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1. General Introduction





1.1. History of Deep-Sea Exploration 

The deep ocean is the largest ecosystem on Earth and also the least explored. Only 5% 

of the deep sea has been explored with remote instruments and less than 0.01% of the 

deep sea-floor has been sampled and studied (Ramirez-Llodra et al. 2010a). A series of 

characteristics as low temperatures, relatively constant salinity, light decreasing and 

pressure increasing with depth and oxygen concentration generally close to saturation 

make this environment distinct and unique. 

Deep-sea scientific explorations began to be accessible during the mid-19th century, 

when improvements on maritime and oceanographic tools allowed Europe to compile 

great scientific information around the world. Edward Forbes was considered one of the 

first�s deep-sea researchers, being the first scientist dredging the deep Aegean Sea with 

the H.M.S. Beacon in 1841-42. Based on the results of this cruise, he proposed the 

Azoic Theory suggesting that no life could exist below 600 m (Forbes 1844).  

Although the first record of deep-sea fauna was the ophiuroid Gorgonocephalus 

caputmedusae (as Astrophyton linckii), collected by Sir John Ross in 1818 at 1600 m 

while exploring for the Northwest Passage (Menzies et al. 1973), it was not until 1850, 

when Michael Sars sampled deep-sea fauna below 800 m depth in the Arctic, that 

Forbes Azoic Theory was rejected. After the confirmation of deep-sea life, a race of 

oceanographic surveys began and a number of major cruises were conducted by 

different nations (i.e. Galathea Expedition 1845 to 1847; H.M.S. Challenger, 1872�76; 

Prince Albert of Monaco cruises 1885-1914; Siboga Expedition 1899 � 1900 between 

others). These research expeditions obtained data of an increasing number of new 

species and new bathymetric and biogeographic information, some of which has not 

been updated until today (Fig. 1). 

In the Mediterranean Sea, description of bathyal fauna began at the end of the 19th 

century. Scientific reports of the cruises carried out by the R.N. Washington (1881-

1882) and S.M.S. Pola (1890-1898) (Fig. 1) provided the first extensive taxonomical 

descriptions of bathyal and abyssal Mediterranean fauna (Marenzeller 1893; Bartolini 

Baldelli 1914), including many new species of non-crustacean invertebrates. The 

majority of the species sampled in these cruises were archived in several museum 



collections (e.g. Muséum National d'Histoire Naturelle in Paris, Naturhistorische 

Museum in Wien, Stazione Zoologica Anton Dohrn di Napoli and the Musée 

Océanographique de Monaco) where they are stored still today. From the late 1920s to 

1960s the number of deep-sea Mediterranean research cruises decreased, resulting in 

limited new information of deep-sea species (Pérès and Picard 1956a).  

Figure 1. Table from Challenger Expedition.  Illustration of the S.M.S. Pola

In 1960s and 1970s, deep-sea research evolved to an ecological approach, with the 

introduction of new sampling equipment that provided, for the first time, quantitative 

samples of deep-sea communities, allowing to move from descriptive to analytical 

studies (Hessler and Sanders 1967; Grassle and Sanders 1973; Grassle 1977). These

improvements in sampling methods and equipment promoted also a second period of 

deep-sea scientific exploration in the deep Mediterranean Sea, conducted by ships such 

as the �Bambu�, �Mango� and �Ruth Ann� in Italian waters, as well as the R.V. �Jean 

Charcot� in the Alboran Sea or the R.V. �Garcia del Cid� in the Balearic Sea. In the last 

decades of the 20th century, several studies were conducted in the deep Mediterranean 

Sea, from the western (Alvà 1987a; Villanueva 1992; Cartes and Sardà 1993; 

Stefanescu et al. 1993; Sardà et al. 1994) to the eastern (Galil and Goren 1995) basins, 

resulting in a considerable increase in data and information (Tyler 2003; Sardà et al. 

2004c; Danovaro et al. 2010)  

Finally, in the second half of the 20th century and first decade of 21th, the �in situ�

studies of the deep-sea floor have been possible by means of modern technology such as 



submersibles, Remotely Operated Vehicles (ROVs) (Grassle et al. 1975; Stoner et al. 

2008; Dumser and Türkay 2008), Autonomous Underwater Vehicles (AUVs) and deep-

sea permanent observatories (Momma et al. 1998; Pfannkuche and Linke 2003; Howe 

and McGinnis 2004). These in situ observation, sampling and experimentation methods 

have been applied also in the deep Mediterranean Sea, from early 1950s (Pérès and 

Picard 1956b; Pérès 1958; Taviani et al. 2004; Bahamon et al. 2011; Aguzzi et al. 

2012), allowing new observations from the cold-water coral reefs to the behaviour of

fisheries target species.

1.2. Importance of Taxonomy 

The word Taxonomy taxis , nomos,

�method�, and in biology, it has been described as �A field of science (and major 

component of systematics) that encompasses description, identification, nomenclature, 

and classification� (Simpson 2010). Linnaean taxonomy classifications persist mostly 

unchanged since the 1700s. This binomial nomenclature allows the classification of 

species in a consensus for all the scientific community. Morphological taxonomy has 

been largely improved by new technologies from electron microscopy to DNA 

sequencing (Edgecombe et al. 2011; Telford 2013) allowing new ordination of the 

groups and identification of cryptic species (Struck et al. 2007). However, molecular 

taxonomy has to be considered as a tool and it could not be a total substitutive of the 

morphological taxonomy (Ebach and Holdrege 2005; Gregory 2005). 

With the use of new molecular tools, some phylogenetic hypotheses have been exposed 

in recent years, resulting in the same number of new phylogenetic trees. The most 

relevant of these trees were summarized in recent studies (Giribet et al. 2007; 

Edgecombe et al. 2011), nonetheless no consensus has been acquired. For this reason 

the present study follows the classical phylogeny of the Tree of Life Web Project 

(http://tolweb.org/Animals/2374).

Meanwhile, although morphological taxonomy is at the base of many other biological 

sciences (i.e. phylogeny, genetic populations, biodiversity, ecology between others), a 

significant decrease of expert taxonomists has been signaled since the beginning of the 

21th century (Godfray 2002). This lack of expert taxonomists can be attributed to 



different factors (Godfray 2002; Giangrande 2003), from the difficulty to attract large-

scale funding for taxonomical projects, to the problematic of recovering and checking 

old reported information. One of the most significant examples of this problem was 

described in a study estimating the time elapsed between the discovery and description 

of a new species, which could be 21 years depending of the Phyla (Fontaine et al. 2012).

Las decades of 20th century, taxonomy becomes a marginal science and that derived in 

a considerable gap of information, and wrong classifications, which results in negative 

effect on associated science (biodiversity, biogeography, studies of genetic fluxes 

between populations, phylogenetic studies...) and diminishing the quality and accuracy 

of these studies (Giangrande 2003; Khuroo et al. 2007).  

When exploring large and remote ecosystems, such as the deep sea, new species are 

collected continuously, reaching in some cases between 50% and 100% of the total 

sampled species (Martinez Arbizu and Brix 2008). Nonetheless, not only the 

descriptions of these species are required, but also the re-description of old species is 

necessary in order to provide new information (Brökeland and Kai Horst 2009) and 

make this information more accessible for the whole scientific community.

Currently, many initiatives have been developed in order to regroup, standardize and 

unify all the available information online (Fig. 2). This includes web sites publishing 

openly the original descriptions and information of species (The Biodiversity Heritage 

Library, BHL: http://www.biodiversitylibrary.org/), authoritative and comprehensive 

list of valid names (World Register of Marine Species ,WoRMS:

http://www.marinespecies.org/index.php) and its deep-sea component WoRDSS

(http://www.marinespecies.org/deepsea/), biogeographic references (The Ocean 

Biogeographic information System ,OBIS: http://iobis.org/), DNA barcoding (Barcode 

of Life Database, BOLD: http://www.barcodeoflife.org/), global web sites with all 

accessible data (Encyclopedia of Life, eol: http://eol.org/ or the Tree of Life Web Project 

Figure 2. Logos of some of open access collaborative webs. 



ToL: http://tolweb.org/tree/), and the INDEEP Deep-Sea Id app for iPhones 

(http://www.indeep-project.org/wg/taxonomy-evolution). All these databases and online 

interfaces are helping to make the existing taxonomical data more easily accessible and 

unified internationally.  

1.3. The deep Mediterranean Sea

Situated between the African and European plates, the Mediterranean Sea covers a total 

area of 2.966.000 km2 (Bass 2002). It has a mean water depth of 2500 m and a 

maximum depth of 5121 m at the North Matapan-Vavilov Trench (Central 

Mediterranean). Geographically, the Mediterranean Sea can be divided in two major 

basins, the western and the central-eastern basins. These two basins are separated by the 

shallow Sicilian Strait, with a mean depth of 400 m. The western basin is linked to the 

Atlantic Ocean by the Gibraltar Strait, while the eastern basin opens to the Black Sea by 

the Bosfor Strait, and with the Red Sea by the Suez Chanel.  

The surface waters come from the Atlantic and turn into intermediate waters in the 

eastern Mediterranean Sea. Low-salinity Atlantic waters enter into the Mediterranean by 

the Gibraltar Strait, while denser deep-Mediterranean waters flow beneath the Atlantic 

waters in the opposite direction (Bass 2002). Deep and bottom currents are largely 

unexplored, but episodic intensification of high current speed has been documented in 

western Mediterranean Sea (Canals et al. 2006).  

The Mediterranean Sea presents some unique characteristics in the deep sea. Firstly, it is 

homoeothermic below 200�300 m depth, with deep waters at temperatures of 13�14°C 

(Tyler 2003). Consequently, the thermal barrier for the vertical distribution of the fauna 

observed in other areas disappears in the deep Mediterranean Sea. It also promotes, a 

high decomposition rate of sinking organic matter, resulting in a lower quality of the 

major food source that reaches the bathyal and abyssal seafloor (Sardà et al. 2004c; 

Ramirez-Llodra et al. 2008). The deep Mediterranean Sea is also characterized by its 

oligotrophy, which increases also from west to east, causing a food limitation for the 

deep-sea communities that depend on the input of organic matter produced in the 

euphotic zone (Danovaro et al. 1999; Danovaro et al. 2010). Meanwhile high oxygen 



concentrations are present across the water column down to the seafloor (Sardà et al. 

2004c). 

The deep Mediterranean seafloor presents a complex assemblage of markedly different 

habitats (Sardà et al. 2004a; Coll et al. 2010; Danovaro et al. 2010) that include 

sedimentary slopes, submarine canyons and sea hills, deep basins, cold-water coral 

ecosystems, hydrothermal vents, cold seeps and deep anoxic basins (Danovaro et al. 

2010; Company et al. 2012). The presence of these different systems results in a large-

scale heterogeneity of the continental margin and the deep basin (Carpine 1970; Emig 

1997; Buhl-Mortensen et al. 2010). The specific geomorphological characteristics of 

these habitats (e.g. the elevation of hills, the walls and axes of the submarine canyons, 

the inclination of the continental slopes, etc.) and the associated abiotic processes (e.g. 

variation in oceanographic currents, hard vs. soft substratum, food availability) facilitate 

the development and maintenance of diverse faunal communities (Levin et al. 2010).  

In the Mediterranean, the bathyal fauna is composed by communities that include 

prokaryotes, foraminifera, meiofauna, macrofauna and megafauna (Danovaro et al. 

2010). From all these groups, the megafauna is the best known, especially vertebrate 

species such as cetaceans and fishes. Meanwhile, invertebrate species are poorly known. 

These invertebrate faunal communities are, to date, largely unexplored (Tyler 2003),

and new faunistic records, new species and first records are constantly described. As an 

example, within the framework of sampling operations that provided data for the 

present Thesis, a new species of Galatheid crab (Munidopsis ariadne Macpherson, 

2011) was collected (Macpherson 2011). Also a new record of sipunculid has been 

described in a publicaton co-authored by  the author of this Thesis (Saiz et al. 2014).  

1.4. Invertebrates in the deep Mediterranean Sea

It is commonly known that the term �invertebrates� is not properly a taxon �per se� but 

a term of convenience largely used, allowing us to regroup a high number of Phyla. This 

group includes the entire species of animals without vertebral column derived from the 

notochord (accordingly to that the Subphylum Tunicata belonging the Phylum Chordata 

could also been considered as invertebrate). Currently, 95% - 98% of the 1.4 million 



known animal species are invertebrates distributed into 30 Phyla (Ramirez-Llodra et al. 

2010a), thus representing the majority of species of the Kingdom Animalia. Of these 30 

Phyla, 29 are present in marine habitats, most of them with some species inhabiting 

deep-sea areas. 

In the deep Mediterranean Sea, the benthic and benthopelagic megafauna are largely 

dominated by fish and decapod crustaceans. Thus, the Subphylum Crustacea has been 

the invertebrates group that has received most research attention, both because of their 

main ecological role (high abundance and biomass) as well as the commercial value of 

certain species (e.g. Aristeus antennatus (Risso, 1816), Nephrops norvegicus (Linnaeus, 

1758)) (Sardà et al. 1994; Company et al. 2004; Sardà et al. 2004b; Aguzzi et al. 2009b; 

Bahamon et al. 2009). For these reasons, crustaceans are well known taxonomically in 

comparison to other megafaunal groups, such as ascidians, sponges, echinoderms, 

sipunculans and echiurans (Monniot and Monniot 1975; Alvà 1987a; Uriz and Rosell 

1990; Villanueva 1992; Pancucci-Papadopoulou et al. 1999; Quetglas et al. 2000).

Although some biological and ecological studies on deep Mediterranean invertebrates 

exist (Fredj 1974; Laubier and Emig 1993; Pons-Moya and Pons 2000; D�Onghia et al. 

2003; Ramirez-Llodra et al. 2008; Cartes et al. 2009; Ramirez-Llodra et al. 2010b), our 

knowledge of the composition, distribution and function of the bathyal and abyssal 

Mediterranean invertebrate communities is still limited and further research is 

necessary.

In the present Thesis, crustaceans were not included, since their taxonomy, biology and 

ecology have been extensively studied in the deep Mediterranean (Company and Sardà 

1997; Abelló et al. 2002). My research efforts have focused, instead, in the less-well 

known deep-Mediterranean, non-crustacean invertebrates, for which, in many instances, 

information is non-existent, scarce or out-dated.  

The Phylum Echinodermata is one of the most representative taxa in terms of 

abundance and biomass in the deep Mediterranean Sea (once the crustaceans have been 

excluded). This group presents a wide bathymetric range of distribution, covering all 

studied depths, from 400 to 2850, m and plays a major role in the benthic community 

(Pérès and Picard 1956a; Fredj 1974; Cartes et al. 2009). Accordingly, the echinoderms 

have received special attention in this study, in the Mediterranean but also in the 



Cantabrian Sea. The latter study was a by-product of parallel investigations conducted 

on similar habitats and depths and using comparable methods to those used in the 

Mediterranean study projects that form the base of this Thesis. As a result, several deep-

sea echinoderms (in particular those belonging to the Class Holothuroidea) from the 

Cantabrian Sea have been identified and described (Appendix I). 

1.4.1. Phylum Echinodermata 

The Phylum Echinodermata is a well-defined taxonomical group divided into five 

Classes (Fig. 3): Crinoidea (sea lilies and feather stars), Ophiuroidea (basket stars and 

brittle stars), Asteroidea (starfishes), Echinoidea (sea urchins, sand dollars, and sea 

biscuits), and Holothuroidea (sea cucumbers). They were grouped into four 

synapomorphies (a shared trait derived from a common ancestor, not present before it, 

in the ancestor lineage) defining the Phylum and present in all specimens: 

A calcitic skeleton composed of many ossicles.

The presence of a water vascular system.

Mutable collagenous tissue.

Pentaradial body organization in adults. 

Figure 3. Five echinoderm classes.

From left to right: Asteroidea, 

Ophiuroidea, Echinoidea, 

Holothuroidea and Crinoidea

Echinoderms are composed only 

by marine species that have 

colonized all habitats, from the 

tropics to the poles and from the inter-tidal to the abyssal plains, and usually represent a 

large proportion of the fauna (Hyman 1955). In the deep Atlantic Ocean, for example, 

the echinoderms are the most important group in terms of abundance, biomass and 

ecosystem function (Billett 1991; Billett et al. 2001a) and have, thus, been largely 



studied at the taxonomic level (e.g. Hérouard 1923; Koehler 1927; Mortensen 1927; 

Sibuet 1977; Borrero Perez et al. 2003, amongst others). Comparatively, Mediterranean 

echinoderms inhabiting middle and lower slopes have been poorly studied (Marenzeller 

1893; Bartolini Baldelli 1914; Tortonese 1965; Sibuet 1974; Alvà 1987a) and most 

reports provide only species lists without further taxonomical information (Tortonese 

1979; Pérez-Ruzafa and López-Ibor 1988; Rinelli 1998; Coll et al. 2010). 

Although the deep-sea Echinoderms reported in this Thesis represent a large proportion 

of the total abundance and biomass of non-crustacean invertebrates in the 

Mediterranean, this group remains largely unknown. In this study, we have addressed 

this knowledge gap and have conducted an update of taxonomical descriptions, 

bathymetric distribution ranges and a study of the biological cycle of a key species from 

the middle and lower Mediterranean slope. Information about life�history strategies of 

deep-sea invertebrates has largely improved in the past few years, showing a great 

variability in reproductive patterns and traits (reviewed in Young 2003). Although the 

reproductive patterns of many deep Atlantic echinoderms have been well described 

since the early 1980s (Tyler 1983; Gage et al. 1986; Young et al. 1992; Galley et al. 

2008; Benítez-Villalobos and Díaz-Martínez 2010; Ross et al. 2013), these types of 

studies remain scarce in the Mediterranean Sea (Ferrand et al. 1988), with fishes and 

crustaceans receiving most of the research focus (Company and Sardà 1997; Puig et al. 

2001; Company et al. 2003; D�Onghia et al. 2004; Follesa et al. 2007; Fernandez-

Arcaya et al. 2012; Fernandez-Arcaya et al. 2013a; Fernandez-Arcaya et al. 2013b). 

1.5. New observation and sampling tools 

Because of its remoteness, sampling the deep sea is both expensive and technologically 

difficult and, thus, the deep seafloor and water column remain largely unexplored. 

Additionally, certain habitats such as hydrothermal vents, cold seeps, submarine 

canyons, seamounts and cold-water corals, amongst others, have complex and in some 

cases fragile geomorphological and biological structures that increases the difficulty in 

their study and sampling (Clark and Rowden 2009; Orejas et al. 2009). In these habitats, 

the use of novel non-intrusive observation methods and directed sampling technology 

with submersibles, remote operated vehicles (ROVs), autonomous underwater vehicles 



(AUVs), cable observatories and landers has been introduced, replacing other traditional 

sampling methods such as trawling.  

ROVs allow precision in samples acquisition; they can be maneuvered precisely and 

used to select and recover small, delicate samples more precisely than any other 

sampling system. It provides an undisturbed vision of the studied ecosystem in situ.

Sample acquisition can be achieved maintaining the environmental conditions and 

minimizing habitat damage as well as providing information of small-scale 

heterogeneity that contrasts with the samples of traditional samplers (e.g. trawls) that 

integrate information over the studied area. ROVs are linked to the ship by an umbilical 

cable with, often, a tether management system (TMS) and operated by a crew onboard a 

vessel. ROVs are equipped with different video/still cameras and lights and depending 

on the work to be conducted, additional equipment such as laser points, hydraulic 

manipulators and accurate subsea navigation systems can be used. 

In situ visual observations are adequate to study not only environments with complex 

topography or fragile structures, but also the faunistic ethology and the interaction 

between species and their environment (Trenkel 2003; Doya et al. 2014). The use of 

submersibles, ROVs, AUVs and cabled observatories has provided a wealth of novel 

deep-sea data, such as species compositions and distribution (Buhl-Mortensen et al. 

2005; Fonseca et al. 2013), ethology (Aguzzi and Company 2010; Aguzzi et al. 2012)

and anthropogenic impacts (Palanques et al. 2006; Miyake et al. 2011; Ramirez-Llodra 

et al. 2011) that could not have been acquired by traditional sampling methods. 

The use of video-imaging surveys by means of ROV has been used increasingly in the 

Mediterranean Sea in recent years (Galgani et al. 2000; Bo et al. 2011; Fabri et al. 

2013). These studies have shown the usefulness ROVs for the study of 

geomorphological or structurally complex habitats such as cold coral corals, seamounts 

and canyons, providing an alternative novel approach to the study of deep 

Mediterranean ecosystems.



1.6. Knowledge framework for the project

For decades, the deep-sea research group at the Marine Sciences Institute (ICM-CSIC) 

in Barcelona, as well as research groups from other institutions (IEO, CEAB-CSIC, 

IMEDEA-UIB) have studied the deep benthic ecosystems in the Mediterranean, with a 

main focus on fishes and crustaceans (Sardà et al. 2004a; Company et al. 2012). The 

species log-books of many of these cruises used a number of incorrect or non-scientific 

names for the least abundant or poorly known invertebrates. More recently, a few 

studies have included species list of non-crustacean invertebrates (Ramirez-Llodra et al. 

2008; Cartes et al. 2009; Ramirez-Llodra et al. 2010b), but most of these lists were 

based on species names from previous publications and not supported by a real 

taxonomical description. It is in this context of limited taxonomical and, in some cases, 

biological information of non-crustacean invertebrates from the deep Mediterranean Sea 

that I undertook this PhD thesis.  

The specific objectives of this PhD are described in Section 2. Below, we summarize 

the general material and methods used in this project, while detailed methodologies for 

the different analyses are found in the corresponding section of each publication. 

1.7. General Material and Methods 

1.7.1 Studied area 

Ten multidisciplinary oceanographic cruises were conducted between October 2008 and 

April 2013 to sample the deep seafloor of the western Mediterranean Sea. The sampling 

areas included the Blanes Canyon and its adjacent open slope, the Palamós (also named 

La Fonera) and Cap de Creus Canyons, sea hills in the Gulf of Valencia and Eivissa 

Channel, and landslides on the Eivissa Channel (Fig. 4). These cruises took place in the 

framework of four Spanish and European research projects (PROMETEO, 

DOSMARES, PROMARES and EUROLEON), sampling at depths between 850 and 

2845 m and acquiring video footage from 60 m to 2000 m depth. Additionally, a trans-

Mediterranean cruise took place in the context of the European project BIOFUN 

(EuroDEEP Eurocores, European Science Foundation) during July 2009.  



Figure. 4. Studied area

by traditional methods

This cruise sampled 

the western, central, 

and eastern Mediterranean basins at 1200, 2000 and 3000 m depth. In addition, a 4000 

m depth station was sampled in the central basin. Because of the low number of non-

crustacean invertebrates species collected on the central and eastern basins (n = 11), 

only the western Mediterranean samples were used in the analyses of the present study. 

Nonetheless, in order to avoid the loss of this scarce information, the species sampled 

on the central and eastern basins were reported in the species table.

1.7.2. Traditional sampling methods 

A total of 223 benthic trawls were completed resulting in a total swept area of 10.3 km². 

Of these hauls, 119 samples were obtained by a single warp otter-trawl Maireta system 

(OTMS, Sardà et al. 1998) with a net length of 25 m and a cod-end mesh size of 12 mm. 

A SCANMAR system was used to estimate the width of the mouth of the net. An 

average horizontal opening of 12.7 ± 1.4 m was calculated. As the SCANMAR system 

can only operate down to 1200 m depth, the same value for the mouth�s width of the net 

was used also for deployments deeper than 1200 m. The height of the trawl mouth was 

estimated to be 1.4 m (Sardà et al. 1998) (Fig. 5).



Figure 5. Otter-trawl Maireta system

In addition, 49 hauls were conducted with an Agassiz dredge, made of a square steel 

frame with a mouth width of 2.5 m and a mouth height of 1.2 m, and fitted with a 12 

mm mesh net (Fig. 6A). Further, 55 samples were obtained with an epibenthic sledge, 

which consisted of a rectangular steel frame with three nets attached at different heights 

(10-50 cm, 55-95 cm and 100-140 cm above the bottom) with a mesh size of 300 µm 

(Fig. 6B). 

Figure 6. A) Agassiz dredge. B) Epibenthic sledge.

Faunal samples were obtained also from 15 bottles in 5 different sediment traps (Fig. 7) 

deployed in the Blanes Canyon axis from November 2008 to February 2009, four of 

them at 1200 m and one at 1500 m depth. 



Figure 7. Sediment trap and bottles

All sediment traps were deployed at 22 m above the bottom. These samples, although 

not typically benthonic, have been included because a relatively significant number of 

individuals of a benthonic holothurian were collected (see Chapter 2). 

1.7.3. New technologies and sampling methods 

The ROV Max Rover II (Fig. 8A) of the Hellenic Centre of Marine Research (HCMR, 

Greece) was used to conduct seven seafloor surveys of different geomorphological 

habitats during the oceanographic cruise EUROLEON, which took place in October 

2007 onboard R/V Hespérides. The ROV collected a total of 30 h of video over 14.74 

km of surveyed seafloor. The Max Rover II was equipped with two wide-angle colour 

CCD cameras, offering a frontal and a lateral view, plus a third camera with a macro-

zoom. Lighting asset was composed by 2 x 100 W HID lights and 4 x 150 W Quartz 

lights. The survey was conducted at an ROV speed of approximately 2.3 knots at 2 m 

above the seafloor. 

Three areas of the north-western Mediterranean were video-surveyed (Fig. 8B): the 

Blanes Canyon, the Gulf of Valencia and the Eivissa Channel. A total of seven dives 

were performed in the three areas, providing data from 3 distinct geomorphological 

zones: Blanes Canyon-head, an unreported sea hill in the Gulf of Valencia, a small flat 

topped sea hill in Eivissa Channel, and the escarpments of two submarine landslides 

also in Eivissa Channel. 



Figure 8.A) ROV Max Rover II B) Studied area.

Finally, video surveys were made during the PROMARES cruise using the ROV 

Liropus 2000 from the Spanish Oceanographic Institute (IEO), from 29 June to 15 July 

2011. Seabed exploration was conducted from R/V Sarmiento de Gamboa on the 

Catalan margin and its deeply incised canyons (Cap de Creus, La Fonera and Blanes) 

(see Fig. 4). Footage was obtained with the front-pointing video camera (HD Kongsberg 

OE14-502) and two small cameras (OE14376) on the extensible arm (Fig. 9). Thirty six 

video transects were conducted along the axes of the Blanes, Palamós and Cap de Creus 

canyons between depths of 300 and 1800 m. 

Figure 9. ROV Liropus 2000





2. Aims and objectives





The overall aim of the present thesis was to describe and characterize the populations of 

non-crustaceans invertebrates from the bathyal north-western Mediterranean continental 

margin and deep basin. It was believed that, with previous information of these 

taxonomic groups being scarce and dispersed, a study that will compile and synthesize 

old available data (bibliography review) and newly acquired data (present study), would 

be extremely useful for future biological and ecological studies of deep benthic 

Mediterranean communities. Nonetheless, it was considered that the study and 

description of all Phyla was a task too broad to be conducted in the timeframe of a 

Mediterranean fauna. To achieve this aim, a number of specific objectives were 

addressed: 

1. To classify taxonomically and designate a valid name for all the non-

crustacean invertebrates sampled in the cruises of the present study. 

2. To report bathymetric and geographic distribution for all species 

analyzed. 

3. To survey in situ different geomorphological habitats and relate habitat 

characteristics to invertebrate species.   

4. To review all available taxonomical data and describe re-discoveries and 

new bathymetric ranges of deep Mediterranean echinoderms through 

newly acquired data. 

5. To study the reproductive biology of poorly known species of ecological 

relevance such as the asteroid Ceramaster grenadensis.

The results of this doctoral thesis are presented as a compendium of the following per-

reviewed scientific publications:  

1. Mecho, A., Ramirez-Llodra, E., Aguzzi, J., Segura, M., Sardà, F., Company, 

J.B. Community structure and distribution of non-crustacean invertebrates in 

bathyal areas of the north-western Mediterranean Sea. (submitted Marine 

Biology) 

2. Mecho, A., Billett, D.S.M., Ramirez-Llodra, E., Aguzzi, J., Tyler, P.A., 

Company, J.B. (2014). First records, rediscovery and compilation of deep-sea 



echinoderms in the middle and lower continental slope in the Mediterranean 

Sea. Scientia Marina, 78 (2): doi: 10.3989/scimar.03983.30C. 

3. Mecho, A., Fernández -Arcaya, U., Ramirez-Llodra, E., Aguzzi, J., Company, 

J.B. (submitted). Reproductive biology of the deep-sea asteroid Ceramaster 

grenadensis (Perrier, 1881) from the north-western Mediterranean Sea. 

(Submitted to Mediterranean Marine Science).

4. Mecho, A., Aguzzi, J., De Mol, B., Ramirez-Llodra, E., Company, J.B., 

Bahamon, N., Canals, M., Lastras, G. (submitted). Visual faunistic exploration 

of geomorphological human-impacted deep-sea habitats of the north-western 

Mediterranean Sea. (Submitted to PLoS ONE).

5. Mecho, A., Aguzzi, J., Company, J.B., Canals, M., Lastras, G., Turon, X. 

(2014). First in situ observation of the deep-sea carnivorous ascidian Dicopia 

antirrhinum C. Monniot, 1972 in the western Mediterranean Sea. Deep Sea 

Research I, 83: 51-56. doi: 10.1016/j.dsr.2013.09.007. 

An additional relevant publication resulting from parallel studies conducted in the 

framework of this PhD project are included in the annexes: 

Saiz, J.I., Cartes, J., Mamouridis, V., Mecho, A., Pancucci-Papadopoulou, M.A. (2014). 

New records of Phascolosoma turnerae (Sipuncula: Phascolosomatidae) from the 

Balearic Basin, Mediterranean Sea. Marine Biodiversity Records, 7: 1-5. doi: 

10.1017/S1755267214000153.

Results have been discussed in the context of the improved taxonomical knowledge 

now available for deep Mediterranean non-crustacean invertebrates, their habitats and 

bathymetric and geographic distributions, as well as biological data of one of the key 

groups, the echinoderms. The results of this study and ensuing papers (both published 

and under review) provide a central source of information on deep Mediterranean 

invertebrate taxonomy.



3. Impact factor of published articles





Los abajo firmantes, el Dr. Joan B. Company, la Dra. Eva Ramirez-Llodra y el Dr 

Jacopo Aguzzi, como director y codirectores de la tesis doctoral con título: �Taxonomy, 

distribution and community composition of megabenthic non-crustacean invertebrates

in the deep Catalan margin� presentada por Ariadna Mecho, certifican que los trabajos 

que se presentan a continuación han sido o están en proceso de publicación en las 

revistas científicas que se detallan. Todas ellas se encuentran catalogadas en el Institute 

for Scientific Information (ISI) y su índice de impacto, según el Journal Citation 

Reports (JCR) 2012, es el indicado en cada caso. 

1. Mecho, A., Ramirez-Llodra, E., Aguzzi, J., Segura, M., Sardà, F., Company, 

J.B. Community composition and distribution of non-crustacean invertebrates in 

bathyal areas of the north-western Mediterranean Sea. (submitted to Marine Biology).

Índice de Impacto: 2.46, 1er cuartil en el área de biología marina y de agua dulce.

Mediante el estudio de este trabajo se pretende realizar una exhaustiva descripción de la 

distribución de todas las especies muestreadas desde los años 2008 a 2013 a 

profundidades comprendidas entre los 850 m y los 2850 m de profundidad en el 

Mediterraneo occidental. Igualmente se describen los patrones batimétricos de densidad 

y biomasa por Clases de los invertebrados no-crustáceos y se compara su distribución 

dentro-fuera de zonas de cañones submarinos.  El enfoque del estudio, diseño de los 

análisis, recolección y clasificación taxonómica de las muestras y los análisis de 

patrones de densidad y biomasa corrieron a cargo de la doctoranda. La Dra. Eva 

Ramirez-Llodra se encargó de los análisis de biodiversidad y todos los co-autores 

participaron en el la estructuración, discusión y corrección del artículo. 

2. Mecho, A., Aguzzi, J., De Mol, B., Ramirez-Llodra, E., Company, J.B., 

Bahamon, N., Canals, M., Lastras, G. (submitted). Visual faunistic exploration of 

geomorphological human-impacted deep-sea habitats of the north-western 

Mediterranean Sea (Submitted to PLoS ONE). Índice de Impacto: 3.730, 1er cuartil 

en el área de ciencias multidisciplinares.



Este estudio se integra en un marco multidisciplinar con el fin de obtener una visión en 

conjunto de los diversos hábitats señalados en el Mediterráneo nor-occidental, como son 

colinas submarinas, cañones y deslizamientos submarinos mediante el uso de un ROV. 

El artículo describe la fauna asociada a dichos hábitats en función de diversas 

características ambientales tales como el tipo de sedimento, la inclinación del fondo o 

las corrientes, entre otros. Asimismo, se detalla el efecto antropogénico en estas zonas y 

su impacto en la fauna circundante. Como información adicional, se proponen patrones 

de comportamiento en varias de las especies observadas. La batimetría de las zonas de 

estudio fueron proporcionados por el Dr. Miquel Canals y el Dr. Galderic Lastras del 

Departamento de Geología de la UB. El geoposicionamiento de la fauna vía GIS corrió 

a cargo del Dr. Ben de Mol, actualmente en Senergy, Noruega. Los análisis estadísticos 

correspondieron al Dr. Nixon Bahamón. La doctoranda fue responsable del diseño y 

análisis del estudio faunístico, en colaboración con los co-autores del ICM-CSIC Todos 

los co-autores participaron en la del estudio, interrelacionando las múltiples disciplinas 

con el fin de obtener una visión general.  

3. Mecho, A., Fernández-Arcaya, U., Ramirez-Llodra, E., Aguzzi, J., Company, 

J.B. (submitted). Reproductive biology of the deep-sea asteroid Ceramaster grenadensis

(Perrier, 1881) from the north-western Mediterranean Sea. (Submitted to 

Mediterranean Marine Science). Índice de Impacto: 1.574, 1er cuartil en el área de la 

biología marina y de agua dulce. 

En este trabajo se describe, por primera vez, la distribución poblacional y la biología 

reproductiva de la especie de asteroideo batial más común del margen continental 

catalán: Ceramaster grenadensis (Perrier, 1881). Debido a los escasos trabajos 

referentes a dicha especie, el presente artículo aporta una información que amplía 

considerablemente el conocimiento de C. grenadensis a nivel global. El diseño del 

estudio, la recolección y preparación de las muestras y análisis histológicos y de imagen 

corrieron a cargo de la doctoranda. Todos los co-autores participaron en la discusión y 

revisión del artículo. 



4. Mecho, A., Billett, D.S.M., Ramirez-Llodra, E., Aguzzi, J., Tyler, P.A., 

Company, J.B. (2014). First records, rediscovery and compilation of deep-sea 

echinoderms in the middle and lower continental slope in the Mediterranean Sea. 

Scientia Marina, 78 (2): doi: 10.3989/scimar.03983.30C. Índice de Impacto: 1.006, 1er 

cuartil en el área de la biología marina y de agua dulce. 

El objetivo de este trabajo consiste en ser una fuente de información sobre todos los 

equinodermos presentes en el Mar Mediterráneo profundo (por debajo de los 850 m). 

Para este fin, se recopiló, revisó y sintetizó toda la información bibliográfica disponible 

sobre taxonomía y distribución de equinodermos de profundidad en el Mediterráneo. 

Adicionalmente, con el fin de aportar nuevos datos, se identificaron y describieron en 

detalle todas las especies recogidas en las campañas oceanográficas de la tesis doctoral, 

analizando sus rangos batimétricos y comparándolos a los anteriormente descritos. La 

doctoranda fue responsable única de la idea y enfoque de este estudio. Asimismo, se 

ocupó de recolectar y preservar todos los especímenes durante las campañas 

oceanográficas. Posteriormente realizó su clasificación y descripción taxonómica. A 

continuación  se encargó de recopilar toda la información bibliográfica disponible en 

una tabla compilatoria con el fin de reagrupar en un solo artículo tanto la información 

existente como los nuevos datos adquiridos. El  Dr. David Billett y el Prof. Paul Tyler 

participaron en la confirmación de dos especies en las que podía haber dudas sobre su 

clasificación. Todos los co-autores participaron en la discusión y corrección del artículo.

5. Mecho, A., Aguzzi, J., Company, J.B., Canals, M., Lastras, G., Turon, X. 

(2014). First in situ observation of the deep-sea carnivorous ascidian Dicopia 

antirrhinum C. Monniot, 1972 in the western Mediterranean Sea. Deep Sea Research I, 

83: 51-56. doi: 10.1016/j.dsr.2013.09.007. Índice de Impacto: 2.816, 1er cuartil en el 

área de oceanografía. 

En el presente estudio, se confirma por primera vez la presencia de la especie Dicopia 

antirrhinum C. Monniot, 1972 en el Mar Mediterráneo profundo así como la primera 

observación de esta especie en vivo a nivel global. La publicación del presente artículo  



revela el limitado conocimiento de la fauna asociada a zonas profundas de cañones 

submarinos en el margen continental catalán y la valiosa contribución de metodologías 

de alta tecnología como los ROVs. La contribución de la doctoranda en el presente 

estudio incluye la participación en la campaña donde se observó el espécimen, la 

primera constatación de la especie como sujeto de interés, la búsqueda bibliográfica 

asociada a dicha especie y la redacción del artículo. Todos los co-autores participaron 

activamente en la discusión y corrección del manuscrito. El Dr. Turón se encargó, como 

taxónomo especializado en ascidias, de la disección y descripción interna del 

espécimen. El Dr. Miquel Canals y Dr. Galderic Lastras aportaron los datos referidos al 

área geográfica y sus características mediante mapas batimétricos.

Barcelona 24 de Julio de 2014 

Fd: Joan Baptista Company       Fd: Jacopo Aguzzi     Fd: Eva Ramirez-Llodra  



4. Summary of results and general discussion





Taken together, the present results account for the importance of increase taxonomical 

studies of continental margin in non-crustacean invertebrate communities, not only 

directly related with fisheries, but likely being of elevated value for integrated 

approaches to ecosystem managements. Taxonomy alone should be considered as the 

cornerstone of faunistic exploration, being the base for biodiversity evaluation and 

population distribution-connectivity studies with traditional sampling methods as well 

as new molecular technology.  

On the present study, a total of 5877 individuals were reported. Of them, 5565 were 

classified to species level. Individuals from eight phyla were identified, comprising a 

total of 18 classes, and 69 species (see Paper 1). Most of these individuals were 

preserved, bio-sampled for tissue molecular analysis and stored in the Biological 

Reference Collection of the Institute of Marine Science, Barcelona (Spain) for future 

species comparison. A byproduct of the present work is the large collection of video-

imaging material, including the production of a future field guide for the practical 

classification of those faunal components often discharged by ecological and faunistic 

studies that are mostly focused on few targeted fish and crustacean decapod species.  

Two species have been reported as first records in the Mediterranean: the regular 

echinoid Gracilechinus elegans (Düben & Koren, 1844) (see Paper 2) and the carnivore 

ascidian Dicopia antirrhinum C. Monniot, 1972 (see Paper 5). Three other species were 

: the endemic holothurians Hedingia mediterranea (Bartolini 

Baldelli, 1914) and Penilpidia ludwigi (von Marenzeller, 1893) (see Paper 2) and the 

wood boring sipuncula Phascolosoma (Phascolosoma) turnerae Rice, 1985 (see 

Appendix 9.2). Because there 

, in this study species are considered as those taxa that have been 

reported less than five times in the whole Mediterranean Sea (Cunningham and 

Lindenmayer 2005). For each of the 2 new faunistic records and each of the 3 

species, at least 3 individuals were collected (or observed). Thus, the results suggest that 

these species are probably more abundant than expected (Wheeler 2007; Fontaine et al. 

2012).

In this PhD Thesis, the bathymetrical range of distribution was extended for 11 species: 

the Porifera Polymastia tissieri (Vacelet, 1961) from 2211 m to 2850 m; the cold water 



corals Desmophyllum dianthus (Esper, 1794) and Madrepora oculata Linnaeus, 1758,

down to 2250 m and 1450 m depth, respectively; the Echiurans Bonellia viridis

Rolando, 1821 and Echiurus abyssalis Skorikow, 1906, from 1621  m and 837 m down 

to 2000 m and 1750 m depth, respectively; the Sipuncula Sipunculus (Sipunculus) 

norvegicus Danielssen, 1869 from 1927  to 2000 m depth; the  echinoderms Ceramaster 

grenadensis (Perrier, 1881) from 2500 m to 2845 m, Brissopsis lyrifera (Forbes, 1841) 

from 1650 m to 2250 m, Hedingia mediterranea and Holothuria (Panningothuria) 

forskali Delle Chiaje, 1823, from 1100 m to 1500 m and 300 m to 850 m respectively; 

and, finally, the carnivore ascidian D. antirrhinum for the first time at 1100 m depth. 

The bathymetric distributions previously reported for these species were probably a 

result of the lack of a systematic and intensive sampling in the lower bathyal slope and 

deep basins in the north-western Mediterranean Sea. Furthermore, in some cases (i.e. C. 

grenadensis and B. lyrifera) (see Paper 2), the new bathymetric range reported here 

represents an increase of the maximum depth of its global distribution, not only for the 

Mediterranean Sea (Clark and Downey 1992; Koukouras et al. 2007).   

Prior to this Thesis, the faunal studies in the Mediterranean deep waters mostly focused 

on fishes and crustacean decapods (Moranta et al. 1998; Sardà et al. 2003; Company et 

. The few faunal or species community/assemblages 

studies that included non-crustacean invertebrates, were rarely analyzed at species level 

(Sardà et al. 1994; Ramirez-Llodra et al. 2010b; Tecchio et al. 2013). The results of the

present PhD Thesis provide a completely new and validated faunal list of non-

crustacean invertebrates from bathyal and abyssal  Mediterranean waters, providing at 

the same time, new elements to assess the structure of their populations  and, in some 

case, data of the seasonal reproductive cycle of invertebrate non-crustacean is provided.

The present Thesis reported the presence of a high number of Classes of suspension and 

sediment feeders in the submarine canyons areas (see Paper 1): the Class Anthozoa of

the Phylum Cnidaria, both Classes belonging to the Phylum Sipuncula, and the Class 

Echinoidea for the Echinodermata. A significantly higher individual density and total 

biomass per species of non-crustacean invertebrates in canyon areas compared to the

adjacent open slope was also reported (see Paper 1). These data confirm from an 

ecological point of view, the role of certain habitats (with geomorphological 

characteristics of the seabed) in driving oceanographic processes that affects species 



composition and assemblages (Clark et al. 2010; Tecchio et al. 2013; Schlacher et al. 

2014). Canyons possess particular topographic and hydrodynamic characteristics that 

act as conduits of organic matter from the shelf to deeper areas conditioning the 

community structure (Canals et al. 2006; Arzola et al. 2008; Company et al. 2012). This 

concentration of organic matter and the associated presence of zooplankton 

aggregations in the head of some canyons (Macquart-Moulin and Patriti 1996) may 

result in higher biodiversity of resident benthic fauna in these habitats. Differences in 

megafauna density and biomass between canyons and the adjacent sedimentary slopes 

have been reported in previous studies (Genin 2004; Coll et al. 2010; Company et al. 

2012; Tecchio et al. 2013). Increased food availability may explain the presence of large 

aggregations of B. lyrifera sampled with trawls and observed by ROV in the canyon 

axis (see Paper 2) and also described in other canyons (Carpine 1970; Laubier and Emig 

1993; Ramirez-Llodra et al. 2008; Martín et al. 2014). Another potential explanation for 

the lack of this burrowing echinoid above 1000 m depth is the high impact of 

commercial trawling in the area, as this echinoid was previously reported abundantly 

from the slope and canyon in the upper slope, both by scientific studies (Sardà et al. 

1994; Sanchez et al. 2004) and the fishermen themselves (Mecho, pers. com.). 

Total density of non-crustacean invertebrates increased with depth (see Paper 1), with a 

maxima of 1386 individuals per km2 at 2250 m depth. The peak of density at 2250 m

depth was caused by the high number of the Brachiopod Gryphus vitreus sampled at 

these depths. The presence of the patching holothurian Pseudostichopus occultatus (see 

Paper 2), together with high densities of G. vitreus, were responsible for the drastic 

increase in total density at this depth (i.e. 2250 m). The high numbers of G. vitreus

ships) signaled at this depth that provides an ideal solid substrate for this species 

(Ramirez-Llodra et al. 2013). In terms of total biomass, a maximum was observed at 

1200 m and 1500 m depth. Most of this biomass is constituted by specimens sampled 

inside canyons and the presence of large cephalopods. The observed peaks coincide 

with the general biomass depth-related pattern reported  for all megafauna (fishes and 

crustaceans) studied in the area (Tecchio et al. 2011; Tecchio et al. 2013). A significant 

decrease in individual density and species biomass was observed at 1350 m depth (see 

Paper 1). 



Of all sampled Phyla, the echinoderms were one of the most important in terms of 

individual density and biomass, representing 57% of the total density and a 41% of the 

total biomass. Echinoderms were present along the whole bathymetric range sampled, 

both inside canyons and on adjacent open slopes. This is in accordance with related 

studies of the Atlantic Ocean, where echinoderms are also a key group in terms of 

abundance, biomass and ecosystem function (Billett 1991; Billett et al. 2001b). The 

large number of investigations conducted in the Atlantic Ocean have resulted in a good 

taxonomic and population biology knowledge of this group in the Atlantic (Hyman 

1955; Clark and Downey 1992; Ameziane and Roux 1997; Rogacheva et al. 2013). This 

contrasts with the knowledge gap for the same group in the deep Mediterranean. Thus, 

and considering the high number of individuals of different species collected during the 

thesis project, it was considered essential to undertake a detailed study of this Phylum, 

both in terms of taxonomy and population biology. 

The first approach of the study of deep Mediterranean echinoderms was taxonomic; 

with the objective to review, synthesize and update all existing information and to 

include new data (see Paper 2). The results were a full compilation of available 

information and plus new observations, describing in detail all echinoderms specimens 

sampled below 850 m depth. The first mention of the regular echinoid Gracilechinus 

elegans (Düben & Koren, 1844) was cited, and also the presence of two rare endemic 

holothurians Hedingia mediterranea (Bartolini Baldelli, 1914) and Penilpidia ludwigi 

(von Marenzeller, 1893) (see Paper 2). 

The only echinoderm species sampled at all depths was the asteroid C. grenadensis.

Because of its wide bathymetric distribution and relative high abundance, as well as the 

lack of previous information on the reproductive processes of this species, a detailed 

population structure and reproductive survey on that species was conducted (see Paper 

3). The density pattern of this C. grenadensis was similar at all sampled depths, with a 

slight, but not statistically significant, increase at 1500-1750 m. This patterns is similar 

to what has been observed in other invertebrate groups sampled in the same area, such 

as the crustacean Aristeus antennatus (Risso, 1816) (Sardà et al. 2003). On the other 

hand, the mean biomass distribution showed a significant decrease at increasing depths 

(for statistical details see Paper 3). This distribution patterns coincides with the 

observed biomass trend as function of depth for the whole megafauna from the same 



area (Tecchio et al. 2013). Juveniles and small adult specimens were found at the

deepest range of their bathymetric distribution (see Paper 3). This bathymetric trend in 

size structure is in accordance with patterns observed for other species as, for example, 

the irregular echinoid Brissopsis lyrifera (Forbes, 1841) in the Atlantic Ocean (Harvey 

et al. 1988). This pattern was also found in the populations of B. lyrifera and Molpadia 

musculus Risso, 1826, with the smallest individuals found at the deepest zones of their

bathymetric range of distribution (see Paper 2). The decrease in size with depth has 

been related to the low food availability in the deeper areas compared with more 

productive shelf and upper slope habitats (Rex et al. 2006). Seasonally, the mean 

individual size decreased from summer, to spring when the smallest individuals were 

captured (for statistical details see Paper 3).

Results contained in the present Thesis indicate that in C. grenadensis, individuals 

living at greater depths increase their reproductive effort by reducing the somatic 

investment (small sizes) and devoting a higher amount of energy to oocyte production 

(i.e. higher GI values) (see Paper 3). Apparently, females may be storing nutrients in the 

pyloric caeca in order to maintain a constant production of gametes in a food-limited 

environment (Benítez-Villalobos and Díaz-Martínez 2010), allowing a constant transfer 

of energy from the pyloric caeca to the gonads (Mcclintock et al. 1995). Seasonally, the 

results point to the same process of transfer of nutrients from the pyloric caeca to the 

gonads during periods of gonadal growth (summer autumn). Higher reproductive 

activities in autumn have also been described for deep-sea fishes in the same study area 

(Fernandez-Arcaya et al. 2013a; Fernandez-Arcaya et al. 2013b) and were also 

described for other echinoderms (Ferrand et al. 1988; Mcclintock et al. 1995). This

could be the season in which energy reserves are accumulated providing from the fluxes 

of organic matter sunken from the photic zone (Herring 2002; Company et al. 2003).

A high amount of high quality information can be obtained with traditional benthic 

sampling methods (i.e. trawling, dredging, and sledge). New species for science can be 

caught and specimens can be identified to species level, supporting information for 

biodiversity analyses and for describing patterns in biomass and abundance. However, 

all data from the trawled transect are integrated within a single sample and these 

sampling methods do not provide small-scale information on heterogeneity, patchiness 

or behaviour. On the other hand, in situ observations and sampling become essential in 



certain habitats of complex geomorphology or fragile faunal communities, where these 

 sampling methods could not be used. ROVs are not destructive; they 

provide in situ observation of communities, behaviour, and information on small-scale 

heterogeneity and the relations between individuals/species and their habitat (McClain 

and Barry 2010; Bo et al. 2011). However, ROVs do not provide data on burrowing 

species and there is a decreased accuracy in taxonomic classification of species. For 

these reasons, a combination of both sampling methods (trawling and in situ 

observations) highly enhances our understanding of the community composition, 

relationships to the habitat and amongst individuals and species and ecological 

processes of the deep-sea benthos.  

The ROV study conducted during this thesis provided a total of 4519 faunistic 

observations (see Paper 4) from three different geomorphologic habitats (i.e. canyon, 

sea hill and landslide). The fauna belonging to the Phyla Chordata, Cnidaria and the 

Subphylum Crustacea was the most abundant. The Phyla Porifera, Echinodermata and 

the miscellaneous group . Brachiopoda, Annelida, Ctenophora and Echiura) 

were less representative (see Paper 4). A high level of anthropogenic impact in all 

studied zones was reported, with 158 artificial artefacts of different kinds observed. 

In the canyon area, the majority of the reported video-observations refers to suspension 

and sediment feeders species, commonly described at similar depths in canyons of the 

Balearic Sea (Ramirez-Llodra et al. 2008; Ramirez-Llodra et al. 2010b; Company et al. 

2012). This data also coincide with the data obtained in the present study with trawling 

methods (see Paper 1). As described above, the high abundance of suspension feeders 

and detritus feeders is probably the result of the specific topographic and physical 

characteristics of the canyon (Genin 2004; Coll et al. 2010; Company et al. 2012; 

Tecchio et al. 2013).

On hill areas, the presence of an elevated number of benthic Phyla in comparison to the 

adjacent muddy seafloor was video-reported (see Paper 4). Hills and seamounts are 

considered zones of high biodiversity sustained by the particular geomorphologic 

structures that strongly conditions local hydrography, with the consequent increase of 

water column nutrients retention (Rogers 1994; Rowden et al. 2010). The rocky 

substrate on sea hills are particularly suitable for colonization by sessile filter-feeding 



organisms contributing to the establishment of high diversity faunal communities (Buhl-

Mortensen et al. 2005; Roberts et al. 2006). However recent studies have provided data 

from seamounts that presented similar benthic diversity and endemism patterns than 

those reported on adjacent continental margins, which are traditionally considered 

poorer in overall biodiversity (Howell et al. 2010; Rowden et al. 2010; Schlacher et al. 

2010). This is not the case of video-surveys conducted in this Thesis, where significant 

differences in the density of fishes between the rocky hill and the surrounding muddy 

area were reported. 

In the video-surveyed landslides, the motile fauna was the dominant group (see Paper 

4). These results corroborate other studies that used traditional sampling methods (i.e. 

trawl) (Stefanescu et al. 1993; Sardà et al. 1994; Abelló et al. 2002), that signaled these 

groups as the most abundant in terms of biomass. An interesting annotation was that 

when crustacean decapods were dominant, fishes were rarely seen, and vice versa. This 

suggests a possible trophic competitive exclusion, based on the capacity of certain 

taxonomical groups to occupy the ecological role of others, hence substituting them. 

Video-observations provide the unique opportunity to describe behavioural patterns and 

the interactions amongst species/individuals and between individuals and their habitat.

The ethological characterization is important in order to explain the observed species 

distributions based on the type of animal displacement, as well as to understand 

potential biases occurring with trawling caused by the reaction of animals to invasive 

collection procedures (Aguzzi and Sardà 2007; Bahamon et al. 2009). In non-crustacean 

invertebrates, jellyfishes such as Pelagia noctiluca (Forsskål, 1775) and specimens of

the Order Coronatae, were observed swimming a few centimetres over the seabed. In 

the case of P. noctiluca, small groups were observed touching the seafloor over the top 

of the flat sea hill in the Eivissa Channel (see Paper 4) at 200 m depth.

The use of ROVs also allowed for serendipitous discoveries, such as the accounted first 

faunal report of the deep-sea carnivore ascidian Dicopia antirrhinum. During a ROV 

dive at 1100 m depth in the La Fonera canyon, a rare ascidian species was reported by 

the author of this thesis. A total of five adult individuals were observed in two different 

locations of the northern canyon wall always at around 1100 m depth (see Paper 5). 

Subsequently, one specimen was collected by the ROV. The direct collection of a single 



individual provided a valuable specimen in perfect conditions for preservation and 

subsequent taxonomical studies. This is the first time that this species has been observed 

in its natural habitat, being discovered in the late 70s (Monniot 1972) in Atlantic waters. 

Carnivore ascidians are commonly known by the species Megalodicopia hians Oka, 

1918, a species sampled in Monterey Bay (California, USA) and Japanese waters. This 

species has been studied (Okuyama et al. 2002; Havenhand et al. 2006) and exhibit in 

aquariums, nonetheless all the other species remains largely unknown (Tatián et al. 

2011) and have been rarely observed in situ (Monniot and Monniot 2003; Sanamyan 

and Sanamyan 2006).

In summary, this Thesis has addressed a major gap in knowledge in deep-sea 

Mediterranean non-crustacean invertebrate taxonomy and biology, providing a central 

source of validated old and new faunistic and population biology data. This research 

effort represents the first step towards a full understanding of the community 

composition, bathymetric and geographic distribution, habitat-fauna relationships and 

biology of deep Mediterranean invertebrates, setting the bases for further sampling 

efforts and subsequent taxonomic, biological and ecological studies. With the help of 

the present data, future studies will be conducted to fully understand the biodiversity 

and ecosystem function of this group, in previously unexpected depths and areas.  



5. Conclusions 





The study of the non-crustacean invertebrates dwelling on the deep Mediterranean Sea 

is of interest for different marine science disciplines, being the diversity of species and 

their distributions largely unexplored. In fact, the present Thesis conducted an effort in 

order to increase valid scientific information not only at taxonomical level, but also at 

the level of community composition and distribution. Detailed data on the reproductive 

biology and ethology was required for some group of ecological relevance in order to 

solve some relevant gaps of information.

Based on the study of the non-crustacean invertebrates collected along the deep 

continental margin of the north-western Mediterranean Sea (from 400 m to 2850 m 

depth), this study concluded what follows: 

1. This work evidenced and updated species bathymetrical and geographical 

distributions ranges of non-crustacean invertebrate species by different 

methodologies (i.e. traditional and technologically advanced sampling). As a 

result of that effort, new faunistic reports were described: two first records (i.e. 

Gracilechinus elegans (Düben & Koren, 1844) Dicopia antirrhinum C. 

Monniot, 1972), three rare species (i.e. Hedingia mediterranea (Bartolini 

Baldelli, 1914), Penilpidia ludwigi (von Marenzeller, 1893) and Phascolosoma 

(Phascolosoma) turnerae Rice, 1985), and eleven extensions of maximum depth 

range of distribution. 

2. Densities and biomass of non-crustacean invertebrates were pointed to be 

significantly higher in submarine canyons than in surrounding open slopes. 

These findings suggest submarine canyon habitats of the north-western 

Mediterranean Sea as hotspots of benthic megafauna communities.  

3. When all the Phyla were plotted together along a wide bathymetric range (i.e. 

400  2250 m), an increasing pattern of density with depth was found. The 

increasing observed pattern is explained by the high number of patching species 

collected at deepest areas (i.e. 1500 2250 m). 

4. The most abundant group in terms of density was the Phylum Echinodermata. A 

Phylum largely undescribed in deep Mediterranean waters, when compared with 



the faunistic data already available for the Atlantic. All specimen sampled were 

classified, described and their bathymetrical ranges re-defined. These results 

were compared and extended with the previous published literature, checking, 

validating (or discarding) all available information. 

5. The size pattern distribution of the most abundant species of Asteroidea in the 

present study, Ceramaster grenadensis show a depth related trend showing 

smaller sizes at greater depths (dwarfism), as observed in other species of 

Atlantic Ocean. Additionally, juveniles were sampled at the deepest range of 

distribution of the species (i.e. 2250 m).  

6. Histological analysis of C. grenadensis gonads, revealed a semicontinous 

reproductive patterns, with a maximum of reproductive activity in autumn 

(maximum values of Gonadal Index). This finding coincides with some already 

published study for other deep-sea Mediterranean Echinoderm species such as B.

lyrifera.

7. The in situ faunal sampling with video technologies (i.e. Remotely Operated 

Vehicles; ROVs) showed the occurrence of different species assemblage 

compositions in different geomorphological habitats such as, submarine 

canyons, sea hills and landslides. Benthic cnidarian communities were observed 

in seamount rocky areas while submarine landslides fauna were mainly 

composed by vagil fauna as fishes and crustaceans. The description of 

characteristics seascape units might help to estimate taxonomical group in other 

similar but presently unexplored deep-sea areas. 

8. Anthropogenic impact was shown in different zones of the deep north-western 

Mediterranean Sea. In different sampled zones (by traditional or technologically-

new methods), a high number of human artefacts was reported. On each zone 

different kind of impact were observed, being canyon areas mostly affected by 

litter artifacts, hills by longlines and finally landslides by trawl marks.   

9. This new record increased the lower depth limit of this genus in the 

Mediterranean Sea from 500 to 1100m depth. This finding contributes to the 



knowledge of the poorly investigated Mediterranean deep ascidian fauna, in 

sharp contrast with the relatively well- known shallow-water Mediterranean 

ascidians. 

10. Finally, this study suggests that an increasing effort combining traditional and 

technologically-new sampling methods is advisable in order to obtain a more 

complete overview of species inhabiting the different deep-sea continental 

margins. 





6. Resumen 





6.1. Historia del Mar profundo 

El mar profundo se podría describir como el ecosistema más angosto del planeta, así 

como el más desconocido. Hoy en día tan sólo el 5% ha sido observado y únicamente 

un 0.01% del fondo marino ha sido realmente muestreado y estudiado (Ramirez-Llodra 

et al. 2010a). Las profundidades marinas se caracterizan por tener unas propiedades que 

las hacen únicas en el mundo. Sus bajas temperaturas, una salinidad relativamente 

constante, poca o ninguna luz, concentraciones de oxígeno cercanas a la saturación y 

una presión que aumenta conforme se va incrementando la profundidad hacen de este 

entorno un lugar diferente y único.  

El estudio de las profundidades marinas comenzó relativamente tarde en la historia de la 

ciencia debido a la problemática que implica muestrear a profundidades tan elevadas. 

La exploración del mar profundo se inició a mediados del siglo IXX, cuando las 

mejoras del instrumental marítimo y oceanográfico  permitieron acceder a estos remotos 

lugares. Edward Forbes fue considerado como el primer científico en trabajar en ellas al 

muestrear las profundidades del Mar Egeo con el H.M.S. Beacon en 1841-42. En base a 

sus desafortunados resultados (sus muestreos se realizaron en una zona de anoxia en la 

que la fauna era prácticamente inexistente (Danovaro et al. 2010) propuso la famosa 

Teoría de la zona Azoica, según la cual no podía existir vida por debajo de los 600 m 

(Forbes 1844). Esta teoría fue finalmente descartada en 1850, cuando Michael Sars 

recolectó gran cantidad de fauna profunda alrededor de los 800 m de profundidad en 

aguas del Ártico. A partir de este momento empezó una carrera oceanográfica enfocada 

a muestrear las profundidades marinas. Las grandes expediciones que acontecieron, 

(e.g. Galathea Expedition 1845-1847; H.M.S. Challenger, 1872-76; Prince Albert of 

Monaco cruises 1885-1914; Siboga Expedition 1899-1900 entre otras) aportaron una 

serie de datos nuevos relacionados con la fauna batial y abisal que en algunos casos, a 

día de hoy todavía no ha sido actualizados al no tener datos nuevos para contrastar. 

En el Mediterráneo, el estudio de la fauna profunda comenzó a finales del siglo XIX, 

con campañas como las realizadas mediante el R.N. Washington (1881-1882) y el 

S.M.S. Pola (1890-1898). Entre los años 20 y los 60 del siglo XX, el número de 

campañas de muestreos en profundidad disminuyó considerablemente debido a las 2 

guerras mundiales, limitando la información sobre este hábitat (Pérès and Picard 



1956a). A partir de finales de los 60 y principios de los 70 las mejoras en las 

herramientas de muestro permitieron una nueva época dorada para la ciencia marina a 

nivel global. Igualmente permitió el cambio de enfoque de los datos; de ser puramente 

descriptivo se pasó a un estudio más analítico y ecológico (Hessler and Sanders 1967; 

Grassle and Sanders 1973). En el Mediterráneo también se realizaron importantes 

campañas oceanográficas durante es Bambu

el Mango y el Ruth Ann en aguas italianas, el Jean Charcot por parte de los 

franceses en aguas de Alborán y el García del Cid en las Islas Baleares. 

A finales del siglo XX, se realizaron varios estudios del Mediterráneo profundo, desde 

las zonas occidentales (Alvà 1987b; Villanueva 1992; Cartes and Sardà 1993; 

Stefanescu et al. 1993) a las orientales (Galil and Goren 1995) incrementando 

considerablemente los conocimientos sobre las profundidades del Mar Mediterráneo. En 

esta época reciente, la aparición de nuevas tecnologías como vehículos dirigidos por 

control remoto (ROVs) y observatorios permanentes, permitió el estudio de las 

comunidades in situ, (Stoner et al. 2008; Aguzzi et al. 2012) aportando datos 

complementarios imposibles de obtener con los muestreos tradicionales. 

6.2. La Importancia de la Taxonomía 

La palabra taxonomía  proviene taxis nomos,

El campo de científico (y mayor 

componente de la Sistemática) que se encarga de describir, identificar, nombrar y 

clasificar los seres vivos existentes (Simpson 2010). La taxonomía Lineana, basada en 

una nomenclatura binomial (Genero especie), posibilita un consenso global sobre como 

nombrar a una especies determinada, por ello esta nomenclatura sigue prácticamente 

inalterada desde el siglo XVI. Las nuevas tecnologías tales como los microscopios 

electrónicos o la secuenciación del ADN (Edgecombe et al. 2011; Telford 2013), 

aportaron grades mejoras a la taxonomía morfológica, permitiendo la reorganización de 

los organismos y la identificación de especies crípticas (muy similares 

morfológicamente entre sí pero que no se pueden reproducir entre ellas) (Ebach and 

Holdrege 2005; Gregory 2005).



A pesar de su importancia y de ser la base de otras disciplinas (e.g. filogenia, ecología 

de poblaciones, biodiversidad y ecología entre otros), se observó un alarmante descenso 

de taxónomos a finales del siglo XX y principios del XXI (Godfray 2002). Esta pérdida 

de expertos taxónomos se atribuye a varios factores (Giangrande 2003), desde la 

dificultad de atraer financiación a largo plazo para proyectos puramente taxonómicos 

como el problema de recolección y validación de información antigua, en muchas 

ocasiones dispersa e inaccesible. Uno de los ejemplos más claros de este problema se 

describió en un estudio que estimó que el tiempo transcurrido entre el descubrimiento y 

la descripción de una especie nueva podía llegar a los 21 años, en función del Filo al 

que pertenecía dichas especie (Fontaine et al. 2012).

Esta disminución de expertos taxónomos en los últimos años derivó en una considerable 

falta de información, así como la aparición de clasificaciones erróneas que repercutieron 

en las ciencias asociadas (biodiversidad, biogeografía, genética de poblaciones etc...) 

disminuyendo la calidad y precisión de estos estudios (Giangrande 2003; Khuroo et al. 

2007). Actualmente y con el fin de paliar estos problemas, se han desarrollado varias 

iniciativas con el fin de agrupar, estandarizar y unificar toda la información disponible 

en la red, ayudar a hacer más accesible los datos taxonómicos existentes así como 

unificarlos de manera internacional. 

6.3. El Mediterráneo Profundo 

El Mediterráneo profundo se caracteriza por una serie de particularidades que lo hacen 

único. Presenta una homeotermia constante por debajo de los 200-300 m de profundidad 

con temperaturas de 13-14ºC, mientras en otros océanos como el Atlántico la 

temperatura suele bajar con la profundidad alcanzando hasta los 0ºC (Tyler 2003). La 

consecuencia de esta elevada temperatura en profundidad resulta en la pérdida de la 

frontera física. Estas altas temperaturas también implican una mayor velocidad de 

descomposición en las partículas que caen al fondo desde la zona fótica, por lo que la 

calidad de los nutrientes es peor de lo que serían en aguas más frías (Sardà et al. 2004c; 

Ramirez-Llodra et al. 2010a). Esto nos lleva a la segunda característica del 

Mediterráneo profundo, su oligotrofia. El Mediterráneo profundo es altamente 

oligotrófico, y esta particularidad se incrementa de oeste a este, causando una limitación 



de nutrientes en las comunidades batiales que dependen de los aportes de materia 

orgánica de zonas más superficiales (Danovaro et al. 1999; Danovaro et al. 2010).

El lecho marino del Mediterráneo presenta una compleja colección de hábitats, como 

taludes sedimentarios, cañones y montes submarinos, llanuras batiales, arrecifes de 

corales profundos, surgencias frías entre otros (Danovaro et al. 2010; Company et al. 

2012). Las características geomorfológicas de estos hábitats junto con los procesos 

abióticos que en ellas se generan, facilitan el desarrollo y la permanencia de una elevada 

diversidad de comunidades faunísticas diferentes (Levin et al. 2010), muchas de ellas 

con especies todavía desconocidas. 

6.4. Los invertebrados en el Mediterráneo profundo 

El término invertebrados, no es un taxón per se, sino más bien una manera comúnmente 

aceptada de agrupar juntos todos los organismos carentes de columna vertebral. 

Actualmente, entre un 95% - 98% de los 1.4 millones de especies conocidas son 

invertebrados y se reparten entre 30 Filos (Phyla)(Ramirez-Llodra et al. 2010a). De los 

30 Filos, 29 están presentes en ecosistemas marinos, y prácticamente todos presentan 

especies en hábitats de mar profundo. 

En el Mediterráneo profundo, la megafauna bentónica y bentopelágica se encuentra 

ampliamente dominada por peces y crustáceos. Debido a esto, el Subfilo Crustacea es 

uno de los grupos de invertebrados más ampliamente estudiado, tanto por su 

importancia a nivel ecológico (abundancia y biomasa), como a nivel comercial y de 

pesquerías (e.j.  Aristeus antennatus (Risso, 1816), Nephrops norvegicus (Linnaeus, 

1758) (Sardà et al. 1994; Company et al. 2004; Aguzzi et al. 2009a).

Comparativamente, este grupo de invertebrados es mucho más conocido a todos los 

niveles que otros grupos de megafauna como podría ser ascidias, esponjas, 

equinodermos, equiúridos o sipuncúlidos (Monniot and Monniot 1975; Alvà 1987a; 

Uriz and Rosell 1990; Villanueva 1992; Pancucci-Papadopoulou et al. 1999). Este 

elevado conocimiento de los crustáceos es la razón por la cual no se considerarán en la 

presente Tesis, donde se estudiaron otros grupos más desconocidos.

Entre estos grupos el más abundante en la presente Tesis fue el Filo Echinodermata. 

Este filo se divide en cinco Clases, Crinoidea (lirios de mar), Ophiuroidea (ofiuras), 



Asteroidea (estrellas de mar), Echinoidea (erizos de mar), y Holothuroidea (pepinos de 

mar). Los equinodermos están compuestos por especies exclusivamente marinas y han 

colonizado con éxito todos los hábitats, desde zonas tropicales hasta los polos pasando 

por las grandes profundidades, en todos ellos representando una gran proporción de la 

fauna local (Hyman 1955). Es un grupo ampliamente estudiado en el Atlántico 

profundo, donde son los más importantes en términos de abundancia y biomasa (Billett 

1991; Billett et al. 2001a). Debido a esto, su estudio a nivel taxonómico es muy amplio 

y antiguo (Hérouard 1902; Koehler 1927; Mortensen 1927; Sibuet 1977; Borrero Perez 

et al. 2003), sin embargo incluso a día de hoy se siguen encontrando especies nuevas 

(Gebruk 2008; Gebruk et al. 2013). En el Mediterráneo, sin embargo, los estudios 

realizados en equinodermos residentes en el talud medio y profundo son más bien 

escasos (Marenzeller 1893; Bartolini Baldelli 1914; Tortonese 1965; Sibuet 1974; Alvà 

1987a), y generalmente se limitan a aportar un listado de especies sin descripción 

taxonómica (Tortonese 1979; Pérez-Ruzafa and López-Ibor 1988; Rinelli 1998; Coll et 

al. 2010). A nivel biológico como por ejemplo a nivel de ciclos reproductivos también 

son escasos los trabajos realizados en el Mediterráneo profundo (Ferrand et al. 1988).

En este contexto de información dispersa, de difícil acceso o directamente inexistente, 

se consideró de primer orden en esta Tesis el recopilar, confirmar, describir y estudiar 

toda la información existente sobre los equinodermos de profundidad (entre 850 m y 

2850 m) presentes en el Mediterráneo. Asimismo se creyó conveniente estudiar el ciclo 

reproductivo de una de las especies más significativas, el asteroideo Ceramaster 

grenadensis (Perrier, 1881). 

6.5 Nuevas herramientas de observación y muestreo 

Algunas zonas del fondo marino tales como las fuentes hidrotermales, las surgencias 

frías, los cañones submarinos o los arrecifes de corales de aguas frías entre otros, resulta 

especialmente difíciles de muestrear mediante los métodos tradicionales (ej. arrastres) 

debido a la complejidad y fragilidad de estos hábitats (Orejas et al. 2009; Clark et al. 

2010). En estos casos las nuevas técnicas de muestreo no-intrusivas como son los 

vehículos dirigidos por control remoto (ROV), los vehículos autónomos submarinos 

(AUV), landers y estaciones permanentes, permiten adquirir datos de estas zonas 

problemáticas, reemplazando o complementando los métodos de muestreo tradicionales. 



En el caso de la presente Tesis, estas nuevas tecnologías nos permiten, no solamente 

obtener datos de zonas de difícil acceso, sino adquirir una visión in situ del lecho 

marino, estudiar las comunidades faunísticas y el comportamiento de las especies en su 

hábitat natural.   

6.6 Área y metodología de estudio

El material utilizado en la presente tesis fue recopilado a lo largo de 10 campañas 

oceanográficas realizadas entre octubre 2008 y abril 2013 en el Mediterráneo occidental 

en el marco de los Proyecto Nacionales y Europeos PROMETEO, DOSMARES, 

PROMARES y EUROLEON. Las áreas de muestreo incluyeron el Cañón de Blanes y 

su talud adyacente, los cañones de la Fonera y Cap de Creus, dos montañas submarinas 

ubicadas en el Golfo de Valencia y el Canal de Ibiza, y dos deslizamientos submarinos 

del Canal de Ibiza. Las profundidades muestreadas mediante ROV fueron de entre los 

60 m y los 1100 m de profundidad; y entre los 850 m y los 2850 m mediante muestreos 

tradicionales. Adicionalmente se realizó una campaña transmediterránea (BIOFUN) en 

la cual se muestrearon tres áreas del Mediterráneo, oeste, central y este, pero debido al 

bajo número de especies recogidas, no se utilizaron estos datos en los análisis de 

composición faunística, sin embargo las especies fueron añadidas a la tabla de especies 

del Artículo 1.  

Se realizaron un total de 223 pescas de arrastre. De ellas, 119 fueron realizados 

mediante un arte de arrastre bentónico Maireta (OTMS)(Sardà et al. 1998), esta posee 

una red de arrastre de 25 m de largo, 1.4 m de anchura de boca y un copo de  malla de 

12 mm. Se realizaron también 49 muestreos mediante una draga Agassiz, constituido 

por un marco de hierro forjado de 2.5 m de ancho por 1.2 m de alto, y un copo de malla 

de 12 mm. Finalmente en 55 pescas se utilizó un patín suprabentónico de tres estratos 

(entre 10-50 cm, 55-95 cm and 100-140 cm del suelo) con mallas de 300 µm, sin 

embargo, debido al bajo número de especies recolectadas y los errores que implica este 

tipo de muestreo, no se utilizaron para los análisis, aunque las especies sí son 

mencionadas en la tabla de especies del Artículo 1 (para detalles concretos de los 

muestreos, almacenamiento y procesado de las muestras ver apartado de Material y 

Métodos particular de cada artículo). 



Adicionalmente y con la intención de obtener una visión global de las comunidades 

bentónicas, se analizaron los videos obtenidos mediante dos ROV. La campaña 

EUROLEON se realizó en octubre 2007 abordo del R/V Hespérides mediante el ROV 

Max Rover II del Hellenic Centre of Marine Research (HCMR, Grecia). El área de 

estudio comprendía tres estructuras geomorfológicas clave del Mediterráneo occidental  

como son un cañón, dos montañas submarinas y dos deslizamientos submarinos 

situados en el margen continental catalán, el golfo de Valencia y el Canal de Ibiza. La 

campaña PROMARES, se realizó a borde del R/V Sarmiento de Gamboa en Junio 2011 

y los datos se obtuvieron mediante el ROV Liropus 2000, propiedad del Instituto 

Oceanográfico Español (IEO). En este caso el área de estudio se centró en tres cañones 

del margen catalán profundo (Cap de Creus, La Fonera y Blanes).

6.7 Resultados generales y discusión 

En el presente estudio se obtuvieron 5877 individuos mediante las técnicas de 

muestreos tradicionales. De estos, 5565 fueron clasificados hasta género o especies. 

Estos especímenes se clasificaron en 8 Filos, 18 Clases y 69 especies (ver Artículo 1). 

Gran parte de los especímenes recogidos están en proceso de numeración para ser 

almacenados en la Colección Biológica de Referencia del Instituto de Ciencias del Mar 

de Barcelona, con el fin de ser accesible para posteriores estudios. 

En la presente Tesis se describe por primera vez en el Mediterráneo la presencia de dos 

especies: el equinoideo regular Gracilechinus elegans (Düben & Koren, 1844) (ver 

Artículo 2) y la ascidia carnívora Dicopia antirrhinum C. Monniot, 1972 (ver Artículo 

holoturias endémicas Hedingia mediterranea (Bartolini Baldelli, 1914) muestreada 

únicamente una vez, previamente a este estudio, y Penilpidia ludwigi (von Marenzeller, 

1893) muestreada tres veces con anterioridad (ver Artículo 2) y el sipúnculido 

Phascolosoma (Phascolosoma) turnerae Rice, 1985 citado previamente una vez (ver 

Appendix 9.2). A falta de un consenso que designe una especie como rara y teniendo en 

cuenta los estudios sobre esta designación (Cunningham and Lindenmayer 2005),

consideramos rara una especie cuando su presencia ha sido citada menos de 5 veces en 

todo el Mediterráneo a lo largo de la historia. Teniendo en cuenta que todas estas 

especies raras fueron muestreadas más de tres veces en el transcurso de esta Tesis, 



podemos suponer en base a otros estudios (Wheeler 2007; Fontaine et al. 2012) que la 

presencia de estas especies es mayor de lo esperado. 

Asimismo en la presente Tesis se amplió el rango de distribución batimétrica de 11 

especies: el Porifero Polymastia tissieri (Vacelet, 1961) hasta los 2850 m; el de los 

corales Desmophyllum dianthus (Esper, 1794) y Madrepora oculata Linnaeus, 1758,

hasta 2250 m y 1450 m respectivamente; los equiúridos Bonellia viridis Rolando, 1821 

y Echiurus abyssalis Skorikow, 1906, hasta 2000 m y 1750 m respectivamente; el 

sipuncúlido Sipunculus (Sipunculus) norvegicus Danielssen, 1869  hasta los 2000 m; 

entre los equinodermos, el asteroideo Ceramaster grenadensis (Perrier, 1881) hasta los 

2845 m, Brissopsis lyrifera (Forbes, 1841) a 2250 m, Hedingia mediterranea y 

Holothuria (Panningothuria) forskali Delle Chiaje, 1823, hasta los 1500 m y 850 m 

respectivamente; y finalmente se amplió el máximo rango de profundidad para la 

ascidia carnívora D. antirrhinum hasta los 1100 m. Este elevado número de 

ampliaciones de rango batimétrico se debe probablemente a la falta de muestreos 

profundos en el talud inferior y las llanuras batiales del Mediterráneo nororiental. Sin 

embargo, en algunos casos concretos como C. grenadensis y B. lyrifera el rango 

batimétrico descrito en la presente tesis es el máximo descrito a nivel global para estas 

especies (Clark and Downey 1992; Koukouras et al. 2007) (ver Artículo 2). 

Los estudios sobre invertebrados no-crustáceos son pocos en el Mediterráneo profundo 

(Ramirez-Llodra et al. 2008; Cartes et al. 2009), siendo más bien una parte remanente 

de los estudios de peces y crustáceos (Sardà et al. 1994; Tecchio et al. 2013). En la 

presente Tesis, se ofrece una lista completa de los invertebrados no-crustáceos de las 

profundidades batiales y abisales recolectadas en las campañas descritas previamente.  

Los datos se analizaron además de a nivel puramente taxonómico, a nivel poblacional, 

revelando mayores densidades (individuos · km -2) y biomasas (kg · km -2) en zonas de 

cañones submarinos (ver Artículo 1). Esto se debe a una mayor cantidad de nutrientes 

presentes en estas zonas, debido a sus características físicas y geomorfológicas que 

suelen actuar como transporte de nutrientes de zonas someras a zonas más profundidad 

dentro de cañón (Genin 2004; Company et al. 2012). 



A nivel de patrones batimétricos, se observó un incremento de densidad conforme se 

incrementa la profundidad, con máximos a 2250 m (ver Artículo 1). Esto se debe a la 

elevada presencia de Gryphus vitreus, una especies de Braquiópodo que se ancla a 

sustratos duros. Estas profundidades coinciden en donde se citaron mayores cantidades

de clinker (Ramirez-Llodra et al. 2013), un nombre utilizado para los restos de carbón 

fósil utilizado durante años por los barcos de vapor que posteriormente se tiraban al 

mar. Estos trozos de clinker confieren un sustrato ideal para las especies que necesitan 

de un anclaje duro para asentarse como por ejemplo G. vitreus. También a estas 

profundidades se recogieron numerosos ejemplares de Pseudostichopus occultatus (ver 

Artículo 2) una especie de holoturia con tendencia a presentarse en grandes 

agregaciones (Morgan and Neal 2012), lo cual, junto con la especie anterior aumenta 

considerablemente la densidad estimada a 2250 m. En términos de biomasa, los 

máximos se encontraron entre 1200 m y 1500 m de profundidad, coincidiendo con los 

máximos obtenidos en otros grupos de megafauna en la misma área (Tecchio et al. 

2011; Tecchio et al. 2013). 

A nivel faunístico el grupo más abundante fueron los equinodermos, representando el 

57% del total de especímenes recolectados. Debido a esto y a su desconocimiento se 

estudiaron en mayor detalle en el Artículo 2. La única especie de equinodermos 

recogida a todas las profundidades y estaciones del año fue el asteroideo C. 

grenadensis, lo que la convertía en especie idónea para el estudio de su biología y ciclo 

reproductivo. Uno de los resultados más significativos de este estudio (ver Articulo 3), 

fue la confirmación de una disminución del tamaño de los especímenes adulto conforme 

aumentaba la profundidad, encontrándose los individuos más pequeños a más 

profundidad. Esto coincidía con estudios realizados en otros equinodermos muestreados 

en el Atlántico (e.g. B. lyrifera) (Harvey et al. 1988) y con observaciones de otras 

especies recogidas en la presente tesis como son B. lyrifera y Molpadia musculus

(Mecho, pers. obs). Esta disminución de tamaño se ha asociado con la menor 

disponibilidad de alimento a mayores profundidades (Rex et al. 2006). También se 

demostró que los especímenes presentes a mayores profundidades presentaban unos 

índices gonadales superiores, sugiriendo así que los individuos de mayor profundidad 

preferían invertir la energía en el esfuerzo reproductivo antes que en el crecimiento 

somático. A nivel estacional, se observó la presencia de actividad reproductiva durante 

todo el año, con un mayor incremento en otoño. Estos datos coinciden con estudio 



realizados en otros grupos de megafauna como peces u otros equinodermos (Ferrand et 

al. 1988; Fernandez-Arcaya et al. 2013a; Fernandez-Arcaya et al. 2013b) y se relaciona 

con una mayor reserva de nutrientes en dicha estación del año (Herring 2002; Sardà et 

al. 2003).

Si pasamos a considerar los datos obtenido mediante imágenes de  ROV, se recopilaron 

un total de 4520 observaciones faunísticas (ver Artículo 4) de los tres hábitats 

geomorfológicos descritos anteriormente (un cañón, dos montes y dos deslizamientos  

submarinos). Los datos que se obtuvieron describieron una mayor presencia de especies 

filtradoras y detritívoras en áreas de cañón, entre ellas la ascidia carnívora Dicopia 

antirrhinum, (ver Artículo 5) situada a 1100 m de profundidad en las inmediaciones del 

cañón de La Fonera. Esta elevada presencia de especies se debe como se ha comentado 

anteriormente a la mayor presencia de nutrientes en zonas de cañón que en los 

alrededores de estos (Company et al. 2012). En las zonas de montes submarinos, se 

describió una mayor presencia de especies sésiles, como corales y gorgonias. Esto se 

debe a las características específicas de estas áreas tanto a nivel geomorfológico como 

hidrográfico además de la presencia de un sustrato duro que permite que se establezcan 

complejas comunidades faunísticas (Rogers 1994; Rowden et al. 2010). Finalmente en 

zonas de deslizamientos submarinos, normalmente los grupos de fauna más observados 

fueron aquellos que presentan una elevada movilidad, como son peces y crustáceos. 

Esto se corresponde con los datos obtenidos en zonas semejantes mediante muestreos 

tradicionales, los cuales mencionan una mayoría de estos grupos a nivel de abundancias 

y biomasas a profundidades similares (Stefanescu et al. 1993; Abelló et al. 2002).

Finalmente, tanto mediante observaciones de ROV como por medio de los muestreos 

tradicionales se estudió la presencia del impacto antropogénico en la zona de estudio. 

Los datos recogidos con estos últimos, se recopilaron en un estudio englobando material 

de noroeste Mediterráneo (Ramirez-Llodra et al. 2013). Mediante las imágenes 

recogidas se constató una mayor presencia de palangres en zonas rocosas como los 

montes submarinos, mientras que las zonas de cañón lo más observado eran restos de 

broza (plásticos, botellas, telas etc...). En las zonas más llanas de los deslizamiento, los 

más observados fueron las marcas de arrastre, las cuales deformaban totalmente el lecho 

marino. 



En resumen podemos concluir que la presente tesis aporta nuevos y reveladores datos 

sobre un grupo tan desconocido como son los invertebrados no-crustáceos del 

Mediterráneo profundo a todos los niveles (taxonómico, poblacional y biológico), tanto 

por medios tradicionales como nuevas tecnología. Con esta Tesis se pretende reagrupar, 

validar y simplificar los datos ya existentes así como aportar datos nuevos con el fin de 

que en un futuro otros investigadores obtengan la información de una manera más 

sencilla y directa de la que se encontró la presente doctoranda. 
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Resumen 

Los estudios realizados sobre composiciones faunísticas referentes a invertebrados en el 

noroeste Mediterráneo profundo, suelen ir enfocados principalmente al grupo de los 

crustáceos decápodos. Debido a ello, los otros grupos de invertebrados no-crustáceos,  

han sido considerablemente menos estudiados y la información disponible suele estar 

dispersa o anticuada. En este contexto de escaso conocimiento, este estudio recoge 

nuevos datos faunísticos en relación a rangos batimétricos, distribuciones, densidades, y 

biomasas de las poblaciones de los invertebrados no-crustáceos presentes en las zonas 

del margen continental profundo entre los 400 y los 2850 m de profundidad. Asimismo 

se estudiaron los patrones de composición y distribución faunística en zonas de cañones 

submarinos. Se recogieron 5876 individuos pertenecientes a 68 especies. De estas, una 

fue descrita como primera cita en el Mar Mediterráneo y tres se consideraron especies 

raras. Igualmente se amplió el rango máximo de distribución batimétrica para 11 

especies. Finalmente se observó una mayor abundancia y biomasa de invertebrados no-

crustáceos en las zonas de 

para las comunidades bentónicas. 



Abstract 

centred on crustacean decapods, being other groups of megafauna mostly unknown. For 

these non-crustacean invertebrates groups, poor information is presently available, 

being often dispersed and out-dated. In this context of low information, present study 

reports new faunistic data in relation to bathymetrical ranges of distributions as well as 

conducted a comparative study along the deep-sea continental margin (from 400 to 2850 

m depth) on density, biomass and biodiversity bathymetrical pattern of non-crustacean 

invertebrate community. We also report differences in community composition between 

inside and outside canyon areas. A total of 5876 individuals were collected. From them, 

a first record in the Mediterranean Sea, three rare species and eleven bathymetrical 

ranges of distribution were extended. Depth related patterns were observed on density 

distribution, showing their maximum of abundance at deeper areas (i.e 1500-2250 m). 

The higher concentration of patchy species at deeper range could be driven the observed 

increasing pattern. Additionally, higher densities and biomasses were observed in 

canyon areas than in its adjacent open slope, confirming them as hotspots for faunal 

communities. 

KEY-WORDS: Non-crustacean invertebrates, taxonomy, distribution, community, 

canyon. 



Introduction 

The shallow Mediterranean Sea could be considered well studied environment, when 

compared with other oceans (Coll et al. 2010), however, when this comparison is

referred to the deeper areas of the Mediterranean (deeper than 500 m depth) the 

information remains scarce (Company et al. 2004; Danovaro et al. 2010; Ramirez-

Llodra et al. 2010). Published data are partly available for specific zones such as the 

habitats (e.g. cold coral reefs, cold seeps, carbonate muds, canyon areas or 

submarine hills (Mastrototaro et al. 2010; Bo et al. 2011; Bienhold et al. 2013). The 

north-western Mediterranean represents an exception, being presently one of the most 

studied regions at all faunistic levels (i.e. population distributions, biodiversity and 

communities zonation). This affirmation is especially true for the deep-sea continental 

margin, the fauna of which has been studied for the half of the past century (Pérès and 

Picard 1956; Carpine 1970; Alvà 1987; Stefanescu et al. 1993). The specific 

geomorphological characteristics of the local margin (i.e., high number of submarine 

canyons and the steep inclination of the continental slope) and associated biotic and 

abiotic processes (i.e. variation in oceanographic currents, the mixing in hard and soft 

substrata and higher food availability compared with other Mediterranean areas), result 

in a high habitat heterogeneity of the north-western continental margin (Carpine 1970; 

Company et al. 2012; Tecchio et al. 2013). That conjunct of highly diversified habitats 

promotes the establishment and maintenance of diverse faunal communities, the 

composition and functioning of them are just starting now to be described and 

understood (Levin et al. 2010). 

The faunistic studies carried out in continental margin areas deeper than 500 m in the 

north-western Mediterranean basin were mainly focused on the two most abundant 

groups, fishes and crustaceans (Abelló et al. 2002; Sardà et al. 2003; Fernandez-Arcaya 

et al. 2012; Fernandez-Arcaya et al. 2013). That interest was primarily motivated by the 

need to understand heavily exploited ecosystems by local fisheries (Stefanescu et al. 

1993; Company et al. 2004; Sardà et al. 2004) and their fishery related studies (Sardà et 

al. 1994; Moranta et al. 1998; Aguzzi et al. 2009). The number of studies oriented to

other groups of megafauna are comparatively lower (Turon 1988; Quetglas et al. 2000;

Ramirez-Llodra et al. 2008; Cartes et al. 2009). Among these, there are the non-

crustacean invertebrates, which are presently at the centre of an important scientific



sampling effort (Ramirez-Llodra et al. 2008; Cartes et al. 2009; Mecho et al. 2014b),

which for example, is providing an entirely new set of faunal data and is resulting in the 

detection of new species and records (Mecho et al. 2014a; Mecho et al. 2014b; Saiz et 

al. 2014).

The importance of taxonomical studies on non-crustacean invertebrates resides not only 

in the description of species and their taxonomical classification, but in the fact that 

several secondary studies that take advantage of this knowledge (Godfray 2002; Khuroo 

et al. 2007). Giangrande (2003), describes that taxonomic sufficiency

suggest that working at a taxonomic level higher than species does not result in an 

important loss of information) had been signalled these last years, and how it could have 

an effect of inaccuracy of biodiversity evaluation and an exclusion of some entities 

before understanding their role in ecology.  

Presently, the invertebrate species composition of north-western deep-sea communities 

is mostly centred on crustacean decapods, leaving several gaps of knowledge on other 

ecologically relevant and apparently abundant invertebrate groups. For these groups,

poor information is presently available, being samples often disregarded at sampling 

since their taxonomical status is of difficult determination. The present study reports 

new faunistic data in relation to the depth of distributions, densities, and biomasses of 

populations of several deep-sea continental margin non-crustacean invertebrates into 

canyons. Species taxonomic determination was carried out in these geomorphologic 

areas of difficult sampling access, in order to achieve more reliable faunal lists to be 

used for future ecological studies.  

Materials and Methods 

Study area 

Ten oceanographic cruises were conducted between October 2008 and April 2013 to 

sample the deep seafloor of the western Mediterranean Sea. The sampling areas 

included the Blanes Canyon and its adjacent open slope, the Palamós Canyon (also 

named La Fonera) and the Cap de Creus Canyon (Fig. 1). These cruises took place in 

the framework of three Spanish research projects (PROMETEO, DOSMARES, and 



PROMARES), sampling at depths between 400 and 2845 m (Table 1). Additionally, a 

trans-Mediterranean cruise took place in the context of the European project BIOFUN 

(EuroDEEP Eurocores, European Science Foundation) during July 2009. This cruise 

sampled the western, central and eastern Mediterranean basins at 1200, 2000 and 3000 

m depth. Considering the low number of trawls conducted on central (n= 6) and eastern 

basins (n= 10) during BIOFUN cruise and the low number of obtained species (n=11),

these samples were exclude from the analyses. However, the specimens were integrated 

in the general species list (Table 2). 

Figure 1. Study area representing the three sampled canyons and adjacent open slopes in the north-
western Mediterranean Sea. Colour lines represent trawl stations. Red: PROMARES trawls; Blue: 
PROMETEO trawls; Green: DOSMARES trawls. Note: the black spot south Balearic Islands shows the 
western Mediterranean trawl at 2850 m depth from BIOFUN project. 

A total of 259 benthic trawls were completed (Table 1) resulting in a total swept area of 

10.6 km². Of these hauls, 129 samples were obtained by a single warp otter-trawl 

Maireta system (OTMS, Sardà et al. 1998) with a net length of 25 m and a cod-end 

mesh size of 12 mm. A SCANMAR system was used to estimate the width of the mouth 

of the net. An average horizontal opening of 12.7±1.4 m was calculated. As the 



SCANMAR system can only operate down to 1200 m depth, the same value for the 

he height 

of the trawl mouth was estimated to be 1.4 m (Sardà et al. 1998). In addition, 45 hauls 

were conducted with an Agassiz benthic dredge, made of a square steel frame with a 

mouth width of 2.5 m and a mouth height of 1.2 m, and fitted with a 12 mm mesh size 

net. Bathymetric range sampled by the Agassiz dredge is from 900 m to 2850 m depth,

no Agassiz data is available from 400 to 900 m depth. Further, 55 samples were 

obtained with an epibenthic sledge which consisted of a rectangular steel frame (mouth 

width of 0.8 m and mouth height of 0.4 m), three nets attached at different heights (10-

50 cm, 55-95 cm and 100-140 cm above the bottom) and a mesh size of 300 µm (only 

the frame closer to bottom was considered in the present study).

Table 1. Number of benthic trawls used in 

the present study by depth and 

geomorphological area. Canyon area 

included La Fonera, Cap de Creus and 

Blanes canyons. OS: open slope area.

Specimen identification 

The individuals of non-crustacean invertebrate species were sorted, weighed, counted 

and fixed with 40% formalin diluted with seawater and neutralized with borax on board 

ship. After 30 days, the non-gelatinous specimens were transferred to 70% alcohol in 

the laboratory for further examination. Individuals of relevant species were fixed in 

absolute ethanol on board to allow for molecular analyses (not included in this study). 



Back to laboratory, all specimens were classified to the lowest taxonomic level. The 

identification of some groups was confirmed with the help of several taxonomic 

specialists (i.e. Class Echiura and Phylum Sipuncula by Dr. J.I. Saiz-Salinas, Class 

Cephalopoda by Dr. R. Villanueva, Phylum Porifera by Dr. M.J. Uriz, Class Holothuria 

by Dr. David Billett and Class Echinoidea by Prof. Paul Tyler). The nomenclature was 

checked against the World Register of Marine Species (WoRMS) and the Phylogenetic 

classification of the species was based on the Tree of Life Web Project (ToL, 

http://tolweb.org/tree/). All specimens available would be stored in the Biological 

Reference Collections to provide information for future researchers. Species were 

compiled in a complete list (Table 2) with checked valid names, depth of occurrence, 

presence-absence in open slope and canyon area, and also were classified as pelagic, 

benthopelagic or benthic species, and vagil or sessile species. 

Statistical data treatment 

Density and biomass per phyla and classes (ind·km-2 and kg·km-2, respectively) were 

calculated and standardized per km2, bathymetrically and per area (open slope vs 

submarine canyon). In the present study, species considered strictly pelagic were 

excluded from the distribution and community composition analysis to avoid any bias 

of the data. Although, these species were also listed in Table 2 (i.e, Chrysaora 

hysoscella (Linnaeus, 1767), Pelagia noctiluca (Forsskål, 1775), Pterotrachea scutata

Gegenbaur, 1855, Cymbulia peronii Blainville, 1818, Pyrosoma atlanticum Péron, 1804 

and Salpa spp).

-diversity. Species 

accumulation curves were calculated for the open slope and the submarine canyon, 

separately for OTMS and Agassiz samples.

Due to the differences in the sampled fraction of the megafauna and considering other 

studies (Tecchio et al. 2011a), samples from Agassiz dredge and the benthic otter trawl 

(OTMs) were considered separately. Epibenthic sledge samples were discarded for 

analyses due to the punctual reported specimens and the bias that produced this 

sampling method. As in the case of strictly pelagic species, all collected species were 

mentioned in the species table. 



Results 

New distribution records 

A total of 5876 individuals of non-crustacean invertebrates were collected along the 

deep Catalan margin. Of them, 5564 were classified down to the taxonomic level of 

species. Individuals belonged to eight phyla, for a total of 18 classes and 68 species 

(Table 2).  

Among relevant species, we sampled the regular echinoid Gracilechinus elegans

(Düben & Koren, 1844) at 1500 m depth, being hence the first record in the 

Mediterranean Sea (Mecho et al. 2014b). 

the endemic holothurians Hedingia mediterranea (Bartolini Baldelli, 1914) and 

Penilpidia ludwigi (von Marenzeller, 1893) and the wood boring sipuncula 

Phascolosoma (Phascolosoma) turnerae Rice, 1985 (Saiz et al. 2014).

Because there 

whole Mediterranean Sea. For each of the previous species, at least 3 individuals were 

collected.

Bathymetrical range of distribution was extended for 11 species: the Porifera 

Polymastia tissieri (Vacelet, 1961) from 2211 to 2850 m; the cold water corals 

Madrepora oculata Linnaeus, 1758 and Desmophyllum dianthus (Esper, 1794) from 

1100 m for both species to 1450 and 2250 m, respectively. The Echiurans Echiurus 

abyssalis Skorikow, 1906 and Bonellia viridis Rolando, 1821, from 837 and 1621 m 

down to 1750 and 2000 m depth, respectively; the Sipuncula Sipunculus (Sipunculus) 

norvegicus Danielssen, 1869 from 1927 to 2000 m depth; the echinoderms Hedingia

mediterranea and Holothuria (Panningothuria) forskali Delle Chiaje, 1823, from 1100 

m to 1500 m and from 300 m to 850 m respectively, Brissopsis lyrifera (Forbes, 1841) 

from 1650 m to 2250 m and Ceramaster grenadensis (Perrier, 1881) from 2500 m to 

2845m.  











Bathymetrical patterns of density and biomass distribution 

Density and biomass of non-crustacean invertebrate species were plotted for the three 

sampling systems (i.e. epibenthic sledge, the Agassiz and the OTMS trawls) (Fig. 2A, 

B). Density presented two trends, showing low values from 400 to 1050 m depth, and a 

decreasing pattern of higher values from 1200 to 2850 m depth (Fig. 2A). These trends 

were mainly influenced by the samplings conducted by the Agassiz trawl that usually 

presented higher values than OTMS. This latter one, presented similar density values 

along all the bathymetrical sampling depths. The epibenthic sledge presented a peak of 

densities at 900 m as result of a catch with more than 200 patching holothurians; this 

peak was discarded from the graphics due to the bias that produced. Biomasses, as 

observed in density showed higher values in Agassiz and a peak of biomass was also 

observed at 1200 1500 m depth (Fig. 2B). 

Figure 2. Bathymetrical trends of 
A) density and B) biomass of 
non-crustacean invertebrates 
sampled in Epibenthic sledge, 
Agassiz and OTMS trawl 

In order to better understand 

the results described below, 

we analysed bathymetrically 

the density and biomass by 

class. The classes of the 

Phyla Brachiopoda and 



Echinodermata were the more abundant with higher biomasses at the deepest 

bathymetric range of this study (below 1500 m) (Figs. 3 and 4). These two phyla were 

the most abundant non-crustacean invertebrates along the Catalan margin (Fig. 5). 

Species of the Phylum Mollusca were also present at all sampled depths, but with higher 

densities and biomasses found down to 1750 m. The densities of the 4 classes of 

Mollusca were different depending on the sampler used, with more strictly benthic 

classes of Mollusca found in Agassiz trawl (i.e. Scaphopoda and Bivalvia), compared 

with OTMS samples that mostly contained Cephalopoda and Gastropoda. Taking into 

account the bias resulting from epibenthic sledge data, they are not studied in these 

analyses  

Community composition  

Of all sampled Phyla, the echinoderms were one of the most important, representing 

57% of the total density and a 41% of the total biomass (Fig. 5A, B). Differences in 

faunistic composition were also observed for the 3 different samplers used (Fig. 5). The 

more abundant phyla in Agassiz trawl samples were Brachiopoda, Echinodermata, and 

Cnidaria, representing 32%, 31%, and 19% respectively of the total of all sampled 

species (Fig. 5A). For OTMS samples, the higher densities were for Echinodermata, 

Brachiopoda, and Mollusca, with 46%, 27%, and 13% respectively of the total sampled 

species (Fig. 5A). Epibenthic sledge mostly collected specimens within the Phylum 

Echinodermata, which therefore made up the 91% by the resulting from one single trawl 

(Fig. 5A).  

The Agassiz sampler collected high biomasses of Echinodermata, Cnidaria, and 

Brachiopoda (48%, 26% and 13%, respectively) (Fig. 5B), while OTMS mostly 

captured individuals within the Phylum Mollusca, the biomass of which represented the 

69% of the total, followed by Echinodermata (23%) and by a minority of Cnidaria (5%) 

(Fig.5B).  

Biomasses of epibenthic sledge samples were constituted by 87% of Mollusca, resulting 

from the sample of a single large individual of the cephalopod Bathypolypus sponsalis 

(P. Fischer & H. Fischer, 1892). 



Figure 3. Density bathymetric distribution by Class for A) Agassiz trawl and B) OTMS  



Figure 4. Biomass bathymetric distribution by Class for A) Agassiz trawl and B) OTMS



Figure 5. Faunistic composition by gear for A) total density and B) biomass of non-crustacean 
invertebrates. Epibenthic sledge data was not used on posterior analyses (for further information see 
section Material and Methods).



Biodiversity patterns 

Biodiversity rarefaction index ES(25) showed different patterns with depth for both 

sampling methods (OTMS and Agassiz trawl). For OTMS biodiversity a bi-modal 

shape was observed, decreasing from 400 to 1050 m and increasing after until 2000 m 

depth (Fig. 6A). The Agassiz rarefaction index presented a decreasing trend with depth 

(Fig. 6B), showing a higher number of species sampled at shawoller depths.  

Figure 6

Submarine canyon versus open slope 

When bathymetrical patterns of density and biomass were studied by geomorphological 

areas (opens slope or canyon) (Fig 7A, B), the higher values reported at 1200 m  1500 

m depth coincide with trawls conducted inside canyon areas (Fig 7A, B). Although, 

when canyon samples were discarded bathymetrical patterns maintain similar 

distributions with low values. 

Densities and biomasses of non-crustacean invertebrates were higher at submarine 

canyon area compared with adjacent open slope (Fig. 8). Mean density in the former 

zone were of 1940 ind·km-2 for Agassiz trawl and 221 ind·km-2 for OTMS, while in the 

open slope the density for Agassiz was of 872 and 77 ind·km-2 for OTMS (Fig. 8).



Figure 7. Bathymetrical 
trends of A) density and B) 
biomass of non-crustacean 
invertebrate sampled in open 
slope (OS) and canyon areas. 

The same trend was observed for biomass with 17.2 kg·km-2 for Agassiz and 2.79 

kg·km-2 for OTMS in canyon areas, while in the adjacent open slope the Agassiz 

reported 4.7 kg·km-2 and OTMS 1.76 kg·km-2 (Fig. 8).

Faunistic composition in terms of densities was different between the two areas, canyon 

and open slope, (Fig. 9) and these differences were observed in samples of both 

sampling methods used (Agassiz and OTMS).  

In open slope the three most abundant Phyla were similar for both trawls, with just 

slight differences in their proportion.



Figure 8. Total density and biomass of non-crustacean invertebrates sampled in open slope and canyon 

areas.

Figure 9. Faunistic densities composition sampled by gear in canyon and open slope (OS) areas. A: 
Agassiz; M: OTMS. 

Instead, biomasses showed differences in faunistic composition both by area and trawl 

method (Fig. 10). The higher biomasses on canyon samples were represented by 

cnidarians and echinoderms for both samplers. For open slope, the phyla composition of 

samples were different depending on the used method, being Agassiz more equally 

represented (Echinodermata represented 42% of the total biomass, followed by 

Brachiopoda, 31%, Mollusca, 24% and all the other Phyla less than a 2%) (Fig. 10). On 



open slope, the biomass classes caught by OTMS were mainly composed by the Phylum 

Mollusca, representing an 84% of the total biomass, Echinodermata a 10% and 

Brachiopoda only a 3% of the biomass (Fig. 10).  

Figure 10. Faunistic densities composition sampled by gear in canyon and open slope (OS) areas. A: 
Agassiz; M: OTMS

In canyon samples obtained by Agassiz trawl only the class Brachiopoda was the most 

abundant in the open slope than in canyon area (Fig. 11). The 4 classes of the Phylum 

Mollusca were instead more abundant in the open slope but more equally distributed. 

All the other Phyla presented higher densities inside than outside canyon (Fig. 11A). 

With OTMS, these differences were less obvious, and only Phyla Porifera, Cnidaria and 

Echinodermata were more abundant inside canyons (Fig. 11B). Biomasses from 

Agassiz presented similar patterns of distribution (Fig. 12A). In OTMS, biomasses were 

distributed more equally than in Agassiz samples (Fig. 12B). 

Seven species were reported only in canyon areas, while 27 were collected exclusively 

in open slope areas (Table 2). All the other species were present on both areas. The 

species were considered as belonging to the canyon when animals were sampled inside 



Figure 11. Density by Class for A) Agassiz trawl and B) OTMS in canyon (C) and open slope (OS) areas.



Figure 12. Biomass by Class for A) Agassiz trawl and B) OTMS in canyon (C) and open slope (OS) 
areas.



it more than three times. Some examples were the cold water corals Lophelia pertusa

(Linnaeus, 1758) and M. oculata, the gastropoda Pagodula echinata (Kiener, 1840), and 

the irregular echinoid G. elegans.

Species accumulation plots for open slope and submarine canyons (Fig. 13) shows that 

neither habitat has been sampled fully (as you add samples, more species are found), but 

the open slope is better sampled than the canyons. 

Figure 13. Species accumulation plots for 
open slope (blue) and submarine canyons 
(red) in the western Mediterranean. 

Discussion 

In this work, new faunistic and population characteristic records were provided for the 

deep-sea north-western Mediterranean Sea, highlighting the presence of 3 species 

considered as . Taking into account that the presence of these species was not 

punctual in the catches, that result point out their potential abundant presence in certain 

zones of the Mediterranean continental margin (Wheeler 2007; Fontaine et al. 2012). 

The lack of their previous report could be due to different factors, for example the weak 

sampling effort carried out in several deep-sea zones or alternatively, to the lack of 

taxonomic expertise in classifying correctly the specimens (Godfray 2002; Wheeler 

2007). 

In the same scenario, we can place our new findings about the deeper bathymetric 

expansion of previously reported species in our area and in the whole Mediterranean 

basin. For these reason we considered as a primary target the description of a detailed 

list of species in order to study faunistic communities. 



A clear difference was observed in faunistic distributions and composition related to the 

employed trawl gear. That phenomenon has been already reported (Tecchio et al. 

2011b), but to our best knowledge, no author provided such type of evidences for non-

crustacean invertebrates in the north-western Mediterranean. Most published data in fact 

refer to otter benthic trawls (e.g. OTMS, Sardà et al., 1998) and no information is 

available for Agassiz sampling in the north-western Mediterranean Sea. We observed 

that densities and biomasses compiled in both gears were totally different, not only at 

faunistic composition level but also in the reported order of magnitude of density and 

biomass. OTMS sampling, generally captured higher number of benthopelagic species 

(i.e. Class Cephalopoda and Scyphozoa), while Agassiz presented a majority of strictly 

benthic species. Patterns of distribution between densities and biomasses were more 

accurately pictured with Agassiz trawl that collected more equally all benthonic phyla, 

with sampled species showing similar patterns of density and biomass. All these 

observations indicate that the sampling using the Agassiz trawling allows achieving a

more trustful view of benthic non-crustacean invertebrate communities (Billett et al. 

2010).

Present study highlighted the occurrence of higher densities of non-crustacean 

invertebrate below 1500 mdepth, mainly observed on Agassiz samples (i.e. a maximum 

peak of density and biomass at 1500 m; see Figure 2). This densities pattern were 

evidenced in studies analyzing all fractions of the megafauna such as fishes and 

crustaceans (Tecchio et al. 2011a; Tecchio et al. 2013) or other non-crustacean 

invertebrates (Ramirez-Llodra et al. 2008; Cartes et al. 2009). This discrepancy could be 

due to the differences in sampling methods. The depths of low density of non-

crustacean benthic invertebrates coincide with depths were fishing activity is reported. 

As has been proved, (Martín et al. 2008; Clark and Rowden 2009) abundances and 

biomasses reported in fished areas were usually lower than non-fished areas. Our results 

suggest that this same pattern could be affecting the north-western Mediterranean Sea. 

The most abundant species of non-crustacean invertebrates were reported at the deepest 

sampling areas of this study (from 1500 m down to 2250 m depth). A decreasing trend 

with depth, coinciding with a decrease of biodiversity indexes has been reported. This

biodiversity diminution with depth has been suggested before in the same area of the 



north-western Mediterranean Sea (Tecchio et al. 2013). This was in accordance with an 

increasing number of patching and aggregative species with depth, explaining higher 

densities and lower number of species. This occurred with several species of the Phyla 

Echinodermata as Pseudostichopus occultatus and Brissopsis lyrifera. The high 

numbers of G. vitreus at 1750 m and 2250 m depth, coincide with an elevated quantity 

 ships), that provides an ideal solid 

substrate for this species (Ramirez-Llodra et al. 2013). All the other Phyla presented

maximum densities and biomasses at shallower depth (from 400 m to 1500 m depth). 

This phenomenon was more accentuated with samples caught with OTMS, where an 

elevated presence of Echinodermata and Brachiopoda in one single sampling depth was 

found. Patterns of biomass with depth for Agassiz trawl samples were in accordance 

with densities, but not for OTMS samples. For these samples, the depth pattern was

deeply influenced by the depth distribution of Class Cephalopoda. 

Bathymetrical pattern of density and biomass were highly influenced by canyon 

samples. Maximum values of density and biomass were reported inside canyon areas at 

1200 m and 1500 m depth, mostly composed by echinoderms and cold water corals. 

Faunistic composition was also different inside and outside canyons, as commonly 

found in the Atlantic and Pacific Ocean and for some Mediterranean areas (Gili et al. 

1999; Billett 2006; Duffy et al. 2013). This could be explained by the geomorphological 

and physic characteristics  of canyon zones (Arzola et al. 2008; Masson et al. 2011).
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Resumen 

El presente estudio recopila toda la información disponible sobre equinodermos batiales 

del talud medio e inferior del Mar Mediterráneo con el fin de proporcionar una fuente 

unificada de información para la taxonomía de este grupo.  La información bibliográfica 

recogida fue implementada con nuevos datos provenientes de 223 pescas de arrastre de 

11 campañas oceanográficas realizadas en el Noroeste Mediterráneo entre 800 m y 2845 

m de profundidad. Los nombres taxonómicos válidos, rangos batimétricos y 

distribuciones geográficas se recogieron para todas la especies. Los nuevos datos 

describen, por primera vez, la presencia del equinoideo Atlántico Gracilechinus elegans

(Düben and Koren, 1844) en el Mar Mediterráneo. Asimismo señalan la presencia de las 

holoturias endémicas Hedingia mediterranea (Bartolini Baldelli, 1914) muestreada con 

anterioridad únicamente en 1914 en el Mar Tirreno y Penilpidia ludwigi (von 

Marenzeller, 1893), señalada únicamente en tres ocasiones, dos en el Mar Egeo y una en 

el Mar Balear. Adicionalmente se ampliaron los máximos de distribución batimétrica 

para cuatro especies: el asteroideo Ceramaster grenadensis (Perrier, 1881) hasta 2845 

m; el equinoideo Brissopsis lyrifera (Forbes, 1841) hasta 2250 m; y las holoturias 

Hedingia mediterranea y Holothuria (Panningothuria) forskali Delle Chiaje, 1823, 

hasta 1500 m y 850 m, respectivamente. 















































Reproductive biology of the deep-sea asteroid Ceramaster 

grenadensis (Perrier, 1881) from the north-western Mediterranean 

Sea 

Mecho A.¹*, Fernandez-Arcaya U.¹, Ramirez-Llodra E.1, 2, Aguzzi J.¹, Company 

J.B.¹  

1 Institut de Ciències del Mar (ICM-CSIC). Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, 

Spain 

2 Research Centre for Coast and Ocean, Norwegian Institute for Water Research (NIVA), Gaustadalléen 

21, N-0349 Oslo, Norway 

Submitted to Mediterranean Marine Science  



Resumen 

Ceramaster grenadensis (Perrier, 1881) es el asteroideo batial más abundante del 

Mediterráneo nord-occidental. Este asteroideo, presenta una amplia distribución 

geográfica estando presente tanto en el Mediterráneo como en el Océano Atlántico. A 

pesar de ello, la información referente a su biología y ciclo reproductivo es escasa, al 

igual que en otras especies del mismo género. En este contexto, el presente estudio 

describe por primera vez el ciclo reproductivo y los patrones de distribución de la 

especie el Mediterráneo nord-occidental profundo. Los 141 especímenes utilizados 

fueron recogidos estacionalmente durante 10 campañas oceanográficas realizadas entre 

Octubre del 2008 y Abril del 2013. Se realizaron 194 pescas de arrastre (141 realizadas 

mediante Redes de Arrastre Maireta y 53 con patín de arrastre Agassiz) a profundidades 

comprendidas entre los 900 y los 2800 m de profundidad. Se observó que la distribución 

poblacional de C. grenadensis presenta un patrón batimétrico en el cual los especímenes 

adultos de tamaño más pequeño y los juveniles se encuentran a mayor profundidad. El 

sex ratio es de 2:1 hembras por macho, y se mantiene constante tanto estacional como 

batimétricamente. Los análisis histológicos de las gónadas presentan una organización 

típica de especies de reproducción asincrónica, conteniendo oocitos previtelogénicos y 

vitelogénicos durante todo el año. Este tipo de oogenesis se suele presentar en especies 

de reproducción continua, sin embargo la disminución del Índice Pilórico (PCI) en 

verano y el aumento del Índice Gonadosomático (GI) en otoño sugiere en este caso una 

mayor capacidad de desove en otoño. Asimismo en ambos sexos se observa un 

incremento de los valores de GI y PCI con la profundidad.



Abstract 

The bathyal asteroid Ceramaster grenadensis (Perrier, 1881) is one of the most 

abundant deep-sea asteroids in the north-western Mediterranean Sea and presents also a 

wide geographic distribution in the Atlantic Ocean. As for other species in this genus, 

little information is available on the biology and reproductive strategy of C. 

grenadensis. In this context, we describe for the first time the reproductive cycle of this 

species from bathyal depths in the north-western Mediterranean. Specimens (n = 141) 

were collected seasonally from 194 benthic trawls (141 Otter Trawls and 53 Agassiz 

sledge) conducted in 10 cruises from October 2008 to April 2013. Open slope and 

canyon systems were sampled at depths between 900 m and 2250 m. The population 

distribution of C. grenadensis showed a depth related structure, presenting the smaller 

adult specimens and juveniles at greater depths. Sex ratio was of 2:1 females per male, 

constant along seasons and depths. Histological analyses of the gonads showed an 

asynchronous ovarian organization, with previtellogenic and vitellogenic oocytes 

thorough the year. This oogenesis patterns suggest a continuous reproduction. However, 

the Pyloric Caeca Index (PCI) decreased in summer while the Gonad Index (GI) 

increased in autumn, suggesting a higher spawning capacity in autumn. On both sexes, 

an increasing GI and PCI trend was observed with increasing depth. 

KEY-WORDS: Ceramaster grenadensis, deep sea, reproductive biology, oogenesis, 

Mediterranean Sea.



Introduction 

Information on life history patterns of deep-sea fauna has been improved greatly in the 

past few years (Ramirez-Llodra, 2002a; Young, 2003). Nonetheless this information 

remains scarce for deep-sea Mediterranean megafauna (Company et al., 2003; 

Fernandez-Arcaya et al., 2012), including the echinoderms, which are still poorly 

studied in the Mediterranean Sea. In the Atlantic Ocean, the echinoderms are an 

important component of the bathyal and abyssal fauna in terms of density, biomass and 

ecosystem function (Billett, 1991; Billett et al., 2001; Ginger et al., 2001; Wigham et 

al., 2003), and their life history has been described for many species (Tyler, 1983; Gage 

et al,. 1986; Tyler et al,. 1992; Wigham et al., 2003; Galley et al., 2008; Benítez-

Villalobos & Díaz-Martínez 2010; Ross et al., 2013). In the deep Mediterranean Sea, 

the most abundant groups are fish and decapod crustaceans (Company et al., 2004; 

Danovaro et al., 2010; Tecchio et al., 2011; Fernandez-Arcaya et al., 2013a), and 

consequently deep-sea echinoderms have been less studied (Alvà, 1987; Mecho et al., 

2014) and their life history, remains mostly unknown. In the Atlantic Ocean, a wide 

diversity of reproductive strategies has been reported for deep-sea asteroids, from the 

most common quasi-continuous reproductive patterns to seasonal patterns (Tyler & 

Pain, 1982a; Tyler & Pain, 1982b). Also, there is a diversity in fecundity from high to 

low assets (Ramirez-Llodra et al., 2002b; Young, 2003), and brooding or broadcasting 

strategies have been described (Mercier & Hamel 2008).

The asteroid Ceramaster grenadensis (Perrier, 1881) belongs to the Family 

Goniasteridae and presents a wide geographic and bathymetric distribution. It is present 

both in the Atlantic Ocean and the Mediterranean Sea between 200 and 2845 m depth 

(Clark & Downey, 1992; Mecho et al., 2014). Its shallow bathymetric range is slightly 

deeper in the Mediterranean Sea, starting at 600 m, and its presence has been reported 

from the eastern, central and western Mediterranean basins (Koukouras et al., 2007; 

Carlier et al., 2009). This species is the most abundant asteroid below 850 m in the 

north-western Mediterranean Sea (Mecho et al., 2014). Although C. grenadensis

represents an important component of the deep benthic ecosystem, information about its 

general biology remains scarce. The trophic behaviour of some species within this 

genus has been studied, with some species (i.e. Ceramaster granularis (Retzius, 1783)) 

described as active sponge predators (Gale et al., 2013) and others described as deposit 



feeders (i.e. Ceramaster patagonicus (Sladen, 1889)) (Anderson & Shimek, 1993). 

Ceramaster grenadensis is a secondary consumer that may feed on decayed organic 

material (Carlier et al., 2009). Life-history traits in relation to the reproductive biology 

are presently unknown. Thus, in this study we focused on the population distribution 

and the seasonal and bathymetric patterns of the reproductive biology of C. grenadensis

along the middle and lower slope of the Catalan margin of the north-western 

Mediterranean Sea. 

Materials and Methods 

Study area and sampling methods 

From October 2008 to April 2013, ten oceanographic cruises were conducted in the 

north-western Mediterranean Sea. The sampling areas included the submarine canyons 

of Blanes, Palamós (also named La Fonera) and Cap de Creus, as well as the adjacent 

slope to the Blanes canyon (Fig. 1). Because of the low number of individuals sampled  

Figure 1. Study area representing the three sampled canyons and adjacent open slopes in the North-
western Mediterranean Sea. Colour lines represent trawl stations. Red: PROMARES trawls; Blue: 
PROMETEO trawls; Green: DOSMARES trawls. 



inside canyon areas (n = 3), no comparative analyses between habitats was conducted. 

These cruises took place in the framework of three Spanish research projects 

(PROMETEO, DOSMARES and PROMARES), sampling at depths comprised between 

900 and 2250 m every 150 m. 

A total of 141 hauls were conducted by a single warp Otter-trawl Maireta System 

(OTMS, Sardà et al., 1998) with a net length of 25 m fitted with a cod-end liner of 6 

mm strength mesh size. A SCANMAR system was used to estimate the width of the 

mouth of the net. An average horizontal opening of 12.7 ± 1.4 m, n = 36 was recorded. 

As the SCANMAR system can only operate down to 1200 m depth, the same value for 

the trawl mouth was estimated to be 1.4 m (Sardà et al., 1998). In addition, 53 hauls 

were conducted with an Agassiz dredge, made of a square steel frame with a mouth 

width and height of 2.5 and 1.2 m respectively, and a cod-end liner of 6 mm strength 

mesh size. The total sweep area fished was of 10.3 km².   

Because of the low number of individuals available at each depth, and based on 

available literature on deep-sea communities depth structuring (Quetglas et al., 2000; 

Company et al., 2004), the individuals were grouped in four bathymetrical strata 

comprising the whole sampled depth range as follow: 900-1050 m, 1200-1350 m, 1500-

1750 m and 2000-2250 m depth. Density and biomass were standardized to km2

estimated from vessel speed, distance from initial and final trawl position and average 

of the mouth opening of the sampling gear.  

Samples analysis 

All specimens (n = 141, Table 1) were sorted on board. The major radius (R) from the 

anus to the tip of the D arm was measured for all specimens. The specimens were then 

fixed with 40% formalin diluted with seawater and neutralized with borax. To study the 

population size distribution, R size were grouped into 5 mm classes and percentage 

frequency analysed. 



Table 1. Number of individual sampled during the oceanographic cruises. See trawl information in Figure 
1 (DM: DOSMARES trawls; PR: PROMETEO trawls). 
Cruise
code Season Depth strata (m) Total

900-1050 1200-1350 1500-1750 2000-2250
DM01 Winter 0 3 5 17 25
DM02 Spring 0 1 0 0 1
DM03 Autumn 2 1 0 0 3
DM04 Spring 2 7 5 9 23
PR01 Autumn 1 0 0 0 1
PR02 Winter 1 14 14 0 29
PR03 Spring 3 8 3 0 14
PR04 Summer 2 11 4 0 17
PR05 Autumn 3 3 9 12 27
PROMARES Summer 0 0 1 0 1
Total 14 48 41 38 141

After 30 days, the samples were transferred to 70% alcohol in the laboratory and 

weighted to the nearest ± 0.01 g. The 141 specimen were dissected on the oral side, 

from which the five pairs of gonads were extracted and weighted to the nearest ± 0.001 

g. The same procedure was conducted for the pyloric caeca. The gonad index (GI) and 

pyloric caecum index (PCI) were calculated:  

GI = x 100

PCI = x 100

After being weighted, gonads were preserved in 70% alcohol prior to histological 

preparation. In a subsample of 125 individuals, gonads were dehydrated in graded 

alcohols, cleared in Histoclear and included in paraffin wax. The gonads processed were 

sectioned at 7 µm and stained with Haematoxylin and Eosin. These 125 individuals 

were used for sex identification. Of these, 71 were females, of which 42 were processed 

and the Feret diameter of 100 oocytes (whenever possible) sectioned through the 

nucleus was measured for each individual using the image analysis package SigmaScan 

Pro 5.  



The Feret diameter gives the diameter of a disc with the equivalent area of the measured 

object. Oocyte sizes were grouped in 50-µm classes and oocyte-size frequency diagrams 

constructed by depth and season.  

Statistical data treatment 

All the data were tested for normality using the Kolmogorov-Smirnov non-parametric 

tests. Two Analyses of variance (ANOVA) were used to test population size differences 

between depths and between seasons. Meanwhile, the difference for density, biomass, 

GI and PCI between depths, and between seasons were tested by Mann-Whitney non-

parametric tests. Chi-squared test was used to analyse sex ratios in relation to depth and 

season.  

Results 

Density and biomass 

The bathymetric distribution of C. grenadensis ranged from 900 m to 2250 m depth, 

with mean density values not statistically different along depth strata (Fig. 2A) 

(Kruskal Wallis test, H3 = 1.35, P > 0.05). Although not significant, the maximum 

mean density was higher at 1500-1750 m depth. In contrast, a decrease in biomass with 

depth was observed (Fig. 2B).  

The mean biomass distribution showed significant differences between the two 

shallower strata (900-1050 m and 1200-1350 m) (Mann-Whitney U test, U = 68, N1 =

12, N2 = 24, P < 0.01) and between the shallower and deepest strata (900-1050 m and 

2000-2250 m) (Mann-Whitney U test, U = 18, N1 = 12, N2 = 12, P < 0.01). 

Although the mean density and biomass was not significantly different between seasons 

(Kruskal Wallis test, H3 = 0.31, P > 0.5 for density; Kruskal Wallis test, H3 = 1.47, P >

0.5 for biomass), a general trend of lower values in summer was found (Fig. 3A, B).



Figure 2. Density (ind·km-2) (A) and biomass 
(kg·km-2) (B) of C. grenadensis by depth strata. 
The top and bottom of each box-plot represent 
75% (upper quartile) and 25% (lower quartile) 
of all values, respectively. The horizontal line is 
the median. The ends of the whiskers represent 
the 10th and 90th percentiles. Cross marks 
represent outliers

Figure 3. Density (ind·km-2) (A) and biomass 
(kg·km-2) (B) of C. grenadensis by season. The 
top and bottom of each box-plot represent 75% 
(upper quartile) and 25% (lower quartile) of all 
values, respectively. The horizontal line is the 
median. The ends of the whiskers represent the 
10th and 90th percentiles. Cross marks represent 
outliers.

Population size distribution 

The population structure of C. grenadensis describes a normal distribution 

(Kolmogorov-Smirnov, D = 120, df = 137, P < 0.0001, Lilliefors significance 

correction), with most specimens (70%) presenting size classes between R = 20 and 35 

mm (Major Radium size) (Fig. 4A, B). The population size frequency distribution 



presented a depth related pattern, with size decreasing significantly with depth 

(ANOVA, F(3,134) = 91.79, P < 0.0001), with mean sizes not significantly different 

between the middle strata (1200-1350 m and 1500-1750 m). A mean individual size of 

R = 38 mm was observed at 900-1050 m stratum decreasing to R = 15 mm mean 

individual size at 2000-2250 m stratum (Fig. 4A). The adults were distributed along all 

the bathymetric range while juvenile specimens were limited to the deepest areas below 

1750 m depth. At the deepest stratum (2000-2250 m), the ratio of adults/juveniles was 

nearly 1:1. 

Figure 4. Individual size 
frequency distribution by 
depth (A) and season (B). 
Dark grey bars, females; 
light grey bars, males; 
white bars, juveniles.

Seasonally, the mean 

individual size 

decreased from 

summer (R = 31.9 

mm) to spring when 

the smallest 

individuals were 

captured (R = 22.5 

mm) (Fig. 4B). 

Significant differences 

between summer and 

all the other seasons 

were found (ANOVA, 

F(3,123) = 6.637, P <

0.0001). The individual size frequency distribution by season showed the presence of 

juveniles during winter and spring, while in summer and autumn only adult individuals 

were captured The smallest individual was caught at 2250 m depth in spring, with a R = 



6.34 mm while the largest specimen was collected at 1050 m depth in autumn with a R 

= 45.26 mm. 

Sex ratio and size at first maturity 

Over the 125 specimens sexed, 71 were female and 36 males, with 18 juveniles where 

sex could not be determined. Sex ratio was significantly biased towards females 2:1 

(Chi-square test, 2
2 = 0.5, P > 0.05). No significant differences were found in the sex 

ratio with depth or season (Chi-square test, 2
2 = 0.5, P > 0.05). Minimum size at sexual 

maturity was R = 10.9 mm for females and R = 13.3 mm for males. All the 18 juvenile 

specimens were found deeper than 1750 m depth.

Gonad morphology 

Ceramaster grenadensis presented macroscopically the typical gonad morphology of 

asteroids, with five pairs of gonads per individual, one pair in each interradius. Each 

pair of gonads was suspended in the coelom and was attached to the body wall by a 

short gonoduct opening aborally at the gonopore. Macroscopically, mature ovaries and 

testes presented the same morphology of tuffs of digitate tubules and could not be 

distinguished (Fig. 5A). 

Figure 5. Macroscopic view of a C. grenadensis gonad (A). Histological sections of gonads of mature 
testis (B).

Males in maturity stages presented the spermatozoa accumulated as dense masses of 

gametes in the lumen of the testes (Fig. 5B). Juveniles were classified as indeterminate 



specimens and they were identified by the presence of immature follicles, with no 

distinguishable oocytes or spermatozoa (Fig. 6A). 

Figure 6. Histological sections of gonads. Juvenile specimen with indeterminate gonad (A); Inmature 
female with oogonia (Oo)(B); Section showing previtellogenic oocytes (PV) and small vitellogenic 
oocyte (VS) (C); Section showing large vitellogenic oocytes (VL) and, previtellogenic oocytes (PV) (D).

In immature females, only oogonia were present, observed as small cells (<100 µm)

with large nucleus cytoplasm ratio (Fig. 6B). In females with developing ovaries, we 

observed all stages of oogenesis present at one time, including oogonia previtellogenic 

and vitellogenic oocytes (Fig. 6C). The previtellogenic oocytes (22.76 to 208.9 µm),

presented a central nucleus with an eccentric nucleolus. These cells could be identified 

because their cytoplasm stains in dark purple with haematoxylin due to their basophilic 

composition. The vitellogenic oocytes were larger cells (between 136 µm and 691 µm) 

with a smaller nucleus/cytoplasm ratio resulting from the accumulation of vitellum in 

the cytoplasm. The acidophilic cytoplasm of vitellogenic oocytes stained pale pink with 

Eosin. In the vitellogenesis stage, the oocytes were usually small or medium in size 

(from ± 130 µm to ± 450 µm) (Fig. 6C). Meanwhile, in maturity stage, females



presented previtellogenic (<200 µm) and large vitellogenic oocytes (from 450 µm to 

691 µm) (Fig. 6D). 

Oocyte-size frequency distribution 

Females of C. grenadensis presented a broad range of oocyte stages, independently of 

season or depth (Fig. 7A, B), suggesting that oogenesis is asynchronous in this species.   

Figure 7. Bathymetric 
oocyte-size frequency 
distribution (A) and 
seasonal oocyte-size 
frequency distribution (B).

There was a wide peak 

of previtellogenic 

oocytes (<250 µm) 

representing from 73% 

to 77% of the total 

measured oocytes in all 

seasons and from 68% to 91% of the measured oocytes in all depth strata. Small 

vitellogenic oocytes (from 250-350 µm) represented 7% to 10% of the measured 

oocytes in all seasons and from 1% to 17% of the measured oocytes in all depth strata. 

Developing vitellogenic oocytes (350-500 µm) represent 6% to 13% in all seasons and 

from 4% to 12% of the measured oocytes at all depths. The largest oocytes (500 700



µm) represented less than 1% of the measured oocytes for all seasons and between 0.1% 

and 3% for all depth strata.  

Gonad Index (GI) and Pyloric Caecum Index (PCI) 

The bathymetric values for GI and PCI were not constant bathymetrically (Table 2). In 

females, GI presented higher values at 1200-1350 m and 2000-2250 m depth (Fig. 8A). 

Significant higher mean GI and PCI values for females were reported at the lowest 

depth stratum (2000 2250 m depth) (Fig. 8A) (Table 2). 

Table 2. Mann-Whitney U values for Significance of 
the U values (U) is indicated using: * P < 0.1; ** P < 0.05; *** P < 0.001. Distance values with no 
asterisk indicate non-significant values

GI 900-1050 1200-1350 1500-1750
1200-1350 45*
1500-1750 51 225**
2000-2250 14* 152 87
PCI 900-1050 1200-1350 1500-1750
1200-1350 64
1500-1750 40* 298
2000-2250 0*** 10*** 18***

In males, the same pattern of higher mean values at lower depths was observed (Fig. 

8B). The mean GI was significantly higher at the deepest depth stratum (Table 3). 

Meanwhile, the mean PCI increased significantly at 1500-1750 m stratum (Table 3), 

with a maximum at 2000-2250 m (Fig. 8B) (Table 3) 

Table 3. Mann-Whitney U values for males GI and PCI values between depth strata. Significance of the 
U values (U) is indicated using: * P < 0.1; ** P < 0.05; *** P < 0.001. Distance values with no asterisk 
indicate non-significant values.

GI 900-1050 1200-1350 1500-1750
1200-1350 29
1500-1750 31 59
2000-2250 2** 2*** 3**
PCI 900-1050 1200-1350 1500-1750
1200-1350 31
1500-1750 13** 28
2000-2250 10 15 29



Figure 8. Bathymetrical 
changes in Gonad Index 
(GI) and Pyloric Caeca 
Index (PCI) (mean ± SE) 
in females (A) and males 
(B).

No significant differences were observed in the mean GI values of females throughout 

the year (Fig. 9A, Table 4). A decrease in mean PCI was observed in summer (Fig. 9A), 

but the differences were not statistically significant (Table 4). 

In males, we observed a seasonal pattern, presenting a significant increase of mean GI 

in summer and autumn (Fig. 9B, Table 5), while there were no significant differences in 

mean PCI throughout the year (Fig. 9B, Table 5). 



Figure 9. Seasonal 
changes in Gonad 
Index (GI) and 
Pyloric Caeca 
Index (PCI) (mean 
± SE) in females 
(A) and males (B).

Table 4. Mann-Whitney U values for females GI and PCI values between seasons. Significance of the U 
values (U) is indicated using: * P < 0.1; ** P < 0.05; *** P < 0.001. Distance values with no asterisk 
indicate non-significant values.

GI winter spring summer
spring 207
summer 154 89
autumn 199 116 79
PCI winter spring summer
spring 210
summer 148 86
autumn 199 114 76



Discussion 

The density of the asteroid C. grenadensis was similar at the different depths sampled 

on the continental margin of the north-western Mediterranean Sea, with a slight, but not 

statistically significant, increase at 1500-1750 m. This pattern coincides with what has 

been reported for other echinoderms, such as the holothurian Mesothuria (Allantis) 

intestinalis (Ascanius, 1805) Östergren, 1896, found in large numbers at 1600 m depth 

in the Balearic basin (Cartes et al., 2009), and invertebrates species (i.e Aristeus 

antennatus (Risso, 1816)) (Sardà et al., 2003). Sporadic food inputs at these depths 

provided by particulate matter transport down nearby submarine canyons (Sanchez-

Vidal et al., 2008) have been suggested as one of the possible factors for the higher 

presence of invertebrates at these intermediate depths (Sardà et al., 2003; Cartes et al., 

2009). The biomass pattern of C. grenadensis presented the inverse trend than density, 

with a decrease with depth and a significantly lower biomass found at 2000-2200 m 

compared to the other depth strata. This pattern coincides with the biomass patterns 

observed for the whole megafauna from the same area  (Tecchio et al., 2013). This 

decrease of megafaunal biomass with depth in the north-western Mediterranean has 

been related to the decrease of the megafauna individual size (Stefanescu et al., 1993; 

Moranta et al., 1998).

A decreasing trend of the individual size with depth was also observed for C. 

grenadensis. If we considered exclusively adult specimens, the observed bathymetric 

changes in size structure were in accordance with the deep-sea dwarfism theory  

(Harvey et al., 1988), as found in the irregular echinoid Brissopsis lyrifera (Forbes, 

1841) in the Atlantic Ocean. Mecho et al., (2014) also found this pattern in individuals 

of B. lyrifera, with the smallest individuals found at the deepest distribution range 

(1750-2250 m depth) of this species in the Mediterranean Sea. This phenomenon has 

also been observed in Molpadia musculus Risso, 1826 (Mecho, unpubl. data). The 

smaller size observed in certain deep-sea species has been related to the low food 

availability in the deeper areas compared with more productive shelf and upper slope 

habitats (Rex et al., 2006). Food limitation could be particularly important in the deep 

Mediterranean seafloor, because of the oligotrophic nature of the Mediterranean waters 

(Company et al., 2003; Zúñiga et al., 2009). 



Juvenile specimens of C. grenadensis were only caught deeper than 1750 m depth. The 

lower bathymetric distribution of the juveniles compared to the adult population has 

been observed also for other asteroids, such as Luidia sarsii sarsii Duben & Koren in 

Duben 1845, and Pontaster tenuispinus (Düben & Koren, 1846), both in the Porcupine 

Seabight (Sumida et al., 2001; Howell et al., 2002). Additionally, a previous analysis of 

the same smaples reported juveniles of C. grenadensis, below the previously reported 

adult lowest depth of distribution in the Western Mediterranean Sea (South Balearic 

Sea), thus extending the maximum depth range of distribution for this species down to 

2845 m (Mecho et al., 2014). The factors driving this depth-related recruitment pattern 

in several species of deep-sea asteroids is not fully understood and further information 

on larval distribution and dispersal in relation to environmental variables is necessary 

(Howell et al., 2002).

The gonads and pyloric caeca indices increased with depth, with maximum values 

observed at the deepest stratum (2000-2200 m). A higher GI value at the deeper species 

distribution range was also found in the Atlantic asteroid Solaster endeca (Linnaeus, 

1771) (Ross et al., 2013). Ross et al., (2013) attribute these higher GI values to the 

larger oocyte size of the individuals distributed at their maximum depth of distribution.  

However, no bathymetric differences in oocyte size were found in the present study. We 

suggest that, in Mediterranean C. grenadensis, individuals dwelling at greater depths 

probably increase their reproductive effort by reducing the somatic investment (small 

sizes) and devoting a higher amount of energy to oocyte (i.e. higher GI values). The PCI 

values quantified for females C. grenadensis caught at 2000-2200 m depth were four 

times higher than values recorded at 900-1050 m. This high PCI recorded from 

individuals in the lower slope suggest that these females may be storing nutrients in the 

pyloric caeca in order to maintain a constant production of gametes in a food-limited 

environment (Benítez-Villalobos & Díaz-Martínez, 2010), allowing a constant transfer 

of energy from the pyloric caeca to the gonads (Mcclintock et al., 1995). 

The gonad index values were higher in autumn, while lower pyloric caeca index values 

were reported in summer, coinciding with other studies (Mcclintock et al., 1995). Our 

results suggest a transfer of nutrients from the pyloric caeca to the gonads during 

periods of gonadal growth (summer autumn). Higher reproductive activity in autumn 

have also been described for deep-sea fishes in the same study area (Fernandez-Arcaya 



et al., 2013a; Fernandez-Arcaya et al., 2013b). We observed that in males, PCI values 

started to decrease in spring and the GI started to increase at the following season (i.e. 

summer). In females PCI decreased in summer with a subsequent increase GI in 

autumn. Thus, males seem to have a maximum gonad development before females. 

Unless if this time-separation was usually shorter (i.e. minutes or hours) (Mercier & 

Hamel, 2008) here it could be an adaptation to high fertilisation success by ensuring that 

sperm is available when females start spawning. 

In females, the distribution of oocytes remains constant thorough seasons and depths, 

with the ovary mainly occupied by previtellogenic and medium vitellogenic oocytes and 

a low percentage of vitellogenic oocytes in the largest size range. This constant presence 

of all kind of oocytes thorough the year was also reported in the Atlantic Ocean for

Styracaster elongatus Koehler, 1907 (Benítez-Villalobos & Díaz-Martínez, 2010) and 

bathymetrically for Henricia lisa A. H. Clark 1949 (Mercier & Hamel, 2008), were the 

deepest specimens presented a constant presence of all kind of oocytes.  

In deep-sea echinoderms, quasi-continuous reproductive patterns as well as seasonal 

patterns have been described (Ramirez-Llodra, 2002a; Mercier & Hamel, 2008; Baillon 

et al., 2011). For deep-sea Mediterranean echinoderms, the reproductive biology has 

been only described for one species, the echinoid Brissopsis lyrifera, in the Gulf of 

Lion. This species has a well-defined seasonal pattern of reproduction, with maximum 

gonad maturation and spawning in autumn (Ferrand et al., 1988), and presenting small 

eggs between 15 and 80 µm. The ovaries of C. grenadensis from the Mediterranean 

presented a wide range of oocyte sizes at all seasons and depths, with only a few mature 

gametes at any single time. This oogenesis patterns is characteristic of semi-continuous 

reproduction (Young, 2003). Thus, C. grenadensis follows a similar reproductive 

pattern than what has been described for many deep-sea echinoderms (Mcclintock et al.

1995; Ramirez-Llodra et al., 2002b; Galley et al., 2008), which has been related to the 

low food availability at great depths (Mcclintock et al., 1995). The deep Mediterranean 

seafloor is particularly food-limited because of the overlying relatively oligotrophic 

waters (Company et al., 2003; Tyler, 2003; Zúñiga et al., 2009). We suggest that this 

environmental food limitation together with the capacity of storing and redistributing 

nutrients from the pyloric caecum (high PCI values all year round) play key roles in 

shaping the semi-continuous reproductive pattern observed in C. grenadensis.



The diversity of eggs sizes in echinoderms, estimated from the largest oocyte size in the 

ovary, results in different nutrient input in the spawned egg and thus differences in 

larval development (Eckelbarger & Watling, 1995). In C. grenadensis, the eggs size are 

relatively large (650 700 µm), similarly to other studied species of deep sea asteroids in 

Atlantic waters, such as Styracaster elongatus Koehler, 1907 and Hyphalaster inermis

Sladen, 1883) (Ramirez-Llodra et al., 2002b; Young, 2003; Benítez-Villalobos & Díaz-

Martínez, 2010). This large egg size should to provide enough energy to the embryo and 

larva for pelagic until settlement  (Benítez-Villalobos & Díaz-Martínez, 2010). The 

lecithotrophic larvae do not need to feed in the water column and thus provide an 

advantage in food-limited environments such as the deep Mediterranean Sea 

(Eckelbarger & Watling, 1995; Ramirez-Llodra, 2002a). 

In summary, the population structure and reproductive biology of C. grenadensis has 

been described for the first time. The results suggest that adult size and somatic growth 

in C. grenadensis is lower in the individuals distributed at the deeper range of the 

species, where food quantity and quality are lower. Nonetheless, the reproductive output 

was higher in the individuals distributed at deeper depths, suggesting a higher 

investment in reproduction in detriment of somatic growth. Seasonally, highest values 

of GI were observed in autumn, suggesting a higher spawning capacity in this season. 

The gametogenesis of C. grenadensis form the bathyal Mediterranean Sea is similar to 

that of other deep-sea echinoderms, and showed a quasi-continuous production of sperm 

and large oocytes, which has been reported as a common reproductive pattern for deep-

sea echinoderms. 
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Resumen 

Las observaciones realizadas in situ del Mediterráneo profundo y su fauna, siguen 

siendo escasas a día de hoy en comparación con otros océanos y mares. En este estudio, 

se describe por primera vez la composición y distribución de la megafauna demersal 

proveniente de tres hábitats diferentes del Mediterráneo noroccidental como son 

cañones, montes submarinos y deslizamientos de tierra submarinos. Esto fue posible 

mediante el uso de un Remote Operated Vehicle (ROV) a profundidades comprendidas 

entre los 60 y los 800 m de profundidad. En las 30 horas de video obtenidas 

(equivalente a 14.5 km de suelo marino muestreado), se describieron un total de 4519 

observaciones faunísticas. Estas observaciones se clasificaron taxonómicamente hasta el 

nivel más bajo posible. Posteriormente, estos datos fueron analizados en relación a los 

factores ambientales como son topografía, tipo de substrato y profundidad. Igualmente 

se cuantificó el impacto antropogénico presente en las diversas zonas. Este impacto se 

agrupó en cuatro categorías: redes de pesca, palangres, marcas de arrastre de pesca y 

otros tipos de broza (botellas de plástico, cristal, zapatos, cajas, etc...). Los resultados 

obtenidos indicaron la presencia de hábitats considerablemente diferentes en los cuales 

la broza y las marcas de arrastre son los efectos antropogénicos más observados. Los 

diferentes hábitats muestreados presentan similitudes en cuanto a composición 

faunística en relación al tipo de substrato, profundidad y topografía. Esto permitiría 

predecir la composición faunística presente en otras áreas desconocidas de 

características similares.  



Abstract 

In situ observations of the deep Mediterranean Sea and its associated fauna are presently 

scarce in comparison to those conducted in other oceans. This study reports, for the first 

time, the composition and distribution of demersal megafauna from different north-

western Mediterranean submarine habitats such as canyons, sea hills and landslides 

between 60-800 m depth, by Remote Operated Vehicle (ROV). From a total of 30 hours 

of video recording (equivalent to 14.5 km of surveyed seafloor), 4519 faunistic 

observations were made, being items identified to the lowest possible taxonomic level

and analysed in relation to environmental factors (i.e. topography, substrate type, and 

depth). In addition, anthropogenic impact was quantified by grouping observations in

four categories: fishing nets, longlines, trawl marks and other litter. Our results indicate 

the presence of a complex collection of markedly different habitats in which litter and 

trawl marks were the most observed signs of anthropogenic impact. The different 

targeted environments showed similarities in faunal composition according to substrate,

depth, and topography. This aspect justifies a seascape approach in further ecosystem 

studies within north-western Mediterranean deep-sea areas. Canyons, sea hills and

landslides can be classified as seascape units, since sharing similar compositions and 

distributions of taxonomic groups. This would allow faunistic predictions in other 

presently unexplored but similar areas in the western basin.

KEY-WORDS: north-western Mediterranean; faunal composition; ROV; behaviour; 

anthropogenic impact; seascape; submarine canyon; sea hills; submarine landslide, 

trawl marks, litter



Introduction 

The identification of deep-sea 

the conservation and management of benthic biodiversity is currently a major focus of 

European Community research programs [1]. In this context, the study of cold seeps, 

mud volcanoes, seamounts, and 

strategic relevance, when aiming to the ecosystem integrated management and 

conservation of demersal sources [2,3]. In this scenario, the deep Mediterranean Sea 

hosts a complex collection of geological and ecological relevant environments for 

which faunal composition and local biodiversity are largely unknown [4]. In situ video 

observations of Mediterranean deep-sea fauna are presently much more reduced in 

comparison to those conducted to date in other geographical areas [5 9]. The western 

Mediterranean basin is not an exception. Its middle slope encompasses markedly 

different geomorphologic structures, occurring over short geographic distances of few 

kilometres [4,10]. This asset may potentially result in a highly variable faunal 

composition, but only few data have been gathered up to date [3,11], because of the 

difficulty in performing sampling with classic methodologies such as bottom trawling in

most of these sites.

The presence of submarine canyons is one of the most distinctive features of the north-

western Mediterranean continental margin [10,12 14]. Canyons are large incisions in 

the continental shelf and slope that often result in abrupt depressions just a few miles off 

the coastline. They act as conducts of concentration and downward transport of 

sediment and organic particles [12 17] as well as drivers for local current regimes 

[18,19]. Their biodiversity and species distributions have been object of study in the 

past two decades mostly by indirect sampling methods like trawl hauling [14,20 24].

Sea hills are also present in the north-western Mediterranean area [25], defined as

topographic structures that rise up to 500 m above the surrounding seafloor, with their 

morphology largely shaped by their lithological nature. These topographic seafloor 

features can alter the local hydrological regime and sedimentation. In general, they 

expose hard substratum that makes them ideal spots for sessile filter-feeder fauna [26

29]. Nevertheless, only recently have submarine hills received some scientific attention 

in the north-western Mediterranean area [30]. Finally, a third type of structure is 

represented by muddy continental shelves and slopes, the latter affected in certain areas 



by submarine landslides [31]. These habitats have been studied typically in relation to 

species distribution and biodiversity, mostly when commercially trawl fisheries also 

occur [21,32 35].

All these complex geomorphologic structures from the deep Mediterranean Sea are 

presently threatened by a diversified variety of anthropogenic impacts, spanning from 

the accumulation of litter [36 39], to fisheries activity, including lost or discarded gears 

(i.e. nets and longlines), as well as trawling itself that produces consistent habitat 

damage [40 42]. Also, the ecotoxicology of dispersed chemical compounds at plastic 

decomposition acts on the metabolism of species and on the dynamism of resulting 

trophic webs [43 45]. For all these reasons, the quantification of anthropogenic impacts 

on deep-sea ecosystems is presently a source of concern for both the science community 

and policy makers [46].

The use of ROV video-imaging surveys for the description of species compositions, 

ethology, and anthropic impacts has increased worldwide in recent years 

[2,11,36,46,47]. In this context, the objective of the present study is to describe and 

compare, by means of ROV imagery, the faunistic distribution in different deep-sea

geomorphologic zones of ecological relevance within the north-western Mediterranean 

area. In order to do so, we selected habitats for which there was very limited or no direct 

(i.e. ROV observations) or indirect (i.e. trawling) data about the inhabiting megabenthic 

communities. In addition, we quantified the anthropogenic impact within each area. As

an important by-product of this exploration, we also described a number of relevant 

ethological aspects for some species.

Materials and Methods 

Data collection 

The ROV Max Rover II of the Hellenic Centre of Marine Research (HCMR) was used 

to conduct visual observations along seven seafloor transects (referred from now as 

ives ) during the research cruise EUROLEON, which took place in October 2007, on

board BIO Hespérides. The ROV survey imaged a total of 14.5 km, equivalent to a total 

of 30 hours of video of the seafloor (Table 1). 



Table 1. Depth range (m) and km of surveyed seafloor of the seven dives conducted during the 
exploratory surveys in different geomorphological deep-sea zones of the Balearic Sea.
Dive 
number

Dive
location

Geomorphology
area

Substrate
type

Bathymetric 
range (m)

Surveyed
km

1 Blanes Canyon Submarine canyon Mud+Sand 70-450 2.5 
2 Blanes Canyon Submarine canyon Mud+Sand 60-450 0.7 
3 Gulf of Valencia Sea hill Mud+Rock 450-800 3.7 
4 Eivissa Channel Sea hill Sand+Rock 280-500 0.6
5 Eivissa Channel Sea hill Sand+Rock 196-250 2.2 
6 Eivissa Channel Landslide Mud+Rock+CoR 575-600 2.0
7 Eivissa Channel Landslide Mud 650-700 2.8
Typologies of observed substrate are indicated as follow: CoR, coral rubble; Mud; Sand and Rock.

The ROV was equipped with two wide angle colour CCD cameras, offering a frontal 

and a lateral view, plus a third one with a macro-zoom. Lighting asset was composed by 

2 x 100 W HID lights and 4 x 150 W Quartz lights. ROV speed and seabed height 

during filming operations were approximately 2.3 knots and 2 m, respectively.  

Three areas of the north-western Mediterranean were video-surveyed (Fig. 1): the 

Blanes Canyon, the Gulf of Valencia, and the Eivissa Channel. A total of seven dives 

(Table 1) were performed in the three areas, providing data from 3 distinct 

geomorphological zones (Fig. 1): dives 1 and 2 in the Blanes canyon head  (depth range 

60-450 m) [48]; dive 3 in an unreported sea hill in the Gulf of Valencia (depth range 

450-800 m); and dives from 4 to 7 in the Eivissa Channel, two of them (dives 4 and 5) 

along a small flat-topped sea hill (depth range 280-500 m and 196-250 m), and  the 

other two (dives 6 and 7) close to the escarpments of two submarine landslides (Jersi 

and Ana landslides) [49 51]. These mass wasting events occurred about 60 ka [50],

over a depth range of 575-600 m and 650-690 m, respectively.  

Data processing and analysis 

Video considered for the faunistic analyses was obtained from the frontal CCD camera.

All faunistic characterizations were performed in a time-lapse mode (i.e. at 50% of real 

speed), using the software application Intervideo WinDVD 9.0 (Windows).



Figure 1. Study area. Blanes canyon head in 
the Balearic Sea, sea hills in the Gulf of 
Valencia and Eivissa Channel and landslides in 
the Eivissa Channel. 

All observed organisms were classified to the lowest possible taxonomical level. For a

more precise taxonomic determination, digital frames were extracted after video 

partitioning. Classification was accomplished by the use of currently used taxonomical 

guides [52 54].

Data on faunal composition, substrate type (i.e. mud, rock, sand, and coral rubble),

ethology, and anthropogenic impact were annotated and coupled to dive time. For that 

purpose, we firstly grouped observed organisms in six taxonomical groups. Five of 

them corresponded to the four more frequently observed Phyla (Porifera, Cnidaria, 

Echinodermata, and Chordata) and Subphyla (i.e. Crustacea). We also considered a 

sixth miscellaneous group ( Other ), made by those Phyla reported at a too 

low frequency to be considered as individual units for the faunistic analysis (i.e. 

Brachiopoda, Annelida, Ctenophora and Echiura). 

ROV navigation tracks were processed and recalculated to eliminate outliers produced 

by navigation errors and lost pings, and, finally, filtered to smooth the track. Quality 

control has been performed by matching the time variable with depth readings of the 

ROV related to the video record and the bathymetric depth of the multibeam maps 

based on the ROV track navigation.  



All observations were loaded in a database according to their timing of occurrence in 

the video footage and then elated to the exact geographic location, through the coupling 

with ROV navigation data. Observations were grouped over a distance of 100 m along 

the ROV navigation track, allowing for comparisons in different sections. We reported 

the number of taxonomic groups by distance (i.e. each 100 m) in relation to substrate 

type, depth, and geomorphological structure.  

The same procedure was done for anthropogenic impact. For a better visualization of 

faunistic spatial trends, the numbers of individuals per each taxonomic group were 

plotted by 100 m and represented along each dive transect. Finally, behavioural 

observations were reported and classified when occurring in videos more than twice, as 

suggested by other studies [55]. 

Statistical methods 

To identify significant connections between taxonomical groups, abundances, and 

habitat parameters, levels of similarity among taxa were ordered in a two-dimensional

plane through count-based distance matrices with the non-metric multidimensional 

[56] in R (R Project for 

Statistical Computing, http://www.r-project.org/) was used to perform the taxa 

ordination. Then, ordered taxa were regressed against the depth (continuous variable), 

using Generalised Additive Models (GAMs).  

[57] in R was used to fit the regressions. GAMs 

allowed identifying linear and non-linear connections between taxa ordination and 

depths.  

Finally, to identify connections between ordered taxa and substrate type, and habitats 

(factor variables), factor fitting permutation tests were applied using the function 

variables and fitted them onto taxa ordination. 



Results 

General remarks 

We reported a total of 4519 faunistic observations (Table 2) from three different 

geomorphologic features (i.e. canyon, sea hill, and landslide) (Fig. 1). The fauna 

belonging to the Phyla Chordata, Cnidaria, and the Subphylum Crustacea was the most 

abundant (Fig. 2), respectively representing 25%, 23% and 20% of the total 

observations. The Phylum Porifera was less abundant (12%), while Echinodermata 

represented only the 6%. Finally, animals within the category Other (i.e. Brachiopoda, 

Annelida, Ctenophora, and Echiura) together summed up 14%.  

Table 2. Number of observations for each taxonomical group observed at each geomorphological zone.

There were no significant differences in taxa composition and abundance between 

habitats (Table 3, Case 1). The substrate type significantly explained taxa composition 

in all the habitats together and within habitats, except for the case of the landslide where 

species are not significantly related to that parameter (Table 3, Case 4). 

Finally, depth significantly explained taxa composition in all the habitats together and 

within habitats, particularly in the sea hill, where depth accounted for about a half 

(47.4%, Table 3) of the taxa structure. 

Groups Canyon Sea hill Landslide Total obs.
Porifera 5 550 5 560
Cnidaria 252 551 244 1047
Crustacea 204 227 472 903
Echinodermata 49 87 141 277
Chordata 162 363 577 1102
Other 74 496 60 630
Total obs. 746 2274 1499 4519
% 16 51 33 100



Figure 2. 

Percentage of 

total faunistic 

observations

Table 3. Summary of statistical validations for the connections between taxa ordination and 
environmental variables.

Response variable Environmental 
variable

Statistical 
Method

Significance
(p)

Variability 
explained (%)

1. Taxa in all the habitats Habitat FF * 0.10729 2.5
Sediment FF 0.00033 11.7
Depth GAM < 0.00001 17.9

2. Taxa in the canyon Sediment FF 0.003 16.4
Depth GAM < 0.00001 17.8

3. Taxa in the hill Sediment FF 0.001 19.0
Depth GAM < 0.00001 47.4

4. Taxa in the landslide Sediment FF * 0.939 1.2
Depth GAM < 0.00001 37.1

*Non-significant result. For the factor fitting (FF) method, p-values based on 1000 permutations. For 
GAMs, p-values of the smooth term are provided 



Figure 3. Spatial 
ordination of taxa 
composition and 
abundances related to 
depth (m) (grey 
curves), and 
sediment types, for 
A) all the habitats 
together; B) for the 
canyon only; C) for 
the hill only and D) 
for the landslide 
only.

When we considered all the taxonomical groups in all the habitats together (Fig 3A), we

observed that the Phylum Echinodermata prefers shallower depths whereas Porifera, 

Cnidaria, and Crustacea prefer deeper zones. We also show that Echinodermata is the 

more dissimilar taxa (because of its abundance) compared to the others taxa (it appears 

far from the others in the spatial ordination plot). Finally, individuals of the Crustacea 

seem to be found closer to coral rubble, whereas the Porifera prefer mud and sand. The 

were closely related with rocky substrate. 

Canyon head 

A total of 746 faunistic observations were made in the western flank of the Blanes 

canyon head (Table 2, Fig. 1), where two transects covered a total distance of 3.2 km of 

seafloor. Two kinds of substrates were observed in the Blanes canyon head: a muddy 

area on the deepest part, and a sandy area with strong tanathocenosis on the shallower 

part of both dives. The two dives were similar in setting with the exception of the 

southern dive (no. 2), which crossed an area with a steeper slope in its deepest section. 

The Phylum Cnidaria was the most abundant, with a 34% of the total observations (Fig. 

4A). This group had also the highest number of taxonomic groups (n= 14), as well as 

the highest number of individuals per group (i.e. the Anthozoan Pennatula spp. with 



149 observations). The Subphylum Crustacea represented 27% of the total observations, 

most of them corresponding to the Infraorder Brachyura (i.e. crabs). This Phylum was 

followed by the Phyla Chordata (22%) and the Phylum Echinodermata (6%). For the 

latter, the Class Asteroidea and Holothuroidea were the most abundant. The group 

Other  represented 10% of the total observations. 

Figure 4. Percentage of faunal observations at each geomorphological zone studied. A) Canyon B) Sea 
hill C) Landslide

On the western flank of the Blanes canyon head, we could distinguish three different 

faunistic distributions (Fig. 5), related to depth and slope angle. The deepest part

surveyed (450 - 250 m), showed a low number of observations and high diversity of 

Phyla. In general the area shows a two-step slope change at 250 - 300 m and 150 m 

depth. The deep areas with steep muddy slopes are dominated by crustaceans. From 150 

to 60 m depth, the seafloor is relatively flat and it was dominated by the Phyla Cnidaria 

(Anthozoans, Pennatula spp.) and Echinodermata, mostly the Asteroidea Anseropoda 

placenta (Pennant, 1777) and the Holothuroidea Parastichopus regalis (Cuvier, 1817).

NMDS analysis in the canyon (Fig. 3B) revealed dissimilarity among taxonomical 

groups (these are not clustered in the plot). We also observed that Echinodermata 

remains shallower than the differences in depth are found in the habitat. Finally, 

Cnidaria and Crustacea were closely related with muddy substrate.

Sea hill 

Two sea-hill transects were analysed (Fig. 1), one in the Gulf of Valencia and the other 

in the Eivissa Channel (Table 1). The first one presented a conical morphology in a 

depth interval from 450 to 800 m depth. The ROV transect comprised 10 hours of 

recorded images, resulting on 3.7 km (Fig. 6) of surveyed seafloor. The second sea hill 



in the Eivissa Channel was surveyed separately on its eastern flank and on its flat top, 

from 196 to 500 m depth, along 2.8 km (Fig. 7). Results will be described separately by 

sea hill and then total results of both sea hills.

The Gulf of Valencia sea hill (Fig. 6) raises from 800 m depth up to 450 m on the top. It 

is characterised by two kinds of substrates: a rocky area constituted by steep slopes and 

rocky substratum (from 450 to 600 m depth) and a large muddy plain surrounding the 

rocky area, from 600 to 800 m depth. A significant denser concentration of benthic 

fauna was observed on the shallowest rocky areas (Fig. 6A) in comparison to a

drastically diminution of that fauna toward deepest muddy areas (Fig. 6B). The sea hill 

presented two well separated faunistic distributions related to these substrates and other 

taxa and they are related to sand, although no major depth. The rocky substratum was 

located on the flank of the seamount (Fig. 6A) and presented a fauna basically 

composed by benthic species in the Phyla Porifera (31% of the total observations within 

the rocky area), Cnidaria (25%, benthic species as corals, anemones and gorgonians) 

 (28%, mainly Brachiopoda). The second substratum, the muddy plain 

surrounding the rocky area (Fig. 6B), was dominated by Crustacea (33% of the total 

observations), Chordata (mainly fishes, 32%), and Cnidaria (mostly deep-sea anemones 

of the genus Cerianthus, 22%). In the case of the muddy plain, the distribution of the 

benthic communities was patchy along the dive and it was related to subtle changes of 

slope and substrate (Fig. 6B).  

On the Eivissa Channel sea hill (Fig. 1), two areas were studied (Fig. 7): the upper slope 

(flank) and the flat top. The flank presented a south-eastern orientation in a depth 

interval between 280 - 500 m depth. The flank is subdivided in two areas with different 

substrates and slopes (Fig. 7A, Dive 4). At its bottom, we observed a flat area mainly 

composed of mud with boulders.  

This area was dominated by motile fauna such as Crustacea (24% of the total 

observations of the flank) and Chordata (22%, mainly fishes), but included also sessile 

fauna (24%, as benthic cnidarians), on the cobbles. Moving upwards, the flank was 

occupied by rocky outcrops dominated by the benthic Phyla Porifera (14%), and 

(8%, in this case mainly Brachiopoda) (Fig. 7A).  



The transect over the flat top of the Eivissa Channel sea hill (Fig. 7B, Dive 5) comprises 

only one substratum type, a bioclastic sand with sparse rocky outcrops. The top of the 

hill was dominated by motile fauna, including Chordata (fishes, 48%), Cnidarians 

(Class Scyphozoa, 26%) and Echinodermata (Class Holothuria, 14%). This transect 

covered the shallowest parts (196  250 m depth) of the surveyed area (Fig. 1) and it 

was dominated by shallow-water species of Cnidarians (Pelagia noctiluca (Forsskål, 

1775)), Echinoderms (Holothuria (Holothuria) tubulosa Gmelin, 1791) and fishes. It is

worth reporting the high number of fish schools observed over the rocky areas of the top 

of the sea hill.  

A total of 2274 faunistic observations were reported from both sea hills over a distance 

of 6.5 km (Table 2). The most common observed groups were the Phyla Porifera and 

Cnidaria, representing each one 24% of the total entries (Fig. 4B). The 

mostly consisted, of items within the Phylum Brachiopoda, representing 22% of all the 

observations. The Phylum Chordata (16%) and Subphylum Crustacea (10%) were less 

abundant in the sea-hill dives. The Phylum Echinodermata represented only a 4% of the 

total observation. 

The NMDS analysis conducted in the sea hill (Fig 3C) showed that taxa in the hill are 

dissimilar among them (not clustering together in the plot) and that Echinodermata and 

Chordata were found in shallower depths with sand, whereas Porifera, Cnidaria and 

Crustacea prefer deeper O were more 

abundant at middle depths. 

Submarine landslide 

Two submarine landslides (Jersi and Ana) were surveyed in the Eivissa Channel (see 

Fig. 1), resulting in 4.8 km of video recordings, from which 1499 taxonomic 

observations were made (Table 2). The depth range was similar in both studied sites, 

with Jersi landslide surveyed along the 575 m contour (Fig. 8A, Dive 6) and the Ana 

landslide between 650-700 m depth (Fig. 8B, Dive 7). The landslide scars consisted of 

more consolidated sediments and, in the Jersi landslide area, even rocky pebbles and 

coral rubble have been observed. The depositional areas of the landslides were 

composed of mud, similar in gross morphology to the undisturbed upslope area (i.e. 



above the landslide scars). As for the sea-hill habitat, results are described firstly in

separated mode for each landslide and then in general terms (comprising both 

landslides). 

When we considered the landslides separately, we found Jersi landslide dominated by 

Crustaceans (60% of the total observations of this landslide), and Chordata (19%). None 

of the other groups exceed 8% in this landslide. We could observe an increase of 

Crustaceans on the scar area. Nonetheless, this landslide presented a mostly constant 

faunal composition along all its surveyed area (Fig. 8A). 

The substratum along the Ana landslide was mostly mud (Fig 8B). Sediment along the 

scar area appeared as more consolidated. Ana landslide was dominated by Chordata 

(44% of the total observations of this landslide) followed by the Subphylum 

Crustaceans (24%), and the Phyla Cnidaria (19%) plus Echinodermata (10%). The 

Echinodermata were more abundant in scar than on the mud plain, and was basically 

constituted by the Class Ophiuroidea.  

Comprising both landslides, the most representative groups were the Phylum Chordata 

(mostly fishes) and the Subphylum Crustacea, representing respectively the 39% and 

the 31% of total observations (Fig. 4C). The Cnidaria and Echinodermata were less 

abundant (respectively 16% and a 10%), was only the 4% 

out of the total. The different faunal groups identified fit well with the topographic 

features recognised on the bathymetry (Fig. 8A, B).

Landslides scars, deposits and undisturbed seafloor had different phyla compositions 

and abundances. The most abundant fauna in the scars were the Crustacean. Landslide 

deposits were dominated by pelagic cnidarians (Order Coronatae) and Chordata (mainly 

fishes). Finally, the undisturbed seafloor upslope of the landslides was dominated by 

Crustaceans and Echinoderms (most of them belonging to the Class Ophiuroidea). 



Figure 5. Blanes canyon head. Number of faunistic observations plotted by taxonomical group every 100 
m. A) Dive 1; B) Dive 2                  



Figure 6. Gulf of Valencia sea hill. Number of faunistic observations plotted by taxonomical group every 
100 m. A) Seamount rocky area; B) Surrounding muddy plain.  



Figure 7. Eivissa Channel sea hill. Number of faunistic observations plotted by taxonomical group each 
100 m. A) Dive 4, flank of the hill; B) Dive 5, flat top of the hill.



Figure 8. Eivissa Channel landslides. Number of faunistic observations plotted by taxonomical group 
each 100 m. A) Dive 6, Jersi landslide; B) Dive 7, Ana lanslide.



In the landslide habitat, the NMDS analyses (Fig 3D) conclude that substrate type did

not significantly relate to taxa (see also Table 3). We also observed that Chordata and 

Cnidaria structures were similar and preferred deeper areas. Finally, the Echinodermata,

Crustacea, and Porifera were close together in NMDS plots indicating a similar 

structure (i.e. species composition and abundances) and prefer shallower depths.

Anthropogenic impact within habitats

A noticeable level of anthropogenic impact was observed in all studied zones, with 158 

recorded artificial artefacts of different kinds produced over an apparently large 

temporal scale. These items included plastic bags, cans, and bottles (Fig. 9A). Trawl 

marks were also consistently observed (Fig. 9B). Finally, lost or discarded fishing gear

was also detected, including longlines (Fig. 9C) and remains of fishing nets (Fig. 9D).

Figure 9. Different types of anthropogenic impact observed. A) Litter; B) Trawl marks; C) Longlines; D) 
Fishing net. 



Overall, litter not classified as longlines or nets was the most abundant observation 

(39%), followed by trawl marks (30%) and longlines (28%), with lost or discarded nets 

being less abundant (3%) (Fig. 10). In the canyon head habitat, litter (plastic bags and 

bottles) represented 79% of the total observations, whereas longlines accounted for 14% 

and only 7% of the observations related to anthropogenic impacts were trawl marks. No 

fishing nets were detected (Fig. 10).  

On the sea hills and their surrounding areas, 58% of the anthropogenic impact observed 

was represented by longlines, with a significant amount of other litter (22%), trawl 

marks (16%), and only 4% was constituted by fishing nets (Fig. 10). On the landslides, 

approximately half (45%) of the total anthropogenic observations were constituted by 

trawl marks and other litter (44%), being longlines (9%) and fishing nets (3%) less 

representatives (Fig. 10). 

Figure 10. Percentage of total anthropogenic impact observed in the study and in each area.



Behavioural observations of identified species

Several behavioural observations were made for motile fauna during the ROV surveys. 

Within decapod crustaceans, individuals of the Family Galatheoidea were observed 

projecting forward their claws as the ROV approached, suggesting a marked territorial 

behaviour. Burrowing behaviour was also observed in an isolated individual of the 

Norway lobster (Nephrops norvegicus, Linnaeus, 1758) at 670 m depth (Fig. 11A). This 

animal showed a motile activity in relation to the occupation and emergence from a 

multiple-burrow system. That animal was observed as engaged in patrolling different 

burrow entrances, entering and exiting from them. Another behaviour displayed by 

decapods was related to camouflage. This was observed in six individuals of Paromola

cuvieri (Risso, 1816), which were carrying white plastic bags and other artefacts on 

their carapace (Fig. 11B, C). 

Figure 11. Behavioural observations. A) Territorial behaviour, from a Norway lobster, Nephrops 
norvegicus. B, C) Camouflage behaviour from Paromola cuvieri; C) The Macrourid Trachyrincus 
scabrus (Rafinesque, 1810), just before escape; D) Trachurus sp. Schooling; E) Pelagia noctiluca near 
the bottom. F) Pelagia noctiluca

Fish behaviour was also noted in relation to their reaction as the ROV approached. 

Evasion was typically observed in individuals of the Family Macrouridae (Fig. 11D), 

while other fishes (i.e. Order Scorpaeniformes) did not show alterations in their 

behaviour. Attraction to the lights of the ROV was never observed. Schooling behaviour 



was reported for Trachurus trachurus (Linnaeus, 1758), Pagellus bogaraveo, Capros 

aper (Linnaeus, 1758) and Lepidopus caudatus (Euphrasen, 1788) (Fig. 11E).

Finally, a peculiar observation was reported in relation to jellyfishes, mostly Pelagia 

noctiluca (Forsskål, 1775) and specimens from the Order Coronatae. These were

observed swimming a few centimetres over the seabed. In the case of P. noctiluca,

small groups were observed touching the seafloor over the top of the flat sea hill in the 

Eivissa Channel (Fig. 11F).

Discussion

In this study, we carried out for the first time in situ video-observations of the benthic 

communities inhabiting a set of geomorphologically diverse north-western 

Mediterranean Sea habitats. We produced spatially extended faunistic observations that 

indicate the presence of distinct species assemblages. Species composition was related 

to different seafloor characteristics, such as topography, substrate type, and depth. Other 

environmental factors, such as local hydrography or organic matter input may have been 

We observed similar faunistic composition in dives conducted in different areas of 

canyons, landslide, and sea hills. This suggests that substrate type and depth play a also  

playing a significant role in shaping the local faunal communities [58,59], but pertinent 

data were not gathered here strong role in driving species composition toward a 

convergence, in geographical regions hosting different topographic structures. That 

recurrent species composition across geography is of importance for the validation of 

canyons, open slope, sea hill, and landslides topographies as valid seascapes units [60]. 

In fact, analysed habitat features, play a key role in shaping benthic community 

composition and biodiversity at different geographic scales of continental margins, 

across different geomorphologies [59]. Clearly, a combination of topography and 

substrate seems to influence, as expected, the presence of filter-feeding animals. We 

showed how sponges, corals, gorgonians, and brachiopods are always strictly linked to 

hard substrate, being these either rocks or litter. Conversely, other groups of sessile 

fauna only appeared on soft sediments (i.e. anemone Cerianthus membranaceus and 

seapen Pennatula spp. (Linnaeus, 1758)). Gorgonians, sponges and corals appeared on 

hard substrate on hill areas where orientation and currents result adequate. Differently, 



other filter feeders were present in zones of both sporadic elevated hydrodynamism and 

turbidity, such as seapens on soft bottoms on canyon areas (see below).  

Anyway, faunistic results are different for highly motile species such as fishes or 

crustacean decapods. For example, aggregations of motile macrozooplankton have been 

observed often above abrupt topographies such as sea hills/seamounts, submarine 

canyons and the steep slopes of shelf breaks, indicating that, beside the strong effect of 

trophic architectures, which sustain richer communities [61]. We also observed that 

specific microhabitats, such as punctual rocks, may be important as topographic 

structures [62]. 

Depth was another parameter that shaped the zonation in our faunistic observations, 

constraining the presence of some species at certain locations, in a fashion that appeared 

to be independent from the local geomorphology or the type of substrate. Some 

shallow-water species (i.e. the Anthozoa Pennatula rubra (Ellis, 1761), the Asteroidea 

Anseropoda placenta (Pennant, 1777) and the Holothuroidea Parastichopus regalis 

(Cuvier, 1817), were not observed in deeper areas, even when suitable substrata was 

available. Similarly, deep-living species such as decapods of the genus Plesionika spp. 

or fishes belonging to the Order Stomiiformes and the Family Myctophidae were only 

observed below a depth threshold. Our data fit within species depth rages usually 

reported by trawling [63 65]. 

Another factor to be considered is water characteristics within the benthic boundary 

layer (i.e. the interface between the water column and bottom sediment [66]. This layer 

represents a high energy habitat, with several essential chemical components and 

suspended particles, which may sustain a specific associated fauna [67]. The high 

turbidity, organic matter content and hydrodynamism of the benthic boundary layer 

could represent a combination of conditions suitable for sustaining a high abundance of 

benthopelagic fauna such as shrimps and prawns. This high abundance of decapods was 

observed, for example, in the landslide areas. An increase in the abundance of 

jellyfishes was also observed in the benthic boundary layer, suggesting that this group 

may selectively target the benthic boundary layer faunas in a food-rich area. The 

abundance of small fauna in the benthic boundary layer [67] may induce the presence of 



predators or scavenging species, such as fishes and cephalopods, that were also detected 

in our ROV observations in close proximity to the seabed. Our results are discussed 

below separately for each geomorphologic zone.  

Canyons 

The majority of the observations on canyons corresponded to sessile fauna such as 

anemones, sea pens, sea fans, and tubular worms. All these taxonomical groups are 

suspension feeders and are common in canyons in the Balearic Sea [14,42,68]. Canyons 

increase heterogeneity of the shelf and slope muddy areas, by diversifying the types of 

available substrate (i.e. the combined presence of mud, sand or sandy sediment and

rock). This results in the presence of a diversified associated fauna within small 

geographic scales [11,42,59,69 71]. The specific topographic and physical 

characteristics of these habitats deeply condition the faunistic composition and 

community structure of the canyon fauna, which are often different within the canyon 

itself and in the surrounding areas [14,24,61,72]. For example, the Blanes canyon 

experiences an internal down streaming flux of particles, three times higher than that 

reported on the surrounding open slope [58]. Additionally, some punctual processes of 

large magnitudes found on the northern Balearic Sea, such as dense shelf water 

cascading, produce a significant input of nutrients that affect the communities due to the 

resuspension of organic matter and enhance the recruitment of some deep-sea species 

[13,23].

The higher concentration of organic matter and associated presence of zooplankton 

aggregations in the head of some canyons [73] may produce a higher biodiversity and/or 

abundance of resident benthic fauna [42,68]. The high number of taxonomical groups in 

this area seems to be justified by the shallow depth [72,74].  

Sea hills  

Faunistic differences between the Gulf of Valencia and the Eivissa Channel hills were 

observed in the present work. These differences could be related to their topographic 

characteristics, and depth, in turn influencing substrate types, local hydrography, and 

food availability. The hill of the Gulf of Valencia, with its conical shape, presented a 



Porifera community and hard coral fauna, related to the abundance of hard substrate, as 

well as to sediment pressure and hydrodynamism. On the other hand, the flat topped sea 

hill in the Eivissa Channel showed a dominance of motile fauna such as crustaceans and 

fishes, probably associated to the bioclastic sand. Another important factor to take into 

account when analysing the faunal community composition and structure of sea hills 

and seamounts is trawling activity [75]. Flat topped sea hills and seamounts may present 

a modified faunal composition from their original biodiversity caused by the impact of 

commercial fishing activity [76]. In fact, trawl marks were observed at the top of the flat 

hill. Trawl fisheries usually deeply change benthic communities in terms of species 

distribution, density and diversity [77].

In our study area, we observed evidences of a differential fishing activity on the two sea 

hills. There was a high amount of lost longlines (targeting fishes) tangled on the rocky 

substrate of the Gulf of Valencia rocky sea hill, while the flat topped Eivissa Channel 

sea hill presented a higher abundance of trawl marks (targeting mostly decapod 

crustaceans). These differences in fishing impact on the bentho-pelagic fauna may 

contribute to the observed differences in faunal composition between the two sea hills.  

In general, we observed the presence of an elevated number of Phyla on the sea hills 

studied in comparison to the adjacent muddy seafloor. Sea hills are considered habitats 

of high biodiversity sustained by their peculiar geomorphologic conformation that 

strongly conditions local hydrography, with the consequent increase of water column 

nutrients input and retention [78,79].  

Rocky substrate on sea hills are particularly suitable for colonization by sessile filter-

feeding organisms, resulting in complex biogenic effects on the habitat, which modify 

their geomorphology (e.g. cold water corals), hence contributing to the establishment of 

high faunal diversity [80,81]. Nonetheless, recent studies provided data from some 

seamounts with the same benthic diversity and endemism that those reported on 

continental margins, which are traditionally considered poorer in overall biodiversity 

[29,82] and could be applied to sea hills in a future.



Landslides 

On the Eivissa Channel, small submarine landslides and pockmarks have been reported 

[49]. These landslides are too old in geological time to affect still influencing 

community turnover at site colonization. Thus, we can consider them as mud plains or 

slight slopes with escarpments. Crustaceans and fishes dominated the faunal

assemblages of both landslides. These results corroborate other studies employing other 

sampling strategies such as for example, trawling with otter-trawl and Agassiz trawl 

[21,63,83], which also found that these groups were the most abundant in terms of 

biomass. Motile fauna was the dominant group in the surveyed landslides, being sessile 

fauna only present over isolated hard substrates. A high proportion of predators (fishes 

and cephalopods) were observed in these areas. An interesting observation was that 

when crustaceans were dominant, fishes were rarely seen, and vice versa. This suggests 

a possible trophic competitive exclusion, among species of different phyla with similar 

ecological niche, leading to areas occupation by best performers. 

Anthropogenic impact within habitats 

In this study, we observed noticeable levels of human impact. A significant number of 

trawl marks was observed, along with litter that was present in all studied zones. In the 

Eivissa Channel, for example, we observed mobile litter (i.e. plastic bags) accumulated 

in depressions such as pockmarks. The Mediterranean is a closed sea, only open to the 

Atlantic through the shallow strait of Gibraltar, and its dimensions are smaller in 

comparison to oceans. It has been sailed also since the origin of history and hosts one of 

the ancient developments of humanity along its coastlines [84], which are nowadays 

highly populated. As a result, it has been affected by all kind of anthropogenic impact 

and for a longer time than other seas [39]. The impact of marine litter on deep-sea 

habitats is being addressed by several international initiatives [36,37,39,46,47,76,85].

These studies provide a first baseline on the distribution of marine litter and its potential 

effects on the habitat and fauna, such as suffocation, physical damage to fragile sessile 

fauna (e.g. sponges, cold water corals) or the ingestion of microplastics. Other studies 

have addressed the chemical contamination on deep-water fauna [44,45,86] and 

sediments [87]. The presence of lost or discarded fishing nets is also often observed

[39,88], resulting in ghost fishing for long time periods. It has been shown that the 



repetitive trawls on canyon walls between 400 - 700 m produce a resuspension of 

sediment, which is mobilised towards deep areas with a potential significant impact on 

deep-sea communities [40,41].  

The continuous trawling over the seafloor on the Catalan margin has had a ploughing 

effect of the seafloor, resulting in a change of the seabed geomorphology and 

characteristics [89]. In the Catalan margin, trawl marks have been observed down to 

900 m, caused by fisheries targeting deep-sea species such as the red shrimp Aristeus 

antennatus (Risso, 1816) in the north-western Mediterranean Sea [90]. Recent studies in 

this region reported biodiversity and community composition differences between 

fished and non-fished areas, with a decrease of sessile species on impacted zones 

[42,68].  

Behavioural observations of identified species 

An analysis of species distribution according to different factors, including behavioural 

motility, has been conducted here. In this study, schooling behaviour of fishes was 

observed near sea hills, as reported in similar studies in other oceans [91]. Conversely,

in the muddy open slope, isolated individuals were usually detected. The reaction of

fishes to ROV approach varied depending on the species. As a first instance, all 

avoidance reactions could have been generated by a combination of strong enlightening 

from lamps, noise and by the ROV motion itself. In relation to passivity at ROV 

approach, some questions arise about why some deep-sea animals do not show 

avoidance to potential threatening stimuli [92]. Behavioural observations for fishes are 

becoming abundant as ROV studies increase, since species are well visible, being often 

the focus of these surveys [93 95]. Several studies in the Atlantic compared trawl data 

with ROV video-surveys in order to evaluate biases produced by both sampling 

methods [94,96]. These studies evidenced that fish reaction and response to both ROV 

lighting and net approach generates a different bias-dependent effect on observations.  

In relation to the behaviour shown by crustaceans, camouflage was reported in 

Paromola cuvieri, as a common trait in several other species of crabs [97]. Although 

usually animals of this species use gorgonians as camouflage [98], in this study we had 

several observations of P. cuvieri carrying plastic bags. Another recent study also 



describes Paromola using plastic bags or other anthropogenic objects [99]. This 

behaviour in the Mediterranean populations could be the result of the availability of 

litter in deep-sea areas. 

Another interesting behaviour observed was the aggregation of the pelagic jellyfish 

Pelagia noctiluca on the top of the Eivissa Channel flat topped sea hill at 200 m depth. 

This species is known to have nycthemeral migrations [100], and has been observed 

near the bottom, probably associated with the migratory zooplankton present over sea 

hills and seamounts [101]. The presence of Pelagia noctiluca over the seafloor could 

indicate that some fauna classified as fully pelagic can, in fact, enter the benthic 

boundary layer and plays a major role in the trophic structure and ecological processes 

taking place close to the seafloor and on the sefloor. Another interpretation could be that 

our observations were the result of some mass deposition of dead jellyfishes, probably 

resulting from some sort of schooling on the water column, which could be, potentially,

a common behaviour in these animals [102]. 

Our faunistic results could be interpreted as contextual to the time of the day at those 

depth ranges where daily vertical migrations or nektobenthic displacements may occur 

for some species (i.e. at continental margin depths where light is still present). The 

effects of these movements on a non-temporally scheduled sampling are presently 

unknown and markedly different community perceptions may occur at different time 

scales [103,104]. Ethological characterization is therefore important in order to explain 

the observed species distributions based on the type of animal displacement, as well as 

to understand potential biases occurring with trawling from the reaction of animals to 

invasive collection procedures [35,105]. Unfortunately, direct behavioural observations 

are scarcer than faunistic data in deep-sea studies [106]. In relation to species 

distribution, as result of modalities of displacement, daily and seasonal movement of 

populations may occur along shelves and slopes with still poorly characterized patterns 

[107].  

Conclusions 

We observed that seafloor, which is characterised by a high variety of substrates, from 

muddy areas with low-inclination slopes to steep rocky outcrops, provide a variety of 



different micro-habitats to a variety of species. Although our ROV data did not allow 

for biodiversity analyses, the faunal observations conducted over two sea hills on the 

north-western Mediterranean indicate that there is a high variability of faunal groups, 

with different species/taxa associated to different topographic features (e.g., depth, 

substratum, and slope). Similar patterns of small-scale heterogeneity are found in 

canyons. These geomorphologies usually include steep slopes with rocky outcrops on 

the walls and relatively plain areas with sandy or muddy seafloor. This seafloor 

heterogeneity can result in an increased biodiversity [59]. These geomorphological and 

environmental factors result in the observed high variety of faunal communities and, 

potentially, high biodiversity. Furthermore, noticeable levels of human impact were 

reported from all explored areas. The ROV survey also allowed for behavioural 

observations of the megafauna, providing valuable information to understand the 

functioning of these communities.  
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Resumen 

Dicopia antirrhinum C. Monniot, 1972 es una especie rara de ascidia de profundidad 

perteneciente a la Familia Octacnemidae, recogida entre los 1000 m  2500 m de 

profundidad en aguas del Atlántico Europeo. Nunca antes del presente estudio se citaron 

individuos adultos de esta especie en el Mar Mediterráneo, donde únicamente se 

encontraron siete juveniles en 1975 a 500 m de profundidad cerca de la Isla de Malta. 

Se observaron ciertas semejanzas entre estos especímenes y los pertenecientes a la 

especie D. antirrhinum, sin embargo, la ausencia de características típicas de la especie 

en juveniles no permitieron su exacta clasificación taxonómica. Ningún otro miembro 

de la Familia Octacnemidae ha sido citado en el Mediterráneo. En el presente estudio, se 

describe pues el muestreo de un espécimen adulto de D. antirrhinum a 1100 m de 

profundidad en uno de los flancos del Cañón de La Fonera (también llamado Cañón de 

Palamós), en el Noroeste Mediterráneo; confirmando su presencia en el Mar 

Mediterráneo. Asimismo se observaron 5 individuos en su hábitat natural mediante un 

vehículo operado por control remoto (ROV). Nuestros datos resaltan la potencial 

presencia de individuos de la Familia Octacnemidae, hasta ahora ignorados, en cañones 

profundos del Mediterráneo Occidental. La importancia de estas observaciones deja 

patente la necesidad de incrementar el esfuerzo de muestreo mediante nuevas 

tecnologías, como ROVs, en hábitats ecológicamente relevantes como cañones, con el 

fin de obtener una visión más precisa de la biodiversidad del Mediterráneo profundo. 
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9.1 Taxonomy of deep sea holothurians from Cantabrian waters 

As an appendix of this Thesis some differences between Mediterranean and Atlantic 

holothurian species are described. On the framework of the project DOSMARES, three 

seasonal cruises were realized on the Cantabrian Sea. Three different depths (1500 m, 

2700 m and 4700 m depth) were sampled by means of an Agassizz trawl. Resulting 

from these three cruises 15 species were obtained in front of the 11 species providing 

from the nine Mediterranean cruises. 

The mention on the Table A1 of a higher number of species and individuals on the 

deepest sample (4700 m) was in accordance with other studies realized on north-

Atlantic waters (Harvey et al. 1988; Billett 1991).

Table A1. Holothurians sampled on BIOCANT03. n= number of specimens 

A superficial description of the species from the Atlantic cruises was provided in order 

to compare with some sister species from our samples described in Paper 2. The species 

present and described in the Mediterranean Sea paper are not re-described here, as also 

the specimens not classified until species taxon. Unfortunately no scale could be 

provided for these species figures. The relevant literature as these effect was based on 
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studies from Western Atlantic (Mortensen 1927; Deichmann 1930; Gage et al. 1985; 

between others. 

Order ASPIDOCHIROTIDA 
Family Synallactidae Ludwig, 1894 

    Genus Mesothuria Ludwig, 1894  

    Subgenus Mesothuria (Penichrothuria) 

Mesothuria (Penichrothuria) verrilli (Théel, 1886)  

Material: One specimen of this species was sampled at 1500 m depth.

Description: As commented on Paper 2, the most significant external difference 

between this species and Mesothuria intestinalis was the calcareous ossicles present in 

the integument. These deposits in M. verrilli (Fig. 9.1A) are tables with a short and 

strong central spine (Fig. 9.1B) while in M. intestinalis this spine was longer and thinner 

(see Paper 2). The end of these spines is a characteristic feature to classify both species. 

In M. verrilli this end of spine is constituted by four simple teeth pointing to the exterior 

(Fig. 9.1) in front of the crown present on the top of the tables in M. intestinalis (see 

Paper 2). 

Figure 9.1. A) M. verilli. B) Calcareous ossicles of M. verilli

Genus Molpadiodemas Heding, 1935 

Molpadiodemas depressus (Hérouard, 1902) 

Material: Six specimens sampled at 4700 m depth.

BA
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Description: Body shape flattened ventrally and slightly vaulted dorsally. It presents a 

ventral and anal furrow. The integument is white and cartilaginous (Fig. 9.2A). A lateral 

brim is observable. Longitudinal muscles are flat and attached to the body wall. The 

gonads are also flat and branched. Ossicles present on tentacles as spiny rods, absent on 

gonads (Fig. 9.2B).

Figure 9.2. A) M.depressus; B) Ossicles of M. depressus

Genus Pseudostichopus Théel, 1886 

Pseudostichopus peripatus (Sluiter, 1901)

Material: One specimen of this species was sampled at 4700 m depth.

Description: Body elongate with grooves and entirely covered by globigerinae (Fig. 

9.3A). Longitudinal muscle presents a cylindrical shape. Abundant tube feet were 

observed. The ossicles present on tentacles are more or less spiny rods. In gonad, the 

ossicles are small spicules Y-X shaped (Fig. 9.3B). No ossicles were observed in 

respiratory trees. 

Figure 9.3. A) P. peripatus; B) Ossicles of P. peripatus

A B

A B
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Order MOLPADIIDA 

Family Molpadiidae Müller, 1850 

    Genus Molpadia (Cuvier, 1817) Risso, 1826 

Molpadia blakei (Théel, 1886) 

Material: One specimen of this species was sampled at 2100 m depth.

Description: This species presented the sausage shape typical from this genus (Fig. 

9.4A). The tail is smaller than in other molpadiids (see Paper 2). The absence of 

phosphatic bodies results in a paler colour than in other species of the same genus. It 

was characterized by the presence of small and fragile tables constituted by three large 

holes and a central spine composed by three rods fused (Fig. 9.4B), being this 

separation visible at the base of the spine.

Figure 9.4. A) M.  blakei; B) Ossicles of M.  blakei.

     Molpadia oolitica (Pourtalès, 1851) 

Material: Two specimens of this species were sampled at 2100 m depth.

Description: This species presented also the typical sausage shape (Fig. 9.5A), but with 

a tail longer than the previous species. The phosphatic deposits were extremely 

abundant, for this reason the specimen was of a dark violet colour. The most abundant 

ossicles are tables with high number of holes. Racquet-shape plates and anchors are also 

present (Fig. 9.5B).

On both species a clear difference in external shape and ossicles with Molpadia 

musculus (see Paper 2) was observed. 

A B
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Figure 9.5. A) M.  oolitica; B) Ossicles of M.  oolitica

Family  Caudinidae Heding, 1931 

   Genus Hedingia Deichmann, 1938 

      Hedingia albicans (Théel, 1886) Deichmann, 1938 

Material: One specimen sampled at 2100 m depth

Description: External shape (Fig. 9.6A) very similar to H. mediterranea (see Paper 2), 

sausage shaped with extremely large tail. Ossicles basically constituted by very irregular 

tables with a spiny central spine (Fig. 9.6B). Tables smaller and with more irregular 

plates contour than in H. mediterranea. As suggested in Paper 2, for these two species a 

molecular study could be the best way to designate them in one or two species.

Figure 9.6. A) H. albicans; B) Ossicles of H. albicans

Order ELASIPODIDA 
Family Deimatidae Théel, 1882 

Genus Deima Théel, 1879

Deima validum validum Théel, 1879 

A B

A B
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Material: Eight specimens sampled at 4700 m depth. 

Description: (Fig. 9.7A). The body is ventrally 

flattened and dorsally vaulted, with large tube feet and six dorsal and six lateral large 

papillae on each side. Pink in colour. Ossicles in skin basically large perforate plates, 

(Fig. 9.7B).

Figure 9.7. A) D. validum; B) Ossicles of D. validum

Family Elpidiidae Théel, 1882

    Genus Amperima Pawson, 1965 

Amperima rosea (R. Perrier, 1896) 

Material: Seven specimens were sampled at 2100 m depth, and six at 4700 m depth. 

Description: Specimens are usually small, non-exceeding 30 mm. The body shape is 

from elongated to more egg shaped. In all individuals ten tentacles were present. A four 

lobed velum was observed (Fig. 9.8A).

Behind the velum a pair of small papillae appears. Tube feet arranged in irregular row, 

low in the anterior part of the body (one) and numerous in the posterior (four) with a 

naked area between the anterior and the posterior tube feet. Ossicles basically 

constituted by triradiate deposits, C shaped ones and wheels (Fig. 9.8B).

A B
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Figure 9.8. A) A. rosea; B) Ossicles of A. rosea

Genus Peniagone Théel, 1882

Peniagone diaphana (Théel, 1882) 

Material: One specimen sampled at 4700 m depth. 

Description: Species presenting a flat and rounded shape. The mouth is present in the 

ventral side of the body. Four pairs of tube feet at the end of the body are signalled (Fig. 

9.9A). Anus is located in the dorsal area of the posterior part of the body. The ossicles 

are very abundant and presents a four radiated shape. Edges of the deposits are usually 

spiny (Fig. 9.9B).

Figure 9.9. A) P. diaphana; B) Ossicles of P. diaphana

Family Laetmogonidae Ekman, 1926  

    Genus Benthogone Koehler, 1895 

      Benthogone rosea Koehler, 1895

A B

A B



9. Appendix 

A B

Material: Two individuals of this species were sampled at 4700 m depth. 

Description: This species presented a large body more or less cylindrical of about 100 

150 mm. The ventral part presents two series of papillae. The mouth was surrounded by 

non- retractile tentacles (Fig. 9.10A). The colour of the tegument was pale pink and 

gelatinous, secreting high quantity of mucus. The skin ossicles of this specie were 

abundant and basically constituted by vaulted wheel (Fig. 9.10B)

Figure 9.10. A) B. rosea; B) Ossicles of B. rosea

Genus Laetmogone Théel, 1879 

      Laetmogone violacea Théel, 1879  

Material: Three specimens were sampled at 4700 m depth. 

Description: Small specimens of about 20 mm (Fig. 9.11A). The body is flattened 

ventrally. Colour pale violet and transparent, due to the lack of the tegument by the 

trawl, with dark violet pieces of skin where colour was preserved. Fifteen tentacles were 

reported. Eleven pairs of podia regularly disposed on each side. Two dorsal papillae 

rows, small and closely placed. Genital processes dorsal, behind the tentacles. Ossicles 

constituted by two sorts of wheels, rods and plates deposits (Fig. 9.11B).

Fig. 9.11. A) L.violacea; B) Ossicles of L.violacea

A B
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Family Psychropotidae Théel, 1882

Genus Psychropotes Théel, 1882  

Psychropotes longicauda Théel, 1882

Material: One specimen was sampled at 4700 m depth.

Description: Body flattened ventrally and vaulted dorsally. One long and flat 

characteristic appendage on the posterior part of the body (minimum as long as the 

whole body) (Fig. 9.12). A small brim on the anterior part of the body surrounding the 

mouth was observed. On the middle of the ventral side a double row of pedicels. 

Numerous pedicels on the external part of the ventral side too. Colour dark violet. 

Unfortunately this specimen was preserved for molecular analyses and the ossicles 

could not be observed, nonetheless the external morphology allow a classification. 

Fig. 9.12. P. longicauda
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