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Abstract

Increasing anthropogenic pressures and its effects on marine ecosystems urge enhanced 

knowledge and understanding of the current state of marine biodiversity. This baseline 

information is pivotal to establish the actual state, detect future changes, explore 

possible trends and propose adequate management actions for marine ecosystems. 

Coralligenous outcrops are a highly diverse and structurally complex habitat faced with 

major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic 

value, coralligenous biodiversity patterns are still poorly understood. Information on the 

spatial and temporal variability of the composition and structure of coralligenous 

assemblages is scarce for most regions. Specially, data on species diversity and structure 

in coralligenous outcrops dominated by Corallium rubrum and Paramuricea clavata are 

essentially lacking. Gathering these data is needed to build robust baselines in order to 

assess the responses of this highly threatened habitat to anthropogenic disturbances (e.g. 

mass mortality events, sedimentation and invasive species).

There is currently no single sampling method that has been demonstrated to be 

sufficiently representative to ensure adequate community assessment and monitoring in 

this habitat. In Chapter 3, we propose a rapid non-destructive protocol for biodiversity 

assessment and monitoring of coralligenous outcrops providing good estimates of its 

structure and species composition, based on photographic sampling and the 

determination of presence/absence of macrobenthic species. We followed a hierarchical 

sampling survey, covering more than 400 km of rocky coasts in NW Mediterranean 

(Catalan coast –Spain-, Provence and NW Corsica –France). This approach allowed us 

to determine the minimal sampling area for each assemblage (5000 cm2 for P. clavata 

and 2500 cm2 for C. rubrum). In addition, we concluded that 3 replicates provided an 

optimal sampling effort in order to maximize the species number and to assess the main 

biodiversity patterns of studied assemblages in variability studies requiring replicates. 

We followed the mentioned hierarchical sampling survey in Chapter 3 to characterize 

the spatial and temporal variability of structure, composition, abundance and diversity 

of perennial species inhabiting coralligenous outcrops dominated by C. rubrum or P. 

clavata (Chapter 4 and Chapter 5 respectively). In Chapter 4 spatial variability of 
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species composition, structure and diversity in coralligenous assemblages dominated by 

C. rubrum was assessed. We also pooled the identified species/taxa into 

morphofunctional groups according to their life-span and growth to characterize the 

structural complexity of the assemblages. Finally, we analyzed the number, size and 

shape of patches (landscape pattern indices) for each group in order to describe the 

spatial arrangement within the C. rubrum assemblage. Landscape pattern indices in C.

rubrum assemblages exhibited important differences among sites in the same locality 

whereas localities showed similar values. 

In Chapter 5, the spatial and temporal variability of species composition, structure and 

diversity in coralligenous assemblages dominated by P. clavata was assessed. 

According to ordination analyses, species composition and the structural complexity of 

coralligenous assemblages differed consistently across all spatial scales considered. The 

lowest and the highest variability were found among localities (100 km) and within sites 

(1-5 km), respectively. Despite the differences, the sites displayed high similarity 

(average similarity 55.7 %) and shared approximately 50 % of the species. Similarly, 

differences in diversity indices (alpha, beta and gamma) were found. Furthermore, the 

study of P. clavata addressed diversity patterns over 5-year period. Overall, no temporal 

changes were detected in either species composition or the morphofunctional groups 

considered. 

In Chapter 6, we showed how an extreme storm event affected the dynamics of benthic 

coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006–

2008) and after the impact (2009–2010) at four different sites. The loss of cover of 

benthic species resulted between 22% and 58%. The damage across these species (e.g. 

calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those 

with fragile forms were the most impacted, showing cover losses up to 50 to 100%. 

Interestingly, small patches survived after the storm and began to grow slightly during 

the following year. In contrast, sheltered sites showed no significant changes in all the 

studied parameters, indicating no variations due to the storm. 

Overall, the results presented in this thesis furnishes a basis for the implementation of 

monitoring schemes of coralligenous assemblages complementing the scarce available 

information on assemblage composition and structure of the emblematic Mediterranean 
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coralligenous outcrops dominated by C. rubrum and P. clavata over large spatial scales. 

Our results demonstrate the moderate spatial and the extremely low temporal variability 

in biodiversity patterns in the NW Mediterranean region, providing the first baselines 

for detecting potential changes due to global change effects. We also provide new 

insights into the responses of these assemblages to a large and rare extreme event. The 

development of similar sampling schemes in other Mediterranean regions will provide a 

global view of the biodiversity of coralligenous outcrops. 
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Resum

L’increment de pressions antròpiques i els seus efectes sobre els ecosistemes marins 

evidencien la necessitat de potenciar el coneixement i la comprenssió de l’estat actural 

de la biodiversitat marina. La informació de referència és esencial per tal de poder 

establir l’estat actual, detectar futurs canvis, explorar posibles tendències i proposar les 

adequades accions de gestió pels ecosistemes marins. Els afloraments de coralígen són 

hàbitats altament diversos i estructuralment complexos que s’enfronten amb les majors 

amenaces en el mar Mediterrani. Tot i els seus valors ecològics, estètics i econòmics, els 

patrons de biodiversitat del coralígen són encara poc entesos. Hi ha una manca 

d’informació sobre la variabilitat espacial i temporal en la composició i estructura de les 

comunitats de coralígen per la majoria de les regions. Especialment, manquen dades 

sobre la diversitat i estructura dels afloraments de coralígen dominats per Corallium

rubrum i Paramuricea clavata. L’integració de tots aquests conjunts de dades esdevé 

realment un pas necessari per construir línies de referència robustes amb l’objectiu 

d’evaluar les respostes d’aquests hàbitats altament amenaçats degut a pertorbacions 

antròpiques (ex: mortalitats massives, sedimentació i espècies invasores).

Actualment no disposem d’un sol mètode unificat de mostreig que hagi estat demostrat 

ser suficientment representatiu per tal d’assegurar una adequada avaluació i monitoratge 

d’aquest hàbitat. En el Capítol 3, proposem un protocol ràpid i no-destructiu, basat en 

mostreijos fotogràfics i la determinació de la presència/absència d’espècies 

macrobentòniques, per a l’avaluació i monitoreig de la biodiversitat dels afloraments de 

coralígen resultant unes bones estimes de la seva estructura i composició d’espècies. 

Hem seguit un disseny de mostreig jerarquitzat en l’espai, cobrint més de 400 Km de 

costa rocallosa en el Mediterrani Nord Occidental (Costa Catalana – Espanya –, 

Provença i el NO de Còrcega – França). Aquesta aproximació metodològica ens ha 

permès determinar l’àrea mínima per a cadascuna de les comunitats (5000 cm2 per P. 

clavata i 2500 cm2 per C. rubrum). A més, concluïm que amb 3 rèpliques assolim un 

òptim esforç de mostreig en el sentit de maximitzar el número d’espècies així com per 

avaluar els principals patrons de biodiversitat en els estudis de variabilitat on es 

requereixin rèpliques. 



10 

A continucació, hem seguit el mencionat disseny jeràrquic de mostreig del Capítol 3

per caracteritzar la variabilitat espacial i temporal en l’estructura, composició, 

abundància i diversitat de les espècies bentòniques sèssils i perennes que habiten en els 

afloraments coralígens dominats per C. rubrum i P. clavata (Capítol 4 i Capítol 5

respectivament). Així, en el Capítol 4 hem avaluat la variabilitat en la composició 

d’espècies, estructura i diversitat en les comunitats del coralígen dominades pel corall 

vermell. A més, hem agrupat les espècies i/o taxons identificats en grups 

morfofuncionals d’acord amb la seva esperança de vida i formes de creixement per 

caracteritzar la complexitat structural de la comunitat. Finalment, hem calculat el 

número, la mida i forma de les taques (patrons d’índexs de paisatge) de cadascun dels 

grups amb l’objectiu de descriure la disposició en l’espai en el sí de la comunitat de C. 

rubrum. Els índexs de paissatge en la comunitat de C. rubrum exhibeixen importants 

diferències entre els llocs de la mateixa localitat mentre que les localitats mostren valors 

similars entre elles.

En el Capítol 5, hem avaluat la variabilitat espacial i temporal de la composició 

d’espècies, estructura i diversitat en les comunitats de coralígen dominades per P. 

clavata. D’acord amb les anàlisis d’ordenació, la composició d’espècies i la complexitat 

estructural de les comunitats de coralígen difereixen consistentment entre totes les 

escales espacials considerades. La variabilitat més baixa la varem trovar entre localitats 

(100 Km) mentre que la més alta la varem trovar entre sites (1-5 Km). Tot i les 

diferències, els sites mostraren una elevada similaritat (similaritat promig 55.7%) i 

comparteixen aproximadament el 50% de les espècies. Similarment, varem trovar 

diferències en els índexs de diversitat (alfa, beta i gamma). A més, en l’estudi de P. 

clavata també varem determiner els patrons de diversitat en un període de 5 anys. En 

conjunt en l’escala regional, no es van detectar canvis destacables en la composició 

d’espècies ni en la composició dels grups morfofuncionals considerats.

En el Capítol 6, mostrem com una tormenta extrema va afectar a la dinàmica dels 

afloraments bentònics de coralígen en el mar Mediterrani Nord Occidental emprant 

dades adquirides abans (2006-2008) i després de l’impacte (2009-2010) en 4 llocs 

diferents. La pèrdua de cobertura d’espècies bentòniques va resultar d’entre el 22% i el 

58%. El dany causat entre les espècies (ex: algues calcàries, esponges, antozous, 

briozous i tunicats) fou desigual, i les que resultaren més impactades foren les formes 
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fràgils, mostrant pèrdues de cobertura de entre el 50% i el 100%. També són destacables 

les “taques” que varen sobreviure després de la tempesta i varen començar a crèixer 

lleugerament durant el següent any. En contrast, els sites més reguardats no mostraren 

canvis en cap dels paràmetres estudiats, indicant que la tormenta no va provocar 

variacions en aquests sites. 

En conjunt, els resultats presentats en aquesta tesi suposen els foments per a la 

implementació d’esquemes de monitoratge de les comunitats de coralígen 

complementant així l’escassesa d’informació disponible sobre la composició i estructura 

dels emblemàtics afloraments de coralígen Mediterrani dominats per C. rubrum i P. 

clavata en escales espacials grans. Els resultats en els patrons de biodiversitat en el 

Mediterrani Nord Occidental, demostren una variabilitat espacial moderada que 

contrasta amb la variabilitat extremadament baixa en el temps i suposen les primeres 

dades de referència per detectar potencials canvis degut als efectes del canvi global. 

També donem noves comprensions sobre les respostes d’aquestes comunitats a grans i 

poc freqüents events pertorbadors. L’implementació d’esquemes de monitoreig similars 

en altres regions del Mediterrani proveiran d’una visió global de la biodiversitat dels 

afloraments de coralígen.
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Resumen

Del incremento de presiones antrópicas y sus efectos sobre los ecosistemas marinos 

surge la necesidad de potenciar el conocimiento y la compresión del actual estado de la 

biodiversidad marina. Estos datos de referencia resultan esenciales para poder 

determinar el estado actual de los ecosistemas marinos, así como detectar futuros 

cambios y explorar posibles tendencias para proponer las acciones de gestión 

adecuadas. Los afloramientos de coralígeno son hábitats altamente diversos y 

estructuralmente complejos que se enfrentan con las mayores amenazas en el mar 

Mediterráneo. A pesar de sus elevados valores ecológicos, estéticos y económicos, los 

patrones de biodiversidad del coralígeno se encuentran aún poco entendidos. 

Actualmente, existe una carencia de información sobre la variabilidad espacial y 

temporal en la composición y estructura de los afloramientos de coralígeno dominados 

por Corallium rubrum y Paramuricea clavata. La integración de todo este conjunto de 

datos resulta necesaria para construir líneas de referencia robustas con el objetivo final 

de evaluar las respuestas de estos hábitats altamente amenazados debido a 

perturbaciones antrópicas (ej. mortandades masivas, sedimentación y especies 

invasoras). 

Actualmente no disponemos de un solo método unificado de muestreo el cual haya sido 

demostrado ser suficientemente representativo para asegurar una adecuada evaluación y 

monitoreo de este hábitat. En el Capítulo 3, proponemos un protocolo rápido y no-

destructivo para la evaluación y monitoreo de la biodiversidad de los afloramientos del 

coralígeno resultando unas buenas estimas de su estructura y composición de especies, 

basado en muestreos fotográficos y en la determinación de la presencia/ausencia de 

especies macro bentónicas. Hemos seguido un diseño de muestreo jerárquico en el 

espacio, cubriendo más de 400 Km de costa rocosa en el Mediterráneo Norte Occidental 

(Costa Catalana – España –, Provenza y el Norte Occidental de Córcega – Francia). Esta 

aproximación metodológica nos ha permitido determinar el área mínima para cada una 

de las comunidades estudiadas (5000 cm2 para P. clavata y 2500 cm2 para C. rubrum). 

Además, concluimos que con 3 réplicas alcanzamos un esfuerzo de muestreo óptimo en 

el sentido de maximizar el número de especies así como para evaluar los principales 

patrones de biodiversidad en los estudios de variabilidad dónde se requieren réplicas. 
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A continuación, hemos seguido el mencionado diseño jerárquico de muestreo del 

Capítulo 3 para caracterizar la variabilidad espacial y temporal en la estructura, 

composición, abundancia y diversidad de las especies bentónicas sésiles y perennes que 

habitan en los afloramientos coralígenos dominados por C. rubrum y P. clavata

(Capítulo 4 y Capítulo 5 respectivamente). Así, en el Capítulo 4 hemos evaluado la 

variabilidad en la composición de especies, estructura y diversidad en las comunidades 

de coralígeno dominadas por el coral rojo. Además, hemos agrupado las especies o los 

taxones identificados en grupos morfofuncionales de acuerdo con la esperanza de vida y 

de sus formas de crecimiento para caracterizar la complejidad estructural de la 

comunidad. Finalmente, hemos calculado el número, el tamaño y la forma de las 

“manchas” (índices de paisaje) de cada uno de los grupos con el objetivo de describir la 

disposición en el espacio en el sí de la comunidad de C. rubrum. Los índices de paisaje 

en la comunidad de C. rubrum exhiben importantes diferencias entre los sites en la 

misma localidad mientras que las localidades muestran valores similares. 

En el Capítulo 5, hemos evaluado la variabilidad espacial y temporal de la composición 

de especies, estructura y diversidad en las comunidades de coralígeno dominadas por P. 

clavata. De acuerdo con el análisis de ordenación, la composición de especies y la 

complejidad estructural de las comunidades de coralígeno difieren consistentemente 

entre todas las escalas espaciales consideradas. La variabilidad más baja la encontramos 

entre localidades (100 Km) mientras que la más elevada la encontramos entre lugares 

(1-5 Km). A pesar de las diferencias, los sites mostraron una elevada similaridad 

(similaridad promedio 55.7%) i comparten aproximadamente el 50% de las especies. De 

manera similar, encontramos diferencias en los índices de diversidad (alfa, beta y 

gamma). Además, en el estudio de P. clavata también determinamos los patrones de 

diversidad en un periodo de 5 años. En el conjunto de la escala regional, no se 

detectaron cambios destacables en la composición de especies así como en la 

composición de los grupos morfo funcionales considerados. 

En el Capítulo 6, demostramos el efecto de una tormenta extrema en la dinámica de los 

afloramientos bentónicos del coralígeno en el mar Mediterráneo NO utilizando datos 

adquiridos antes (2006-2008) y después del impacto (2009-2010) en 4 lugares 

diferentes. La pérdida de cobertura de especies bentónicas resultó ser de entre el 22% y 
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el 58%. El daño causado entre las especies (ej. algas calcáreas, esponjas, antozoos, 

briozoos y tunicados) fue desigual, y las que resultaron más impactadas fueron las 

formas frágiles, mostrando pérdidas de cobertura de entre el 50% y el 100%. También 

son destacables las “manchas” que sobrevivieron después de la tormenta y empezaron a 

crecer ligeramente durante el siguiente año. En contraste, los lugares más resguardados 

no mostraron cambios en ninguno de los parámetros estudiados, indicando que la 

tormenta no provocó variaciones. 

En conjunto, los resultados presentados en esta tesis suponen los fundamentos básicos 

para la implementación de esquemas de monitoreo de las comunidades de coralígeno 

complementando así la escasez de información disponible sobre la composición y 

estructura de los emblemáticos afloramientos de coralígeno en el Mediterráneo 

dominados por C. rubrum y P. clavata en escalas espaciales grandes. Los resultados en 

los patrones de biodiversidad en el Mediterráneo NO, demuestran una variabilidad 

espacial moderada que contrasta con una variabilidad extremadamente baja en el tiempo 

y suponen los primeros datos de referencia para detectar potenciales cambios debido a 

los efectos del cambio global. 

También damos nuevas comprensiones sobre las respuestas de estas comunidades a 

grandes y poco frecuentes eventos perturbadores. La implementación de esquemas de 

monitoreo similares en otras regiones del Mediterráneo proporcionaran una visión 

global de la biodiversidad de los afloramientos de coralígeno. 
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1. Introduction
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1.1. The Mediterranean Sea and its biodiversity loss.

General oceanographic features, biological importance and biogeographical 
patterns. 

The Mediterranean Sea is the largest semi-enclosed sea on earth. Regarding 

oceanographic settings, it is an oligotrophic and seasonal sea, with a high physiographic 

complexity, which is in accordance with its high species richness and habitat diversity 

(Ros et al. 1985). It has a marked longitudinal gradient (about 30 degrees, from 5º W to 

34º E) encompassing a strong nutrient gradient form Western to the Eastern, the named 

Eutrophia-Oligotrophia axis (Ros et al. 1985).

The Mediterranean Sea is considered a marine biodiversity hotspot, harboring 

approximately 10% of world's marine species and high endemism while occupying only 

0.82% of the ocean surface (Bianchi and Morri 2000; Boudouresque 2004; Coll et al. 

2010). The importance of the Mediterranean Sea for the human being is crucial from 

ancient ages: it has been the physical environment where many different cultures shared 

space and it is highly used for transportation by maritime navigation and recreational 

activities. Furthermore, it provides key and vital ecosystem services such as food 

provision, nutrient cycling and the modulation of climate  (Micheli et al. 2013). From a 

biogeographic perspective, the Mediterranean Sea can be conceived as a nested system 

that belongs to the Temperate Northern Atlantic Realm (representing a Province) 

(Spalding et al. 2007). Among the 14 biogeographic units sectors (Fig. 1.1.) the 

northwestern Mediterranean Sea is especially biologically diverse because of the 

presence of both temperate and subtropical species, and also because of its complex 

geological history, a legacy from the Tethys Ocean (Bianchi and Morri 2000).
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Figure 1.1. Outlined boundaries of the biogeographic sectors in the Mediterranean. 1: Alboran 

Sea; 2: Balearic Sea; 3: Gulf of Lions; 4: Ligurian Sea; 5: Algeria and Tunisian waters; 6:

Tyrrhenian Sea; 7: North Adriatic Sea; 8: Central Adriatic Sea; 9: South Adriatic Sea; 10: Ionian 

Sea; 11: North Aegean Sea; 12: South Aegean Sea; 13: Levant Sea; 14: Gulf of Gabés (from 

Coll et al 2012). 

1.2 Impacts and threats on biodiversity

Human activities have been increasing forcing the alteration, modification and 

change of the structure, biodiversity and functioning of marine assemblages (Halpern et 

al. 2008; Dornelas et al. 2014). Review studies pointed out a slow ocean defaunation 

and a rapid decline of native species diversity (Worm et al. 2006; McCauley et al. 

2015). Nowadays, it is difficult to find any marine ecosystem and its assemblages not 

affected by direct or indirect human stressors, and even remote pristine areas or the 

deep-sea ecosystems are affected by global anthropogenic change (Sandin et al. 2008; 

Halpern et al. 2008; Pham et al. 2014).

The Mediterranean Sea is threatened by an increase of disturbance regimes

associated to global change (Fig. 1.2) and among the main anthropogenic impacts are

overfishing, water degradation and pollution, global warming, habitat destruction (e.g. 

construction of harbors, fishing nets) and invasive species (Bianchi and Morri 2000; 

Claudet and Fraschetti 2010; Coll et al. 2012; Micheli et al. 2013). The most impacted 

areas correspond to Gulf of Gabés, North Adriatic and Levant Sea whereas the less 

impacted are the Balearic Sea and the East sector of the Tyrrhenian Sea (Coll et al 2012, 

Micheli et al 2013).
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Figure 1.2. (a) Cumulative impact across global marine Mediterranean ecosystems 

(b) and impact agents responsible of Mediterranean degradation (from Coll et al.

2010 and Micheli et al. 2013).
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1.3.  Coralligenous outcrops 

Composition, structure and distribution

Within the Mediterranean marine benthic subtidal assemblages, coralligenous 

outcrops are one of the most important, mainly because its high biodiversity, structural 

and functional complexity (Fig. 1.3.). Ballesteros (2006) defined coralligenous outcrops 

as hard substratum formations of biogenic origin that are mainly produced by the 

accumulation of calcareous encrusting algae growing at low irradiance levels and in 

relatively calm waters. Rather than a single and uniform habitat, coralligenous biogenic 

formations conforms a complex of different habitats whose occurrence is mainly 

determined by light exposure. It is largely well-known that variation in light intensity is 

determined by two spatial factors as depth and surface geographical orientation 

(Ballesteros 2006). Consequently, coralligenous outcrops develop more extensive in 

circalittoral zones (deeper than 30 meters depth). However, they can be also found 

within the range of shallower waters at the infralittoral zone (between 10 to 30 meters 

depth) developing on shadow surfaces (vertical walls, overhangs, crevices and deep 

channels). This bioherm in fact, allows the development of several kinds of habitats 

(Laborel 1961; Laubier 1966), including those dominated by living algae (upper part of 

the concretions), suspension feeders (lower part of the concretions, walls cavities and 

overhangs), borers (inside cavities) and even soft bottom fauna (in the sediment 

deposited in cavities and holes) (Ballesteros 2006). Therefore, coralligenous outcrops 

can be considered as a submarine landscape rather than a single habitat. Building the 

bio-concretion is a long-term process and age estimates varied from 8000 to 600 years 

before present on bio-concretions developed from 10 to 60 meters depth (Sartoretto et 

al. 1996).

Figure 1.3. Coralligenous dominated by Paramuricea clavata and Corallium rubrum (Photos 

by E. Ballesteros and J. Garrabou).



23 

Main ecological functions and ecosystem services 

Ecosystem services are the benefits provided by ecosystems that contribute to 

make human life both possible and worth living (Díaz et al. 2006). Coralligenous 

outcrops are structurally complex and possess key ecological functions offering 

important ecosystems services.

Firstly, coralligenous outcrops presents high natural and evolutionary heritage 

for their biological, geological and physico-chemical features being at the same time 

highly vulnerable and threatened by human activities (UNEP/MAP-RAC/SPA 2014). Is 

a hot-spot of biological diversity and a conservative estimate of macro-species is 1666 

species (315 algae, 1241 invertebrates and 110 fishes) (Ballesteros 2006). This number 

represent around 10% of global marine biodiversity (Coll et al. 2010) and its species 

richness and functional diversity is high. The main constructors and structural species of 

coralligenous outcrops are macro-benthic species, mainly perennial coralline algae and 

invertebrates (e.g. sponges, anthozoans, polychaetes, bryozoans and tunicates). Most of 

these species are long-lived (between 50 and 100 years), show slow growth and overall 

low population dynamics. Moreover, coralligenous outcrops have an important role in 

the carbon cycle (Piazzi et al. 2012) because organisms inhabiting within it contribute to 

carbonate fixation being a habitat with a net carbonate production activity. This C 

production is variable as a function of the environmental conditions ranging between 

170 g CaCO3 m-2yr-1 in deep and oligotrophic areas and up to 600 g CaCO3 m-2yr-1 on 

highly productive and shallow regions (Ballesteros 2006). However, CaCO3 production 

can reach up to 1000 g CaCO3 m-2yr-1 at highly upwelling circalittoral waters at the 

Alboran Sea (Cebrian et al. 2000). Furthermore, this frameworks conforms the biogenic 

substratum acting as a nursery grounds for juveniles and habitat for a great number of 

benthic species that are economically important due the high biomass of highly 

appreciated commercial molluscs, crustaceans and fishes (e.g. Ostrea edulis, Palinurus 

elephas and Epinephelus marginatus).

Secondly, coralligenous outcrops are considered to have an important role within 

the littoral system regarding nutrient cycles (nitrogen, phosforous and silicon), water 

depuration and benthic-pelagic coupling (Coma et al. 1998; Maldonado et al. 2012). 

This is because they are mainly composed by photosynthetic (algae) and active and 

passive suspension-feeders invertebrates (sponges, cnidarians, bryozoans and compound 

ascidians). Active and passive suspension-feeders have an active role modulating seston 
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composition and hence have an important role in pelagic-benthic coupling in the littoral 

ecosystem (Rossi and Gili 2009).

Other important ecosystem service is that they provide natural 

(pharmacological) products. Coralligenous outcrops are composed by many invertebrate 

taxons (e.g. molluscs, sponges, bryozoans, compound ascidians) that possess natural 

molecules chemically bioactive. Those molecules are used by the organisms as chemical 

defenses against competence and predation and have contrasted applicability in 

pharmacology (Turon et al. 2009; Pelay-Gimeno et al. 2013). Its potential use in 

pharmacology is due to its antiviral, atibiotic, analgesic and antimitotic/anticancerigen 

bioactivities. For instance, Cystodytes spp. (commonly found in coralligenous outcrops) 

has the mentioned bioactive properties (López-Gentil 2005).

Finally, coralligenous outcrops are of special concern for recreational diving. For 

instance, coralligenous in Medes Islands generates a total amount of 10.M € per year 

(Capellà 2012). This amount represents the economic expenses that visitors divers 

invest in their free and holidays time.

Coralligenous habitats as special concern for conservation and coastal ecosystem 
management 

Increasing anthropogenic pressures and their consequences on water quality 

decline have led the European Union to engage a new strategy to conserve and recover 

the ecological quality of the marine environment. Since 2000, at least three different 

operational EU Directives: the Water Framework Directive (WFD), the Marine Strategy 

Framework Directive (MSFD), and the Maritime Spatial Planning Directive (MSPD) 

are markedly oriented to assess the water quality, good the environmental status of 

European marine ecosystems and sustainable use plans. The principal aim of the MSFD 

is to protect more effectively the marine environment across Europe achieving Good 

Environmental Status (GES) of the EU’s marine ecosystems by 2020 and to protect the 

resource base upon which marine-related economic and social activities depend. The 

Barcelona Convention (1976) represented the agreement of 16 Mediterranean countries 

devoted to the protection and conservation of endangered species in the Mediterranean 

Sea. Although not legally binding, the Barcelona Convention’s ‘Action plan adopted in 

2008 for the conservation of coralligenous outcrops and other calcareous bio-

concretions in the Mediterranean Sea’ asserts that ‘‘coralligenous/maërl assemblages 
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should be granted legal protection at the same level as Posidonia oceanica meadows’ 

(UNEP/MAP-RAC/SPA 2008). Despite the great contribution of coralligenous 

communities to Mediterranean biodiversity (Ballesteros 2006) and its recognition as a 

natural habitat of communitarian interest, whose conservation requires the designation 

of Zones of Special Conservation at European level (92/43/CE Habitat Directive), at the 

present date, coralligenous outcrops are still defined as with the generic name “Reef 

habitats” (habitat code 1170-14).

Impacts and vulnerability of coralligenous outcrops 

Coralligenous assemblages are highly threatened because they have already been 

impacted by an array of global change anthropogenic stressors such as nutrient 

enrichment (e.g. waste waters without nutrient-tertiary treatment, or even without any 

mechanical and microbiological treatment), overexploitation (e.g. fishing activities and 

harvesting the red coral), invasive species (e.g. by covering the seascape by permanent 

carpets of introduced algae turf, Womersleyella setacea or Caulerpa racemosa), 

increase of sedimentation and habitat destruction (e.g. construction of harbours or 

urbanization in general), mechanical impacts (anchoring, fishing nets and diver 

frequentation), acidification as well as climate change (Garrabou et al. 1998b; Balata et 

al. 2007; Coma et al. 2009; Garrabou et al. 2009; Linares et al. 2010; Cebrian et al. 

2012; Piazzi et al. 2012; Cerrano et al. 2013; Teixidó et al. 2013b; Cecchi et al. 2014). 

Among all habitats that can be ascribed to coralligenous outcrops, those dominated by 

the emblematic Alcyonacea species Corallium rubrum (Linnaeus, 1758) and 

Paramuricea clavata (Risso, 1826) are of special interest from a conservation 

perspective. The main reason is because populations of both habitat-structural species 

are highly threatened by poaching or harvesting as well as by the drastic effects of 

several mortality events putatively related with unusual long-periods of high water 

temperature and the persistence of established invasive species (Garrabou et al. 2001; 

Garrabou et al. 2009; Teixidó et al. 2013b; Di Camillo and Cerrano 2015; Montero-

Serra et al. 2015). All of this evidence that the loss of biodiversity and impacts have 

been largely studied and tested at population level (demographically and genetically) on 

emblematic and coralligenous-habitat-forming species as Corallium rubrum and 

Paramuricea clavata (Linares 2006; Coma et al. 2009; Garrabou et al. 2009; 

Arizmendi-Mejía et al. 2015; Montero-Serra et al. 2015). Hence, we focused this thesis 

on the study of these particular habitats as a whole, at the community level.



26 

From a conservation perspective, large-scale and long-term biodiversity datasets are 

basic resource that furnishes the essential tools to provide information to promote sound 

conservation actions (Magurran et al. 2010). Hence, since the first qualitative and 

quantitative coralligenous species-list in the Mediterranean (Rossi 1961; Laubier 1966; 

True 1970; Hong 1982; Ros et al. 1985) and even followed by an increasing number of 

scientific publications during the last three decades, almost no studies have been 

conducted at regional spatial-scales and over time. Baseline data are very important to 

track changes and impacts on community structure. However there is a lack of high 

resolution of biodiversity data at regional and mid-term temporal scales, thereby 

hindering a proper assessment. Only with well-established and long-term monitoring 

programmes, we can take action detecting declining community trajectories and 

applying restoration measures.

Morphofunctional groups 

Long-term monitoring studies of classical high resolution biodiversity data face 

the difficulty of taxonomic identification. The correct identication of species is a task

that requires great taxonomic expertise and involves several problematic aspects, which

have become increasingly evident in recent years (Rae et al 2013). Species-level 

identication for monitoring purposes is an expensive and time-consuming task (Fiori et 

al 2002). In general, taxonomic expertise on marine benthic species is increasingly in 

shortage,and the number of scientists able to identify correctly them is decreasing 

(Balata et al 2011). The necessity of taxonomists and the long-time needed to analyze 

samples make it difcult to process the high number of replicates required for

ecological studies and monitoring surveys (Balata et al 2011; Chapman et al. 1995; 

Underwood and Chapman 1996; Benedetti-Cecchi et al. 2001). Therefore, the 

traditional taxonomic approach is today being supplemented by ecological 

classifications following the concepts of functional groups (FG), morpho-functional 

groups (MFG), and morphology-based functional groups (MBFG) (Mihaljević et al 

2014). In marine ecosystems, morphological–functional groups are widely used to 

describe benthic assemblages (Vanderklift and Lavery 2000; Konar and Iken 2009). In a 

same MFG, morpho-functionally similar species are assembled together and are 

expected to represent a more or less defined functional trait, and thus MFG might be 

good indicators of ecosystems functioning and of physiological responses to global 
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change (Balata et al. 2011). In this line, several studies have shown that trait-based 

approaches, which are based on the life traits of species provide general and more 

predictable rules for community ecology as well as a more mechanistic comprehension 

of biodiversity effects on ecosystem functioning and process, particularly in the context 

of global change (McGill et al. 2003, Mouillot et al. 2013). 

Bearing in mind the difficutly of taxonomic identification of benthic species 

dwelling in coralligenous outcrops and the complementary information that MFG may 

provide, we seek to test the suitability of MFG of benthic organisms for monitoring 

coralligenous outcrops and to detect spacial and temporal patterns. Coralligenous

outcrops configure complex habitat structures helding a variety of different 

morphological growth-forms and functional groups with a multilayered disposition

(Garrabou et al 2002). Thus, coralligenous species can exhibit different growth forms, 

such as encrusting, cup, tree, massive and turf forms, which present different ecological 

strategies in occupying space on rocky benthic habitats and thus have been used as 

morphofunctional categories (Teixidó et al 2011). However, grouping organisms into 

categories such as morphological groups may represent an artifact, which does not 

reflect phylogenetic relationships and is affected by a

certain extent of subjectivity (Balata et al 2011). In the Mediterranean Sea, morpho-

functional groups have been used to describe algal assemblages with results that, 

although interesting, remain doubtful (Mazzella et al. 1989; Sala and Boudouresque 

1997; Benedetti-Cecchi et al. 2001; Piazzi et al. 2003, 2004a, b). Thus here we test the 

usefulness of morphofunctional groups in describing coralligenous patterns compared 

with the classical biodiversity studies.
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2. Objectives and thesis structure
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The general objective of this thesis is to characterize the biodiversity of sessile 

macrobenthic species of coralligenous outcrops across large spatial and over mid-to 

long-term temporal scales. The lack of a robust baseline of biodiversity structure and 

dynamics in coralligenous outcrops is hindering the assessment of the impacts 

associated with global change. The purpose of this thesis is to acquire community 

structure baseline data to furnish a solid basis for comparisons in terms of potential 

changes in species composition in response to multiple threats. To achieve this general 

aim, we performed photographic surveys across large spatial (hundreds of kilometers) 

and over mid- term temporal scales (5 to 10 years) and analyzed the corresponding 

images. The objectives are developed in the following four chapters, each 

corresponding to an independent scientific publication. The specific objectives are:

Objective 1. Evaluate the applicability of a rapid biodiversity assessment and 

monitoring method of coralligenous outcrops dominated by Paramuricea clavata and 

Corallium rubrum at regional scale (hundreds of kilometers). To reach this objective we 

proceded to: i) determine the species composition at several hierarchical scales, ii) 

calculate the minimal sampling area for each site studied (by means of species-area 

relationships), iii) determine how many nested sites characterize each locality within the 

NW Mediterranean region (by means of multivariate statistics). This objective is 

successfully achieved in the publication of chapter 3: “Rapid biodiversity assessment 

and monitoring method for highly diverse benthic communities: a case study of 

Mediterranean coralligenous outcrops” published in PLoS ONE (impact factor in 

2011= 4.092). This article represents the methodological approach that the other 

chapters are based.

Objective 2. Quantify patterns of the community structure, biodiversity and spatial 

configuration of Corallium rubrum dominated coralligenous outcrops over regional and 

decade time-scales by means of precise and high-resolution image analysis softwares. 

This objective is successfully achieved in the publication of chapter 4: “Structure, 

biodiversity and landscape pattern indices of Corallium rubrum assemblages over 

broad spatial scales” submitted to Scientific Reports (impact factor in 2014= 5.578).

Objective 3. Quantify the structure and biodiversity patterns of Paramuricea clavata

dominated coralligenous outcrops at regional scale over 5-year period. We assessed 
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structural complexity in terms of the specific and morphofunctional composition of the 

sessile perennial species. Additionally, we assessed various components of species 

diversity (alpha, beta, and gamma diversity) over time. This objective is successfully 

achieved in the publication of chapter 5: “Structure and biodiversity of coralligenous 

outcrops over broad spatial scales” published in Marine Bilogy (impact factor in 2014= 

2.391). 

Objective 4. Assess the effects derived from a dramatic storm occurred in the Catalan 

coast in 2008 by comparing changes in benthic community composition before (2006-

2008) and after the storm impact (2009-2010). Storms of comparable severity have been 

documented to occur occasionally within periods of 50 years in the Mediterranean Sea. 

This objective is successfully achieved in the publication of chapter 6: “Impacts on 

coralligenous outcrop biodiversity of a dramatic coastal storm” published in PLoS 

ONE (impact factor in 2013= 3.534).
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3. Rapid biodiversity assessment and 
monitoring method for highly diverse 
benthic communities: a case study of 
Mediterranean coralligenous outcrops

Kipson S, Fourt M, Teixidó N, Cebrian E, Casas-Güell E, Ballesteros E, Zabala M, 
Garrabou J (2011) Rapid biodiversity assessment and monitoring method for highly 
diverse benthic communities: a case study of Mediterranean coralligenous outcrops. 
PLoS ONE 6(11):e27103. doi:10.1371/jour- nal.pone.0027103.

Drawn by Beuchel and Gulliksen (2008) Temporal patterns of benthic community 
development in an Arctic fjord (Kongsfjorden, Svalbard): results of a 24-year 
manipulation study. Polar Biology 31:913-924
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Abstract 

Increasing anthropogenic pressures urge enhanced knowledge and understanding of the 

current state of marine biodiversity. This baseline information is pivotal to explore 

present trends, detect future modifications and propose adequate management actions 

for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally 

complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite 

its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still 

poorly understood. There is currently no single sampling method that has been 

demonstrated to be sufficiently representative to ensure adequate community 

assessment and monitoring in this habitat. Therefore, we propose a rapid non-

destructive protocol for biodiversity assessment and monitoring of coralligenous 

outcrops providing good estimates of its structure and species composition, based on 

photographic sampling and the determination of presence/absence of macrobenthic 

species. We used an extensive photographic survey, covering several spatial scales 

(100s of m to 100s of km) within the NW Mediterranean and including 2 different 

coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum

assemblage (CRA). This approach allowed us to determine the minimal sampling area 

for each assemblage (5000 cm2 for PCA and 2500 cm2 for CRA). In addition, we 

conclude that 3 replicates provide an optimal sampling effort in order to maximize the 

species number and to assess the main biodiversity patterns of studied assemblages in 

variability studies requiring replicates. We contend that the proposed sampling approach 

provides a valuable tool for management and conservation planning, monitoring and 

research programs focused on coralligenous outcrops, potentially also applicable in 

other benthic ecosystems. 
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3.1. Introduction 

Coastal ecosystems are among the most diverse, highly productive and complex 

biological systems (Agardy et al. 2005). At the same time, they are highly threatened by 

a combination of anthropogenic impacts, such as overfishing, habitat loss, 

eutrophication, introductions of exotic species and climate change (Halpern et al. 2008; 

Rocktröm et al. 2009), leading to profound structural and functional changes (Jackson et 

al. 2001; Walther et al. 2002). However, future shifts in the species composition of 

assemblages cannot be evaluated without knowledge and understanding of the present 

state of marine biodiversity. Obtaining this baseline information represents a key step in 

exploring future modifications of coastal ecosystems. 

The Mediterranean Sea is considered a marine biodiversity hotspot, harboring 

approximately 10% of world’s marine species while occupying only 0.82% of the ocean 

surface (Bianchi and Morri 2000; Coll et al. 2010). Unfortunately, the impacts of human 

activities are proportionally stronger in the Mediterranean than in the other seas, raising 

concerns regarding threats to the conservation of the rich Mediterranean biodiversity 

(Coll et al. 2010). Coralligenous outcrops, which are hard bottoms of biogenic origin 

that thrive under dim light conditions, are among the habitats faced with major threats in 

the Mediterranean Sea. These outcrops are highly diverse (harboring approximately 

20% of Mediterranean species) and exhibit great structural complexity (Gili and Coma 

1998; Ballesteros 2006). The species that dominate coralligenous seascapes are 

encrusting calcareous algae, sponges, cnidarians, bryozoans and tunicates. Some of the 

engineering species in these environments are long-lived, and their low dynamics make 

coralligenous outcrops exceptionally vulnerable when faced with sources of strong 

disturbances, such as destructive fishing practices, pollution, invasive species or mass 

mortality outbreaks (Coma et al. 2004; Ballesteros 2006; UNEP/MAP-RAC/SPA 2008; 

Garrabou et al. 2009). 

The immediate consequences and long-lasting effects of these disturbances have 

mostly been addressed at the population level, focusing on certain structurally important 

species (e.g., Bavestrello et al. 1997; Garrabou et al. 2001; Linares et al. 2005; Giuliani 

et al. 2005; Cupido et al. 2009; Garrabou et al. 2009). Despite the ecological, aesthetic 

and economic value of coralligenous outcrops, coralligenous biodiversity patterns at the 

community level over regional scales remain poorly understood (Ballesteros 2006; 
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Casellato and Stefanon 2008 and references therein). This lack of information is 

partially due to the complexity involved in studying these highly diverse systems with 

slow dynamics, coupled with general logistical constraints related to sampling at deep 

rocky habitats. Most of the previous studies at the assemblage level have been largely 

descriptive (Laubier 1966; True 1970; Hong 1982; Gili and Ros 1985). There are a few 

quantitative studies available, restricted to small or medium spatial scales, but their 

results are not comparable due to the differences in sampling methodology (e.g., 

scraped samples vs. photographic sampling) (Ferdeghini et al. 2000; Acunto et al. 2001; 

Coma et al. 2004; Piazzi et al. 2004; Balata et al. 2005; Virgilio et al. 2006). Therefore, 

an accurate overview of the general biodiversity patterns associated with coralligenous 

outcrops is lacking. 

Figure 1. General aspect of 2 facies of the coralligenous outcrops considered in this study. (A) 

Paramuricea clavata dominated assemblage and (B) Corallium rubrum dominated assemblage 

(Photos by E. Ballesteros). 

Ecologists, conservation practitioners, managers and policy makers highlight the 

need to develop cost-effective sampling methods to provide comparative measures of 

biodiversity and to create a platform of ‘‘biodiversity baselines’’. There is currently no 

single sampling method that has been demonstrated to be sufficiently representative to 

provide adequate community assessment and monitoring in coralligenous outcrops 

(Bianchi et al. 2004). To ensure the representativeness and time - and cost - efficiency 

of any benthic community survey, aiming to capture the original community structure 
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and to account for its natural variability, an adequate sampling unit size and sampling 

effort (i.e. the number of replicates) should be determined (Kronberg 1987; Muxika et 

al. 2007). Therefore, when the goal is to assess the complexity of the system, a good 

representation of the species pool should be achieved and therefore the minimal 

sampling area for the assemblage should be defined, i.e. the sampling unit size over 

which an increase of area does not yield a significant increase in the number of species 

(Braun-Blanquet 1932; Cain 1938; Niell 1977). Both the sampling unit size and 

sampling effort will influence the representativeness of a sample data set in terms of 

accuracy (the ability to determine the true value) and precision (the ability to detect 

differences) of the estimates (Bianchi et al. 2004). While accuracy and precision 

generally increase with sampling effort (Bianchi et al. 2004), the high small-scale 

heterogeneity of coralligenous habitats additionally implies that large sampling areas are 

required to achieve representative results (Ballesteros 2006). However, optimization of 

the sampling strategy is indispensable given the considerable depths where 

coralligenous outcrops usually develop and the limited information that can be obtained 

in the restricted diving time. 

Taking into account the priorities and activities defined by the Action Plan for 

the Conservation of the Coralligenous (UNEP/MAP-RAC/SPA 2008), we aimed to 

provide guidelines for the application of a rapid, non-destructive protocol for 

biodiversity assessment and monitoring in coralligenous habitat. The sampling 

procedure used in this study was designed to assess the natural spatio-temporal 

variability of coralligenous outcrops, which is crucial information for a posteriori 

assessment of the impact of anthropogenic activities. 

The aims of this study were three-fold: (1) to determine the minimal sampling 

area required to assess the sessile macrobenthic species composition in the studied 

assemblages, (2) to estimate the minimal sampling effort needed to obtain a good 

representation of the number of species and the complexity of the overall community 

and (3) to explore the capacity of the proposed approach to account for assemblage 

composition variability on different spatial scales and among different assemblages. The 

application of this approach to characterizing coralligenous outcrops and detecting 

future changes was also assessed. 
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3.2. Materials and Methods 

Ethics Statement 

Institut de Ciències del Mar (ICM-CSIC), Centre d’Océanologie de Marseille, 

University of Zagreb (Faculty of Science), Universitat de Girona (Facultat de Ciències), 

Centre d’Estudis Avançats de Blanes-CSIC and Universitat de Barcelona approved this 

study. 

Communities studied and study areas 

Coralligenous outcrops comprise a complex of assemblages ranging from algal 

dominated ones to others completely dominated by macroinvertebrates with almost no 

algal growth (Ballesteros 2006). Here we selected two assemblages that are dominated 

by the long-lived gorgonians Paramuricea clavata (Risso 1826) and Corallium rubrum 

(L. 1758) (Fig. 1) and that displayed the same aspect at all studied sites, always thriving 

under dim light conditions. The P. clavata assemblage (hereafter PCA) was sampled on 

rocky walls at depths ranging from 17 to 24 m, whereas the C. rubrum assemblage 

(hereafter CRA) was sampled on overhangs and cave entrances at depths between 14 

and 20 m. Further, we consider these assemblages among the most complex ones within 

the coralligenous outcrops, enabling us to develop a representative sampling method 

that would perform well in less complex coralligenous assemblages. 

We studied a total of 15 sites (8 sites for PCA and 7 sites for CRA) located in 

three regions: northern Catalonia, Provence and Corsica, covering more than 400 km of 

the coastline (Fig. 2). Two to three sites per region and assemblage were sampled (sites 

within regions were separated by hundreds of meters to a few kilometers). The selected 

regions encompass a high temperature productivity gradient in the NW Mediterranean. 

Provence is characterized by cold, relatively eutrophic waters maintained by local 

upwellings. Northern Catalonia is characterized by waters largely influenced by river 

discharges (Flos 1985; Bensoussan et al. 2010), whereas Corsica is characterized by 

warmer and more oligotrophic waters (Bensoussan et al. 2010). Therefore, each region 

presents particular environmental conditions, thus providing a good dataset for testing 

the potential of the biodiversity assessment method for detecting natural inter-regional 

variability. In fact, along this gradient, shifts in the zonation patterns have been reported 

with coralligenous assemblages developing at shallower depths in the cold-eutrophic 
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areas than in the warm-oligotrophic ones (Zabala and Ballesteros 1989). The observed 

depth of the coralligenous outcrops ranges from 10 to 50–55 m in Provence (Marseille 

area) and Catalonia (Medes Islands) (Laborel 1961; Hong 1980; Gili and Ros 1985) 

while in Corsica it ranges from 20 to 80 m (Laborel 1961). 

Figure 2. Map of the study area in the NW Mediterranean Sea. Three studied regions in the NW 

Mediterranean and sites within them (triangles = sites with Paramuricea clavata assemblage 

and diamonds = sites with Corallium rubrum assemblage). See Table 1 for site abbreviations. 

Photographic sampling 

The proposed method for biodiversity assessment was based on analysis of the 

presence/absence of macro-species dwelling in the understory of the selected 

assemblages that were identified from photographs (see below). To facilitate 

identification of these species, we sampled the assemblages using quadrats of 25 × 25 

cm for PCA and 20 × 20 cm for CRA. The photographs were taken with a Nikon D70S 

digital SLR camera fitted with a Nikkor 20 mm DX lens and housed in Subal D70S 

housing. Lighting was provided by two electronic strobes fitted with diffusers. 

Sampling was conducted during spring and summer of 2006 and 2007. A total of 475 

and 486 photographs were analyzed for PCA and CRA, respectively.

Species identification 
Using these photographs, species were identified to the lowest possible 
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taxonomic level. When further clarification was needed, working with marked plots (see 

below) allowed us to precisely track down an organism in the field and collect a 

voucher specimen. Thus, a total of 208 specimens were collected for further 

identification in the laboratory. Visually similar taxa that could not be consistently 

identified from photographs were grouped as indicated in Table A.1.1. Furthermore, 

because the time of sampling differed for different sites, the species showing clear 

seasonality were excluded from the subsequent analysis (see Table A.1.1). 

Determination of a sampling method for biodiversity assessment in coralligenous 

outcrops 

To determine the sampling method to be used for biodiversity assessment in 

coralligenous outcrops, we established the minimal sampling area (hereafter MSA) and 

minimal sampling effort required to provide good estimates of the species number and 

composition for each studied assemblage. 

a) Estimation of minimal sampling areas.

To estimate MSA, we analyzed the species-area relationship (Arrhenius 1921; 

Braun-Blanquet 1932; Cain 1938; Connor and Mccoy 1979), taking into account the 

spatial arrangement of species, to obtain a good representation of the species pool, as 

well as the structure of the community (Boudouresque 1971; Niell 1977).

Therefore, we applied a spatially explicit design based on contiguous sampling 

of quadrats arrayed to cover rectangular plots. At each site, we employed plots ranging 

from 3.2 to 4 m2 for PCA and from 1.76 to 3.72 m2 for CRA. The plots were marked 

with screws fixed to the rock by putty, and quadrats inside the plots were sequentially 

positioned and photographed. Overall, 51 to 64 quadrats were photographed per site for 

PCA, whereas 44 to 93 quadrats were photographed per site for CRA. 

For further determination of MSA, we followed the method described by 

Ballesteros (Ballesteros 1986). A species-area curve for each plot was produced from 

the subset of all possible combinations of increasing numbers of the originally ordered 

contiguous quadrats. 

Thus, mean values of species numbers for successively larger areas were 

obtained and plotted vs. their respective areas. The curve was fitted to a logarithmic 

function (Ballesteros 1986). 
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S = z lnA + c 

where S is the number of species, and A is the sampling area in cm2. To evaluate the 

model’s performance, r2 was used as a standard goodness-of-fit measure. Based on this 

equation, the parameter k was calculated, which describes the shape of the curve and 

provides information on the qualitative distribution of species within the community 

(Ballesteros 1986; Martin et al. 1993): 

k = e-c/z

The higher the value of k, the larger the sampling area needed to obtain a 

representative number of species in the community due to their more dispersed 

distribution (Ballesteros 1986). In this study, the qualitative minimal sampling area was 

determined as the point at which an increase of the sampling area by 20% yields a 5% 

increment in species number (Molinier point M 20/5) using the following equation: 

A = k * e[ln(1+dA)=dS] 

where dA and d’S are the relative increments of the surface area and species number 

(expressed as percentages), respectively. Hence, the Molinier point chosen in this study 

can be expressed as M 20/5 = Amin = 38.3 * k (Ballesteros 1986). 
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Table 1. Logarithmic functions fitted (goodness of fit measure, r2) to spatially explicit species-

area curves based on the original order of contiguous samples. k parameter and minimal 

sampling areas (Amin) calculated for each study site of the Paramuricea clavata and Corallium 

rubrum assemblages in the 3 localities of the NW Mediterranean. Site names are provided with 

abbreviations. 

Assemblage Locality Site Function r2 k Amin/cm2

Paramuricea 
clavata

Catalonia Medallot
(MME)

y=9.26ln(x)-45.09 0.99 131 4999

Tascó Petit
(MPT)

y=6.84ln(x)-27.16 0.973 53 2029

Carall Bernat
(MRB)

y=8.57ln(x)-40.83 0.988 117 4481

Provence Petit Conglué
(PCO)

y=9.29ln(x)-49.27 0.988 202 7718

Plane-Grotte Pérès
(PGP)

y=10.66ln(x)-55.2 0.992 177 6787

Corsica Gargallu
(SGL)

y=8.68ln(x)-41.59 0.996 121 4622

Palazzino
(SPL)

y=6.85ln(x)-29.27 0.999 80 3050

Palazzu
(SPA)

y=9.04ln(x)-43.57 0.995 124 4755

Corallium 
rubrum

Catalonia Cova de la Reina
(MRN)

y=9.19ln(x)-43.47 0.984 113 4336

Cova del Dofí
(MGD)

y=5.46ln(x)-21.33 0.997 50 1899

Provence Riou-Grotte Sud
(RRS)

y=5.49ln(x)-20.39 0.987 41 1573

Plane-Grotte Pérès
(PGP)

y=5.9ln(x)-19.67 0.969 28 1079

Maïre Grotte
(MGC)

y=5.83ln(x)-22.92 0.999 51 1950

Corsica Palazzu
(SPA)

y=7.61ln(x)-36.51 0.922 121 4645

Passe Palazzu
(SPP)

y=4.48ln(x)-18.79 0.978 66 2530

a) Estimation of sampling effort needed to maximize species number.
In communities with a patchy distribution of species, such as coralligenous 

assemblages  (Ballesteros 2006), combining small separate areas will usually result in a 

higher species count than will be obtained for a contiguous area of the same size 

(Hawkins and Hartnoll 1980). Therefore, we also determined the minimal number of 

separate quadrats required to assess the maximum number of species present at each site 

(hereafter random quadrats). Consequently, we produced a second set of species-area 

curves based on 999 permutations, ignoring the spatial arrangement of these quadrats. 

Finally, we also explored the increase in the number of species associated with 

increasing surface area when the MSAs determined for each assemblage were 
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considered as sampling units (replicates).

Figure 3. Spatially explicit species-area curves for each site within the 3 regions of the NW 

Mediterranean. (A) Paramuricea clavata assemblage and (B) Corallium rubrum assemblage 

(black = Corsica, white = Provence and gray = Catalonia). In a given area, each point represents 

multiple measures obtained from a subset of all possible combinations of increasing numbers of 

the originally ordered contiguous samples, with the curve based on the mean of those measures 

(SD not shown). See Table 1 for site abbreviations.

Tests for pattern assessment within the coralligenous outcrops 

We applied multivariate analytical procedures to explore the suitability of the 

proposed methods for the detection of the variability of biodiversity within 

coralligenous outcrops on different spatial scales and among the two studied 

assemblages. More specifically, we explored whether the methods were able to cope 

with the intraregional variability (hundreds of meters to a few kilometers) and 

interregional variability (hundreds of kilometers) in the species composition of the two 

selected assemblages. Finally, we also explored the existence of differences between 

these assemblages. 
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Table 2. The local species number per unit area estimated through spatially non-explicit 

species-area curves (Fig. 4) for each site within each locality. Total N: total number of species 

recorded at each site; Species: number of species observed by analyzing a different number of 

random quadrats (16, 24, 32) or a combination of contiguous quadrats (368=3 replicates of 8 

contiguous quadrats); % Species: percentage of species observed in comparison to the total 

species number recorded. For random quadrats, calculations were based on 999 permutations of 

replicate samples, whereas for replicates of 8 contiguous quadrats, calculations were based on a 

subset of all potential replicate combinations (SD not shown). 

Species % Species

Assemblage Locality Site Total N 16 24 32 3*8 16 24 32 3*8

Paramuricea
clavata

Catalonia Medallot 
(MME)

52 44 47 49 44 84 90 94 85

Tascó petit
(MPT)

44 40 42 43 40 91 95 97 91

Carall Bernat
(MRB)

50 43 46 48 44 86 92 95 88

Provence Petit Conglué
(PCO)

52 41 45 47 41 79 87 91 79

Plane-Grotte Pérès
(PGP)

58 49 53 54 48 85 91 94 83

Corsica Gargallu
(SGL)

52 41 45 48 40 80 87 92 77

Palazzino
(SPL)

45 36 38 40 36 80 84 90 80

Palazzu
(SPA)

56 45 49 51 45 81 88 91 80

Corallium
rubrum

Catalonia Cova de la Reina
(MRN)

57 40 44 47 43 71 77 82 75

Cova del Dofí
(MGD)

37 28 30 31 31 75 81 85 84

Provence Riou-Grotte Sud
(RRS)

42 33 37 39 36 80 88 92 86

Plane-Grotte Pérès
(PGP)

35 32 33 34 32 90 94 97 91

Maïre-Grotte
(MGC)

37 32 34 35 34 85 92 95 92

Corsica Passe Palazzu
(SPP)

49 32 36 38 34 66 73 77 69

Palazzu
(SPA)

26 21 23 24 21 81 88 92 81
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Because many statistical analyses (e.g., analysis of variance) use replicate 

measurements to account for the amount of variation, we decided to use the MSA 

values obtained in this study (8 contiguous quadrats, see Results and Table 3) as 

replicates. Therefore, prior to analysis, presence/absence data were expressed for 

combinations of 8 contiguous quadrats ( = replicates, measuring 50 × 100 cm for PCA 

and 40 × 80 cm for CRA). The total number of replicates per site ranged from 5 to 10. 

To determine the minimum number of replicates needed to assess biodiversity patterns, 

we compared the outcomes of the analysis using the overall dataset (all replicates 

available per site) and those using 3, 4, 5 and 6 replicates. Similarly, we explored the 

potential effects on biodiversity patterns when smaller sampling unit sizes were used. 

For this purpose, we compared the results of a multivariate analysis based on a dataset 

using MSA values as replicates with those based on a dataset using single quadrats as 

replicates (25 × 25 cm for PCA and 20 × 20 cm for CRA). 

Data treatment 

A Bray-Curtis similarity (Bray and Curtis 1957) matrix was constructed on the basis 

of presence/absence data. Non-metric multidimensional scaling (MDS) ordination 

(Kruskal and Wish 1978) was performed to visualize patterns of community similarities. 

Non-parametric analysis of variance PERMANOVA (Anderson 2001a) was used to 

test for spatial variability. We applied a hierarchical design with 2 factors: Region (3 

levels), as a random factor, and Site (8 and 7 levels for PCA and CRA, respectively), as 

a random factor nested in Region. Tests of significance were based on 9999 

permutations of residuals under a reduced model (Anderson 2001b; Anderson and Ter 

Braak 2003). One-way PERMANOVA was applied to test for differences in species 

composition between the two assemblages (fixed factor). The test of significance was 

based on 9999 unrestricted permutations of raw data. All computations were performed 

using the PRIMER v6 software program with the PERMANOVA+ add-on package 

(Clarke and Gorley 2006; Anderson et al. 2008).
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3.3. Results 

Categories identified 

A total of 93 macrobenthic taxa were identified: 7 macroalgae, 1 protozoan, 39 

sponges, 10 anthozoans, 1 hydrozoan, 5 polychaetes, 21 bryozoans and 9 tunicates 

(Table A.1.1.). Following appropriate grouping and elimination of seasonal taxa (see 

Methods), a total of 77 taxa were retained for further analysis. Of these, 75 taxa were 

recorded in PCA and 72 taxa in CRA. A total of 23 taxa were present in all regions 

within both communities, while 5 taxa were recorded exclusively within PCA and 2 

taxa within CRA (Table A.1.1). Of all identified categories (including taxa and groups), 

approximately 70 could be identified solely from photographs (without samples taken), 

upon a certain training. However, in general, the identification ability depended on the 

quality of photographs examined as well as whether the organisms were present in a 

typical morphological form or not (e.g., for the bryozoan Turbicellepora sp.). 

Determination of sampling method 

Minimal sampling area (MSA) 

Spatially explicit species area curves exhibited a fairly similar shape in the case 

of PCA, whereas they were more variable both in their shape and relative completeness 

in the case of CRA (Fig. 3). A good fit of the function to the data was indicated by r2

values higher than 0.90 in all cases (Table 1). 

The mean value for the qualitative minimal sampling areas was approximately 

5000 cm2 for PCA and half the size, 2500 cm2, for CRA (Table 1). Bearing in mind the 

size of the quadrats used in this study (see methods), approximately 8 contiguous 

quadrats (corresponding to surfaces of 50 × 100 cm for PCA and 40 × 80 cm for CRA) 

should be used to reach the MSAs for both assemblages as a replicate for biodiversity 

assessment studies. Similar inter-site differences in MSAs were observed within each 

assemblage (Table 1). For PCA, the estimated area varied between 2000 and 8000 cm2, 

with the sites from the Provence region showing the largest MSA (around 7000 cm2). In 

the case of CRA, the values obtained were slightly lower, varying between1000 and 

5000 cm2 (Table 1). 
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Estimation of minimum sampling effort to maximize species number. 

Through analysis of all quadrats considered in this study, we determined the 

total number of species found at each site. For PCA, the species number ranged between 

44 and 58, whereas for CRA, the number ranged between 26 and 57 (Table 2). Analysis 

of the species-area curves performed with random quadrats indicated that sampling 

efforts covering total areas of approximately 10.000 cm2 for PCA and 5000 cm2 for 

CRA would detect approximately 80% of all macrobenthic species recorded at the study 

sites (Fig. 4 and Table 2), whereas doubling the analyzed surface yielded more than 

90% of the recorded species (Table 2). Therefore, to obtain good estimates of species 

number, approximately 16 to 32 random quadrats should be analyzed. When MSAs 

were used as sampling units, analysis of only 3 replicates of 8 contiguous quadrats 

provided approximately 80% of the total species found at each site (Table 2). 

Figure 4. Spatially non-explicit species-area curves for each site within the 3 localities of the 

NW Mediterranean. (A) Paramuricea clavata assemblage and (B) Corallium rubrum

assemblage (black = Corsica, white = Provence and gray = Catalonia). Data were based on 999 

permutations of replicate samples (SD not shown). See Table 2 for site abbreviations.
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Test for pattern assessment 

Characterizing the regional variability of biodiversity patterns.

Disregarding the number of replicates used per site (3, 4, 5 or 6), the patterns 

revealed by MDS and PERMANOVA were similar to those obtained using datasets 

based on the maximum possible number of replicates per site (5–10). Here, only the 

results of the analyses based on datasets with 3 and the maximum possible number of 

replicates per site (5–10) are shown (Fig. 5A–5D). For both assemblages, MDS 

ordination revealed 3 distinct clusters, corresponding to different regions (Fig. 5A and 

5B; Fig. 5C and 5D), whereas PERMANOVA indicated significant variability at spatial 

levels for both region and site (Table 3). In the case of PCA, the greatest variation 

occurred at the regional scale, followed by sites and, finally, individual quadrats, 

whereas in the case of CRA, the greatest variation was observed at the site level, 

followed by regions and individual quadrats (Table 3). Similar levels of significance 

and explained variability were found, independent of the number of replicates used 

(Table 3). 

Likewise, the use of a different number of replicates did not change the outcome 

of comparisons of selected assemblages. In all cases, the MDS ordinations performed 

revealed two distinct clusters, clearly separating one assemblage from the other (Fig. 5E 

and 5F), while PERMANOVA indicated significant differences between them (Table 

4). 
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Table 3. Summary of PERMANOVA analyses based on Bray-Curtis dissimilarity for 

macrobenthic taxa within the studied assemblages. The results were obtained from datasets 

based on different number of replicates of 8 contiguous quadrats and individual quadrats. VC = 

Variance Components; BC diss = Bray Curtis dissimilarity. P (perm) values: *<0.05. **<0.01. 

***<0.001. 

Sampling 
unit and 

effort

A) Paramuricea clavata assemblage B) Corallium rubrum assemblage

Source df Pseudo-F VC BC diss% df Pseudo-F VC BC diss%

A1)Sampling unit size 50 cm × 100 cm B1)Sampling unit size 40 cm × 20 cm

3 
replicates

Locality 2 56.19** 669.28 25.87% 2 28.74* 408.70 20.22

Site (Locality) 5 40.83*** 287.16 16.95% 4 62.53*** 418.79 20.46

Residual 16 279.45 16.72% 14 239.15 15.47

Total 23 20

4 
replicates

Locality 2 5.66** 625.67 25.01 2 2.52* 332 18.22

Site (Locality) 5 4.91*** 280.34 16.74 4 9.54*** 447.64 21.16

Residual 24 287.08 16.94 21 209.57 14.48

Total 31 27

5 
replicates

Locality 2 6.17** 632.5 25.67 2 2.75** 363.79 19.07

Site (Locality) 5 6.17** 308.11 16.74 4 9.36*** 424.56 20.61

Residual 32 271.23 16.47 28 253.97 15.94

Total 39 34

6 
replicates

Locality 2 5.74** 632.5 25.15 2 2.64** 342.44 18.51

Site (Locality) 5 8.32*** 308.11 18.00 4 11.14*** 434.3 20.84

Residual 50 252.65 16.00 34 249.31 15.79

Total 57 40

All 
replicates

Locality 2 5.29** 607.82 25.00 2 2.33* 287.72 17.00

Site (Locality) 5 9.94*** 331.93 18.00 4 13.76*** 440.91 21.00

Residual 50 267.3 16.00 46 249.28 16.00

Total 57 52
A2) sampling unit size 25 cm × 25 cm B2)Sampling unit size 20 cm × 20 cm

All 
quadrats

Locality 2 2.68** 529.53 23.00 2 2.52 396.64 20.00

Site (Locality) 5 37.32*** 791.64 28.00 4 39.37 548.78 23.00

Residual 499 1367.3 37.00 34 932.88 31.00

Total 506 40
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Figure 5. Non-metric multidimensional scaling (MDS) for all possible replicates and 3 

replicates per site within the Paramuricea clavata (PCA) and Corallium rubrum (CRA) 

assemblages. Each replicate corresponds to 8 contiguous quadrats, creating a sampling unit of 

50×100 cm for PCA and 40×80 cm for CRA. Three studied regions of the NW Mediterranean 

are depicted by colors (dark blue  =  Corsica, green  =  Catalonia and light blue  =  Provence). See 

Table 1 for site abbreviations.
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Table 4. Summary of PERMANOVA analyses for the comparison of Paramuricea clavata

(PCA) and Corallium rubrum (CRA) assemblages. The analyses were based on Bray-Curtis 

dissimilarity for macrobenthic taxa within the studied assemblages. The results were obtained 

from datasets based on different number of replicates of 8 contiguous quadrats and individual 

quadrats (25 × 25 cm for PCA and 20 × 20 cm for CRA). VC = Variance Components; BC diss 

= Bray Curtis dissimilarity; P (perm) values: *<0.05; **<0.01; ***<0.001. 

Sampling unit and effort Source df Pseudo-F VC BC diss (%)

3 replicates Assemblage 1 14.03** 558.22 23.63
Residual 43 959.82 30.98
Total 44

All replicates Assemblage 1 35.58*** 561.93 23.71
Residual 109 899.97 30.00
Total 110

All quadrats Assemblage 1 265.48** 1072.4 32.75
Residual 959 2016.6 44.91
Total 90

b) Analyzing the effect of different sampling unit sizes on biodiversity pattern 
assessment. 

The comparison of patterns using datasets based on individual quadrats (N = 475 

for PCA and N= 486 for CRA) and 3 (or more) replicates of 8 contiguous quadrats 

revealed differences in the patterns and hierarchy of the spatial scales considered. 

In the case of PCA, MDS ordination performed on the dataset based on 

individual quadrats revealed one distinct cluster corresponding to Corsica, whereas 

Catalonia and Provence overlapped (Fig. 5A). In the case of CRA, all clusters 

corresponding to different regions overlapped to a certain extent (Fig. 5B). In contrast, 

the MDS ordination performed on the dataset based on replicates of 8 contiguous 

quadrats clearly distinguished the regional clusters in both assemblages (Fig. 5A and 

5C). While variability remained significant at both the region and site spatial levels, 

regardless of the dataset used, PERMANOVA revealed a different hierarchy of spatial 

scales depending on the sampling unit used. For both assemblages, in the case of 

datasets based on individual quadrats, the greatest component of variation was 

associated with the smallest spatial scale, i.e., individual quadrats (Table 4), whereas in 

the case of datasets based on replicates of 8 contiguous quadrats, the greatest component 

of variation was observed at larger spatial scales (regional level for PCA and site level 

for CRA). Finally, the use of smaller sampling units (individual quadrats) for 
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comparison of selected assemblages revealed similar patterns to when larger sampling 

units (replicates of 8 contiguous quadrats) were used (Fig. 5C vs. Fig. 5E and 5F; Table 

2), although the former method did not account for the particular structure of the 

assemblages because sampling unit size employed did not comply with the MSA. 

Figure 6. Non-metric multidimensional scaling (MDS) for the studied assemblages and their 

comparison. (A) Paramuricea clavata assemblage (sampling unit of 25 × 25 cm), (B) Corallium 

rubrum assemblage (sampling unit of 20 × 20 cm) and (C) comparison of P. clavata and C. 

rubrum assemblages in the 3 regions of the NW Mediterranean (dark blue = Corsica, green = 

Catalonia and light blue = Provence). See Table 2 for site abbreviations. 
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3.4. Discussion 
Here, we propose, for the first time, a standardized biodiversity assessment method 

for coralligenous assemblages that provides good estimates of assemblage structure and 

species composition based on photographic sampling and determination of the 

presence/absence of macrobenthic species. We used an extensive photographic survey 

(almost 1000 photographs) covering several spatial scales (hundreds of meters to 

hundreds of kilometers) and including 2 different coralligenous assemblages (PCA and 

CRA), which allowed us to determine the MSA for each assemblage and optimize the 

sampling effort to assess biodiversity patterns and provide estimates of species number. 

Furthermore, we propose MSAs as unitary sampling units for variability studies 

requiring replicates. Three replicates measuring 5000 cm2 for PCA and 2500 cm2 for 

CRA were found to be sufficient to maximize the species number and to assess the main 

biodiversity patterns present (Tables 2 and 3). To ensure species identification and to 

facilitate the sampling procedures, we propose that photographs of smaller quadrats than 

the MSA arrayed to cover MSA surfaces should be obtained (e.g., 8 quadrats of 25 × 25 

cm for PCA and 8 quadrats of 20 × 20 cm for CRA). 

By combining a photographic survey and data acquired at the presence-absence 

level, the proposed method allows a large number of samples to be obtained during the 

limited diving time periods that are possible in deep water habitats (down to 50 m) 

(Bohnsack 1979; Parravicini et al. 2009) and thus, to cope with the high spatial 

heterogeneity of coralligenous assemblages, while greatly reducing image time 

processing, which is one of the main constrains of photosampling. 

Recent studies comparing commonly used sampling methods in hard bottom 

communities also advocate the use of photo-quadrats attaining adequate sampling areas 

in change/impact studies or whenever a large number of replicates are needed (Leujak 

and Ormond 2007; Parravicini et al. 2009). Additionally, the proposed protocol enables 

obtaining permanent objective records of both qualitative and quantitative data that can 

be further analyzed. For instance, analysis of species presence/absence datasets allows 

identifying the determinant species for such assemblages (SIMPER analysis, Primer 

(Clarke 1993)), which can be further used to focus the quantitative (cover area) studies 

on these determinant species and thus optimize the image processing involved, 

alongside other methods that improve time efficiency in quantitative studies, such as 

recording frequencies instead of estimating cover (Parravicini et al. 2010) and/or 
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applying an automated software (Teixidó et al. 2011). Likewise, analysis of species 

presence/absence datasets allows establishment of species area relationships (SARs), 

which have been recently proposed as indicators of community-level changes in 

biodiversity and may be useful in quantifying human impact (Tittensor et al. 2007). 

One of the key aspects of the proposed method is the determination of MSAs as 

sampling units for the characterization of the coralligenous assemblages. To our 

knowledge, MSAs had only previously been estimated for studying cnidarian species 

dwelling in coralligenous assemblages (Weinberg 1978; Gili and Ballesteros 1991). 

Interestingly, both studies determined comparable values for areas required to reach at 

least 80% of species: approximately 5000 cm2 for PCA and 4000cm2 for CRA. In the 

present study, use of the MSA as a sampling unit was crucial for the assessment of 

biodiversity patterns. Comparison of the patterns obtained using MSA and smaller 

individual quadrats (used in the photo sampling) as replicates clearly showed a shift in 

the hierarchy of the estimates of variance components from large to small spatial scales. 

In general, the variation in the observed similarities among samples increases as the size 

of the sampling unit decreases (Nekola and White 1999). Thus, using sampling units 

smaller than the MSA may have resulted in increased stochastic variability in the 

species composition at the smallest spatial scale. Similar effects have been reported 

previously in different habitats (e.g., (Steinitz et al. 2006; Parravicini et al. 2009; 

Rocchini et al. 2010)). However, previous studies on coralligenous outcrops adopted 

sampling units ranging between 240 and 600 cm2 (e.g., (True 1970; Hong 1983; 

Ferdeghini et al. 2000; Acunto et al. 2001; Cocito et al. 2002; Piazzi et al. 2004; Balata 

et al. 2005; Virgilio et al. 2006; Piazzi et al. 2010), which were therefore much lower 

than MSA values, and found the highest variability at the replicate scale (e.g., 

(Ferdeghini et al. 2000; Acunto et al. 2001). Hence, we emphasize the necessity to 

determine MSAs and use them as sampling units in the assessment of biodiversity 

patterns within coralligenous (and other) assemblages. 

Although coralligenous assemblages harbor a significant proportion of the 

biodiversity that exists in the Mediterranean Sea (Ballesteros 2006), little is known 

about the biodiversity patterns within them. Bearing in mind the current pressures on 

coralligenous habitats (Ballesteros 2006), methods are urgently needed to assess 

prevailing patterns, evaluate impacts to which they are subjected and provide baseline 

data to explore future trajectories of these high diversity assemblages. We contend that 
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the adoption of the method proposed in this study could furnish the required data to 

address these timely issues. In our opinion, three main research domains could be easily 

addressed using this method in a reasonable time framework to facilitate the 

development of meaningful management and conservation plans for coralligenous 

assemblages. 

First, the method displayed potential for the characterization of biodiversity 

patterns. Its application to the analysis of spatial patterns at different scales (1 to 103 

km), including areas with differential environmental conditions and anthropogenic 

pressures, could help to establish conservation status baselines for coralligenous 

assemblages and, consequently, identify potential management actions needed for the 

recovery of areas with a low conservation status. Additionally, the method developed in 

this study could be used to address rarely surveyed deep coralligenous banks (extending 

from 60 down to 120 m, depending on the geographical position and local light 

conditions (Ballesteros 2006)), as ROVs (remotely operated vehicles) or research 

submersibles have the operational capability to collect high-resolution digital 

photographs that we contend are compatible with the proposed method. However, it has 

to be emphasized that the application of the proposed method for the assessment of deep 

coralligenous banks would be comparatively more difficult, since in our study scuba 

divers could manage to obtain the images even in coralligenous assemblages displaying 

high structural complexity (e.g. high density of vertical stratum) and/or developing on 

complex substrates such as overhangs or vaults. Obtaining the required sets of images 

with remote devices can be more challenging in deep coralligenous banks due to 

operational difficulties. Despite of this, we emphasize that the applicability of our 

approach is already suitable here by adapting the process of image acquisition. For 

instance, to ensure acquisition of spatially contiguous photographs of a standard size in 

these conditions of reduced operability at depth, individual still photographs could be 

obtained from a high resolution video transect. Besides, we strongly recommend to 

verify the actual number and size of replicates during the preliminary assessment, as the 

knowledge on the structure of deep coralligenous banks is very scarce. Finally, we 

believe that future technical advancements and improved operating abilities of 

ROVs/submersibles ensure the interest for developing biodiversity assessment methods 

based on the acquisition of images. 

Second, the method could be applied to the evaluation of temporal changes in 
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coralligenous assemblages, which would allow identification of impacts on the 

monitored assemblages. In this sense, it is crucial to establish temporal baselines to 

properly evaluate the significance of observed changes. Our results detected significant 

differences at the intra-regional scale, indicating that a reliable assessment of temporal 

trends should be carried out at the site level. 

Finally, the proposed method proved to be sufficiently sensitive to detect 

significant differences between the studied coralligenous assemblages at both the 

community and geographic levels. Considering that coralligenous outcrops are regarded 

as a complex of assemblages (Ballesteros 2006), this approach may help to provide an 

objective basis to identify assemblages within coralligenous outcrops. 

Application of unified sampling approaches over different regions, depths and 

times will allow tremendous progress to be made in our understanding of the 

biodiversity patterns of coralligenous outcrops. In this study, we developed a robust 

method for biodiversity assessment with the intention of providing a useful tool for 

management and conservation planning, monitoring and research programs focused on 

one of the most highly valued and emblematic Mediterranean habitats. We further 

contend that this method is potentially applicable in other benthic ecosystems. 
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Supporting Information 

Table A.1.1. List of the taxa identified in this study. List of the taxa identified within the 

assemblages dominated by the red gorgonian Paramuricea clavata and the red coral 

Corallium rubrum in three regions of the NW Mediterranean. 
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Abstract

Data on species diversity and structure in coralligenous outcrops dominated by 

Corallium rubrum are lacking. Gathering these data is needed to build robust baselines 

in order to assess the responses of this habitat highly threatened by anthropogenic 

disturbances (e.g. mass mortality events, sedimentation and invasive species). A 

hierarchical sampling including 3 localities and 9 sites covering more than 400 km of 

rocky coasts in NW Mediterranean (Catalan coast -Spain-, Provence and NW Corsica -

France-), was designed to characterize the spatial variability of structure, composition 

and diversity of perennial species inhabiting coralligenous outcrops dominated by C. 

rubrum. From photographic surveys, we estimated species/taxa composition and 

abundance. We pooled the identified species/taxa into eight morpho-functional groups 

according to their life span and growth to characterize the structural complexity of the 

outcrops. We analyzed the number, size and shape of patches for each morpho-

functional group to describe their spatial arrangement in the outcrop. According to 

ordination analyses, the species composition and structural complexity of red coral 

assemblages differed consistently across all spatial scales considered. The lowest and 

the highest variability were found among localities (separated by 100 km) and within 

sites (separated by 1-5 km), respectively supporting differences in diversity indices 

(alpha, beta and gamma). The morpho-functional groups displayed a consistent spatial 

arrangement across study sites. These results contribute to filling the gap on the 

understanding of assemblage composition and structure in the emblematic 

Mediterranean coralligenous outcrops dominated by C. rubrum over large spatial scales. 
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4.1. Introduction 

Fine-scale and high-resolution knowledge on the variability of relevant habitats, 

such as the coralligenous benthic assemblages, covering a range of spatial scales is 

important for effective management and conservation of coastal marine habitats 

(Ballesteros 2006; Giakoumi et al. 2013; Martin et al. 2014; Gatti et al. 2015a). The EU 

Habitats Directive (92/43/CE) classified coralligenous outcrops as a key habitats and 

foster some of the richest assemblages found in Mediterranean, harboring 

approximately 10% of marine Mediterranean species (Pérès and Picard 1964; Laubier 

1966; Ros et al. 1985; Boudouresque 2004; Ballesteros 2006). Most of the species that 

characterize these assemblages are long-lived algae and sessile invertebrates, exhibit 

low dynamics and belong to various taxonomic groups (Garrabou et al. 2002; 

Ballesteros 2006; Teixidó et al. 2011b). Coralligenous outcrops are being affected by 

several impacts such as nutrient enrichment, overexploitation, invasive species, increase 

of sedimentation, mechanical impacts as well as climate change, resulting in dramatic 

consequences for many species (Balata et al. 2007; Garrabou et al. 2009; Cebrian et al. 

2012; Piazzi et al. 2012; Teixidó et al. 2013; Cecchi et al. 2014).

The precious Mediterranean red coral Corallium rubrum (L. 1758) is considered 

as one of the engineering species inhabiting coralligenous outcrops (Teixidó et al. 

2011b; Kipson et al. 2011). This species is typically associated with animal-dominated 

communities growing in dimly lit habitats, such as caves and smaller cavities, vertical 

cliffs and overhangs, from 10 to 200 m in depth (Carpine and Grasshoff 1975; Weinberg 

1978). C. rubrum is a slow-growing and long-lived species, can play a paramount role 

in the structure and functioning of coralligenous habitats, through their trophic activity, 

biomass and perennial biogenic structure (Gili and Coma 1998; Garrabou and Harmelin 

2002; Tsounis et al. 2010). Mature populations comprising large-sized colonies of C. 

rubrum enhances habitat complexity (Garrabou and Harmelin 2002), which it has been 

related to influence the maturity of ecosystems by increasing the ratio between biomass 

and productivity (Eriksson et al. 2006), as well as biodiversity and ecosystem 

functioning (Levin et al. 2001). This species is threatened mainly by intensive historical 

harvesting, causing an overall shift in the population structure with a decrease in 

biomass and colony size (Bramanti et al. 2014). Warming and the potential effects of 

ocean acidification are also major threats affecting shallow populations (Garrabou et al. 

2001; Garrabou et al. 2009; Cerrano et al. 2013; Bramanti et al. 2013). In general, it has 
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been demonstrated that a decrease in the abundance of habitat-forming species can lead 

to a rapid fragmentation in community structure and loss of species benefiting from 

structural complexity provided by habitat-forming species (Hughes 1994; Cerrano et al. 

2013; Ponti et al. 2014; Valls et al. 2015). Despite the key ecological role of C. rubrum

in the structure and functioning of coralligenous outcrops, there are few studies dealing 

with the characterization and variability at fine scale of the whole assemblage over large 

regional scales (but see (Giannini et al. 2003; Virgilio et al. 2006)).

Landscape ecology approach has been successfully applied to marine benthic 

communities and provided new insights on the structural and ecological processes 

(Garrabou et al. 1998; Teixidó et al. 2002; Wedding et al. 2011). Landscape ecology 

emphasizes the interaction between spatial patterns and ecological processes across a 

range of spatial and temporal scales (Forman and Godron 1986; Turner et al. 2002; 

Turner 2008). This analysis is based on the notion that communities can be observed as 

patch mosaics, where patches correspond to different categories (e.g. species). From this 

perspective, community spatial patterns and dynamics can be analyzed focusing on the 

characteristics of the patch mosaics (e.g. number, size and complexity of patches). 

Within this context, approaches that provide new perspectives on how environmental 

conditions and biological interactions affect the structural pattern are highly needed in 

marine habitats. 

To our knowledge, few studies addressing coralligenous assemblages have 

extended to larger spatial scales up to 200 km of coastline (Casas-Güell et al. 2015), and 

mostly of them focused on the phytobenthic component (Piazzi et al. 2004; Piazzi et al. 

2010). Thus, the structure of coralligenous outcrops has been poorly understood because 

there are no spatial studies or baseline data at the assemblage level over large scales. 

This situation has prevented a proper assessment of the current state of biodiversity and 

potential impact assessments in this valuable assemblage (but see (Gatti et al. 2015a)). 

Precise, high-resolution and quantitative biodiversity data dealing to encompass 

regional spatial patterns are required to furnish and implement monitoring schemes for 

conservation facing with global change. As coralligenous assemblages are dominated by 

long-lived species, declining or recovery trajectories are more difficult to detect due to 

the slow pace of their population dynamics (Teixidó et al. 2011b; Teixidó et al. 2013; 

Gatti et al. 2015b). In this context, high quality and large scale biodiversity datasets are 

a basic resource that furnishes the essential tools to provide information to promote 
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sound conservation actions (Magurran et al. 2010). Thus, high-resolution quantitative 

data is very important in order to obtain an estimate of the abundance for the whole 

community and the present study provides fine-scale and high-resolution quantification 

in the different components of biodiversity of coralligenous assemblages on a regional 

scale. Moreover, we also characterized the spatial configuration by analyzing the 

number, the size and the shape of patches. 
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4.2. Materials and methods 

Study sites and sampling design 
This study was conducted in three localities in the NW Mediterranean region 

(Catalonia; Provence and Corsica), covering more than 400 Km2 (5º E-W) and more 

than 200 Km of the coastline (Fig. 1).

Figure 1. Map showing the Mediterranean geographic area where the photographic surveys 

were conducted.

We used a hierarchical, nested sampling design to characterize and quantify 

structure and diversity patterns of coralligenous outcrops dominated by the red coral 

Corallium rubrum. At each locality, three sites (separated by approximately 1 km) were 

sampled as follows: in Catalonia, Cova del Dofí (CatDof), Cova de la Reina (CatRei) 

and Pota de Llop (CatLlo) located in the Natural Park of Montgrí, Medes Islands and 

Baix Ter; in Provence, Ille Plane-Grotte Pérès (ProPer), Riou Sud (ProRio) and Maïre 

Grotte (ProMai), located in Riou Archipelago in the National Park des Calanques; and 

in Corsica, Palazzu (CorPal), Palazzinu (CorPlu) and Passe Palazzu (CorPas), located in 

the Scandola Natural Reserve (see Appendix I for latitude/longitude coordinates).
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At each site, three transects approximately 0.32 m2 in size (80 cm long and 40 

cm wide) were set up between depths of 15-40 m. Transects area was selected based on 

the results obtained from a previous study addressing the minimal sampling area (MSA) 

for this habitat (Kipson et al. 2011). Transects from all sites were sampled from 2007 to 

2013. Each transect was monitored photographically using quadrats of 20 × 20 cm (400 

cm2) to facilitate species identification being a set of 8 contiguous quadrats the replicate 

sampling unit used (0.32 m2). A total of 212 photographs (8 photos × 3 replicates × 9 

sites) were analyzed. The photographs were taken with a Nikon D70S digital SLR 

camera fitted with a Nikkor 20 mm DX lens (3000 × 2000 pixel resolutions) and housed 

in a Subal D70S housing. Lighting was achieved by two electronic strobes fitted with 

diffusers.

Analysis of photographs 

From each photograph, all individuals of sessile macrobenthic species were 

identified at the lowest taxonomic level and classified within 8 morphofunctional 

groups (hereafter MFG) based on their taxonomy, life-span and growth form (Table 1) 

(Casas-Güell et al. 2015). We recorded the number (NP) and measured the size of each 

individual species present, which were designed as “patch” using the SEASCAPE 

software (Teixidó et al. 2011a). For perennial, long-lived and slow-growing species, 

hereafter “perennial species” (see Appendix A.2.2), we also calculated the mean patch 

size (MPS: mm2) and the mean shape index (MSI) for all individual patch species. MSI 

was calculated applying the formula (Cebrian and Uriz 2007): 

/Api=MSI Aci

Were Ap is the area of each patch and Ac is the area of a perfect circle with 

perimeter equivalent to the patch. This indices measures patch circularity and a value of 

1 represents a perfect circle, while 0 is approached as the patch outline becomes more 

irregular. NP, MPS and MSI have been evaluated to perform well detecting spatial 

seascape patterns along a depth gradient of subtidal Mediterranean rocky communities 

(Garrabou et al. 1998; Garrabou et al. 2002). 

To characterize the structural complexity, for each MFG we calculated (1) the 

number of perennial species (2) their abundance as a % cover and number of patches 

(NP) and (3) the MPS and MSI. For the Animal tree morphofunctional group (e.g. 
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Corallium rubrum, Paramuricea clavata), cover was measured as the surface attached 

to the substrate as the photographs were taken to capture the cover of the whole 

assemblage and not the three-dimensionality of these species. 

Table 1. Biological categories used in this study combining taxonomy, life span and 

morphological growth forms (adapted from Garrabou et al. 2002 and Teixidó et al. 

2011). 

Biological categories Description

1- Seasonal algal turf Annual erect or semi-erect fleshy algal species, with one or 
multiple zones of attachment to the substratum; generally 
constitutes algal cushions or thin sheets with mixtures of algal 
species.

2- Seasonal animal turf Small seasonal animal species, mainly bryozoans and hydrozoans; 
usually is forming animal cushions or thin sheets with mixtures 
species.3- Seasonal mixture complex 

turf
Small seasonal algae and animal species (mainly bryozoans and 
hydrozoans), sediment, detritus and fragments; normally forming 
cushions or thin sheets with mixtures of species.

4- Perennial algal encrusting Species growing mainly as two dimensional sheets; more or less 
completely attached to the substratum.

5- Perennial algal erect Species attached to the substratum usually with a unique zone 
(visible even in winter) of basal attachment to the substratum.

6- Perennial algal turf –
invasive 

Perennial dense thick filamentous turf algae with the ability to 
maintain permanent carpets (e.g. the invasive species 
Womersleyella setacea).

7- Perennial animal 
encrusting

Species of sponges, cnidarians, bryozoans and tunicates growing as 
two dimensional sheets; more or less completely attached to the 
substratum.8- Perennial animal massive Mound species of sponges and cnidarians with vertical and lateral 
growth; normally attached to the substratum all along their basal 
area.9- Perennial animal tree Erect species of cnidarians and bryozoans, more or less branched; 
usually with a single point of attachment to the substratum.

10- Perennial animal cup Solitary corals attached to the substratum all along their basal area. 
11- Perennial animal boring Excavating organisms living into the rock (e.g. Cliona viridis).

12- Perennial animal epibiont Species growing over other invertebrates or calcareous algae 
(mainly polychaetes e.g. Salmacina dysteri or Filograna implexa
and bryozoans e.g. Chartella tenella).

Spatial patterns of diversity metrics for perennial species were assessed by 

quantifying the number of species (average number of species per sampling unit) and 

beta diversity (multivariate distance between group-centroids determined with the 

PERMDISP procedure). PERMDISP is an approach used to compare the degree of 

multivariate dispersion of different groups of samples based on a distance matrix. When 

PERMDISP is used on a Jaccard distance presence/absence matrix, it is directly 

interpretable as a test for similarity in beta diversity among groups (Anderson et al. 
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2006; Anderson et al. 2011). Additionally, the pool of species at locality spatial level or 

gamma diversity (the number of species observed within the sites at each locality 

studied) was calculated. 

Statistical analyses 

The variability of structural complexity of assemblages, both in terms of 

morphofunctional groups and specific composition of perennial species assemblages 

over spatial scales was tested based on the hierarchical sampling design. It included 2 

spatial factors: Locality (random factor, 3 levels), Site (random factor, 3 levels, nested 

in Locality). A non-parametric analysis of variance, PERMANOVA (Anderson and 

Robinson 2001; Anderson 2001; Anderson et al. 2008), was applied using Bray-Curtis 

and Euclidean distances for multivariate and univariate analyses, respectively. 

To visualize similarity patterns at different spatial scales, a non-metric multi-

dimensional scaling (nMDS) ordination analysis was performed based on the Bray–

Curtis similarity measure for presence/absence and abundance (cover %) data. 

Furthermore, a similarity percentage procedure analysis (SIMPER, Clarke and Warwick 

1994) was performed to identify the percentage contribution of taxa and MFG to the 

significant dissimilarities among sites and localities. 

Numerical analyses were computed using the program Primer v6 with the 

PERMANOVA + add-on package.
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4.3. Results 

Species composition

A total of 112 macrobenthic taxa were identified across the region studied: 20 

macroalgae, 1 protozoan, 41 sponges, 6 hydrozoans, 11 anthozoans, 1 mollusk, 3 

polychaetes, 21 bryozoans and 8 tunicates (see Appendix II for the species list and the 

assignment to the various morphofunctional groups). Of these taxa, 81 were perennial 

and 31 seasonal. Perennial taxa represented between the 30 and 55 % of cover, whereas 

seasonal species hardly reached 10 % cover in all sites (Table A.2.3).

Structural complexity - morphofunctional groups

Number of species and cover %

The number of species and % cover for each MFG was similar among Locality 

but showed significant differences among Sites (Figs. 2A and B, Table 2). 

Table 2. PERMANOVA analysis on the number and % of cover of perennial species of the 

morpho-functional groups on the basis of Bray-Curtis dissimilarity measure. 

Source of 
variation

df SS MS Pseudo-F P(perm)

Number 
of species

Locality 2 236.07 118.04 1.6344 0.2492

Site (Locality) 6 433.33 72.222 8.945 0.0001
Residual 18 145.33 8.0741
Total 26 814.74

Cover % Locality
Site (Locality)
Residual
Total

2
6
18
26

3884.4
7880.7
1885.6
13651

1942.2
1313.4
104.76

1.4787
12.538

0.2275
0.0001
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Figure 2. Number of perennial species ± SD (A) and % of cover ± SD (B) of each morpho-

functional group and study site. 
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The principal group in terms of number of species and % cover was the Animal 

encrusting, with values ranging from 10 ± 2 to 24 ± 2.00 species in CorPal and ProPer, 

respectively and % cover ranging from 10.91% ± 1.81 to 39.81% ± 3.26 in CorPal and 

CorPas, respectively. The second MFG characterizing the assemblage of Catalonia and 

Provence in terms of number of species and % cover was Animal massive with % cover 

ranging from 3.96% ± 0.47 to 14.76% ± 4.21 in CorPas and CatDof, respectively. In 

contrast, although the Animal massive was the second group in terms of number of 

species in Corsica, the second most abundant group in terms of % cover was Animal 

cup. Animal tree was, in general, the less abundant MFG in terms of species number 

(ranging from 1 ± 0 to 4 ± 1 species) and moderate to low % cover (ranging from 1.58% 

± 0.48 to 8.68% ± 2.21 in CorPal and ProMai). The remaining categories Algae 

encrusting, Algae turf and Animal epibiont were represented by very few species (Fig 

2A). Animal boring and epibionts, Algal encrusting and turf also showed the lowest % 

of cover values and exhibited a higher degree of variability. 

Structural complexity – specific composition

The structure and specific composition of perennial species assemblages differed 

significantly among Sites as well as among Localities regardless of the measure 

analyzed (presence/absence and % cover, Fig. 3; Table 3). Accordingly, the variability 

explained for each of the spatial factors showed a consistent pattern: the highest 

percentage of variation was found at Site spatial level (values ranging from 21.14% to 

35.07%) followed by Locality (values from 15.85% to 27.43%) and finally the residuals, 

at the sampling unit level, which showed the lowest source of variability (values from 

14.92% to 23.32%). The estimates of variance components presented higher values 

for % cover than for presence/absence (Table 3). 
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Table 3. PERMANOVA analyses of community structure and specific composition on the basis 

of Bray-Curtis dissimilarity measure. 

Abundance Source of 
variation

df SS MS Pseudo-F P(perm) ECV
(Sq. root)

Cover (%) Locality 2 22015 11007 2.5998 0.0116 27.434
Site (Locality) 6 25403 4233.9 7.7889 0.0001 35.073
Residual 18 9784.5 543.58 23.315
Total 26 57202

Presence
and

absence

Locality
Site (Locality)
Residual
Total

2
6
18
26

7645.5
9375.6
4005.6
21027

3822.7
1562.6
222.53

2.4464
7.0219

0.0105
0.0001

15.847
21.135
14.917

Figure 3. Non-metric multidimensional scaling (nMDS) ordination plot of perennial 

macrobenthic species in the three localities of the NW Mediterranean Sea. Analysis performed 

on Bray-Curtis dissimilarities for (A) presence-absence data and (B) for % of cover. For each 

locality (orange = Corsica; purple = Provence; green = Catalonia), the three sites are shown by 

different shapes. 
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Parallel to these results, the SIMPER analysis showed an overall average 

dissimilarity (up to 75%) in % cover across localities (Table 4a,b shows the number of 

species contributing to 50% of the similarity and dissimilarity) was approximately 

76.78% between Provence and Corsica, 68.38% between Corsica and Catalonia and 

66.01% dissimilarity between Provence and Catalonia. Focusing in the Animal 

encrusting differences on the relative abundance of the sponges Crella (Grayella) 

pulvinar, Pleraplyssilla spinifera, Dendroxea lenis and the bryozoan Gregarinidra 

gregaria mainly explained the dissimilarities among localities. Regarding Animal 

massive, dissimilarity among Locality were mainly explained by differences on the 

relative abundance of Oscarella sp. and Petrosia ficiformis. 
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Table 4a. Species by morpho-functional groups contributing more than 50% to the similarity of studied regions. The underlined species are those 

contributing to the similarity of most of the sites. Similarity analysis based on % cover dataset. The average similarity for the NW Mediterranean was 

35.45% 

Similarity
Provence (61.51%) Corsica (66.01%) Catalonia (68.38%)

Animal encrusting Pleraplysilla spinifera (35.35%)
Crella (Grayella) pulvinar (8.65%)
Encrusting sponge n.idd. (4.36%)
Scalarispongia scalaris (4.36%)
Serpulidae (1.69%)

Pleraplysilla spinifera (9.36%)
Encrusting Bryozoans (15.35%)
Encrusting sponge n.idd. (7.01%)
Gregarinidra gregaria (6.17%)

Pleraplysilla spinifera (9.97%)
Encrusting sponge n.idd. (13.50%)
Encrusting Bryozoans (6.28%)

Animal massive Oscarella sp. (5.88%)
Petrosia ficiformis (2.71%)
Ircinia variabilis (2.40%)
Aplysina cavernicola (2.27%)

Haliclona mucosa (4.78%) Petrosia ficiformis (5.27%)

Animal tree Corallium rubrum (17.71%) Corallium rubrum (3.91%)
Reteporella grimaldii (3.75%)

Corallium rubrum (11.89%)

Animal cup Caryophyllia inornata (2.89% )
Hoplangia durotrix (2.45%)

Leptopsammia pruvoti (30.78%) Leptopsammia pruvoti (8.87%)
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Table 4b. Species by morphofunctional groups contributing more than 50% to the dissimilarity of studied regions. The underlined species are those 

contributing to the similarity of most of the sites. Analysis based on cover (%) dataset. n.idd. = non identified.

Dissimilarity
Provence VS Corsica (76.78%) Provence VS Catalonia (66.01%) Catalonia VS Corsica (68.38%)

Animal 
encrusting

Pleraplysilla spinifera (12.57%)
Gregarinidra gregaria (9.04%)
Encrusting Bryozoan n.idd. (4.61%)
Crella (Grayella) pulvinar (4.55%)

Pleraplysilla spinifera (14.60%)
Scalarispongia scalaris (4.31%)
Crella (Grayella) pulvinar(3.89%)
Dendroxea lenis (3.84%)
Parazoanthus axinellidae (3.35%)

Gregarinidra gregaria (11.32%)
Pleraplysilla spinifera(6.19%)
Encrusting Bryozoans (4.81%)
Haliclona (Sostella) mucosa (3.62%)
Sponge n.idd. (3.87%)
Parazoanthus axinellae (3.56%)
Crambe crambe (3.36%)
Dendroxea lenis (3.33%)

Animal 
massive

Oscarella sp. (4.59%) Petrosia ficiformis (5.24%)
Oscarella spp. (4.54%)

Petrosia ficiformis (5.18%)

Animal cup Leptopsammia pruvoti (10.02%) - Leptopsammia pruvoti (9.42%)



82 

Diversity indices 

The mean ± SD values of alpha diversity remained similar for all Localities but 

showed significant differences among Sites (Fig. 4a; Table 5). 

Table 5. Univariate analysis of variance for alpha diversity with permutation tests 

(PERMANOVA) based on Euclidian distances. Beta diversity (% unshared species) tested with 

PERMDISP routine. 

Diversity metrics Source df SS MS Pseudo-F P-value
Species number Locality 2 156.22 78.11 0.39591 0.6709

Site (Locality) 6 1183.8 197.3 18.626 0.0001
Residual 18 190.67 10.60
Total 26 1530.7

Beta diversity
(% unshared species)

Source df1 df2 F P-value
Locality 2 24 1.2974 0.3316
Site 8 18 2.7976 0.2285

Alpha diversity showed the highest variability in Catalonia and Corsica (Fig. 4a) 

with mean values ranging from 24 ± 2 to 41± 5.3 and 21 ± 4.2 and 40 ± 3.1, 

respectively. The variability in Corsica was due to CorPlu that showed the highest 

values for alpha compared with CorPal and CorPas. Provence presented consistent mean 

alpha diversity values at all Sites ranging from 30 ± 5.8 to 39 ± 2.5 (Fig. 4a). The 

percentage of unshared species (beta diversity) was similar at both spatial levels (Fig. 

4b; Table 5). A similar pattern of beta diversity was found at all study Sites with 

average percentage of unshared species ranging from 14.93% ± 1.5 to 24% ± 0.38 (Fig. 

4b). Gamma diversity showed similar values among the three Locality studied with 57 

species in Corsica, 68 in Catalonia and 72 species in Provence (Fig. 4c). 

Values of all diversity indices for all Localities and Sites can be found at Table A.2.4. 
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Figure 4. Diversity indices for all study sites and localities. (A) Number of species (alpha 

diversity), (B) % of unshared species (β-diversity) and (C) local number of species (gamma 

diversity). 
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Spatial configuration of perennial species 
Overall, the mean perennial species cover was quite different between sites and 

across localities except for the locality CorPal with the lowest value of 30% ± 1.82. 

Overall, values ranged from 60% ± 2.65 in CorPlu to 30% ± 1.82 in CorPal (see Table 

A.2.3). 

For perennial species as a whole, NP, MPS and MSI were similar among 

Localities and Sites (Fig 5; Table 6). The number of patches range from 802 to 1491 

patches in Catalonia, from 826 to 1876 patches in Provence and from 914 to 1695 

patches in Corsica. The MPS showed relatively small values with range values from 83 

to 172 mm2 in Catalonia, from 87 to 196 mm2 in Provence and from 80 to 165 mm2 in 

Corsica. The MSI showed a narrow range with values from 0.37 to 0.57 over all the 

localities. 

Table 6. Univariate PERMANOVA analyses of Number of patches (NP), Mean patch size 

(MPS) and Mean shape index (MSI) for overall set of perennial species on the basis of 

Euclidian distances 

Seascape pattern 
indices

Source of 
variation

df SS MS Pseudo-F P(perm) ECV
(Sq. root)

Number of patches Locality
Site (Locality)
Residual
Total

2
7

18
98

2.27e5
4.40e5
9.68e6
1.02e7

1.14e5
62805
98778

1.79260
0.63582

0.2930
0.7130

38.612
-58.421
314.29

Mean patch size Locality 2 1.6588 0.82938 1.1936 0.343 6.3167e-2 
Site (Locality) 6 4.6673 0.66668 0.2837 0.952 -0.39972
Residual 98 230.37 2.3507 1.5332
Total 107 237.19

Mean shape index Locality 2 1.28e-2 6.38e-3 0.6365 0.557 -1.0401e-2 
Site (Locality)
Residual
Total

6
98
107

7e-2 
1.1591
1.2507

1e-2 
1.18e-2 

0.8455 0.556 -1.3169e-2 
0.10876
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Figure 5. Number of patches (NP ± SD), Mean Patch Size (MPS ± SD) and Mean Shape Index 

(MSI ± SD) for the overall set of perennial species. 
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Within the perennial species, benthic seascape was characterized by a high NP 

of Animal encrusting, the most important group also in terms of % cover, with values 

ranging from 353.3 ± 92.90 patches to 1240.33 ± 10.65 patches and a relatively small 

MPS (values ranging from 84.60 mm2 ± 13.83 to 240.61 mm2 ± 25.08) at all Locality

and Site (Fig. 6; Table 7). Animal encrusting patches were quite irregular with MSI 

values close to 0.4 at all Locality and Site (Fig. 6; Table 7). Animal cup was the second 

most abundant MFG in terms of NP at all Locality and Site (except in CorPal where was 

the most abundant) with values ranging from 96 patches ± 46.78 to 664.33 patches ± 

72.04. This MFG exhibited the smallest MPS (values ranging from 23.10 mm2± 0.66 to 

84.60 mm2± 13.83) and a higher MSI (close to 0.6 - 0.7) (Fig. 6; Table 7). Animal 

massive showed comparatively lower NP than Animal cup and Animal encrusting at all 

Locality and Site with values ranging from 11 patches ± 2.94 to 153.67 patches ± 23.63 

but presented the biggest MPS with values ranging from 227.46 mm2 ± 144.98 to 520.40 

mm2 ± 159.70. MSI of Animal encrusting was characterized by some irregular shapes 

with overall values not reaching the 0.5. Animal tree showed lower NP ranging from 

25.67 patches ± 10.69 to 180.33 patches ± 13.04 with MPS ranging from 94.97 ± 17.53 

to 304.58 ± 51.59 mm2. Data showed that Animal tree was the MFG with more irregular 

forms (Fig. 6; Table 7). 



87 

Figure 6. Number of patches, Mean patch size and Mean shape index of each 

invertebrate morphofunctional group at each site studied.
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Table 7. Univariate PERMANOVA analyses of Number of patches (NP), Mean patch 

size (MPS) and Mean shape index (MSI) for each morphofunctional group at Site and 

Locality spatial levels. 

Seascape
Pattern 
indices

Morfofunctional 
group

Source of 
variation

df SS MS Pseudo-F p-value ECV
(Sq.root)

NP Encrusting

Massive

Tree

Cup

Locality
Site (Locality)
Residual
Total

Locality
Site (Locality)
Residual
Total

Locality
Site (Locality)
Residual
Total

Locality
Site (Locality)
Residual
Total

2
7

17
26

2
7

17
26

2
7

17
26

2
7

17
26

9.82e5
1.17e6
7.44e5
2.64e6

22783
22624
9688
56275

37520
48164
22665

3.48e5
4.61e5
1.47e5

4.91e5
1.67e5
4377

1139
3232
569.9

18760
880.6
333.2

1.74e5
65986
8673.1

2.972
3.821

3.574
5.671

2.764
5.161

2.678
7.608

0.1215
0.0102

0.0782
0.0011

0.1355
0.004

0.1442
0.0004

196.61
216.47
209.21

31.201
31.785
23.872

37.691
45.884
36.513

113.79
147.48
93.13

MPS Encrusting Locality 2 0.986 0.493 0.558 0.5823 -0.2154
Site (Locality) 7 6.276 0.897 6.063 0.0014 0.5331
Residual 17 2.514 0.148 0.3846

Massive

Tree

Cup

Total

Locality
Site(Locality)
Residual
Total

Locality
Site(Locality)
Residual
Total

Locality
Site(Locality)
Residual
Total

26

2
7

17
26

2
7

17
26

2
7

17
26

9.563

1.5170.758
28.124.018
25.931.523
55.80

3.7811.891
7.1711.024
5.1600.304
17.12

1.1070.0053
0.3460.0049
0.0100.0006
0.552

0.191
2.634

1.868
3.375

1.1048
8.5358

0.8099
0.0474

0.221
0.018

0.4038
0.0002

-0.617
0.9726
1.2351

0.3228
0.5231
0.5509

0.0025
0.1287
0.0076

MSI Encrusting Locality 2 3.3e-4 1.6e-4 6.3e-2 0.9315 -1.70e-2 
Site (Locality) 7 1.8e-2 2.6e-3 2.79 0.0394 2.528e-2 
Residual 17 1.6e-2 9.4e-4 3.071e-2 
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Massive

Tree

Cup

Total

Locality
Site(Locality)
Residual
Total

Locality
Site(Locality)
Residual
Total

Locality
Site(Locality)
Residual
Total

26

2
6

18
26

2
6

18
26

2
6

18
26

3.5e-2 

8.1e-3     4.07e-3 
1.8e-2     2.63e-3 
1.6e-2     9.69e-4 
4.9e-2 

1.38e-3    6.9e-4 
3.20e-2    4.6e-3 
1.17e-2    6.9e-4 
4.50e-2 
1.78e-2     8.9e-3 
4.96e-2     7.1e-3 
1.05e-2     6.2e-4 
8.21e-2 

1.57
2.71

0.15
6.63

1.27
11.49

0.302
0.045

0.8763
0.0006

0.3518
0.0001

1.3e-2 
2.5e-2 
3.1e-2 

-2.13e-2 
3.84e-2 
2.62e-2 

1.50e-2 
4.96e-2 
2.48e-2 
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4.4. Discussion 

Within coralligenous outcrops, habitats dominated by red coral Corallium

rubrum are of special interest from a conservation perspective. The main reason is 

because the red coral populations are highly threatened by poaching and harvesting and 

by the drastic effects of several mortality events putatively related with climate change 

(Garrabou et al. 2001; Linares et al. 2010; Montero-Serra et al. 2015). The effects of 

these disturbances at red coral population level have been assessed, however the effects 

at community level have rarely addressed. 

The present study provides the first base line information at community level on 

diversity, structure and composition patterns of red coral dominated coralligenous 

outcrops highlighting habitat homogeneity at regional scale (among localities). 

Although, strong differences in specific composition and species abundances 

distributions were found within the assemblages at site level, these differences were 

clearly smoothed at locality level (Fig. 2 and Fig. 3). Interestingly, using the similar 

regional scale patterns, Casas-Güell et al. 2015 found high variability and beta diversity 

among sites of Paramuricea clavata dominated-assemblages. The processes behind 

these multi-scale patterns in structuring assemblages are difficult to discern, but it’s 

accepted that species composition across localities does not appear to be determined 

primarily by the differences in physico-chemical conditions (Bensoussan et al. 2010) 

and/or the differential impact of major disturbances as mass mortality events (Garrabou 

et al. 2009). Instead, biological factors (growth rates, recruitment, competition, 

successional patterns) should be the major driver of patterns found at the site spatial 

level (or, alternatively, should explain most of the variability found at the site level). 

Species driving coralligenous outcrops generally display a limited dispersal capacity 

(Uriz 1998; Duran 2003; Abbiati et al. 2009; Ledoux et al. 2010b) that may shape the 

high heterogeneity observed at small scale. This may imply that local persistence will be 

enhanced once the populations are established (Costantini et al. 2007; Ledoux et al. 

2010a). Our results are in agreement with other studies on coralligenous assemblages, 

where variability observed at small scale (replicates or patches) is considerably high 

(Ferdeghini et al. 2000; Balata 2006; Casas-Güell et al. 2015). Diversity values found in 

this study were similar (from 24 to 41 species at site level and from 57 to 72 species at 

locality level) than that found in other coralligenous studies dominated by Paramuricea 

clavata (from 23 to 42 and from 52 to 66 species at locality level) (Casas-Güell et al. 
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2015) but markedly higher than other studies of Corallium rubrum outcrops (18 species 

or taxonomic groups) (Virgilio et al. 2006). Coralligenous reefs may encompass a 

number of markedly different biogenic formations and hence, its regional diversity is 

relatively high compared with other assemblages (Ballesteros 2006; Kipson et al. 2011; 

Giakoumi et al. 2013; Martin et al. 2014). The assemblages of our study were sampled 

at dim light conditions at a range of deeps from 15 to 45 meters, at vertical walls, semi-

dark and dark caves. In all sites and localities, perennial and long-lived macro-

invertebrates were the most abundant species and within the perennial functional group, 

the precious red coral was the dominant canopy-forming stratum, whereas the basal 

stratum was dominated mainly by small cup corals and encrusting sponges (Fig. 2 and 

6). These results can be contrasted with that obtained by Ponti et al. 2011 where turf and 

encrusting algae where the dominant groups in North Adriatic coralligenous outcrops. 

At regional scale, some environmental parameters, in terms of nutrient availability and 

dim light conditions, may structure and drive the differences detected on different 

studies of the same habitat but at different depths (Bonacorsi et al. 2012). Overall, we 

cannot discard, however that differences can also be enhanced by anthropogenic 

stressors affecting these assemblages at local, regional and the whole Mediterranean 

basin scales. 

This study showed for the first time that morphofunctional groups tended toward 

common patterns when comparing their abundances at a range of regional spatial scales. 

As mentioned above, the canopy was dominated by Corallium rubrum whereas basal 

layers were generally fully covered by encrusting and massive invertebrates together 

with mixture-complex matrix. The encrusting sponge was the group which contained 

more species and the most abundant (highest % of cover) for almost all sites and 

localities (Fig. 2 and 3) except in Palazzu (Corsica), with high dominance of the cup 

coral Leptopsammia pruvoti. High dominance and diversity of sponges have been 

previously reported for coralligenous outcrops (Ponti et al. 2011; Kipson et al. 2011; 

Bertolino et al. 2013; Ponti et al. 2014). 

Overall, our results showed high spatial complexity and diversity in the 

coralligenous outcrops dominated by the red coral. Different aspects of spatial patterns 

(patch number, size and shape) were consistently repeated for the overall set of 

perennial species along the sites and localities studied (Fig. 5, Table 6). The results 

presented here reflect that the assemblages were mainly characterized by intermediated 
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coverage of perennial species (e.g. sponges, anthozoans, bryozoans, and tunicates), 

which showed high NP, intermediated MPS and with complex shapes MSI (Fig. 5). 

Interestingly, macro-invertebrate groups showed significant differences at site level 

(Fig. 6, Table 7), representing a seascape mainly composed of encrusting and cup forms 

with high NP. However, the biggest sizes corresponded to massive forms followed by 

encrusting and tree forms (Fig. 6). The MSI was quite irregular for all groups except for 

the cup who displayed the most regular shapes (Fig. 6). This finding may indicate that 

irregular forms of encrusting, tree-like, massive species were the most abundant in 

characterizing the assemblages and these showed more regular (circular) shapes, when 

coral cup form was dominant group (Fig. 6). Garrabou et al. (2002) using LPI to study 

spatial patterns along a depth gradient, found that coralligenous outcrops exhibited the 

greatest spatial pattern complexity. The authors argued that a decrease in dynamics (% 

of area changed) might enhance high diversity and thus complex spatial patterns. In 

light of the key habitat that represents coralligenous outcrops, we believe that seascape 

indices may be also excellent proxies to estimate the health of coralligenous outcrops 

(see below). For example, one of the most evident phenomena after disturbances in 

terrestrial and marine ecosystems is the significant changes in number, size and forms of 

patches (Turner et al. 2002; Teixidó et al. 2007; Wedding et al. 2011). We may predict 

that after a large disturbance, major shifts may be observed on these parameters, from 

high NP, intermediated MPS and irregular forms of well-mixed groups of invertebrates 

to lower values of these indices and more circular forms. However, this approach should 

be followed over time to avoid potential misunderstanding of the local variability (e.g. 

high natural abundance of the scleractinan cup forms with circular shape in Palazzu, 

Corsica). 

Coralligenous outcrops are key habitats within the Mediterranean coastal 

ecosystems mainly because its high biodiversity and complex structure (Ballesteros 

2006). Furthermore, coralligenous habitats dominated by the canopy-forming species 

Corallium rubrum are exceptionally important for conservation because their 

populations are highly threatened (Montero-Serra et al. 2015). The fine-scale and high 

resolution data presented in this study represents a step forward due to the scarcity of 

studies dealing with these habitats and the need of baseline information for management 

plans. Concretely, this data is crucial in order to establish baselines with the final 

objective of synthesize all the information within indices that defines the ecological 
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state of coralligenous assemblages to fulfill the requirements of the European Marine 

Strategy Framework Directive (e.g. see COARSE index in Gatti et al. 2015a). We 

believe that biotic metrics as species diversity, growth forms and abundances measures 

of key species or taxonomic groups (% cover or number of colonies) are an excellent 

metrics to measure the health of the assemblages. However, we think that other metrics 

as the seascape indices presented here (NP, MPS and MSI) could be integrated at 

regional scale to better copse the highly complexity of these assemblages. 
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Abstract

Coralligenous outcrops rank among the most important ecosystems in the 

Mediterranean Sea, primarily because of their biodiversity. Information on the spatial 

and temporal variability of the composition and structure of coralligenous assemblages 

is essentially lacking for most regions. We explored the variability of the biodiversity 

patterns of coralligenous outcrops dominated by the red gorgonian Paramuricea clavata

in the NW Mediterranean region using a hierarchical sampling design. The study 

addressed two overlooked spatial and temporal scales: from 1 to > 100 km and a 5-year 

period. Overall, no temporal changes were detected in either species composition or the 

12 morphofunctional groups considered. Significant differences in species composition 

were found at the various spatial scales. However, variation in composition at the 

locality level (>100 km apart) showed the lowest values in comparison with the 

differences found at the site level (<1 km apart). Despite the differences, the sites 

displayed high similarity (average similarity 55.7%) and shared approximately 50% of 

the species. Similarly, the patterns of diversity at different scales, the alpha (site) and 

gamma (locality) were consistent with the specific composition trends, whereas the beta 

diversity showed the greatest differences among sites. Our results demonstrate the 

moderate spatial variability in biodiversity in the NW Mediterranean region and an 

extremely low temporal variability. This study provides baselines for detecting potential 

effects due to global change, and it furnishes a basis for the implementation of 

monitoring schemes of coralligenous assemblages. The development of similar 

sampling schemes in other Mediterranean regions will provide a global view of the 

biodiversity of coralligenous outcrops.

Key-words: Biodiversity, Paramuricea clavata, coralligenous, NW Mediterranean 

region, spatial and temporal scales, conservation.
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5.1. Introduction

Subtidal reefs foster a high biodiversity of animal and plant species (Knowlton 

and Jackson 2001; Witman and Dayton 2001), representing one of the most productive 

habitats in marine ecosystems and offering substantial commercial, recreational and 

cultural value to society. During recent decades, however, an increasing proportion of 

the world's reefs have been reported to be severely impacted (Halpern et al. 2008; Crain 

et al. 2009; Jackson 2010). From a conservation perspective, the collection of data on 

species composition and assemblage structure over a variety of spatial scales is 

indispensable for understanding the variation of biodiversity at local and regional scales 

(Lourie and Vincent 2004). Additionally, these baseline datasets are valuable for 

assessing changes associated with several anthropogenic threats and the outcome of 

management actions.

Knowing and understanding patterns of variability of benthic assemblages at a 

range of spatial and temporal scales are crucial for effective management and 

conservation of coastal marine habitats (Ferdeghini et al. 2000; Piazzi et al. 2004; 

Virgilio et al. 2006). This is even more relevant in key habitats such as the coralligenous 

outcrops, which are considered one of the most important ecosystems in the 

Mediterranean Sea (Ballesteros 2006; Piazzi et al. 2012). Coralligenous outcrops have 

been identified as Mediterranean priority habitats by the EU Habitats Directive 

(92/43/CE) and foster some of the richest assemblages found in Mediterranean, 

harboring approximately 10% of marine Mediterranean species (Pérès and Picard 1964; 

Laubier 1966; Ros et al. 1985; Boudouresque 2004; Ballesteros 2006). The species that 

characterize such assemblages belong to various taxonomic groups, primarily encrusting 

calcareous algae, sponges, cnidarians, polychaetes, bryozoans and tunicates (Garrabou 

et al. 2002; Ballesteros 2006). Most of these species are long-lived and exhibit low 

dynamics, making them vulnerable to various types of threats (Garrabou et al. 1998; 

Teixidó et al. 2011). In fact, many coralligenous outcrops have already been affected by 

various stressors such as nutrient enrichment, overexploitation, invasive species, 

increase of sedimentation, mechanical impacts as well as climate change, resulting in 

dramatic consequences for many species and even for the structure of the whole 

assemblages (Balata et al. 2007; Garrabou et al. 2009; Piazzi and Balata 2011; Cebrian 

et al. 2012; Teixidó et al. 2013; Cecchi et al. 2014). However, much of our 

understanding of the composition and structure of coralligenous outcrops is still limited 
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and based mainly on descriptive studies restricted to smaller or medium spatial scales - 

from a few meters to a few km (10s of km) (reviews by Ballesteros 2006, Giaccone 

2007, Casellato & Stefanon 2008 and references therein) and some experimental studies 

(e.g. Balata et al. 2007; Gennaro and Piazzi 2011). To our knowledge, few studies 

addressing coralligenous assemblages have extended to larger spatial scales (up to 200 

km of coastline), and mostly of them focused on the phytobenthic component (Piazzi et 

al. 2004; Piazzi et al. 2010). Thus, the structure of coralligenous outcrops has been 

poorly understood because there are no spatio-temporal studies or baseline data at the 

assemblage level over large scales. This situation has prevented a proper assessment of 

the current state of biodiversity and future changes in this valuable assemblage. 

Difficulties related to the study of these highly diverse and structurally complex 

systems, coupled with general logistic constraints related to the sampling of 

intermediate-deep rocky habitats, have hindered progress in our knowledge of this topic 

(Parravicini et al. 2010). 

The aim of this study was to quantify the variability of the structure and 

dynamics of coralligenous assemblages dominated by the red gorgonian Paramuricea 

clavata across different localities in the NW Mediterranean separated by hundreds of 

km and over a 5-year period. The long-lived gorgonian P. clavata is considered a key 

species in Mediterranean coralligenous assemblages (Gili & Coma 1998), provides 

biomass and biogenic substrata that significantly shapes the assemblage (Harmelin & 

Marinopoulos 1994; Gili & Coma 1998). It contributes greatly to the aesthetic value of 

the Mediterranean sublittoral seascape (Bianchi et al. 1995) and attracts high numbers 

of recreational divers (Coma et al. 2004). We assessed structural complexity in terms of 

the specific and morphofunctional composition of the sessile perennial species 

associated to P. clavata. Additionally, we assessed various components of species 

diversity (alpha, beta, and gamma diversity) over time. The ultimate goal of this study is 

to provide assemblage structure baseline data to furnish a solid basis for comparisons in 

terms of potential changes in species composition changes in response to multiple 

threats.
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5.2. Materials and methods 

Study sites and sampling design 
A hierarchical sampling design was used to assess spatial and temporal patterns 

of coralligenous assemblages dominated by the red gorgonian Paramuricea clavata. 

Three localities were selected in the NW Mediterranean region (Catalonia, Provence 

and Corsica), covering more than 400 Km (5º E-W) and more than 200 Km (1º N-S) of 

the coastline (Fig. 1). All localities were located in marine protected areas. At each 

locality, two sites (separated by approximately 1 km) were sampled: in Catalonia, Tascó 

Petit (MPT) and Medallot (MME), located in the Natural Park of Montgrí, Medes 

Islands and Baix Ter; in Provence, Petit Conglué (PCO) and Plane-Grotte Pérès (PGP), 

located in Riou Archipelago in the National Park of Calanques; and in Corsica, Palazzu 

(SPA) and Gargallu (SGL), located in the Scandola Natural Reserve (Fig. 1).

Figure 1. Map showing the Mediterranean geographic area where the photographic surveys 

were conducted: region, localities and sites.

At each site between depths of 17-25 m, one or two permanent plots were setup 

to cover a total area of approximately 4 m2. The plots were photographically sampled 

during 5 years (2006-2010) using 25 × 25 cm (625 cm2) to facilitate species 
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identification. For this study only 3 years were considered within a 5-year period. From 

each site and year considered, 3 different groups of 8 contiguous quadrats of 25 × 25 cm 

(625 cm2) that corresponded to the minimum sampling area (hereafter MSA; 8 quadrats 

= 5000 cm2, for more information see (Kipson et al. 2011) were randomly chosen 

within the permanent plots, resulting in a total of 432 photographs (24 photos × 6 sites × 

3 years). The photographs were taken with a Nikon D70S digital SLR camera fitted 

with a Nikkor 20 mm DX lens (3000 × 2000 pixel resolutions) and housed in a Subal 

D70S housing. Lighting was achieved by two electronic strobes fitted with diffusers. 

Specimens were also collected in order to facilitate species identification by 

photographic samples. Photographic sampling was chosen as it provides a good 

compromise between optimal resolution (Bohnsack 1979; Foster et al. 1991; Deter et al. 

2012) and conservation of the habitat, although could probably underestimate small and 

cryptic species. This study did not involve sampling or damage of any endangered or 

protected species. Furthermore, the non-destructive methodological approach obtaining 

biodiversity data through the analysis of images is suitable to study marine benthic 

communities in Marine Protected Areas.

Analysis of photographs 

From each photograph, sessile macrobenthic species were identified at the 

lowest taxonomic level (whenever possible). The species lists were crosschecked with 

the World Register of Marine Species database (Worms, available at: 

http://www.marinespecies.org). Sessile macrobenthic species were classified into 12 

morpho-functional groups based on their taxonomy and growth form (3 seasonal and 9 

perennial groups) (see Table 1) (adapted from Garrabou et al. 2002 and Teixidó et al. 

2011). 

We calculated (1) the percentage of species belonging to the various 

morphofunctional groups found in each site and year and (2) a semi-quantitative 

abundance for each morphofunctional group estimated from the species 

presence/absence data in each of the MSA (group of 8 contiguous 25 × 25 cm 

photographs) sampled at each site. For instance, a presence in only one photograph 

corresponded to 12.5% of cover [(1 presence / 8 photographs) × 100]. Finally, the 

values for each MSA were averaged to obtain site estimates. We focused on perennial 

species for specific composition and diversity indices analyses (see below). 
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Table 1. Biological categories used in this study combining taxonomy, life span and 

morphological growth forms (adapted from Garrabou et al. 2002 and Teixidó et al. 2011). 

Biological categories Description
1- Seasonal algal turf Annual erect or semi-erect fleshy algal species, with one or 

multiple zones of attachment to the substratum; generally 
constitutes algal cushions or thin sheets with mixtures of 
algal species.

2- Seasonal animal turf Small seasonal animal species, mainly bryozoans and 
hydrozoans; usually is forming animal cushions or thin 
sheets with mixtures species.

3- Seasonal mixture complex turf Small seasonal algae and animal species (mainly 
bryozoans and hydrozoans), sediment, detritus and 
fragments; normally forming cushions or thin sheets with 
mixtures of species.

4- Perennial algal encrusting Species growing mainly as two dimensional sheets; more 
or less completely attached to the substratum.

5- Perennial algal erect Species attached to the substratum usually with a unique 
zone (visible even in winter) of basal attachment to the 
substratum.

6- Perennial algal turf – invasive Perennial dense thick filamentous turf algae with the 
ability to maintain permanent carpets (e.g. the invasive 
species Womersleyella setacea).

7- Perennial animal encrusting Species of sponges, cnidarians, bryozoans and tunicates 
growing as two dimensional sheets; more or less 
completely attached to the substratum.

8- Perennial animal massive Mound species of sponges and cnidarians with vertical and 
lateral growth; normally attached to the substratum all 
along their basal area.

9- Perennial animal tree Erect species of cnidarians and bryozoans, more or less 
branched; usually with a single point of attachment to the 
substratum.

10- Perennial animal cup Solitary corals attached to the substratum all along their 
basal area. 

11- Perennial animal boring Excavating organisms living into the rock (e.g. Cliona 
viridis).

12- Perennial animal epibiont Species growing over other invertebrates or calcareous 
algae (mainly polychaetes e.g. Salmacina dysteri or 
Filograna implexa and bryozoans e.g. Chartella tenella).
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Statistical analyses 

Presence/absence specific data were analyzed by a non-metric multi-dimensional 

scaling (nMDS) ordination analysis to visualize spatial and temporal patterns based on 

the Bray-Curtis similarity measure. Furthermore, a similarity percentage procedure 

analysis (SIMPER, Clarke and Warwick 1994) was performed to identify the percentage 

contribution of taxa and morphological groups to the significant dissimilarities among 

sites and localities. 

Species composition, morphofunctional groups and diversity indices were 

analyzed by a nonparametric analysis of variance, PERMANOVA (Anderson 2001a; 

Anderson 2001b; Anderson et al. 2008), applied using Bray-Curtis and Euclidean 

distances for multivariate and univariate analyses, respectively. The model included 3 

factors: Location “Lo” (random factor, 3 levels), Site “Si” (random factor, 2 levels, 

nested in Location), and Time (random factor, 3 levels, crossed to Location and Site). 

Spatial and temporal patterns of diversity measures were assessed by quantifying 

alpha diversity (average number of species per sampling unit), gamma diversity (the 

total number of species within a locality), and beta diversity (multivariate distance 

between group-centroids determined with the PERMDISP procedure). PERMDISP is an 

approach used to compare the degree of sample dispersion of different groups based on 

a distance matrix. When PERMDISP is used on a Jaccard distance presence/absence 

matrix, it is directly interpretable as a test for similarity in beta diversity among groups 

(Anderson et al. 2006; Anderson et al. 2011). 

The PERMANOVA and PERMDISP analyses were computed using the 

program Primer v6 with the PERMANOVA + add-on package. 
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5.3. Results 

Species composition 
A total of 106 macrobenthic taxa were identified across the region studied: 13 

macroalgae, 1 protozoan, 42 sponges, 3 hydrozoans, 10 anthozoans, 1 mollusk, 4 

polychaetes, 22 bryozoans and 10 tunicates (see A.3.1 for the species list and the 

assignment to the various morphofunctional groups). Of these taxa, 88 were perennial 

and 18 seasonal. 

Structural complexity - morphofunctional groups 
Overall, the structure of morphofunctional groups showed a consistent pattern at 

spatial and temporal scales in terms of either percentages of species per group or their 

abundance (Figs. 2 and 3). The principal group that characterized the outcrops in terms 

of species was the Animal encrusting, with values of approximately 30 to 40% of the 

species found in each site, followed by Animal massive and Animal tree, which 

encompassed 10 to 20% of the species in most of the sites. The remaining categories, 

Algal encrusting, Algal erect, Animal cup and others, represented approximately 0-10% 

of species (Fig. 2). 

Figure 2. Percentage of perennial species relative to morphological growth forms for each site 

and year studied. 



111 

The morphofunctional groups displaying the highest constant abundances (> 

50% of cover) at all sites and over time were Algal encrusting, Animal encrusting, 

Animal massive and Animal tree (Fig. 3). Animal cup and Animal boring showed 

moderate to high abundances (ranging between 20 to 100% cover), with a degree of 

temporal variability depending on the site (Fig. 3). Finally, the categories Algal turf, 

Algae erect and Animal epibionts exhibited a higher degree of variability (ranging from 

0 to 100%). 

Table 2. PERMANOVA analysis testing the significance level of the different factors 

for the abundance of the different perennial morphofunctional groups. 

Source of variation df SS MS Pseudo-F P(perm)

Locality 2 3420.6 1710.3 1.2566 0.3514

Site (Locality) 3 4077.8 1359.3 13.51 0.0001

Time 2 103.26 51.631 0.63095 0.6842

Locality * Time 4 327.32 81.831 0.81334 0.6058

Site(Locality) * Time 6 603.67 100.61 1.129 0.3498

Residual 36 3208.3 89.119

Total 53 117.1

The abundance of the different morphofunctional groups was similar among 

localities (F2,53 = 1.19, p>0.05, Table 2.2.2) and time (F3,53 = 1.94, p>0.05, Table 2.2.2) 

but showed differences among sites (F3,53 = 17.49, p<0.05, Table 2). Variability among 

sites correspond to a comprehensive variability in the contribution of Algal and Animal 

encrusting, Animal Massive, Animal cup and Animal Tree within sites except for PCO 

in Provence, where exceptional high abundances (up to 100%) of Algal turf were 

present (Fig. 3). 
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Figure 3. Abundance (expressed as %) of each morphofunctional group for each site and year 

studied. 
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Structural complexity – specific composition 
The specific composition of the perennial macrobenthic species was constant 

over time for all localities and sites (Fig. 4, Table 3) but differed significantly among 

localities and sites (Table 3). The Locality and Site nested in Locality factors explained 

a high percentage of the variation with 18.49% and 20.56%, respectively (Table 3). 

Variability among replicate units explained the 20.65% indicating a high spatial 

variability at the smallest (replicate) scale. 

Figure 4. Non-metric multidimensional scaling (nMDS) ordination plot of macrobenthic 

species in the three regions of the NW Mediterranean Sea over time (2006, 2008 and 2010). 

Analysis performed on Bray-Curtis dissimilarities of presence-absence data. For each locality, 

the two sites are shown by open or closed dots (orange = Catalonia; dark = Provence; green = 

Corsica). See “Materials and Methods” for site abbreviations.

Parallel to these results, the SIMPER analysis showed an overall average 

similarity in specific composition, up to 55.74% across localities and time. The number 

of species contributing to 50% of the similarity for each site ranged between 10 and 16 

species (Table 4). Overall, 33 different species contributed to the similarity for each site. 

Most of the species belonged to the morphofunctional groups displaying the highest 

number of species and abundance, i.e., Algae encrusting, Animal encrusting, Animal 

massive and Animal tree (Table 4). For these groups, certain species played determining 

roles at most sites, such as Mesophyllum alternans and Peysonnelia sp. for Encrusting 
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algae; Parazoanthus axinellae, Crambe crambe and Serpulidae for Animal encrusting, 

Paramuricea  clavata for Animal tree and Leptopsammia pruvoti for Animal cup.

Table 3. PERMANOVA analysis testing the significance level of the different factors in the 

specific composition on the basis of Bray-Curtis dissimilarity measure. 

Source df SS MS Pseudo-F P(perm) ECV (Sq. root)

Locality 2 20802 10401 2.3016 0.0088 18.491

Site (Locality) 3 12855 4284.9 8.8866 0.0001 20.555

Time 2 1410.3 705.14 1.5897 0.1937 3.8121

Locality * Time 4 1774.3 443.56 0.9199 0.5714 -2.5368

Site(Locality) * Time 6 2893.1 482.18 1.1304 0.2797 -4.3066

Res 36 15355 426.54 20.653

Total 53 55089
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Table 4. Species by morpho-functional groups contributing more than 50% to the similarity of studied sites. The underlined species are those 

contributing to the similarity of most of the sites. 

Provence Corsica Catalonia
PCO PGP SPA SGL MME MPT

Algal encrusting
Lithophyllum spp.
Palmophyllum crassum
Mesophyllum alternans
Peyssonnelia sp. 

Mesophyllum alternans
Peyssonnelia sp.

Mesophyllum alternans
Peyssonnelia sp.

Lithophyllum spp.
Mesophyllum alternans
Peyssonnelia sp.

Mesophyllum alternans
Peyssonnelia sp.

Mesophyllum alternans
Peyssonnelia sp. 

Algal erect
- - Flabellia petiolata - -

Algal turf
Womersleyella_type - - - -

Animal encrusting

Parazoanthus axinellae
Crambe crambe

Crella pulvinar
Rhynchozoon sp.
Haliclona mucosa 
Oscarella sp. 
Pleraplysilla spinifera
Crambe crambe
Serpulidae

Cacospongia sp.
Crella pulvinar 
Miniacina miniacea
Serpulidae Serpulidae

Pleraplysilla spinifera
Parazoanthus axinellae
Crambe crambe
Serpulidae

Oscarella sp. 
Dictyonella sp. 
Parazoanthus 
axinellae
Crambe crambe

Animal massive

Axinella damicornis

Acanthella acuta 
Agelas oroides 
Axinella damicornis

Ircinia variabilis
Spongia officinalis -

Agelas oroïdes
Axinella damicornis
Cystodites dellechiajei

Acanthella acuta
Axinella damicornis
Cystodites dellechiajei

Animal tree

Eunicella cavolinii
Paramuricea clavata

Adeonella/Smittina
Paramuricea clavata

Reteporella grimaldii
Paramuricea clavata

Myriapora truncata
Adeonella/Smittina
Paramuricea clavata

Margaretta cereoides
Adeonella/Smittina
Paramuricea clavata

Adeonella/Smittina
Paramuricea clavata

Animal cup

-
Caryophyllia inornata
Leptopsammia pruvoti Leptopsammia pruvoti

Caryophyllia inornata
Leptopsammia pruvoti Leptopsammia pruvoti Leptopsammia pruvoti

Animal epibiont
- - - - -

Chartella sp.
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Diversity indices 
Alpha diversity (mean ± SD) remained constant over time at almost all the 

studied sites (Fig. 5) and similar for all localities (Table 5), but it showed significant 

differences among sites (Table 5). The values of alpha diversity ranged from 23 ± 2 

species in PCO to 42 ± 3 species in PGP. A constant pattern of beta diversity was found 

over time (Fig. 5; Table 5b). The sites located in Catalonia showed lower mean values 

(ranged from 12.7% ± 0.6 to 15.7% ± 0.8) compared with the sites in Corsica (ranged 

from 13.2% ± 0.8 to 23.3% ± 3.0) and in Provence (ranged from 16.0% ± 0.5 to 20.8% 

± 2.6) (Table 5). Gamma diversity showed similar and constant values among the three 

localities studied (Fig. 5; Appendix A.3.2). 

Table 5. Univariate tests based on Euclidean distances for alpha and gamma diversities and 

PERMDISP test for beta diversity. 

a) Alpha diversity 
(PERMANOVA)

Source df SS MS Pseudo-F P(perm)
Locality 2 337.04 168.52 0.7275 0.6453
Site (Locality) 3 725.50 241.83 8.0018 0.0180
Time 2 306.81 153.41 4.8931 0.0922
Locality × Time 4 125.41 31.352 1.0374 0.4588
Site(Locality) × Time 6 181.33 30.222 1.753 0.1409
Residual 36 620.67 17.241
Total 53 2296.8

b) Beta diversity 
(PERMDISP)

Source df1 df2 F P
Locality 2 51 11.4792 0.0005
Site 5 48 6.7646 0.0001
Time 2 51 4.8931 0.4123
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Figure 5. Diversity metrics (α-diversity, β-diversity and γ-diversity) over time. 



118 

5.4. Discussion 

Studies addressing spatial and temporal patterns of biodiversity are urgently 

needed to identify the most effective monitoring schemes for in situ conservation and 

sustainable use (Gaston 2000). In assemblages dominated by long-lived assemblages 

(such as the coralligenous ones) the challenge is even greater since declining or 

recovery trajectories are more difficult to detect due to the slow pace of their population 

dynamics (Hughes et al. 2013). In this context, large scale long-term biodiversity 

datasets are a basic resource that furnishes the essential tools to provide information to 

promote sound conservation actions (Magurran et al. 2010). The present study provides 

the first baseline information on temporal and spatial patterns of coralligenous 

assemblages, highlighting no temporal changes in the patterns in the different 

components of biodiversity over the study period and most of the spatial variation in 

species composition among sites distant appreciatively 1 km. 

Interestingly, the morphofunctional groups tended toward common patterns at 

spatial and temporal scales. This result supports the hypothesis that coralligenous 

outcrops dominated by the red gorgonian P. clavata, despite differences in species 

composition, displayed similar structural complexity, at least within the NW 

Mediterranean. This common composition of the assemblages was complemented by 

the abundance of other morphofunctional groups, which displayed a greater abundance 

and/or a higher degree of temporal variability such as Algal turf, Algae erect and Animal 

epibionts. In fact, these groups could be related to dysfunctions in the assemblages since 

most are characterized by faster growth rates (especially in comparison with other 

perennial species included in the other groups). For instance algal turf abundance 

resulted from a recent introduction, such as the Womersleyella-type, which only showed 

high abundance at one site (Petit Conglué), highlights the suitability and interest of 

using the considered morphofunctional groups. 

The present study found differences in specific composition among the three 

localities studied (see below). However, it is important to note the relatively high 

similarity found among them (overall average similarity 55.7%). In addition, 51% of the 

perennial species were always found at the three localities (see Appendix A.3.1). 

Interestingly, the greatest variability was found at the Site and Replicate level. Other 

studies in coralligenous assemblages have also found the highest variability at the 

smallest scales investigated (e.g. among replicates) (Ferdeghini et al. 2000; Virgilio et 
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al. 2006; Terlizzi et al. 2007; Abbiati et al. 2009; Ponti et al. 2011). Similarly, patterns 

of diversity at different scales, the alpha (site) and gamma (locality) values were 

congruent with the specific composition trends. 

In short, significant differences in species composition were found at the 

different spatial scales analyzed. However, variation in composition at the large scale 

considered here (at the locality level) showed the lowest values compared with the 

differences found at the small scale. This general finding was also consistent with the 

beta diversity values, where the highest differences were found among sites. The 

processes behind these multi-scale patterns in assemblages are difficult to discern. In 

any case, species composition across localities does not appear to be determined 

primarily by the differences in physico-chemical conditions (Bensoussan et al. 2010) 

and/or the differential impact of major disturbances (e.g. mass mortality) (Garrabou et 

al. 2009). Instead, biological factors (growth rates, recruitment, competition, 

successional patterns) should be the major driver of patterns found at the site level (or, 

alternatively, should explain most of the variability found at the site level). As 

mentioned previously, coralligenous assemblages are typically dominated by long-lived 

species characterized by slow population dynamics (Garrabou 1999; Linares et al. 2007; 

Teixidó et al. 2009; Teixidó et al. 2011). Additionally, these species generally display a 

limited dispersal capacity (Uriz 1998; Duran 2003; Abbiati et al. 2009; Ledoux et al. 

2010b). These life-history traits may shape the high heterogeneity observed at a small 

scale. For instance, the recruitment rates for most species are low (Garrabou 1999; 

Mariani et al. 2006; Teixidó et al. 2011) but can also show low-frequency pulses (e.g., 

Garrabou and Harmelin 2002). The arrival of pulses of new offspring can shape the 

assemblage for long periods because of the longevity of the coralligenous species. 

Besides, the limited dispersal ability, based either on sexual or asexual reproduction, 

implies that local persistence is enhanced once the populations are established 

(Constantini et al. 2007; Ledoux et al. 2010). Finally, the slow growth rates hinder 

competition displacement between species, which could result in the dominance of 

competitive (Huston 1979; Garrabou et al. 2002). Overall, we argue that the interaction 

of these different biological processes appears to shape the species composition and 

abundance at each site (or even patches within sites). Thus, the observed patterns would 

result from the contribution of each factor over contemporary (several decades) or 

historical scales (hundreds of years) to the species pool and to the abundance of the 
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species at each site. In fact, in agreement with other studies on coralligenous 

assemblages, that variability observed at the smallest scale (replicates or patches) is 

considerably high showing a patch distribution of organisms linked both to the 

heterogeneity of substrate and to the interactions among sessile organisms (Ferdeghini 

et al. 2000; Acunto et al. 2001; Balata et al. 2005). The observation that characteristic 

facies occur within the coralligenous assemblages (i.e., patches within the assemblages 

with a high abundance of certain species –for example, Parazoanthus axinellae or 

Leptopsamia pruvoti) appears to corroborate this hypothesis (Pérès and Picard 1964).

Coralligenous outcrops are reported to occur primarily in the northern part of the 

Mediterranean Basin, with few records from the eastern or southern basin (Martin et al. 

2014). However, the datasets reviewed contained information for 30% of the total 

coastline of the Mediterranean Basin, indicating an extremely limited basic knowledge 

of these bioconstructions (Martin et al. 2014). Thus, the identification of similar 

structure in the coralligenous outcrops is important for the effective management and 

conservation of this sensitive habitat (Mokhtar-Jamaï et al. 2011; Giakoumi et al. 2013). 

Fine-scale knowledge on the distribution of species, such as that produced by this study, 

is crucial to furnish data for studies on marine conservation planning and the 

implementation of conservation plans (Giakoumi et al. 2013; Martin et al. 2014). In this 

context, a large-scale study on spatial variation on coral reefs composition and 

abundance revealed substantial changes at regional scales along the Great Barrier Reef, 

with profound implications for future projections of regional-scale impacts of climate 

change (Hughes et al. 2012). We believe that the development of this type of fine-scale 

study in various regions of the Mediterranean Basin will provide a global perspective on 

and characterization of the distribution of the biodiversity of the area and will support 

critical data to protect the full range of biodiversity (e.g., genes, species, life history 

stages), with implications for predictions of climate change impacts on coralligenous 

outcrops. Finally, the results obtained in this study could already help in the definition 

of monitoring schemes (periodicity and spatial coverage) required for the assessment of 

conservation status of Mediterranean marine habitats. This kind of information is 

especially timely to fulfill the requirements of the European Marine Strategy 

Framework Directive (Piazzi et al. 2014). Overall, thus, pursuing the characterization 

through the adoption of standardized methods could provide to the coastal management 

authorities (from local to international level) enormous benefits for the design of 
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effective management and conservation plans.



122 

Acknowledgments 

The authors thank C. Linares, J.B. Ledoux, and S. Kipson for field assistance. The study 

has been funded by the Spanish Ministry of Science and Innovation to E. Casas-Güell, a 

doctoral fellowship linked to the Biorock Project (CTM2009–08045, 

http://biorock.medrecover.org/) and the Total Foundation (medDiversa project, 

http://meddiversa.medrecover.org/). ECG thanks helpful and valuable comments on 

earlier drafts of the manuscript to Dr. M.J. Anderson during a research visit fellow 

(EEBB-I-13-06897) at NZIAS-INMS (Massey University), and to Dr. M. Pawley and 

A. N. H. Smith for made my stay especially comfortable. The authors are members of 

the Marine Conservation Research Group (http://medrecover.org) of the Generalitat de 

Catalunya. 

Conflict of interest 

The authors declare that they have no conflicts of interest concerning this article. 

http://medrecover.org/


123 

5.5. References 

Abbiati M, Airoldi L, Costantini F, et al (2009) Spatial and temporal variation of 
assemblages in Mediterranean coralligneous reefs. In: UNEP-RAC/SPA.  

Acunto S, Balata D, Cinelli F (2001) Variabilita spaziale nel coralligeno e 
considerazioni sul metodo di campionamento. Biol Mar Medit 8:191–200. 

Anderson MJ (2001a) A new method for non-parametric multivariate analysis of 
variance. Austral Ecol 26:32–46. 

Anderson MJ (2001b) Permutation tests for univariate or multivariate analysis of 
variance and regression. Can J Fish Aquat Sci 58:626–639. doi: 10.1139/f01-004 

Anderson MJ, Crist TO, Chase JM, et al (2011) Navigating the multiple meanings of β 
diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi: 
10.1111/j.1461-0248.2010.01552.x 

Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure 
of beta diversity. Ecol Lett 9:683–93. doi: 10.1111/j.1461-0248.2006.00926.x 

Anderson MJ, Gorley R, Clarke K (2008) PERMANOVA + for PRIMER: Guide to 
software and statistical methods. PRIMER-E: Plymouth, UK 

Balata D, Piazzi L, Benedetti-Cecchi L (2007) Sediment disturbance and loss of beta 
diversity on subtidal rocky reefs. Ecology 88:2455–61. 

Balata D, Piazzi L, Cecchi E, Cinelli F (2005) Variability of Mediterranean 
coralligenous assemblages subject to local variation in sediment deposition. Mar 
Environ Res 60:403–21. doi: 10.1016/j.marenvres.2004.12.005 

Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present 
knowledge. Oceanogr Mar Biol an Annu Rev 123–195. 

Bensoussan N, Romano J-C, Harmelin J-G, Garrabou J (2010) High resolution 
characterization of northwest Mediterranean coastal waters thermal regimes: To better 
understand responses of benthic communities to climate change. Estuar Coast Shelf Sci 
87:431–441. doi: 10.1016/j.ecss.2010.01.008 

Bianchi CN, Dore G, Morri C (1995) Guida del subacqueo naturalista: Mediterraneo e 
tropici. Editrice Archivio Fotografico Sardo, Nuoro 

Bohnsack JA (1979) Photographic quantitative sampling of hard-bottom benthic 
communities. Bull Mar Sci 29:242–252. 

Boudouresque CF (2004) Marine biodiversity in the mediterranean: status of spicies, 
populations and communities. Sci Rep Port-Cros natl Park Fr 20:97–146. 



124 

Casellato S, Stefanon A (2008) Coralligenous habitat in the northern Adriatic Sea: an 
overview. Mar Ecol 29:321–341. doi: 10.1111/j.1439-0485.2008.00236.x 

Cebrian E, Linares C, Marschal C, Garrabou J (2012) Exploring the effects of invasive 
algae on the persistence of gorgonian populations. Biol Invasions 14:2647–2656. doi: 
10.1007/s10530-012-0261-6 

Cecchi E, Gennaro P, Piazzi L, et al (2014) Development of a new biotic index for 
ecological status assessment of Italian coastal waters based on coralligenous macroalgal 
assemblages. Eur J Phycol 49:298–312. doi: 10.1080/09670262.2014.918657 

Clarke KR, Warwick RM (1994) Change in Marine Communities: an approach to 
statistical analysis and interpretation. Bourne Press Limited, Bournemouth, UK 

Coma R, Pola E, Ribes M, Zabala M (2004) Long-Term Assessment of temperate 
octocoral mortality patterns, protected vs. unprotected areas. Ecol Appl 14:1466–1478. 

Costantini F, Fauvelot C, Abbiati M (2007) Genetic structuring of the temperate 
gorgonian coral (Corallium rubrum) across the western Mediterranean Sea revealed by 
microsatellites and nuclear sequences. Mol Ecol 16:5168–82. doi: 10.1111/j.1365-
294X.2007.03579.x 

Crain CM, Halpern BS, Beck MW, Kappel C V (2009) Understanding and managing 
human threats to the coastal marine environment. Ann N Y Acad Sci 1162:39–62. doi: 
10.1111/j.1749-6632.2009.04496.x 

Deter J, Descamp P, Boissery P, et al (2012) A rapid photographic method detects depth 
gradient in coralligenous assemblages. J Exp Mar Bio Ecol 418-419:75–82. doi: 
10.1016/j.jembe.2012.03.006 

Duran S (2003) Phylogeography, gene flow and population structure of Crambe crambe 
(Porifera : Poecilosclerida). PhD. Thesis. Universitat de Barcelona. 

Ferdeghini F, Acunto S, Cocito S, Cinelli F (2000) Variability at different spatial scales 
of a coralligenous assemblage at Giannutri Island ( Tuscan Archipelago , northwest 
Mediterranean ). Hydrobiologia 440:27–36. 

Foster MS, Harrold C, Hardin DD (1991) Point vs. photo quadrat estimates of the cover 
of sessile marine organisms. J Exp Mar Bio Ecol 146:193–203. doi: 10.1016/0022-
0981(91)90025-R 

Garrabou J (1999) Life-history traits of Alcyonium acaule and Parazoanth us axinellae 
( Cnidaria , Anthozoa ), with emphasis on growth. 178:193–204. 

Garrabou J, Ballesteros E, Zabala M (2002) Structure and Dynamics of North-western 
Mediterranean Rocky Benthic Communities along a Depth Gradient. Estuar Coast Shelf 
Sci 55:493–508. doi: 10.1006/ecss.2001.0920 



125 

Garrabou J, Coma R, Bensoussan N, et al (2009) Mass mortality in Northwestern 
Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang 
Biol 15:1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x 

Garrabou J, Harmelin J-G (2002) A 20-year study on life-history traits of a harvested 
long-lived temperate coral in the NW Mediterranean : and management needs insights 
into conservation and management needs. J Anim Ecol 71:966–978. 

Garrabou J, Sala E, Arcas A, Zabala M (1998) The Impact of Diving on Rocky 
Sublittoral Communities : A Case Study of a Bryozoan Population. Conserv Biol 
12:302–312. 

Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–7. doi: 
10.1038/35012228 

Gennaro P, Piazzi L (2011) Synergism between two anthropic impacts: Caulerpa 
racemosa var. cylindracea invasion and seawater nutrient enrichment. Mar Ecol Prog 
Ser 427:59–70. doi: 10.3354/meps09053 

Giaccone G (2007) Coralligenous assemblage as underwater seascape: distribution off 
Italian coasts. Biol Mar Mediterr 14:124–141. 

Giakoumi S, Sini M, Gerovasileiou V, et al (2013) Ecoregion-based conservation 
planning in the Mediterranean: dealing with large-scale heterogeneity. PLoS One 
8:e76449. doi: 10.1371/journal.pone.0076449 

Gili J-M, Coma R (1998) Benthic suspension feeders: their paramount role in littoral 
marine food webs. Trends Ecol Evol 13:316–21. 

Halpern BS, Walbridge S, Selkoe KA, et al (2008) A global map of human impact on 
marine ecosystems. Science 319:948–52. doi: 10.1126/science.1149345 

Harmelin J-G, Marinopoulus J (1994) Population structure and partial mortality of the 
gorgonian Paramuricea clavata (Risso) in the north-western Mediterranean (France, 
Port-Cros Island). Mar Life 4:5–13. 

Hughes TP, Baird AH, Dinsdale E a, et al (2012) Assembly rules of reef corals are 
flexible along a steep climatic gradient. Elsevier Ltd 

Hughes TP, Linares C, Dakos V, et al (2013) Living dangerously on borrowed time 
during slow, unrecognized regime shifts. Trends Ecol Evol 28:149–55. doi: 
10.1016/j.tree.2012.08.022 

Huston M (1979) A General Hypothesis of Species Diversity. Am Nat 113:81–101. 

Jackson JBC (2010) The future of the oceans past. Philos Trans R Soc Lond B Biol Sci 
365:3765–78. doi: 10.1098/rstb.2010.0278 



126 

Kipson S, Fourt M, Teixidó N, et al (2011) Rapid Biodiversity Assessment and 
Monitoring Method for Highly Diverse Benthic Communities: A Case Study of 
Mediterranean Coralligenous Outcrops. PLoS One 6:e27103. doi: 
10.1371/journal.pone.0027103 

Knowlton N, Jackson JBC (2001) The ecology of coral reefs. In: Bertness MD, Gaines 
SD, Mark EH (eds) Marine community ecology. Sinauer Associates, Inc., Sunderland, 
USA,  

Laubier L (1966) Le coralligène des Albères: monographie biocénotique. Ann Inst 
Océanogr Monaco 43:139–316. 

Ledoux J-B, Garrabou J, Bianchimani O, et al (2010a) Fine-scale genetic structure and 
inferences on population biology in the threatened Mediterranean red coral, Corallium 
rubrum. Mol Ecol 4204–4216. doi: 10.1111/j.1365-294X.2010.04814.x 

Ledoux J-B, Mokhtar-Jamaï K, Roby C, et al (2010b) Genetic survey of shallow 
populations of the Mediterranean red coral [Corallium rubrum (Linnaeus, 1758)]: new 
insights into evolutionary processes shaping nuclear diversity and implications for 
conservation. Mol Ecol 19:675–90. doi: 10.1111/j.1365-294X.2009.04516.x 

Linares C, Doak DF, Coma R, et al (2007) Life history and viability of a long-lived 
marine invertebrate: the octocoral Paramuricea clavata. Ecology 88:918–28. 

Lourie SA, Vincent ACJ (2004) Using biogeography to help set priorities in marine 
conservation. Conserv Biol 18:1004–1020. 

Magurran AE, Baillie SR, Buckland ST, et al (2010) Long-term datasets in biodiversity 
research and monitoring: assessing change in ecological communities through time. 
Trends Ecol Evol 25:574–82. doi: 10.1016/j.tree.2010.06.016 

Mariani S, Uriz M-J, Turon X, Alcoverro T (2006) Dispersal strategies in sponge 
larvae: integrating the life history of larvae and the hydrologic component. Oecologia 
149:174–84. doi: 10.1007/s00442-006-0429-9 

Martin CS, Giannoulaki M, De Leo F, et al (2014) Coralligenous and maërl habitats: 
predictive modelling to identify their spatial distributions across the Mediterranean Sea. 
Sci Rep 1–8. doi: 10.1038/srep05073 

Mokhtar-Jamaï K, Pascual M, Ledoux J-B, et al (2011) From global to local genetic 
structuring in the red gorgonian Paramuricea clavata: the interplay between 
oceanographic conditions and limited larval dispersal. Mol Ecol 20:3291–305. doi: 
10.1111/j.1365-294X.2011.05176.x 

Parravicini V, Micheli F, Montefalcone M, et al (2010) Rapid assessment of epibenthic 
communities: A comparison between two visual sampling techniques. J Exp Mar Bio 
Ecol 395:21–29. doi: 10.1016/j.jembe.2010.08.005 



127 

Pérès JM, Picard J (1964) Nouveau Manuel de Bionome benthique de la Mer 
Mediterranee. Recl des Trav la Stn Mar l’Endoume 47:5–137. 

Piazzi L, Balata D (2011) Coralligenous habitat: patterns of vertical distribution of 
macroalgal assemblages. Sci Mar 75:399–406. doi: 10.3989/scimar.2011.75n2399 

Piazzi L, Balata D, Cecchi E, et al (2010) Species composition and patterns of diversity 
of macroalgal coralligenous assemblages in the north-western Mediterranean Sea. J Nat 
Hist 44:1–22. doi: 10.1080/00222930903377547 

Piazzi L, Balata D, Cecchi E, et al (2014) Effectiveness of different investigation 
procedures in detecting anthropo- genic impacts on coralligenous assemblages. Sci Mar 
78:319–328. doi: 10.3989/scimar.03989.28A 

Piazzi L, Balata D, Pertusati M, Cinelli F (2004) Spatial and temporal variability of 
Mediterranean macroalgal coralligenous assemblages in relation to habitat and 
substratum inclination. Bot Mar 47:105–115. doi: 10.1515/BOT.2004.010 

Piazzi L, Gennaro P, Balata D (2012) Threats to macroalgal coralligenous assemblages 
in the Mediterranean Sea. Mar Pollut Bull 64:2623–9. doi: 
10.1016/j.marpolbul.2012.07.027 

Ponti M, Fava F, Abbiati M (2011) Spatial–temporal variability of epibenthic 
assemblages on subtidal biogenic reefs in the northern Adriatic Sea. Mar Biol 
158:1447–1459. doi: 10.1007/s00227-011-1661-3 

Ros J, Romero J, Ballesteros E, Gili J-M (1985) Chapter 8. The benthos. In: Diving in 
the blue water.  

Teixidó N, Casas E, Cebrian E, et al (2013) Impacts on coralligenous outcrop 
biodiversity of a dramatic coastal storm. PLoS One 8:e53742. doi: 
10.1371/journal.pone.0053742 

Teixidó N, Garrabou J, Harmelin J-G (2011) Low dynamics, high longevity and 
persistence of sessile structural species dwelling on Mediterranean coralligenous 
outcrops. PLoS One 6:e23744. doi: 10.1371/journal.pone.0023744 

Teixidó N, Pineda M-C, Garrabou J (2009) Decadal demographic trends of a long-lived 
temperate encrusting sponge. Mar Ecol Prog Ser 375:113–124. doi: 10.3354/meps07757 

Terlizzi A, Anderson MJ, Fraschetti S, Benedetti-Cecchi L (2007) Scales of spatial 
variation in Mediterranean subtidal sessile assemblages at different depths. Mar Ecol 
Prog Ser 332:25–39. doi: 10.3354/meps332025 

Uriz M-J (1998) How do reproductive output , larval behaviour , and recruitment 
contribute to adult spatial patterns in Mediterranean encrusting sponges ? Mar Ecol Prog 
Ser 167:137–148. 



128 

Virgilio M, Airoldi L, Abbiati M (2006) Spatial and temporal variations of assemblages 
in a Mediterranean coralligenous reef and relationships with surface orientation. Coral 
Reefs 25:265–272. doi: 10.1007/s00338-006-0100-2 

Witman JD, Dayton PK (2001) Rocky subtidal communities. In: Bertness MD, Gaines 
SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Inc. Sunderland, 
USA.  



129 

6. Impacts on coralligenous outcrop 
biodiversity of a dramatic coastal storm

Teixidó N, Casas-Güell E, Cebrian E, Linares C, Garrabou J (2013) Impacts on 

coralligenous outcrop biodiversity of a dramatic coastal storm. PLoS ONE 8(1):e53742. 

doi:10.1371/journal.pone.0053742.



130 



131 

Abstract 

Extreme events are rare, stochastic perturbations that can cause abrupt and 

dramatic ecological change within a short period of time relative to the lifespan of 

organisms. Studies over time provide exceptional opportunities to detect the effects of 

extreme climatic events and to measure their impacts by quantifying rates of change at 

population and community levels. In this study, we show how an extreme storm event 

affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea 

using data acquired before (2006-2008) and after the impact (2009-2010) at four 

different sites. Storms of comparable severity have been documented to occur 

occasionally within periods of 50 years in the Mediterranean Sea. We assessed the 

effects derived from the storm comparing changes in benthic community composition at 

sites exposed to and sheltered from this extreme event. The sites analyzed showed 

different damage from severe to negligible. The most exposed and impacted site 

experienced a major shift immediately after the storm, represented by changes in the 

species richness and beta diversity of benthic species. This site also showed higher 

compositional variability immediately after the storm and over the following year. The 

loss of cover of benthic species resulted between 22% and 58%. The damage across 

these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was 

uneven, and those with fragile forms were the most impacted, showing cover losses up 

to 50 to 100%. Interestingly, small patches survived after the storm and began to grow 

slightly during the following year. In contrast, sheltered sites showed no significant 

changes in all the studied parameters, indicating no variations due to the storm. This 

study provides new insights into the responses to large and rare extreme events of 

Mediterranean communities with low dynamics and long-lived species, which are 

among the most threatened by the effects of global change. 
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6.1. Introduction 

Extreme events are rare, stochastic perturbations that can cause abrupt and 

dramatic ecological change within a short period of time relative to the lifespan of 

organisms (Turner et al. 1998; Easterling et al. 2000; Jentsch et al. 2007). Extreme 

events are also considered rapid drivers with the potential to alter the state and trajectory 

of community structure and dynamics at wide spatial scales (White 1979; Petraitis et al.

1989; Sousa 2001), quickly forcing the system away from its equilibrium state and 

shaping its dynamics far into the future (Holling 1973; Gunderson 2000; Hughes et al. 

2010). When ecosystems are forced beyond a threshold, regime shifts occur and the 

system enters into alternate stable states with a structure and function that are 

fundamentally different from the previous regime (Scheffer et al. 2001; Folke et al. 

2004). Thus, understanding the community dynamics affected by extreme events is 

crucial for ecology and conservation research in a climatically changing world. As a 

consequence, interest in large phase-shifts and ecosystem resilience related to extreme 

events has increased considerably during recent decades due to the high level of 

disturbances that both terrestrial and marine ecosystems are suffering (Scheffer et al. 

2001; Folke et al. 2004; Carpenter et al. 2006). 

Studies characterizing marine ecosystem responses to anthropogenic climate 

change have revealed decreases in ocean productivity, alterations in food web 

dynamics, changes in physiology, increases in disease incidence, shifts in species 

distributions, and reduced abundance of habitat-forming species (Harley et al. 2006; 

Rosenzweig et al. 2007; Hoegh-Guldberg & Bruno 2010). In contrast, little is known 

about how extreme events affect marine communities. Under the conditions of ongoing 

climate change, observations and global change models predict increases in the 

frequency and intensity of extreme weather and climatic events, including heat waves, 

droughts, and intense tropical and mid-latitude storms (Easterling et al. 2000; IPCC 

2007). Extreme storms, such as hurricanes and severe storms in the tropics and mid-

latitude storms in temperate areas abruptly alter ecological processes and structure and 

severely affect marine littoral communities (Dayton 1971; Underwood 1999; Woodley 

et al. 1981; Sousa 2001). In comparison with our understanding regarding the effects of 

hurricanes and tropical storms affecting coral reefs (e.g. Knowlton et al. 1981; 

Harmelin-Vivien et al. 1994; Hughes 1994; Gardner et al. 2005; Walker et al. 2008), 

there is little knowledge about how extreme storms affect rocky benthic communities in 
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temperate regions such as the Mediterranean Sea. This lack of knowledge may partially 

be explained by the rarity and stochastic nature of extreme storms in the Mediterranean 

Sea, combined with the scarcity of baseline data and long-term studies, making it 

difficult to study the effects of these events. Nevertheless, analyzing the impacts of 

these events may provide new insights into processes that shape the structure of benthic 

communities in this region. 

The Mediterranean Sea is considered a hotspot of marine biodiversity, harboring 

approximately 10% of the world's marine species while covering less than 1% of the 

world ocean surface (Bianchi & Morri; Coll et al. 2010). This region has a long history 

of modification of natural ecosystems by human activities (Coll et al. 2010). In the 

Mediterranean Sea, coralligenous outcrops are of special concern, as they represent one 

of the most important hotspots for biological diversity (harboring approximately 20% of 

Mediterranean species), exhibit great structural complexity, and are among the habitats 

facing major threats (Gili & Coma 1998; Ballesteros 2006). The species that 

characterize coralligenous seascapes are encrusting calcareous algae, sponges, 

cnidarians, bryozoans, and tunicates. Some of the engineering species in these 

environments are long-lived; hence, their low dynamics make coralligenous outcrops 

exceptionally vulnerable to anthropogenic disturbances, such as destructive fishing 

practices, pollution, invasive species or mass mortality outbreaks linked to climate 

change (Cerrano et al. 2000; Coma et al. 2004; Garrabou et al. 2009; Teixidó et al. 

2011; Cebrian et al. 2012). Moreover, the Mediterranean basin is also considered to 

represent a climate change hotspot and will undergo one of the largest changes in 

climate worldwide, with an increase in the frequency of hot wave extremes of 200 to 

500% predicted at the end of the twenty-first century (Giorgi et al. 2008; Dequé 2007; 

Diffenbaugh et al. 2007; IPCC 2007). 

Studies over time provide exceptional opportunities to reveal the effects of 

extreme climatic events and to measure their impacts by quantifying rates of change at 

population and community levels. These studies are even more valuable when 

addressing slow-growing, long-lived species, which do not often undergo marked 

declines and in which adult mortality is rarely observed (Linares et al. 2007; Miriti et al. 

2007; Teixidó et al. 2011). Since 2006, we have annually surveyed coralligenous 

outcrops in the Medes Islands Marine Reserve in the western Mediterranean, and we 

were able to detect the impact of a dramatic coastal storm in December 2008 (Jimenez 
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2012; Navarro 2011; Sánchez-Vidal 2012) that shifted the community composition and 

structure of the most common long-lived benthic species in the area. Storms of 

comparable severity have been documented to occur irregularly within 50 year periods 

in the Mediterranean Sea (Sánchez-Vidal 2012; Bolanos 2009). Here, we provide 

evidence of the immediate impact of this severe coastal storm on the coralligenous 

outcrops and their responses over the following year. We assessed changes in the 

dynamics of the benthic community structure using data from before (2006-2008) and 

after the impact (2009-2010) and by analyzing: i) the community composition, species 

richness and beta diversity of sessile benthic perennial species with low dynamics, ii) 

community cover dynamics, and iii) the sensitivity of representative benthic species to 

the effects of the storm by quantifying cover changes. The final aim of the study is to 

identify the responses of communities with low dynamics and long-lived species to 

large and rare extreme events, providing new insights to understand and predict how 

present and future impacts affect these communities. 

Extreme storm event on December 26th2008 

The December 26th2008 storm was an extreme event considered to be one of the 

strongest impacting the Catalan coast in the last 50 years (Mateo & García-Rubies 2012; 

Sanchez-Vidal et al. 2012, Bolanos et al. 2009). Storms of an equivalent intensity were 

reported for the same area in the early (31/01/1911) (Meteorological Service of 

Catalonia, 

http://www20.gencat.cat/docs/meteocat/Continguts/Noticies/2011/Gener/pdf/31degener

de1911.pdf), (Ansell et al. 2006) and mid-twentieth century (22/02/1948) (La 

Vanguardia newspaper archives, 

http://hemeroteca.lavanguardia.com/preview/1948/02/22/pagina-4/34354259/pdf.html); 

but there are no instrumental wave records of these storms. On December 25th2008, a 

strong high pressure system developed over northern Europe (1047 hPa) blocking the 

western atmospheric circulation and forcing northern cold air and a deep cyclone to 

flow towards the NW Mediterranean Basin (Sanchez-Vidal et al. 2012; Jimenez 2012). 

This convergence caused maritime eastern winds and stormy seas to reach the Catalan 

coast. The storm reached category 5 (Mendoza et al. 2009) as it moved from the Gulf of 

Genoa to the Catalan coast, where it hit the shore on December 26th, with wind gusts up 

to 20 m s-1, wave heights of 8 m with peaks of 14.4 m, and wave periods of 14 s 

(Jimenez 2012; Sanchez-Vidal et al. 2012). The damage caused by the intense waves 

http://hemeroteca.lavanguardia.com/preview/1948/02/22/pagina-4/34354259/pdf.html
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was accentuated by the dislodged material that they carried, scouring sand and the 

displacement of large rocks (Sanchez-Vidal et al. 2012), [N. Teixidó pers. observ]. 

Shallow sublittoral communities (5-10 m) in the Natural Park of Montgri, Medes 

Islands and Baix Ter and adjacent areas showed high abrasion, with density reductions 

of 50-80 % of sea urchin populations and loss of algal cover up to 90% within a depth 

range of 5-10 m (Hereu et al. 2012; Hereu et al. 2012). Although these shallow habitats 

were the most impacted, damage was also registered in deeper habitats (20 m depth), 

with 80% of mortality of the brown alga Cystoseira zosteroides (Navarro et al. 2011). 

The most damaged communities were dwelling on surfaces facing the East. An 

exploratory dive immediately after the storm at a depth of approximately 16-20 m (one 

week afterward, 03/01/2009) revealed detached living colonies and fragments of 

gorgonians (Paramuricea clavata and Eunicella singularis) and massive sponges 

(Ircinia oros) on the sea floor, torn skeleton bases with living tissue of P. clavata,

rhizomes of P. oceanica, and displacement of large rocks with compressed sessile 

organisms (N. Teixidó pers. observ.). Additionally, the storm caused a significant 

decline of the sea bass population (Dicentrarchus labrax), the burial of 20% of 

Posidonia oceanica meadows and affected the deep-sea environment (300-1500 m) 

through increases of current speed, sediment transport, and the grain size of particles 

(Mateo & García-Rubies; Sanchez-Vidal et al. 2012).
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6.2. Material and methods 

Study area 

We assessed the impact of this dramatic storm on coralligenous outcrops in the 

Natural Park of Montgrí, Medes Islands and Baix Ter of the NW Mediterranean Sea 

(42º 3’N 3º 13’E, NE Spain). This area harbors well-developed coralligenous outcrops 

with a depth distribution of 15-70 m (Gili & Ros 1985). Due to their beauty and 

aesthetic value, these outcrops are among the most attractive areas for recreational 

scuba diving and are subjected to diving impacts (Garrabou et al. 1998, Coma et al.

2004).

Field activity and data collecting 

We quantified the immediate impact of the storm on the benthic community and 

the following year using before-and-after data (Fig. 1). Sampling site locations had 

different exposure orientation, where the most exposed face the East and the most 

sheltered the North-West: Carall Bernat faces the NE, Medallot the SW, Tascó Petit the 

NW, and Punta Salines the N. The sites are separated by few hundreds of meters to 3 

kilometers. Carall Bernat was the site most exposed, whereas Tascó Petit and Punta 

Salines were the most sheltered; thus used as controls. We present data from surveys 

that were performed annually before the storm event (July –August 2006, 2007, and 

2008), shortly after the storm (February 2009) and one year later (August 2010). Data 

available from Punta Salines cover only 2008 and February 2009. However, the Punta 

Salines data set has a meaningful ecologic value because it covers the most relevant 

time span of the analyzed temporal variation (before and immediately after); thus, we 

considered as a valid control site. This severe storm was a natural experiment affecting 

sublittoral communities with differences in exposure among sites and offered the 

possibility to reveal the effects produced after this severe meteorological event. 
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Figure 1. Photographs showing the impact of the coastal storm on coralligenous outcrops. 

These photographs show the same quadrat (25 × 25 cm) before (2008) and after the storm event 

(2009). A: Carall Bernat, dates A1: 23/06/2008, A2: 10/02/2009; B: Tascó Petit dates B1: 

24/06/2008, B2 16/02/2009; C: Medallot, dates C1: 22/06/2008, C2: 09/02/09, D: Punta Salines 

dates: D1: 25/06/2008, D2: 09/02/2009. 
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We used data from 4 permanent plots (4 m long × 0.8 m wide, total area = 3.2 

m2) located haphazardly at a depth of ~ 20 m at four different sites. The corners of each 

plot were marked with PVC screws fixed in holes in the rocky substratum with two-

component putty (Linares et al. 2007). During each survey, elastic bands were placed 

around the corners to facilitate the recognition of plot borders. Then, each plot was 

monitored photographically using quadrats of 25 × 25 cm to facilitate species 

identification (Kipson et al. 2011). The photographs were taken with a Nikon D70S 

digital SLR camera fitted with a Nikkor 20 mm DX lens (3000 × 2000 pixel resolution) 

and housed in Subal D70S housing. Lighting was achieved using two electronic strobes 

fitted with diffusers. Approximately 64 quadrats covered the entire surface of the permanent 

plot. In each permanent plot, we analyzed 3 replicates of 8 photographic quadrats (5000 cm2) 

as a minimal sampling area as the optimal sampling effort (Kipson et al. 2011). These 3 

replicates per site (n=51 in total: 3 sites × 3 replicates × 5 years = 45; 1 site × 3 replicates × 2 

years= 6) allowed replication and further statistical comparisons. A total of 404 photographs 

were analyzed.

All necessary permits for the described field studies were obtained from the 

authority responsible for this Protected Area. The locations are not privately-owned. 

This study did not involve endangered or protected species. Moreover, we did not 

perform any disturbance to species during our fieldwork. Our data were based on the 

analysis of images, a non-destructive technique to study marine benthic communities.

Benthic communities 

Natural variability of coralligenous outcrops shows little changes over time 

(Garrabou et al. 2002, Teixidó et al. 2011a, Teixidó et al. 2011b). Changes in the 

benthic coralligenous outcrops due to the severe storm were evaluated in three ways: 

i) Changes in community composition, species richness, and beta diversity were 

measured based on the presence-absence of perennial sessile macro-species. Overall, 

these perennial species are characterized by slow growth and low dynamics (hereafter 

referred to as SG, see Table A.4.1 for the species list) (Coma et al. 1998; Garrabou & 

Ballesteros 2000; Teixidó et al. 2009; Teixidó et al. 2011). They mainly consisted of 

macroalgae and encrusting red algae, sponges, anthozoans, bryozoans and tunicates. A 

total of 64 SG species were identified at the lowest taxonomic level from photographs. 
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Additional dives were performed for species identification (see Kipson et al. 2011 for 

further details). This approach based on presence-absence analysis is an optimal method 

for coralligenous biodiversity assessment and monitoring, providing good estimates of 

the composition and structure of these communities (Kipson et al. 2011).

ii) The percent cover of functional groups of sessile organisms and substrates 

was measured. These groups were classified as slow growing species (hereafter SG, i.e., 

the 64 species mentioned above with low dynamics); fast growing species (hereafter 

FG, including small, filamentous and seasonal hydrozoans and bryozoans with high 

dynamics); turf of algae (hereafter TA, corresponding to a multispecific assemblage of 

small and filamentous algae); detritic matrix (hereafter DM, consisting of 

conglomerates of detritus and microalgae); and bare substrate (hereafter BS). 

iii) The percent cover of the representative slow growing species was determined 

by the similarity percentage procedure (SIMPER analysis) (see below). Then, the 37 

representative species were grouped into 6 different morphological forms: Boring 

(BOR), Cup (CUP), Encrusting (ENC), Encrusting algae (ENA), Massive (MAS), and 

Tree (TREE). Furthermore, we measured the sensitivity of these 37 representative 

species by comparing the change in the percentage of cover before and after the storm 

(see Table A.4.2 for cover values). The sensitivity values ranged from -100% (total 

disappearance of cover after the storm) to 0 % (no cover change) to positive values 

(increased cover). To perform the cover analyses, each photograph was projected onto a 

grid of 25 squares (5 cm × 5 cm), and abundances were quantified by counting the 

number of squares filled in the grid by either each functional group or representative 

species and expressing the final values as percentages (Sala et al. 1997, Balata et al. 

2005). For the red gorgonian Paramuricea clavata, which exhibits an arborescent form, 

cover was calculated as the area occupied by its base. Percent cover of functional (ii) 

and morphological (iii) groups over 5 years were calculated for sites where all temporal 

range was available. 

Statistical analysis 

Changes in community composition were investigated using non-metric 

multidimensional scaling (MDS) on the basis of the Bray-Curtis dissimilarities of the 

presence-absence of 64 perennial macro-species as well as the presence-absence of the 
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functional groups described above (FG, TA, DM, BS). The null hypothesis of no 

structure in the data was tested using the similarity profile test (SIMPROF) (with 9999 

permutations and a 0.1% significance level (Clarke et al. 2008) on the Bray-Curtis 

matrix). This technique is a permutation-based ranking procedure aimed at testing 

genuine clusters in samples with no a priori assumptions about group membership. 

Differences in beta-diversity (% of unshared perennial macro-species) among sites and 

before and after the impact were analyzed using the PERMDISP routine. This is a 

routine for comparing the degree of dispersion of different groups of samples based on a 

distance matrix. We tested for similarity in the beta-diversity among groups on a 

Jaccard distance matrix (Anderson et al. 2006). The representative taxa for each site 

before the storm were determined using the similarity percentage procedure (SIMPER) 

(Clarke et al. 1994). Then, we measured the sensitivity of these taxa by comparing the 

percentage of cover change before and after the storm.

Non-parametric analysis of variance PERMANOVA (Anderson 2001) was used 

to examine the changes generated by the storm. The sampling design included 2 factors: 

Site, which was random with 4 (changes in community composition) or 3 (cover of 

functional and morphologic groups) levels; and Before/After, which was fixed with 2 

levels. Differences between samples were quantified using i) Bray-Curtis dissimilarities 

for the multivariate perennial macro-species data matrix and ii) Euclidean distances for 

univariate analyses. Analyses were performed with 9999 unrestricted random 

permutations of the raw data. Pair-wise comparisons for all combinations of Site x 

Before/After were also carried out using t-tests and 9999 permutations of the raw data. 

Chi-squared tests were carried out to test for differences in the frequency of sensitivity 

among the sites and taxonomic as well as morphological form groups. The analyses 

were computed using the program Primer v6 with the PERMANOVA + add-on package 

(Anderson et al. 2008) and Statistica (version 8.0 StatSoft). 
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6.3. Results

The community composition of sessile macro-species showed a major shift after 

the immediate impact of the storm (Fig. 2). The most exposed site Carall Bernat was the 

most impacted and underwent a change in benthic structure, resulting in a distinct 

cluster (SIMPROF test p<0.01) containing the immediate post-storm (2009) data and 

those of the following year (2010). 

Figure 2. Shift in the structure of the perennial benthic species in coralligenous outcrops in the 

Medes Islands in response to the 2008 dramatic storm episode. Non-metric multidimensional 

scaling (NMDS) based on the Bray-Curtis resemblance measure for species presence/absence 

data from 2006 to 2010. The circle indicates a SIMPROF group containing the immediate post-

storm. 

This post-storm group showed a higher dissimilarity and larger multivariate 

dispersion than the pre-storm data (2006-2008) and those from the other three sampling 

sites; no significant changes were observed (Fig. 2). There was a significant interaction 

between sites and before-after the storm impact (F3,43 = 2.96, p<0.0001) (see Table 

A.4.3 for 2-way PERMANOVA and pair-wise tests). 

Considering the pair-wise comparisons, only Carall Bernat showed a significant 

difference before (85% similarity) and after the storm (74% similarity) (t=2.98, 

p<0.0001, Table A.4.3). This shifting pattern was corroborated by a significant decrease 

in the mean species number (F3,43 = 8.91, p<0.001), from the mean values of 35.5 ± 0.57 

before to 27 ± 0.62 sessile species after the storm, representing a decline of 24% (pair-
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wise comparisons t=5.99, p<0.0001) (Fig. 3) (see Table A.4.4 for 2-way 

PERMANOVA and pair-wise tests). 

The clear shift in the community composition was also evident based on the 

beta-diversity analysis (F7,43 = 5.8, p<0.001) (Fig. 4). Carall Bernat showed a significant 

increase of beta-diversity after the storm (18.2% ± 0.7 before vs. 22.33% ± 1.4 after) (t= 

1.78, p<0.01), indicating higher variation in the benthic composition, whereas Medallot 

exhibited a decrease, which was not significant (24.4% ± 1.2 before vs 18.7% ± 1.4 

after) (t= 2.97, p>0.05). Regarding the non-impacted sites, no changes were observed in 

the community structure (Fig. 4, Table A.4.3), mean species number (before: Tascó 

Petit 34.3 ± 0.43, Punta Salines 31.1 ± 1.1; after: Tascó Petit 35.3 ± 1.0, Punta Salines 

30.5 ± 0.8) (Fig 3, Table A.4.4) and beta diversity (Fig 4) (t=0.9 p>0.05 for Tascó Petit, 

t=0.9, p>0.05 for Punta Salines).  

Figure 3. Mean number of sessile 

species (± SE) over time in the Medes 

Islands. The dotted line represents the 

impact of the unusual storm in December 

2008.

Figure 4. Mean (±1 SE) beta-

diversity (as the percentage of 

unshared species) before and after 

the storm for each site. The results 

of PERMDISP analyses are shown.
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Before the storm event (2006-2008), the coralligenous outcrops were 

characterized by a high cover of perennial and slow growing species (SG) (mean values 

of 87% ± 0.9 Carall Bernat, 88% ± 0.8 Tascó Petit, and 84% ± 0.7 Medallot) (Fig. 5 & 

6), such as encrusting and fragile calcareous algae, encrusting sponges, tree bryozoans 

and gorgonians, massive sponges and tunicates, and an overall high structural 

complexity. These patterns were constant over the three years and reflected the low 

natural variability of coralligenous outcrops (Fig. 5). There was a significant change in 

the percentage of cover of the principal functional groups among the three sites and 

before-after the storm (F2,39= 10.7, p<0.0001) (Fig. 5), and these differences were 

significant for the pair-wise comparisons of the interaction term at Carall Bernat and 

Medallot (p<0.001, see Table A.4.5). The cover of SG at Carall Bernat was by far the 

most severely damaged, showing a decrease to 37% ± 3.9 of the total area immediately 

after the impact (2009), but increased to 46% ± 4.7 in the following year (2010) (Fig. 5). 

The distribution of damage also depended on small-scale position effects at Carall 

Bernat, where 16% and 25% of the area analyzed in 2009 showed values as low as10% 

and 50% of SG cover, respectively. 
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Figure 5. Response to storm episode regarding the cover area of the principal groups of sessile 

organisms and bare substrate: Bare substrate (BS), Detritic Matrix (DM), Turf algae (TA), Fast 

growing species (FG) and Slow growing species (SG). SIMPER taxa (90% of the average 

similarity within each site) are represented as 5 morphological forms: Boring (BOR), Cup 

(CUP), Encrusting algae (ENA), Encrusting (ENC), Massive (MAS), and Tree (TREE).
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The scouring effect of the storm was evident in the peak of bare substrate (BS) 

(mean value 63% ± 4) observed immediately after the storm (2009) at Carall Bernat, 

which was replaced by turf algae (TA) in 2010 (mean value 44% ± 3). Interestingly, 

surveys at Medallot showed a moderate decrease of SG, with a reduction from 84% ± 

0.7 (before) to 74% ± 2.3 (2009), followed by a further decrease down to 56% ± 3.8 

(2010), suggesting a delayed loss of SG cover (Fig. 5). Furthermore, there was an 

increase of detritic matrix (DM) in 2009 (mean value 12 % ± 0.2) and a 3-fold 

increment from the pre-storm cover valueof TA (mean value 33.3% ± 3.6in 2010). In 

contrast, Tascó Petit was almost not affected after the storm, exhibiting a discrete peak 

of 5% BA and a reduction of 66% in fast growing species (FG) (12% ± 1.8 before vs. 

4% ± 1 after) (Fig. 5). No significant change in cover percentage of the principal 

functional groups was observed before and after the storm (pair-wise comparisons 

t=2.63; p>0.05, see Table A.4.5). 

The damage to the cover of different growth forms differed significantly among 

localities and before-after the storm (Fig. 5) (F2,9= 3.7, p<0.01). The cover loss of 

massive (MAS) and encrusting (ENC) sponges and tunicates, scleractinian corals 

(CUP), encrusting algae (ENA), and arborescent gorgonians and bryozoans (TREE) 

ranged from 45% to 66% in relation to the pre-storm cover at Carall Bernat (Fig. 5). The 

damage to ENC and ENA was particularly striking due to the high pre-storm cover 

(approximately 46.5% and 23% before and 21.8% and 9.5% after the storm, 

respectively), as well as for the TREE category, which despite its low cover before the 

storm (approximately 12%) declined considerably to 4% (Fig. 5). Medallot and Tascó 

Petit did not show significant differences before and after the storm (pair-wise 

comparisons t=2.13 and t=2.45, p>0.05, see Table A.4.6). 
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The sensitivity of the representative species most affected by the storm was 

significantly different across sites, with 95% of species being affected at Carall Bernat 

(n=24), 38% at Tascó Petit (n=31), 34% at Medallot (n=32), and less than 1% at Punta 

Salines (n=19) (X2= 54.2, df=3, p<0.0001) (Fig.6). 

The alga Peyssonnelia sp., the encrusting and delicate sponges Hemimycale 

columella and Pleraplysilla spinifera, the massive-ropy fragile sponge Clathrina 

clathrus and the bryozoans Adeonella calveti and Myriapora truncata were reduced by 

up to 100% at Carall Bernat (Fig.6, Table A.4.2). In addition, among the species that 

exhibited high coverage before the storm (each species showing a cover value of 

approximately 10%), Lithophyllum stictaeforme (ENC) was reduced to 85%, 

Parazoanthus axinellae (ENC) to 72%, Paramuricea clavata (TREE) to 70%, Disydea 

avara (ENC) to 64%, Phorbas tenacior (ENC) to 49%, and Crambe crambe (ENC) to 

20%. Similar patterns of damage were not found at the other sites. For example, at 

Medallot, the reduction was 100% only for F. implexa and for M. truncata (TREE), and 

other species showed values lower than 50% such as D. avara (ENC), Reteporella spp. 

(TREE), and P. clavata (TREE). Only 3 species out of 31 showed high to moderate 

values of cover loss at Tascó Petit: 100% for Halocynthia papillosa (MAS), 67% for 

C .clathrus (MAS), and 50% for Filograna implexa (TREE). No evident changes of 

cover loss were detected in Punta Salines (Fig. 6). Overall, there was no significant 

difference regarding taxonomic groups (X2= 6.9, df=5, p>0.05) or morphological forms 

(X2= 9.8, df=5, p>0.05). The massive and robust sponges Chondrosia reniformis and 

Agelas oroides appeared to be less affected, showing approximately 5% cover loss at 

Carall Bernat and Tascó Petit and no change at Medallot. After the storm, the removal 

of sessile organisms on the boring sponge Cliona sp. during the storm increased the 

exposed area by 45% at Carall Bernat and +20% at Medallot, respectively (Fig. 6). 
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Figure 6. Sensitivity (as a % of cover change) of the representative macrobenthic taxa to the 

physical disturbance generated by the storm. Cover change (from highest, 2100%, to lowest, 

0%) at Carall Bernat defines the order of the taxa at the other sites. Representative macrobenthic 

taxa were chosen from SIMPER analysis. Black areas indicate that taxa were not representative 

for the specific site. 
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6.4. Discussion 

The storm of December 26th2008 was considered to be the strongest recorded in 

the last 50 years in the northern part of the Catalan coast (41ºN - 42º30’N), with the 

greatest wave power, the highest wave heights, and the longest duration (Sánchez-Vidal 

et al.2012; Jiménez 2012; Mendoza et al. 2009). Its impact, including abrasion of 

sediment particles, severely affected the littoral communities in the region, causing 

mortality of sessile benthic organisms, including some long-lived species (mainly 

sponges and anthozoans) estimated to be more than 50 years old (Coma et al. 1998; 

Teixidó et al. 2011). Coralligenous outcrops exhibit low dynamics and few changes 

over time at population and community level in absence of large disturbances (Garrabou 

et al. 2002a, Garrabou et al. 2002b; Ballesteros 2006; Teixidó et al. 2011), which makes 

the impact of extreme events very important for community dynamics. This is even 

more important in the Mediterranean Sea, which is considered a hotspot of climate 

change, where exceptional events such as this storm or heat-waves in summers are 

predicted to increase (Giorgi 2008; Déqué 2007; Diffenbaugh et al. 2007, IPCC 2007). 

Overall, our results quantified the different effects of this rare, extreme event on the 

community structure dynamics of long-standing coralligenous outcrops. This study is 

unique in using high-resolution sampling over time to reveal how extreme events can 

shift coralligenous outcrops characterized by long-lived species and may be of general 

interest regarding ecological responses to extreme and unusual climatic events. 

Spatial patterns of the storm impacts 

The loss of cover of slow growing benthic species was between 58% and 22% 

immediately after the storm at two of the studied sites, Carall Bernat and Medallot, 

respectively (Fig. 5). The damage caused by the storm (with an eastern wind direction) 

was influenced by aspects of orientation, local habitat profiles, depth, and the presence 

of boulders. The most impacted site, Carall Bernat (wall facing NE), is located within a 

narrow channel surrounded by large stone blocks, whereas Medallot (wall facing SW) is 

located in the most westerly part of an archipelago and is better protected from easterly 

wave swells. Our data showed that approximately 18 out of 24 species at Carall Bernat 

were severely affected, showing cover loss values higher than 50% (Fig. 6), 

accompanied by a significant decrease of perennial species richness (24%) (Fig. 3). 
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Although the impact was local and restricted to the northernmost part of the Catalan 

coast, the damage was among the highest registered for coralligenous outcrops of the 

NW Mediterranean Sea. High mortality rates of gorgonian populations have been 

reported to be up to 10-60 % after major episodes of mass mortality, such as those 

related to positive temperature anomalies in the summers of 1999 and 2003 in the NW 

Mediterranean Sea (Cerrano et al. 2000; Linares et al. 2005; Garrabou et al. 2009). 

However, these studies did not explore overall community shifts (including changes in 

calcareous algae, sponges, anthozoans, bryozoans, and tunicates). Other studies 

quantifying the impacts of severe hurricanes and cyclones on coral reefs have also 

focused on primary framework corals (e.g., Edmunds et al. 1991; Knowlton et al. 1981) 

and have reported reef losses, with values ranging from 17% to 60% (Stoddart 1974; 

Wooley 1981; Hughes et al. 1999; Gardner et al. 2005; Álvarez-Filip et al. 2009), there 

by highlighting the importance in terms of the broader community changes. 

In this study, the effects of the storm were not found to be uniform and 

synchronous. Although Carall Bernat was the most impacted site, it showed a low 

recovery of perennial species after one year (see below), whereas Medallot exhibited 

little cover loss immediately after the storm (cover loss of approximately 8%) but 

showed a further decline in the following year (23% cover loss of slow growing 

species), accompanied by a considerable increase in turf algae (~33%) (Fig. 5). We 

acknowledge the different responses of benthic community dynamics, which integrate 

different complex history processes and disturbances, and highlight the complexity of 

identifying unique, combined and/or synergetic effects of disturbance when most 

coastal habitats are exposed to multiple stressors (Hughes et al. 1999; Jackson et al. 

2001; Wilson et al. 2006). Based on this complexity, our results showed that benthic 

communities dwelling in rather small areas (less than ~ 10 km2) can exhibit 

significantly different responses to sudden disturbances. 

An abrupt shift in the multivariate structure of coralligenous outcrops after the 

storm was only observed at the most exposed and impacted site, Carall Bernat, which 

showed the highest compositional variability in response to the disturbance (Fig. 2). 

Tascó Petit and Punta Salines did not show any significant change on community 

structure before and after the storm, indicating no major effects of this severe storm at 

the sheltered sites. This pattern of greater variability was corroborated by an increase of 
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beta diversity in the perennial species composition after the disturbance (immediately 

after and in the following year) (Fig. 4). After extreme events such as this storm, post-

disturbance variability is expected to be elevated and to persist for a longer period of 

time relative to pre-disturbance conditions, and this variability will be stabilized more 

gradually, only after the disturbed state has returned to the baseline condition (Collins 

2000; Fraterrigo et al. 2008). Our results demonstrate that this unusual storm produced a 

mosaic of small remaining survivor patches in the most impacted site and reduced the 

structural complexity of perennial slow-growing benthic species, creating a seascape 

habitat exhibiting higher fluctuations in the presence/absence of component species, 

accompanied by a reduction in the number of species, thus reducing the species pool (a 

decrease of 8 perennial species) (Fig. 2 and 3). Interestingly, this severe storm appeared 

to have opposite effects on beta diversity (Fig. 4), such that it increased significantly in 

Carall Bernat due to a high variability in composition, whereas it declined significantly 

at Medallot. This increased similarity at Medallot between pre-and post-storm 

conditions may be explained as a consequence of the change in the relative cover of 

perennial-slow benthic species (decreasing) and turf algae (increasing). 

Overall, this change in beta diversity (increase or decrease) was accompanied by 

a loss of functional groups in Carall Bernat and Medallot (Fig. 5 and 6), with a shift in 

dominance from encrusting algae and perennial animal species to turf-forming algae. 

Encrusting calcareous algae are the major contributors to coralligenous outcrops and, 

together with sponges, cnidarians, bryozoans, and tunicates, are the species that 

characterize this habitat (Ballesteros 2006). Thus, their replacement by turf-forming 

algae may increase the sensibility to invasion, as some of these algae belong to the most 

invasive species in the Mediterranean Sea, triggering substantial changes in the structure 

and dynamics of rocky communities and rendering surfaces inhospitable to the 

recruitment of native invertebrates (Airoldi 1998; Piazzi et al. 2001, Linares et al. 

2012). 

Species sensitivity 

Species sensitivity showed a gradient regarding the site exposure: from high 

through intermediate to low values of cover loss at Carall Bernat, Medallot, Tascó Petit, 

and Punta Salines (Fig. 6). Our findings indicated that the damage across perennial 
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species was uneven and those with fragile forms, irrespective of their morphology, were 

the most impacted, showing cover losses between 50 and 100 % (Fig. 6). These results 

agree with the general observation that fragile branching and foliose corals are the most 

susceptible to hurricane damage to coral reefs (Woodley et al. 1981; Hughes et al.

1999), as well as in the NW Mediterranean Sea, a severe winter storm caused high 

mortality of the fragile bryozoan Pentapora facialis (Cocito 1998). In the present study, 

the species ranged from short-lived perennial species with estimated ages of 2-5 years 

(e.g., the crustose coralline alga Peyssonnelia sp., the massive-ropy fragile sponge 

Clathrina clathrus, and the delicate tree-like bryozoans Adeonella calveti and 

Myriapora truncata) to persistent and long-lived perennial species with estimated 

longevities of 50-100 years (e.g., the gorgonian Paramuricea clavata, the scleractinians 

Leptopsammia pruvoti and Caryophyllia inornata, and the alcyonacean Alcyonium 

acaule) and encrusting calcareous algae (e.g. Lithophyllum stictaeforme and

Mesophyllum alternans) with low natural adult mortality (Coma et al. 1998; Ballesteros 

2006; Linares et al. 2007; Teixidó et al. 2011). Thus, this unusual event produced high 

episodic mortality of adults in a community in which this rarely occurs under natural 

conditions. 

These observations are in agreement with the fact that large and infrequent 

disturbances such as this storm are considered to drive species interactions and 

community dynamics, which cause long-term effects on both marine and terrestrial 

communities (Sousa 2001; Pickett 1985; Petraitis 1989; Hughes et al. 1999). 

Patterns of surviving patches 

The strong abrasive effect of the storm did not completely homogenize the 

available space by creating a seascape of bare substrate at the most impacted site; rather, 

it produced a mosaic of small remaining surviving patches of perennial benthic species 

(with values of perennial-slow growing species cover ranging from 10% to 50%), 

associated with a decrease of habitat complexity and heterogeneity. Spatial 

heterogeneity following large disturbances has been widely documented in both marine 

and terrestrial ecosystems (Picket 1985; Foster et al. 1998; Turner 2010), and it has been 

recognized that biotic residuals (e.g., surviving roots and rhizomes of plants, as well as 

fragments of corals and sponges) are regularly available, even following a large 

disturbance (Connell et al. 1977; Highsmith 1982; Teixidó et al. 2007). 
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In the present study, the existence of small patches after the storm (mainly 

encrusting algae and clonal animals such as encrusting sponges, anthozoans, and 

tunicates) at the most impacted site was fundamental for slight recovery, with a minor 

increase of cover being observed during the following year. This increase of perennial-

slow growing species represented an increase of 10% (37% ± 3.9) immediately after the 

impact (2009) to 46% ± 4.7 (2010) (Fig. 5). We hypothesize that these surviving 

colonies and fragments favored faster recovery via vegetative regrowth and this partial 

recovery occurred more rapidly than could take place through the growth of new 

recruits via larvae. Our results showed that one year is not enough to re-establish the 

community to its prior state before the storm (Figs. 2–6). Only two encrusting calcified 

algae (Lithophyllum stictaeforme and Mesophyllum alternans) and six clonal species 

(the sponges Crambe crambe, Dysidea avara, Corticium candelabrum, Phorbas 

tenacior, the anthozoans Parazoanthus axinellae, and the tunicate Cystodytes 

dellechiajei) contributed to regrowth from the remnant tissue. The finding of small 

remaining surviving patches is of special interest to understand community responses 

due to the overall low dynamics of coralligenous species combined with the infrequent 

or unsuccessful recruitment events recorded for sexually produced larvae of clonal 

organisms (Hughes et al. 2000; Linares et al. 2007; Teixidó et al. 2011). 
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Conclusion 

With the increasing threat to coastal habitats due to global warming and other 

interacting factors, there is growing concern about the capacity of ecosystems to absorb 

multiple disturbances occurring over short time periods (Gunderson 2000; Scheffer et 

al. 2001; Folke et al. 2004). Global warming is predicted to increase the frequency and 

magnitude of extreme climate and weather events (Easterling 2000; IPCC 2007). For 

the western Mediterranean Sea, a decrease in the total number of cyclones has been 

predicted (Ulbrich et al. 2009), but an increase of wind and wave intensity (Young et al. 

2011; Marcos et al. 2011). Consequently, the observed damage makes it evident that 

recurrent severe storms will seriously affect coralligenous outcrops, posing threats to 

their resilience. Based on the complex responses to disturbance, efforts to acquire and 

analyze data over time are fundamental to quantify these changes and evaluate the 

ecological mechanisms behind them, which will ultimately allow us to develop our 

capacity to predict long-term and larger scale community shifts. 

The effects of this storm were difficult to predict, but now that they have been 

registered, they provide new insights into population and community dynamics. 

Consequently, under the present warming scenario and due to the high diversity that the 

Mediterranean Sea harbors (Somot et al. 2008; Coll et al. 2010), we emphasize the need 

for long-time empirical and modeling studies on sublittoral benthic communities. 

This information is crucial not only for understanding the mechanisms 

underlying the dynamics of these communities and the ecological consequences of 

global climate change but also for determining effective management and conservation 

approaches to maintain the biodiversity of the Mediterranean. 
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This thesis used an extensive photographic survey, covering several spatial 

scales (100s of m to 100s of km) within the NW Mediterranean and including 2 

different coralligenous assemblages: Paramuricea clavata and Corallium rubrum

assemblage. A rapid non-destructive protocol based on photographic sampling for 

biodiversity assessment and monitoring of coralligenous outcrops provided good 

estimates of its species composition, by analyzing presence/absence of macrobenthic 

species. This approach allowed us to determine the minimal sampling area for each 

assemblage (5000 cm2 for P. clavata assemblages CA and 2500 cm2 for C. rubrum

assemblages). In addition, we concluded that 3 replicates provided an optimal sampling 

effort in order to maximize the species number and to assess the main biodiversity 

patterns of studied assemblages. 

The spatial variability of biodiversity patterns on coralligenous outcrops 

dominated by C. rubrum assemblages and P. clavata differed consistently with spatial 

scale, presenting higher variability at medium (sites) spatial scales and lower variability 

at the largest ones (localities). Similar patterns were also found for the 

morphofunctional groups, diversity and abundance; highlighting the highest % cover 

and number of species corresponding to encrusting invertebrates (while algal group was 

almost negligible). Besides, evidence of differences was detected at site level regarding 

alfa diversity of perennial species, whereas beta and gamma diversity showed more 

consistent values at locality level. Finally, several seascape indexes (NP, MPS and MSI) 

regarding the spatial configuration of patches belonging to perennial species were also 

studied for C. rubrum assemblages, which confirmed the same robust patterns at the 

three spatial scales studied. 

The thesis also addressed biodiversity patterns over time for coralligenous 

outcrops dominated by the red gorgonian P. clavata. Overall, no temporal changes over 

5 years were detected in either species composition or the 12 morphofunctional groups 

considered. 

This thesis assessed the effects derived from an extreme storm event comparing 

changes in benthic community composition using data acquired before (2006-2008) and 

after the impact (2009-2010) at four different sites in the NW Mediterranean Sea. The 

sites analyzed showed different damage from severe to negligible. The most exposed 

and impacted site experienced a major shift, represented by changes in the species 
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richness and beta diversity of benthic species. The loss of cover of benthic species 

resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, 

sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms 

were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small 

patches survived after the storm and began to grow slightly during the following year. 

In contrast, sheltered sites showed no significant changes in all the studied parameters, 

indicating no variations due to the storm. 
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8. General discussion
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8.1. Coralligenous and the lack of quantitative data for a proper 
conservation status assessment 

Large scale long-term biodiversity datasets are a basic resource that furnishes 

the essential tools to provide information to guide conservation actions (Magurran et al. 

2010) as well as to evaluate the effectiveness of management plans (Gaston 2000). In 

assemblages dominated by long-lived species, such as the coralligenous ones (Teixidó 

et al. 2011), the challenge is even greater since declining or recovery trajectories are 

more difficult to detect due to the slow pace of their population dynamics (Hughes et al. 

2013). At our knowledge, most biodiversity assessments on the coralligenous 

encompassed small spatial and short temporal scales (Cocito et al. 2002; Piazzi et al. 

2004; but see Gatti et al. 2015 and Doxa et al. 2016). In this context, the main goal of 

this thesis was to provide information on coralligenous composition and structure over 

regional spatial (>100 km's) and long-term temporal (five to ten years) scales. 

8.2. Biodiversity monitoring method for coralligenous outcrops 

During last years, different biodiversity and health assessments have been 

developed to assess the status of coralligenous outcrops. Based on the necessity of 

standardized and comparable biodiversity assessment methods, the first objective of the 

thesis was to determine the minimal sampling area (MSA) and the optimum sampling 

effort to assess biodiversity patterns (Chapter 3). Three replicates measuring 5000 cm2

for Paramuricea clavata and 2500 cm2 for Corallium rubrum  were found to be 

sufficient to maximize the species number and to assess the main biodiversity patterns 

present (Chapter 3, Tables 2 and 3). To our knowledge, MSAs had only previously been 

estimated for studying cnidarian species dwelling in coralligenous assemblages 

(Weinberg 1978a; Gili and Ros 1985). Interestingly, both studies determined 

comparable values for areas required to reach at least 80% of species: approximately 

5000 cm2 for the gorgonian and 4000 cm2 for red coral. In the present thesis, the use of 

the MSA as a sampling unit was crucial for the assessment of biodiversity patterns. 

Comparison of the patterns obtained using MSA and smaller individual quadrats (used 

in the photo sampling) as replicates clearly showed a shift in the hierarchy of the 

estimates of variance components from large to small spatial scales. In general, the 

variation in the observed similarities among samples increases as the size of the 

sampling unit decreases (Nekola and White 1999). Thus, using sampling units smaller 
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than the MSA may have resulted in increased stochastic variability in the species 

composition at the smallest spatial scale. Similar effects have been reported previously 

in different habitats (Steinitz et al. 2006; Parravicini et al. 2009; Rocchini et al. 2010). 

However, previous studies on coralligenous outcrops adopted sampling units ranging 

between 240 and 600 cm2 (True 1970; Hong 1982; Ferdeghini et al. 2000; Piazzi et al. 

2004; Balata 2006; Virgilio et al. 2006; Piazzi et al. 2010), as expected since the 

sampling units were much lower than MSA values, these studies found the highest 

variability at the replicate scale (Ferdeghini et al. 2000; Acunto et al. 2001). Hence, we 

emphasize the necessity to determine MSAs and use them as sampling units in the 

assessment of biodiversity patterns within coralligenous (and other) assemblages.  

The methodological approach developed in this thesis could be also used to 

study rarely surveyed deep coralligenous banks (extending from 60 down to 120 m, 

depending on the geographical position and local light conditions (Ballesteros 2006), as 

ROVs (remotely operated vehicles) or research submersibles have the operational 

capability to collect high-resolution digital photographs. 

8.3. Description and quantification of structural parameters of 
coralligenous outcrops at regional and decadal spatio-temporal scales. 

Studies on the red coral Corallium rubrum and red gorgonian Paramuricea 

clavata communities have been mainly focused at the population level (Garrabou and 

Harmelin 2002; Linares 2006; Ledoux et al. 2010; Arizmendi-Mejía et al. 2015) and 

just few studies addressed the assessment at the community level, focusing on the 

structure and dynamics (Weinberg 1978b; Deter et al. 2012; Ponti et al. 2014). Both 

species are threatened by disturbances associated to global changes such as climate-

driven mass-mortality events, sedimentation, and invasive species (Cerrano et al. 2000; 

Cebrian et al. 2012). Besides red coral is affected by overharvesting (Linares et al. 

2010; Montero-Serra et al. 2015). Since both gorgonian species coral are key 

engineering species of coralligenous systems, changes in the population abundance may 

be affecting the entire community. However the lack of baseline information and 

specific studies is hindering to explore the impact of global change at community level. 

Hence, the first/second aim of this thesis was furnishing the first baseline 
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information on spatial and temporal patterns of coralligenous assemblages dominated by 

red coral Corallium rubrum (Chapter 4) and red gorgonian Paramuricea clavata 

(Chapter 5). In this thesis, we showed for first time that diversity and structure of 

morphofunctional groups (hereafter MFG) are constant at regional spatial and temporal 

scales considered. This result supports the hypothesis that in general, coralligenous 

outcrops dominated by the red gorgonian (Chapter 5) and the red coral (Chapter 4), 

displayed similar structural complexity, especially for perennial and slow growing 

species. However, other MFGs displayed higher degree of spatial and temporal 

variability such as Algal turf, Algal erect and Animal epibionts. In fact, these groups 

could be good indicators of the impact of different disturbances since most of them are 

characterized by faster growth rates. For instance, a sudden increase of Algal turf in 

Petit Conglué resulted from a recent introduction of the red filamentous algae 

Womersleyella setacea. 

Focusing on the similarities in species composition, the results of this thesis 

showed differences in specific composition at site and locality level for both 

assemblages, being the highest variability at site level (Chapter 4 and Chapter 5) and 

clearly reduced at locality level (Chapter 4 Fig. 2 and 3, and Chapter 5 Fig. 3). 

Interestingly, the greatest variability was almost equally found at the site and replicate 

(MSA) levels. Other studies in coralligenous assemblages have also found the highest 

variability at the smallest scales investigated (e.g. among replicates) (Ferdeghini et al. 

2000; Virgilio et al. 2006; Terlizzi et al. 2007; Abbiati et al. 2009; Ponti et al. 2011). 

However, despite this variability, it is important to note the relatively high similarity 

found among NW Mediterranean sites (overall average similarity 55.7% for P.clavata

assemblages whereas for C. rubrum the average similarity was 60.70%). 

Diversity metrics 

Similar patterns of diversity, the alpha (site) and gamma (locality) values were 

found for both assemblages. Diversity values found for C. rubrum assemblages were 

similar (from 24 to 41 species at site level and from 57 to 72 species at locality level) 

than those found in coralligenous dominated by P. clavata (from 23 to 42 and from 52 to 

66 species at locality level). The diversity values of this thesis were markedly higher 

than other studies specially performed on C. rubrum outcrops (18 species or taxonomic 

groups, Virgilio et al. 2006). The reason can be due because C. rubrum’s sites of this 
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thesis where placed at different habitats such as crevices, overhangs, caves and depth 

vertical walls (>40 m.) and covering an extension of more than 400 km whereas other 

studies (e.g. Virgilio et al. 2006) focused at small spatial scale (< 5km). 

Landscape pattern indices 

Overall, our results highlighted the high spatial complexity and diversity 

previously reported for coralligenous outcrops (Ponti et al. 2011; Kipson et al. 2011; 

Bertolino et al. 2013; Ponti et al. 2014). Focusing on the spatial arrangement addressed 

in the study of the red coral assemblage, the indices used to characterize different 

aspects of spatial patterns - patch number (NP), size (MPS) and shape (MSI) - showed 

consistent range of values across sites and localities (Chapter 3, Figures 5, Table 6). 

Garrabou et al. 2002 using LPI to study spatial patterns along a depth gradient, found 

that coralligenous outcrops exhibited the greatest spatial pattern complexity. The 

authors argued that a decrease in dynamics (% of area changed) might enhance high 

diversity and thus complex spatial patterns. The combination of the use of 

morphofunctional groups with spatial arrangement indices may be also excellent proxies 

to estimate the health of coralligenous outcrops (see below). For example, one of the 

most evident phenomena after disturbances in terrestrial and marine ecosystems is the 

significant changes in number, size and forms of patches in the main morphological 

groups (Turner et al. 2002; Teixidó et al. 2007; Wedding et al. 2011). We may predict 

that the impact of a large disturbance could result in a major shift implying a decrease in 

indices used in this study: higher NP, intermediated MPS and irregular forms indicating 

that well-mixed groups of invertebrates become less complex. 

The processes behind the multi-scale observed patterns in assemblages are 

difficult to discern. In any case, species composition across localities does not appear to 

be determined primarily by the differences in physico-chemical conditions at regional 

level (Bensoussan et al. 2010) and/or the differential impact of major disturbances (e.g. 

mass mortality) (Garrabou et al. 2009). Instead, we contend that biological factors 

(growth rates, recruitment, competition, successional patterns) should be the major 

driver of patterns found at the site level (or, alternatively, should explain most of the 

variability found at the site level). As mentioned previously, coralligenous assemblages 

are typically dominated by long-lived species characterized by slow population 
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dynamics (Garrabou 1999; Linares 2006; Teixidó et al. 2009; Teixidó et al. 2011). 

Additionally, these species generally display a limited dispersal capacity (Uriz 1998; 

Duran 2003; Abbiati et al. 2009; Ledoux et al. 2010). These life-history traits may shape 

the high heterogeneity observed at a small scale. For instance, the recruitment rates for 

most species are low (Garrabou 1999; Mariani et al. 2006; Teixidó et al. 2011) and 

probably most species show low-frequency recruitment pulses (e.g., Garrabou and 

Harmelin 2002). The arrival of pulses of new offspring can shape the assemblage for 

long periods because of the longevity of the coralligenous species. Besides, the limited 

dispersal ability, based either on sexual or asexual reproduction, implies that local 

persistence is enhanced once the populations are established (Costantini et al. 2007; 

Ledoux et al. 2010). Finally, the slow growth rates hinder competition displacement 

between species, which could result in the dominance of competitive (Huston 1979; 

Garrabou and Harmelin 2002). Overall, we argue that the interaction of these different 

biological processes appears to shape the species composition and abundance at each 

site (or even patches within sites). Thus, the observed patterns would result from the 

contribution of each factor over contemporary (several decades) or historical scales 

(hundreds of years) to the species pool and to the abundance of the species at each site. 

In addition, this thesis remarks the high constancy and low dynamics of coralligenous 

assemblages at decadal time-scale over regional spatial scales (Casas-Güell et al. 2015).

8.4. Impacts on coralligenous outcrops at local scale: the effects of an 
extreme storm event at the community level 

Finally, we addressed the analysis of the impact of a dramatic storm occurred in 

the Catalan coast in 2008 to evidence changes on the coralligenous structure. This storm 

was considered to be the strongest recorded in the last 50 years in the northern part of 

the Catalan coast, with the greatest wave power, the highest wave heights, and the 

longest duration (Sanchez-Vidal et al. 2012). In this thesis, we benefited from the 

availability of photographic series from sites previous to the storm, that allowed to 

investigate the effects of this rare, extreme event on the community structure dynamics 

of long-standing coralligenous outcrops. The occurrence of this storm provided an 

exceptional opportunity to reveal the effects of extreme climatic events and to measure 

their impacts by quantifying rates of change at population and community levels. This 

study is even more valuable because coralligenous outcrops are dominated by slow-

growing, long-lived species, which do not often undergo marked declines and in which 
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mortality rates are rarely high. 

.High mortality rates of gorgonian populations have been reported to be up to 

10–60% after major episodes of mass mortality, such as those related to positive 

temperature anomalies in the summers of 1999 and 2003 in the NW Mediterranean Sea 

(Cerrano et al. 2000; Linares et al. 2005; Garrabou et al. 2009). After this severe storm, 

Coma et al. 2012 reported a decrease in colony density of P. clavata ranging from 6.1 to 

20.6% (mean value of 13.4 ± 2.7%) at the Medes Islands. Other studies quantifying the 

impacts of severe hurricanes and cyclones on coral reefs have also focused on primary 

framework corals (e.g., Knowlton et al. 1981; Edmunds and Witman 1991) and have 

reported reef losses, with values ranging from 17% to 60% (Woodley et al. 1981; 

Hughes and Connell 1999; Gardner et al. 2005), thereby highlighting the importance in 

terms of the broader community changes. 

Species sensitivity showed a gradient regarding the site exposure: from high 

through intermediate to low values of cover loss at Carall Bernat, Medallot, Tascó Petit, 

and Punta Salines (Chapter 4 Fig. 7). Our findings indicated that the damage across 

perennial species was uneven and those with fragile growth forms, irrespective of their 

morphology such as Adeonella calveti or Myriapora truncata, were the most impacted, 

showing cover losses between 50 and 100% (Chapter 4 Fig. 7). In the present study, the 

affected species ranged from short-lived perennial species with estimated ages of 2–5 

years to persistent and long-lived perennial species with estimated longevities of 50–

100 years and encrusting calcareous algae. Thus, this unusual event produced high 

episodic mortality of adults in a community in which this rarely occurs under natural 

conditions (Coma et al. 1998; Ballesteros 2006; Linares et al. 2007; Teixidó et al. 

2011b).

The storm did not completely homogenize the available space by creating a 

seascape with large patches of bare substrate at the most impacted site; rather, it 

produced a mosaic of small remaining surviving patches of perennial benthic species 

(with values of perennial-slow growing species cover ranging from 10% to 50%), 

associated with a decrease of habitat complexity and heterogeneity. Spatial 

heterogeneity following large disturbances has been widely documented in both marine 

and terrestrial ecosystems (Pickett and White 1985; Foster et al. 1998; Turner 2010) and 

it has been recognized that biotic residuals (e.g., surviving roots and rhizomes of plants, 
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as well as fragments of corals and sponges) are regularly available, even following a 

large disturbance (Connell and Slatyer 1977; Highsmith 1982; Teixidó et al. 2007). In 

the present study, the existence of small patches after the storm (mainly encrusting algae 

and clonal animals such as encrusting sponges, anthozoans, and tunicates) at the most 

impacted site was fundamental for slight recovery, with a minor increase of cover being 

observed during the following year. This increase of perennial-slow growing species 

represented an increase of 10% immediately after the impact (2009) to 46% (2010) (Fig. 

5). It was hypothesized that these surviving colonies and fragments favored faster 

recovery via vegetative regrowth and this partial recovery occurred more rapidly than 

could take place through the growth of new recruits via larvae. The finding of small 

remaining surviving patches is of special interest to understand community responses 

due to the overall low dynamics of coralligenous species combined with the infrequent 

or unsuccessful recruitment events recorded for sexually produced larvae of clonal 

organisms (Hughes et al. 2000; Linares et al. 2007; Teixidó et al. 2011). 
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9. Conclusions and future directions
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9.1. Conclusions 

 A biodiversity rapid assessment method that has been developed and proved to 

be sufficiently sensitive to study species diversity, structure and composition of 

coralligenous assemblages, dominated by Corallium rubrum and Paramuricea 

clavata. This method is useful for the evaluation of temporal changes in 

coralligenous assemblages, allowing the identification of impacts on the 

monitored assemblages. Consequently this method could be adopted to fulfill 

one the main goals of the Marine Strategy Framework Directive (MSFD): 

“establishment of innovative cost effective monitoring programs and protocols 

for status assessment, effective management and protection measures of these 

habitats”.

 Consistent patterns have been found for both assemblages at the different 

hierarchical spatial and temporal scales. Regarding species composition and 

diversity, abundance and landscape patterns for the different morpho-functional 

groups analyzed,it was found a great spatial variability at small spatial scales 

(site, few Km's) with a smoothing trend at greater spatial scales (locality, 

hundreds of Km's).  

 Diversity metrics of perennial species at different spatial scales (alpha, beta and 

gamma) showed similar patterns: alpha and beta diversity variability was the 

highest among sites whereas gamma was similar among localities. Thus, species 

composition across localities did not appear to be determined primarily by the 

differences in physicochemical conditions and/or the differential impact of 

major disturbances (e.g., mass mortality), but due to biological factors (growth 

rates, recruitment, competition and successional patterns) determining patterns 

found at the site level.  

 The abundance (% cover) of the different morphofunctional groups was similar 

at local and regional scales. At site level, some groups displayed important 

differences offering the opportunity to use them as suitable indicators in 

monitoring schemes.  

 Landscape pattern indices (NP, MPS, MSI) of morphofunctional groups were 

useful to describe differences among sites in the same locality. Interestingly, 

localities showed similar patterns within the NW Mediterranean.  

 For a conservation perspective, it will be important to ensure adequate 
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conservation at small spatial scales (i.e. site level) including the different habitat 

conditions but obviously ensuring a large geographical extension. 

 Temporal comparisons (5 year period) in the structure of coralligenous 

assemblages dominated by Paramuricea clavata did not depict significant 

differences. Thereby highlighting the parsimony of these assemblages and 

therefore the vulnerability to disturbances. 

The occurrence of exceptional (secular) storm allowed to evaluate the impacts of a 

severe disturbances at community level. The storm affected significantly coralligenous 

outcrops. The community shifted to a mosaic of small remaining surviving patches of 

perennial benthic species, associated with a decrease of habitat complexity and 

heterogeneity.The study of the response of the community affected by the storm offered 

an exceptional opportunity to understand community recovery pathways in 

coralligenous outcrops.  

9.2. Future directions 
The results obtained in this thesis are an important contribution for designing 

research programs and monitoring schemes (spatial and temporal scales) required for 

the assessment of conservation status of one of the most highly valued and emblematic 

Mediterranean habitats. The application of this robust method to other unstudied regions 

of the Mediterranean basin, will be crucial to furnish data on composition and structure 

of coralligenous outcrops dwelling in contrasting environmental conditions (e.g. Eastern 

and Southern Mediterranean) and subjected to different global and local stressors (e.g. 

global warming, fisheries, harvesting). 

Contributions from these approaches combined with habitat/species distribution 

models will substantially advance the knowledge about the relation of environmental 

data and coralligenous (habitat and species) at different geographic scales. These 

models estimate the response of species to environmental factors, projecting them into 

the geographical space to assess the probability of the presence in the areas under 

consideration. These techniques can help in marine spatial planning, with effective 

management and conservation plans. More specifically, they can be applied as a first 

step to i) identify the importance of environmental variables in structuring coralligenous 

habitats and therefore to forecast changes of coralligenous outcrops distribution in 

relation with climate, ii) to assess which species and regions are likely to be most 
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affected by climate change, and iii) to help in the assessment of habitat distributions in 

areas that, due to their complexity and/or depth, are difficult to evaluate and show 

limited data access. 
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A Supplementary information 

A.1. Rapid biodiversity assessment and monitoring method for highly diverse 

benthic communities: a case study of Mediterranean coralligenous outcrops 

Table A.1.1. List of the taxa identified in this study. List of the taxa identified within 

the assemblages dominated by the red gorgonian Paramuricea clavata and the red coral 

Corallium rubrum in three regions of the NW Mediterranean. 

Paramuricea clavata assemblage Corallium rubrum assemblage
Taxa Catalonia Provence Corsica Catalonia Provence Corsica
Chlorophyta
Flabellia petiolata + - + + - -
Halimeda tuna - - + - - +
Palmophyllum crassum + + + + + -
Valonia macrophysa + - + + - -
Rhodophyta
Lithophyllum stictaeforme + - + + + +
Mesophyllum alternans + + + + + +
Peyssonnelia sp. + + + + - -
Protozoa
Miniacina miniacea - + + + + +
Porifera
Acanthella acuta + + + + + +
Agelas oroides + + + + + +
Aplysilla sulfureab - - - + + -
Aplysina cavernicola - + + + + -
Axinella damicornis + + + + + +
Cacospongia sp. + + + + + +
Chondrosia reniformis + + + + + -
Clathrina clathrus + + + + - +
Clathrina coriacea~ + + + + - -
Cliona sp. + + - + - +
Corticium candelabrum + + + + + +
Crambe crambe + + + + + -
Crella (Grayella) pulvinar + + + + + +
Dendroxea lenis + + - + + +
Dictyonella sp. + + + + + -
Fasciospongia cavernosa + + + + + +
Haliclona (Halichoclona) fulva + - + + + +
Haliclona (Reniera) mediterranea - - + - + +
Haliclona (Soestella) mucosa + + + + + +
Haliclona sp. - + + + - +
Hemimycale columella + + + + + -
Hexadella pruvoti + + - + - +
Hexadella racovitzai + + - + - +
Ircinia oros + - + + + +
Oscarella sp. + + - + + +
Petrosia ficiformis + + + + + +
Phorbas tenacior + + + + + +
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Phorbas topsentib - - - - + -
Plakina sp. - - + + + +
Plakortis sp. - - + + + -
Prosuberites longispinus + + + + + +
Raspaciona aculeata + + - + + -
Sarcotragus foetidus - - + + - +
Spirastrella cunctatrix - + + + + +
Spongia (Spongia) officinalis + - + + + +
Spongia virgultosa - - + + + +
Terpios granulosa + + + + + -
Unidentified white calcareous sponge + + + - + -
Unidentified white Dendroceratida^^ + + + + + +
Hydrozoa
Unidentified Hydrozoa + + + + + +
Anthozoa
Alcyonium acaule + - - - - +
Alcyonium coralloides + + + - + -
Caryophyllia inornata + + + + + +
Corallium rubrum - + - + + +
Corynactis viridis - - + - + -
Eunicella cavolini a - + + - - -
Hoplangia durotrix + + + + + +
Leptopsammia pruvoti + + + + + +
Paramuricea clavata a + + + - - -
Parazoanthus axinellae a + + + - - -
Polychaeta
Filograna implexa / Salmacina dysteri + + + + + +
Protula sp. + + + + + +
Serpula vermicularis + + + + + +
Serpulidae + + + + + +
Bryozoa
Adeonella calveti/Smittina cervicornis + + + + - +

Beania hirtissima - + - + - +

Beania magellanica + + - + - -
Caberea boryi~ + + + - + +
Chartella sp. + - + - - +

Cellaria sp.~ + + + + - +
Celleporina sp.* - + + + + +

Crisia sp.~ - + + + + +

Disporella hispida~ + - + + + +

Dentiporella sardonica* + + + + + -

Idmidronea sp.~ + - + + + -

Margaretta cereoides a + + + - - -

Myriapora truncata + + + + - -
Pentapora fascialis a - + + - - -
Reteporella grimaldii + + + + + +
Rhynchozoon sp.* + - - + - +
Schizomavella sp.* + + + + + +

Scrupocellaria sp.~ + + + + - +

Smittoidea sp.* - - + + + +

Turbicellepora sp. + + + + - +
Tunicata



201 

Aplidium sp. - + + + + +
Aplidium undulatum - - + + + +
Clavelina dellavallei a ~ - - + - - -
Clavelina lepadiformis a ~ + - + - - -

Pycnoclavella nana ~ - + + - + -

Cystodytes sp. + - - + - -

Unidentified Didemnidae + + + + + +
Didemnum coriaceum - + - + - +
Halocynthia papillosa + + - + - +

* grouped as "encrusting bryozoans" in later analysis  
~ species showing clear seasonality that were excluded from subsequent analysis  
^^ includes the sponges Pleraplysilla spinifera, Dysidea sp. and Aplysilla sulfurea
a species found only in the Paramuricea clavata assemblage
b species found only in the Corallium rubrum assemblage
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A.2. Structure, biodiversity and landscape pattern indices of Corallium rubrum

assemblages over broad spatial scales

Table A.2.1. Latitude/longitude for the sites studied. 

Site Locality Codes Latitude N Longitude E
Cova del Dofí Catalonia CatDof 42° 2’ 51.07’’ 3° 13’ 31.73’’
Cova de la Reina Catalonia CatRei 42° 2’ 46.14’’ 3° 13’ 29.03’’
Pota del Llop Catalonia CatLlo 42° 2’ 58.20’’ 3° 13’ 31.94’’
Maïre Grotte Provence ProMai 43°12’ 36.72’’ 5° 19’ 57.83’’
Plane Grotte Pérès Provence ProPer 43°11’ 12.48’’ 5° 23’ 25.04’’
Riou Grotte Sud Provence ProRio 43°10’ 22.44’’ 5° 23’ 21.88’’
Palazzu Corsica CorPal 42° 22’ 48.72’’ 8° 32’ 44.70’’
Palazzinu Corsica CorPlu 42° 22’ 47.71’’ 8° 33’ 0.90’’
Passe Palazzu Corsica CorPas 42° 22’ 47.64’’ 8° 32’ 51.29’’
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Table A.2.2. List of the taxa surveyed in the three studied localities of the NW 

Mediterranean. Morphological growth form: encrusting (Enc), tree (Tree), cup (Cup), 

massive (Mas), turf (Turf), epibiont (Epi). Life span: seasonal (Sea), perennial (Per). 

SIMPER perennial species dataset: species that belong to similarity group of 50% of 

cumulative contribution in similarity percentage analysis (denoted by *) and presence 

by +; CatDof = 68.28%; CatRei = 63.02%; CatLlo = 62.43%; ProPer = 77.22%; ProRio 

= 66.13%; ProMai = 70.57%; CorPal = 68.23%; CorPas = 65.96%; CorPlu = 70.14%. 
Taxa Growth 

form
Life 
span

Catalonia Provence Corsica
CatDof CatRei CatLlo ProRio ProMai ProPer CorPas CorPlu CorPal

Clorophyta
Palmophyllum crassum EncPer                            +                                                                                          +

Flabellia petiolata      ErePer                            +
Rhodophyta
Lithophyllum 
cabioache/stictaeforme

Enc Per +

Mesophyllum alternans Enc Per * + * *
Peyssonnelia sp. Enc Per * + + *
Red encrusting Enc Per + + +
Mixture complex Turf Sea/Per + + + + + + + + +
Protozoa
Miniacina miniacea Enc Per + + + + + + +
Porifera
Acanthella acuta Mas Per + + +
Agelasor oïdes Mas Per + * + + +

+
Aplysina cavernicola Mas Per * *

+
Aplysilla sulfurea Enc Per + + + + + +
Axinella damicornis Mas Per + + * + + + + + +
Chondrosia reniformis Mas Per + +
Clathrina sp. Mas Per + * + + + +
Cliona sp. Bor Per + +
Corticium candelabrum Mas Per + + +
Crambe crambe Enc Per + * + + + + +
Crell apulvinar Enc Per + * * * * * + +
Dendroxea lenis Enc Per * + + + + * + * *
Diplastrella bistellata Enc Per * +
Fasciospongia cavernosa Enc Per + + + + + +
Haliclona fulva Enc Per + * + + + + * *
Haliclona mediterranea Enc Per + + +
Haliclona mucosa Enc Per * + + + * * * +
Hymedesmia_type Enc Per +
Hemimycale columella Enc Per + + +
Hexadella pruvoti Enc Per + + +
Hexadella racovitzai Enc Per + + + +
Ircinia fasciculata Mas Per +
Ircinia variabilis Mas Per + * + * * + + * +
Ircinia oros Mas Per + * + + + + +
Oscarella sp. Mas Per + * + * * + +
Petrosia fisciformis Mas Per * + + + * * + + *
Phorbas tenacior Enc Per + * + + + +
Phorbas topseti/fictitius Enc Per +
Plakina sp. Enc Per + + + +
Plakortis sp. Enc Per + +
Pleraplysilla spinifera Enc Per + * * * * * * * *
Prosuberites longispinus Enc Per * + + * + * +
Raspaciona aculeata Enc Per + + + +
Sarcotragus muscarum Mas Per + +
Sarcotragus foetidus Mas Per + + +
Scalarispongia scalaris Enc Per + + * * + * + +
Spongia officinalis Mas Per +
Spongia virgultosa Mas Per + +
Spirastrella cunctatrix Enc Per + + + +
Terpios granulosa Enc Per + + + + + +
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Other sponge Enc/
Mas

Per * * * * * * + * *

Anthozoa
Alcyonium acaule Mas Per + +
Alcyonium coralloides Enc Per + +
Caryophyllia inornata Cup Per + + + + * * + + +
Corallium rubrum Tree Per * * * * * * * + *
Corynactis viridis Mas Per +
Eunicella cavolinii Tree Per +
Hoplangia durotrix Cup Per * + + + * + + + *
Leptopsammia pruvoti Cup Per * * * + + * * *
Paramuricea clavata Tree Per * + +
Parazoanthus axinellae Enc Per + *
Parerythropodium 
coralloïdes

Enc Per +

Polychaeta
Filograna 
implexa/Salmacina dysteri

Epi Per + + + + + +

Protulasp./Serpula 
vermicularis

Enc Per + + + + + * + + +

Serpulidae Enc Per * + + + + * * +
Mollusca
Bivalvia Enc Per + +
Bryozoa
Adeonella calveti/Smittina 
cervicornis

Tree Per *
+             +              +

Beania magellanica Enc Per +
Celleporina caminata Epi Per + + *
Chartellasp. Epi Per * + + + +
Dentiporella sardonica Enc Per +
Disporella hispida Turf Sea + + + +
Encrusting Bryozoans Enc Per * + * + + * * * *
Gregarinidra gregaria Enc Per * +
Myriapora truncata Tree Per + + +
Reteporella grimaldii Tree Per + + + * * +
Rhynchozoon sp. Enc Per + + + +
Schizomavella linearis Enc Per + + +
Turbicellepora sp Epi Per +
Tunicata
Aplidium sp. Enc Per + * + + +
Cystodites dellechiajei Mas Per * *
Didemnidae Enc Per + + + + + +
Didemnum coriaceum Enc Per +
Halocynthia papillosa Mas Per + +
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Table A.2.3. Cover % values (mean ± SD) for benthic categories for each site studied of 

the NW Mediterranean region. 
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Table A.2.4. Diversity measures at different hierarchical spatial scales: alpha diversity 

(α-diversity ± SD) % of unshared species (β-diversity) and local diversity (diversity).

Site and locality α Unshared 
species %

Gamma
diversity

Catalonia 34.45± 1.78 68
Dofí 24 ± 2 17.81 ± 3.66
Reina
PotaLlop

33 ± 0.58 
41 ± 5.29

20.03 ± 0.68
20.61 ± 1.65

Provence 31.10± 1.61 72
Maïre
Planes Pérès

30 ± 5.78
39 ± 3.2  

21.60 ± 0.77
19.43 ± 1.34

Riou sud 34 ± 3.2 24.00 ± 1.33
Corsica 32.21± 1.12 57
Palazzinu 40 ± 3.1 14.93 ± 1.48
Palazzu
PassePalazzu

21 ± 4.2
26 ± 1.53 

17.40 ± 1.39
17.69 ± 1.19
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A.3. Structure and biodiversity of coralligenous assemblages over broad spatial 

and temporal scales 

Table A.3.1. List of the taxa surveyed in the three studied localities of the NW 
Mediterranean. Morphological growth form: encrusting (Enc), tree (Tree), cup (Cup), 
massive (Mas), turf (Turf), erect (Erect), epibiont (Epi). Life span: seasonal (Sea), 
perennial (Per). SIMPER perennial species dataset: species that belong to similarity 
group of 75% of cumulative contribution in similarity percentage analysis (denoted by 
*) and presence by +; Average similarity (time pooled): MME = 73.92%; MPT = 
75.09%; SGL = 70.24%; SPA = 66.65%; PGP = 73.83%; PCO = 65.66%. 

Taxa Growth form Life span Catalonia Provence Corsica 
MME MPT PGP PCO SGL SPA 
Chorophyta 
Flabellia 
petiolata 

Erect Per * + + - * * 

Halimeda 
tuna 

Erect Per + - - - + + 

Dictyotales Erect Sea + - - - - + 
Palmophyllu
m crassum 

Enc Per * - * * + * 

Valonia 
macrophysa 

Enc Sea + - - - * -

Rhodophyta 
Lithophyllu
m 
cabioache/st
ictaeforme 

Enc Per * + * * * + 

Mesophyllu
m alternans 

Enc Per * * * * * * 

Peyssonneli
a sp. 

Enc Per * * * * * * 

Liagora sp. Erect Per + - - - + + 
Schottera/Rh
odymenia 
type 

Turf Sea + - + + + * 

Womersleyel
la_type 

Turf Per - - - * - -

Other algae 
Mixture 
complex turf 
algae 

Turf Sea + + + + + + 

Protozoa 
Miniacina 
miniacea 

Enc Per - - + + + * 

Porifera 
Acanthella 
acuta 

Mas Per * * * + + -

Agelas 
oroïdes 

Mas Per * * * * + -

Aplysina 
cavernicola 

Mas Per - - - - + -

Axinella 
damicornis 

Mas Per * * * * * + 

Chondrosia Mas Per + + + + - + 
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reniformis 
Clathrina 
sp. 

Mas Per + + + + * + 

Cliona sp. Bor Per * - * * - -
Corticium 
candelabru
m 

Mas Per + + + + + -

Crambe 
crambe 

Enc Per * * * * + + 

Crella 
pulvinar 

Enc Per + * * - + * 

Dendroxea 
lenis 

Enc Per - - + - - -

Dictyonella 
sp. 

Enc Per + * + * - -

Diplastrella 
bistellata 

Enc Per + - - - - -

Dysidea 
avara 

Mas Per + + + - + -

Eurypon 
clavatum 

Enc Per - - - - + -

Fasciospong
ia cavernosa 

Enc Per + - + + + + 
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Table A.3.2. Diversity measures at different hierarchical spatial scales: alpha diversity 

(α-diversity) average richness (± SD), % of unshared species (β-diversity) and gamma 

diversity (γ-diversity). 

2006 
Site and 
locality

α Unshared species % γ 

Catalonia 18.44± 1.20 52
MPT 32 ± 2 12.78 ± 0.63
MME 33 ± 1 15.75 ± 0.85
Provence 16.06± 1.75 66
PCO 36 ± 6 16.50 ± 0.95
PGP 41 ± 2 16.07 ± 1.75
Corsica 23.03± 1.92 62
SGL 32 ± 4 15.09 ± 1.24
SPA 37 ± 6 15.98 ± 1.82

2008 
Site and 
locality

α Unshared species % γ

Catalonia 19.77± 0.86 54
MPT 31 ± 3 12.78 ± 0.63
MME 31 ± 2 15.75 ± 0.85
Provence 25.34± 1.81 61
PCO 28 ± 6 20.57 ± 1.99
PGP 40 ± 4 16.02 ± 0.40
Corsica 26.50± 3.42 54
SGL 22 ± 6 13.76 ± 0.23
SPA 29 ± 7 23.32 ± 3.00

2010 
Site and 
locality

α Unshared species % γ

Catalonia 20.22± 0.54 53
MPT 33 ± 3 14.81 ± 1.2
MME 30 ± 3 14.14 ± 0.62
Provence 27.57± 1.15 63
PCO 23 ± 2 20.86 ± 2.64
PGP 42 ± 3 16.02 ± 0.51
Corsica 28.06± 3.22 55
SGL 25 ± 6 13.23 ± 0.82
SPA 28 ± 9 21.22 ± 0.71
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A.4. Impacts on coralligenous outcrop biodiversity of a dramatic coastal storm 

Table A.4.1. List of the taxa identified in this study. Boring (BOR), Cup (CUP), 

Encrusting algae (ENA), Encrusting (ENC), Massive (MAS), Pedunculated (PEN), Tree 

(TREE). 

Taxa
Growth 
Form Carall Bernat Tascó Petit Medallot Punta Salines

Chlorophyta
Flabellia petiolata PEN + + + +
Halimeda tuna PEN - - + -
Palmophyllum crassum ENA + - + -
Valonia macrophysa ENC-MAS + - + -
Rhodophyta
Lithophyllum stictaeforme* ENA + + + +
Mesophyllum alternans * ENA + + + +
Peyssonnelia sp.* ENA + + + +
Porifera
Acanthella acuta* MAS + + + +
Agelas oroides* MAS + + + +
Axinella damicornis* MAS + + + +
Cacospongia sp. MAS + + + -
Chondrosia reniformis* MAS + + + +
Clathrina clathrus* MAS + + + -
Cliona sp.* BOR + + + +
Corticium candelabrum* MAS + + + +
Crambe crambe* ENC + + + +
Crella (Grayella) pulvinar* ENC + + + +
Dendroxea lenis ENC + - - -
Dictyonella sp. ENC-MAS + + + +
Dysidea avara* ENC + + + +
Fasciospongia cavernosa ENC + + + -
Haliclona (Halichoclona) fulva ENC - + + -
Haliclona (Soestella) mucosa ENC + + + -
Haliclona sp. ENC - + + -
Hemimycale columella* ENC + + + +
Hexadella racovitzai* ENC + + + +
Ircinia oros* MAS + + + -
Ircinia fasciculata MAS - - + -
Ircinia variabilis MAS + + + +
Oscarella sp.* MAS + + + -
Petrosia ficiformis* MAS + + + +
Phorbas tenacior* ENC + + + +
Phorbas topsenti ENC - - + -
Pleraplysilla spinifera* ENC + + + +
Prosuberites longispinus ENC + + + -
Raspaciona aculeata ENC + + - +
Spirastrella cunctatrix* ENC + + + +
Spongia (Spongia) officinalis MAS + + - -
Spongia virgultosa MAS + - + -
Terpios granulosa ENC + + - -
Anthozoa
Alcyonium acaule* MAS + + + +
Alcyonium coralloides ENC + + + +
Caryophyllia inornata* CUP + + + +
Corallium rubrum TREE - + - -
Hoplangia durotrix CUP + + - -
Leptopsammia pruvoti* CUP + + + +
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* taxa accounted for 90% of the SIMPER analysis 

Paramuricea clavata* TREE + + + +
Parazoanthus axinellae* ENC + + + +
Polychaeta
Filograna implexa / Salmacina dysteri* TREE + + + +
Protula sp./Serpula vermicularis ENC + + + -
Serpulidae ENC + + + -
Bryozoa
Adeonella calveti/Smittina cervicornis* TREE + + + +
Beania magellanica ENC - + + -
Chartella tenella TREE - + + +
Margaretta cereoides TREE - - + -
Myriapora truncata* TREE + + + +
Pentapora fascialis TREE - - + -
Reteporella grimaldii* TREE - + + +
Schizomavella sp. ENC + + + +
Turbicellepora sp. TREE + + + -
Tunicata
Cystodytes dellechiajei* ENC + + + +
Didemnum sp.1 ENC + - + -
Didemnum sp. 2 ENC + - + -
Halocynthia papillosa* MASS + + + +
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Table A.4.2. Cover area (%) of the representative macrobenthic taxa before and 

after the physical disturbance generated by the storm. Boring (BOR), Cup (CUP), 

Encrusting algae (ENA), Encrusting (ENC), Massive (MAS), Tree (TREE). nc: no change

Taxa Group Carall Bernat Tascó Petit Medallot Punta Salines

Rhodophyta Before After Before After Before After Before After

Lithophyllum stictaeforme ENA 2.3 0.3 4.5 3.3 10.0 9.0 5.5 nc

Mesophyllum alternans ENA 13.8 7.6 14.5 nc 19.8 9.6 18.6 nc

Palmophyllum crassum ENA 1.5 0.3 - - 1.3 nc - -

Peyssonnelia sp. ENA 5.5 0 9.5 nc 40.0 36.0 22.0 nc

Porifera
Acanthella acuta MAS 1.16 0.16 3.5 2.3 1.3 nc 4.5 nc

Agelas oroides MAS 3.3 3.1 7.5 7 6.1 nc 1.3 nc

Axinella damicornis MAS 2 0.5 2.8 nc 3.6 nc 3.0 nc

Chondrosia reniformis MAS 3.2 3 3 nc 3 nc - -

Clathrina clathrus MAS 1.2 0 5.2 1.6 0.8 nc - -

Cliona sp. BOR 0.8 1.2 0.5 nc 3.7 4.5 9.5 nc

Corticium candelabrum MAS 1.8 1.5 - - - - - -

Crella pulvinar ENC - - 3.3 nc 1 nc - -

Crambe crambe ENC 12.1 9.6 8 8 10 nc 16.3 nc

Disydea avara ENC 7.8 2.8 1.6 nc 2 1 6.0 nc

Hemimycale columella ENC 0.16 0 3.2 nc 0.5 nc - -

Hexadella racovitzai - - - - 4 3.3 - -

Ircinia oros MAS - - 4.8 nc 0.8 nc - -

Ircninia variabilis MAS - - 3 2.8 0.3 nc - -

Oscarella sp. MAS - - 24.5 21.8 - - - -

Petrosia fisciformis MAS - - 1.3 nc - -

Phorbas tenacior ENC 8.2 4.2 2.5 1.8 2 nc 5.5 nc

Pleraplysilla spinifera ENC 1.5 nc 2 nc - -

Spirastrella cunctatrix ENC - - 3.3 nc 8.6 nc - -

Anthozoa
Alcyonium acaule MAS 1.6 0.9 3.6 nc 6 nc 2.2 nc

Caryophyllia inornata CUP 0.3 0.16 2.6 nc 1.6 nc - -

Leptopsammia pruvoti CUP 5.5 2.6 21.5 nc 5 nc 5 nc

Paramuricea clavata TREE 8.8 2.6 12 11 9.6 7.8 5 nc

Parazoanthus axinellae ENC 10.6 3.1 17.5 16.5 17.2 15.6 9 nc

Polychaeta
Filograna implexa / Salmacina 
dysteri

TREE - - 0.3 0.1 1.8 0 - -

Bryozoa
Adeonella calveti/Smittina 
cervicornis

TREE 1.7 0 13 10.5 6.8 5 2.5 nc

Myriapora truncata
TREE 1.3 0 0.6 nc 1 0 1 nc

Reteporella sp.
TREE - - 0.8 nc 0.3 0.16 0.5 nc

Tunicata

Cystodytes
ENC 4.5 2.1 10.5 nc 9.1 nc 10.6 nc 

Halocynthia papillosa MAS - - 2 0 0.3 nc 0.3 nc
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Table A.4.3. Results of 2-way PERMANOVA analyses based on Bray-Curtis 

dissimilarity for macrobenthic taxa. Pair-wise comparisons using permutations of the t-

statistic for the factor Site and the interaction term Site*Before/After are also indicated. 

Source df SS MS Pseudo_F P Pair-wise 

comparisons

Site 3 9625 3208.3 20.25 0.0001 Carall Bernat ≠ Tascó 

Petit

t=5.04 (p<0.0001)

Carall Bernat ≠ 

Medallot 

t=3.66 (p<0.0001)

Carall Bernat ≠ Punta 

Salines

t=4.964 (p<0.0001)

Tascó Petit ≠ 

Medallot

t=3.70 (p<0.0001)

Tascó Petit ≠ Punta 

Salines

t=6.29 (p<0.0001)

Medallot ≠ Punta 

Salines

t=3.94 (p<0.0001)

Before/After 1 543.2 543.2 1.24 0.3894

Site*BA 3 1410.5 470.17 2.96 0.0001 Carall Before ≠ Carall 

After

t= 2.98 (p<0.0002)

Tascó Petit Before = 

Tascó Petit After

t= 1.48 (p>0.05)

Medallot Before = 

Medallot After

t= 1.36 (p>0.05)
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Pta Salines Before = 

Pta Salines After

t= 1.40 (p>0.05)

Residual 43 6810.6 158.39

Total 50 18539
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Table A.4.4. Results of 2-way PERMANOVA analyses based on Euclidian distances 

for the number of species. Pair-wise comparisons using permutations of the t-statistic 

for the factor Site and Site*BA (Before/After) effects are also indicated. 
Permanova df SS MS Pseudo_F P Pair-wise
Site 3 998.05 332.68 34.416 0.0001 Carall Bernat ≠ Tascó Petit 

t=4.3292, p<0.0001

Carall Bernat ≠ Medallot 
t=4.7922, p<0.001

Carall Bernat ≠ Pta Salines
t=6.5, p<0.001

Tascó Petit = Medallot
t=0.108 ; p=>0.05

Tascó Petit ≠  Pta Salines
t=8.2, p<0.0001

Medallot ≠  Pta Salines
t=9.9, p<0.0001

Before/After 1 34.77 34.77 0.445 0.581
Site*BA 3 258.41 86.13 8.910 0.0001 Carall (B) ≠ Carall (A)

t=5.995; p<0.0009

Tascó Petit (B) = Tascó Petit 
(A)
t=1.145; p>0.05

Medallot (B) = Medallot (A)
t=0.553; p>0.05

Punta Salines (B) = Punta 
Salines (A)
t=1.25; p>0.05

Residual 43 415.67 9.66
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Table A.4.5. Results of 2-way PERMANOVA analyses based on Euclidian distances 

for the cover area of the principal groups of sessile organisms and bare substrate. Pair-

wise comparisons using permutations of the t-statistic for the factor Site and Site*BA 

(Before/After) effects are also indicated. 
Permanova df SS MS Pseudo_F P Pair-wise
Site 2 8030.4 4015.2 12.08 0.0001 Carall Bernat ≠ Tascó Petit 

t=5.3038, p<0.0001

Carall Bernat ≠ Medallot
t=2.39, p<0.005

Tascó Petit ≠  Medallot
t=5.30 ;  p<0.0001

Before/After 1 8017.6 8017.6 2.25 0.266
Site*B/A 2 7102.4 3551.2 10.69 0.0001 Carall (B) ≠ Carall (A)

t=4.085; p<0.001

Tascó Petit (B) = Tascó Petit 
(A)
t=2.63; p>0.05

Medallot (B) ≠ Medallot (A)
t=3.107;  p<0.001

Residual 39 12953 333.14

Table A.4.6. Results of 2-way PERMANOVA analyses based on Euclidian distances 

for the cover of growth forms of sessile species. Pair-wise comparisons using 

permutations of the t-statistic for the factor Site and Site*BA (Before/After) effects are 

also indicated. 
Permanova df SS MS Pseudo_F P Pair-wise
Site 2 10006 5003 113.26 0.0001 Carall Bernat ≠ Tascó Petit 

t=12.7, p<0.0001

Carall Bernat ≠ Medallot
t=9.1, p<0.001

Tascó Petit ≠  Medallot
t=10.60 ;  p<0.0001

Before/After 1 945.1 945.1 5.76 0.104
Site*BA 2 327.8 163.9 3.71 0.0063 Carall (B) ≠ Carall (A)

t=4.76; p<0.01

Tascó Petit (B) = Tascó 
Petit (A)
t=2.13; p>0.05

Medallot (B) = Medallot 
(A)
t=2.45;   p>0.05

Residual 9 397.5 44.1
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