alcantarilla and T Solutions. Fast explicit diffusion for accelerated features in
nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell, 34(7):1281–1298, 2011.

[7] Ricardo Amils. Chemolithoautotroph, pages 289–289. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011. https://doi.org/10.1007/978-3-642-11274-4_272.
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[18] Mårten Björkman, Niklas Bergström, and Danica Kragic. Detecting, segmenting and track-
ing unknown objects using multi-label mrf inference. Computer Vision and Image Under-
standing, 118:111–127, 2014.

[19] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis—a survey.
30(2):289–309.

[20] Andrew D Bowen, Dana R Yoerger, Christopher C German, James C Kinsey, Michael V
Jakuba, Daniel Gomez-Ibanez, Christopher L Taylor, Casey Machado, Jonathan C Howland,
Carl L Kaiser, et al. Design of Nereid-UI: A remotely operated underwater vehicle for
oceanographic access under ice. In 2014 Oceans-St. John’s, 2014.

[21] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and
Carsten Rother. Learning 6d object pose estimation using 3d object coordinates. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV
2014, pages 536–551, Cham, 2014. Springer International Publishing.

[22] James M Brooks, MC Kennicutt, CR Fisher, SA Macko, K Cole, JJ Childress, RR Bidi-
gare, and RD Vetter. Deep-sea hydrocarbon seep communities: evidence for energy and
nutritional carbon sources. Science, 238(4830):1138–1142, 1987.

[23] David Broome, Trevor Larkum, and M Hall. Subsea weld inspection using an advanced
robotic manipulator. In ’Challenges of Our Changing Global Environment’. Conference
Proceedings. OCEANS’95 MTS/IEEE, volume 2, pages 1216–1224. IEEE, 1995.

[24] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in
context. In Computer vision and pattern recognition (CVPR), 2018 IEEE conference on.
IEEE, 2018.

108



[25] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M Dollar. Yale-cmu-berkeley dataset for robotic manipula-
tion research. The International Journal of Robotics Research, 36(3):261–268, 2017.

[26] Oscar Calvo, Alejandro Rozenfeld, Aandre Souza, Fernando Valenciaga, Pablo F Puleston,
and G Acosta. Experimental results on smooth path tracking with application to pipe sur-
veying on inexpensive auv. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 3647–3653. IEEE, 2008.

[27] Richard Camilli, Paraskevi Nomikou, Javier Escartı́n, Pere Ridao, Angelos Mallios,
Stephanos P Kilias, Ariadne Argyraki, Muriel Andreani, Valerie Ballu, Ricard Campos,
et al. The kallisti limnes, carbon dioxide-accumulating subsea pools. Scientific reports,
5:12152, 2015.

[28] Errol Campbell, Nic Bingham, and Jason Williams. 4500 m remotely operated vehicle
(ROV SuBastian), Oct 2019.

[29] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez, José MM Montiel, and Juan D
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Daniel Toal. Inspection-class remotely operated vehicles—a review. Journal of Marine
Science and Engineering, 5(1):13, 2017.

[32] Steven Carey, Paraskevi Nomikou, Katy Croff Bell, Marvin Lilley, John Lupton, Chris Ro-
man, Eleni Stathopoulou, Konstantina Bejelou, and Robert Ballard. Co2 degassing from
hydrothermal vents at kolumbo submarine volcano, greece, and the accumulation of acidic
crater water. Geology, 41(9):1035–1038, 2013.

[33] Alexandra Carlson, Katherine A. Skinner, Ram Vasudevan, and M. Johnson-Roberson.
Modeling camera effects to improve deep vision for real and synthetic data. In European
Conference on Computer Vision: Workshop on Visual Learning and Embodied Agents in
Simulation Environments, 2018.

[34] Pep Lluis Negre Carrasco, Francisco Bonin-Font, and Gabriel Oliver-Codina. Global image
signature for visual loop-closure detection. Autonomous Robots, 40(8):1403–1417, 2016.

[35] Mingyou Chen, Yunchao Tang, Xiangjun Zou, Zhaofeng Huang, Hao Zhou, and Siyu Chen.
3d global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision
and slam. Computers and Electronics in Agriculture, 187:106237, 2021.

[36] Zhe Chen, Hongmin Gao, Zhen Zhang, Helen Zhou, Xun Wang, and Yan Tian. Underwater
salient object detection by combining 2d and 3d visual features. Neurocomputing, 391:249–
259, 2019.

109



[37] P. Cieslak, P. Ridao, and M. Giergiel. Autonomous underwater panel operation by girona500
uvms: A practical approach to autonomous underwater manipulation. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 529–536, 2015.
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