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ABSTRACT 
Nephrops norvegicus is an important fishery resource for Europe. Its rhythmic burrowing behavior 

is strictly related to catchability. Here I studied such behavior under laboratory conditions. I 

investigated the combined effect of light and current cycles demonstrating that tidal current is an 

important parameter to take in account in fishery management plan not only for Nephrops. Then I 

used a transcriptomics and RT-qPCR approach on cDNA extracted from the eyestalk to elucidate 

the putative molecular genetics mechanisms underlying circadian gene regulation. My data are in 

accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that 

the molecular clockwork of this group shows some differences with the established model in 

Drosophila melanogaster. Finally, I studied the burrow emergence behavior in group of 4 lobsters 

organized in dominance hierarchy demonstrating that lower ranks are more vulnerable to trawling. I 

hypothesized common neural mechanisms for agonistic and non-agonistic behaviors.  

RESUMEN 
Nephrops norvegicus es un importante recurso pesquero. La emergencia rítmica de la madriguera 

afecta las capturas. He estudiado dicho comportamiento en laboratorio investigando el efecto de 

ciclos lumínicos y de corrientes demostrando que las mareas es un factor importante para gestionar 

el estado del recurso. Mediante técnica de secuenciación masiva y PCR en tiempo real sobre cDNA 

procedente del pedúnculo ocular he elucidado el presunto mecanismo molecular detrás de la 

regulación circadiana. Los resultados están de acuerdo con el conocimiento actual de relojes 

biológicos en crustáceos, reforzando la idea que la maquinaria molecular de este grupo muestra 

algunas diferencias respecto el modelo consolidado de Drosophila melanogaster. Finalmente, he 

estudiado el comportamiento de emergencia en grupos de 4 cigalas organizadas en una jerarquía de 

dominancia demostrando que los rangos más bajos son más vulnerables a ser capturados. Además 

he supuesto la existencia de mecanismos neuronales comunes entre comportamiento agonístico y 

non agonístico. 

KEYWORDS: Nephrops norvegicus, biological rhythms, burrow emergence, catchability, 

tidal currents, clock genes, gene expression, dominance hierarchy, agonistic interactions
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PREFACE 

“The truth is like the beauty…..it is a never ending story” 

Tiziano Terzani, One More Ride On The Merry Go Round (2004) 

“It may be that while we think we are masters of the 

situation we are merely pawns being moved about on the 

board of life by some superior power.” 

Sir Alexander Fleming's speech at the Nobel Banquet in Stockholm, December 10, 1945 
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BIOLOGICAL RHYTHMS 
Oscillatory processes are a common feature of life; they are broadly referred to as biological 

rhythms. They can span from the neuronal spontaneous firing rate with a periodicity of 100 

milliseconds up to the decadal (10 years) rhythm of lynx population (Refinetti 2012). Biological 

rhythms may be directly triggered by environmental cycles or may be generated by an endogenous 

timekeeping (Dunlap et al. 2004, Refinetti 2006). 

The presence of an endogenous timekeeping (hereafter referred to as biological clock) 

implies a 3-step mechanism: (i) input pathway, (ii) processing system, and (iii) output pathway. The 

first is the sum of all the sensory systems that process the environmental information. The second is 

represented by the peacemaker, a functional entity (based on biochemical feedback loops) that is 

able to generate a self-sustained oscillation. The third is represented by the rhythm itself (e.g. neural 

firing rate, hormone secretion, feeding activity, or locomotion). Daily (24 h based) rhythms 

sustained by a biological clock are referred as circadian (from the Latin: circa-around and dies-

days) rhythms. 

The formal properties of a circadian clock are: (i) the persistence of an overt circadian 

rhythm in constant temperature and constant light or constant darkness conditions with a free-

running period of approximately 24 h, (ii), the free running period lengths must be similar when 

measured at different temperature, (iii) endogenous rhythms of approximately 24 h can be entrained 

(i.e. synchronized) by certain 24 h environmental cues, such as light-darkness cycles. 

The nature and location of the pacemaker is a current theme of investigation in many 

marine species. That structure is of neural nature and in vertebrates is located in the suprachiasmatic 

nucleus of the brain (Stephan and Zucker 1972). In invertebrates, where the great part of the 

knowledge is based on the model species Drosophila melanogaster, it is located in the brain 

hemispheres (Peschel and Helfrich-Forster 2011). However, in crustaceans, no master clock has 

been yet identified, but a model of distributed clockworks has been proposed as made by different 

oscillators distributed in the retinular cells, neurosecretory and nervous systems (Aréchiga and 

Rodríguez-Sosa 2002, Strauss and Dircksen 2010).  

The clock is driven by molecular machinery based on transcription and translation feedback 

loops. The genes involved in such machinery have shown a high level of conservation along 

evolution (Bell-Pedersen et al. 2005). The most evident advantage to possess an endogenous 

timekeeper instead of responding directly to environmental cycles is to anticipate environmental 

periodical changes, both in physiology and behavior, and choose the right time for a given response 

(Kronfeld-Schor and Dayan 2003). 
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NEPHROPS NORVEGICUS AND THE BURROWING BEHAVIOR 
The Norway lobster, Nephrops norvegicus (hereafter referred to as Nephrops) is a 

burrowing decapod inhabiting muddy bottoms of continental shelves and slopes of the 

Mediterranean and the European Atlantic (Sardà 1995, Bell et al. 2006). Nephrops is an important 

resource for European fishery where landed tons per year are around 70000 (Ungfors et al. 2013).  

The burrow emergence behavior of Nephrops has a strong influence on the catch patterns. 

In fact, animals can be captured by trawling nets only when they are out of the burrow (Main and 

Sangster 1985, Newland and Chapman 1989). Catch patterns are different at different depths, but 

they conserved a daily (24 h) pattern. On the upper continental shelf (10-50 m), captures are usually 

high at night, and emergence behavior appears to be influenced by moonlight (Chapman and Rice 

1971, Chapman and Howard 1979). This pattern becomes crepuscular on the lower shelf (50-200 

m), with bimodal dusk and dawn peaks of catches (Farmer 1975). Finally, the pattern is fully 

diurnal on the upper slope at 200-430 m (Hillis 1971, Aguzzi et al. 2003).  

In order to understand the proximate causation of the depth-dependent temporal switch 

observed in catch patterns, Nephrops behavior was extensively studied in laboratory (Farmer 1975, 

Sardà 1995, Bell et al. 2006, Aguzzi and Sardà 2008, Katoh et al. 2013). Research questions were 

addressed to understand the role of light in the exogenous and endogenous modulation of burrow 

emergence behavior. Laboratory studies investigated the locomotor activity and burrow emergence 

of individuals in response to 24-h light-darkness cycles of different intensities (e.g. Atkinson and 

Naylor 1976, Hammond and Naylor 1977, Aguzzi et al. 2004, Sbragaglia et al. 2013b). These 

studies revealed that N. norvegicus activity was controlled not merely by optimum level of light 

intensity, as formerly hypothesized by Chapman (1972). The presence of diurnal catchability in 

Mediterranean slope populations suggested that blue light (approx. 470-480 nm) might be the most 

effective trigger of burrow emergence (Aguzzi et al. 2003, Aguzzi et al. 2009b). In fact, recent 

laboratory experiments with artificial burrows have demonstrated that the emergence behaviour is 

controlled by the circadian clock that can be entrained by monochromatic blue light cycles of 

different intensities (as a proxy of the depth) producing a shift from nocturnal phenotype to a 

diurnal one as observed in the wild by trawling (Chiesa et al. 2010). 

In general all laboratory studies on burrow emergence behavior of Nephrops have 

investigated the response of isolated individuals to light-darkness cycle. However, life in the wild is 

not the same of life in a tank in the laboratory and the behavior of organisms can be deeply 

modified by the ecological factors that are not taken into account in the laboratory. On the contrary, 

laboratory experiments on behavior are fundamental to discern and understand the proximate 

mechanisms of it. Nephrops burrow emergence behavior was recently reviewed (Bell et al. 2006, 

Aguzzi and Sardà 2008, Sardà and Aguzzi 2012, Katoh et al. 2013) and in all the cases the authors 
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conveyed that, even if the light seems to be the most important synchronizer for the burrow 

emergence rhythm, there are other important factors (e.g. water movement at the sea bottom, social 

interactions) that can deeply affect the behavior of the species in the wild. 

One of these factors could be the periodical water movement at the sea bottom. So far, 

researchers hypothesized that the periodical fluctuations of water movements at the sea bottom 

(sustained by the tidal movement of water masses) could have affected Nephrops behavior, but an 

experimental study is still missing (Storrow 1912). As depth increases, light fades out, especially in 

areas where water turbidity is elevated, so other geophysical cycles, such as periodical water 

currents, could modulate behavioral rhythms of deep water species (Wagner et al. 2007). Nephrops

possesses mechanoreceptors that are very sensible both to water speed and directions, a sensorial 

equipment that is probably adapted to its habitat where vision can be often compromised by the 

reduced light and strong turbidity (Katoh et al. 2013). The sole laboratory evidence that Nephrops 

react to water currents is published by Newland et al. (1988), but whether the current stimulus can 

modulate the burrow emergence behaviour is still unknown.  

Nephrops (as many others animals) display aggressive behavior and fighting occurs over 

limited resources such as mating and shelter. Chapman and Rice (1971) observed for the first time 

fighting behavior of Nephrops in the wild, during such observation a lobster approached a burrow 

already occupied from another lobster triggering its aggressive response. The observed ritualized 

fight was then carefully described in the laboratory by Katoh et al. (2008). Chapman and Rice 

(1971) also reported that a high proportion of Nephrops that were caught by creels in the field have 

circular indentations or holes in the claws. Due to the nature of these wounds, they were likely 

inflicted by claws of conspecifics. Those information together suggested that fighting is a common 

event in natural population of Nephrops and could have a paramount role in controlling burrowing 

behavior, but after more than four decades nobody investigated the effect of agonistic behavior on 

burrow emergence rhythm.  

OVERVIEW AND OBJETIVES 
The general aim of this thesis is to investigate the burrow emergence rhythm of Nephrops

using a laboratory-based approach providing new insights into unknown areas of research. I focused 

my attention on those factors controlling emergence behavior that have not been previously taken 

into account by others researchers. So, I simulated light-darkness conditions together with 

periodical water currents. Then, I provided the first insight into the molecular machinery controlling 

the rhythmic burrow emergence behavior of Nephrops. Finally, I have studied the effect of the 

formation and maintenance of a dominance hierarchy on burrow emergence behavior. I focused my 

attention on two different aspects of Nephrops’ research: I asked specific questions to collect 
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information that are valuable for the fishery management of the species; and I formulated 

hypothesis with a wider range of interest for biology and in particularly chronobiology, using 

Nephrops as a model species representing deep-sea (> 200 m) habitats. 

A key point in experimental biology is the realization of laboratory devices that allow 

researchers to test experimental hypotheses simulating the conditions that the model species 

encounters in the wild. The biggest technical challenge in my thesis has been the realization of a 

flume tank to simulate periodical water currents and concomitant light cycles in the laboratory. 

Chapter 2 is entirely dedicated to methodology; I presented the realization of en experimental 

flume tank that I used to simulate such habitat fluctuations to study the behavioral response of 

Nephrops. 

In Chapter 3 I investigated what is the effect of periodical water currents and light cycles 

on the burrow emergence behavior of Nephrops. Periodical water currents are simulated in 

laboratory to reproduce the tidal currents that Nephrops experience in its natural habitat. I focused 

on the effects that the response of lobsters could have on the catchability patters and hence stock 

assessment. Furthermore, I provided some new information on the interplay of two concomitant 

environmental cycles (light and water cycles) on the circadian system output. 

In Chapter 4 I provided the first assembled transcriptome of Nephrops eyestalk. Then, I 

identified and characterized four clock genes and studied their daily pattern of expression. This 

chapter investigated the basis of the proximate causation of Nephrops burrowing behavior. It 

provided important data into the localization and functioning of the circadian molecular 

mechanisms of crustacean decapods’ biological clock. Even if it is not strictly related to the stock 

management of the species, this information was needed to deeply understand the physiological 

mechanisms that drive the burrow emergence in this species. 

The agonistic behavior of Nephrops is described in Chapter 5 where is provided the first 

insight into the formation and maintenance of dominance hierarchy and how it modulated the daily 

burrow emergence behavior. The importance of social interactions in the ecology of species is 

dramatic, but Nephrops studies on burrow emergence have never considered this ecological factor. I 

showed for the first time here, that all the laboratory information collected during individual 

experiments could be not representative of the real behavior of lobsters in the wild. In fact, taking 

into account social behavior, the perception of population dynamic could change dramatically. This 

key point regarding the ecology of Nephrops is very important for the fishery management of the 

species. Moreover, Nephrops could help to answer (as model species) some open question in the 

field of chronobiology elucidating the mechanism behind the synchronization of biological clocks 

in social contexts. 
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Finally, Chapter 6 provided the global conclusions of my research with emphasis on two 

aspects: valuable information for the fishery management of the species and importance of 

Nephrops as a model species for chronobiology, socio-chronobiology and deep-sea ecosystems. 



7 

Flume tank 

2



2. FLUME TANK

8 

INTRODUCTION 
One of the most studied areas of biological clock regulation is behavior. Temporal 

patterning has been detected in all animals studied so far (Refinetti 2006). Behavior of marine 

species can be measured as locomotor/swimming activity and it is an important parameter to be 

studied in order to increase the knowledge about temporal changes in community composition and 

thus apparent biodiversity (Aguzzi et al. 2012). In this scenario, laboratory tests on animals' reaction 

to simulated geophysical cycles are important to understand the temporal regulation of behavior 

upon day-night (24 h) and tidal cycles (12.4 h) (Palmer 1974, Reebs 2002, Naylor 2010). 

Crustaceans play a central role in laboratory research on behavioral rhythms of marine 

species and a wide numbers of technological approaches have been used for tracking their 

locomotor activity: stylus recording on rotating drums (Naylor 1958), photo-electric cells (Williams 

and Naylor 1969), infra-red light (Naylor and Atkinson 1972, Naylor 1985, Aguzzi et al. 2008), 

radio frequency identification (Aguzzi et al. 2011b), racetracks and running wheels (Jury et al. 

2005), rotational displacement transducers (Johnson and Tarling 2008), time-lapse photography 

(Enright 1965, Klapow 1972) and more lately automated video-imaging (Aguzzi et al. 2009a, 

Menesatti et al. 2009). The latter is gaining an increasing attention, due to progresses in automation 

and efficiency of objects recognition (Obdržálek and Matas 2006). Independently of the device 

used, most of laboratory research with crustaceans has been carried out with intertidal shallow water 

species that were exposed, light cycles apart, to oscillations in water presence/absence, temperature, 

hydrostatic pressure, salinity, and turbulence (Williams and Naylor 1969, Jones and Naylor 1970, 

Taylor and Naylor 1977, Hastings 1981). Conversely, behavioral rhythms in deep water continental 

margin species have been mostly ignored (Naylor 2005). Locomotor activity of deep water species 

could also be regulated by the synergic interplay of day-night and hydrodynamic cycles (e.g. 

internal tides), but data on these aspects are scant (Wagner et al. 2007, Aguzzi et al. 2009c). 

In this study, we present and demonstrate the functioning of a multi flume automated 

actograph that can simulate and reproduce complex scenarios of concomitant day-night and 

hydrodynamic cycles (e.g. internal tides). We tested the device by tracking, using automated video 

imaging, the burrow emergence rhythm of a commercially important species, the Norway lobster 

(Nephrops norvegicus L.). N. norvegicus could be considered a model species to investigate deep-

sea behavioral rhythms, since its bathymetric distribution encompasses European Atlantic and 

Mediterranean shelves and slopes, 20-800 m depth (Sardà 1995, Bell et al. 2006), where different 

light intensity and hydrodynamic cycles occur. During the testing trial, we simulated the Atlantic 

continental shelf scenario (~150 m depth), where lobsters' burrow emergence seems to be 

influenced by monochromatic blue light cycles (Aguzzi et al. 2009b) and internal tides (Bell et al. 

2008). 
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Fig. 2.1 - 3D perspective of the actograph realized without considering the experimental chamber in which is 
placed. Overall perspective of the actograph (A), top view of a single tank (B) where arrows indicate the current 
flow direction. 1: pipes representing the burrow; 2: pipes forming the loop along the bottom of the tank; 3: the 
water lung to obtain a constant flow of incoming water; 4: the way out of the water; 5: the L-shaped lighting 
apparatus for both IR and blue LED’s; 6: overview of the burrow; 7: the siphon to control the level of water in the 
tank; 8: the diffuser. 
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MATERIALS AND METHODS 
The actograph 

The system consists in four tanks organized over two levels (Fig. 2.1A) with a continuous 

open flow of filtered and temperature controlled (13 ± 1 °C) sea water. Each tank (150 × 75 × 30 

cm) is subdivided in three individual corridors (150 × 25 × 30 cm) (Fig. 2.1B). 

Bottom sediment is simulated by sand glued by bicomponent acrylic glue (Fig. 2.2A, B). A 

burrow was also built in each corridor, assembling PVC pipes (Fig. 2.2A), considering the 

information we have from field studies (Rice and Chapman 1971). . Since burrow size is correlated 

to animal's size, we built the artificial burrow according to an average lobster size of 40.00 mm 

(CL). The internal walls of the burrow were also covered by glued sand (Fig. 2.2A). All the internal 

sides and elements of the tanks, except the parts with glued sand, were painted in black (Fig. 2.2C) 

to avoid light reflections and to maximize the efficiency of video-imaging (see below). 

In order to create a water flow in each of the 12 corridors, transforming them into flumes, 

we looped the opposite sides with external bottom pipes, along the entire length of the corridor (Fig. 

2.2D). The diameter of the pipes (110 cm) and the pumps utilized for water recirculation were 

chosen in relation to the average velocity of the current (approximately 10 cm/s) detected in seabed 

areas where the species is distributed (Puig et al. 2000, Lorance and Trenkel 2006) The pump 

(HIDOR – Koralia 7) positioned at the entrance of each pipe (Fig. 2.2E) generated the water flow. 

Fig. 2.2 - Different working phases during the construction of the actograph. A: the simulated burrow 
during the gluing at the bottom of the tank (sand was previously glued inside the burrow); B: A particular 
of the burrow with glued sand; C: The view of one painted tank; D: Underside the tank with the external 
down pipe which connects two opposite sides of the tank. E: The pump placed inside the pipe. F: A close 
view of the diffuser placed in the opposite side of the pump. G: The resulting L shaped submergible 
lighting system with multiple alimentation apparatus. The dashed line indicates the transparent methyl 
metacrilate (MM) tube in which was inserted the LEDs strips. The black line represents the smaller PVC 
tube, containing the cables for LEDs' power supply.  
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Before positioning, pumps were upholstered with a "bushing" system to prevent propagation of 

noise and vibration to the rest of the tank. At the opposite side, a diffuser was installed inside the 

pipe to break down the flow turbulences within the corridor. That diffuser was constituted by a tube 

comprising a mesh (Figs. 2.1B, 2.2F), according to Nowell and Jumars (1987). Furthermore, we 

placed a plastic net barrier at both sides of the corridor to avoid the direct interaction of animals 

with the pump and the diffuser. Each corridor was equipped with two different sources of LED's 

illumination (monochromatic blue: 472 nm, infrared: 850 nm). Monochromatic blue lighting was 

installed to simulate Light-Darkness (LD) conditions, while infrared (IR) light allowed video-

recording during darkness. A strip of LED's photodiodes (Blue LEDs, n = 84; IR LEDs, n = 108) 

was inserted in a transparent methyl metacrilate (MM) tube of 140 cm long and 16 mm in diameter 

(Fig. 2.2G). At one of its extremity, we added a smaller PVC tube containing the cables for the 

LEDs' power supply. L-shaped resulting lighting apparatuses were tested for water resistance and 

were positioned in the upper part of the corridor, just below the water surface. Once placed in their 

place, lighting systems were covered in the topside by water resistant black tape, to avoid 

reflections beneath the water surface that could compromise video imaging analysis.

Four surveillance HD video cameras (Axis P1344-E; Theia SY110A fixed focal megapixel 

lens), were differently positioned above each tank and their video-imaging efficiency was also 

compared (see Section 2.3). Two video cameras of the upper tanks were placed in a perpendicular 

position, while the other two (bottom tanks) were positioned at 45°.  

System architecture and automated routines 

To guarantee the maximum safety of operators, all the components potentially in contact 

with seawater were supplied exclusively with 12 V DC. Uninterruptible Power Supplies (UPSs) 

guaranteed the constant power of all apparatuses in the case of electricity cut off. IR LEDs were 

connected to a UPS and a transformer, while fuses guaranteed the protection of each LED’s stripe. 

The hardware of the system was assembled to control all apparatus in use during experiments by a 

central server  (Sarriá et al. 2015) (Fig. 2.3). The central server (UBUNTU O.S.) was the core of the 

hardware, in which all routines and programs were run, and was placed in the experimental 

chamber. The central server had the following connections: (i) LAN1, as isolated gigabyte net 

devoted only to cameras acquisition; (ii) LAN2, as the building net connected to the Network 

Attached Storage (NAS), placed outside the experimental chamber, also allowing remote access to 

the system from everywhere; (iii) Bluetooth connection, linking the central server to the control 

system box. IR LEDs were managed independently from the whole system because they worked 

continuously to allow acquisition of images during darkness. The control system was designed to 

integrate and regulate current flow and light (i.e. intensity of light, Light-Darkness cycle, current 

speed, and current cycle). A Labview interface in the central server was utilized to schedule the 



2. FLUME TANK

12 

experimental setting in a simple way on a pre-compiled table. LD transitions were gradually 

achieved within 30 min, in order to avoid Norway lobster's photoreceptors degeneration (i.e. 

rhabdom deterioration and visual pigments photolysis), as it occurs when animals are subjected to 

sudden bright light exposure (Gaten et al. 1990). 

An automatic routine for data acquisition was created in bash script programming language 

and a graphical interface allowed us to start and stop experiments. The routine was designed to 

launch all the processes in a synchronous way: image acquisition for the four video cameras, Matlab 

functions for automated video-image analysis, monitoring of the system, and data backup. 

Furthermore, all processes are managed independently in order to prevent system from crashing 

when one of them failed. 

The experimental trial presented in this paper required the running of 13 processes: four to 

acquire images, four to analyze images, two to control the hardware performance, one as backup 

and cleaning operations, and two to control the status of whole system. One of the last two 

processes created an hourly checking report of the status of the system and sent it by a daily email, 

so the operator had a constant monitoring of the experimental trial. 

Fig. 2.3 - The architecture of the system. All components are placed in the experimental chamber except 
for the network attached storage that is placed in an office (grey area) reached by the LAN2. Each tank is 
equipped with 1 camera, 3 pumps, 3 blue LEDs lighting apparatus, 3 infrared LEDs lighting apparatus. 
See Sarriá et al. (2015) for further details. 



2. FLUME TANK

13 

Automated video-image analysis 

Each routine theoretically captured an image every 10 s, which was stored in TIF format 

with a name code which allowed its identification and retrieval for confrontation with numerical 

tracking outputs (i.e. year/month/hh/mm/ss.code). That format was a suitable input for the 

automated video-imaging processing, that was developed within the framework of Matlab 7.1 (The 

MathWorks, Natick, USA), through the compilation of a script with the Image Processing Toolbox. 

Images previously saved in a folder were removed and processed in a different folder, which 

worked at higher speed than the acquisition rate. Inside each image, different Regions Of Interest 

(ROI), one for each corridor of the experimental tanks, were selected as encompassing each sector 

of the tank. Space constraints did not permit a complete view of each corridor, so we selected only 

two ROI per tank reducing the number of specimens from 12 to 8 (Fig. 2.4B). 

The video cameras were not perfectly perpendicular to the tank surface hence, before the 

beginning of the experiment, a metric grid was placed on the bottom of each corridor in order to 

calculate a map of coefficients (following a polynomial scale), to transform animals’ displacements 

from pixel to metric scale in each ROI. Furthermore, in order to eliminate the darker noise, pixels 

had 20 subtracted from their grayscale value (this operation transforms all the pixels with values ≤ 

20 into zero; i.e. darker noise elimination). 

The tracking of animal motion was performed by means of algebraic subtraction of each 

image (Fig. 2.4C) with a starting image without animals (Fig. 2.4A), as numerical matrixes of pixel 

values at 236 different levels of grey. A fixed threshold (50) has been applied. A morphologic 

Fig. 2.4 - Four representative images summarizing the automated digital-image analysis routine. A: A 
starting image without animals; B: The regions of interest selected for two corridors of one representative 
tank. The third corridor (upper part of the image) is not used as specified in the text; C, D: Two 
consecutive images showing the detection of the animal evidenced by a red line along the perimeter of the 
object (in this case the lobster). 
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threshold of the resulting matrix for the minimum value of body Area (A > 200 pixels) was 

performed in order to consider only the larger objects as potential animals (Fig. 2.4C). That 

threshold is a filtering process consisting of the removal of small pixel blocks to determine the 

potential animal image boundaries. The largest of objects larger than 200 pixel areas were identified 

as the animal. 

The centroid coordinates of the animal were recorded in ASCII file at 1 min frequency. 

When the animal was not recorded (mainly when residing inside the burrow) the considered 

position was the one of the previous image. The distance (cm) between two consecutive frames 

(Fig. 2.4C, D) was then computed. Activity data could be inspected at any time by an interactive 

script, which directly assessed the ASCII file that extracted a real time graph of the cumulative 

distance covered by each animal. 

Light measurement 

The amount of light and its spectral composition are of  mportance for entrainment of 

circadian rhythms (Roenneberg and Foster 1997) and blue light is demonstrated to entrain diel 

activity cycles in the Norway lobster (Aguzzi et al. 2009b). Also, Nephrops show a spectral 

sensitivity based on different rhodopsins with absorption wavelengths at 425 nm and 515 nm 

(Johnson et al. 2002). We used a spectroradiometer to determine the underwater spectral power at 

the bottom of the experimental area for both monochromatic blue and IR LED illumination (Fig. 

2.5) Furthermore, we reported the spectral power for lamps utilized for activities during the 

beginning/end of experiments and for operations on the deck of the trawler during sampling activity 

in the field. A radiometer (PUV-2500, Biospherical Instruments Inc.) was used to measure the 

Photosynthetic Active Radiation (PAR; 400–700 nm) at the bottom of the experimental area and, 

Fig. 2.5 - Spectral power measurements at the bottom of the experimental area of the actograph. Blue 
LEDs (grey line), red lamps (dashed line), and infrared LEDs (dotted line). Spectral power is expressed in 
radiant flux (μW/cm2/s). 
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since the only radiation present in the PAR range was the blue one, we assumed PAR as a direct 

measurement of monochromatic blue light. Then, we chose a light intensity equal to 4 10-3 μE/m2/s 

considering it as a simulation of lighting regimeat approximately 150 m depth (Jerlov 1968, Morel 

and Smith 1974). 

Animal sampling, acclimation and experimental test 

Animals were collected exclusively at night-time by a commercial trawler on the shelf area 

(100 m) off the Ebro delta (Tarragona, Spain). In order to avoid retinal damage (Gaten 1988) 

animals were never exposed to sunlight. Once captured (at night) all the operations on the deck of 

the trawler were performed under dim red light (spectrum is presented in Fig. 2.5). Lobsters were 

immediately transferred to dark and refrigerated containers and then transported to the laboratory 

(Aguzzi et al. 2008). 

In the laboratory, specimens were transferred to acclimation tanks, hosted within a light-

proof isolated chamber under the following conditions: (i) constant temperature of 13 ± 1 °C, as 

reported for the western Mediterranean continental slope throughout the year (Hopkins 1985); (ii) 

random feeding time in order to prevent entrainment through food-entraining oscillators, as shown 

for crustaceans (Fernández De Miguel and Aréchiga 1994); and (iii) LD blue monochromatic 

regime whose photophase duration matched the natural condition at the latitude of Barcelona (41° 

23′ 0 N). Also, light-ON and -OFF, were progressively attained and extinguished within 30 min in 

order to acclimate animals' eyes to light intensity change. The acclimation facility hosted individual 

cells (25 × 20 × 30 cm) made with a plastic net of different size in order to allow oxygenation, but 

not physical contact between animals. Acclimation was carried out at least 1 month prior to 

behavioral tests. 

Table 2.1 - Efficiency values (considering only type 1 errors) obtained in the comparison 
between the algorithm and the trained operator inspection. Grey and white areas indicate the 
perpendicular and oblique position of video cameras, respectively, as specified in the second 
column. 

Position 
Number of detections 

Efficiency (%) 
Algorithm  Operator 

CAM 1 perpendicular 32278 32618 98.96 

CAM 2 oblique  25102 31988 78.47 

CAM 3 perpendicular 27797 28278 98.30 

CAM 4 oblique  17357 23040 75.33 
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Eight adult males of N. norvegicus with a mean carapace length (CL; average ± standard 

deviation) of 40.42 ± 4.14 mm were used for a preliminary test over 10 days. The trial was carried 

out according to the following conditions: current flow of 2 h with a periodicity of 12.4 h 

mimicking internal tides and 15–9 LD cycle at 4 · 10−3 μE/m2/s, simulating a European Atlantic 

shelf condition. The applied photoperiod matched the natural one at the latitude of Barcelona (onset 

at 04:21 and offset at 19:24 UTC) during the experimental trial (5–14 of June 2012). 

RESULTS 
During experiment all the 13 automated routines worked efficiently, including image 

acquisition and processing. We captured a daily average of 8400 frames. This implies a real 

frequency acquisition of 10.3 s versus a 10 s theoretical one that would allow us to store 8640 

frames. That gap was due to multiple system basic routines into machine that consume CPU time. 

No type-2 errors (i.e. animal confused with another object) were reported in automated video-

imaging efficiency. Differently, type 1 error (no detection of the animal) showed differences among 

the position of the video cameras. The perpendicular position had an average efficiency of 98.7% 

while the oblique position 76.9%. A summary of data is presented in the Table 2.1. Failures in the 

automated detection of the animals occurred only when lobsters stopped close to the walls of the 

tank. The t-test showed that the different positions of the video cameras (perpendicular and oblique) 

Fig. 2.6 - Time series plots of all the specimens during the 10 days experiment. Each graph is named with 
the number of the lobster and the activity is expressed as distance (cm) covered during the trial. Grey 
areas represent dark hours during the experiment. 
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did not influence the total movement recorded during the experiment (p = 0.329). 

The visual inspection of automatically produced time series evidenced robust burrow 

emergence activity (Fig. 2.6) in all animals. No signs of habituation (i.e. decreasing of movements 

within days) were detected and there was any linear trend observing the daily distance covered by 

each lobster (Table 2.2). 

DISCUSSION 
We describe here the realization and testing of a multi-flume actograph based on automated 

video-imaging technology. The model species (N. norvegicus) we used for the test is a 

commercially important species (Bell et al. 2006), and a putative model for chronobiological studies 

in deep waters over the whole continental margin (Aguzzi and Company 2010). We presented the 

resulting time series of displacements in 8 animals over 10 days, as a valuable output of the 

performance of the device. The customized automated-video imaging protocol provided a precise 

tracking of lobsters'movements, also giving the advantages of re-processing acquired images and to 

visually inspect themwith the possibility to focus on different behavioral aspects. This is an 

important advantage compared to other actographic technologies used in the past to track behaviour 

of marine animals (Reid et al. 1989, Last 2003). Visual inspection of acquired images showed slow 

movements of Nephrops in the tank. Therefore, the frequency (10.28 s) of image acquisition was 

suitable for the tracking of burrow emergence and activity rhythms of the species. The theoretical 

limit of image frequency acquisition is 25 frames per second (High Definition Movies) that is 

Table 2.2 - Daily and total distance (cm) covered during the experimental trial for each lobster. Grey areas indicate 
the perpendicular position of the video cameras; white areas indicate the oblique position. 

Individual  

Days 1 2 3 4 5 6 7 8 

1 6819 5725 37673 57109 14816 1402 5409 6288 

2 5958 10871 25540 40375 20882 4065 6585 3229 

3 1829 8771 30468 49670 23579 2396 5269 3633 

4 8048 9083 32468 49611 23242 742 5571 4495 

5 1817 10373 25386 49178 25064 0 2767 4567 

6 794 9990 20814 63051 30927 339 3550 3688 

7 2702 9609 37395 61655 23571 0 3611 3538 

8 4794 11245 30514 49889 26789 0 4356 4203 

9 2622 14980 27348 58486 22961 542 3693 6226 

10 2165 7092 33364 48903 22774 0 4176 3986 

Sum 37548 97739 300971 527927 234605 9487 44986 43853 
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completely dependent from the quality of video cameras. This makes the methodological approach 

suitable also to track the fast movement of a fish. However the operator should take into account the 

space (Bytes) to support all the data produced during experiments, and the increasing computational 

resources required by the machine. The tracking efficiency obtained with the customized script 

confirms how the automated video-imaging can be used to produce reliable time-series outputs 

concerning behavior of burrowing species. Although there was discrepancy in detection efficiency 

between the two different cameras positions (i.e. perpendicular and with 45° angle) this can be 

ignored when the aim of the study is to investigate the distance covered by lobsters out of the 

burrow. The t-test showed that the different positions of the video cameras did not influence the 

total movement recorded during the experiment. In fact, Type-1 errors were reported only when 

animals stop close to the walls of the tank. Hence, this situation did not influence the computing of 

distance covered by lobsters because the algorithm used the last position recorded. 
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Response to water currents 
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INTRODUCTION 
Light is the most important zeitgeber (i.e. environmental cue) that synchronizes the 

biological rhythms of terrestrial organisms (Dunlap et al. 2004). Differently, in the sea, light 

intensity progressively fades out with depth and other factors can be of importance for the 

synchronization of rhythmic biological processes (Aguzzi et al. 2011a). In fact, the physical limit 

for penetration of sunlight (at about 1000 m in the oligotrophic waters) defines a depth range known 

as the “twilight zone” (Hopkins 1985). Below this depth stratum, tidal currents might represent an 

environmental cue able of replacing solar light as synchronizer of animal’s behaviour and 

physiology (Wagner et al. 2007, Aguzzi et al. 2010). However, depth limits for light penetration are 

not sharp (depending on turbidity and other factors), and at the same time tidal regimes has a strong 

geographical variability depending also from sea bottom orography; the result are numerous 

possibility of combination between the two cues. 

Nephrops has strong burrowing habit, and emergence behaviour can be subdivided in three 

different phases: door-keeping (lobsters at the burrow entrance with claws protruding out of the 

burrow, hereafter DK); emergence (totally out the burrow, hereafter OUT); concealment (totally 

into the burrow, hereafter IN) (Aguzzi and Sardà 2008). Such behaviour is under the control of the 

circadian system (24 h based). Light-driven burrow emergence behavioural rhythm has been 

characterized in the wild by temporally scheduled hauling: different diel (24 h) catchability patterns 

occur at different depths (see chapter 1 for more details). 

Rhythmic emergence behaviour in the laboratory has been studied in relation to the day-

night modulation without considering the response of lobsters to water currents simulating tidal 

currents at the sea bottom. The sole laboratory evidence that Nephrops react to water currents is 

published by Newland et al. (1988). This study, conducted with blind lobsters in the absence of an 

artificial burrow, demonstrated that Nephrops assumed a downstream orientation during water 

currents. On the contrary, some effects of neap and spring tides on catches of Nephrops landings 

were already reported long time ago (Storrow 1912, Thomas 1960). In some areas, the neap/spring 

state of the tide exert more influence than the time of the day on Nephrops overall catches, with 

spring tides depressing it (Hillis 1971). Bell et al. (2008) also noticed en effect of neap and spring 

tides on catches of Nephrops. In particular, the more is the current speed the less Nephrops seems to 

be caught (Hillis 1996). That observation moved the attention from a cyclic event, neap/spring tides 

(correlated with the lunar month, 29.5 days) to a direct effect of water currents on the catchability. 

Thus Nephrops represents a good laboratory model for studying the combined effect of light and 

tidal cycles on the behaviour of deep-water benthos. 

Research on how periodic currents and day-night cycles influence behavioural rhythms of 

species is important to integrate individual behaviour in community and ecosystem dynamic 
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(Schmitz et al. 2008, Aguzzi et al. 2015). However, laboratory experiments testing putative effects 

of cyclic environmental variables on the behaviour of deep-water animals are scarce for the intrinsic 

difficulties in their sampling and laboratory maintenance. In this context, we investigated the effects 

of periodic water currents (12.4 h) and concomitant blue light-darkness 24 h cycles on Nephrops

burrowing behaviour. 

MATERIALS AND METHODS
The actograph 

An actograph was used to track lobsters’ behaviour (see chapter 2 for more details; 

Sbragaglia et al. 2013a). Briefly, the actograph consists in 4 tanks with 2 individual corridors each, 

in which burrow emergence behaviour of lobster is tracked by automated video image analysis. 

Each corridor is endowed with glued sand at the bottom, an artificial burrow, a pump, and a 

monochromatic blue LEDs illumination system (472 nm). The pump, together with a flume system 

is used to create water currents. The burrow was inclined at about 30º in the opposite direction of 

the water current. At the same time, we used an open water recirculation system (4 L/min). Blue 

light was used because this wavelength is used by marine crustacean decapods to synchronize 

biological clocks (Aguzzi and Company 2010). Infrared illumination was used to allow the 

recording of lobsters’ behaviour during darkness. 

Four video cameras were used to track the behaviour of lobsters with a frame acquisition 

rate of 10 s. Frames were automatically processed by a set of Matlab functions and time series of 

locomotor activity (cm) were obtained. Moreover, all the frames were assembled into a time-lapse 

video (hereafter referred to as full length video), for the further characterization of lobsters’ 

behaviour (see below). 

Sampling, acclimation and experimental design 

Sampling and acclimation protocols are the same of them described in chapter 2. Fifteen 

adult males with a mean carapace length (CL; average ± standard deviation) of 41.04±4.85 mm 

were used in this study. Lobsters were never fed during the experiment. Burrow emergence 

behaviour was studied over 29.5 days (equals to 1 lunar month) under a photoperiod matching the 

one at the latitude of Barcelona (at about 14-10 hours of Light-Darkness, June-July 2012). Switch-

ON/OFF of the blue LEDs was progressive (within 30 min). During light hours the intensity was 

equals to 4 10−3 μE m-2 s-1, simulating a lower shelf condition (at about 100-150 m depth; Aguzzi et 

al. 2003). Water temperature during the experiments was 13±1 °C and dissolved oxygen always 

above 9 mg/L. 
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We performed behavioural tests using Mediterranean individuals and exposing them to 

water currents with a periodicity that is typical of the Atlantic Ocean. My approach is justified by 

the fact that Nephrops has a uniform population without signs of genetic divergence or isolation 

(Passamonti et al. 1997, Maltagliati et al. 1998, Stamatis et al. 2004). Every 12.4 h, lobsters were 

exposed to water currents of 2 h duration with a speed of 10 cm s-1. The semi-diurnal periodicity of 

12.4 h simulates a periodic intensification of seabed currents’ speed that is supposed to entrain 

physiological rhythms in deep-sea European north Atlantic fishes (Wagner et al. 2007). 

Data treatment and behavioural analysis 

Time series depicting locomotor activity out of the burrow were binned by 1 min and 

represented with double plotted actograms (24 h based), in order to discern the effects of both light 

and current cycles on the behavior of individuals. Chi-square periodogram (Sokolove and Bushell 

1978) was used to scan for the presence of significant (p < 0.05) periodicity in the range 600–1600 

min (equals respectively to 10–27 h) within the total length of the time series (29.5 days) and 

percentage of variance (%V) was reported as a measure of robustness of rhythmic patterns 

(Refinetti 2006). Then, periodogram analysis was repeated for the lobsters that have shown a clear 

effect of currents on locomotor activity in their actograms. Analysis considered a selected number 

of days during which lobsters maintained synchronization with the water current cycle. At the same 

time an average waveform (24.8 h based) of the selected days was used to highlight the effect of 

water currents on locomotor activity. 

Average locomotor activity during all the days of experiment was compared between light 

and darkness and among four different periods of the day: dusk (from 1 h before to 1 h after light 

OFF); dawn (from 1 h before to 1 h after light ON); day (from 1 h after light ON to 1 h before light 

OFF); night (from 1 h after light OFF to 1 h before light ON). Then, we compared the sum of 

locomotor activity 2 h before, during, and after the water current and plot them against the time of 

the day at which that current started. The overall temporal patterns (before, during, and after) were 

described using a gamma-family smoothing function.  

In a second step, a trained operator visually analyzed the full length videos to characterize 

Nephrops’ behaviour during water currents. We quantified the amount of time lobsters spent in each 

of the three aspects of their diel behavioural rhythm (DK, IN, OUT) during the different periods of 

time previously identified (dawn, day, dusk, night). Finally, we also characterized Nephrops’ 

behaviour out of the burrow in the presence of water currents using three categories: up-stream or 

down-stream body orientation without or with low displacement (< 1 body length 10 s-1), active 

displacement (> 1 body length 10 s-1) usually performed with movements from one side to the other 

of the tank. 
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We transformed all the data (square root) to satisfy normality test and homoscedasticity of 

variance. Paired t test and One-way Repeated Measures ANOVA (followed by the Tukey multiple 

comparison procedure) tests were used to assess significant differences using Sigma Plot (12.5) 

software. During all analysis we used a confidence interval of 95%. 

RESULTS 
The inspection of actograms evidenced robust diel burrow emergence activity in all 

individuals with peaks of locomotor activity at light-OFF (two representative actograms are 

presented in Figure 3.1). Periodogram analysis on the total length of the time series (29.5 days) 

detected rhythmic activity in all tested individuals. Twelve lobsters showed diel (24 h) periodicity 

(mean ± SE = 24.06 ± 0.05 h; 23.37 ± 2.86 %V, n=12), while 3 lobsters showed less robust tidal 

periodicity (mean ± SE; 24.86 ± 0.05 h; 9.50 ± 1.97 %V, n=3). 

Fig. 3.1 - Double plotted (two days per line) actograms of two representative N. norvegicus. Locomotor 
activity is represented by cm covered out of the burrow for 29.5 days. White-dark bars at the top 
represent Light-Darkness (LD: 14–10 h) cycle. Current cycle (12.4 h) is identified by white oblique 
rectangles in the plot. 



3. RESPONSE TO WATER CURRENTS

24 

Moreover, actograms output indicated the presence of 4 lobsters with an evident 

synchronization to the water current cycle. We selected the days during which the 4 lobsters 

maintained a clear synchronization with the water current cycle (see Figure A3.1). Periodogram 

analysis indicated a more robust tidal periodicity (mean ± SE = 24.85 ± 0.05 h; 55.92 ± 4.90 %V, 

n=4) than the values previously observed. The average (n=4) waveform (24.8 h based) of the 

selected days was used to highlight the effect of water currents on locomotor activity (Fig. 3.2). 

Locomotor activity of lobsters was significantly (Paired t test, t14 = 5.432, P < 0.001; Table 

1) higher during darkness (mean ± SE = 10.30 ± 2.35 cm, n=15) than light (mean ± SE = 5.96 ± 

1.47 cm, n=15). When we look in more details, lobsters were more active at dusk (mean ± SE = 

13.04 ± 2.95 cm, n=15) and night (mean ± SE = 9.78 ± 2.37 cm, n=15) than at dawn (mean ± SE = 

6.18 ± 1.56 cm, n=15) and day (mean ± SE = 5.78 ± 1.41 cm, n=15) with significant differences 

among periods (ANOVA, F(3,14) = 22.61, P < 0.001) (Table 1). 

The comparison of the sum of locomotor activity 2 hours before, during, and after the onset 

of water currents highlighted a behavioural locomotor response modulated by the time at which the 

currents stimuli were applied (Fig. 3.3). When the onset of currents occurred during the first hours 

of light (when lobsters were not active), there were not great differences in the resulting smoothing 

curves. When the current onset was close to light-OFF (and lobsters began to be more active out of 

the burrow), the level of activity before and during the currents was the same, but the activity after 

the currents reached its maximum. The level of activity after the water currents started to decrease 

Fig. 3.2 – Mean waveform (24.8 h based) for the 4 lobsters that have shown a clear synchronization 
with the water current cycle in their actograms. Data represent the average activity of the lobsters 
during the selected days indicated in Figure S1. Mean locomotor activity is identified by the curve 
while vertical lines represent the standard error. The horizontal line represents the Midline Estimating 
Statistic Of Rhythm (MESOR). Periodic water currents are identified by the vertical shadowed areas. 
The inhibition effect of water currents is identified with a clear drop of locomotor activity below the 
MESOR.
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when water currents onset occurred at the first hours of darkness, while the activity before the 

currents started to increase up to reaching its peak. Notice that during the hours of darkness there 

were two distinct peaks of activity, before and after the water current stimulus (Figs. 3.1-3.3). The 

activity after water currents reached its minimum when the onset of currents was close to light-ON, 

while the activity before the water currents was still greater than the activity during currents 

(indicating inhibition of activity by water current). 

Fig. 3.3 – Plot of the locomotor activity 2 h before (empty circles), during (crosses) and after (solid triangles) 
water currents plotted against the time of water currents onset. Data are presented along with a Gamma-family 
smoothing function (indicating mean as: dashed line for empty circles, dotted line for crosses, solid line for solid 
triangles) and 95% confidence interval as shaded grey-scale contours.

Table 3.1 - Out of burrow locomotor activity expressed in cm (Mean ± SEM) covered by lobsters in relation to the 
LD cycle at dawn, day, dusk, and night periods. t/F represents the value of the statistics used to assess significant 
differences together with the probability (p) and the sample size (N). Letters indicate the output of the multiple 
comparison post-hoc test (a>b>c). 

Locomotor activity cm covered (mean±SEM) t / F P N 

darkness (a) 10.30±2.35 
5.432 < 0.001 15 

light (b) 5.96 ±1.47 

dawn (c) 6.18±1.56 

22.608 < 0.001 15 
day (c) 5.78±1.41 

dusk (a) 13.04±2.95 

night (b) 9.78±2.37 
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The full length videos indicated that lobsters exposed to water currents always spent a 

significantly higher amount of time into the burrow than at door-keeping or out of the burrow 

(ANOVA, dawn: F(2,14) = 63.21, P < 0.001; day: F(2,14) = 17.51, P < 0.001; dusk: F(2,14) = 9.63, 

P < 0.001; night: F(2,14) = 11.40, P < 0.001; Table 2, Fig. 4). Activity out of the burrow during 

water currents was higher at dusk and night than dawn and day (ANOVA, F(3,14) = 5.90, P = 

0.002; see Table 2 and Figure 3.4).  

Table 3.2 – Mean ± SEM of the percentage of time spent by lobsters in different phases of burrow emergence during 
currents (behavior during current), and in different orientation in the presence of the currents (body orientation 
during currents). t/F represents the value of the statistics used to assess significant differences together with the P
value and the N. Letters indicate Letters indicate the output of the multiple comparison post hoc test (a>b). * indicate 
that the power of the test is below the desired value. 

Behaviour during current Percentage of Time (mean±SEM) t / F P N 

dawn-DK (b) 11.00±3.68 

63.208 < 0.001 15 dawn-IN (a) 83.59±5.62 

dawn-OUT (b) 5.41±2.67 

day-DK (b) 14.23±7.17 

17.505 < 0.001 15 day-IN (a) 76.91±9.26 

day-OUT (b) 8.86±5.63 

dusk-DK (b) 13.25±3.53 

9.628 < 0.001 15 dusk-IN (a) 68.50±8.45 

dusk-OUT (b) 18.24±8.17 

night-DK (b) 14.67±4.48 

11.400 < 0.001 15 night-IN (a) 69.88±8.96 

night-OUT (b) 15.45±7.51 

dawn-OUT (b) 5.41±2.67 

5,893 0.002 15 
day-OUT (b) 8.86±5.63 

dusk-OUT (a) 18.24±8.17 

night-OUT (a) 15.45±7.51 

Body orientation during current Percentage of Time (mean±SEM) t / F P N 

dawn-upstream 27.62±18.90 

1.331 0.332* 4 dawn-downstream 58.30±20.09 

dawn-moving 14.07±3.31 

day-upstream 35.10±12.48 

2.805 0.119* 5 day-downstream 52.69±11.43 

day-moving 12.22±2.67 

dusk-upstream 20.39±8.78 

1.828 0.203* 7 dusk-downstream 62.91±11.08 

dusk-moving 28.60±12.23 

night-upstream (b) 12.16±2.58 

66.332 < 0.001 9 night-downstream (a) 70.32±3.59 

night-moving (b) 17.52±6.17 
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We also characterized the body orientation of the lobsters during water currents watching 

the full length videos. There were no significant differences in the percentage of time they spent 

moving or orientated up- and down-stream at dawn, day, and dusk (even if the power of the statistic 

test suggested caution interpreting such results, see Table 2). However, when lobsters were out of 

the burrow at night they spent a significant greater amount of time orientated downstream than 

upstream or moving (mean ± SE = upstream: 12±2.58%, moving: 17.52±6.17%, downstream: 

70.32±3.59%, n=9; ANOVA, F(2,8) = 66.33, P < 0.001; see Table 2 and Fig. 3.5). 

Finally, 4 out of 15 lobsters showed signs of entrainment to the periodic water currents 

(Figure A3.1). In the actogram on the left (see Figures 3.1 and 3.6), an individual showed two 

components of activity (i.e. peaks) during days 2-5, one in correspondence of the light-OFF and the 

other just after the current offset. When the current stimulus was too far from the light-OFF (more 

than 6:23 h, see Figure 3.6), the lobster showed only the component of activity at light-OFF (day 6). 

Interestingly, during days 7-9 the component of activity previously synchronized to the current 

offset, showed transients (i.e. it drifted to the left) that allowed it to resynchronize the phase with 

the major peak of activity at light-OFF. In fact during days 10-11 the lobsters showed only one peak 

of activity. In the actogram of the right during days 11-15 there was only one component of activity 

after the current offset (the diel peak of activity at light-OFF was inhibited). During days 16-21, two 

components of activity were visible: at light-OFF and after the current offset. During days 22-24, 

when the current stimulus was too far from the light-OFF (more than 7:24 h, see Figure 3.6), 

lobster’s activity showed only one major peak of activity at light-OFF, while the component of 

activity previously synchronized to the current offset showed transients (as observed for the other 

individual).  

Fig. 3.4 – Bars of the percentage of average time spent by lobsters out of the burrow, into 
the burrow or at the burrow mouth in the presence of water currents at different periods of 
time. Light-grey represent the percentage of time spent out of the burrow (OUT), dark bars 
represent the percentage of time spent into the burrow (IN), dark-grey bars represent the 
percentage of time spent at the burrow mouth (DK). 
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DISCUSSION 
We demonstrated that periodic water stimuli (as proxy of seabed tidal currents) influenced 

Nephrops burrow emergence behaviour with a strength that is dependent on the phase relationship 

with the light-darkness cycle. Also, water currents could act as putative synchronizer for one of the 

component of the circadian oscillator. My results introduced new information regarding the 

response of the Norway lobster to periodic hydrodynamic stimuli. Firstly, Nephrops preferred to 

remain into the burrow in the presence of water currents. Secondly, during water currents some 

lobsters spent a reduced amount of time out of the burrow; this is higher at dusk and night, when 

lobsters are more active out of the burrow. Finally, lobsters spent more time orientated downstream 

during darkness hours. 

The response of lobsters to water currents was strictly dependent on the time at which the 

hydrodynamic stimulus was applied (see Figure 3.3). The highest rate of locomotor activity after the 

water currents was observed when currents started within the two hours before the light-OFF. Then, 

the activity progressively decreased reaching its minimum around light-ON. On the other hand, the 

locomotor activity before currents reached its maximum when currents onset was at about 3 hours 

Figure 3.5 – Box plot of the percentage of the average time spent by lobsters orientated up-
stream, down-stream, or moving during the 4 period of time. Bold line represents the mean. 
Normal line represents the median. The grey box represents the first quartile. Lines extending 
vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles. 
Letters indicate the output of the multiple comparison post hoc test (a>b). 
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after light-OFF. Lobsters showed the highest peak of diel activity around light-OFF (see Table 3.1 

and Figure 3.1), as already observed in previous studies (Atkinson and Naylor 1976, Hammond and 

Naylor 1977, Sbragaglia et al. 2013b). Furthermore, lobsters activity out of the burrow in the 

presence of water currents was higher at dusk and night (see Table 3.2). Taken together, these data 

indicated that light-OFF is a crucial cue for the synchronization of burrowing behaviour of 

Nephrops. However, the light cycle is a more powerful synchronizer than the water current cycle. 

It is important to notice that when the water currents coincided with the light-OFF, we 

observed a negative masking on locomotion (i.e. suppression; sensus Mrosovsky (1999)). In other 

words, the locomotor activity is inhibited and lobsters shifted their activity out of the burrow just 

after the offset of currents (see Figures 3.1-3.3). Complex patterns of behaviour were already 

observed when light-darkness and tidal cycles were studied simultaneously in marine organisms, 

and behavioural output usually depended from the relative phase between the two cycles (Gibson 

1992, Krumme 2009, Last et al. 2009, Naylor 2010, Watson and Chabot 2010, Refinetti 2012). 

Fig. 3.6 – Plot of an extract of the data presented in the double plotted actograms of Figure 1. The plot above 
represents days 4-11 from the actogram on the left, while the plot below represents days 11-25 of the actogram on 
the right. Locomotor activity is binned at 10 min and a 3 steps moving average is applied. Grey dashed line 
represents the light-darkness cycle (dark bars stays for darkness). Points represent the offset of water currents; 
these are black to indicate the water currents to which the lobsters are synchronized. Black arrows indicate the 
distance (h:mm) between the light-OFF and the offset of water currents. 
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Laroche et al. (1997) and Krumme et al. (2004) observed that recurring fish assemblages 

followed the combinations between tidal and light cycles in mangrove habitats. Nephrops is a 

generalist predator and scavenger and stable isotope studies indicated its role as secondary 

consumer (Loc'h and Hily 2005, Johnson et al. 2013). Its behavioural patter could affect the 

structure of the benthic community and consequently the coupling with the benthopelagic 

compartment, thus periodically modify biodiversity and trophic flow (Aguzzi et al. 2015). Krumme 

(2009) suggested considering short-term variation caused by the interplay of tidal and light cycles 

during long term monitoring programs in intertidal zones. My data indicated that the relative 

combination of tidal (12.4 and 24.8 h) and light cycles (24 h) could be an important parameter also 

for deep-water benthic community, suggesting the same attention at the moment to design 

monitoring program. 

Results indicated that water currents can have some effects on the output of the circadian 

system. We identified the presence of two distinct peaks during darkness hours, suggesting that the 

water currents could affect the phase of the circadian clock, rather than simply masking its output. 

In fact, my data showed how water currents can be considered as a putative zeitgeber for one of the 

components of the circadian oscillator. This result is of relevance for benthic species that are 

distributed on shelf and upper slope where light is supposed to be the predominant zeitgeber for the 

synchronization of biological activity (Aguzzi et al. 2011a). In a previous study in the eastern North 

Atlantic, Wagner et al. (2007) demonstrated at depths at about 2700 m that 12.4 h periodic peaks of 

currents speed (similar to those we simulated here) may act as zeitgeber for demersal fish. Nephrops

posses mechanoreceptors distributed throughout the body (cuticular setae, first second antennae, 

and statocysts) that are used for tactile exploration, perception of water movement, and detection of 

acoustic stimuli (Katoh et al. 2013). In decapod crustaceans hydrodynamic stimuli and flow 

information are integrated by very sensitive mechanoreceptive neurons and interneurons connected 

to statocysts (Wiese 1976, Breithaupt and Tautz 1990, Katoh et al. 2013). Mechanoreceptors may 

also represent one of the input pathways to convey hydrodynamic information to the circadian 

system.  

To my best knowledge, this is the first evidence that periodic water currents showed an 

effect on the circadian system output in a deep water crustacean. The presence of an oscillator 

synchronized to the light-OFF, splitting into 2 components in presence of periodic current stimuli, 

provides an insight into the mechanism behind the spectral coordination (i.e. integration of various 

rhythms within an organism, sensus Refinetti 2012) of diel and tidal rhythms in this species. Aguzzi 

et al. (2011a) presented a model of Nephrops circadian peacemaker assuming the presence of a 

population of oscillators that possess two basic properties: 6 h phase locked-coupling and dumping. 

The data presented in Figure 3.1 and 3.6 partially fell into this model with the presence of a 

circadian oscillator which is able to split into 2 components, one that preserves its synchronization 
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to the light-OFF and the other one that synchronizes with the periodic current stimulus. My data 

suggested that the phase coordination between the two components may be higher than 6 h reaching 

values of 7:24 h (before the lost of synchronization; see Figure 3.6). Such phenomenon is clearly 

observed only in few individuals (N=4). Interestingly, also splitting (the presence of two separate 

phase components 180° apart) in mammalian model organisms is usually observed in a minority of 

tested individuals (Refinetti 2006). The optimization of physiological processes through the spectral 

coordination of diel and tidal rhythms has not received enough attention (Refinetti 2012), but it 

could be determinant at the moment to assess the ecological significance of biological rhythms.  

Water currents induced Nephrops’ concealment (see Figure 3.4 and Table 3.2). This 

behaviour may be of adaptive significance in order to minimize the risk of predation. Predation risk 

experienced by Nephrops during peaks of current speed could be higher because predators 

swimming activity may also be affected by water currents (Arnold 1981, Gibson 1992). For 

example, some deep-water continental margin fishes adjust their swimming behaviour in relation to 

current’s speed (Lorance and Trenkel 2006). The most common predator of Nephrops in the 

Atlantic is the cod (Gadus morhua), the haddock (Melanogrammus aeglefinus), the dogfish 

(Scyliorhinus canicula), the thornback ray (Raja clavata), as well as cephalopods (Farmer 1975, 

Chapman 1980, Bell et al. 2006, Johnson et al. 2013). Among Nephrops’ predators, the cod seems 

to be the most efficient and it is demonstrated that its horizontal and vertical displacements can be 

affected by tidal currents (Arnold et al. 1994, Michalsen et al. 1996, Pinnegar and Platts 2011). 

However, predation success by fish on Nephrops is usually low (Serrano et al. 2003), suggesting 

that a sudden retreat into the burrow can be a successful anti-predator strategy. 

Here, we investigated 3 different behavioural responses to water currents when lobsters 

were out of the burrow: up-stream or down-stream body orientation, or active displacement. 

Significant behavioural differences were found only during hours of darkness, when lobsters spent 

more time orientated down-stream (see Figure 3.5). There were no significant differences in these 

behaviours during dawn and day but that result should be interpreted carefully because of the 

reduced number of individuals observed moving out of the burrow in those periods (see Table 3.2). 

Significant differences should also have been expected at dusk, when lobsters were significantly 

more active out of the burrow (see Table 3.1), in fact the variability outside the upper quartile (see 

top whisker in Figure 3.5) is higher compared to the other periods of time. However, dusk (light-

OFF) was also the time in which water currents exerted negative masking on locomotion (the 

highest level of inhibition, see above). Such behavioural response of Nephrops can be also of 

ecological relevance in relation to its predators. Blind Nephrops in laboratory orientated down-

stream in the presence of water currents of speed within 7-20 cm s-1 (Newland et al. 1988). In the 

field, underwater television surveys documented a down-stream orientation of Nephrops when 

current velocity showed a tidal periodicity with peaks at 10 cm s-1 (Newland and Chapman 1989). 
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Newland et al. (1988) demonstrated that a down-stream orientation in Nephrops reduced drag forces 

on its body and may increase the probability to detect fish predators that preferentially move 

upstream in water flow (Arnold 1981). Differences in body orientation could be also related to the 

efficiency of lobsters in detecting odours plumes. Nephrops probably relies on chemoreception for 

food search and assess predation risk (Katoh et al. 2013). Chemoreception  is strictly correlated to 

the way in which antennules are deployed in relation to the water flow because it modifies the 

efficiency of aesthetascs (i.e. chemosensory hairs) to detect odours through the water (Koehl 2011). 

However, the way in which the orientation of the body influences chemical sensing in Nephrops is 

not known and could be an interesting question to address in future investigations.
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ANNEX 3A 

Fig. A3.1 – Double plotted (two days per line) actograms of the 4 lobsters with evident synchronization to 
currents. Locomotor activity is represented by cm covered out of the burrow for 29.5 days. White-dark bars 
at the top represent Light-Darkness (LD: 14–10 h) cycle. Current cycle (12.4 h) is identified by white oblique 
rectangles in the plot. Grey transparent areas represent the selected used to plot the average waveform of 
Figure 3.2.
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INTRODUCTION 
The current knowledge of Nephrops circadian biology (and of crustaceans in general) is 

merely phenomenological, with very few insights on the molecular mechanisms regulating this 

behavior (Strauss and Dircksen 2010, De Pitta et al. 2013, Zhang et al. 2013). The molecular 

architecture of the circadian system in decapod crustaceans is indeed poorly known (Aréchiga 

and Rodríguez-Sosa 2002, Escamilla-Chimal et al. 2010) when compared to what has been 

achieved so far in other arthropods such as the fruitfly Drosophila melanogaster (Peschel and 

Helfrich-Forster 2011). In crustacean decapods, the eyestalks and their optic ganglia play a 

crucial role in the modulation of neuroendocrine and behavioral rhythms. They are an important 

source of neuropeptides including red pigment concentrating hormone, crustacean 

hyperglycemic hormone, pigment dispersing hormone, typically released by X-organ sinus 

gland complex, as well as of small molecules, such as serotonin and melatonin, both involved in 

circadian regulation (Aréchiga et al. 1985, Garfias et al. 1995, Escamilla-Chimal et al. 2001, 

Rao 2001, Böcking et al. 2002, Hardeland and Poeggeler 2003). Hence, the eyestalks are a good 

candidate for the search of genes involved in circadian regulation (clock genes) and their 

temporal pattern of expression. 

The striking level of conservation of the molecular architecture of the circadian system 

among eukaryotes implies that putative clock genes of Nephrops could show homology with 

those of the phylogenetically closest arthropod model organism such as the fruitfly Drosophila 

melanogaster (Bell-Pedersen et al. 2005). On the other hand, the advent of next-generation 

sequencing (NGS) technologies allows delivering new, fast, and accurate information of wide 

portions of organisms’ genomes, providing large number of reads in non-model species in 

which previous genomic information is unavailable (Metzker 2009, Morozova et al. 2009). 

Recent advances in assembly algorithms allow using NGS technologies that produce short 

reads; computational time in reads assembly is reduced by using a paired-end protocol without 

decreasing accuracy (Rodrigue et al. 2010, Martin and Wang 2011). RNA-sequencing (RNA-

seq) is a method that uses NGS to gain information on transcriptomes (the transcribed portion of 

the genome). The fact that RNA-seq is not based on a hybridization-based approach using 

preexisting sequences (e.g. microarrays) makes this technique less biased and very attractive for 

non-model species such as the Norway lobster, where reference genomic data are not available. 

In the present chapter, I sequenced and de novo assembled the Nephrops norvegicus

eyestalk transcriptome. Because of the paramount role that clock genes likely have in regulating 

the rhythmicity of burrow emergence behavior, we annotated canonical clock gene homologs 

(e.g. period, timeless, clock, bmal1) and assessed their daily pattern of expression (RT-qPCR) in 

relation to the burrow emergence rhythms. 
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MATERIALS AND METHODS 
Sampling and housing

Animals were collected following protocols reported in chapter 2 (See also Aguzzi et al. 

2008). In the laboratory, animals were acclimated within a light-proof isolated chamber (See 

chapter 2 and Sbragaglia et al. 2013b). Burrow emergence rhythm was tracked in the laboratory 

using an actograph under monochromatic blue light (472 nm) and equipped with an artificial 

burrow. Automated video image analysis quantified animal displacements out of their burrows, 

for further details see (Chapter 2 and Sbragaglia et al. 2013a). 

The 14 individuals used in this study were adult intermoult Nephrops males. Animals 

were acclimated for at least 40 days. Behavioral tests were carried out as follow: 12h-12h LD 

cycle (lights-ON at 08:00 h and lights-OFF at 20:00 h), with an intensity during light hours of 

4·10-3 μE/m2/s, simulating light intensity at depth of about 150 m. During darkness hours video 

recording was accomplished using infrared (850 nm) light. Blue lights-ON and -OFF were 

progressively attained and extinguished within 30 min. All trials were conducted under constant 

temperature (13±1̊C) for 10 days. Eyestalks were dissected during the last day of the 

experiment. Sampling and laboratory experiments followed the local legislation regarding 

animal’s welfare. 

Behavioral data analysis

Behavioral analyses were performed using the software Eltemps (www.el-temps.com). 

Chi-square periodogram (Sokolove and Bushell 1978) was used to scan for the presence of 

significant (p < 0.05) periodicity in the range 10-28 h and percentage of variance (%V) 

explained by each period is reported as a measure of rhythms' robustness (Refinetti 2006). 

Waveform analysis (24-h based) was carried out in order to identify the behavioral phenotype 

(nocturnal or diurnal) and the “midline estimating statistic of rhythm” (MESOR) was also 

computed. The percentage of the activity (area under the waveform curve) during darkness was 

calculated to determine the nocturnal or diurnal phenotype of the lobsters. Lobsters were 

considered nocturnal when more than 60% of locomotor activity was concentrated during 

darkness. 

Transcriptome: eyestalk dissection and RNA extraction

Lobsters were anesthetized on ice for 15 minutes and their eyestalks dissected at the 

middle of the photophase (n=4) and at the middle of the scotophase (n=4). The cuticle and the 

retina were rapidly eliminated using a stereoscope under dim red light and the remaining tissue 

immediately transferred to RNA-later tissue collection (Invitrogen Inc.) and stored at -80°. Total 
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RNA isolation was performed using the column-based RNeasy® Mini Kit (Qiagen Inc.) 

following manufacturer instructions. 

Transcriptome: sequencing and quality check 

Before sequencing, the quality of the RNA integrity was checked using Agilent 

Technologies 2100 Bioanalyzer. Two samples (one for the photophase: NEP-L; and the other 

for the scotophase: NEP-D) were chosen for the construction of non-normalized cDNA 

libraries. The mRNA fraction of the total RNA was converted into a library of template 

molecules suitable for subsequent cluster generation using the reagents provided in the Illumina 

TruSeq RNA Sample Preparation Kit. Sequencing was performed using one channel of a HiSeq 

2000 Illumina Sequencing System (paired-end, 100bp). FastQC (v0.10.0) was used to provide 

the quality control checks on raw sequence data coming from high throughput sequencing 

pipelines (http://www.bioinformatics.babraham.ac.uk). 

Transcriptome: data analysis 

Trinity r2011-11-26 (http://trinityrnaseq.sourceforge.net) was used for the de novo 

reconstruction of transcriptomes from the read data (Grabherr et al. 2011, Haas et al. 2013). 

Transcriptomes were first assembled separately (NEP-L and NEP-D) and then together (NEP-

comb). In order to get the species distribution of the annotated hits of transcripts the combined 

transcriptome (NEP-Comb) was blasted against the Uniprot database (http://www.uniprot.org) 

using a stand-alone version of the blastX tool (v20120420) and setting the E-value cutoff to 10-

6. BlastX translates the query sequence in all six possible reading frames and provides 

combined significance statistics for hits to different frames (http://blast.ncbi.nlm.nih.gov). Then, 

to assign putative gene functions, contigs from NEP-L and NEP-D were blasted separtely. 

Estimates of the numbers of annotated contigs that matched to known genes from the NCBI 

non-redundant protein sequence database were made and functional categories of the predicted 

genes were obtained by extracting the relative Gene Ontology (GO) terms from the blastX 

output (http://www.geneontology.org) (Ashburner et al. 2000). The grouped sets of GO terms 

was then subjected to a Fisher's exact test, using False Discovery Rate (FDR) p-value correction 

for multiple comparisons (p < 0.05), in order to find under- or over-represented terms between 

the two transcriptomes. In order to find transcripts in my dataset that could be considered as 

putative clock genes or genes related to the circadian system, we screened the description of the 

annotated sequences looking for the following key terms: "circadian", "rhythmic", 

"entrainment". 

http://www.geneontology.org/�
http://blast.ncbi.nlm.nih.gov/�
http://www.uniprot.org/�
http://trinityrnaseq.sourceforge.net/�
http://www.bioinformatics.babraham.ac.uk/�
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RT-qPCR: RNA extraction and cDNA synthesis 

The eyestalks were dissected in 12 lobsters at four different time points (three 

individuals at each time point): 07:30 (just before lights-ON), 13:30 (at the middle of 

photophase), 19:30 (just before lights-OFF), and 01:30 (at the middle of scotophase). The 

cuticle and the retina were rapidly eliminated using a stereoscope under dim red light and the 

remaining tissue immediately frozen in liquid nitrogen and then stored at -80°. Eyestalk tissue 

was homogenized with 0.5 mL of Trizol and total RNA was extracted with chloroform, 

precipitated with isopropanol and washed with 75% ethanol. Pellets were suspended in 25 µL 

DEPC-water and stored at -80˚C. The quality of RNA was checked on gel electrophoresis and 

by absorbance ratio (A260/A280 nm) > 1.8. No signs of DNA contamination were found so we 

decided to not apply a DNase treatment. Concentration was assessed by absorbance at 260 nm, 

using a ND-1000 spectrophotometer (NanoDrop Technologies). One µg of total RNA was 

reverse transcribed into cDNA using Superscript III (Invitrogen) and random hexamers 

following manufacturer’s instructions. 

RT-qPCR: cloning and sequencing 

We used PCR amplification to clone the putative Nephrops clock genes previously 

identified by blasting the de novo assembled transcriptome in Uniprot. This step also allowed 

assessing the fidelity of the assembling provided by trinity. We selected the contigs that 

matched with canonical clock genes timeless, period, clock and bmal1 in order to study their 

expression using quantitative RT-qPCR. We retrieved a cDNA sequence of Homarus 

americanus (accession AF399872) encoding α-actin as housekeeping gene. Primers used for 

cloning were designed using MacVector 11.1.2 (for details see Table A4.1). cDNAs for cloning 

and sequencing were obtained from a pool of eyestalks dissected during light and darkness 

conditions following the protocol described above. 

The PCR protocol consisted of one denaturating step at 94°C for 2 min followed by 30 

to 35 cycles each consisting of 94°C for 30 s, annealing temperature (see Table A4.1) for 30 s 

and 72°C for 40 to 100 s (60 s per kb). The PCR product was then cloned using the StrataClone 

PCR cloning kit (Agilent Technologies, USA) following manufacturer’s instructions. Plasmids 

were then purified using the PureLink Quick Plasmid Miniprep Kits (Invitrogen, USA) and 

sequenced for both strands using the T3 and T7 universal primers (Genewiz, Inc., USA). 

Alignments between assembled and cloned sequences (as well as α-actin from H. 

americanus and N. norvegicus) were performed using EMBOSS Water open software suit 

(CluscalW2, http://www.ebi.ac.uk). BlastX was used to compare the translated protein products 

of the contigs against NCBI database. SMART (http://smart.embl-heidelberg.de) was used to 

identify conserved domains and structural motifs of protein (Schultz et al. 1998, Letunic et al. 

http://smart.embl-heidelberg.de/�
http://www.ebi.ac.uk/�
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2009), then amino acids sequences were blasted against NCBI data base 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) directly from SMART (Altschul et al. 1997). 

RT-qPCR: daily expression of clock genes

We have tried to report all the fundamental information regarding the RT-qPCR 

experiment as suggested by Bustin et al. (2009). RT-qPCR reactions were carried out using an 

ABI 7900 HT (Applied Biosystems). Primers for timeless, period, bmal1, clock, α-actin (this 

latter as endogenous reference gene to standardize the expression levels) were designed using 

MacVector on the cloned sequences (Table, A4.2). Primers were tested before using a RT-PCR 

touch-down protocol with the following settings: 94˚C for 5 min, 10 cycles (94˚C for 30 s, 55˚C 

+ 0.5˚C each cycle for 30 s, 72˚C for 30 s), 30 cycles (94˚C for 30 s, 55˚C for 30 s, 72˚C for 30 

s), 72̊ C for 7 min. Primers amplification efficiencies were tested by linear regression analysis 

from a cDNA dilution series and by running a melting curve (95̊C for 15 s, 60˚C for 15 s and 

95˚C for 15 s). Efficiency (E=10(-1/slope)), showed values between 1.9 and 2.3, standard 

curves ranging from –2.5 to –3.6 and linear correlations (R2) higher than 0.97 were recorded. 

cDNA was diluted 1:10 for all genes.  

Fig. 4.1 – Waveform (24 h) analysis for a representative lobster (A) and averaged for the 14 
lobsters used during the study (B). Activity is reported as displacement (cm) out of the 
burrow. Black and white bars represent darkness and light hours, respectively. Shadowed 
areas represent scotophase. Vertical lines represent the standard error of the mean and the 
horizontal line represents the MESOR. Arrows in B stay for the sampling points at which 
eyestalk were dissected for the RT-qPCR experiment. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi�
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Cycling conditions of the RT-qPCR were: decontamination step (50̊C for 2 min), 

activation step (95̊C for 10 min), 40 cycles of denaturation (95˚C for 15 s) and one 

annealing/extension step (60˚C for 1 min). A final dissociation step was also added (95˚C for 15 

s and 60˚C for 15 s). Each sample was run in triplicate in 384-well plates. The reaction volume 

(10 µL) was composed by 2 µL of 5x PyroTaq EvaGreen qPCR Mix Plus, ROX (Cultek 

Molecular Bioline), 6 µL distilled water, 1 µL primer mix at a 10 mM concentration and 1 µL 

of cDNA. Duplicate negative controls were also run. SDS 2.3 software (Applied Biosystems) 

was used to collect raw data. . The transcript levels of the target genes were normalized to the 

reference gene α-actin and fold change was calculated following the 2∆∆CT method (Livak and 

Schmittgen 2001). The fold change was calculated using one of the sampling point (07:30) as a 

control or calibrator. Statistical analysis was performed using the 2∆CT values. Res ults from 

2∆CT calculation were then checked for normality (Shapiro-Wilkoxon test), homoscedasticity 

of variance (Levene’s mean test) and a one-way ANOVA test was used to assess differences 

among sampling times using the Sigma Plot (12.5) software. 

RESULTS 
Behavioral analysis 

Fig. 4.1A shows the analysis of behavioral activity rhythms for one representative 

lobster used in the study. The Chi-square periodogram analysis identified a significant 

periodicity in burrow emergence rhythms of all animals, mean±SEM: 24.09±0.12h (37.37±4.68 

%V). Waveform analysis showed a nocturnal burrow emergence activity for all lobsters 

(mean±SEM: 71.27±3.35 % of locomotor activity during darkness). The average waveform for 

Table 4.1 - Descriptive statistics for the Illumina sequencing run and the assembly of the two de novo
transcriptomes.

SAMPLES NEP-L NEP-D NEP-comb 

RAW SEQUENCES 

Read type Paired-end - 

Read length (bp) 101 - 

Number of total reads 87'830'082 91'938'198 - 

Total (bp) 8'870'838'282 9'285'757'998 - 

TRANSCRIPTOME 
ASSEMBLY 

Total length of contigs 94'950'636 109'100'701 97'192'541 

Total number of contigs 106'256 114'235 108'599 

Max length 13'517 26'988 13'280 

Min length 201 201 201 

N90 311 322 310 

N80 532 571 530 

N70 864 956 875 

N60 1'300 1'468 1'305 

N50 1'796 2'055 1'810 
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all 14 individuals (Fig. 4.1B) revealed an anticipatory peak of activity just before lights-OFF, 

which was also evident in the waveform for each individual (Fig. 4.1A). 

Transcriptome analysis 

The sequencing of libraries produced a total of approximately 88 and 92 millions of 

paired-end reads for NEP-L and NEP-D respectively (Table 1). The de novo assembly of NEP-

Comb produced 108,599 contigs with a N50 (i.e. the size at which half of all assembled bases 

reside in contigs of this size or longer) of 1,810. The de novo assembly of NEP-L produced 

106,256 contigs with a N50 of 1,796, while for NEP-D the number of contigs was 114,235 with 

an N50 of 2,055. The species distribution of the annotated hits of transcripts of NEP-Comb 

against the NCBI non-redundant protein sequence database is presented in Fig. 4.2. At about 

73% of the first 30 species in order of number of annotated hits were insects, while the second 

species was the crustacean Daphnia pulex. The annotation of transcript sequences of NEP-L and 

NEP-D against the GO vocabulary produced 81,711 (77%) of no hits in NEP-L and 87,312 

(76%) in NEP-D.. The positive hits and following assignment of functional categories were 

distributed as follows: biological processes 8,522 (8%), cellular component 6,944 (6%), 

molecular function 9,079 (9%) for NEP-L; biological process 9,586 (8%), cellular component 

7,583 (7%), molecular function 9,754 (9%) for NEP-D (Fig. 4.3). The Fisher's exact test 

indicated that the 62 functional groups are equally represented among the two transcriptomes, 

Fig. 4.2 – The species distribution of the annotated hits of transcripts of NEP-Comb against the 
NCBI non-redundant protein sequence database (E-value cutoff to 10-6). Horizontal bars depict 
the number of hits for each one of the species. Only 30 species in order of number of annotated 
hits were presented, while the hits of all the other species are summed into the bar “others”.
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so we reported the detailed percentage of GO annotation for both samples (Fig. 4.3). The 

screening for putative clock genes produced 140 positive matches. Different sequences showed 

positive hits with genes related to the circadian system: timeless, period, clock, cycle, bmal1, 

cryptochrome, double time, vrille, clockwork orange and jetlag. Further details concerning the 

annotation are reported in Table A4.3. 

Cloning and RT-qPCR 

The partial sequences of putative Nephrops clock genes obtained by cloning exhibited 

high levels of identity and similarity with the contigs obtained by the de novo assembly of the 

transcriptome (Table 4.2). We cloned a fragment of 4,754-bp for the putative Nephrops period

gene (accession KP943777) that showed a 98.3% of similarity and 1.3% of gaps with the 

assembled contig on which we designed the primers. The cloned fragment for the putative

Nephrops timeless gene (accession KP943778) had 2,137-bp and showed a 100% similarity. 

The fragments cloned for the clock (accession KP943779) and bmal1 (accession KP943781) 

genes were shorter, 272-bp and 222-bp respectively, and had 100% similarity in both cases. We 

Fig. 4.3 - Gene ontology (GO) annotation of the assembled transcriptomes. A: The percentage distribution of 
functional categories between the two transcriptomes together with the proportion on no hits. B: The 
percentage of sequences distributed among 62 different functional groups of both samples (black columns: 
photophase; grey columns: scotophase).
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also cloned a 1036-bp fragment of the Nephrops α-actin gene (accession KP943780) that 

showed a 96.9% of similarity with the homologous gene of H. americanus with a 0.4% of gaps.  

The whole open reading frame of the contigs of the four putative clock genes were blasted on 

NCBI using the tool blastx to compare the translated protein products and results of 

representative best matches are reported in Table 4.3. The cDNA fragments were conceptually 

translated in peptides with the following amino acid (aa) lengths: PERIOD, 1,654aa; 

TIMELESS, 842aa; CLOCK, 148aa; BMAL1, 74aa. Nephrops putative clock proteins showed 

higher levels of similarity with other Crustaceans of the order Decapoda (e.g. the Signal 

crayfish, Pacifastacus leniusculus and the giant river prawn, Macrobrachium rosenbergii), 

Isopoda (e.g. the speckled sea louse, Eurydice pulchra) and with insects of different orders such 

as Diptera (e.g. the fruit fly, Drosophila melanogaster) and Orthoptera (e.g. the mangrove 

cricket, Apteronemobius asahinai). 

We also blasted a contig (comp1618_c0_seq1) that was annotated against the GO 

database to cryptochrome 1 (from Homo sapiens). The blastx of the contig against the NCBI 

database produced high level of identities with crustaceans of the Class Malacostraca, in 

particular with cryptochrome of E. superba (82%), and with cryptochrome 2 of E. pulchra

(79%) and T. saltator (79%) (see Table A4.4).  

The conceptual translation of canonical clock genes cDNAs indicated the presence of 

conserved domains (Table A4.5). These were identified by SMART and blasted against NCBI 

database. Nephrops putative PERIOD has two PAS domains (from 229-296aa and from 373-

442aa) and a PAC motif (from 450-493aa) that showed a high level of homology (expressed as 

identity) with conserved domains on the PERIOD protein of the isopod of E. Pulchra (PAS: 

229-296aa, 85%; PAS: 373-442aa, 74%; PAC, 84%). Nephrops BMAL1 has the basic helix-

loop-helix (bHLH, from 41-74aa) conserved domain that showed high level of homology with 

Table 4.2 – Similarities observed during the alignment between the cloned sequences and the 
corresponding assembled contigs (period, timeless, clock and bmal1). For α-act the alignment was 
between the cloned sequence and the sequence retrieved from H. americanus. 

Genes  alignment length (bp) similarity (%) gaps (%) 

NnPeriod assembling vs cloning 4754 98.3 1.3 

NnTimeless assembling vs cloning 2137 100 0 

Nnclock assembling vs cloning 272 100 0 

Nnbmal1 assembling vs cloning 222 100 0 

a-act H.americanus vs N.norvegicus 1036 96.9 0.4 
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the bHLH domain on the protein BMAL1 of the decapod P. leniusculus (100%) and the isopod 

E. Pulchra (97%) (Table A4.5). No conserved domains were identified in Nephrops TIMELESS 

and CLOCK.  

The melting curves of the RT-qPCR indicated the presence of a single peak, suggesting 

no signs of contamination by DNA (as already supported by gel electrophoresis and absorbance 

ratio, see above). Among the canonical Nephrops clock genes, only timeless has a significant (F 

= 10.470; P < 0.01) pattern of expression with a peak just before the light-OFF (late day, Fig. 

4.4). The other transcripts did not show significant differences of expression among the 

different sampling time points: period, (F = 2.020; P = 0.19); clock, (F = 1.354; P = 0.32); 

bmal1, (F = 1.342; P = 0.33. Despite its lack of significant rhythmicity, period expression 

pattern appeared to be similar to timeless. 

Fig. 4.4 – Canonical clock genes expression in Nephrops eyestalk. Measurements (n=3 each time 
point) were normalized to a-act and expressed as fold change respect to a control time point (7:30). 
Vertical bars represent the confidence limits. Black and white bars represent darkness and light hours, 
respectively. Timeless shows a significant pattern of expression (ANOVA, P < 0.05). Letters indicate 
the output of the Tukey’s post hoc test (a>b).
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Table 4.3 – The most representative match of the blastx against NCBI database of the putative canonical clock genes of Nephrops. 

Genes  Species Phylum - Class -Order Protein product Identity Gaps Accession 

NnPeriod 

Eurydice pulchra Arthropoda - Malacostraca - Isopoda period 520/1101 110/1101 AGV28714
Blattella germanica Arthropoda - Insecta - Blattodea circadian clock protein period 360/1099 167/1099 AAN02439
Apteronemobius asahinai Arthropoda - Insecta - Orthoptera period isoform1 356/1100 157/1100 BAL72155 
Laupala cerasina Arthropoda - Insecta - Orthoptera period 317/1031 149/1031  ADO24376 
Rhyparobia maderae Arthropoda - Insecta - Blattodea period 201/538 46/538 AGA01525 

NnTimeless 

Eurydice pulchra Arthropoda - Malacostraca - Isopoda timeless 471/799 34/799 AGV28716 
Thermobia domestica Arthropoda - Insecta - Thysanura timeless 203/456 26/456 BAL27710 
Drosophila melanogaster Arthropoda - Insecta - Diptera timeless 196/465 13/465 AAC46920 
Clunio marinus Arthropoda - Insecta - Diptera timeless 192/456 20/456 AFS34623
Belgica antarctica Arthropoda - Insecta - Diptera timeless 188/459 34/459 AGZ88039

Nnclock 

Pacifastacus leniusculus Arthropoda - Malacostraca - Decapoda clock-like protein 34/55 15/55 AFV39704
Anopheles darlingi Arthropoda - Insecta - Diptera clock-like protein 34/41 0/41  ETN62614 
Macrobrachium rosenbergii Arthropoda - Malacostraca - Decapoda clock 28/29 0/29 AAX44045
Thermobia domestica Arthropoda - Insecta - Thysanura clock 25/29 0/29 AJ16353
Eurydice pulchra Arthropoda - Malacostraca - Isopoda clock 1-7 25/29 0/29 AGV28721

Nnbmal1 

Pacifastacus leniusculus Arthropoda - Malacostraca - Decapoda bmal1a 72/75 1/75 AFV39705 
Eurydice pulchra Arthropoda - Malacostraca - Isopoda brain and muscle arnt-like protein-1 59/75 1/75 AGV28715
Tribolium castaneum Arthropoda - Insecta - Coleoptera cycle protein 46/73 6/73 EFA01256
Phyllotreta striolata Arthropoda - Insecta - Coleoptera cycle protein, partial 46/61 6/61 CCA29756 
Culex quinquefasciatus Arthropoda - Insecta - Diptera circadian protein clock/arnt/bmal/pas 45/72 6/72 XP_001865023
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DISCUSSION 
Here we assembled for the first time the eyestalk transcriptome of Nephrops norvegicus

and annotated putative clock genes. We confirmed the fidelity of de novo assembly of canonical 

clock genes by cloning them. Conceptually translated protein products of partial fragments of N. 

norvegicus period, timeless, clock and bmal1 showed high similarities with these genes in 

crustaceans and insects, with the presence of characteristics conserved domains (PAS and 

bHLH). Other putative homologous of clock genes include cryptochrome 2. Interestingly, 

results of the RT-qPCR experiment indicated that timeless oscillates with a diel rhythm and 

could be considered a suitable genetic marker of the molecular circadian clockwork controlling 

Nephrops locomotor activity rhythm. Together, my results are consistent with the notion that the 

eyestalk in decapod crustaceans houses a circadian oscillator involved in the regulation of 

behavioral and physiological rhythms. 

The amount and quality of the reads produced for the present study are consistent with 

the average throughput produced by Illumina HiSeq 2000 platform. The assembly statistics are 

in line with those produced by other studies using a similar approach (Crawford et al. 2010). 

The similar distribution of the 62 functional groups during GO analysis between the light and 

dark phase of the LD cycle suggests that there is no difference in gene expression in terms of 

broad functional categories. The screening of the de novo assembled transcriptome identified 

140 transcripts encoding for putative circadian proteins, demonstrating its power when applied 

to non-model species where scarce or absent previous genomic knowledge is available. 

The similarities observed comparing the cloned and assembled cDNAs fragments of 

putative canonical clock genes of Nephrops validates a high fidelity of the assembly performed 

with trinity, as previously demonstrated in yeast, mouse and non-model organisms such as the 

whiteflies (Grabherr et al. 2011). The blastx of the contigs of the putative clock genes of 

Nephrops against NCBI database revealed highest identities with the translated proteins for the 

full length cDNAs sequences from E. pulchra (period: 47%, timeless: 59%, bmal1: 79%) and 

M. rosenbergii (clock: 100%). The homology with other crustacean clock proteins strongly 

suggest that the partial fragments cloned in this study could be considered homologous of 

canonical clock genes and hence part of the transcriptional-translational feedback loop that 

constitutes the molecular circadian machinery in all metazoans studied so far (Peschel and 

Helfrich-Forster 2011). This notion is reinforced by the presence of some characteristic 

conserved domains of clock proteins; Nephrops PERIOD has the PER-ARNT-SIM (PAS) 

domains, while Nephrops BMAL1 showed the basic helix-loop-helix (bHLH) domain. These 

domains are fundamental for the expression of protein PERIOD and TIMELESS and their 

activation by the heterodimeric bHLH-PAS transcription factors CLOCK and BMAL/CYCLE 

(Taylor and Zhulin 1999, Scheuermann et al. 2007, Hennig et al. 2009). 
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Among the four genes studied with RT-qPCR only timeless had an oscillating pattern of 

expression. My results are consistent with a recent study on E. pulchra where period, timeless, 

bmal1, clock and cryptochrome 2 were studied using RT-qPCR (Zhang et al. 2013). Those 

authors reported that only timeless gave a robust and reliable circadian expression in whole head 

tissue, with a peak late in the subjective day. We didn’t expose lobsters to constant conditions, 

but previous studies have demonstrated that Nephrops burrow emergence is under the control of 

circadian system and can be entrained by blue light (Chiesa et al. 2010). The peak of timeless

transcripts is observed in lobsters sampled 30 min before light-OFF when animals also showed 

anticipation (increase of activity before any change in light intensity, see Fig. 4.1), suggesting 

that the observed oscillation of timeless transcripts is endogenous. We also did not observe a 

significant daily pattern of expression for clock.  Yang et al. (2006) showed similar results for 

M. rosembergii clock (Mar-clock) under LD conditions; using semi-quantitative RT-PCR and β-

actin as internal control, the authors did not observed diel patterns of expression either in the 

central nervous system or peripheral tissues. However the expression tended to increase at night, 

as observed in this study. 

Finally, a contig of 3,239 bp matched with the vertebrate-like cryptochrome 2. In this 

study we did not focus on its cloning and expression, but the blastx of the contig against the 

NCBI database produced high level of identities with the crustaceans E. superba (82%), E. 

pulchra (79%), T. saltator (79%) (see Table S6). Cryptochrome 2 was initially described for 

non-drosophilid insect species and proposed as a transcriptional repressor for the clock 

molecular machinery (Zhu et al., 2005). Its expression has daily oscillations in E. superba both 

in laboratory (Teschke et al. 2011) and in natural conditions (Mazzotta et al. 2010); recently it 

has been suggested as a major negative regulator also for the circadian clock of the crustacean 

E. pulchra (Zhang et al. 2013). Future studies could determine whether the same is true in 

Nephrops.  
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ANNEX 4A 

Table A4.1 – Primers used for cloning. 

Genes  Primer Position (bp) Primer sequence (5' -> 3') Ann. Temp. (°C) 

Period 

C-per-F1 12-37 CCCAGAGTTAGTGGAGTAAAGGTGTG 
56.7 

C-per-R1 1262-1241 TGTGGCAGATGACCCAGGTAGG 

C-per-F2 315-337 TGGCGACAATGCTGATTTTAGTG 
57.2 

C-per-R2 2103-2078 TGAGAGAGTCTGTGAGTGTGATAGCG 

C-per-F3 2020-2039 AGCACCCATCCAGCCTTTTC 
57.8 

C-per-R3 3260-3238 CGGTTCATCTCAGAATCCTTTGG 

C-per-F4 3058-3077 CGTTCCACCACTAACCTGCG 
56.1 

C-per-R4 4095-4073 CCTTGAGCCACCTATTGCCATAC 

C-per-F5 3658-3678 AGATTACGACAGCCTGCCTGG 
54.1 

C-per-R5 4850-4831 TCCGTTCTTTTTTTTCGCCC 

Timeless 

C-tim-F2 752-773 TCGGACAGTTGGTAGAGGTGCG 
56.5 

C-tim-R2 2304-2283 TGTTTGAGGATTCGTCGTCGTG 

C-tim-F3 168-192 GCACCATCAGAAGCCTCATAAAATG 
56.4 

C-tim-R3 801-778 CAAGCGAATCAGCAACACAAATAG 

clock 
C-clk-F3 122-149 AGTTTAGTGATAACCAGGGAGTAAGAGC 

54.5 
C-clk-R3 393-372 CGGACAGTTCGTTGATGAGGAG 

bmal1 
C-bmal1-F1 1-24 TCCTTCTCCTCTGATGGCTCTAAG 

52.1 
C-bmal1-R1 222-200 TGTCAGTTTGTCAAGCTTCCGAG 

a-act 

C-aact-F1 300-322 CACTCCTTCTACAACGAACTGCG 
58.1 

C-aact-R1 1160-1141 GCACTTGCGGTGGACAATGC 

C-aact-F3 127-146 TATTCCCCTCCATCGTCGGC 
57.7 

C-aact-R3 398-378 GGTCATCTTCTCACGGTTGGC  
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Table A4.2 – Primers used for RT-qPCR.

Genes  Primer name Position on cloned fragment Primer sequence (5' -> 3') Amplicon size (bp) Efficiency (E) R² 

NnPeriod 
per-F1 364-388 TGGAAGAAGTTGAAGGAGAAGACCG 

151 2.2 0.969 
per-R1 515-493 CAATACTGCTGGCTGTTTCGCTG 

NnTimeless 
tim-F1 256-280 GCCCTATCAGATTGACCTGGACAAG 

154 1.9 0.969 
tim-R1 409-385 CATCACCACTCCCTCATACACCAAG 

Nnclock 
clk-F1 33-57 TGGTGGTGGTGTGAAGTGGATTTAC 

132 2.5 0.970 
clk-R1 164-142 CAGATTTGCCAGGTGATGTTTCG 

Nnbmal1 
bmal1-F1 1-21 TCCTTCTCCTCTGATGGCTCT 

108 2.2 0.968 
bmal1-R1 108-89 TTTATTCCAATCCCCAGCAG 

Nnaact 
aAct-F2 414-438 GGTTATTGTCTCCCACACGCTATCC 

136 2.0 0.979 
aAct-R2 549-527 TGATGTCACGAACGATTTCTCGC 
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Table A4.3 – List of candidate genes in Nephrops norvegicus that can be considered as putative clock genes or genes related to the circadian system. 

Transcript Length (bp) Match  Start End Species Access number 
comp65743_c0_seq1 304 48 related 2 3 299 Drosophila melanogaster FB|FBgn0038402 
comp8903_c0_seq1 165 5'-AMP-activated protein kinase  catalytic subunit alpha-2 135 1646 Pongo abelii UNIPROTKB|Q5RD00 
comp6931_c0_seq1 3892 Alpha-N-acetylglucosaminidase 3549 1936 Homo sapiens UNIPROTKB|P54802 
comp6931_c0_seq2 3710 Alpha-N-acetylglucosaminidase 3255 1936 Homo sapiens UNIPROTKB|P54802 
comp48442_c0_seq1 219 AT5G63860 2 193 rabidopsis  thaliana TAIR|locus:2163986 
comp1846_c0_seq1 6297 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 352 3969 Rattus norvegicus RGD|619951 
comp1846_c0_seq10 2755 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 54 1505 Rattus norvegicus RGD|619951 
comp1846_c0_seq11 2300 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 733 1050 Rattus norvegicus RGD|619951 
comp1846_c0_seq12 1899 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 137 649 Rattus norvegicus RGD|619951 
comp1846_c0_seq2 5387 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 352 4137 Rattus norvegicus RGD|619951 
comp1846_c0_seq5 3804 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 517 1476 Rattus norvegicus RGD|619951 
comp1846_c0_seq6 3665 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 54 1337 Rattus norvegicus RGD|619951 
comp1846_c0_seq8 2894 ATP-binding cassette, sub-family  B (MDR/TAP), member 1A 517 1644 Rattus norvegicus RGD|619951 
comp65830_c0_seq1 855 beta-transducin repeat containing 2 853 Rattus norvegicus RGD|1359721 
comp1689_c0_seq1 5472 cAMP-dependent protein kinase  1 670 1614 Drosophila melanogaster FB|FBgn0000273 
comp1689_c0_seq2 5177 cAMP-dependent protein kinase  1 267 1319 Drosophila melanogaster FB|FBgn0000273 
comp33327_c0_seq1 1296 cAMP-dependent protein kinase  R2 1156 44 Drosophila melanogaster FB|FBgn0022382 
comp78077_c0_seq1 983 Caveolin-1 947 459 Ornithorhynchus anatinus UNIPROTKB|Q07E02 
comp30303_c0_seq1 535 CG2650 510 91 Drosophila melanogaster FB|FBgn0000092 
comp1595_c0_seq13 3033 circadian trip 1616 426 Drosophila melanogaster FB|FBgn0260794 
comp1595_c0_seq14 3021 circadian trip 1616 426 Drosophila  melanogaster FB|FBgn0260794 
comp23855_c0_seq2 445 Clock 122 33 Drosophila melanogaster FB|FBgn0023076 
comp10496_c0_seq1 3957 clockwork orange 2893 2486 Drosophila melanogaster FB|FBgn0259938 
comp10496_c0_seq2 3936 clockwork orange 2872 2465 Drosophila melanogaster FB|FBgn0259938 
comp10496_c0_seq3 3242 clockwork orange 3049 2486 Drosophila melanogaster FB|FBgn0259938 
comp10496_c0_seq4 3221 clockwork orange 3028 2465 Drosophila melanogaster FB|FBgn0259938 
comp1618_c0_seq1 3239 Cryptochrome-1 197 1666 Homo sapiens UNIPROTKB|Q16526 
comp25352_c0_seq1 1976 curled 231 1316 Drosophila melanogaster FB|FBgn0261808 
comp25352_c0_seq2 1786 curled 83 1126 Drosophila  melanogaster FB|FBgn0261808 
comp25352_c0_seq3 1429 curled 302 769 Drosophila melanogaster FB|FBgn0261808 
comp25352_c0_seq4 980 curled 231 854 Drosophila melanogaster FB|FBgn0261808 
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comp54873_c0_seq1 222 cycle 55 222 Drosophila melanogaster FB|FBgn0023094 
comp1099_c0_seq1 7845 discs large 1 1033 3504 Drosophila  melanogaster FB|FBgn0001624 
comp1099_c0_seq2 7827 discs large 1 1033 3486 Drosophila melanogaster FB|FBgn0001624 
comp21486_c0_seq1 706 discs large 1 379 134 Drosophila melanogaster FB|FBgn0001624 
comp16468_c0_seq1 6864 Dopa decarboxylase 6738 5344 Drosophila melanogaster FB|FBgn0000422 
comp16468_c0_seq3 3218 Dopa decarboxylase 3092 1698 Drosophila melanogaster FB|FBgn0000422 
comp49424_c0_seq1 527 Dopamine transporter 526 14 Drosophila melanogaster FB|FBgn0034136 
comp69404_c0_seq1 229 Dopamine transporter 21 155 Drosophila melanogaster FB|FBgn0034136 
comp73842_c0_seq1 482 Dopamine transporter 480 4 Drosophila melanogaster FB|FBgn0034136 
comp27457_c0_seq1 3891 Dttg protein 439 837 Drosophila sp. UNIPROTKB|P91608 
comp27457_c0_seq2 3828 Dttg protein 439 915 Drosophila sp. UNIPROTKB|P91608 
comp11431_c0_seq1 4284 dunce 267 2375 Drosophila  melanogaster FB|FBgn0000479 
comp11431_c0_seq2 4263 dunce 267 2354 Drosophila  melanogaster FB|FBgn0000479 
comp11431_c0_seq3 4260 dunce 267 2351 Drosophila melanogaster FB|FBgn0000479 
comp11431_c0_seq4 4239 dunce 267 2330 Drosophila melanogaster FB|FBgn0000479 
comp11431_c0_seq5 3575 dunce 116 1666 Drosophila melanogaster FB|FBgn0000479 
comp11431_c0_seq6 3554 dunce 116 1645 Drosophila melanogaster FB|FBgn0000479 
comp12887_c0_seq1 1705 dusky 1464 676 Drosophila melanogaster FB|FBgn0004511 
comp89314_c0_seq1 408 dusky 102 365 Drosophila melanogaster FB|FBgn0004511 
comp9690_c0_seq16 2331 ebony 596 2200 Drosophila melanogaster FB|FBgn0000527 
comp9690_c0_seq22 1692 ebony 432 1061 Drosophila melanogaster FB|FBgn0000527 
comp9690_c0_seq27 802 ebony 76 171 Drosophila melanogaster FB|FBgn0000527 
comp9690_c0_seq6 3245 ebony 1738 3114 Drosophila melanogaster FB|FBgn0000527 
comp9690_c0_seq8 3022 ebony 432 2891 Drosophila melanogaster FB|FBgn0000527 
comp9690_c0_seq9 2739 ebony 1277 2608 Drosophila melanogaster FB|FBgn0000527 
comp43073_c0_seq1 731 Ecdysone receptor 452 75 Drosophila melanogaster FB|FBgn0000546 
comp45891_c0_seq1 264 Ecdysone receptor 263 159 Drosophila melanogaster FB|FBgn0000546 
comp50197_c0_seq1 448 Ecdysone receptor 1 420 Drosophila melanogaster FB|FBgn0000546 
comp59204_c0_seq1 513 F-box and WD repeat domain containing  11 7 513 Rattus norvegicus RGD|1309121 
comp8570_c0_seq1 3139 glass 1887 925 Drosophila melanogaster FB|FBgn0004618 
comp11966_c0_seq1 820 Heat shock protein 83 2 820 Drosophila melanogaster  FB|FBgn0001233 
comp19340_c0_seq1 2213 jetlag 2174 1398 Drosophila melanogaster FB|FBgn0031652 
comp83131_c0_seq1 291 KaiRIA 1 291 Drosophila melanogaster FB|FBgn0028422 
comp4180_c0_seq3 4236 Large proline-rich protein BAG6 1313 87 Ornithorhynchus anatinus UNIPROTKB|A7X5R6 
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comp10165_c0_seq1 1259 lark 1258 575 Drosophila melanogaster FB|FBgn0011640 
comp10165_c0_seq2 1227 lark 1226 543 Drosophila melanogaster  FB|FBgn0011640 
comp10165_c0_seq3 1185 lark 1123 575 Drosophila melanogaster FB|FBgn0011640 
comp10165_c0_seq4 1153 lark 1091 543 Drosophila melanogaster FB|FBgn0011640 
comp10165_c0_seq5 1095 lark 1094 498 Drosophila melanogaster FB|FBgn0011640 
comp10165_c0_seq6 1063 lark 1062 466 Drosophila melanogaster FB|FBgn0011640 
comp10165_c0_seq7 1021 lark 959 498 Drosophila melanogaster FB|FBgn0011640 
comp10165_c0_seq8 989 lark 927 466 Drosophila melanogaster FB|FBgn0011640 
comp10165_c0_seq9 335 lark 334 212 Drosophila  melanogaster FB|FBgn0011640 
comp1808_c0_seq1 1440 lark 101 688 Drosophila melanogaster FB|FBgn0011640 
comp1808_c0_seq2 902 lark 101 301 Drosophila melanogaster FB|FBgn0011640 
comp29701_c0_seq1 1374 lark 1112 639 Drosophila melanogaster FB|FBgn0011640 
comp6509_c0_seq1 1127 lark 471 115 Drosophila melanogaster FB|FBgn0011640 
comp6509_c0_seq2 959 lark 303 1 Drosophila melanogaster FB|FBgn0011640 
comp6509_c0_seq3 747 lark 471 115 Drosophila melanogaster FB|FBgn0011640 
comp6509_c0_seq4 579 lark 303 1 Drosophila melanogaster FB|FBgn0011640 
comp3068_c0_seq1 3907 minibrain 1730 2935 Drosophila melanogaster FB|FBgn0259168 
comp3068_c0_seq2 3864 minibrain 1730 2935 Drosophila melanogaster FB|FBgn0259168 
comp5354_c0_seq1 3603 Myocyte enhancer factor 2 71 1216 Drosophila melanogaster FB|FBgn0011656 
comp5354_c0_seq2 3591 Myocyte enhancer factor 2 71 1237 Drosophila melanogaster FB|FBgn0011656 
comp34215_c0_seq1 967 narrow abdomen 2 484 Drosophila melanogaster FB|FBgn0002917 
comp66820_c0_seq1 451 narrow abdomen 451 2 Drosophila melanogaster FB|FBgn0002917 
comp85336_c0_seq1 285 narrow abdomen 37 285 Drosophila melanogaster FB|FBgn0002917 
comp96661_c0_seq1 223 narrow abdomen 221 3 Drosophila melanogaster FB|FBgn0002917 
comp97497_c0_seq1 329 narrow abdomen 2 328 Drosophila melanogaster FB|FBgn0002917 
comp8495_c0_seq1 8857 Neurofibromin 1 65 7399 Drosophila melanogaster FB|FBgn0015269 
comp8495_c0_seq2 8845 Neurofibromin 1 65 7387 Drosophila melanogaster FB|FBgn0015269 
comp8495_c0_seq3 8686 Neurofibromin 1 65 7399 Drosophila melanogaster FB|FBgn0015269 
comp8495_c0_seq4 8674 Neurofibromin 1 65 7387 Drosophila melanogaster FB|FBgn0015269 
Comp841_c0_seq1 4029 no receptor potential A 474 3737 Drosophila melanogaster FB|FBgn0262738 
comp8804_c0_seq1 2651 numb 281 1441 Drosophila melanogaster FB|FBgn0002973 
comp8804_c0_seq2 2614 numb 244 1404 Drosophila melanogaster FB|FBgn0002973 
comp8804_c0_seq3 2585 numb 281 1375 Drosophila melanogaster FB|FBgn0002973 
comp8804_c0_seq4 2573 numb 203 1363 Drosophila melanogaster FB|FBgn0002973 
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comp8804_c0_seq5 2548 numb 244 1338 Drosophila melanogaster FB|FBgn0002973 
comp8804_c0_seq6 2507 numb 203 1297 Drosophila melanogaster FB|FBgn0002973 
comp2789_c0_seq1 4961 period 4220 2901 Drosophila melanogaster FB|FBgn0003068 
comp24010_c0_seq1 1436 Pigment-dispersing factor receptor 81 1259 Drosophila melanogaster FB|FBgn0260753 
comp33631_c0_seq1 4066 Pigment-dispersing factor receptor 722 2005 Drosophila melanogaster FB|FBgn0260753 
comp2319_c0_seq1 621 Prokineticin-2 425 177 Bos taurus UNIPROTKB|Q863H5 
comp2319_c0_seq2 578 Prokineticin-2 382 134 Bos taurus UNIPROTKB|Q863H5 
comp17940_c0_seq1 1678 Protein lin-52 homolog 315 551 Oncorhynchus mykiss UNIPROTKB|Q6X4M3 
comp17940_c0_seq2 1573 Protein lin-52 homolog 105 446 Oncorhynchus mykiss UNIPROTKB|Q6X4M3 
comp17014_c0_seq1 700 Protein quiver 274 576 Drosophila mojavensis UNIPROTKB|B4KR21 
comp17014_c0_seq2 492 Protein quiver 277 492 Drosophila mojavensis UNIPROTKB|B4KR21 
comp43724_c0_seq1 2037 Protein timeless homolog 1732 161 Homo sapiens UNIPROTKB|Q9UNS1 
comp10628_c0_seq1 2883 quasimodo 459 1292 Drosophila melanogaster FB|FBgn0028622 
comp62503_c0_seq1 366 Rhythmically expressed gene 5 226 336 Drosophila melanogaster FB|FBgn0015801 
comp54599_c0_seq1 573 RNA-binding protein 4B 572 279 Sus scrofa UNIPROTKB|F1RUT7 
comp573_c0_seq1 3368 RNA-binding protein 4B 129 371 Sus scrofa UNIPROTKB|F1RUT7 
comp573_c0_seq2 3044 RNA-binding protein 4B 129 371 Sus scrofa UNIPROTKB|F1RUT7 
comp573_c0_seq3 2925 RNA-binding protein 4B 129 371 Sus scrofa UNIPROTKB|F1RUT7 
comp573_c0_seq4 2601 RNA-binding protein 4B 129 371 Sus scrofa UNIPROTKB|F1RUT7 
comp24954_c0_seq1 3152 roundabout 362 2737 Drosophila melanogaster FB|FBgn0005631 
comp24954_c0_seq2 3134 roundabout 362 2764 Drosophila melanogaster FB|FBgn0005631 
comp24954_c0_seq3 2854 roundabout 46 2439 Drosophila melanogaster FB|FBgn0005631 
comp24954_c0_seq4 2836 roundabout 46 2466 Drosophila melanogaster FB|FBgn0005631 
comp26721_c0_seq1 7012 roundabout 442 2991 Drosophila melanogaster FB|FBgn0005631 
comp26721_c0_seq2 5448 roundabout 3 1445 Drosophila melanogaster FB|FBgn0005631 
comp45935_c0_seq1 1373 roundabout 1362 130 Drosophila melanogaster FB|FBgn0005631 
comp60778_c0_seq1 488 roundabout 2 394 Drosophila melanogaster FB|FBgn0005631 
comp67560_c0_seq1 506 roundabout 340 486 Drosophila melanogaster FB|FBgn0005631 
comp45706_c0_seq1 482 Serotonin receptor 1A 3 386 Drosophila melanogaster FB|FBgn0004168 
comp90243_c0_seq1 327 Serotonin receptor 1A 325 86 Drosophila melanogaster FB|FBgn0004168 
comp96775_c0_seq1 235 Shaker 234 1 Drosophila melanogaster FB|FBgn0003380 
comp19976_c0_seq1 1351 slowpoke 1053 910 Drosophila melanogaster FB|FBgn0003429 
comp29144_c0_seq1 219 slowpoke 218 87 Drosophila melanogaster FB|FBgn0003429 
comp62466_c0_seq1 411 slowpoke 275 409 Drosophila melanogaster FB|FBgn0003429 



4. CLOCK GENES DAILY PATTERN

comp4789_c0_seq1 2620 timeless 2545 1181 Drosophila melanogaster FB|FBgn0014396 
comp4789_c0_seq2 2526 timeless 2451 1087 Drosophila  melanogaster FB|FBgn0014396 
comp6413_c0_seq1 2451 timeless 1551 196 Drosophila melanogaster FB|FBgn0014396 
comp6413_c0_seq2 1966 timeless 1551 196 Drosophila melanogaster FB|FBgn0014396 
comp39652_c0_seq1 1137 TIMELESS (Uncharacterized protein) 1135 458 Sus scrofa UNIPROTKB|F1SLB6 
comp67299_c0_seq1 309 timeout 42 260 Drosophila melanogaster FB|FBgn0038118 
comp7837_c0_seq1 1531 vrille 470 832 Drosophila melanogaster FB|FBgn0016076 



4. CLOCK GENES DAILY PATTERN

Table A4.4 – Blastx of the contig annotated to cryptochrome. 

Genes  Species Phylum - Class -Order Definition Identity Gaps Accession 

Cry2 
Euphausia superba Arthropoda - Malacostraca - Euphasiacea cryptochrome 441/539 3/539 CAQ86665

Eurydice pulchra Arthropoda - Malacostraca - Isopoda cryptochrome 2 421/541 4/541 AGV28717 

Talitrus saltator Arthropoda - Malacostraca - Anphipoda cryptochrome 2 396/499 0/499 AFV96168

Table A4.5 – Conserved domains of canonical clock genes in Nephrops norvegicus.

Protein Conserved domain  Position (aa) Aminoacid sequence 

PERIOD 

PAS domain 229-296 AAFLKSFKSTRGFTVAISVQDGTVLQVSPAITDVLGFPKDMLIGQSFIDFVYPKDSINLSSKIIHGLN 

PAS domain 373-442 ESIYTVPEETPAMGSFSIRHSASCNFSEYDPEAIPYLGHLPQDLTGNSVFDCYHXEDLPLLKAVYEGMVR 

PAC motif 450-493 SKPYRFRTFNGSYVTLQTEWLCFVNPWTKRIDSIIGQHRVLKGP 

BMAL1 bHLH 41-74 SEIEKRRRDKMNTYIMELSSIIPVCTSRKLDKLT 
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INTRODUCTION 
The fighting behaviour and the consequent formation of dominance hierarchies in 

groups of clawed decapod crustaceans have always attracted the attention of researchers 

(Edwards and Herberholz 2005). Dominance was defined by Drews (1993) as an attribute of the 

pattern of repeated agonistic interactions between two individuals, characterized by a consistent 

outcome in favour of the same dyad member, while dominance ranks refers to the position of 

one individual in a dominance hierarchy. Dominance hierarchies can be characterized by two 

properties: linearity and steepness (De Vries 1995, De Vries et al. 2006). The formation and 

maintenance of dominance hierarchies is accompanied with changes in behaviour, polarization 

of dominance ranks and consequent reduction of frequency and duration of agonistic 

interactions (Chase 1982; Goessmann et al. 2000; Herberholz et al. 2007), such characteristics, 

as demonstrated by modelling, imply a stabilization of the hierarchy (Hemelrijk 1999). 

Pheromones released with urine are considered one of the most important chemical signals for 

the maintenance of dominance hierarchies in lobsters and crayfish (Karavanich and Atema 

1998, Breithaupt and Atema 2000, Aggio and Derby 2011, Breithaupt 2011). In the case in 

which the members of the hierarchy have no previous experience (prior residence in other 

contexts, prior agonistic encounters, different diets, knowledge of resource value), fighting 

success is usually associated with physical superiority (Ranta and Lindström 1992, 1993, 

Rutherford et al. 1995, Barki et al. 1997, Goessmann et al. 2000). 

Almost all living animals organize their behavioral activities and physiology on a 24 h 

basis, by means of endogenous timekeeping or biological clock (Dunlap et al. 2004). On the 

base of daily activity patterns we can recognize nocturnal, diurnal of crepuscular (active at 

sunset and sunrise) animals. The selective forces and constraints affecting evolution of activity 

patterns underlie the partitioning of time as a resource (Kronfeld-Schor and Dayan 2003). 

However, activity patterns are not rigid and respond to changes in photoperiod, food resources, 

temperature, as well as to other organisms. The effect of social interactions on circadian clocks 

has been reviewed several times (Regal and Connolly 1980, Davidson and Menaker 2003, 

Mistlberger and Skene 2004, Favreau et al. 2009, Castillo-Ruiz et al. 2012, Bloch et al. 2013), 

but the mechanisms controlling the synchronized clocks network are still not totally understood.      

Almost no attention has been devoted to the fact that many animals society are 

organized in a hierarchy. What could happen to the biological rhythms of individuals of the 

same species that have a clear dominant/subordinate relationship? Bovet (1972) demonstrated 

that when a group of 4 long-tailed field mice (Apodemus sylvaticus) were co-housed for a long 

period of time, the dominant individual has a different daily activity pattern compared to the 

other 3 subordinates. Long term changes in daily rhythms were also observed when rats 
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experienced subordination for one hour (Meerlo et al. 1999). Another example is provided by 

Hansen and Closs (2005) that studied the daily activity the giant kokopu (Galaxias argenteus). 

The ecological significance to form dominance hierarchies is related to the partitioning 

of limited resources such as food, shelter, and mating opportunities (Wilson 1975). For 

example, in groups of three crayfish (Procambarus clarkii) higher dominance indices were 

significantly correlated with increased access to food (Herberholz et al. 2007). So, if time is 

considered a limited resource (Kronfeld-Schor and Dayan 2003), a group of social animals 

organized in a stable dominance hierarchy should distribute the access to the resource “time” 

according to their rank into the hierarchy. 

Like others clawed decapod crustaceans, the Norway lobster, Nephrops norvegicus, 

forms lasting dyadic dominance relationships based on the assessment of chemical signals 

release with urine (Katoh et al. 2008), but nothing is know on the formation and maintenance of 

dominance hierarchies. Here, I studied the formation and maintenance of a dominance hierarchy 

into a group of 4 Nephrops; I have also recorded the time that lobsters spent into the burrow and 

their individual locomotor activity out of the burrow. My hypothesis was that in a stable 

dominance hierarchy the burrow and the time of emergence (i.e. locomotor activity) are 

important resources and their access is distributed according to the rank of lobsters. 

MATERIALS AND METHODS 
Animals’ sampling and acclimation

Animals were collected at night-time by a commercial trawler on the shelf area (100 m 

depth) off the Ebro delta (Tarragona, Spain). All sorting operations on the deck and the 

transportation of individuals to the laboratory, followed the methodology described in Aguzzi et 

al. (2008). In the laboratory, specimens were transferred to acclimation tanks, hosted within a 

light-proof isolated chamber under the following conditions: i. constant temperature of 13±1 °C, 

as reported for the western Mediterranean continental slope throughout the year (Hopkins 

1985); ii. random feeding time, in order to prevent entrainment through food-entraining 

oscillators, as shown for crustaceans (Fernández De Miguel and Aréchiga 1994); and iii. Light 

(L)-Darkness (D) cycle, matching the duration of photoperiod at the latitude of Barcelona (41º 

23' 0'' N). Also, light-ON and -OFF, were progressively attained and extinguished within 30 

min, in order to acclimate animals’ eyes to light intensity change. The acclimation facility 

hosted individual cells (25x20x30 cm) made with a plastic net of different sizes, allowing full 

oxygenation and recirculation of the water, but not the contact between animals. 
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Experimental tank

The experimental tank used in this study was previously developed by (Aguzzi et al. 

2011b). Briefly, the tank (150×70×30 cm) was endowed with 4 burrows of 25 cm length and an 

approximately inclination of 20° of the entrance (Fig. 5.1). Sand was glued at the bottom of the 

tank and on the internal walls of the burrows. The rest of the tank was painted in black to 

facilitate video image analysis. The tank was equipped with two different sources of LED's 

illumination (monochromatic blue: 472 nm, infrared: 850 nm). Monochromatic blue lighting 

was installed to simulate Light-Darkness (LD) conditions, while infrared (IR) light allowed 

video-recording during darkness. A strip of LED's photodiodes (Blue LEDs, n = 84; IR LEDs, n 

= 108) was inserted in a transparent methyl metacrilate (MM) tube of 140 cm long and 16 mm 

in diameter. At one of its extremity, I added a smaller PVC tube containing the cables for the 

LEDs' power supply. L-shaped resulting lighting apparatuses were placed in the longer sides of 

the tank (1 blue and 1 IR each side) to get a uniform illumination (See Chapter 2 and also 

Sbragaglia et al. (2013a)). 

Light cycle was controlled using the Arduino Board Arduino uno. Arduino is an open-

source electronics platform based on easy-to-use hardware and software 

(http://www.arduino.cc/). The behavior of lobster was recorded using a digital camera (UI-

1545LE-M, IDS), with a 1280×1024 pixels resolution and a wide-angular objective of 6.0 mm, 

and F1.4 screw C 1/2 (IDS) lens, and a polarized filter. The camera was placed on a tripod at 1.5 

m directly above the tank. The camera acquisition was controlled by ISPY that is an open 

source camera security software (http://www.ispyconnect.com/). All experimental trials were 

run (June 2013-July 2014) at the aquaria facility of the Marine Science Institute in Barcelona 

(Spain) at an environmental temperature of 13 ± 0.5 ºC. The tank was provided with a 

continuous open flow (4L/min) of filtered sea water at 13 ± 1 ºC. 

Animals and experimental design 

The intermoult males lobsters used during the study had a cephalothorax length 

(mean±SD) of 45.35±2.92 mm (n=32). The right claw was 67.05±8.90 mm and the left claw 

was 67.12±9.58 mm. When possible, individuals were distributed among the different groups 

taking into account their CL and trying to maintain the differences in size to the minimal levels 

(See Table 1). The day before each experimental trial a group of 4 intermoult male lobsters were 

selected from the acclimation tanks and different tags (Fig. 4.1) were fixed on the superior part 

of the animals’ cephalothorax with fast-acting glue, which was removable at the end of the 

experiment without damage. Then animals were left in isolation for 24 hours 

http://www.ispyconnect.com/�
http://www.arduino.cc/�
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The experimental trials started between 11:00 and 14:00 when lobsters were transferred 

from isolation to the experimental tank into individual plastic container and gradually (15 min) 

acclimated to the new environment before leave them free to interact. Each trial lasted 5 days 

during which lobsters were exposed to a 12-12 Light-Darkness blue light cycle. LD transitions 

were gradually achieved within 30 min, in order to avoid lobster's photoreceptors degeneration 

(i.e. rhabdom deterioration and visual pigments photolysis), as it occurs when animals are 

Table 5.1 – The distribution of individuals among the different groups taking into account their 
cephalothorax length (CL), the size of the right (RC) and left (LC) claws. The difference in CL 
(expressed as percentage) between the larger and the smaller lobster is reported for each group. All 
the values are expressed in mm.  

Group Tag CL (mm) RC (mm) LC (mm) Difference CL (%) 

1 

C 39.82 53.11 54.93 

10.42 
Cp 42.36 63.28 60.47 
T 43.97 69.02 69.00 
Tp 43.90 68.35 64.56 

2 

C 40.84 60.41 62.03 

7.35 
Cp 41.63 63.04 67.09 
T 40.80 58.38 59.19 
Tp 43.80 68.31 70.34 

3 

C 47.00 88.78 92.57 

12.64 
Cp 45.50 75.61 76.82 
T 43.50 66.89 67.30 
Tp 49.00 85.50 85.97 

4 

C 43.20 71.65 71.82 

3.80 
Cp 42.70 62.60 58.70 
T 43.30 71.90 68.32 
Tp 42.10 68.70 61.10 

5 

C 43.50 67.90 69.20 

5.67 
Cp 44.70 67.50 68.20 
T 43.80 64.20 68.70 
Tp 42.30 69.10 66.40 

6 

C 44.79 63.00 61.40 

5.48 
Cp 45.82 68.20 70.20 
T 43.44 69.90 64.00 
Tp 44.77 59.00 62.00 

7 

C 45.56 72.10 68.80 

35.23 
Cp 38.20 58.70 58.30 
T 33.69 47.60 43.70 
Tp 39.84 51.70 54.50 

8 

C 44.79 76.50 79.50 

6.87 
Cp 45.92 63.60 69.40 
T 47.86 82.30 83.70 
Tp 44.78 68.80 69.70 
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subjected to sudden bright light exposure (Gaten et al. 1990). For each experimental trial a time 

lapse video was created at a frequency of acquisition of 1 frame /sec. 

Behavioural analysis 

The time lapse video were analysed manually by a trained operator, determining (i) the 

winner and loser of each agonistic interaction (Atema and Voigt 1995), (ii) the number of 

evictions (fighting to get possession of the burrow of others lobsters), and (iii) the burrow 

occupied by each lobster. In particular, an interaction was considered when two lobsters 

approached frontally within a distance of less of one body length and one of them react (e.g. 

change in moving trajectory, moving backward or accelerating the locomotion) to the other’s 

presence. I considered two consecutive approaches as two distinct interactions when the time 

gap between them was at least 15 s. As regarding eviction events, I considered a success when a 

lobster (intruder) approached a burrow in which there was another lobster (resident) and the 

resident left the burrow suddenly or after has fought for it. On the contrary, I considered a failed 

eviction when an intruder fought with a resident for at least 2 min and then left the fight without 

succeed to evict the resident. The core output of this behavioural analysis was a 4x4 socio 

matrix for each representative day (1, 3, 5) reporting the number of wins for all possible dyads. 

Fig. 5.1 – The field of view of the video camera used to film the behavioural activity of lobsters in the 
experimental tank. The white numbers indicated the four artificial burrows. The different tags used to identify 
the lobster with the video imaging analysis are presented on the right. 

1

2 3
4
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Automated Behavioural tracking 

The time lapse videos were also analyzed by using automated behavioural tracking 

routine developed in Phyton using OpenCV libraries (Python Language Reference, version 2.7; 

Available at http://www.python.org). The algorithm works using different logic steps in order to 

automatically track the locomotor activity and at the same time identify the different tags of 

lobsters (Fig. S1). Key steps of the process are described as follow. First of all, the differences 

among two consecutive frames are evaluated using a background subtraction (OpenCV). The 

objects into one frame are identified focusing into a previously selected main Region Of Interest 

(ROI); the area of each object is analyzed dividing the main ROI into smaller areas (sROIs) 

adapted to the size of the object. Then, the image is binarized (two possible values each pixel) 

using the algorithm Otsu to extract the profiles of all the forms (in this case the different tags of 

the lobsters) that are recognized in each sROIs. The recognized forms are compared by the 

moments extraction procedure (the geometric properties of each form) with a training library of 

images previously created using the tags presented in Figure 1; a form (tag) is associated to an 

object (lobster) when there is a positive match with one of the form of the training library 

otherwise the object is discarded. Finally, the centroid (position in a xy plan) of the object with 

the associated tag is recorded. The positions of the centroid is used to calculate the distance 

covered by the object between consecutive frames; in the case that there are no consecutive 

detections ofthe same object, the last detection is always considered as the last position of the 

object. The data are stored in a MySQL database and time series are created using a SQL script.  

The final output of the behavioural tracking is a time series of movement (cm) for each 

lobster binned at 10 minutes intervals. The average movements were also calculated according 

to 4 different periods of the experiment: day (from 1 hour after light-ON to 1 hour before light-

OFF), dusk (from 1 hour before to 1 hour after light-OFF), night (from 1 hour after light-OFF to 

1 hour before light-ON), dawn (from 1 hour before to 1 hour after light-ON). 

Sociomatrix treatment and statistics 

Each socio-matrix was analysed to assess the formation and maintenance (during day 1, 

3, 5) of a dominance hierarchy among the four lobsters using the normalized David’s Score 

(nDS) (De Vries et al. 2006). Then, I evaluated the stability of the hierarchy calculating the 

value of its steepness. In a dominance hierarchy steepness is defined as the size of the absolute 

differences between adjacently ranked individuals in the overall success in winning dominance 

encounters (i.e. dominance success;  De Vries et al. 2006). The dominance hierarchy was 

considered stabile whether after a randomization test with 10000 runs the steepness had a p 

value < 0.05. All matrix analysis was performed using the R Package “DyaDA” (Leiva et al. 

2010). 

http://www.python.org/�
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Data treatment 

Data were structured according to a person-period format to estimate the longitudinal 

models (see below) focusing on the following variables: (i) the steepness value during day 1, 3, 

and 5 (the value of steepness was eliminated from 2 groups at day 5 because of the presence of 

observational zeros into the matrix, in both cases one lobsters remain for the whole 24 hours of 

observation into the burrow); (ii) the average number of agonistic interactions was calculated 

during the different periods of the experiment (day, dawn, dusk, night) for day 1, 3 and 5; (iii) 

the average movement during the different periods of the experiment (day, dawn, dusk, night) 

for day 1, 3 and 5 (these data were Log transformed to smooth the effect of some outliers); (iv) 

The amount of time each lobster, identified by its rank, spent into the burrow during day 1, 3 

and 5 (analogously to average movement, Log transformation was required when modelling this 

variable); (v) the numbers of times each lobster, identified by rank, succeeded in evict other 

lobsters; (vi) the numbers of time each lobster, identified by rank, has been evicted from the 

burrow.

Multilevel longitudinal models

I was interested in detecting developments or systematic changes in the behavior of 

lobsters during the formation and stabilization of the dominance hierarchy. For this reason I 

decided to use multilevel longitudinal models instead of a classical cross-sectional approach. I 

modeled average movements, burrow occupancy and evictions over time using three-level 

models: level 1 (the different days of observation: 1, 3 and 5); level 2 (the individuals: 1-4); 

level 3 (the groups: 1-8). Then, I modeled steepness and agonistic interactions using two-level 

models: level 1 (the different days of observation: 1, 3 and 5); level 2 (the groups: 1-8). In all 

cases the starting point was an unconditional means model from which subsequent models 

included growth terms (linear and quadratic) as well as time-varying predictors (normalized 

David’s Scores, light period or ordinal rank). Table A5.1 describes the structure of all the 

models elaborated in the current study using the last version of the R packages “nlme” (Pinheiro 

et al. 2007) and “lmer” (Bates et al. 2013).  
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RESULTS 
During this study I scored a total of 5013 dyadic agonistic interactions during which 

both members were out of the burrow. As an example I reported the data from one group where 

the locomotor activity at day 1, 3 and 5 is shown together with the number of agonistic 

interactions out of the burrow (Fig. 5.2). I also scored 385 agonistic interactions to get 

possession of burrows already occupied from other lobsters: in 198 cases the intruder failed to 

get possession of the burrow, while in 187 it succeeded. 

The evolution of the average number of agonistic interactions for each of the 8 groups is 

shown in Figure 5.3 together with the values of steepness. A visual inspection of the graphs 

indicated a decreasing trend for the average agonistic interactions and an increasing trend for the 

steepness values.  The dominance index of each lobster, expressed with the normalized David’s 

Score, is reported in Figure 5.4 for each of the 8 groups (see also Table A5.2). The ranks of 

lobsters changed during the experiment (i.e. rank inversions) but looking into more details at 

Figure 5.3 the α lobster (the dominant) did not change its rank from day 3 to 5 (there is only one 

exception in group 3). The same is also true for the σ lobster (the lower into the dominance rank 

position). 

Fig. 5.2 – The locomotor activity and agonistic interactions of a representative group of 4 lobsters during day 1, 
3 and 5. The locomotor activity out of the burrow is represented by the coloured lines and expressed as cm 
covered (binned at 10 m). The points represent the number of agonistic interactions and are binned at 1 h. White 
and black bars at the top represent Light and Darkness hours.   
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I observed a general nocturnal behaviour of the lobsters by visual inspections of time 

lapse videos (this is also supported by visual analysis of locomotor activity tracking outputs); 

they spent the great part of the day into their burrow, but with some exceptions (See Table A5.3 

for more details). Some lobsters showed no interest in concealment into the burrow. Such 

observations gave us some cues on the possible effects of the dominance hierarchy on lobster’s 

behaviour. 

The evolution of the hierarchy in terms of steepness is explained by the model B (Table 

A5.4); the estimated coefficients for intercept (00) was 0.575 (p < 0.001). The rate of change 

followed a positive linear trajectory (10 = 0.046; p < 0.05). It means that there is a positive 

Fig. 5.3 – The evolution of the average number of agonistic interactions (up) and of the steepness 
values (down) throughout day 1, 3 and 5. Each grey line represents one of the eight groups analyzed 
in this study. The dashed black line represents the output of the model.  
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increment of 0.046 during the observations at level 1 (days). A graphical representation of the 

output of the variable is presented in Figure 5.3.   

The evolution of the average number of agonistic interactions is described in relation to 

the results of the model D (Table A5.5 and Fig. 5.3); it is the more complex model that takes 

into account the time of the day (dusk, night, day, dawn) with a reasonable goodness of fit. The 

coefficients of intercept are significantly different (00 = 0.021; p < 0.01) and the rate of change 

followed a negative linear pattern (10 = 0.004; p < 0.05), but not a quadratic trajectory. There 

was a significant interaction with dusk (30 = 0.022; p < 0.001) and night (30 = 0.025; p < 

0.001); differences among period of the experiment are calculated using the period day as a 

control. Take into account that the values reported are expressed as average number of 

interactions during the observational period (it justified the small values). 

The results of the different models applied to the average movement of lobsters out of 

the burrow are presented in table A5.6. I have used the model E to explain the data, considering 

both the significance threshold of the predictors and the goodness of fit. Locomotor activity 

rates follow a significant quadratic trajectory. Estimated coefficients for intercept (000), 

instantaneous rate of change (100) and curvature (200) were 5.662 (p < 0.001), -0.685 (p < 

0.001) and 0.137 (p < 0.001), respectively. Thus, logarithm of the movement decreased from the 

initial value through the observations, then the decrement smoothed and then rose again (a 

simplified representation of the data is presented in Fig. 5.5). The normalized David’s scores 

predicted the values of locomotor activity (300 = -0.186; p < 0.10); the higher is the rank the 

lower is the locomotor activity. As expected the locomotor activity is predicted by the period of 

the experiment, with significant values during night (400 = 1.121; p < 0.001), dusk (400 = 

1.222; p < 0.001) and dawn (400 = 0.291; p < 0.05); remember that the period day is used as 

the reference category for the different comparisons. Model F indicated that there were no 

significant interactions between period of the experiment and David’s score (i.e. rank), it means 

that there are not abrupt switches in the daily locomotor activity that can be explained by the 

rank of lobsters. 

The burrow occupancy data indicated that the model D can be used to describe the 

evolution of the variable (Table A5.7). The Log of the rate of burrow occupancy followed a 

significant quadratic trajectory. Estimated coefficients for intercept (000), instantaneous rate of 

change (100) and curvature (200) were 8.007 (p > 0.10), 0.383 (p < 0.05) and -0.056 (p < 

0.05), respectively. There were no significant differences in the initial intercepts and the 

negative coefficient of the curvature indicated that occupancy increased from the initial value 

through the observations, the increment smoothed and then decreased again (the opposite of 

what observed for Log of movement; see Fig. 5.5). The rank of lobsters predicted the trajectory 
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of the variable (300 = -0.144; p < 0.10), it means that a decrease of a rank position 

corresponded to a small amount of time (-0.144) spent into the burrow. 

The following two variables (tables A5.8 and A5.9) are count variables and followed a 

Poisson distribution; it means that the estimated coefficient reported in the tables represent the 

exponent of the mathematical constant e = 2.718. The relation between rank of the lobsters and 

success evicting other lobsters from the burrow is presented in Table A5.8. Model D is the one 

used to explain the data that did not follow either a linear or a quadratic trajectory. The 

estimated coefficient for intercept (000) was 0.828 (p < 0.10). However, the rank strongly 

predicted the evolution of the variable (300 = -0.471; p < 0.001), it means that for a decrease of 

Fig. 5.4 – The evolution of the dominance index expressed with the normalized David’s scores throughout 
day 1, 3 and 5 for each of the 8 groups analyzed in this study. 
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the rank position the number of evictions with a success abruptly decrease. Interestingly, the 

opposite was true observing the evolution of the evictions suffered by lobsters in relation to the 

rank (Table A5.9). In this case the data again did not follow either a linear or a quadratic 

trajectory. The estimated coefficient for intercept (000) was -1.248 (p < 0.05) and the rank 

strongly predicted the evolution of the variable (300 = 0.519; p < 0.001), it means that for a 

decrease of the rank position the number of suffered evictions abruptly increase. 

DISCUSSION 
Here I described for the first time the formation and maintenance of a dominance 

hierarchy in Nephrops norvegicus. The stabilization of the hierarchy was described trough the 

evolution of its steepness. I have correlated the developments and rate of change of non-social 

(locomotor activity and burrow occupancy) and social (agonistic interactions and evictions) 

behaviours to the process of stabilization of the hierarchy. Burrowing behaviour and locomotor 

activity showed to be affected by the positions of lobsters into the dominance hierarchy, but 

without abrupt partitioning of daily locomotor activity out of the burrow among different ranks. 

The rank of lobsters strongly predicted the success of lobsters to evict conspecifics and the 

probability to be evicted.     

The steepness increased following linear trajectory through observations, indicating the 

tendency of the system to reach stability that in this study is evaluated through the polarization 

of dominance ranks. This is also supported by the linear decrease of agonistic interactions 

throughout the experiment, indicating that the more the system is stable the less is the frequency 

of fights. Interestingly these two variables both followed a lineal trajectory but with opposite 

slopes. Previous studies have already demonstrated that when the dominance relationships in a 

group evolved towards stability they were parallel changes in others behaviours (e.g. 

Goessmann et al. 2000). However, in the great part of literature on decapod crustaceans the 

dominance hierarchy is characterized by its degree of linearity (e.g. Allee and Douglas 1945, 

Hazlett 1968, Cobb and Tamm 1975, Sastry and Ehinger 1980, Vannini and Gherardi 1981), 

although in small groups (less than 6) the probability to get significant results due to chances is 

very high and there are no available statistical test to check for the p values. Steepness is 

definitively the best option to characterize the hierarchy formation in small groups of animals 

(De Vries et al. 2006) and the available R package DyaDA make it easy to calculate (Leiva et al. 

2010). In this study the steepness followed a linear trajectory, but an extension of the number of 

observations could lead to a more stable point of the hierarchy (higher values of steepness) and 

also allowed to model the dynamic of the systems with more suitable trajectories; It could be 

interesting to observe the moment in which steepness values reach a plateau. Finally, I observed 
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frequent rank reversals that seemed to not prevent the hierarchy to reach stability as already 

observed by (Oliveira and Almada 1996, Goessmann et al. 2000). 

The model applied to describe the changes in locomotor activity of the lobster during 

the formation of the hierarchy indicated that there were different starting points (i.e. intercepts) 

and then the variable evolved in a quadratic way. The most interesting result is that the rank of 

the lobsters predicted their level of activity although the effect was not so strong (p < 0.10). As 

expected the activity during night and dusk was higher than day. Unfortunately the first part of 

my hypothesis must be rejected because the rank of lobsters did not predict switches in daily 

locomotor activity during the stabilization of the hierarchy (model F in Table A5.7). There are 

Fig. 5.5 – The evolution of the Log of the average movement (up) and occupancy of burrow 
(down) throughout day 1, 3 and 5. Each line represents the output of the model for the 
lobsters organized according to their rank as specified in the legend. 
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no many studies that have studied biological rhythms of animals when they are organized in a 

dominance hierarchy. Bovet (1972) demonstrated that when a group of 4 long-tailed field mice 

(Apodemus sylvaticus) were co-housed for a long period of time, the dominant individual has a 

different daily activity pattern compared to the other 3 subordinates. Long term changes in daily 

rhythms were also observed when rats experienced subordination for one hour (Meerlo et al. 

1999). Another example is provided by Hansen and Closs (2005) that studied the daily activity 

the giant kokopu (Galaxias argenteus) in group of 4 fish with a dominance relationships. 

Authors observed that the dominant fish (the biggest) shifted its daily activity from night to day 

in the presence of a food limited environment. Interestingly the closest subordinate (in terms of 

rank) was the more impacted individual into the hierarchy, indicating that directionality of 

aggression could have a great influence in the partitioning of daily activity. Unfortunately, the 

above mentioned studies did not properly characterize the properties of the hierarchy (e.g. 

steepness or linearity) giving just descriptive information on the relationships among 

individuals. There could be different reasons why I failed to observe a daily activity switch in 

locomotor activity. First of all the period of observation could have been too short and 

extending it could led to a higher stability of the system and maybe to a clear switch of daily 

activity. Secondly, it could be that Nephrops, despite showing a niche switching driven by light 

intensity (Chiesa et al. 2010), did not have the same circadian plasticity related to social 

interactions. Finally, the introduction of food as a limited resource could be more effective in 

triggering competition among lobsters and maybe a more evident switch in the daily activity 

related to rank position.         

The model applied to describe the rate of burrow occupancy showed that the starting 

point is the same but then the variable followed a quadratic negative trajectory. As demonstrated 

for locomotor activity (see above) the rank of the lobsters predicted their level of burrow 

occupancy (p < 0.10). In this case the second part of my hypothesis is accepted because the 

burrow occupancy (imagined as a resource) is distributed according to the rank of the lobster. 

Nephrops has a strong burrowing habit and as suggested in chapter 3 it could make the 

difference at the moment to escape from a predator (or from a trawling net). So, it makes sense 

that the more the lobster is dominant the more it has access to burrows. Previous studies in the 

crayfish Procambarus clarkii, have already demonstrated that an increase in burrowing behavior 

marked the ascendancy of the dominant while an immediate suppression of burrowing 

paralleled the inhibition of aggressive behavior in the new subordinate (Herberholz et al. 2003). 

These results are important for the fishery management of Nephrops, because if the rank affect 

the time spent into the burrow, it could also have an impact on the vulnerability of lobsters to 

trawling.  

In this study the lobsters were provided with one burrow each. So, in principle it was 

not a limited resource. However, as demonstrated by the results of the modeling in Tables A5.8 
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and A5.9 the rank strongly predicted the probability to evict of get evicted. So, the decrease of 

burrow occupancy is also explained by the parallel dynamic of evictions events. In summary: 

The α lobster (more dominant) spent more time into the burrow, evicted more and is less 

evicted. Then, these variables changed through observations with a rate described by their 

respective models. The lobster σ (the more subordinate) is the lobster that spent less time into 

the burrow, evicted less and is more evicted. Fero and Moore (2008) have already observed that 

dominant crayfish also performed significantly more shelter evictions during hierarchy 

formation, a behavior that seemed to be related to territorial behavior or competition for space 

which neighbors. In fact, burrow ownership is suggested to contribute to social status in crayfish 

(Gherardi and Daniels 2004). During time lapse observation I have also recorded the 

movements of lobsters among different burrows, but data are not presented here. Future studies 

will focus on the ownership of burrows with a focus on the mechanisms of space distribution 

dynamics in relation to rank.    

After more than 40 years that Chapman and Rice (1971) observed for the first time 

fighting behaviour of Nephrops in the wild, I described the formation and maintenance of 

dominance hierarchies in this species. I observed ritualized fights as described in the laboratory 

by (Katoh et al. 2008). Although the observation in laboratory are the output of forced 

encounters in a delimited perimeter (the tank), I can hypothesized that the mechanisms 

described are fundamental properties of the organization of Nephrops society. As demonstrated 

for the American lobster (Homarus americanus), the frequency and level of agonistic 

interactions in wild or under more natural conditions are lower than in laboratory conditions, but 

they are fundamental for ecological purposes such as mating and space distribution (Stein et al. 

1975, Atema et al. 1979, Karnofsky et al. 1989, Karnofsky and Price 1989, Atema and Voigt 

1995, Atema and Steinbach 2007).  

The data set produced during this chapter was rich of information and I struggled to 

filter the most valuable information to present them here. I gave attention to the results that were 

more reliable to connect my experiments to catchability patterns in the wild and then I focused 

on the study of parallel changes of social and non-social behavior to provide insights into the 

putative relationships of related neural mechanisms. Both these aspects are remarked in the 

following chapter where I draw the conclusions of my thesis. 



5. DOMINANCE HIERARCHY

72 

ANNEX 5A 

Table A5.1 – The summary of the different multi-level models estimated.  

Variable Model Composite model Description 
Average 

movement 
(Mov)

Model A log = [000] + �0 + 00 +  Unconditional 
means model 

Model B 
log = �000 + 100 +

�0 + 00 + 1 + 10 + 
Unconditional 
growth model 

(linear)

Model C 
log = �000 + 100 + 2002 

+ �0 + 00
+ 1 + 10 + 

Unconditional 
growth model 

(quadratic) 

Model D 

log = �000 + 100 + 2002
+ 300
+ �0 + 00
+ 1 + 10 + 

Time-varying 
predictor DS 

included 

Model E 

log = �000 + 100 + 2002
+ 300 + 400ℎ
+ �0 + 00
+ 1 + 10 + 

Time-varying Light 
included 

Model F 

log = �000 + 100 + 2002
+ 300 + 400ℎ
+ 500 × ℎ
+ �0 + 00
+ 1 + 10 + 

Interaction DS-
Light included 

Time in 
Burrows (TB) Model A log = [000] + �0 + 00 +  Unconditional 

means model

Model B 
log = �000 + 100 +

�0 + 00 + 1 + 10 + 
Unconditional 
growth model 

(linear)

Model C 
log = �000 + 100 + 2002 

+ �0 + 00
+ 1 + 10 + 

Unconditional 
growth model 

(quadratic) 

Model D 

log = �000 + 100 + 2002
+ 300
+ �0 + 00
+ 1 + 10 + 

Time-varying 
predictor Rank 

included 

Steepness Model A  = [00] + �0 +  Unconditional 
means model 

Model B 
 = �00 + 10 +

�0 + 1 + 
Unconditional 
growth model 

(linear) 

Model C 
 = �00 + 10 + 202  +

�0 + 1 + 22 + 
Unconditional 
growth model 

(quadratic)
Agonistic 

Interactions 
(AI)

Model A  = [00] + �0 +  Unconditional 
means model 

Model B 
 = �00 + 10 +
�0 + 1 + 

Unconditional 
growth model 

(linear)

Model C 
 = �00 + 10 + 202  +
�0 + 1 + 22 + 

Unconditional 
growth model 

(quadratic)

Model D 
 = �00 + 10 + 30ℎ +

�0 + 1 + 
Time-varying 

predictor Light 
included
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Success in 
Evictions 

(SE) 
Model A  = [000] + �0 + 00 +  Unconditional 

means model 

Model B 
 = �000 + 100 + �0 + 00 +

1+10+
Unconditional 
growth model 

(linear) 

Model C 

 = �000 + 100 + 2002 + 300
+ �0 + 00
+ 1 + 10
+ 2 + 202 + 

Unconditional 
growth model 

(quadratic) 

Model D 
 = �000 + 100 + 300

+ �0 + 00
+ 1 + 10 + 

Time-varying 
predictor Rank 

included 
Get Evicted

(GE) Model A  = [000] + �0 + 00 +  Unconditional 
means model

Model B 
 = �000 + 100 + �0 + 00 +

1+10+
Unconditional 
growth model 

(linear)

Model C 

 = �000 + 100 + 2002 + 300
+ �0 + 00
+ 1 + 10
+ 2 + 202 + 

Unconditional 
growth model 

(quadratic) 

Model D 
 = �000 + 100 + 300

+ �0 + 00
+ 1 + 10 + 

Time-varying 
predictor Rank 

included 
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Table A5.2 – The evolution of the dominance hierarchy in each of the eight groups throughout day 1, 3 and 5. The position of the lobsters into the hierarchy is expressed with ordinal 
ranks (Rank) and also with cardinal rank (Normalized David’s score). Then, the steepness of the hierarchy is reported for each day together with the p value and the intercept. * is 
used to evidenced when the p value is < 0.05: ** p value < 0.01; *** p value < 0.001.  

Group day Rank Normalized David score Steepness p values intercept 

1 
1 α β γ δ 2.16 1.76 1.53 0.54 0.51 0.238 2.77 
3 β γ α δ 1.87 0.75 2.85 0.52 0.81*** < 0.001 3.52 
5 β γ α δ 1.76 0.66 2.93 0.64 0.80** 0.002 3.49 

2 
1 α β γ δ 2.05 1.68 1.56 0.71 0.41 0.456 2.53 
3 γ β α δ 1.14 1.88 2.17 0.80 0.48* 0.011 2.71 
5 γ β α δ 1.37 1.50 2.23 0.90 - 0.003 2.53 

3 
1 α β γ δ 2.78 1.45 1.26 0.51 0.70* 0.021 3.25 
3 γ δ β α 1.67 0.61 1.69 2.01 0.42* 0.039 2.55 
5 α δ β γ 2.95 0.46 1.57 1.01 0.80** 0.003 3.51 

4 
1 α β γ δ 2.75 1.37 1.34 0.53 0.67* 0.035 3.17 
3 α δ β γ 2.90 0.32 2.02 0.75 0.90*** < 0.001 3.75 
5 α δ β γ 2.20 0.78 1.51 1.50 - < 0.001 2.57 

5 
1 α β γ δ 2.05 1.63 1.38 0.93 0.36 0.575 2.40 
3 β γ α δ 1.98 1.17 2.71 0.13 0.86*** < 0.001 3.64 
5 β γ α δ 2.11 0.88 2.75 0.27 0.86*** < 0.001 3.64 

6 
1 α β γ δ 2.21 1.85 1.50 0.45 0.56 0.153 2.90 
3 β α γ δ 1.27 2.96 1.08 0.69 0.70* 0.023 3.25 
5 γ α δ β 1.14 2.93 0.57 1.35 0.73** 0.013 3.32 

7 
1 α β γ δ 2.93 1.47 1.27 0.32 0.80** 0.003 3.50 
3 α γ β δ 2.94 0.93 1.27 0.84 0.66* 0.045 3.16 
5 α γ β δ 2.93 1.10 1.38 0.59 0.73* 0.014 3.32 

8 
1 α β γ δ 2.28 1.83 1.23 0.65 0.55 0.144 2.87 
3 γ α β δ 1.54 2.14 2.00 0.32 0.59* 0.017 2.97 
5 β α γ δ 1.96 2.19 1.51 0.33 0.60** 0.007 3.00 
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Table A5.3 – The percentage of time that each lobster (identified with its ordinal rank) 
has spent into the burrows during the different days. Occupancy is expressed as a 
percentage the 24 hours. 

Group Rank 
Occupancy (%) 

Day 1 Day 3 Day 5 

1 

α 55.07 80.73 69.62 
β 73.25 64.47 12.45 
γ 22.75 96.19 64.28 
δ 75.78 93.41 76.45 

2 

α 8.37 48.97 55.03 
β 75.82 99.70 99.90 
γ 30.50 50.98 36.97 
δ 17.23 35.43 34.51 

3 

α 71.53 95.71 86.16 
β 0.00 94.18 80.49 
γ 62.67 95.82 75.28 
δ 49.66 2.81 0.20 

4 

α 75.64 99.42 97.79 
β 0.00 79.35 66.13 
γ 20.98 19.41 99.99 
δ 22.57 18.80 38.80 

5 

α 68.56 99.76 99.97 
β 32.59 90.50 66.37 
γ 59.35 38.46 99.46 
δ 42.07 3.92 7.06 

6 

α 19.83 71.55 77.59 
β 64.50 44.33 92.12 
γ 26.91 71.94 49.88 
δ 51.17 80.20 52.07 

7 

α 69.29 89.18 93.61 
β 2.75 85.07 90.61 
γ 17.96 19.17 74.05 
δ 9.83 2.59 0.47 

8 

α 83.98 98.51 99.41 
β 80.84 99.12 93.59 
γ 83.14 92.64 98.90 
δ 40.08 66.25 11.84 
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Table A5.4 - The results of the different models for the steepness values. Model A: unconditional means model; Model B: 
unconditional growth model; Model C: non-linear unconditional growth model. † p < 0.10; * p < 0.05; ** p < 0.01; and *** p < 
0.001. The values between parentheses represent the error. AIC represents the Akaike information criterion; BIC represents the 
Bayesian information criterion. 

Parameter Model A Model B Model C
Fixed effects

Intercept 00 0,659*** 
(0,034) 

0,575*** 
(0,046) 

0,570**  
(0,052) Initial status

Rate of change

Experiment (linear) 10 0,046*    
(0,019) 

0,061       
(0,076) 

Experiment (quadratic) 20 -0,004               
(0,017) 

Variance component
Level 1 Within-subject 2 0.025 0
Level 2 Initial status 02 0 0

Experiment (linear) 12 0
Experiment (quadratic) 02

Covariance Initial-Experiment (linear) 01 0 
Covariance Initial-Experiment (quadratic) 01

Covariance linear-quadratic terms 12
Goodness-of-fit

Deviance -15 -14 -11 
AIC -9 -2 9
BIC -6 4 19 
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Table A5.5 - The results of the different models for number of agonistic interactions. Model A: unconditional means model; Model B: 
unconditional growth model; Model C: non-linear unconditional growth model; Model D: Period as a time-varying predictor included. † p < 0.10; 
* p < 0.05; ** p < 0.01; and *** p < 0.001. The values between parentheses represent the error. AIC represents the Akaike information criterion; 
BIC represents the Bayesian information criterion. 

Parameter Model A Model B Model C Model D
Fixed effects

Intercept 00 0,025*** 
(0,003) 

0,033*** 
(0,006) 

0,034*** 
(0,006) 

0,021**  
(0,006) Initial status

Rate of change

Experiment (linear) 10 -0,004* 
(0,002) 

-0,008†             
(0,005) 

-0,004* 
(0,002) 

Experiment (quadratic) 20 0,001      
(0,001) 

Dusk 30 0,022*** 
(0,005)

Night 30 0,025*** 
(0,005)

Dawn 30 0,001      
(0,005) 

Variance component
Level 1 Within-subject 2 0 0 0 0
Level 2 Initial status 02 0 0 0 0

Experiment (linear) 12 0 0 0
Experiment (quadratic) 22 0 0 0

Covariance Initial-Experiment (linear) 01 0 0 
Covariance Initial-Experiment (quadratic) 02 0

Covariance linear-quadratic terms 12 0
Goodness-of-fit

Deviance -449 -448 -437 -458 
AIC -443 -436 -417 -440
BIC -435 -421 -392 -418 
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Table A5.6 – The results of the different models for the Log of the average movement of lobsters out of the burrow. Model A: unconditional means model; Model B: unconditional 
growth model; Model C: non-linear unconditional growth model; Model D: David's scores as time-varying predictor included; Model E: light condition as time-varying predictor 
included; Model F: interaction between time-varying predictors included. † p < 0.10; * p < 0.05; ** p < 0.01; and *** p < 0.001. The values between parentheses represent the error. 
AIC represents the Akaike information criterion; BIC represents the Bayesian information criterion. 

Parameter Model A Model B Model C Model D Model E Model F
Fixed effects

Intercept 000 5.589*** 
(0.266) 

5.862**  
(0.299) 

6.042*** 
(0.304) 

6.330*** 
(0.357) 

5.662*** 
(0.356) 

5.801*** 
(0.390) Initial status

Rate of change

Experiment (linear) 100 -0.137** 
(0.043) 

-0.681*** 
(0.125) 

-0.682** 
(0.125) 

-0.685*** 
(0.109) 

-0.685*** 
(0.110) 

Experiment (quadratic) 200 0.136*** 
(0.029) 

0.136*    
(0.029) 

0.137*    
(0.025) 

0.137*    
(0.025) 

David's scores 300 -0.193                
(0.124)

-0.186†             
(0.112)

-0.279†  
(0.155)

Dusk 400 1.121*** 
(1.121)

0.959** 
(0.293)

Night 400 1.222*** 
(0.134) 

0.988*** 
(0.293) 

Dawn 400 0.291*    
(0.136)

0.132      
(0.296)

David's scores x Dusk 500 0.108      
(0.174)

David's scores x Night 500 0.157      
(0.174) 

David's scores x Dawn 500 0.106      
(0.175)

Variance component 
Level 1 Within-subject 2 1.298 1.23 1.159 1.164 0.861 0.867
Level 2 Initial status 02 0.61 0.51 0.514 0.581 0.605 0.604

Experiment (linear) 12 0.002 0.002 0 0 0
Covariance Initial-Experiment (linear) 01 0.001 0.001 0 0 0 

Level 3 Initial status 02 0.388 0.525 0.537 0.526 0.526 0.531
Experiment (linear) 12 0.005 0.005 0.006 0.006 0.008 

Covariance Initial-Experiment (linear) 01 -0.002 -0.002 -0.002 -0.002 -0.002
Goodness-of-fit

Deviance 1247 1235 1219 1220 1122 1127
AIC 1255 1253 1239 1242 1150 1161
BIC 1271 1288 1278 1285 1205 1228
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Table A5.7 – The results of the different models for the amount of time each lobster spent into the burrow. Model A: unconditional means model; Model B: 
unconditional growth model; Model C: non-linear unconditional growth model; Model D: Rank as time-varying predictor included. † p < 0.10; * p < 0.05; 
** p < 0.01; and *** p < 0.001. The values between parentheses represent the error. AIC represents the Akaike information criterion; BIC represents the 
Bayesian information criterion. 

Parameter Model A Model B Model C Model D
Fixed effects

Intercept 000 8.187*** 
(0.183) 

8.069*** 
(0.224) 

7.682*** 
(0.271) 

8.077 
(0.345) Initial status

Rate of change

Experiment (linear) 100 0.046†
(0.068) 

0.402*
(0.156) 

0.383*
(0.159) 

Experiment (quadratic) 200 -0.059*
(0.023) 

-0.056*
(0.024) 

Rank 300 -0.144†
(0.078)

Variance component
Level 1 Within-subject 2 0.502 0.211 0.179 0.188
Level 2 Initial status 02 0.904 0.396 0.452 0.444

Experiment (linear) 12 0.091 0.091 0.093 
Covariance Initial-Experiment (linear) 01 -0.069 -0.075 -0.101

Level 3 Initial status 02 0 0.218 0.216 0.226
Experiment (linear) 12 0.008 0.008 0.008

Covariance Initial-Experiment (linear) 01 -0.04 -0.04 -0.041
Goodness-of-fit

Deviance 261 240 240 240
AIC 269 258 260 262
BIC 279 281 285 290
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Table A5.8 - The results of the different models for the numbers of times each lobster, identified by rank, succeeded in evict other lobster from the 
burrow. Model A: unconditional means model; Model B: unconditional growth model; Model C: non-linear unconditional growth model; Model D: 
Rank as time-varying predictor included. 2 is not reported by glmer. † p < 0.10; * p < 0.05; ** p < 0.01; and *** p < 0.001. The values between 
parentheses represent the error. AIC represents the Akaike information criterion; BIC represents the Bayesian information criterion. 

Parameter Model A Model B Model C Model D
Fixed effects

Intercept 000 -0,358             
(0,322) 

-0,216               
(0,362) 

-0,263               
(0,390) 

0,828†       
(0,434) Initial status

Rate of change

Experiment (linear) 100 -0,184               
(0,148)

-0,694               
(0,648)

-0,064               
(0,134)

Experiment (quadratic) 200 0,143        
(0,161)

Rank 300 -0,471*** 
(0,118) 

Variance component
Level 1 Within-subject 2
Level 2 Initial status 02 2.262 1.765 1.739 1.543

Experiment (linear) 12 0.154 1.47 0.039
Covariance Initial-Experiment (linear) 012 -0.002 -0.07 0.003

Experiment (quadratic) 22 0.052
Covariance Initial-Experiment (quadratic) 022 0.016

Covariance linear-quadratic terms 122 -0.277
Level 3 Initial status 02 0 0.103 0.147 0.184

Experiment (linear) 12 0.016 0.731 0.029
Covariance Initial-Experiment (linear) 012 -0.04 -0.162 -0.074 

Experiment (quadratic) 22 0.055
Covariance Initial-Experiment (quadratic) 022 0.034

Covariance linear-quadratic terms 122 -0.199
Goodness-of-fit

Deviance 351 323 306 307 
AIC 357 339 336 325
BIC 365 359 374 348 
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Table A5.9 - The results of the different models for the numbers of times each lobster, identified by rank, has been evicted from the burrow. 
Model A: unconditional means model; Model B: unconditional growth model; Model C: non-linear unconditional growth model; Model D: Rank 
as time-varying predictor included. 2 is not reported by glmer. † p < 0.10; * p < 0.05; ** p < 0.01; and *** p < 0.001. The values between 
parentheses represent the error. AIC represents the Akaike information criterion; BIC represents the Bayesian information criterion. 

Parameter Model A Model B Model C Model D
Fixed effects

intercept γ000 0,188*** 
(0,002) 

0,149      
(0,321) 

-0,126                
(0,447) 

-1,248*              
(0,508) Initial status

Rate of change

Experiment (linear) γ100 -0,076                
(0,136)

-0,014                
(0,528)

-0,044
(0,124)

Experiment (quadratic) γ200 0                
(0,124)

Rank γ300 0,519*** 
(0,134) 

Variance component
Level 1 Within-subject 2
Level 2 Initial status 02 1.969 1.435 1.75 1.281

Experiment (linear) 12 0.136 0.836 0.095
Covariance Initial-Experiment (linear) 012 -0.001 -0.117 0.035

Experiment (quadratic) 22 0.017
Covariance Initial-Experiment (quadratic) 022 -0.017

Covariance linear-quadratic terms 122 -0.119
Level 3 Initial status 02 0 0.087 0.372 0.083

Experiment (linear) 12 0.036 0.871 0.028
Covariance Initial-Experiment (linear) 012 -0.056 -0.557 -0.048 

Experiment (quadratic) 22 0.056
Covariance Initial-Experiment (quadratic) 022 0.133

Covariance linear-quadratic terms 122 -0.217
Goodness-of-fit

Deviance 428 386 367 369 
AIC 434 402 397 387
BIC 442 422 435 410
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Fig. A1 – The different logic steps of the algorithm 
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METHODOLOGIAL APPROACH 
The methodological approach presented in chapter 2 has shown to be suitable for 

experimental biologists. The video imaging analysis has the advantage that once the frames are 

acquired they can be further re-processed changing parameters such as algorithm sensibility and 

different location of the region of interest. This allows studying different aspects of Nephrops' 

behavior such as activity at the burrow entrance and exploratory activity out of the burrow. 

In addition, flume tanks have been already used to investigate different ecological aspects 

of decapods crustaceans: larval settlement, swimming behavior, habitat selection, and response to 

odor plumes. These aspects are not fully understood in the Norway lobster but they could be in the 

next future, and the system presented here might be pivotal for these discoveries. 

In chapter 5 I have used a different methodological approach for video imaging analysis and 

for controlling experimental variables. Open source easy-to-use hardware and software are 

developed for anyone making interactive projects. I strongly believed that this kind of approach will 

have dramatic potentialities in the experimental biology labs in the next future, for two basic 

reasons: It is usually a very cheap technology or even free; the open source philosophy is that the 

software can be modified changing the code itself, and finally, the most important feature, it can be 

shared among people and researchers.  

CHAPTER 3 

The results presented in this chapter suggested that the phase of the diurnal or semi-diurnal 

tides is important parameters to take in account at the moment to interpret Nephrops fishery-

dependent and underwater television surveys data. The presence of currents can strongly inhibit the 

burrow emergence behaviour with the possibility to create important errors at the moment to 

evaluate the state of the resource. These findings are not only important for Nephrops, but in 

general give an interesting example for deep-water benthic community. 

Fishery implications

I have shown that periodic water currents simulated in the laboratory can modulate the 

behavioural rhythm of a deep water species. Currents were able not only to mask but also to modify 

the phase of the circadian system output, suggesting their partial role as zeitgeber at depths where 

the sunlight is still present. Such results are promising for future research to understand how the 

organization of circadian biology changes from shallow to deep water.  

General Biology
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CHAPTER 4 

This chapter did not provide information with a direct interest for fishery management, but 

will allow researchers to exploit the assembled transcriptome for different purposes concerning 

Nephrops biology and ecology. However, future investigations on the molecular mechanisms of 

circadian clock of Nephrops could lead to a more precise understanding of population dynamics and 

niche switching by light intensity with more direct application for stock assessment plans.      

Fishery implications

I identified several putative clock genes in Nephrops. The finding that timeless is the only 

oscillating transcript for Nephrops norvegicus (at least in eyestalk) is consistent with the current 

knowledge on crustaceans’ circadian clocks, suggesting that the molecular clockwork of this group 

of arthropods may differ from that in Drosophila. This is also reinforced by the identification of a 

Nephrops homolog of the vertebrate-like cryptochrome. The results presented here, although 

preliminary, could become the basis for future research aimed at elucidating the crustacean 

molecular clockwork, with a particular emphasis on decapod crustaceans in the deep-water marine 

environment (Aguzzi and Company 2010). 

General Biology

CHAPTER 5 

I demonstrated that Nephrops can form steep and stable dominance hierarchies. This aspect 

could open a new scenario into the aspects controlling its burrowing behavior and hence 

catchability. From the data presented here, the probability to be caught by trawling increased with a 

decrease in rank position (lower rank spent more time out of the burrow). However these results 

must be interpreted with caution because the dynamic of burrow occupancy in a close tank could be 

different respect to the wild where lobsters are free to change burrows, areas or even build a new 

burrow.  

Fishery implications

I observed a parallel development of both agonistic and non-agonistic behaviors with a clear 

predictive value of the dominance rank. Herberholz et al. (2003) has previously documented the: 

“the strikingly similar changes in both agonistic and non-agonistic behaviors following the decision 

on rank status...”. Here, I went deeper, in fact I characterized and quantified the rate of change 

throughout the development of the two categories of behaviors and I also determined the rate of 

General Biology
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change associated to the rank. My data reinforced the hypothesis by Herberholz et al. (2003) 

supporting the idea of common neural mechanisms for the categories of behaviors observed in this 

study. 

GENERAL OVERVIEW AND FUTURE DIRECTIONS 
Results presented in this thesis added important information to the general knowledge of 

Nephrops rhythmic emergence behavior. I have demonstrated in laboratory that Nephrops

burrowing behavior is affected by periodical water currents. Moreover, I provided the first 

transcriptomics database and preliminary insight on the genetic mechanism governing circadian 

locomotor activity rhythms. Finally, I showed how the organization of Nephrops society modulates 

the burrowing behavior. However, Nephrops is just one of the species belonging to the benthic 

community that as showed by (Aguzzi et al. 2015) has a clear coupling with the benthopelagic 

compartment. The result in physical terms is a complex network system of numerous circadian 

oscillators (individuals) organized in clusters (species) that interact in a rhythmic, complex and 

hierarchical way to finally produce a harmonious synchronized dynamic whose functioning 

mechanisms are unknown. The discovery of the underpinning mechanisms of such complex systems 

will increase the understanding of the deep water ecosystems and increase the efficiency of the 

renewable resources management plans. Finally, as stated by Bloch et al. (2013): “if cells in circuits 

and animals in communities share some network design principles for synchronizing their circadian 

oscillators, then insights made at one level may inform understanding at the other”.
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