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Abstract

We have studied the microbiota associated to Spatiyde green olive fermentations,
attending to its dynamics along the time. Twentytdiihe fermenters were selected
from two large table-olive manufacturing companiesouthern Spain. While culture-
dependent methodology was used to isolate the orgamisms, molecular methods
were used to identify the isolates. A total of 1@5@ates were obtained, resulting in
929 bacterial and 141 yeast isolates. Thirty seliff@rent bacterial species were
isolated, belonging to 18 different genera, whi2eygast species were isolated,
belonging to 7 distinct genera. This fermentati@swominated by the species
Lactobacillus pentosusyhile its accessory microbiota was variable andcedéepd on
the fermentation stage and the actual fermentgaod (‘patio"). It was noticeable the
abundance of lactic acid bacteria isolates, betantp 16 different species. Twenty
bacterial species were isolated for the first tinoen Spanish-style green olive
fermentations, while 17 had not been describedrbefoany table olive preparation.
The gener@rachybacterium, Paenibacillus, SporolactobacillBsyacoccusand
Yersiniahad not been cited before from any table olivgparation.Saccharomyces
cerevisiaeandCandida thaimueangensippeared to dominate the yeast microbiota.
Candida butyri/asser@ndRhodotorula mucilaginoshad not been described before
from Spanish-style preparations, whiaturnispora mendoncaeas isolated for the
first time from any table olive preparation. Biodrgity was analysed through different

alpha and beta indexes which showed the evolufidtimeomicrobiota over time.

Keywords: olive fermentation, biodiversity, microbiota, tecacid bacteria, yeast,

Lactobacillus pentosus
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1. Introduction

Table olives account for the largest volume offfented vegetables in Western
countries, especially in Mediterranean countriear(i@o-Fernandez et al., 1997).
World production reached an average of 2.3 miltmms per year in the period 2006-
2012 (I00C, 2012). Although table olives can beppred for consumption in many
different ways, Spanish-style preparation of grelres is one of the three most
commercially important worldwide, along with natulbéack olives and oxidised black
olives (Garrido Fernandez et al., 1995; Sanchetk ,e2006; Rejano et al., 2010),
representing 60% of the world production (Botta &uatolin, 2012). Spanish-style
preparation is characterised by the initial alkaatment (1.8-3.5 % [w/v] NaOH) of
the green fruits, which removes bitterness andallthe subsequent growth of lactic
acid bacteria (LAB) through the neutralisation avashing of inhibitory phenolic
compounds (Rejano et al., 2010). Once removedlkiad,druits are washed once or
twice with water and finally covered with brine (1@ % [w/v] NaCl). In this brine a
spontaneous fermentation takes place in whichaat karee different stages have been
identified (Garrido-Fernandez et al., 1995). Durihg first stage, usually lasting 3-10
days, fermentation is conducted by the indigendkedigolerant microbiota which
contaminates the fruits as well as the environrf@gmiCastro et al., 2002). This
microbiota is responsible for lowering the initragh pH (10-11) to values close to 6-7,
more appropriate for the growth of LAB, which alsogpresent as contaminants
(Sanchez et al., 2001). As soon as LAB take ovdrgraw exponentially, during what
it is considered the second stage in this fermemiapH value drops as a result of their
metabolism. Sugars are converted into lactic asdhe major product, as a result of a
mainly homolactic fermentation. This is carried cudstly by strains of the species
Lactobacillus pentosu@e Castro et al., 2002; Rejano et al., 2010; Baha and
Jiménez-Diaz, 2012), although in the past thiswa@s attributed to strains of
Lactobacillus plantarunfRuiz-Barba et al., 1994; Garrido-Fernandez etl&95;
Rejano et al., 2010) as a consequence of previoeisgbypic criteria for the
classification of species into what it is knowntlas 'L. plantarumgroup”, before
molecular criteria were applied (Torriani et abD02). At the end of the second stage,
typically 10 to 15-day long, pH value is about 4ril most sugars have been utilised
(Montafio et al., 1993; Garrido-Fernandez et aB5)9During the final, third stage of
the fermentation all fermentative substrates ahmested and LAB population declines



91 steadily. Values of pH below 4.0 and free acidit9ad-1.2 %, mainly as lactic acid, are
92 considered indicative of a good fermentation. Thes®litions, combined with a NaCl
93 concentration which is at this stage usually rateet-8 %, should guarantee the long-
94  term preservation of the final product.
95 Up to date, few comprehensive studies have begedaut on the microbiota
96 of table olive fermentations, especially if we ddes modern taxonomic criteria and
97 molecular techniques (Ercolini et al., 2006; Battal Cocolin, 2012; Cocolin et al.,
98 2013). The aim of this study is to update the krealge we have about the microbial
99 diversity, in terms of both bacteria and yeast,ahig inherent to the Spanish-style
100 fermentation of green olives in large scale talbfieeananufacturing companies. For
101 this, we have used culture-dependent techniqueiéasolation of the different
102 microorganisms as well as molecular techniquebtaio as precise identifications as
103 possible. We have selected two different largeestadile-olive fermentation yards
104 (known in Spanish agatios’), belonging to two large table-olive manufactgyin
105 companies in the province of Seville, southern Splaithis province, up to 63% of the
106 Spanish national production is concentrated (se2a8&@/2013; AAO, 2013), so that
107 data obtained should be quite relevant. Actudtlig table olive preparation is also
108 known as "Sevillian-style" (Rejano et al., 2010pdHy, our goal is to obtain not only a
109 picture of the microbial diversity along the timietiois food fermentation but also get a
110 well characterised collection of microorganism&¢oused in the future as a
111 comprehensive bank of wild-type strains for divdsgeechnological uses.
112
113
114 2. Materialsand Methods
115
116 2.1. Origin of the samples and sampling strategy.
117 Samples of Spanish-style green-olive fermentimgeasrwere taken during the
118 2010-2011 season from two large (4,000 to 8,0004smf olives handled per season)
119 table-olive manufacturing companies in the proviat&evilla, south-western Spain.
120 These companies are located 35 Km apart from each other. At each company,
121 fermentation was followed in ten fermenters. Thesee of a total capacity of 10 tonnes
122 of olives and 5,500-6,000 litres of brine, madeatyester and glass fibre. They were
123 all located outdoor, buried in the ground of whas itraditionally called in Spain a

124 "patio'. The traditional Spanish-style procedure to premaeen olives was followed
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(Rejano et al., 2010). Briefly, green olives weesated with a solution of NaOH (2-2.5
% [w/v]) with the addition, only in the case éhtio #1, of NaCl (15.3 g/L) and Cagl
(0.83 g/L), for 8-10 hours; the olives were thersined with water to remove the excess
of alkali and finally covered with brine (10-11 %/{] NaCl). Again, only in the case
of patio#1, brine contained 1.87 g/L CaCAt this point, treated olives plus brine are
used to fill up the 10-tonne fermenters locatetheapatios Only inpatio #1, brines
were acidified by the addition of 25 litres of fegtade HCI. After 1-2 moths of
fermentation, in botipatios ca.500 L of the fermenting brine taken from the bottof
the fermenters, and containing olive debris andenaditaline conditions, were
discarded. The fermenters were then refilled wiélst brine containing lactic acid and
HCI (usually 5 L each), being this a common praticlarge table-olive manufacturing
companies to avoid spoilage. Olives were all ofNfazanilla variety and no starter
culture was used. Fermentations were set up d@apgember 2010 and three
consecutive 50-ml samples were taken from eachefeten at approximately monthly
intervals, in coincidence with the initial, middied final stages of green olives
fermentation. As the harvesting of the fruits adl ae the processing capacity of these
industries had an obvious daily limitation, onliimaited number of fermentations could
be set up daily. Therefore, at each of the thregpsag dates, brine samples collected
from the fermenters at eaphatio felled into a range of time after brining. More
specifically, fermentation had taken place for 1L4o(first two weeks), 35 to 48 (5th to
7th week), and 69 to 72 (10th to 12th week) datey &fining, for sampling points #1, 2
and 3, respectively. Samples were added glycertiiadinal concentration was 20 %

(v/v) and stored at -80°C until use.

2.2. Isolation of microorganisms.

Aliquots of samples stored at -80°C were defrosb@m temperature, serially
diluted in 0.1 % (w/v) peptone water and extendeduplicates onto agar plates of
culture media. Five different culture media weredim this study: Brain Heart Infusion
(BHI; Biokar Diagnostics, Beauvais, France) supmatad with 0.05% L-cysteine
(AppliChem, Darmstadt, Germany); de Man-Rogosaq8héVIRS; Biokar
Diagnostics) supplemented with 0.02 g/L bromophéhat (AppliChem) and L-
cysteine (MRS-BPB; Lee and Lee, 2008); Reinforctxsttidial Medium (RCM;

Biokar Diagnostics); and MacConkey Broth Purpleof@ir Diagnostics). Seeded plates
were incubated anaerobically at 30 °C for threessdeycept for RCM, when seven-day
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incubations were used. For anaerobic incubationgsgd a DG250 Anaerobic
Workstation (Don Whitley Scientific Ltd., Shiplewest Yorkshire, UK), with a gas
mixture consisting of 10% #10% CQ-80% N.. Glucose-Yeast Extract Agar
supplemented with oxytetracycline (0.1 g/L) (OGY#gssel et al., 1962) was
incubated aerobically at 30 °C for 2 days. Agar added to the broth media at 1.5 %
(w/v). Prior to spreading onto RCM agar plates, gl@siwere pasteurised at 75 °C for
15 min in a water bath. For further studies, alsimglony of each different morphotype
identified in each culture medium at every samppogt was selected from plates with
low counts, purified by repeated subculturing abhdesved under a phase-contrast
microscope (Olympus Optical Co., Tokyo, Japan)istitjuish its cell morphology.

For long-term storage, purified isolates were prnesgtat -80 °C in their culture medium
containing glycerol (20% v/v). All isolates werebgected to genotyping as described
below.

2.3. Molecular identification techniques.

Total DNA was extracted directly from coloniesthg rapid chloroform method
described by Ruiz-Barba et al. (2005). The same [@Xt#action, preserved at 4 °C,
was used for all subsequent molecular techniguaselks used in this study are
described in Table 1.

2.3.1. Genotyping by Randomly Amplified PolymorhivA (RAPD).

Microbial isolates were grouped by their cell Murlogy before strain
typification by the RAPD fingerprinting techniqu@enotyping was carried out by
RAPD using the primer OPL5 as described by Maldoradrragan et al. (2013). In the
case of coccus-shaped bacteria, primer ISS1lrewsassinstead. The resulting RAPD
profiles were normalized and analyzed for clustgrth the Bionumeric 7.0 software
package (Applied Maths, Sint-Martens-Latem, Belgiu@nly bands representing
amplicons between 150 and 5000 bp in size weredied in the analysis. Similarity
dendrograms were constructed by the UPGMA clugiariethod, using the band-based
Dice similarity coefficient. Similarity coefficier#0.80 was considered as a cut-off
value for isolates belonging to the same strainepgkesentative isolate of each RAPD

profile was selected for further characterization.

2.3.2. 16S rDNA sequence analysis of bacteriabtssl
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Representative bacterial isolates were identiftethe genus level and/or to the
species level by PCR sequencing aba500-bp fragment of the 16S rDNA gene, using
the primer pair plb16/mlb16. PCR conditions weredascribed by Delgado et al.
(2008). Briefly: initial denaturation at 96°C for03s, followed by 30 cycles of
denaturation at 96 °C for 30 s, annealing at 5@C30 s, and polymerisation at 72°C
for 45 s, plus a final polymerisation step at 726€4 min. MyTag DNA polymerase
(Bioline, London, UK) was used according to the ofanturer instructions. The
resulting amplicons were purified using a Nucleonspktract Il kit (Macherey-Nagel,
Duren, Germany) and sequenced at Newbiotechnic @allullos de la Mitacién,
Spain). The resulting sequences were used to sdarckimilarities in the relevant
databanks using the Nucleotide BLAST utility at theCBI web page
(http://blast.ncbi.nim.nih.gov/Blast.cgi) by limg this search to type strain®qtrez
guery" optior). The identities of the representative isolateseveketermined on the basis
of the highest scores (typicathp8%).

2.3.3. PCR amplification with species-specific m@im

Species-specific PCRs were performed for furthescranination when the
results of 16S rDNA sequence analysis were notgmow identify species belonging to
some bacterial groups. Species belonging td_th@antarumgroup, i.e.L. plantarum
L. pentosusand Lactobacillus paraplantarumwere distinguished using a multiplex
PCR assay with theecA gene-based primers paraF, pentF, planF and pREV as
described by Torriaret al. (2001). Species belonging to thactobacillus casegroup,
i.e. L. casei, Lactobacillus paracasand Lactobacillus rhamnosusvere distinguished
using a multiplex PCR assay with th& gene-based primers CAS, PAR, RHA and
CPR as described by Ventwtal. (2003).

2.3.4. 26S rDNA sequence analysis of yeast isolates

Representative yeast isolates were identifiedhto genus level and/or to the
species level by PCR sequencing of the D1/D2 donudirthe 26SrDNA gene
(Kurtzman and Robnett, 1998). For this purpose, R@Rlification of the 26S rDNA
gene using the universal primers NL1 and NL4 wadopmed as described by
Kurtzman and Robnett (1998). The resulting ampkcaere purified, sequenced and

analysed according to the criteria for the difféiaion of yeast species defined by
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Kurtzman and Robnett (1998), who considered a antyl higher than 99% to assign
an isolate to a yeast species after doing a BLASFch in the relevant data banks.

2.4. Physico-chemical analyses.

Titratable acidity, expressed as g/L lactic acamnbined acidity, expressed as
Eg/L NaOH, and pH were measured using a MetrohmTa{rOprocessor (Herisau,
Switzerland). Salt concentration was determinetttion with AQNG; and expressed
as % (w/v) NacCl.

2.5. Statistical analyses.

Total counts of microorganisms were expressechasrtean values of colony
forming units (CFU) per milliliter of brine basedh @uplicate analyses made for each
sample, including the standard deviation (SD) &f thean. The resulting values were
transformed to logarithmic values before statistaoelyses were performed. U Mann-
Whitney tests were applied to determine statidticagnificant differences between the
microbial counts in botpatiosat each sampling point and for each culture mesé.
The fermentation-time effect on averaged microbalnts recovered from each culture
media in bothpatios was tested using Friedman tests. These analysespgeformed
using the SPSS 21.0 statistical software (SPS$S@inicago, USA).

2.6. Biodiversity analyses.

Biodiversity was estimated through different alpleand beta indexes.
Menhinick’s index [(vn) was used to evaluate species richness. This irsdbased on
the presumed linear relationship between the spehness and the total number of
individuals. The Shannon-Weaver indeid’)( was used to estimate diversity and
reflected the amount of disorder in the speciesidigion of the observed community.
Evenness, or equitability, was measured througlo®Pgindex ). This index provided
a sense of how evenly the different species cartegth to the Shannon-Weaver
diversity index. Simpson’s reciprocal index )/measured the number of equally
common species that will produce an observed Sinipsadex D), which measures
dominance. These alpha indexes were used to difpdaghanges in the communities
during fermentation, allowing also comparisons agd¢inem. They were calculated

according to the following equations (Magurran, 200
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Ivn= SAN (1)
H =-3pi* In(p) (2)
J=H/InS (3)
1/D = 1/5p? (4)

wherep; is the relative abundance of spedieSis the number of species present ahd
is the total number of individuals. Beta indexesreveéised to evaluate pairwise
similarities between whole microbial communitieshigh were determined by
calculating Jaccard's similarity coefficiersj)( and Whittaker’'s index of association
(SwW (Whittaker, 1952) using the following equatiohegendre and Legendre, 1998):

Sj=W/(al +a2 -W) (5)
whereW s the number of species shared between populatiamsl 2, whileal anda2
are the total number of different species in popais 1 and 2, respectively;

Sw=1 b1 -bi2/2(6)

where bl and b2 are the percentage contributiotiseoith species in samples 1 and 2,
respectively. Both Jaccard (presence-absence) dntdlakér (proportional) indexes are
measures of the similarity between communitigmti0y, with values from O
(completely different) to 1 (identical). These irde were used to compare changes in
communities over time and between communities elt é&&mentation stage. Diversity
indexes were calculated manually. Mean values aadiversity indexes among time
periods were compared through the ANOVA of repeatedsuregn each community.
Comparisons of mean values of alpha diversity iedeketween communities were
done by t-Student's test. Bartlett drelvene tests were used to check for homogeneity
of the variance, while Kolmogore8mirnov test was used to check for normality. When
it was necessary, values were transformed beferpdhametric test was carried out. To
estimate diversity conservatively, singletons (ggeeepresented by just one individual)
as well as unidentified microorganisms were remgwedr to community analyses, as
suggested by Zhoet al (2013).
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3. Reaults

3.1 Physico-chemical analyses.

NaCl concentration in the brines reached an dgjuilin during the first week of
fermentation, showing values of 7.76 (x0.24) ar885+0.29) % (w/v) in the
fermenters apatio#1 and #2, respectively. Values of pH evolved difeierent manner
in bothpatios for in patio #1 brines were acidified since the beginningpatio #1, pH
values were 5.7 (x0.67), 4.0 (£0.1) and 3.91.0(2D.While inpatio #2, pH values were
7.43 (x0.53), 4.3 (x0.11) and 4.29 (+0.14) at tn&al, middle and final fermentation
stages, respectively. Titratable acidity at thalfstage was 1.14 g/L (x0.08) and 0.78
g/L (x0.08), while combined acidity was 0.14 (+0.@d 0.16 (x0.01) Eq/L fgratio
#1 and #2, respectively. All these parameters wensidered normal for this table olive

preparation.

3.1. Microbiological analyses.

Averaged total counts of microorganisms isolatethe different culture media
used in this study are shown in Table 2. Significhfierences could be found between
bothpatiosin most culture media and fermentation stageshétigount numbers were
found inpatio#2 in MRS-BPB, BHI and MacConkey in most casexdntrast, higher
counts were found in OGYE (mostly yeastpatio #1 at the initial and middle
fermentation stages. Nevertheless, total numbsricfoorganisms isolated in MRS-
BPB (mostly LAB) and OGYE were not significantlyffeirent at the final stage of the
fermentation (Table 2). Microorganisms isolatedRidM at the middle and final stages
of the fermentations were so scarce that no statigests could be properly carried out,
although counts were very similar in bg#tiosat every stage. Considering the
dynamics of microbial populations along the timgn#gicant differences in all culture
media, except in OGYE, could be foundpiatio #2, while such time effect could only
be detected in the evolution of microorganismsaiteal in MRS-BPB and OGYE from
patio #1.

3.1 Bacterial diversity and dynamics

10
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Bacterial species isolated as well as the numbisotates along the Spanish-
style green olive fermentation in two differgrgtiosare shown in Table 3, where they
are arranged regarding their abundance. Also elagive abundance of bacterial
species found in each of the 20 fermenters undelysat the three fermentation stages
considered, is shown in Fig. 1. A total of 37 diffiet species were found, belonging to
18 different bacterial genera. The vast majorityes@ram positive bacteria, i.e. 76%
and 80% irmpatio#1 and #2, respectively. It was noteworthy thejuitous presence of
the specie&. pentosusn all 20 fermenters under study at virtually gvsampling
point (Fig. 1). Seven other species could be alsad in bothpatios i.e.Lactobacillus
paracollinoides/collinoided_actobacillus parafarraginisLactobacillus rapi,
Pediococcus ethanolidurans, StaphilococspsPediococcus parvulusnd
Paenibacillus illinoisensis/xylanilyticu able 3). In addition, all these species, except
P.illinoisensis/xylanilyticuswere isolated at the same fermentation stages lhath
patios,and especially at the final stage (Table 3). Wjghtal 6 species found, it is
remarkable the prevalence of LAB in bqiatios ca. 92% and 97% of the isolates in
patio#1 and #2, respectively, and 72% and 93%, resgdgtiwhen removing the.
pentosussolates. The maximum number of distinct specias feund at the initial
stage of fermentation, so that 22 out of the 37dvad species found were isolated only
at this occasion, 13 of them frgpatio #1 and 8 of them frorpatio #2, being..
pentosughe only common species at this stage. Nevertheheany of the species
which were only isolated at the first stage coultyde detected in one or two of the
fermenters in eacpatio. The exceptions were the spedggerococcus casseliflavus
Vibrio furnissii/fluvialisandWeisella paramesenteroides/helleningatio #1, and
Aerococcus viridans/urinaeeqandEnterococcus saccharolyticus patio #2, which
were isolated from most fermenters at epatio (Table 3). In contrast, a few species
could be detected only at the final stage of feriawgon: Pantoea agglomerana patio
#1, andL. paracollinoides/collinoidedPediococcus ethanolidurardL.
parafarraginisin patio #2. While onlyL. pentosugould be isolated from all of the
fermenters irpatio#1,P. parvulusandE. saccharolyticusapart fromlL. pentosus
were isolated from all fermenterspatio #2. Other species which were isolated from 6
or more fermenters at eaphtio wereL. paracollinoides/colinoided.. parafarraginis
V. furnisii/fluvialis Staphilococcusp. andV. paramesenteroides/hellenicepatio #1,

andA. viridans/urinaeequandL. paracasein patio #2.

11
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Regarding the counts of each species, with theptian ofA.
viridans/urinaeequandE. saccharolyticusn patio #2, those which reached the largest
concentrations in the brines (more than €&U/mI) were isolated at the middle and
final stages of fermentation (Table 3). Again, pnevalence of the speciespentosus
was clear but other species reached high count exanbhis was especially true for
most LAB species (lactobacilli, pediococci and emtecci), but also for
Staphylococcusp. (Table 3). Species belonging to the enterebaceae group were
all isolated only at the initial stage, exceptRoragglomeranst the final stage, being
their counts as well as the number of fermentel@ntsed by this group extremely low.

Authors that, to our knowledge, have cited théaison or DNA amplification of
any of the bacterial species found in this studiee in Spanish-style or any other table
olive preparations, are referenced in Table 3.tAltof 20 bacterial species, i.e. more
than 50%, have been isolated for the first timenfi®panish-style green olive
fermentations in this study, while 17 had not bdescribed before in any table olive
preparation. The geneBxachybacterium, Paenibacillus, Sporolactobacillus,
ParacoccusandYersiniahad not been cited before from any table olivgaration to

our knowledge.

3.2 Yeast diversity and dynamics

Yeast species isolated along the Spanish-stykengsive fermentation in the
two patiosof this study, arranged according to their abuodaare shown in Table 4.
The relative abundance of yeast species foundadh efthe 20 fermenters under study,
at the three fermentation stages considered, \srshoFig. 2. Taking into account that
24 isolates fronpatio #1 could not be assigned to any specific specitssanminimum
of confidence, a total of 12 different species werend, belonging to 7 different yeast
genera. More yeast isolates and species diversisyfaund irpatio #1 than inpatio #2,
especially at the initial fermentation stage (TableThree yeast species could be
isolated from botlpatios i.e. Saccharomyces cerevisiae, Candida thaimueangansis
Hanseniaspora spbeing also detected at similar fermentation staljecontrast with
the results obtained for bacteria, two yeast spesgpeared to somehow dominate the
yeast microbiotaC. thaimueangens&ndS. cerevisiaéTable 4). These two species
were isolated from most fermenters in bp#tiosat most fermentation stagés.
cerevisiaeappeared to be dominant at the initial and midtiges, whileC.

thaimueangensimcreased its presence as fermentation progresgedominated the
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final stage. Regarding their relative abundancantowere especially high for
Saccharomycesp. (Table 4)lssatchenkia orientaliand different species @fandida
were also very abundant in most fermentengadio #1, where they were isolated
mostly at the first fermentation stage (Table 4.fér bacteria, authors that have cited
the isolation or DNA amplification of any of theast species found in this study are
referenced in Table 4. To our knowledge, the spdcandida butyri/asserand
Rhodotorula mucilaginoshad not been described before from Spanish-stgkeng

olive fermentations, while the specigaturnispora mendoncdmd not been cited

before from any table olive preparation (Table 4).

3.3 Biodiversity analyses.
3.3.1 Alpha diversity indexes.

Total bacterial species richness found was idahticeachpatio once singletons
were removed, i.e. 15 species (Table 3), althobghfigure was lower when looking at
each of the three fermentation stages consideralal€T3) or a particular fermenter (Fig.
1). Species richness was evaluated through the idiek!s diversity indexIn), which
is shown in Fig. 3 (panel A). This index showecdeardase in its values as fermentation
progressed ipatio #1, with statistically significant differences tseen the initial and
final stages of fermentation (Fig. 3). No signifiga differences, though, were found in
patio#2 or between botpatiosat any fermentation stage. Bacterial diversity |@sted
by the Shannon-Weaver indet'), is shown in Fig. 3 (panel B). Although the vadl o
this index became lower as fermentation proceeaedjgnificative difference was
found neither through the fermentation stages inpatio nor between botpatios
Maximum values were always reached at the initege. The decrease in the values of
theH' index inpatio #2 can be explained by a parallel decrease ofressnin the
distribution of the species found, as indicatedh®yPielou's index]() (Fig. 3, panel C).
Actually, the difference of evenness is statishjcaignificant between the initial and
final stages of fermentation patio #2. Dominance, as expressed by Simpson’s
reciprocal index (D) (Fig. 3, panel D), followed a pattern similaritacterial diversity
evaluated trough the Shannon-Weaver index (FigaBel B). Again, no significant
difference was found between bgtaitiosat any stage of the fermentation. However, a
significant difference could be found between thigal and final stages ipatio #2.

This is due to the fact that Simpson’s reciprondex put more weight on most

abundant species, being more influenced by theegadflevenness indexes than those
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of species richness. This explains the fact thtitpagh there is an increase in species
richness irpatio #2 along fermentation time, these species areehemsly distributed,
producing a statistically significant change in tiadure of dominant species. In
contrast, irpatio #1 evenness is quite similar across the threedietation stages so
that the decrease in the values of Simpson’s recgbindex is again due to loss of
species richness.

Yeast species richness was quite lower than baktere, being also quite
different in the twgoatiosunder study (Table 4). The low number of specekaied
when sampling any fermenter along the fermentdtrae made advisable to calculate
diversity indexes globally for each fermenter, net considering the fermentation
stages. The values of these indexes are showiy i FSignificative differences
between botlpatioswere found in the values for the Shannon-Weay#t)s Pielou's
(J) and Simpson's reciprocdl/D) indexes, being these values always high@aiio
#1 (Fig. 4). However, no significant difference wasnd regarding species richness
estimated through Menhinick's inddx{). This is the result of an unequal amount of
sampling effort in both patios, for yeast countSa@&YE medium were significantly
lower (Table 2) and its species composition legsrde (Table 4) ipatio#2 at the
initial and middle fermentation stages.

3.3.2 Beta diversity indexes.

Pair-wise comparisons of microbial community cosipon using Jaccard and
Whittaker beta diversity indexes for bacteria ardst are shown in Table 5. Regarding
bacteria, the similarity between both communitigs patio #1 and #2, became higher
as fermentation went on from the initial to theafifermentation stages. Values
obtained for Jaccard's coefficient were always lotlvan those for Whittaker's index,
indicating that species shared by bp#tioswere also the most abundant. This was
supported by the fact that the spediepentosusctually dominated all along the
fermentation in botlpatios(Table 3 and Fig. 1). In addition, Jaccard's gokeifit
allowed us to perceive the ecological successidharspecies structure of each
community patio) over time. Changes in the species compositior\gexdual, being
more similar this composition at the middle ancfifermentation stages. Finally,
Whittaker's index values were higher f@atio #1 than fopatio #2, a result that is a
consequence of a change in the species distributipatio #2 between the initial and

middle stages of the fermentation. More specificall pentosuss the co-dominant
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species together withA. viridans/urinaeequduring the initial stage of fermentation in
this patio, while L. pentosuslone is the dominant species for the rest of the
fermentation (Table 3 and Fig. 1).

In contrast to the results showed by the bacteaaimunity, maximum
similarity for yeast community composition betwdmath patioswas found at the
middle stage of fermentation (Table 5). As for leaet an ecological succession was
also observed over time, with a species compositiore similar at the middle and final
stages of fermentation. In the casepafio #2 the change in the yeast species
composition is complete between the initial ana@lfstages, as denoted by the 0.00
value for both Jaccard's and Whittaker's indexebl@5).

4. Discussion

The aim of this study was to update our knowleslg¢he microbiota associated
to table-olive fermentations produced through thartish-style procedure. To
accomplish this task we have used both, classicomilogical (culture dependent)
techniques and modern molecular techniques foideaification of the different
bacterial and yeast species isolated. In addibangoal was not only to describe this
microbiota and its evolution (dynamics) along tligeofermentations, but also to
recover the microbial diversity associated to traslitional food fermentation as well as
to preserve it for further biotechnological purpgdeor this reason, our sampling
strategy included the recovery of all morphologiyales appearing in the different
culture media used, instead of the more usual tarigicking of the isolated colonies.
In this sense, it was of the greatest value theotisemodified MRS-agar culture
medium which included bromophenol blue as a diso@tmg agent of the actual
metabolism/morphology of the isolates growing athis medium, as proposed by Lee
and Lee (2008)(see an example in the supplemehigry1).

Spanish-style green olive fermentations appearée tdominated by the species
L. pentosusThis observation is not novel, for other authuase reported this fact
previously (de Castro et al., 2002; Ruiz-Barba dinténez-Diaz, 2012; Hurtado et al.,
2012; Heperkan 2013, among others). Furthermoi®g rémarkable the ubiquitous
presence of this species in all fermenters, at umediigh counts, since very early at the

first stage of the fermentation. Therefore, ita$ surprising that 68% of the total

15



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

isolates belonged to this species. Apart ftarpentosusa remarkably high number of
LAB species, 15 in total, were isolated. Some ekthspecies had not been described
before from Spanish-style table-olive fermentatjoresW.
paramesenteroides/hellenica, P. parvulassaccharolyticus, L. rhamnosasdsS.
inulinus/terrae Actually, two of these species, iEe. saccharolyticuandsS.
inulinus/terrae had not been cited before from any table-olivappration. As many of
these LAB species have been described as exeding probiotic effect (Fontaret

al., 2013), Spanish-style olive fermentation brinesewevealed as a valuable source of
potentially probiotic strains. In additioEnterococcuspecies appeared to have a role at
the crucial initial stage, witk. casseliflavusndE. saccharolyticugn patio #1 and #2,
respectively. This observation was not novel, fdually De Castro et al. (2002)
described the use &. casseliflavusindL. pentosuss mixed starter cultures for
Spanish-style green olive fermentation. Such use lvased on the high-pH tolerance
of Enterococcuspecies as well as its LAB character. Finally, tyutte abundant and
ubiquitous bacterial species were isolated atrili@l stage of the fermentation whose
16S DNA showed similarity to the spech#brio furnisii/fluvialis andE.
saccharolyticusrespectively. However, the percentages of sinylgd 97%) of the

16S DNA amplicon studied here, as well as othenptypic (sugar metabolism) and
genetic characteristics (DNA-DNA similarity) whittave been investigated so far,
suggested that these could constitute two noveliespeCurrent efforts in our laboratory
are focused on this purpose.

Yeast species were less abundant than bactethajrboounts and number of
species. Two yeast species appeared to be inhertdrg Spanish-style green olive
fermentation in botlpatios i.e.S. cerevisia@andC. thaimueangensi¢n a recent study
on the yeast diversity of table-olive fermentatioBautista-Gallego et al. (2011)
described the speci€andida tropicalisandPichia galeiformisas dominant in
Spanish-style Manzanilla-variety olive fermentaton a manufacturing company
which is, actually, geographically quite closepttio#1 studied here. Although these
authors did not find. cerevisiagthey described the isolation Gf thaimueangensis,
but restricted just to the final fermentation stadele obtaining low number of isolates
(12% of the yeast isolates at that stage). As &atdyia, it is very interesting to find
yeast species not cited before either in Spanigh;ste.C. butyri/asserandR.

mucilaginosaor in any table-olive preparation, as it is thsewithS. mendoncad his
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fact reinforces the idea of table-olive brines @®arce of novel yeast strains with
desirable biotechnological properties.

After evaluating microbial diversity through diféat alpha and beta indexes,
our results showed again that this food fermentattas dominated by a single species,
l.e. L. pentosusTherefore, it was not unexpected that the actalales of different
diversity indexes were relatively low, especialljen singletons were removed from
the analyses. For bacteria, although not alwaysfgigtive differences could be found,
maximum diversity was displayed at the initial femmtation stage. Evenness, i.e. the
frequency distribution of the different speciesoatlecreased along the fermentation.
This was due to the dominance exerted by the specmentosusalthough statistically
significant differences could only be observegatio #2. This effect was most
probably due to the change in the dominant spémesthe initial stage, i.6A.
viridans/urinaeequito the middle and final stages, dominated_bgentosusNo
significant differences could be found in any dsigrindex between botpatiosat any
fermentation stage, suggesting that the procegsite "robust” once properly started.
Although diversity was very similar in boffatios differences could be found in the
actual composition of the "accessory" microbiot, that accompanying pentosus
species. Nevertheless, most of this "accessorytomiata was composed of other LAB
and could represent a sort of "watermark” of aipaldr patio. Similar studies on
consecutive olive fermenting seasons at the gatiescould prove or discard such a
hypothesis. On the other hand, yeast diversitywash lower than bacterial one, with
significative differences between bgihtios Diversity, evenness and dominance
indexes were all higher atio #1. This fact did not appear to have an effedhen
outcome of the fermentation, estimated throughptiesical and chemical analyses used
in this study. As other authors have describecdbrifit yeast species compositions
(Bautista-Gallego et al., 2011), especially regagdhe dominant species, no critical
role could be predicted for this microbial groupgSpanish-style olive fermentation
apart from its not-yet demonstrated, but suggestfidence on the organoleptic
properties of the product (Arroyo-Lépez et al., 800

We believe that this microbiological study is guiepresentative of the Spanish-
style green olive fermentation because of the seleof two large, well-established
and traditional table-olive manufacturing comparirethe geographical area of
maximum world production. In addition, the numbed @apacity of the fermenters

from which samples were obtained, twenty 10-toramménters representing. 200
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tonnes of fermenting table olives, contributeddasistent and comprehensive results
which will no doubt update our knowledge on thigportant food fermentation.
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L egendsto Figures.

Figure 1. Bacterial species frequency in ten fermenteth®fermentation yardgatio)
# 1 (panel A) and #2 (panel B). For each fermeiftem left to right, the three bars
represent the bacterial species frequency at ttialjimiddle and late stages of

fermentation, respectively.

Figure 2. Yeast species frequency in ten fermenters ofdireentation yardpatio) # 1
(panel A) and #2 (panel B). For each fermentemfteft to right, the three bars
represent the yeast species frequency at thel imtiddle and late stages of

fermentation, respectively.

Figure 3. Diversity indexes for bacteria in two fermentatigards patios along the

three (initial, middle and final) stages of Spargsyle green olive fermentation. Panel
A: Menhinick's diversity index (},); panel B: Shannon-Weaver's diversity index (H");
panel C: Pielou's evenness index (J'); panel DpSam's reciprocal index (1/D). Ten
fermenters were studied at egutio (n=10); bars indicate standard errors; * indicaes
significant difference (p<0.05). Singleton spediase been removed from the analyses.

Figure 4. Diversity indexes for yeast in two fermentati@ards patiog processing
Spanish-style green olives. Panel A: Menhinickiediity index (hn); panel B:
Shannon-Weaver's diversity index (H'); panel CldRi's evenness index (J'); panel D:
Simpson's reciprocal index (1/D). Ten fermentersevgtudied at eagbatio (n=10);
bars indicate standard errors; * indicates a siggnitt difference (p<0.05). Singleton

species and unidentified yeast have been remowvedtfie analyses.
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Supplementary material - Figure L egend

Figure S1. Colonies of bacteria growing onto MRS-BPB, a modified MRS-agar which
included bromophenol blue (Lee and Lee, 2008) as a discriminating agent of the actual
metabolism of the isolates.



Table 1. Primers used in this study.

Primer  Sequence (5'- 3') Reference

OPL5 ACGCAGGCAC Maldonado-Barragan et al., 2013
ISS1lrev GGATCCAAGACAACGTTTCAAA Veyrat et al., 1999
plb16 AGAGTTTGATCCTGGCTCAG Kullen et al., 2000
mlb16 GGCTGCTGGCACGTAGTTAG Kullen et al., 2000
paraF GTCACAGGCATTACGAAAAC Torriani et al., 2001
pentF CAGTGGCGCGGTTGATATC Torriani et al., 2001
planF CCGTTTATGCGGAACACCTA Torriani et al., 2001
pREV TCGGGATTACCAAACATCAC Torriani et al., 2001
PAR GACGGTTAAGATTGGTGAC Ventura et al., 2003
CAS ACTGAAGGCGACAAGGA Ventura et al., 2003
RHA GCGTCAGGTTGGTGTTG Ventura et al., 2003

CPR CAANTGGATNGAACCTGGCTTT Ventura et al., 2003
NL1 GCATATCAATAAGCGGAGGAAAAG Kurtzman and Robnett998
NL4 GGTCCGTGTTTCAAGACGG Kurtzman and Robnett, 1998




Table 2. Averaged microbial counts along Spanigle gireen-olive fermentations in
two fermentation yardgétios) obtained in the culture media used in this study.

Culture medium Fermentation stage Patio 1 Patio 2 P-valué

MRS-BPB Initial 3.78 (0.74) 6.73(0.69) 0.000
Middle 5.78 (0.84) 7.33(0.23) 0.000
Final 6.19(0.79)  6.42(0.20) RIS

Sig?3 * *

BHI Initial 4.42(0.91) 6.60(0.70)  0.000
Middle 5.34 (0.89) 7.38(0.35) 0.000
Final 5.46(0.82) 6.37(0.30) 0.006

Sig. *

MacConkey Initial 4.18(1.27) 2.06(1.99) 0.015
Middle 4.68(1.26) 6.38(0.44) 0.001
Final 3.29(2.12) 5.47(0.41) 0.013

Sig. *

RCM Initial 1.24(0.86) 1.19(1.12) NS
Middle 0.51(0.82)  0.37(0.78) ° -
Final 0.34(1.08) 0.17(0.54) -

Sig. - -

OGYE Initial 3.83(0.43) 2.47(1.25) 0.010
Middle 3.56(1,19) 2.10(1.69) 0.045
Final 2.62(1.04) 2.74(0.52) NS

Sig. *

IStatistical significance considering baitios at each fermentation stage (U Mann-
Whitney's test; for B0.05).’°Mean log CFU/ml (standard deviation), n=1%%ig.:
statistical significance of time effect in the fesmation within eacpatio (Friedman-
test; * for P<0,05)*NS, not significant differencé:, not enough data to carry out the
statistical test.



Table 4. Yeast species isolated along Spanish-gtglen olive fermentations in two different ferrmagitn yards (patios").

Patio 1 Fermentation stage TdtaNo.  Countrange References

Yeast species initial middle final  isolates Férn{log CFU/ml)  Spanish-style  Other
Saccharomyces cerevisiae z 12 3 17 9 1-5 a-e e-q
Issatchenkia orientalis 17 0 0 17 8 1-2 a-c,m, r n,q,s,t
Candida tropicalis 12 0 0 12 6 1-2 a,c,d, m m
Candida thaimueangensis 1 4 7 10 7 1-2 m m
Candida butyri/aaseri 9 0 0 9 6 1-2 j»n,u
Rhodotorula mucilaginosa 0 0 4 4 4 1 j,n,p,v,w
Saturnispora mendoncae 3 0 0 3 3 2

Hanseniaspora sp® 3 0 0 3 3 1-2 m g,!
Candida parapsilosis* 0 0 1 1 1 1 a, b, dr h,i,u
Other yeast sp 21 3 0 24 9 1-4

Total isolate$ 68 19 15 102

Species richness 8 3 4 10

Species richness w/o singletons 8 3 3 9

Patio 2 Fermentation stage TdtaNo.  Countrange References

Yeast species initial middle final isolates Férn{log CFU/ml)  Spanish-style  Other
Candida thaimueangensis 0 2 17 19 10 1-2 m m
Saccharomyces cerevisiae 8 2 0 10 8 1-4 a-e e-q
Kluyveromyces lactis/marxianus 0 4 0 4 4 1 m i,u
Pichia manshurica/membranifaciens 0 1 3 4 4 1 a-d, m j-0,9,S,t,w-z
Hanseniaspora sp® 1 0 0 1 1 1-4 m g,!
Candida glabrata* 1 0 0 1 1 1 a,c i, v
Total isolate$ 10 9 20 3y

Species richness 3 4 2 6

Species richness w/o singletons 2 4 2 5

Total isolates of a specific yeast specféjmber of fermentors, out of a total of ten, fromieh a specific yeast species was isolated
in eachPatio; 3Colony count range at which that yeast speciesisuated? Bibliographic reference which cited that particufeast species
in Spanish-style and/or other table olive preparati° Number of isolates of that yeast species at #maipte point®The most homologous
species werélanseniaspora opuntiae, H. meyeri, H. lachancei andH. uvarum; ‘These yeast isolates could not be adscribed to any
specific yeast specie$Total yeast isolates at each sampling pdifttal yeast isolates in eaffatio. Key to references: a, Gonzalez-
Cancho, F. 1963; b, Gonzalez-Cancho, F. 1965; nz@ez-Cancho, F. 1966a; d, Gonzalez-Cancho,6l4%®, Garrido-Fernandet
al., 1997; f, Marquinat al., 1992; g, Arroyo-L6peet al., 2006; h, Mourad and Nour-Eddine, 2006; i, Hernaretial., 2007; j,
Nisiotouet al., 2010; k, Rodriguez-Gémet al., 2010; I, Silveet al., 2011; m, Bautista-Gallegs al., 2011; n, Muccilliet al., 2011; o,
Abriouelet al., 2011; p, Alvest al., 2012;q, Golomlet al., 2013;r, Mraket al., 1956;s, Gonzalez-Canclebal., 1975;t, Doulgerakét
al., 2012;u, Hurtadet al., 2008;v, Campaniellet al., 2005;w, Franzetit al., 2011;x, Oliveiraet al., 2004; y, Cotoret al., 2006; z,
Chamkhaet al., 2008. *Species which have been considered simgeaad have been removed from the diversity analyse



Table 5. Pair-wise comparisons of microbial comrhyucdmposition
values in Spanish-style green olive fermentatiagisgiJaccard and
Whittaker beta diversity indexes.

Beta diversity indexes

Pair-wise comparisons Bacteria Yeast

Patio Fermentation stage §° W S Sw

1 Initial/Middle 0.25 0.67 0.29 0.06
1 Middle/Final 0.50 0.88 0.67 0.46
1 Initial/Final 0.14 0.66 0.25 0.06
2 Initial/Middle 0.08 0.39 0.20 0.22
2 Middle/Final 0.64 0.86 0.50 0.33
2 Initial/Final 0.07 0.39 0.00 0.00
1% Initial 0.08 0.39 0.29 011
1/2 Middle 0.15 0.71 050 044
1/2 Final 0.64 0.81 0.25 0.50

3Jaccard's coefficientWhittaker's index of associatiof€omparison
of the community composition between both patiaheatdifferent
fermentation stages.



Table 3. Bacterial species isolated along Spartide-green olive fermentations in two differentrfemtation yards @atios").

Patio 1 Fermentation stage TdtalNo.? Countrang® References

Bacterial species initial _middle final  isolaté®rm. (log CFU/ml)  Spanish-style  Other
Lactobacillus pentosus 748 98 135 307 10 1-6 a-f d,e,g-n
Lactobacillus paracollinoides/collinoides 0 20 13 33 8 1-5 f i,l,0
Pediococcus ethanolidurans 0 3 18 21 4 1-5 f k
Enterococcus cassdliflavus 11 0 0 11 5 1-2 a h
Lactobacillus parafarraginis 0 4 6 10 7 1-5 f

Vibrio furnissii/fluvialis® 9 0 0 9 6 2-3

Saphylococcus sp! 3 2 2 7 6 1-5

Weissella paramesenteroides’hellenica 7 0 0 7 6 1 h
Lactobacillus plantarum 5 0 0 5 2 1-3 dep-r d,g,h,k,I;n,0,s,t
Pediococcus parvulus 0 0 4 4 2 3-5 i, I, m
Clostridium xylanovorans 3 1 0 4 4 1

Propionibacterium acnes 0 0 3 3 1 4 u

Escherichia sp® 2 0 0 2 1 1 v, W

Lactobacillus rapi 0 0 1 1 1 3 f

Pantoea agglomerans* 0 0 1 1 1 3 [
Bacillus circulans* 1 0 0 1 1 1

Bacillus weihenstephanensi s/mycoides* 0 1 0 1 1 1

Brachybacterium muris* 0 1 0 1 1 1

Clostridium jejuense* 1 0 0 1 1 1

Clostridium sartagoforme* 1 0 0 1 1 1

Clostridium schirmacherense/argentinensex 1 0 0 1 1 1 X X
Enterobacter hormaechei* 1 0 0 1 1 1

Enterobacter radicincitas/oryzae* 1 0 0 1 1 1

Enterobacter sp’ * 1 0 0 1 1 1 v, W,y
Paenibacillusillinoisensigixylanilyticus 0 1 0 1 1 1

Total isolate¥’ 121 131 183 435

Species richness 15 9 9 25

Species richhness w/o singletons 8 7 8 15

Patio 2 Fermentation stage TotaNo.? Countrangé  Referencées

Bacterial species initial middle final isolatt®rm. (log CFU/ml)  Spanish-style = Other
Lactobacillus pentosus 48 109 168 325 10 1-7 a-f d,e,g-n
Aerococcus viridang/urinaeequi 55 0 0 55 9 1-5 z

Pediococcus parvulus 0 15 19 34 10 4-6 jyl,m
Lactobacillus paracasel 0 18 2 20 7 3-7 d h,I,n st
Enterococcus saccharolyticus® 16 0 0 16 10 2-6

Lactobacillus coryniformis 0 4 6 10 5 4-6 b h, k, |
Lactobacillus rhamnosus 0 2 4 6 3 4-5 h, s, t
Saphylococcus sp! 0 1 5 6 5 1-5

Lactobacillus rapi 0 3 2 5 4 4-6 f

Lactobacillus paracollinoides/collinoides 0 0 4 4 4 4-5 f i,l,0
Pediococcus ethanolidurans 0 0 2 2 1 4 f k
Paenibacillus sp*? 2 0 0 2 2 1

Foorolactobacillus inulinus/terrae 0 2 0 2 1 1

Lactobacillus parafarraginis 0 0 1 1 1 4 f

Lactobacillus paraplantarum* 1 0 0 1 1 3 e d, g,k n
Enterobacter kobei* 1 0 0 1 1 2

Escherichia coli* 1 0 0 1 1 2 vV, W

Paracoccus carotinifaciens® 1 0 0 1 1 2

Paenibacillusillinoisensigixylanilyticus 1 0 0 1 1 1

Yersinia enterocolitica* 1 0 0 1 1 1

Total isolate¥ 127 154 213 494

Species richness 10 8 10 20

Species richness w/o singletons 5 8 10 15

Total isolates of a specific bacterial specféjmber of fermentors, out of a total of ten, fromish a specific bacterial species was isolatedazhe
patio; *Colony count range at which that bacterial spesi@s isolated® Bibliographic reference which cited that partictacterial species in Spanish-
style and/or other table olive preparatiotdéumber of isolates of that bacterial species atshmple point®The relatively low £97%) 16S rDNA
homology of these isolates with other bacteriakcsgs in the data banks could indicate that theghthe novel specie§The most homologous species
were Staphilococcus epidermidis, S. saccharaliticus, S. capitis andS. caprae; 8The most homologous species wEgeherichia coli, E. senegalensis andE.
fergusonii; ®The most homologous species wEnterobacter cloacae, E. sacchari, E. kobei andE. radicincitas; °Total bacterial isolates at each sampling
point; 1*Total bacterial isolates in eaphtio; **The most homologous species wBeenibacillus taichungensis, P.tundrae, P. tylopili, andP.
barcinonensis, P.amylolyticus. Key to references: a, De Cas#tal., 2002; b, Apontet al., 2012; c, Ruiz-Barba and Jiménez-Diaz, 2012; d, Caalget
al., 2013; e, Bautista-Galleg# al., 2013; f, Montafiet al., 2013; g, Hurtadet al., 2008; h, De Belligt al., 2010; i, Abriouekt al., 2011; j, Franzetit
al., 2011; k, Doulgerakit al., 2012; |, Randazzet al., 2012;m, Abriouekt al., 2012; n, Argyrietal., 2013; o, Chamkhet al., 2008;p, Ruiz-Barbat
al., 1991;q, Ruiz-Barba and Jiménez-Diaz, 1994;r, Ruib@and Jiménez-Diaz, 1995;s, Ballenal., 1973; t, Mourad and Nour-Eddine, 2006; u,
Gonzalez-Cancho Ft al., 1980; v, Borbollay Alcala et al., 1960;w, GorezalCancho, 1963;x, Pereigal., 2008;y, Bevilacqua et al., 2010; z,
Gonzalez-Cancho and Duran-Quintana, 1981. *Spedigshvinave been considered singletons and haverkemved from the diversity analyses.



Patio 1

W Brachybacterium muris

W Bacillus weihenste phanensisimycoides
I Bacillus creulans

W Panioea agglomerans

S 100, mm Escherichia sp.
< I I I I I I I I i I I W Frterobacter radicincifasbryzae
> 904 I I mm Enterobacter sp.
g 80 I I I I I I W Frterobacter hormaechei
g I I Propionibacferium acnes
o 704 I I Clostridium xylanovorans
e I Clostridium schirmacherense/argentinense
ha 60+ | I . Clostridium sartagoforme
% 50 I mm Clostridium jejuense
‘O Faenibacillus ilinoisensisdylanilytious
8_ 404 Staphylococous sp.
%) 304 Vibrio furmissiifiuvialis
T Weissella paramesenteroides/hellenica
= 204 m Enterococcus casseliflavus
o mm Pediococcus parvulus
% 104 mm Pediococcus ethanolidurans
m 04 W | 5ciobacillus rapi
1 4 5 6 9 10 Lacto bacr::'.'us parafa rrggr'ﬁ is o
B | 5ciobacillus paracolinoidestollinoides
Fermenter Lactobacillus plantarum
W | 5 ciobacillus pentosus
i aracoccus carotinifaciens
Patio 2 — tinif
— == Escherichia coli
R 100qp = 1 I 0 q 0 = Frferobacter kobei
; 00 {H M I I I 1 I I'Yersinia enterocolifica
o L |Pagnibacillus sp.
GC) 80+ I |Paenibacillus illinoisensisbylanilyticus
=] 704 I | Staphylbcocous sp.
8 |1Aerococcus virdan surinaeequi
“ 60 S Enterococcus saccharolyticus
8 504 R Pediococcus parvulus
5 == Pediococcus ethanolidurans
(] 40 W Snorolactobaallus inulinusfterae
% 204 ILactobacillus coryniformis
= ILactobacillus hamnosus
= 201 === [ actobacillus paracasei
9 104 W | 5ctobacillus rapi
% ILactobacillus parafarraginis
m 0 mmm | 5ctobacillus paracolinoides/Gollinoide:
-‘ 1 4 5 § 9 10 wmml [ actobacillus paraplantarum
mmml [ actobacillus pentosus
Fermenter

Figure 1.

Helena Lucena-Padrés, Belén Caballero-Guerrero, Antonio Maldonado-Barragan and José Luis Ruiz-Barba*




100+
90
80
70
601
50
401
30
201
101

Yeast species frequency (%)

Patio 1

] 6

Fermenter

10

Mot identified
Candida parapsiosis
Hanseniaspora sp.

W Ssturnispora mendoncae
Rhodotorula mucilaginosa
Candida butyri/aasen

B Candida tropicalis

B [ssatchentda orientalis

BN Saccharomyces cerevisiae

Bl Candida thaimueangensis

100+
904
80
70+
604
50+
404
30+
20

Yeast species frequency (%)

Patio 2

5 ]

Fermenter

Bl Candida glabrata
Hanseniaspora sp.
B Kluyveromyces lactisdmarsianus
W Pichia manshurica/membranifaciens
BN Saccharcmyces cerevisiae

Bl Candida thaimueangensis

Figure 2. Helena Lucena-Padrdés, Belén Caballero-Guerrero, Antonio Maldonado-Barragan and José Luis Ruiz-Barba*




1,60 - 1,40
A B
1,40 1,20
1,20 - 1,00
1,00 -
’ 0,30
S 0,30 - ® Initial T ® Initial
- _ 0,60 ,
0,60 - E Middle B Middle
0,40 = Final 0,40 ® Final
020 - 0,20
0,00 - 0,00
1 2
Patio Patio
1,00 - * 3,50
0,90 - C D
3,00
0,80 -
0,70 - 2,50
0,60 - 200
= 0,50 - m Initial —_ B Initial
— 150
0,40 E Middle ! B Middle
0,30 - ® Final 100 B Final
0,20 -
0,10 - 0,50
0,00 - 0,00

Patio

¥

Patio

Figure 3.

Helena Lucena-Padrés, Belén Caballero-Guerrero, Antonio Maldonado-Barragan and José Luis Ruiz-Barba*




2,50 - A 1,80 - |_= B
1,60 -
2,00 - 140 4
1,20 -
1,50 -
< 1,00 -
= L 0,80 -
1,00 -
0,60
0,50 0,40
0,20
0,00 0,00
1 2
Patio
1,00 C 5,00 - ’; D
0,90
0,80 - 5,00 -
0,70
4,00 -
0,60
Q
— 050 1 o 3.00 -
0,40
0,30 - 2,00 7
0,20
1,00 -
0,10
0,00 - 0,00 -
1 2 1 2
Patio Patio

Figure 4. Helena Lucena-Padrés, Belén Caballero-Guerrero, Antonio Maldonado-Barragan and José Luis Ruiz-Barba*



Highlights

Microbial diversity and dynamics of Spanish-style green table-olive fer mentations

in large manufacturing companies through culture-dependent techniques.

Helena Lucena-Padrés, Belén Caballero-GuerrerqgrimtMaldonado-Barragan and
José Luis Ruiz-Barba*

Highlights

e There were isolated 1070 microorganisms, 929 batend 141 yeast isolates.

e Thirty-seven bacterial and 12 yeast species vaaiated.

e Twenty bacterial and three yeast species nov@pamish-style olive fermentation.
e Five bacterial and one yeast genera not cited bafatiable olive fermentations.

e Lactobacillus pentosus dominated Spanish-style olive fermentation.
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