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On Recent Existence Theorems in the 
Theory of Optimization 1 
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Abstract. A condition recently proposed is shown to imply the weak 
compactness in H I'1 and actually is equivalent to another condition 
previously proposed by the authors. Once compactness is proved, then 
existence theorems follow from lower closure theorems also previously 
proved by the authors, and extended to Pareto problems. The present 
analysis adds to the recent work of Goodman concerning the 
equivalence of seminormality conditions with concepts of convex 
analysis and lattice theory. 
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1. Introduction 

In a recent paper by Cecconi, a weak compactness theorem in H 1A is 
reported as having been proved by Rockafellar on the basis of convex 
analysis and functional analysis, and based on a condition that we call here 
(G3). Actually, this condition is a variant of the Nagumo type and analogous 
growth conditions, and indeed we first prove (Section 2) that condition (G3) 
is equivalent to a condition of that type, say (G2), that we have used for the 
same scope in previous papers. 

Once the weak compactness theorem is proved, the ensuing existence 
theorems in the theory of optimization are well-known consequences of 
lower-closure theorems which we proved in the past years (e.g., Refs. 1, 2), 
where (among other points) no condition (O) is explicitly needed (see 
Section 3). Actually we further extended these lower-closure theorems and 
ensuing existence theorems to functionals taking values in any R n, or any 
reflexive Banach space, where a partial ordering has been defined by a given 
closed convex cone (Refs. 3-6). 
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Actually, as a consequence of the weak convergence o[ the derivatives 
property, and a well-known remark by De la Valle Poussin, a Nagumo-type 
growth condition holds, under which suitable auxiliary sets possess property 
(Q), and this condit ion--whether we explicitly name it or not--enters  in the 
proof of the lower-closure theorems. We point out here that property (Q) 
has been equivalently expressed by Cesari (Refs. 7, 8) in terms of Tonetli and 
McShane seminormality conditions and by Goodman (Ref. 9) in terms of 
duality operations in convex analysis and lattice theory in point-set 
topology (see Section 5 for Goodman's  equivalence statements). 

In recent work of Berkovitz and Bates (see Remark 6.1), certain 
Lipschitz-type conditions are used in place of property (Q), claiming that 
these conditions are independent of property (Q). In Remark 6.1, we point 
out that the contrary is true, since their Lipschitz condition is a particular 
case of an analytic condition, namely, property (D) (see Section 6) studied 
long ago by Cesari and Suryanarayana (Ref. 10), which implies a suitable 
form of property (Q). It is relevant that this property (D) is valid even in 
Hilbert spaces and Banach spaces (Ref. 3). Finally, in Remark 3.2, we 
correct an erroneous statement by Olech in one of his recent reviews. 

2. Weak Compactness 

Let us consider any family 

= {rt(t), x(t), a <~ t <- b} 

of pairs of functions, r/(t) scalar and L-integrable, and x(t)= ( x l , . . . ,  xn) 
absolutely continuous in intervals [a, b], not necessarily the same, but 
within a fixed finite interval or -co < a0 <~ a < b ~< b0 < +co. There are well- 
known growth conditions which guarantee compactness properties of the 
class {x} of all elements x(t), a <~ t <. b, appearing in ~. We name here a few. 

(G1) There are a constant M ~ O  and a scalar function q5(~), 0 < ~ <  
+ co, bounded below and with ~ ( ( ) / s  ¢ ~ co as ~ ~ co, such that 

b 

(a) fo n(t) dt<~M 

and 

(b) n(t)~a~(Lx'(t)[), a<~t<~b, 

for all pairs r/, x of class (~. 
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(G2) There are a constant M t> 0 and, for every e > 0, a scalar function 
• ,(t) >I O, L-integrable in [a0, b0], such that 

b / ,  

(a) J, r/(t) dt<-M, and 

(b) lx'(t)t<-q~(t)+erl(t), a<-t<_b, 

for all pairs r/, x in the class ~. 
(G3) There are a constant M I> 0 and, for every p = ( p l , . . , ,  p,) ~ R", a 

scalar function ~bp(t)~> 0, L-integrable in [a0, b0], such that 
b P 

(a) Ja r/(t) dt <~ M, and 

(b) rl(t)~(p,x'(t))-4)p(t), a~t<~b, 

for all pairs ~7, x of the class ~. 

Theorem 2.1. Under either condition (G1), (G2), or (G3), the class 
{x} is equiabsolutely continuous and the class {x'} is equiabsolutely 
integrable. Thus if, in addition, the class {x} is equibounded, then the same 
class {x} is relatively weakly compact in H I'1. 

This is essentially the Tonelli-Nagumo statement under condition (G1) 
(see, for example, Ref. 11). The same statement was essentially proved by 
Cesari, La Palm, and Nishiura (Ref. 12) under condition (G2), and for the 
sake of simplicity we give a direct proof of this in the Appendix below. (See 
also Ref. 15.) Condition (G3) is the one mentioned by Cecconi (Ref. 13, 
Theorem 6, p. 296) as reported by Rockafetlar (Ref. 14). Here, under (i) we 
give a simple direct proof of Theorem 2.1 under condition (G3). Under (ii), 
we prove that (G3) is equivalent to (G2). Condition (G1) implies (G2), but 
(G2) is actually more general than (G1). For instance, for r/(t)= t~x '2, 
0 ~ t ~  1, 0 < a  < 1, condition (G2) is satisfied, but (G1) is not. Condition 
(G2) has been extensively used in Refs. 3, 12, 16, and elsewhere. Thus, 
condition (G2) applied to the integral 

1 

I= fo t"x'2 dt, x ( 0 ) = l ,  x ( I ) = 0 ,  tx '2, 

allows one to separate the case a ~> 1 for which I has no absolute minimum 
from the case 0 < a < 1 for which I has .an absolute minimum. Condition 
(G3) also was used in Ref. 16 and other papers. 

Proof. (i). Direct Proof of Theorem 2.1 under Condition (G3). Let 
q~(t), 4t(t), ao ~< t ~< bo, be the nonnegative L-integrable functions in (G3)(b) 
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corresponding to the two unit vectors 

p =  ul = ( 1 , 0 , . . . , 0 )  and 

Then,  for any pair  r/, x in ~ ,  we have 

x~(t)<~rl(t)+p(t), -x~(t)~rl( t )+~b(t) ,  

and hence 

Ix~(t)I<~Tl(t)+q~(t)+O(t), a<~t<~b. 

Thus, 

Let  

p =  - u ~  = ( - 1 ,  0 . . . . .  0 ) .  

~7(t)+q~(t)+O(t)>~O, a<~t~b .  

b t' 
M1 = J, (q~(t) + ~b(t)) dt. 

Now, given E > 0, let N be an integer, such that 

N - l n M  ~ E/3, N - l n M 1  <~ E/3. 

If u~, v~ denote the unit vectors 

ui = (61i, J = 1, 2 . . . . .  n), 

then, for p = Nu~ and p = Nvi, there are functions 

f]JPi(t)=~O, ~Jxri(t)>~O, 

L-integrable in [ao, bo], such that 

Nx~(t)<~rl(t)+dPi(t), - N x [ ( t ) ~ r l ( t ) + ~ i ( t ) ,  a<~t<~b, 

and hence 

N[x~(t)l<~rt(t)+d~i(t)+~i(t), a<~ t~b ,  

Then,  

*(t)= ~ *,(t), *(t)= i *i(t) 
i=1 i=1 

a~t<~b ,  

are L-integrable in [ao, bo], and we also have 

NIx'(t)l <~ n~ (t) + ~( t )  + W(t), 

vi = (-St# ] = 1 . . . . .  n ), 

a<~t<_b. 

(1) 

i = l , . . . , n ,  

i = l , . . . , n .  

(2) 
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If E denotes any measurable subset of [a, b], we have, from inequalities 
(1)-(2), 

~Bjx'(t)l dt<~N-ln fzrl(t) dt + N-l  nlz(ag(t)+ ~g(t)) dt 

<~N-ln ~E [ [rl(t)+q~(t)+4t(t)] dr+N-in fE (~( t )+f i ( t ) )  dt 

b b 

<~ N-ln f~ ~(t) dt + N-~n la (¢(t) + O(t)) dt 

+N-In fE (cb(t) + fi(t)) dt. 

Since qb + f i  is L-integrable, there is 8 > 0, such that meas E ~< 6 implies 
that 

and hence 

IE (d~ + fi) dt ~ El3, 

fElx'(t) t dt ~< e/3 + e/3 + e/3 = E. 

We have proved the equiabsolute integrabitity of the class {x'}. From here, 
the equiabsolute continuity of the class {x} follows immediately. If we know 
that the class {x} is equibounded, then the compactness of {x} in C follows 
from the Ascoli theorem, and the weak compactness of {x} in H 1"1 follows 
from the Dunford-Pettis  theorem. 

Proof. (ii). Proof that (G3) implies (G2). If (G3) is satisfied, then, 
given E >0 ,  let us consider the 2n points p ~ R n defined by p = ~E- ln  (Sis, 
s = 1 . . . .  , n), i = 1 . . . . .  n. Let ~bp(t)~0 be the corresponding 2n locally 
integrable functions, let 4~(t) denote their sum, and take 

f i , ( t )  = 4,( t) .  

Then 

r 1 ( t )  >~" 5: E - l n x ~  ( t )  -- q~p ( t ) ,  

for each of the 2n points above, and hence 

lx'(t)] <~ Z ]x~ (t)j <~ err(t) + ~, ( t )  
i 

for all t. Thus, (G3) implies (G2). 
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Proof that (G2) implies (G3). Given p ~ R  ~ take E > 0  such that 
1/E>~tp [. By (G2) there is ~g,(t)>~0, ~ ,  locally integrable, such that 
]x'(t)] ~< ~ ( t )  + Err(t), that is, 

~7 (t) >i (1/e)lx'(t)[- ( 1 / e ) ~ ,  (t) >~ (p, x'(t)) - &v(t), 

where ¢p( t )=  (1/e)q~,(t). Thus (G2) implies (G3). 
A direct proof of Theorem 2.1 under condition (G2) is given in the 

Appendix. 

Remark 2.1. The arguments underlying Theorem 2.1 apply as well to 
any family 

= {~/(t), se(t), t e G} 

of pairs of functions 

LI(G),  ~ e (LI(G))", with f6  rt(t) dt <~ M, 7/ 

where G is any measurable bounded subset of R ~. Condition (G1) then 
becomes 

7/(t) >i 4' (t~(t)I), t e G, 

for all pairs (~/, s ¢) in ~. Condition (G2) then becomes: given • > 0, there is 
some $~(t) >~ 0, t e  G, ~ eLl (G) ,  such that 

] ( ( t ) ]~ ( t )+eT l ( t ) ,  te  G, 

for all pairs (77, ~) in ~. Condition (G3) then becomes: given p ~ R ", there is 
4'p(t) ~ 0, t~  G, 4'p ~ LI(G),  such that 

rt (t) >/(p, se(t)) - 4'p (t), t ~ G, 

for all pairs (r/, ~:) in ~. Under  either hypothesis (G1), (G2), or (G3), the class 
{~(t)} is equiabsolutely integrable in G and hence relatively weakly compact 
in LI(G). 

3. Some Lower-Closure and Existence Theorems 

We briefly state here a simple version of a lower-closure theorem. For 
t e [a, b], let A(t) denote a closed subset of the y-space R" ;  let 

A =[(t,y)la<~t<~b, y 6 A ( t ) ] C R  l+n, 

for every (t, y ) e A  let Q(t, y) denote a nonempty closed subset of the 
z-space R"  ; and let 

M = [(t, y, z)l(t, y ) 6 A ,  z ~ Q(t, y ) ] C R  1+2". 
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Let Fo(t, y, z) denote a real-valued function defined on M, Fo<  +oe on M, 
and let Fo(t, y, z) denote also the extended function defined by taking 
F o =  +ee in R ~+2n-M. Let us assume that the extended function Fo is 
measurable in t for all (y, z) and that, for almost all i, Fo(~, y, z) is lower 
semicontinuous in (y, z) and convex in z. 

't Theorem 3.1. Lower Closure Theorem. If £(t), y(t), ~k(t), £k(t), yk~ ), 
A(t), Ak(t), t~ G =[a ,  b], k = i ,  2 . . . . .  are measurable functions, ~¢, £k 
(LI(G)) r, rlk ~ LI(G), such that yk--> y in measure in G, (k-~ £ weakly in 
(LI(G)) r as k --> oo, with 

yk(t) E A(t), £k(t) ~ O(t, yk (t)), rlk(t) >~Fo(t, yk(t), (k(t)), 

t~Ga.e . ,  k = 1 , 2 , . . . ,  

-oo ~< i = lira inf f ~Tk (t) dt< + oo, 
k -* co  a G 

nk(t)~ak(t),  a, lkeL~(G) ,  ak-ea weaklyinL~(G), 

then there is a function r/(t), t~ G, rl ~L~(G), such that 

y(t) ~ A(t), ~(t) ~ O(t, y (t)), n(t) >~Fo(t, y,(t), ~(t)), 

t ~ G a . e ,  f ~7(t)dt~i. 

For this theorem, see Cesari (Ref. 1) and Cesari and Suryanarayana (Ref. 2). 
For extensions to multidimensional t or t, y, fo valued in Banach spaces, see 
Refs. 2, 3, 5. 

For every (t, y) ~ A, let 0 (t, y ) denote the set of all (z o, z) ~ R ~ + 1, with" 

z°>~Fo(t,y,z), z~O( t , y ) .  

The condition concerning Fo above can be equivalently expressed by 
requiring that Fo be measurable in t for all (y, z), that A be closed, and that, 
for almost all 7, the sets ()(t ,  y) have property (K) with respect to y in A(t-) 
and are convex (see Section 4 below). 

For lower-closure theorems for Banach valued functions y (t) see Cesari 
(Refs. 3, 5). Of course, Theorem 3.1 holds even for functions defined on any 
bounded measurable subset G of R ~ or any finite measure space. 

Remark 3.1. Note that, in the lower-closure Theorem 3.1, if we know 
that the functions Ak(t), t ~ G, can be taken in thb form 

Ak(t)=(p,£k(t))--c~p(t), t oG,  k = 1 , 2  . . . .  , 
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for every fixed p ~ R n and corresponding 

~bp(t) ~>0,  t~G,  qbp~Ll(G), 

then, by Remark 2.1, the sequence ,~k certainly has a subsequence which is 
weakly convergent in (LI(G)) ~ as required. 

Remark 3.2. Note that the lower-closure Theorem 3.1 has been 
proved in Ref. 1 for functions ~(t), ~k(t) having their values in a finite- 
dimensional space R ' ,  as stated. For functions ~, ~k having their values in a 
real Banach space B, we have proved in Ref. 2, Refs. 3, Part I, and Refs. 4, 
16, 17 an analogous statement, namely, the same as Theorem 3.1 with the 
following modified requirements: 

~(t), y(t), rig(t), ~k(t), yk(t), ~(t),  l~k(t),pk(t), A(t), Ak(t), t e  G, 

k = 1 , 2  . . . . .  

are measurable functions, ~, ~,  pk eLl(G, B), rlk, IZk, tz, '~k, A sLI(G, R), 
y(t), yk(t) ~ A(t), such that 

rig(t) >~Fo(t, yk(t), ~k(t)), /~k (t) ~>Fo(t, yk(t), pk(t)), 

~k(t) ~ O(t, yk(t)), pk(t) ~ O(t, yk(t)), 

- e o < i  = k-,~lim inf fo ~lk(t) dt < +co, 

t ~ G  a.e., k = l ,  2 , . . . ,  

nk(t) ~> Ak(t), 

t~G,  k = l , 2  . . . .  , 

Yk (t) ~ y (t) in measure in G, 

/Xk (t) -~/X (t) weakly in LI(G, R), 

~k(t) ~ ~(t) weakly in LI(G, B), 

pk(t) ~ p(t) strongly in LI( G, B), 

Ak ( t )~  A (t) weakly in LI(G, R). 

Then, there is a function rl ( t ), t ~ G, ~7 ~ L I ( G, R ), such that 

n(t)>~Fo(t,x(t),~(t)), t~Ga.e. ,  I ~l(t)dt<~i. 

As we proved in the quoted papers, we may allow G to be any metric 
space and also a finite complete measure space (G, a, ~),  and thus d/x may 
replace dt above, and y, Yk may take their values in any metric space (Y, d). 

Remark 3.3. Olech (Ref. 19), in his review of Ref. 2, has stated that 
the existence of sequences /Xk, pk (with /Xk ~/Z weakly in L1, and p k ~ p  
strongly in L1) is a consequence of the other hypotheses in Theorem 4.1, p. 
172, Ref. 2, that is, the proposition in Remark 2.1 above. Olech's statement 
is not true, as Example 5.4, p. 178 of the same paper (Ref. 2), exactly shows. 
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However, in finite-dimensional spaces, as shown in Ref. 4, it is possible to 
prove the lower-closure theorem without this specific assumption regarding 
the existence of a sequence/zk(t), pk(t), with 

pk(t) ~ O(t, yk(t)), I~k(t) ~Fo(t, yk(t), pk(t)), 

such that Pk iS strongly convergent and /Zk is weakly convergent. Such 
sequences may not exist even if the upper semicontinuity property (K) in y 
of the sets O(t, y) is assumed. If such sequences do exist, then the original 
minimizing sequences ~Tk, ~k can be modified suitably so as to lie in equi- 
bounded sets O*(t, yk(t)), which would then have property (O). 

Remark 3.4. As in Remark 2.1, we mention here another version of 
the lower-closure Theorem 3.1, which we shall use in Section 5 below, and 
for which we refer to Ref. 10 and Ref. 3, Part I, for proofs. Namely, the same 
Theorem 3.1 holds with the following modified requirements: 

~(t),y(t),~Tk(t),~k(t),yk(t),~k(t),~k(t),h(t),hk(t), t~G,  k = 1 , 2  . . . . .  

are measurable functions, ~, (l,, (k eLl(G,  B), ~Tk, ~k, Ak, 2~ ~ LI(G, R), 
y(t), yk(t)~ A(t), such that 

~Tk(t) >>-Fo(t, yk(t), ~:k(t)), ~k(t) >~Fo(t, y(t), ~k (t)), 

~k(t) E Q(t, yk(t)), ~( t )  ~ O(t, y(t)), ~Tk(t), ~Tk(t)>-hk(t), t~ G, 

-oe  < i = lira inf f r/k(t) dt< +oo, 
k ~ e o  a6 

~k(t) -~ se(t) weakly in LI(G, B), yk(t) -~ y(t) in measure in G, 

hk(t) ~ h (t) weakly in LI(G, R), 

8k (t) = ~k(t) -- ~Tk (t) ~ 0 strongly in LI(G, B), 

8°(t) = rlk(t) - r/k(t) ~ 0 strongly in LI(G, R). 

Then, there is a function rt(t), t ~ G, rl ~LI(G, R), such that 

>~Fo(t, y(t), ~(t)), r/(t) ~ O(t, y(t)), t ~ G a.e., f~ ~7 (t) dt <~ i. ~7(t) 

We can now state an existence theorem, in which again for the sake of 
simplicity we assume t scalar, y ~ R n, A compact, and Fo also scalar. Thus, 
we are concerned here with a functional 

1[ y] = g(tl, y (tl), t2, y (t2))+ Fo(t, y (t), y'(t)) dt, (3) 
1 

where g(h, ya, tz, y2) is a scalar function defined on a subset B of R 2+~, 
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Fo(t, y, z) is a scalar function defined on a set 

M = [(t, y, z)l(t, y ) e A ,  z e O(t, y)] 

of the tyz-space and extended to R 1+2n as stated above. We may require on 
Fo one of the following growth conditions: 

(gl) there is a scalar function ¢ (s¢), 0 ~< ~¢ < +co, bounded below with 
&(~)/~¢-->oo, such that Fo(t, y, z) >~¢([zl) for all (t, y, z); 

(g2) for every e > 0 ,  there is a scalar function O~(t)~>0, locally 
integrable, such that [z I - ~  (t)+ eFo(t, y, z); 

(g3) for every p e R n, there is a scalar function qbp (t), locally integrable, 
such that Fo(t, y, z)>>-(p, z)-q~p(t) for all (t, y, z). 

Let  Ft be a nonempty closed class of absolutely continuous functions 
y ( t ) = ( y l  . . . . .  yn), h<~t<-t2, with ( t ,y ( t ) )eA,  (h ,y (h) , t2 ,  y( t2))sB;  
F o ( ' , y ( ' ) , y ' ( ' ) )  is L-integrable in [h, t2]. The property of closedness 
needed here is a very mild one, that is, every limit element y in the weak 
topology of H ~'~ which has the properties just stated belongs to ft. Thus, the 
class lI of all y with the properties stated is closed. The existence theorem 
below certainly holds in the class of all y with the properties stated. 

Theorem 3.2. Existence Theorem for Problems of Calculus of Varia- 
tions and Optimal Control Theory. Let A be compact, B closed, and let us 
assume that g is lower semicontinuous on B, that the extended function 
Fo(t, y, z) is measurable in t for all (y, z), and that, for almost all t, Fo(t, y, z) 
is lower semicontinuous in (y, z) and convex in z. Let us assume that one of 
the growth hypotheses (G1), (G2), or (G3) holds. Then, the functional (3) 
has an absolute minimum in Ft. 

If no condition (G) holds, the conclusion is still valid provided we know 
that the class Ft is weakly compact in H L1 and F0 satisfies one of the 
following conditions: 

(L1) Fo(t, y, z)>~ -O(t), for some locally integrable function 0 ~> 0; 
(L2) Fo(t, y, z ) ~  - to( t )-clz l ,  for some constant c and to as in (L1); 
(L3) Fo(t, y, z)>~ -to(t)-(~p(t), z), for tO as in L1 and some bounded 

measurable q~; 
(L4) Fo(t, y, z) is defined at least in A x Bo, where Bo is the closed unit 

ball in R ~ and Fo(t, y, z)~>/3 in A X B o  and Fo(t, y, 0)~<a in A for some 
constants a ~</3. 

The condition (L4) is certainly satisfied if F0 is continuous on A x B0. 
The extension of Theorem 3.2 to the case of A being not compact, but 

closed, is only technical. For extensions to the case where t is multi- 
dimensional or t, y, Fo take their values in Banach spaces, we refer to Cesari 
(Ref. 3, Part I) and Cesari and Suryanarayana (Refs. 2, 4). 
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4. Some Upper Semicontinuity Properties of Set-Valued Maps 

Given any set Z in a linear topological space Y, we denote  by cl Z, bd Z, 
co Z the closure of Z, the boundary of Z, and the convex hull of Z, 
respectively. Thus, cl co Z denotes the closure of the convex hull of Z. 

Let  x --> O(x  ), x ~ X ,  O(x  ) C Y be a set-valued map from a metric space 
X to a linear topological space Y. Let  Xo be a point of X. 

Kuratowski's concept of upper semicontinuity is relevant. We say that 
the map x ~ O(x )  has property (K) at xo (Kuratowski), provided 

O(xo) = (-1 cl ~ [ O ( x ) ,  x ~ ~;(x0)] .  
8>0 

Here,  N~(xo) denotes the ~-neighborhood of Xo in X. Note that Q(xo), as the 
intersection of closed sets, is certainly closed. 

We shall need also the following variant. We say that the map x ~ Q(x)  
has property (Q) at x0, provided 

Q(xo) = (") clco w [ Q ( x ) ,  x ~N~(Xo)] 
8>0 

(Cesari, Ref. 20). Here,  Q(xo), as the intersection of closed convex sets, is 
certainly closed and convex. 

We say that the map has property (K) or (Q) in X if it has such property 
at every point x0 of 32. For brevity, we may also say that the sets Q(x)  have 
property (K) or (Q). The indication "with respect to,"  will be needed if the 
sets depend also on other parameters which then are kept constant. It is well 
known that property (Q) implies property (K). Moreover,  the map x ~ Q(x )  
has the property (K) in X if and only if its graph 

[(x, y ) lx  ~X,  y ~ O(x)]  

is closed in the product space X x Y. 
We are concerned here with the situation in which a closed set A is 

given, say in R ~', for every x c A  a subset Q(x)  of R ~ is given, M C R  ~'+'~ is 
the set of all (x, u) with x c A ,  z ~ O(x) ,  and T(x,  u) is a real-valued function 
on 3//. For  every x ~ A, let 0 ( x )  denote  the subsets of R "+1 defined by 

O(x)  = [(z °, u): z°>~ T(x, u), u E O(x)]. 

We may extend the function T outside M by taking T = +oo in R ~+" - M .  
Cesari has proved that the sets 0 ( x )  have property (Q) (with respect to x) in 
A if and only if T(x, u) has everywhere in M the Tonetl i-McShane 
seminormality property expressed as usual in terms of supporting hyper- 
planes to 0 ( x )  in R ~+1 [Cesari, Refs. 7, 15, 16, 20; see also Goodman (Ref. 
9), who has used these equivalence properties in his paper]. Moreover,  
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Cesari has proved that, under alternate growth assumptions, the sets t~ (t, x) 
have property (Q). For instance (see Refs. 15, 16), if there is a scalar function 
~b(se), 0 ~ < + o o ,  bounded below, such that ~b(~:)/sc~oo as £~oe ,  z°~> 
~b (Ix I) for all (z o, z ) e t~ (x), and the sets 0 (x) are convex and satisfy property 
(K), then the same sets 0 (x )  also satisfy property (Q). 

We know from the Dunford-Pettis theorem and a remark of De La 
Valle Poussin that, if ~:k(t)~ £(t) weakly in LI(G,  B)  as k ~ oc, then neces- 
sarily there are a convex function q~ as above and scalar L-integrable 
functions o'(t), ok(t), t e G ,  such that o'k(t)~b([~k(t)t) and o ' k ( t ) ~ r ( t )  
weakly in LI(G,  R) .  If the sets (~(x) above are convex and have property 
(K), then the sets (~*(x) = [(z °, v, u ) : z ° ~  > T(x, u), v ~c#(u),  u ~ O(x)] are 
also convex and, by (Refs. 15, 16), have property (O). 

Recently, Suryanarayana (Ref. 21) has shown that any maximal mono- 
tone map on a Hilbert space has property (O). 

5. Duality Operation 

Given an extended real function Tu, u ~ R ~ (that is, T may take values 
+m and -oo) we denote by epi T (or epigraph of T) the subset of Rn+l 
defined by 

epi T = [(z °, u) ~ R n+l I +oo > z ° >t Tu]. 

Thus, the projection of epi T on R n is the set U of all u where Tu < +oe. The 
following well-known statement is needed. 

Theorem 5.1, Epi T is closed (in R "+1) if and only if the extended 
function Tu is lower semicontinuous in R " ;  epi T is convex if and only if Tu 
is convex in R".  

If Tu, u e R ~, is any extended, real-valued function in R ", then, for 
every v ~ R n, we consider all r real, if any, such that - r  + (v, u)<~ Tu, for all 
u e R ", and we take T*v = inf{r}. In other words, we take 

T * v = s u p [ ( v , u ) - T u l u ~ R ~ ] ,  v ~ R " .  

Indeed, if r = T ' v ,  then r >~ (v, u) - Tu for all u, that is, Tu >i - r + (v, u) for 
all u, and r = T*v  is the inf of all numbers r for which this holds. Note that, if 
the statement 

- r + ( v , u ) < ~ T u ,  for all u, 

holds for no r e R ,  that is, the class of such r is empty, then T * v = - o o ,  
according to the usual conventions. The following further statement is 
needed. Here, T* is said to be the dual of T. 
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Theorem 5.2. If Tu, u ~ R n, is an extended real*valued function, 
Tu ~ +oo, Tu # -oo for all u, and Tu is convex and lower semicontinuous in 
R n then 

e p i T - -  ~ [(z ° , u ) t z ° > ~ ( v , u ) - T * y ] .  
~ R  n 

Moreover, T 'v ,  v ~ R ~, is also an extended real-valued function, T*v ve +oo, 
T*v # -co for all v, and T*v is convex and lower semicontinuous in R~o 
Finally, (T*)* = T, or briefly T** = T. 

For functions T(x, u) depending on u and also on the parameter x, with 
the usual conventions, we shall understand that all duality operations are 
made with respect to the second variable. On the other hand, as before, we 
shall denote by ()(x) the set of all (z °, u ) e R  n+~ with + o o > z ° ~  T(x, u). 

For integrand functions F(t,  x, u) of problems of optimizatioia, the dual 
with respect to u, namely F*(t, x, p), is of course the Hamittonian. 

Given any function T as above, we denote by cl T the new analogous 
function such that 

epi (cl T) = cl (epi T). 

Property (O) of the sets O(x) can now be equivalently expressed in 
terms of duality operations as Goodman has recently proved (Ref. 9). 

Theorem 5.3. (Goodman). If.T(x, u) ~ - ~  for allx, u, then the sets 
0 (x )  have property (Q) at x0 if and only if 

T*(xo, v)=  cl [lim sup T*(x, v)]. 
X .-~ XO 

Theorem 5.4. (Goodman). If T(x, u) # - ~  for all x and u, then the 
sets ()(x) have property (Q) at Xo if and only if 

T(xo, y ) =  [lim sup T*(x, y)]*. 
x-~xo 

For further necessary and sufficient conditions for property (Q) in terms 
of duality and lattice operations, we refer to Ref. 9 and to the exposition in 
Ref. 15. 

For integrand functions Fo(t, x, z) which are convex in (x, z), then, for 
every t, the dual operation above in the variable (x, z) yields a dual function 
F*  (t, p, w) with F** = Fo. The corresponding dual problems (say, I and I*) 
possess formal symmetric dual properties in the class of functions, say, 
y(t) = yi(t) + y2(t), yl absolutely continuous as usual, while Y2 is of bounded 
variation and singular. Lower-closure theorems hold with suitable topolo- 
gies as mentioned in Section 3, and the dual properties of I and I* are then 
proved as usual. 
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6. Analytical Property (D) 

We shall use here the actual notations of optimal control theory, where 
explicit use is made of control parameters and control functions or strate- 
gies. Let A be a given closed subset of the ty-space R n÷l, whose projection 
on the t-axis is an interval I finite or infinite. For every (t, y) s A, let U(t, y) 
be a given subset of the u-space R " ,  and let M denote the set of all (t, y, u) 
with (t, y) cA ,  u ~ U(t, y). We denote by A(t) the sections of A, that is, the 
sets 

A(t)---[xl(t, y ) ~ A ] C R  ~, t e l  

Let 
f0(t, y, u),f(t, y, u) = (fl . . . . .  f , )  

be given functions defined on M. Here,  u denotes the control variable and 
U(t, y) the control set function. Let f denote the function 

f ( t ,y ,u)=(fo,  f t , . . . , f~ ) .  

For any (t, y ) ~ A ,  let O(t, y) and ()(t, y) denote the sets 

O(t, y) =f(t, y, U(t, y)) = [z Iz =f(t, y, u), u ~ U(t, y ) ] C R  n, 

O(t, y) = [(z °, z ) l z °~  fo(t, y, u), z =f(t, y, u), u e U(t, y)]C R n+l, 

so that O(t, y) is the projection of ()(t, y) on the z-space R n. Note  that, if 

T(t, y, z) = inf[z°I(z °, z) ~ ()(t, y)], (t, y, z) c M, (4) 

then T(t, y, z ) < + e o  in M. We may extend T to all of R 1+2n by taking 
T(t, y, z ) = + o o  in RI+2~-M. Thus, T is one of the functions that we 
considered above. Note that, if all the sets ()(t, y) are closed, then whenever 
T(t, y, z) is finite, then min can replace inf in Eq. (4) or, equivalently, 

t~(t, y) = [(z °, z)tz°>~ T(t, y, z), z s O(t, y)]. 

A number of criteria for property (O) of the sets 0( t ,  y) have been 
proved by Cesari and others (Refs. 7, 8, 15, 16). Below, we present a set of 
analytical considerations in finite-dimensional spaces which imply property 
(O), and which have natural extensions in Banach spaces. We shall assume 
here that the set U(t) depend on t only. 

Let  uk(t), u(t), yk(t), y(t), te  G =[a, b], k = 1, 2 . . . .  , be  measurable 
functions, uk(t)~ U(t), yk(t)~ A(t), and let gk = (6 °, 6k) be defined by 

gk(t) = f(t, yk(t), uk(t))-f(t, y(t), uk(t)), t~[a, b]. 

Proposition 6.1. gk(t)-->0 strongly in (LI(G)) "+~ if and only if the 
same functions 6k(t) are equiabsolutely integrable in G. 
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This statement was proved in Ref. 10 in a slightly more elementary 
situation, but the proof is the same. 

Proposition 6.2. 6k(t) -'> 0 strongly in (LI(G)) ~+1 implies the following 
weak form of  property (0) ;  namely, there is a subsequence [ks] such that 

cx~ 

0(t ,  y(t)) D (~ ctco[Uf( t ,  yk~(t),UkA~t))], tEGa.e. 
h = l  s = h  

This statement was proved in Refs. 10 and 3, Part I, in various settings. 
The proof in the present situation is the same. In Ref. 1, p. 352 (cf. aiso Ref. 
10), we have pointed out that, for lower closure theorems, it is enough to 
assume only that 6k ~ 0 strongly in (LI(G)) ~ and that 

oo > lim kinf.~¢o fo 8°k(t) dt~O" 

For mere closure theorems, )Co = 0, and the last requirement is trivial. 
We denote by property (D) of a sequence yk(t), Uk(t), t¢G, k= 

1, 2 . . . . .  as above the requirement 6k(t)-~O strongly in (LI(G)) n+l, or 
Ilgd[-~ 0. 

Below we give several specific criteria for property (D). This property 
implies the weak form of property (Q) stated above. We have mentioned 
these criteria in Refs. 2, 1O, 22, and Ref. 3, Part I. They are repeated here in 
the present context, since they hold not only in Euclidean spaces but also in 
Banach space situations. [see Ref. 10, pp. 446-447, properties (Fp) and 
(F~)]. 

(Lg) Lipschitz type conditions, geometric viewpoint. 
(F~), 1 ~< p < ~ .  Here, B and Y are Banach spaces, U a metric space. If 

1 ~ p < ~ ,  let us assume that there are constants c, y, ~0, P', c i> 0, ~o >~ 0, 
0<y~<p ,  p '=p(p-y) -~  if 0 < y < p ,  p' = ~  if 3' =P, and functions F(t)>~ 
O,t~G, F~Lp,(G,R), h((), 0~<(<oo,  h monotone nondecreasing, 
h ( 0 + ) = 0 ,  h(~)~<ci~ff for (~>~o, such that, for all (t, yl, u), if, y2, u)~M, 
t ~ G - To, meas To = 0, we have 

Ill(t, y~, u) - f ( t ,  y2, u)[rs <~F(t)h([ly~- y2j[Y). (5) 

Let ~(t), y(t), r/k(t), ~k(t), ~:k(t), ~7k(t), yk(t), uk(t), t~G, k= 
1, 2 . . . . .  be such that 

y(t), yk(t)~A(t), u(t), Uk(t) c U(t), 

nk(t) ~fo(t, yk(t), Uk(t)), ~k(t) =f(t ,  yk(t), Uk(t)), 

~k(t) >~fO(t, y(t), Uk(t)), (k(t)=f(t,y(t),Uk(t)), teG,  k = l , 2  . . . .  , 

~k ~ ( weakly in L1. 
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Let  us assume that, for almost all t ~ G, the sets Q(t, y(t)) are closed and 
convex and that l l yk -y l l p~0  as k-->co. Then, property (Q) holds as in 
Proposition 6.2 for almost all t ~ G, and the lower-closure property holds as 
in Theorem 3.1. 

Analogously, we have property (F~): 
(F~) Let  B, U, Y be as above. Let  us assume that there are functions 

F(t) >~ O, t e G, F ~ L I(G, R), such that (5) holds. Let  ~(t), y (t), "Ok (t), ~k (t), 
~:k(t), ~k(t), yk(t), uk(t), t e  G, k = 1, 2 . . . . .  be as in Remark 3.4; assume 
that, for a.a. t c G, the set 0 ( t ,  y (t)) is closed and convex and that IlYk - Yll~o --> 
0 as k --> co. Then,  property (D) holds, and then also property (Q) holds as in 
Proposition 6.2 for almost all t e G, and the lower-closure theorem holds as 
in Theorem 3.1. 

(Lf) Lipschitz type conditions, functional viewpoint. 
(F~), 1 ~ p  <oo .  Let  {u(t)} be a family of control functions, and let us 

assume that, for every control function u = u(t) of the class, there is a 
function Fu(t) with the following properties. First, let p, c, 3/, ~o, P', h as in 
(Fp), and let Fu( t ) >10, t e G, Fu e Lp,( G, R ), [IF.lip' ~< M, and 

llf(t, Yl, u(t))-f(t ,  Y2, u(t))llB ~Fu(t)h(l[Yl- Y2[IY). (6) 

Let  ~(t), y(t), "Ok(t), ~k(t), ~k(t), ~k(t), yk(t), uk(t), t e  G, k = 1, 2 , . . . ,  be as 
in (Lg) with uk 6 {u(t)} for all k; assume that, for all t 6 G, the sets Q(t, y(t)) 
are closed and convex and that IlYk-Y[]p-~0 as k - ~ .  Then, property (Q) 
holds as in Proposition 6.2, and the lower-closure theorem holds as in 
Theorem 3.1. 

In particular F may be simply a function of (t, u), say F = F(t, u), or 
F,(t) = F(t, u(t)), and in this case we need require that 

Iolle(t, u(t))ll p' dt <~M. 

Analogously, we have property ( F " ) :  
( F ' )  Let  B, Y, U be as above. Let  us assume that there is a function 

h (~¢), 0 <~ ~¢ < +o0, h monotone nondecreasing, h (0+) -- 0, and, for every 
u ~ {u (t)}, a function F~ (t) >- O, F~ ~ LI(G, R), I]F,I]I <~ M, such that (6) holds 
for all u c{u(t)}. Let  ~:(t), y(t), "Ok(t), ~k(t), Sk(t), ~k(t), yk(t), Uk(t), te  G, 
k = 1, 2 . . . .  , be as in property (F~), with uk ~{u(t)} for all k, and assume 
that, for a.a. t e G, the set Q (t, y (t)) is closed and convex and that IlYk - Yl[oo 
0 as k-->oo. Then, property (Q) holds as in Proposition 6.2, and the 
lower-closure theorem holds as in Theorem 3.1. 

In particular, F may be simply a function of (t, u), say F =F(t, u), or 
F~(t) = F ( t ,  u(t)), and in this case we need require that 

IcF(t,  (t)) dt <M. u 
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For a great many other analytical criteria for property (Q), we refer to 
Ref. 2, Ref. 3, Part I, and Refs. 8, 15, 23. 

Remark 6.1. Berkovitz (Ref. 24) and Bates (Ref. 25) state that, in 
their lower-closure theorems, property (Q) does not hold. They assume a 
Lipschitz condition 

If(t, y~, u ) - f ( t ,  yz, u)I<~F(t, u)h( ly l -y2t )  

as above and the further assumption 

jr/2 F(t, u(t)) dt ~ A .  
1 

From the above, it is apparent that property (O) in the weak form does hold 
in their situation. Both Berkovitz and Bates do not seem to have realized this 
in their statements. Their proofs are not much different from ours in the 
analogous context. 

Appendix 

In connection with Theorem 2.1, let us prove here directly that (G2) 
implies weak compactness in H 1"1. First, for E = 1 we have lx'(t)]<~ 
• l(t) + r/(t); hence, r/(t) I> -qrt(t)o Let 

f? Mo = ~l( t )  dr. 
o 

Now, given e >0 ,  let o~ = min[1, e2-1(Mo+M1 + 1)-1], and note that the 
function ~o(t) is L-integrable in [ao, bo]. Hence, there is some 8 > 0, such 
that 

E ~ ( t )  dt < el2 

for every measurable subset E of [ao, bo] with meas E < 6. Finally, let rt (t), 
x(t), a <- t ~ b, be any pair of the family, and let E be any measurable subset 
of [a, b] with meas E < & Then 

JtE Ix '(t)l dt <~ ~E [ ~ ( t ) +  o-rt(t)] dt ~ f z  [ ~  + o'(r/+ q~)] dt 

a b 

 (Mo+M1)+ f % dt<<-e/2+e/2 = E. 
~E 
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This proves the absolute integrability of the class {x'}. The proof continues as 
in Section 2. 
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