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Vertical transmission of the

Spodoptera exigua multiple 

nucleopolyhedrovirus and its

application in biological control

The beet armyworm, Spodoptera exigua (Lepidoptera:

Noctuidae) is an important pest of pepper crops in Almería

greenhouses. Recently a baculovirus-based insecticide, which

provides better crop protection than conventional chemical

insecticides, has been developed to control this pest. However,

so far applications of baculovirus-based insecticides are almost

invariably based on inundative releases, similarly to chemical

products applications. The study of viral covert infections,

vertical transmission and their impact on successive host

generations shed some light on the basis of novel control

strategies to maximize the effectiveness of field applications by

improving the virus long-term effect on the host.



D e p a r t a m e n t o  d e  P r o d u c c i ó n  A g r a r i a

U n i v e r s i d a d  P ú b l i c a  d e N a v a r r a





TESIS DOCTORAL 

Vertical transmission of the 

Spodoptera exigua multiple 
nucleopolyhedrovirus and its 

application in biological control

CRISTINA VIRTO GARAYOA 

Pamplona, 2016 





Memoria presentada por 

CRISTINA VIRTO GARAYOA 

para optar al grado de Doctora por la Universidad Pública de Navarra

Vertical transmission of the Spodoptera 
exigua multiple nucleopolyhedrovirus 

and its application in biological control 

Directores: Dr. PRIMITIVO CABALLERO MURILLO 
Catedrático de Universidad 
Departamento de Producción Agraria 
Universidad Pública de Navarra 

Dra. ROSA MURILLO PÉREZ 
Profesora Contratada Doctor 
Departamento de Producción Agraria 
Universidad Pública de Navarra 

Dra. TREVOR WILLIAMS 
Investigador Titular 
Instituto de Ecología AC 
Xalapa, Veracruz, México 

Instituto de Agrobiotecnología 
Universidad Pública de Navarra 

Pamplona, 2016 



Miembros del tribunal 

Presidente 

Dr. Miguel López Ferber 
Laboratoire de Génie de l´Environnement Industriel et des Risques Industriels 

et Naturels (LGEI) 
École des Mines d´Alès. Alès Cedex, Francia 

Secretaria 

Dra. Delia Muñoz Labiano 
Departamento de Producción Agraria 

Universidad Pública de Navarra 

Vocal 

Dr. Jose Eduardo Belda Suarez 
Koppert España, S.L. 
La Mojonera, Almería 

Suplente 

Dra. Oihane Simón de Goñi 
Instituto de Agrobiotecnología 

CSIC-Universidad Pública de Navarra 

Revisores externos 

Dr. Robert D. Possee 
Centre for Ecology & Hydrology (CEH) 

Wallingford, Oxfordshire, United Kingdom 

Dra. Elisabete Figueiredo 
Departamento de Protecçao das Plantas e de Fitoecología 

Universidad Técnica de Lisboa 

Suplente 

Dr. Enrique Vargas Osuna 
Ciencias y Recursos Agrícolas y Forestales 

Universidad de Córdoba  



Dr. PRIMITIVO CABALLERO MURILLO, Catedrático de Universidad del área 

de Producción Vegetal del Departamento de Producción Agraria y Director del 

Grupo de Investigación Bioinsecticidas Microbianos del Instituto de 

Agrobiotecnología, Universidad Pública de Navarra-CSIC, 

 

Dra. ROSA MURILLO PÉREZ, Profesora Contratada Doctor del área de 

Producción Vegetal del Departamento de Producción Agraria, Universidad 

Pública de Navarra-CSIC, y 

 

Dr. TREVOR WILLIAMS, Investigador Titular de la Unidad de Entomología 

Aplicada del Instituto de Ecología A.C., Xalapa, Veracruz, México, 

 

INFORMAN: 

 

 

que la presente memoria de Tesis Doctoral titulada “Vertical transmission of 

the Spodoptera exigua multiple nucleopolyhedrovirus and its application 

in biological control” elaborada por Dña. CRISTINA VIRTO GARAYOA ha 

sido realizada bajo nuestra dirección, y que cumple las condiciones exigidas 

por la legislación vigente para optar al grado de Doctor. 

 

 

Y para que así conste, firman la presente en Pamplona a 7 de septiembre de 

2016, 

 

 

 

 

 

 

Fdo. Dr. Primitivo Caballero Murillo    Fdo. Dra. Rosa Murillo Pérez     Fdo. Dr. Trevor Williams 

 





AGRADECIMIENTOS 
 

Al llegar al final de esta tesis quisiera agradecer públicamente a todas 
las personas e instituciones que han hecho posible la terminación de esta 
tesis doctoral. 

 En primer lugar, a las instituciones que han posibilitado mi formación 
investigadora, el Departamento de Producción Agraria de la Universidad 
Pública de Navarra (UPNA), el Instituto de Agrobiotecnología (IdAB), el 
Instituto de Investigación y Formación Agraria y  Pesquera (IFAPA) de la 
Mojonera y la Oxford Brookes University. En particular, quisiera agradecer a 
la Universidad Pública de Navarra (UPNA) la financiación recibida para 
realizar esta tesis doctoral y mi estancia investigadora en Oxford (Reino 
Unido).  

En segundo lugar, he de nombrar a mis directores el Dr. Primitivo 
Caballero, Dra. Rosa Murillo y Dr. Trevor Williams, muchas gracias por darme 
la oportunidad de entrar en el fascinante mundo de la investigación y en 
particular en el de los baculovirus. Quiero agradecerles su dedicación, el 
interés que han puesto en mi trabajo y todo lo que he aprendido de ellos. 
Muchas gracias por todo el tiempo invertido, por los consejos, ideas, análisis 
y correcciones que han servido para mejorar mi formación y para que 
finalmente este documento fuese posible. 

También quisiera agradecer a la doctora María del Mar Téllez el 
posibilitarme la realización de todos los ensayos de campo en las 
instalaciones del IFAPA y a David por toda su ayuda en la preparación y 
realización de dichos ensayos. Gracias a la doctora Linda A. King por haberme 
dado la oportunidad de realizar la estancia en su laboratorio y a todos los 
miembros de su laboratorio por su paciencia y buenos consejos. 

A todos los compañeros que he conocido durante este camino: Oihane, 
Íñigo, Arkaitz, Ernesto, Gloria, Mikel, Mireya, Isabel, Noelia, Itxaso, Víctor, 
Edu A, Javi, Dani, Edu V, Oihana, Maite E, Leo, Mª Ángeles,... En especial a 
Inés, Maite, Alex y Amaya por todos momentos que hemos pasado juntas 
durante estos años. 

Por último, dedicar esta tesis a mi familia y amigos, especialmente a 
mis padres, a mi hermano y a Iñigo, por su apoyo durante todos estos años y 
las visitas durante mi estancia en Oxford. 

 

Muchísimas gracias a todos 



 



 

TABLE OF CONTENTS 
 
 
Resumen  .................................................................................................................... 3 

Summary  .................................................................................................................... 7 

Chapter I Introduction ............................................................................................... 11 

 Aims of the thesis ...................................................................................... 53 

Chapter II Natural populations of Spodoptera exigua are infected by multiple 

viruses that are transmitted to their offspring ............................................ 77 

Chapter III Gender-mediated differences in vertical transmission of a 

nucleopolyhedrovirus ................................................................................ 93 

Chapter IV Can mixtures of horizontally and vertically transmitted 

nucleopolyhedrovirus genotypes be effective for biological control of 

Spodoptera exigua? ................................................................................ 109 

Chapter V Chemical and biological stress factors on the activation of 

nucleopolyhedrovirus infections in covertly infected Spodoptera 

exigua ..................................................................................................... 137 

Chapter VI General discussion ................................................................................. 155 

Conclusiones  ................................................................................................................ 169 

Conclusions  ................................................................................................................ 173 

List of publications .......................................................................................................... 177 

 

 

  





3 

RESUMEN 

Las infestaciones de larvas de Spodoptera exigua (Lepidoptera: Noctuidae) son muy 

frecuentes en los cultivos de pimiento de los invernaderos de Almería. En estudios previos, 

la caracterización molecular e identificación de los aislados del nucleopoliedrovirus múltiple 

de S. exigua (SeMNPV; Baculoviridae) con mayor potencial insecticida así como el 

desarrollo de otras tecnologías (producción masiva y formulación) permitieron la obtención 

de un bioinsecticida que es más efectivo que los plaguicidas químicos convencionales para 

combatir las plagas de S. exigua en las condiciones de dichos invernaderos. Las 

aplicaciones de formulados de baculovirus se han realizado principalmente utilizando la 

modalidad de suelta inundativa, en la cual sólo cabe esperar que ejerza un efecto de control 

el inóculo liberado. Sin embargo, tras la aplicación de un tratamiento con baculovirus, 

además de la mortalidad producida por el inóculo liberado, se producen otros efectos sobre 

las sucesivas generaciones del insecto cuya repercusión en la regulación de las plagas que 

causa han sido poco estudiados. En esta tesis, básicamente se han analizado y 

cuantificado algunas interacciones huésped-baculovirus y se aportan datos cualitativos y 

cuantitativos que pueden servir de base para definir una metodología intermedia entre las 

sueltas de tipo inundativo e inoculativo.  

En primer lugar se evaluó la incidencia de infecciones encubiertas causadas por el 

SeMNPV y dos virus de RNA pertenecientes a la familia Iflaviridae (S. exigua iflavirus-1: 

SeIV-1; S. exigua iflavirus-2: SeIV-2) en adultos de S. exigua capturados en los 

invernaderos de Almería. El SeMNPV fue detectado en un 54% de los insectos analizados, 

mientras que un 13% y 8% estaban infectados por el SeIV-1 y SeIV-2, respectivamente. Se 

encontraron infecciones múltiples en las que el 8% de los individuos eran portadores del 

SeMNPV y uno de los iflavirus, mientras que solamente el 2% de los adultos albergaba una  

infección triple. En la descendencia de las hembras de campo evolucionadas en laboratorio 

(F1) se encontró un incremento en la prevalencia del SeIV-1 (39%) y SeIV-2 (19%) respecto 

a los parentales, mientras que la infección por SeMNPV fue transmitida al 21% de la 

descendencia. La co-infección producida por virus pertenecientes a distintas familias en la 

descendencia fue baja (4%) y solamente el 6% de los individuos fueron portadores de una 

infección triple. 

Tras comprobar que las infecciones encubiertas por SeMNPV pueden llegar a 

afectar a más del 50% de individuos de poblaciones naturales de su huésped homólogo, se 

evaluó la contribución del género en la transmisión transgeneracional de dichas infecciones, 

mediante apareamientos entre adultos portadores de infecciones encubiertas del SeMNPV 

y otros libres de virus (machos sanos x hembras sanas,  machos infectados x hembras 
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sanas,  machos sanos x hembras infectadas,  machos infectados x hembras infectadas). El 

análisis por qPCR del ADN extraído de adultos permitió detectar específicamente la 

presencia del virus en los parentales y en su descendencia (F1). Tras comprobar que la 

prevalencia de la infección en los individuos parentales supervivientes a la inoculación del 

virus fue alta (65-85%), se determinó la incidencia de la infección en la progenie de cada 

uno de los apareamientos estudiados. La  presencia del virus fue detectada en adultos 

descendientes (F1) de cualquiera de los apareamientos con individuos parentales 

infectados, independientemente de su sexo. No obstante, la línea materna fue el doble de 

eficiente en la transmisión del virus (49%) que la paterna (26%) en términos de incidencia 

del virus en la descendencia. Además se determinó, mediante descontaminación superficial 

de los huevos, que la transmisión del virus se produce internamente (transovarial) y no 

superficialmente (transovum). En los adultos descendientes de individuos subletalmente 

infectados se encontró una correlación positiva entre  la carga viral por insecto infectado y 

el porcentaje de individuos positivos del grupo parental del que provenían, es decir, que 

cuantos más insectos infectados había en un grupo, más carga viral albergaban dichos 

individuos. 

Recientemente se ha demostrado que algunos genotipos del SeMNPV aparecen 

asociados a distintas vías de transmisión. El genotipo Se-Al1 (asociado a la transmisión 

vertical: TV) es capaz de producir una infección encubierta en un elevado porcentaje de los 

insectos que ingieren una dosis subletal y, además, dicha infección se transmite 

verticalmente durante al menos 5 generaciones sucesivas. El genotipo Se-G25 (asociado a 

la transmisión horizontal: TH), produce porcentajes de infecciones encubiertas 

significativamente menores pero, en cambio, presenta valores de patogenicidad y virulencia 

mejores que el genotipo Se-Al1. A la vista de estos resultados, se planteó estudiar mezclas 

de OBs de ambos genotipos en las siguientes proporciones (TV:TH): 25:75, 50:50 y 75:25, 

con la finalidad de determinar su efecto sobre las propiedades insecticidas del inóculo viral 

y la capacidad de producir infecciones encubiertas. Las mezclas de genotipos que 

contienen un 25 o un 75% del genotipo de TH mejoraron la patogenicidad respecto al 

genotipo de TV, sin embargo, no hubo diferencias significativas en cuanto a virulencia y 

producción de OBs/larva para ninguno de los tratamientos. Tras la aplicación de una dosis 

subletal, el genotipo de TV produjo un 90% de infecciones encubiertas en los insectos 

supervivientes, dato significativamente superior al 51% producido por el genotipo de TH. 

Todas las mezclas evaluadas (75:25, 50:50 y 25:75) fueron igual de eficientes que el 

genotipo de TV en cuanto a su capacidad de producir infecciones subletales. En 

condiciones de invernadero la capacidad de producir infecciones encubiertas fue menor, 

para todos los tratamientos, que en condiciones de laboratorio. El genotipo de TV produjo 

un 76% de adultos infectados, mientras que la infección producida por el de TH fue 

significativamente inferior (45%), obteniéndose valores intermedios para las mezclas 75:25 
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y 25:75. En cuanto a la eficiencia de dichos tratamientos en la protección del cultivo se 

determinó el daño directo e indirecto producido por las larvas en plantas de pimiento tras la 

aplicación de 5 x 108 OBs/l de los genotipos de TV, TH y la mezcla 75:25. Los tratamientos 

virales, que fueron igual de efectivos entre ellos, resultaron ser casi tan eficaces como el 

insecticida químico metoxifenocida cuando se evaluó el porcentaje de hojas dañadas. Al 

evaluar el daño directo en fruto los genotipos puros y la mezcla 75:25 fueron tan eficaces 

como la metoxifenocida. Por tanto, la incorporación de genotipos del SeMNPV con buenas 

cualidades para la TV en los formulados de bioinsecticidas, no sólo serían un método de 

control eficaz frente a plagas causadas por S. exigua sino que a su vez podría contribuir a 

disminuir la cantidad de inóculo viral necesario para el control de las siguientes 

generaciones del insecto.  

El conocimiento de los factores que regulan la reactivación de infecciones 

encubiertas producidas por el SeMNPV, para producir infecciones francas en larvas de S. 

exigua, sería muy útil para el control de la plaga y podría contribuir a disminuir el número de 

aplicaciones necesarias de bioinsecticidas basados en el SeMNPV. En este sentido, se 

estudió la aplicación de diferentes materias químicas y biológicas (otros entomopatógenos) 

como factores de reactivación de una infección encubierta para convertirla en una infección 

letal en larvas de segundo estadio que albergaban una infección encubierta del SeMNPV. 

Los tratamientos con sulfato de cobre (0,1%), sulfato de hierro (1%) y selenito de sodio (1 

ppm) produjeron una mortalidad por baculovirus de 12, 15 y 41%, respectivamente, en 

condiciones de laboratorio. La capacidad de activación de sulfato de cobre (0,1%) y selenito 

de sodio (1 ppm) también se evaluó en condiciones de invernadero sobre larvas con 

infección encubierta que se encontraban infestando plantas de pimiento. Sin embargo, 

menos del 3% de las larvas recolectadas murieron por baculovirus lo cual sugiere que estas 

sustancias tienen una baja capacidad para activar infecciones encubiertas en las 

condiciones descritas en este ensayo. 

Finalmente, en esta tesis se han estudiado las infecciones encubiertas y su 

transmisión vertical causadas por el SeMNPV y se discute la aplicación que pueden tener 

estos resultados en el diseño de nuevas estrategias de control de S. exigua como 

alternativa  a las aplicaciones inundativas de los bioinsecticidas a base de SeMNPV que 

hasta el momento se realizan en los invernaderos de Almería. 
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SUMMARY 

The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) is an important 

pest of pepper crops in Almerian greenhouses. In previous studies, the identification and 

molecular characterization of native strains of the S. exigua multiple nucleopolyhedrovirus 

(SeMNPV; Baculoviridae) with great insecticide potential, as well as the development of 

additional technologies (mass-production and formulation procedures) has led to the 

creation of a baculovirus-based bioinsecticide which provides growers with alternative 

options that can be more effective than conventional chemical insecticides to suppress the 

damage of S. exigua larvae in Almerian greenhouses. So far, applications of baculovirus-

based insecticides are almost invariably based on inundative methods, similar to the 

strategy of applications based on the use of chemical products. In the present thesis, the 

SeMNPV vertical transmission and long-term persistence infections in natural populations of 

S. exigua and their impact on successive generations of infected insects were examined. 

These findings could constitute the basis for a new strategy of inoculative applications.  

First, the incidence of covert infections caused by the SeMNPV and two RNA viruses 

belonging to the Iflaviridae family (S. exigua iflavirus-1: SeIV-1; S. exigua iflavirus-2: SeIV-2) 

was evaluated in S. exigua adults collected in Almerian greenhouses. Overall, 54% of field-

caught adults were infected by SeMNPV, whereas 13% and 8% were infected by SeIV-1 

and SeIV-2 respectively. Multiple infections were also detected, with 8% of individuals 

harbouring SeMNPV and one of the iflaviruses, while just 2% of adults were infected by all 

three viruses. In the offspring of field collected females reared under laboratory conditions 

(F1), the prevalence of SeIV-1 and SeIV-2 increased to 39% and 19%, respectively, in 

relation to the parental generation, whereas the prevalence of SeMNPV infection in the 

progeny was 21%. Co-infection produced by viruses belonging to different family groups 

was as low as 4%, and mixed infections involving three viruses was only detected in 6% of 

the insects. 

After verifying that SeMNPV covert infections may affect more than 50% of the 

individuals belonging to natural populations of their homologous host, the contribution of 

gender in transgenerational transmission of these infections was assessed. For this, four 

mating groups involving SeMNPV covertly infected and virus-free insects were performed 

(healthy males x healthy females, infected males x healthy females, healthy males x infected 

females, and infected males x infected females). qPCR analysis of DNA extracted from 

adults revealed that the virus was present in both parents and their offspring (F1). After 

verifying that the prevalence of covert infection in parental individual survivors to a virus 

challenge as larvae was high (65-85%), the prevalence in offspring was examined. Viral 
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DNA was detected in adult descendants (F1) of any of the infected parental mating group, 

independently of gender. However, female-mediated vertical transmission (49%) was 

approximately twice as efficient as male-mediated transmission (26%) in terms of virus 

incidence in the progeny. Furthermore, egg surface decontamination did not have significant 

effect on the level of viral transmission suggesting that the main route of transmission was 

transovarial rather than transovum. A positive relationship was found between the 

percentage of infected adults in the F1 generation and their viral load, suggesting that adults 

that transmit the virus to a high proportion of their offspring tend to transmit greater amounts 

of viral DNA. 

Recently, it has been demonstrated that certain SeMNPV genotypes are associated 

with different routes of transmission. The Se-Al1 genotype (associated with vertical 

transmission: VT) produced a high percentage of covert infections in survivors of a virus 

challenge and was transmitted through five successive generations. In contrast, the Se-G25 

genotype (associated with horizontal transmission: HT), showed greater insecticidal 

properties in terms of pathogenicity and virulence. Interactions between these genotypes 

was determined using mixtures of OBs in the following proportions (VT:HT): 25:75, 50:50 

and 75:25, in order to select a mixture that had a useful combination of insecticidal 

properties and was capable of producing covert infections. OBs mixed populations involving 

25 and 75% of the HT genotype improved pathogenicity compared to VT genotype, whereas 

no significant difference was found in virulence and productivity (OBs/larva) for any of the 

treatments. The ability to produce covert infections in insect survivors of a sublethal dose 

was significantly higher using the VT genotype (90%) than the HT genotype (45%), whereas 

mixtures comprising 75:25, 50:50 and 25:75 were as efficient as the VT genotype in 

producing sublethal infections. Overall, under greenhouse conditions the ability to produce 

covert infections was lower compared to that observed in laboratory assays. VT genotype 

produced 76% of infected adults, while the infection produced by HT genotype was 

significantly lower (45%), intermediate values were obtained by the 75:25 and 25:75 

mixtures. Regarding crop protection efficiency of the mixtures, direct and indirect injury 

caused by survivors to an application of 5 x 108 OB/l of the VT, HT and 75:25 mixture were 

compared with a chemical insecticide (methoxyfenozide) in field trials in pepper crops. Viral 

treatments, which were all equally effective, were nearly as effective as the methoxyfenozide 

treatment in terms of foliar feeding damage. Regarding direct damage to fruits, pure 

genotypes and the 75:25 mixture were as effective as methoxyfenozide. Therefore, the 

addition of SeMNPV genotypes with the capacity for vertical transmission into baculovirus-

based bioinsecticides could provide effective crop protection against S. exigua larvae and 

may also contribute to extend the timing between field applications due to transgenerational 

control capacity of the virus. 
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The activation of covert infections into lethal diseases in S. exigua larvae could 

contribute to initiate epizootics, and therefore reduce the number of applications of 

SeMNPV-based bioinsecticides. Different chemicals and entomopathogens were studied as 

a trigger factors in covertly infected S. exigua second instars. Virus activation was observed 

in insects treated with 0.1% copper sulfate, 1% iron (II) sulfate, and 1 ppm sodium selenite 

that resulted in 12, 15, and 41% of lethal polyhedrosis disease, respectively. The rate of 

activation of 0.1% copper sulfate and 1 ppm sodium selenite was also evaluated in 

greenhouse trials using covertly infected larvae for artificially infesting sweet pepper plants. 

However, less than 3% of the collected larvae died by baculovirus suggesting that these 

substances did not activate covert infections under the conditions described in this assay. 

Finally, in this thesis the use of SeMNPV covert infection and vertical transmission 

have been discussed as the basis of novel control strategies for S. exigua and for pest 

damage reduction. These findings could contribute to the design of alternative virus control 

strategies to the inundative applications that are presently used in Almerian greenhouses.
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1. General introduction and scope of research 

The beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), 

is a polyphagous pest responsible for great economical losses in both open-field 

and greenhouse crops worldwide (CABI, 2016). In southern Spain S. exigua 

populations frequently attain pest status in greenhouses of pepper crops between 

the months of June and September (Belda, 1994; Moreno et al., 1992). The 

excessive use of chemical pesticides against this pest over a period of decades 

has generated a number of phytosanitary problems associated with the presence 

of insecticidal residues in pepper fruits (Glass and Egea, 2012), the selection of S. 

exigua populations resistant to a variety of chemical insecticides (Ahmad and Arif, 

2010; Moulton et al., 2002; Smagghe et al., 2003; Torres Vila et al., 1998; Wang et 

al., 2006) and the incompatibility of broad spectrum insecticides with biological 

control methods (Lara and Urbaneja, 2002; Stansly et al., 2005). All this, coupled 

with the demand of Almerian growers for effective control products, compatible 

with the use of natural enemies, has lead to the development of biopesticides 

based on the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV; family 

Baculoviridae; genus Alphabaculovirus).  

The Microbial Bioinsecticides Group (UPNA-CSIC) has conducted an 

extensive study on SeMNPV as a biological control agent, including the genotypic 

and phenotypic characterization of native virus populations (Muñoz et al, 1999; 

Murillo et al., 2007), the selection of genotypes and mixtures of genotypes with 

different insecticidal properties (Murillo et al., 2006), field trials of efficacy, mass-

production methods and formulation procedures (Lasa, 2007). These studies 

resulted in the registration and commercialization of a biopesticide based on 

SeMNPV under the trade name of Virex® (BioColor S.L.). This product provides 

better protection than chemical insecticides or Bacillus thuringiensis based 

products and has been used widely by growers in integrated pest management 

(IPM) programs in Almería (Caballero et al., 2009).  

However, we should not forget the risk of the emergence of resistance 

among treated insects due to the repeated use of high concentrations of this virus. 

An example of this situation is the case of the Cydia pommonella granulovirus 

(GV; family Baculoviridae; genus Betabaculovirus) in Europe. In 2005, C. 

pomonella populations were reported to have developed 10,000-fold reduction in 
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their susceptibility to their homologous granulovirus (CpGV) (Asser-Kaiser et al., 

2007). Fortunately, the selection of new genotypes from distinct natural isolates 

(Eberle et al., 2008) or successive passages in resistant insects (Berling et al., 

2009) proved effective in overcoming resistance to the virus.  

Recent studies on the molecular ecology of SeMNPV have revealed that 

covert infections in S. exigua populations are frequent and seem to have an 

important role in the vertical transmission of the virus (Cabodevilla et al., 2011a; 

Virto et al., 2014). Covert or non-lethal infections have been described as a 

strategy for virus persistence in response to a variable environment or the lack of 

opportunities for horizontal transmission (Cory and Myers, 2003). New genotypes 

of SeMNPV that differed in their biological characteristics were isolated from soils 

of Almerian crops (Murillo et al., 2007) and from an insect colony that originated 

from individuals collected in greenhouses of this area (Cabodevilla et al., 2011a). 

Interestingly, genotypes from soil samples had favorable insecticidal properties, 

whereas genotypes obtained from larvae that died spontaneously in the colony 

tended to produce a higher prevalence of covert infections and pass on the virus 

to progeny (Cabodevilla et al., 2011a; Cabodevilla et al., 2011b). Therefore, the 

former genotypes were considered to be horizontally transmitted genotypes and 

the latter, vertically transmitted genotypes. 

Given this scenario, the aim of this thesis was to examine some aspects of 

SeMNPV vertical transmission and covert infections, in order to provide field 

application effectiveness of SeMNPV-based insecticides for extended control 

programs. These studies have been specifically focused on: i) the incidence of 

SeMNPV covert infections and its transmission, as well as other viruses that 

covertly infect field populations of S. exigua, ii) the influence of host gender on 

vertical transmission, iii)  the use of mixing vertically and horizontally transmitted 

genotypes in OB mixtures to improve viral transmissibility and the chance of 

transgenerational host mortality, and iv) the evaluation of biological and chemical 

stressors as trigger factors of lethal disease that could activate persistent 

infections under laboratory and field conditions. 
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2. Spodoptera exigua 

2.1 Morphology 

Spodoptera exigua adults are medium-sized moths with a wingspan of 25 to 

30 mm, have brownish to grey forewings and semi-transparent hindwings crossed 

by dark veins (Figure 1A) (Capinera, 2008). Males and females can be 

distinguished by their abdomen shape, being wider the latter than the former. The 

eggs, 0.35-0.37 mm in diameter, are laid in clusters of 30-200 eggs, and often 

cover by female scales. The egg color varies from yellowish-white to greenish and 

gradually changes to dark brown as embryos develop, becoming black shortly 

before hatching (Figure 1B) (Amaldoss and Hsue, 1989).  

 

 

Figure 1. Development stages of the S. exigua life cycle: A) ventral and dorsal view of adult, 
B) eggs, C) fifth instar larva (left) and pre-molt second instar larvae (right), D) pupa (top), 
last segments on the ventral surface of female (bottom on the left) and male pupae (bottom 
on the right). 

During the first and second instars, larvae are pale green or yellow, 

gregarious and may feed on foliage in large groups (Figure 1C, right panel). At the 

third instar they acquire pale stripes, and at the fourth instar they turn dark grey, or 

yellowish green showing dark stripes runs dorsally and laterally. During the fifth 

instar color varies depending on the food source, between green and dark grey 

with white spiracles that contain a narrow black border (Figure 1C, left panel) 
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(Capinera, 2008; Cayrol, 1972). Eruciform larvae develop throughout five instars 

reaching up to 3.6 cm long (Cayrol, 1972). Additional instars have been reported 

under certain conditions. Mature larvae develop to 15 to 20 mm long, reddish-

brown, fusiform pupae (Figure 1D, top panel) (Capinera, 2008). Sexual 

dimorphism is easily identified by observing the last segments of the pupa 

abdomen. Females may be distinguished from males by the presence of a 

longitudinal vent on the ventral surface of the penultimate segment, whereas 

males possess two circular notches on the last segment (Figure 1D, bottom 

panel).  

2.2 Geographical distribution and host plants 

The beet armyworm S. exigua is a migratory species originates from South-

East Asia and currently worldwide distributed in all tropical and subtropical areas 

(Figure 2) (CABI, 2016). In Europe, due to the cold winter conditions and the lack 

of diapause, S. exigua can only successfully overwinter under greenhouses 

conditions (Sunderland et al., 2010) or in the warmest regions such as southern 

Spain (Belda et al., 1994). Nevertheless, because of its dispersal abilities, in 

summer regular migrations are common from Africa to Europe reaching the British 

Isles and Scandinavia (French, 1969). 

 

 

Figure 2. Geographic distribution of S. exigua in the world. Green circles represent 
countries where S. exigua is present (CABI, 2016). 
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The beet armyworm is a polyphagous species that produces serious 

economic losses worldwide (Brady and Ganyard, 1972). It has an extremely wide 

host range of more than 200 plant species (Brown and Dewhurst, 1975). Larval 

feeding behavior produces both indirect and direct damage by consuming leaves 

or fruits and flowers, respectively. In southern Spain, S. exigua represents a key 

pest in both horticultural crops like peppers, courgette, melon or watermelon 

(Moreno et al., 1992) and in open-field crops like cotton, sunflower or alfalfa 

(Belda, 1994). It has also been observed attacking ornamental crops such as 

chrysanthemum. 

2.3 Biology and ecology 

As adults S. exigua are extremely mobile and can fly, mainly at night, up to 

3500 km in just 9 or 11 days (Mikkola, 1970). Mating occurs principally at night, 

soon after emergence of the moths, and oviposition begins within two to three 

days. Oviposition extends over a three to seven day period, and the moths usually 

die within nine to ten days after emergence (Amaldoss and Hsue, 1989). Female 

egg production ranges between 600 and 1700 eggs (Chu and Wu, 1992). Under 

field conditions females deposit the eggs over the underside of leaves to prevent 

desiccation and predation of the eggs. During warm weather eggs hatch in two to 

three days. Larval development is temperature-dependent and varies between 

14.5 days at 33 °C and 120.5 days at 15 °C (Karimi-Malati et al., 2014). Late instar 

larvae enter the soil where pupation occurs. Duration of the pupal stage is six to 

seven days during warm weather. The duration of the life cycle varies according to 

climate; under favorable conditions the life cycle can be completed in just twenty 

days (Belda, 1994). 

The number of S. exigua generations per year is variable depending of the 

geographical region and host plant (Ali and Gaylor, 1992). A maximum of eleven 

generations per year has been observed in China (Amaldoss and Hsue, 1989). In 

southern Spain, three to four generations per year are estimated to occur in 

outdoor crops. Greenhouses conditions involving low competition for food, high 

nutritional quality, a limited number of natural enemies and high temperatures and 

relative humidity, results in up to seven or eight generations per year (Belda, 

1994).  
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2.4 Feeding damage 

The larvae of S. exigua cause damage in at least 60 cultivated plant 

species from 23 families (Brown and Dewhurst, 1975), including crops of major 

economic importance such as pepper, cucumbers, pumpkins, melon or 

watermelon, and field crops including cotton, sunflower or alfalfa as well as 

ornamental plants such as chrysanthemums and other non-commercial plants 

(Belda, 1994).  

Early instar larvae feed gregariously on the undersides of leaves removing 

parenchyma and reducing the photosynthetic area as a result (Figure 3A). As they 

grow they perforate the leaves, causing defoliation (Figure 3B), and move up to 

the top of the plant as solitary larvae, leaving upper leaves skeletonized (Figure 

3C). High infestations often result in larval feeding on fruits, resulting in scaring, 

boreholes, and rotting, that leads to a significant reduction in the commercial value 

of the crop (Figure 3D) (Lasa, 2007). Occasionally larvae are observed inside the 

flower buds of some species where they are protected from predators and contact 

insecticides (Figure 3E).  

 

 

Figure 3. Feeding damage caused by S. exigua in pepper crops: A) early instar larvae 
producing superficial feeding damage, B) defoliation caused by final instar larvae, C) hard 
defoliation caused by S. exigua in a pepper plant, D) pepper fruit damaged by S. exigua, 
and E) S. exigua larva feeding on a pepper flower. 
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2.5 S. exigua impact in greenhouses of southern Spain 

The province of Almería comprises an estimated area of 29,500 ha of 

intensive greenhouse production that due to the double cultivation reaches the 

44,000 ha per year (Figure 4) (Junta de Andalucía, 2015). Almerian growers 

supply the European Union with the principal salad vegetables, being this province 

the leading vegetable exporter during 2015 (http://www.freshplaza.com). The 

2014-15 production cycle exceeded 2.6 million tons, of which 1.9 were exported 

with value of 1,771 million € (Junta de Andalucía, 2015). Intensive horticulture 

takes place nearly all year round. Sweet pepper is one of the main crops in which 

S. exigua pest pressure occurs from June to October (Belda, 1994). Annually, over 

6 million euros have been spent on chemical insecticides to control this pest in the 

region (Lasa, 2007). 

 

 

Figure 4. Aerial view of Almeria showing area covered by greenhouse horticultural 
production. Picture from Glass and Egea (2012). 

2.6 Control methods 

2.6.1. Chemical control 

Control of S. exigua has been achieved by spraying synthetic insecticides 

(Chandler and Ruberson, 1996; Ishtiaq and Saleem, 2011). Because of its 

polyphagous nature this pest has been exposed to an intensive use of a variety of 

chemical products, which have generated a series of problems such as the 

http://www.freshplaza.com/
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appearance of resistance associated to a lack of an efficacy control (Ahmad and 

Arif, 2010; Moulton et al., 2002; Smagghe et al., 2003), the generation and 

accumulation of chemical residues on fruits (Glass and Egea, 2012), and the 

incompatibility between chemical control measures and natural enemies utilized 

against other pests that coexist with S. exigua (Caballero et al., 2009). Over the 

past 50 years, crop protection has relied on synthetic chemical pesticides, 

consequently, so far resistance to at least 39 active ingredients of insecticides 

(http://www.pesticideresistance.org) including abamectin, cypermethrin, 

endosulfan or spinosad has been reported  for S. exigua (Ahmad and Arif, 2010; 

Che et al., 2015; Ishtiaq and Saleem, 2011; Osorio et al., 2015; Wang et al., 

2006). Insect growth regulators (IGR) such as methoxyfenozide, flufenuxoron, 

lufenuron or tebufenozide have become very popular, but insect resistance 

selection has also been demonstrated as a consequence of abusive used that 

lead to a dramatic effectiveness reduction of field applications (Smagghe et 

al.,2003; Osorio et al., 2008; Zhou et al., 2011).  

The same scenario was described in Almería some years ago mainly 

because of pest resistance to insecticides (Torres-Vila et al., 1998), and due to the 

European Union 2009 directive based on Integrated Pest Management (IPM) 

measures and focused on achieving a sustainable use of pesticides (European 

Commission, 2009). Moreover, residues of isofenphos-methyl were found in 

peppers from Almería during 2006, a pesticide that had not been registered for 

horticultural use, prevented their commercialization in Europe (Glass and Egea, 

2012). On the other hand, the fact that other phytophagous pests had being 

controlled by biological control agents (Lara and Urbaneja, 2002; Stansly et al., 

2005) made the search for a safe and effective control agent for S. exigua as a 

priority in the Almería region, and particularly in sweet pepper crop (Lasa, 2007; 

van der Bloom, 2010). 

In the last ten years there has been a real “green revolution” in the province 

of Almería, thousands of crops hectares are becoming from conventional 

agriculture to integrated production with biological control. Initially, at a small scale 

and with unpredictable results, however, due to an early pest detection, release of 

predators and parasitic, the use of entomopathogen agents and the grown 

experience, the implementation of IPM programs became technically viable and 

economically feasible (Glass and Egea, 2012; van der Blom, 2010). For instance, 
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the use of chemical insecticides was drastically reduced and the greenhouse area 

passed from 1,400 biologically-controlled hectares in 2007 to 26,372 ha in 2014 

(Chandler et al., 2011; Sanchez et al., 2014). Although biological control is 

currently implemented in the greenhouse sector of Almería, chemical pesticides 

were recorded in growing crops of tomato, pepper, cucumber and aubergine 

during 2011/2012 season (Glass and Egea, 2012). This highlights the need for 

maintaining an IPM programs using a combination of the best control methods 

available. 

2.6.2. Pheromone traps 

Several investigations of S. exigua sex pheromones have been carried out 

to assess whether they can be useful to capture males and consequently disrupt 

mating and inhibit reproduction (Chandler et al., 2011; Trumble and Baker, 1984). 

A series of acetates and alcohols have been isolated from virgin females, 

identified as sex pheromones and tested in field conditions to catch males (Takai 

and Wakamura, 1990; Tumlinson et al., 1990). Synthesized compounds based on 

the most successful pheromones have been developed, being the most effective 

compound a blend of (Z, E)-9,12-tetradecadienyl acetate (Z9E12-14:OAc) and (Z)-

9-tetradecenyl alcohol (Z9-14:OAc) in a 10:1 proportion respectively, which was as 

effective as virgin females in trapping males (López, 1998; Mitchell et al., 1983). 

However, blends without compounds described above were not effective as traps, 

remarking the importance of these two pheromones (Tumilnson et al., 1990).  

In spite of being useful for monitoring and mass trapping, sex pheromones 

are applied at low levels in IPM programs (Chandler et al., 2011). Egg masses and 

young larvae were reduced to 6 and 1% after Z9E12-14:OAc and Z9-14:OAc 

blend application in field conditions (Takai and Wakamura, 1990). However, when 

beet armyworm density increases pheromones are ineffective to pest control and 

additional control methods are required (Kerns, 2000).  

2.6.3. Biological control 

Large complexes of natural enemies parasitize or prey on S. exigua 

populations at different moments of its life cycle. Eggs and small larvae are 

especially susceptible to predation by adults and nymphs of Lygus hesperus 

(Hemiptera: Miridae), Nabis americoferus (Hemiptera: Nabidae) and Orius 
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tristicolor (Hemiptera: Anthocoridae), and adults of Collops vittatus (Coleoptera: 

Melyridae) and Hippodamia convergens (Coleoptera: Coccinellidae) (Ehler, 2007). 

The endoparasitoid Chelonus insularis (Hymenoptera: Braconidae) is the most 

abundant parasitoid of eggs and young larvae (Caballero et al., 1990; Sertkaya et 

al., 2004) whereas some parasitoids of larvae such as Hyposoter exiguae 

(Hymenoptera: Ichnemonidae), Pristomerus spinator (Hymenoptera: 

Ichnemonidae) and Microplitis pallidipes (Hymenoptera; Braconidae) (Jiang, 2010) 

have also been reported frequently.  

Among the most abundant parasitoid species found in southern Spain are 

the braconid Meteorus pulchricornis (Hymenoptera: Braconidae), the ichneumonid 

Hyposoter didymator (Hymenoptera: Ichneymonidae) and the tachinid Gonia 

bimaculata (Diptera: Tachinidae) producing considerable levels of mortality in non-

treated crops outside greenhouses (Caballero et al., 1990; Cabello, 1989). These 

natural enemies are important mortality agents in open field crops (Ehler 2004), 

but not to a commercially acceptable level (Sunderland et al., 2010). 

2.6.4. Microbial control 

Entomopathogens known as Microbial Control Agents (MCA), are by far the 

most promising groups of biological control agents developed against S. exigua 

(Cory and Franklin, 2012). Fungal species such as Beauveria bassiana 

(Hypocreales: Clavipitaceae), Nomurea rileyi (Moniliales: Moniliaceae) and 

Metarrhizium anisopliae (Hypocreales: Clavicipitaceae) (Hung and Boucias, 1992; 

Kao and Tsai, 1989), and the entomopathogenic nematodes Steinernema 

carpocapsae (Nematoda: Steinermatidae) have been evaluated (Gothama et al., 

1996; Gothama et al., 1995) but their application is unusual in greenhouses of 

southern Spain due to the high temperatures and a lack of moisture on the crop 

(Glass and Egea, 2012). 

Several strains of Bacillus thuringiensis (Bt) are known to infect and kill S. 

exigua larvae (Estruch et al., 1996; Xue et al., 2005). In Spain until 2007, the only 

MCA registered and marketed against S. exigua was Bt ser. aizawai and ser. 

kustaki but its efficacy has diminished because of intensive use and the 

development of pest resistance (Herrero et al., 2005). 

In contrast, the Spodoptera exigua multiple nucleopolyhedrovirus 

(SeMNPV; family Baculoviridae; genus Alphabaculovirus), has proven to be highly 
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efficient against the beet armyworm (Kolodny-Hirsch et al., 1993). This pathogen 

naturally regulates host population by causing epizootics that reduce S. exigua 

populations by up to 80% in both open field and greenhouses crops (Caballero et 

al., 1992a). Native SeMNPV genotypes were studied as the active ingredient of 

the first bioinsecticide based on a native baculovirus registered in Spain (Figure 5) 

(Caballero et al., 2009; Lasa, 2007). 

 

 

Figure 5. Commercial product based on a Spanish strain of the SeMNPV and used to 
control S. exigua in southern Spain. 

3. Baculovirus morphology and taxonomy 

Baculoviruses are arthropod-specific viruses isolated from insect species 

belonging to the orders Lepidoptera, Hymenoptera and Diptera (Caballero and 

Williams, 2008; Herniou et al., 2003), and are practically ubiquitous. Nowadays, 

they are well known for their ability as biological insecticides (Moscardi, 1999), 

gene expression vectors for transduction of mammalian cells and gene therapy 

(Clem and Passarelli, 2013). The baculovirus genome consists of a single, double-

stranded, circular, supercoiled DNA molecule. So far over 60 baculovirus genomes 

are fully sequenced, with sizes varying from about 80 to over 180 Kb, that encode 

between 90 and 180 genes (Rohrmann, 2013). The members of this family 

produce occlusion bodies (OBs), which contain, protein-lipid enveloped virions 

comprising in turn, rod-shaped nucleocapsids of 40-60 nm in diameter and 230-

385 nm in length (Ackermann and Smirnoff, 1983; Boucias and Pendland, 1998; 

Federici, 1986; Herniou et al., 2012).  
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During the infection cycle two types of virions are formed that exhibit 

identical genomic material, similar nucleocapsid structure, but differ in their 

function and envelopes composition: occlusion derived virus (ODV) responsible for 

the primary infection, and budded virus (BV) responsible for the secondary 

infection (Figure 6). 

 

 

Figure 6: Cryo-electron microscope images (A and B) and structural composition (C and D) 
of the two virion phenotypes produced during the baculovirus infection cycle. Occlusion 
derived virions (ODVs) (A and C) and budded virus (BVs) (B and D) contain identical 
nucleocapsids but differ in the lipid and protein composition of their envelopes. Images from 
Wang et al. (2016). 

ODVs are contained in the occlusion bodies (OBs) where they preserve 

their infectivity capacity outside the host. ODVs are formed in the nucleus of the 

virus-infected cell and may contain a variable number of nucleocapsids. The 

membrane of the ODVs is synthesized de novo (Stoltz et al., 1973) and has 

proteins recognized as envelope components and other proteins designated as 

important per os infectivity factors (PIFs) (Figure 6C) (Braunagel et al., 1996; Fang 

et al., 2009; Faulkner et al., 1997; Haas-Stapleton et al., 2004; Kikhno et al., 2002; 

Lapointe et al., 2004; Li and Blissard, 2009; Ohkawa et al., 2005; Pijlman et al., 

2003; Zhang et al., 2005). These proteins play an essential role in the ODV 
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infectivity to the midgut cells. Late in the replication cycle ODVs are surrounded by 

large amounts of a protein matrix (polyhedrin or granulin) to form the OBs. OBs 

are highly stable and can persist in the environment outside the host for long 

periods of time and are responsible for horizontal transmission of the virus 

(Rohrmann, 2013). BVs are involved in cell to cell infection and systemic spread of 

disease. They always contain a single nucleocapsid that buds out through the 

plasma membrane of the insect cell thereby acquiring a lipoprotein envelope 

containing a virus-encoded fusion protein known as GP64 (in group I NPVs) or F 

protein (in group II NPVs), that allows budding and entry into new target cells 

(Figure 6D) (Blissard and Wenz, 1992; Garry and Garry, 2008; Monsma et al., 

1996; Oomens and Blissard, 1999; Pearson et al., 2000).  

Formerly baculoviruses were classified into two genera according to OB 

morphology: Nucleopolyhedrovirus (NPV) and Granulovirus (GV) (Figure 7) 

(Murphy et al., 1995). NPVs produce large polyhedron-shaped structures (0.15 to 

15 µm in diameter) called occlusion bodies (OBs) that are composed of a 

polyhedral protein matrix surrounding several ODVs that can comprise a single 

nucleocapsid (SNPV) or multiple nucleocapsids (MNPV) (Figure 7) (Slack and Arif, 

2007). GVs are smaller than NPVs, with a granular shaped structure, 150 nm in 

diameter and 400-600 nm in length. They comprise a protein matrix of granulin 

that always contains one ODV with a single nucleocapsid (Figure 7) (Slack and 

Arif, 2007).  

Since 2006, baculovirus classification has been based on genome 

sequence-based phylogeny and the family is now divided into four genera: 

Alphabaculovirus (lepidopteran-specific NPVs), Betabaculovirus (lepidopteran-

specific GVs), Gammabaculovirus (hymenopteran-specific NPVs) and 

Deltabaculovirus (dipteran-specific NPVs) (Jehle et al., 2006; King et al., 2012). 

Phylogenetic analysis indicated that the genus Alphabaculovirus can also 

be divided into two groups (I and II), so that the envelope fusion protein GP64 or 

the F protein is present in the BVs of members of group I and group II, respectively 

(Pearson and Rohrmann, 2002; Rohrmann, 2013), although this subdivision is not 

officially recognized by the International Committee on Taxonomy of Viruses 

(ICTV) in the current division. SeMNPV belongs to group II, together with 

Spodoptera frugiperda MNPV and Lymantria dispar MNPV. The last revision of the 
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ICTV includes 49 species of which 32 are Alphabaculovirus, 14 are 

Betabaculovirus, 1 is a Deltabaculovirus and 2 are Gammabaculovirus (ICTV, 

2014), but this classification is continuously being updating. 

 

 

Figure 7: Electron microscope images and schematic representation of the two former 
genera of baculovirus: Nucleopolyhedrovirus and Granulovirus, and cross section of two 
nucleopolyhedroviruses and one granulovirus showing occlusion derived virions (ODVs). 
Images from Rohrmann, (2013). 

4. The baculovirus infection cycle and pathogenesis 

The baculovirus infection cycle varies according to the genus of the virus 

(Jehle et al., 2006). Alphabaculovirus and betabaculovirus infections are 

generalized with all host tissues affected, whilst the replication of 

deltabaculoviruses and gammabaculoviruses are restricted to the insect midgut 

cells (Jehle et al., 2006). Since SeMNPV is a member of the Alphabaculovirus 

genus, this replication cycle is described in detail. 
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The alphabaculovirus infection cycle starts when a susceptible larva ingests 

the OBs present on the foliar surface (Figure 8A). When the OBs reach the insect 

midgut, its alkaline pH dissolves the OB matrix and numerous ODVs are released 

(Figure 8B). The first barrier that the ODVs encounter in the insect midgut is the 

peritrophic membrane (PM), a chitin and glycoprotein matrix that protects the 

epithelial cells. Although it is not completely clear how the ODVs pass through the 

PM, it is known that they are helped by host cell proteinases and viral enhancins 

that digest the mucin component (Lepore et al., 1996; Slavicek and Popham, 

2005; Toprak et al., 2012; Wang and Granados, 1997). ODVs then infect the 

midgut epithelial cells, where primary infection takes place. ODV envelope 

proteins, namely PIFs, fuse with the membrane of the epithelial cells and 

nucleocapsids are released into the cell cytoplasm (Figure 8C). Nucleocapsids are 

transported to the nuclear membrane in a process that involves actin 

polymerization (Goley et al., 2006; Ohkawa et al., 2010) and pass directly through 

nuclear pores into the nucleus of the cell (van Loo et al., 2001).  

Once in the nucleus, viral DNA replication (Figure 8D) is initiated that 

eventually results in the production of new nucleocapsids which finally bud out of 

the nucleus and then exit the cell to become BV for the systemic phase of infection 

(Figure 8E). In addition some nucleocapsids may bypass the nuclear replication 

phase and may bud out of the basal side of the cell to continue viral spread (Slack 

and Arif, 2007). Newly formed BVs use tracheal cell projections that penetrate 

through the basal lamina to access the tracheal system, an excellent pathway to 

propagate the secondary infection to other tissues (fat body, muscle, trachea, 

hemocytes, epithelial cells) (Figure 8F) (Engelhard et al., 1994; Flipsen et al., 

1995; Maina, 1989). Part of the new assembled nucleocapsids that remain in the 

nucleus acquire an envelope synthetized de novo to form ODVs (Figure 8G). At 

the end of the cycle high levels of polyhedrin are produced, which accumulates in 

nuclei and at some point condenses and crystallizes around the ODVs to form the 

occlusion bodies (Figure 8H) (Hamblin et al., 1990; Wood et al., 1994). At the end 

of the infection cycle the nuclear and the plasma membrane breakdown releasing 

the OBs into the hemocoel. 
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Figure 8: Alphabaculovirus infection cycle. Sequential steps of alphabaculovirus 
multiplication during primary and secondary infection are numered by letters. Adapted from 
Ikeda et al. (2015). 

 Some days after OBs have been ingested the typical signs and symptoms 

of infection start to be visible: larvae lose their appetite and become less active, 

molting is blocked and the color and brightness of the tegument changes 

(Granados and Williams, 1986). As the infection progresses, an enormous 

production of OBs occurs within cells of the insect host (Figure 8I). Shortly before 

death host behavioral changes modulated through egt and ptp viral genes, induce 

larval to climb to the upper parts of the plants (Figure 8J) (Hoover et al., 2011; 

Katsuma et al., 2012, van Houte et al, 2012 ). Upon death they typically hang by 

their last abdominal pseudopods. At this point tissue liquefaction and cuticle 

rupture occurs mediated by viral encoded chitinase and cathepsin proteins, 

favoring OBs dispersion into the environment (Figure 8K) (Federici, 1997).  
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5. Baculovirus diversity 

Large DNA viruses evolved several million years ago along with their host 

and consequently as different insects proliferated so did their viruses (Thezé et al., 

2015). Baculoviruses have been isolated from more than 700 insect species from 

a variety of ecosystems including aquatic and terrestrial habitats (Caballero and 

Williams, 2008). Molecular and biological characterization has revealed a large 

genotypic and phenotypic diversity, both between different baculovirus species 

(interspecific diversity) (Figure 9A), but also between isolates belonging to certain 

baculovirus species (intraspecific diversity) (Figure 9B). The advent of molecular 

tools in genomic sequencing together with restriction endonuclease analysis 

(REN) and PCR-based techniques have increasingly revealed the high degree of 

alphabaculovirus genotypic diversity (Erlandson, 2009; Muñoz and Caballero, 

2001), which might explain differences in phenotypic characteristics linked to 

insecticidal properties (Serrano et al., 2015). 

5.1 Interspecific diversity 

The comparative analyses of different baculovirus genome sequences have 

provide information on viral genome size, gene content (Herniou et al., 2003; Miele 

et al., 2011) and genomic organization (Serrano et al., 2013). The comparison of 

57 genome sequences of baculoviruses has revealed that 31 core genes are 

responsible for the main biological functions, such as transcription of viral late 

genes, virion structure and primary and systemic infections (Hayakawa et al., 

2000; Rohrmann, 2013; van Oers and Vlak, 2007). Non-core genes are specific to 

certain genera or species and provide diversity within baculovirus populations 

(Miele et al., 2011; van Oers and Vlak, 2007). A phylogenetic approach based on 

specific sequences has been developed for classification and nomenclature of 

viral species (Jehle et al., 2006). In this sense, the phylogenetic distance of 

conserved genomic regions has been proposed as the principal criterion to assign 

species status, based on Kimura 2-parameter values derived from concatenated 

polh, lef-8 and lef-9 nucleotide sequences. Using this system isolates are 

considered different species when the K-2 distance exceeds 0.05, whilst they 

belong to the same species when the parameter is less than 0.015. Intermediate 

values between 0.015 and 0.05 require additional information on the isolates 

phenotypic and ecological characteristics (Kimura, 1980). 
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Figure 9. PstI restriction endonuclease profiles of the genomic DNA of A) four different 
baculovirus species: Autographa californica MNPV (AcMNPV), Chrysodeixis chalcites SNPV 
(ChchSNPV), Spodoptera exigua MNPV (SeMNPV) and Spodoptera littoralis MNPV 
(SpliMNPV); B) four different geographical isolates of the SeMNPV: SeMNPV-US1 (Se-
US1), SeMNPV-SP1 (Se-SP1), SeMNPV-SP2 (Se-SP2), SeMNPV-SP3 (Se-SP3); and C) 
four genotypic variants of the SeMNPV-SP2 purified by an in vivo method Se-SP2A, Se-
SP2B, Se-SP2C, and Se-SP2D (adapted from Muñoz et al., 1999). White circle indicate 
submolar fragments and asterisks indicate characteristic fragments of genotypes. 

 Host range and insecticidal properties are also important for classification 

(Cory and Myers, 2003). Baculoviruses receive the name of the species from 

which they were first isolated. The host range defined as the spectrum of insect 

species susceptible to the virus, is a crucial aspect for the use of baculovirus-

based bioinsecticides and the associated risks. Alphabaculovirus specificity 

ranges from a single host species, such as the SeMNPV, to a broader host 

spectrum as seen in AcMNPV (and related Anagrapha falcifera  MNPV and 

Rachiplusia ou MNPV; Harrison and Bonning, 1999), which infects up to 50 

species from 15 different families. But, not all host species are equally susceptible 

to a particular virus. Host permissivity to the infection can be grouped into three 

categories: permissive, semi-permissive and non-permissive (Bishop et al., 1995). 

When more than one baculovirus species simultaneously infect the same host, 

genetic material might be exchanged and recombination could occur. For this 

reason, heterologous infections represent a source of variability in virus 
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populations that may result advantageous for evolution, adaptation and virus 

survival in the field (Cory and Myers, 2003).  

Baculoviruses have demonstrated highly levels of recombination in both 

culture cells (Croizier and Ribeiro, 1992; Erlandson 2009) and in vivo (Muñoz et al, 

1997). Also, the morphological structure of NPVs can facilitate transmission of 

high levels of heterogeneity since genetically different variants can be package 

within the same OB (Bull et al., 2001) or even in the same ODV (Clavijo et al., 

2010). Interestingly, recent studies demonstrated the possibility of generating 

ODVs containing mixtures of different virus species (Beperet, 2014). The 

development of the termed "co-occlusion technology" opened a door to explore 

the possibility for virus improvement without the use of recombinant technology, 

and to customize products according host range requirements in particular crops 

(Arrizubieta, 2015). 

5.2 Intraspecific diversity 

High degrees of genotypic and phenotypic variability have also been 

reported within baculovirus species (Erlandson, 2009; Muñoz and Caballero, 

2001), likely as a consequence of host-pathogen adaptation and evolution (Cory 

and Myers, 2003). Genotypic variants have usually been distinguished by 

restriction (REN) profiles of DNA, in which the presence of submolar bands are 

frequently found, indicating the presence of mixtures of genotypic variants (Figure 

9B). Genetic heterogeneity has been widely demonstrated between different 

geographical isolates (Barrera et al., 2011; Figueiredo et al., 1999; Gettig and 

McCarthy, 1992; Shapiro et al., 1991), and within a viral population associated 

with a region (Murillo et al., 2006; Cooper et al., 2003a). The genotypic structure of 

NPV isolates has been studied in depth, by separating the variants using in vitro 

(Lynn et al., 1993; Ribeiro et al., 1997; Simón et al., 2004a; Arrizubieta et al., 

2013) or in vivo cloning techniques (Figure 9C) (Muñoz et al., 1999; Smith and 

Crook, 1988) or more recently, Bacterial Artificial Chromosome (BAC) technology 

(Wang et al., 2003). By in vitro cloning techniques up to twenty five genotypes of 

the Panolis flammea NPV were identified from a single infected caterpillar (Cory et 

al., 2005). Interestingly, non-autonomous replicative genotypes were identified as 

part of mixed genotype isolates of SeMNPV (Muñoz et al., 1998) and SfMNPV 

(Simón et al., 2004a, 2005). These defective genotypic variants were unable to 
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infect orally because they lacked essential genes (pif). They were first thought to 

act as parasitic variants because their presence reduced the virulence and 

pathogenicity of the wild type population (Muñoz and Caballero, 2000). However 

subsequent studies reported advantages in the transmissibility in mixtures 

comprising defective and other variants (Simón et al., 2005; Serrano et al., 2013), 

confirming the functional role of these deleted variants and explaining their 

persistence in natural virus populations. 

The genotypic heterogeneity is attributable to a number of mechanisms 

such as DNA deletions (Muñoz et al., 1998; Pijlman et al., 2001) or insertions 

(Muñoz et al., 1998), duplication events, point mutations or transposon insertions 

(Jehle et al., 1995; Jehle et al., 1998). In principle, genetic variation might occur 

anywhere in the genome, but it is frequently confined in certain regions termed 

hypervariable regions (Cory et al., 2005; Muñoz et al., 1999), related to 

homologous regions (hrs) and baculovirus repeat ORFs (bro genes). 

Recombination seems to be the main force involved in the evolution of 

baculoviruses (Cory and Myers, 2003; Cory, 2010; Hajos et al., 2000), but this 

phenomenon is important when its produces differences in the phenotype. Cloned 

genotypes from a single isolate exhibit differences associated with their biological 

characteristics (Muñoz et al., 1998; Muñoz et al., 1999; Simón et al., 2004; Simón 

et al., 2008, Erlandson, 2009), even when the genotypes hardly differ at the 

genomic level.  

More interestingly, recent studies have focused on the genomics behind 

phenotypic traits in relation to insecticidal properties. Five SeMNPV genotypic 

variants associated with different routes of transmission and different insecticidal 

properties (Cabodevilla et al., 2011) were fully sequenced and were shown to 

have an identity of 97.3% (Thezé et al., 2014). A number of ORFs such as se04, 

se05, se76 and se129 identified as likely to be involved in pathogenic and 

virulence traits, since genomes deleted in those genes resulted in decreased 

pathogenicity. Specifically, se05-deleted genomes were 10-fold less pathogenic 

and less virulent than the corresponding wild type isolate (Serrano et al., 2015).  

5.3 Maintenance of diversity 

The genotypic variation in natural baculovirus populations is maintained 

over the time, suggesting that this heterogeneity is important for survival and 
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evolution (Cory, 2010; Hodgson et al., 2003). Some mechanisms or strategies 

involved in the maintenance of this heterogeneity may include trade-offs between 

different phenotypes, differential selection, interactions between genotypes, or 

interspecific competition (Cory, 2010; Cory and Myers, 2003; Hitchman et al., 

2007; Hodgson et al., 2001, 2003). The trade-off theory proposes that pathogen 

traits with opposing effects on fitness are likely to be correlated. The most obvious 

case is the correlation between speed of kill and OB production that allow the 

coexistence of fast-killing and low yield genotypes with slow-killing and high yield 

genotypes (Hernandez-Crespo et al., 2001; Muñoz et al., 2000). Recently, 

pathogenicity and virulence (speed of kill) have been suggested to be associated 

with virus transmission pathways. The most pathogenic genotypes are likely to 

favor horizontal transmission to facilitate rapid and efficient exploitation of each 

infected insect, whereas the less pathogenic genotypes are may be more capable 

of persisting in the host and be transmitted to the progeny (Cabodevilla et al., 

2011a). 

Another source of variation is related to variant selection inherent in better 

performance of a particular genotype under certain environmental conditions 

(Cory, 2010). Hence, the passage of a wild type isolate comprising a mixture of 

variants through alternative hosts might alter the relative abundance of individual 

variants, indicated by changes in the REN profile (Kolodny-Hirsch and VanBeek, 

1997; Weitzman et al., 1992) and eventually its phenotypic characteristics 

(Hitchman et al., 2007; Espinel et al., 2010). Similarly the host plant species may 

also influence the overall biological characteristics of the viral population. When P. 

flammea larvae were fed on two host plants and inoculated with two different 

genotypes, each genotype had higher pathogenicity and virulence for each plant 

species, promoting the maintenance of distinct genotypes in different 

environments (Hodgson et al., 2002). Also abiotic factors such as the sensitivity to 

ultraviolet irradiation (UV) or temperature could result in a differential performance 

of certain genotypes (Brassel and Benz, 1979).  

Mixed infection, involving more than one genotype, might lead to three 

different scenarios: i) an antagonistic interaction in which mixed genotypes 

compete resulting in a reduction in viral fitness compared with the performance of 

single genotypes (Arends et al., 2005; Barrera et al., 2013; Muñoz and Caballero, 

2000; Muñoz et al., 1998), ii) neutral interaction when the properties of the 
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genotypes and the wild type are equal (Milks et al., 2001), and iii) synergistic 

interaction in which the traits of mixtures performed better than its individual 

components (Bernal et al., 2013, Hodgson et al., 2004; Simón et al., 2005). The 

outcome of such interactions is unpredictable and depends on the combination of 

the genotypes tested. More interesting is the case reported by Lopez-Ferber et al. 

(2003) in which a mixture of a complete genotype and a genotype defective in per 

os infectivity factors resulted in a phenotype with increased OB pathogenicity. This 

result derives from the fact that different genotypes can replicate in the same cell, 

and may even be enveloped in the same ODV so that defective genotypes need to 

replicate in the presence of complete genotypes (that provide PIF factors) to 

achieve transmission. The co-occlusion of multiple genotypes within the same 

ODV or OB has been described as one of the most important mechanisms for 

maintaining phenotype heterogeneity in NPVs (Clavijo et al., 2010). 

The possibility of selecting the most promising genotypes based on 

insecticidal properties such as OB pathogenicity, speed of kill, and OB production 

is fundamental for biopesticide development, since the production of specific 

mixtures of genotypes allows researchers to improve the biological properties of 

the active ingredient compared to those of wild type isolates. The co-occlusion of 

different genotypic variants has also resulted in improvements in insecticidal 

characteristics compared to mixtures of OBs of the individual component 

genotypes (Bernal et al., 2013). For this reason, co-occlusion technology has been 

adopted to enhance the insecticidal properties of recently patented baculovirus-

based insecticides (Arrizubieta, 2015; Beperet, 2014). 

6. Baculovirus persistence and dispersion 

Baculoviruses persist outside the host via OB formation thanks to the 

proteinaceous coat that allows viral particles to remain stable in the environment. 

Conventional wisdom is that OB persistence is the key for viral transmission 

between susceptible hosts (Fuxa, 2004). The capacity of baculoviruses to persist 

and disperse in the environment is directly related with the probability of 

successfully infecting a new susceptible host, so the better the persistence and 

dispersion of the virus the more likely to encounter a suitable host. OBs can 

persist in environmental reservoirs protected from ultraviolet light (UV) during 
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years (Fuxa, 1974) or even decades (Olofsson, 1998). Abiotic agents like 

precipitation and gravity transport the OBs from the corpses on the canopy of 

plants to the bottom of plants, crevices in bark or to the soil (Fuxa and Richter, 

2001). Therefore the soil is the main reservoir that provides protection from UV 

and allows OB populations to persist for years in crops without losing their 

insecticidal properties (Jaques, 1967). Conversely, OBs exposed to solar radiation 

on plant foliage are rapidly inactivated and may lose their insecticidal activity 

completely within hours (Young, 2001; Fuxa, 2004). Other abiotic factors such as 

high temperatures or alkaline pH on the phylloplane also inactivate NPVs (Young, 

2001). From the soil the OBs can be transported by rain splash (Fuxa and Richter, 

2001), wind (Olofsson, 1988) or tillage (Fuxa and Richter, 2001) to the plant 

surface where they can infect susceptible insects (Young and Yearian, 1986). This 

step is a key issue in understanding the initiation of new epizootics (Fuxa, 2004), 

but is not fully understood in all types of ecosystems. Thus, this cycling model 

might become unpredictable in ephemeral ecosystems, and could be strongly 

influenced by variation in host population dynamics or migratory movement. 

Alternative theories on viral persistence are also gaining acceptance to explain 

virus persistence and dispersal, involving the presence of viral particles or naked 

DNA in the host cells that somehow escape host immune system clearance (Kane 

and Golovkina, 2010). 

Baculovirus non-lethal infections can persist for a long time within their 

insect host retaining the capacity to cause lethal infections in the future (Burden et 

al., 2003; Cooper et al., 2003b; Hughes et al., 1993). An increasing number of 

studies reported that lepidopteran natural populations carried a non-pathogenic 

form of baculovirus (Burand et al., 2011; Burden et al., 2003; Cabodevilla et al., 

2011a; Kemp et al., 2011; Krokene et al., 2013; Vilaplana et al., 2010; Virto et al., 

2014). Interestingly this asymptomatic infection is transmitted to the next 

generations in many cases (Burden et al., 2003; Cabodevilla et al., 2011a; 

Vilaplana et al., 2010; Virto et al., 2014) suggesting a mode of long-persistence 

strategy in response to a changeable environment like high UV conditions, 

fluctuation of host population densities (Cooper et al., 2003b), highly mobile 

migratory species (Burand et al., 2011) or low transmission potential (Cory, 2010; 

Cory and Myers, 2003; Sorrell et al., 2009). 
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Dispersion abilities of the virus determine the chances to remain in contact 

with a changing host population in time and space. Environmental dispersion of 

baculoviruses has been categorized locally as within agricultural fields, and long-

distance between fields or even between distinct geographic areas comprising 

hundreds of kilometers (Fuxa, 2004).  

6.1 Baculovirus transmission  

The process by which a pathogen passes from an infected to healthy 

individual is called transmission (Anderson and May, 1981). Two main routes of 

transmission are described for baculovirus, vertical transmission occurring from 

the parents to their offspring, and horizontal transmission, occurring among 

individuals who are not parents and offspring (Fuxa and Tanada, 1987). In field 

populations of insects, baculovirus transmission probably consists of a 

combination of horizontal and vertical transmission. For decades it has been 

assumed that the former is the most common route (Cory and Myers, 2003), but 

recently a mixed mode of transmission where the prevalence of one or another 

route depends on each virus-host system and environmental conditions has been 

proposed (Cory, 2015).  

Horizontal transmission often occurs when an infected insect dies and 

millions of viral particles (OBs) are released into the environment increasing the 

likelihood that a new susceptible host ingests enough OBs to begin a new infection 

(Figure 10). Viral dispersion in small areas (within agricultural fields) occurs mainly 

via horizontal transmission, when susceptible hosts ingest OBs from infected 

cadavers, foliage or OB-contaminated soil (Fuxa, 2004; Krokene et al., 2013), 

feces or regurgitate of diseased larvae (Vasconcelos, 1996a), by cannibalism of 

infected insects (Vasconcelos, 2001), or after application of baculovirus-based 

insecticides (Fuxa and Ritcher, 1999). 

On the other hand, long-distance dispersion is favored by migratory species 

that move from sources of inoculum to new areas. This implies long flights of 

adults and a life stage that is invulnerable to infection. Therefore, this supposes 

that the insect has been previously infected during the egg or larval stage and the 

virus is transmitted to the offspring (Figure 10) (Burden et al., 2002; Khurand et al., 

2004). Vertical transmission involves the passage of the virus from adults to their 
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progeny by either superficial contamination of eggs or the transfer of non-lethal 

infections (Kukan, 1999).  

 

 

Figure 10. Baculovirus transmission routes, mode of infection and dispersal pathways in the 
environment. After larvae ingest OBs while feeding, either lethal or sublethal infections are 
produced (red arrows). Then, the overtly infected larvae eventually release OBs onto the 
host plant where can reach a susceptible host (blue arrow), thereby producing one or more 
infection cycles. The virus is dispersed by biotic or abiotic agents to or from the main 
reservoir, the soil (orange arrow). Alternatively a sublethally-infected adult may pass the 
virus to the offspring which eventually can disperse over long distances via migration 
(orange arrow). Vertical transmission might occur throughout generations (blue arrow) until a 
trigger factor switches the covert form to an overt infection (black arrow). 
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The efficiency of horizontal transmission depends principally on host 

behavior, the virus pathogenicity (infectivity), virulence and productivity (Cory, 

2010; Cory, 2015). It is noticeable that baculoviruses modulate host behavior to 

maximize their transmission and dispersion. Baculovirus infection induces 

hyperactivity and climbing (tree-top) behavioral changes regulated by certain viral 

genes. For instance, the ptp gene is responsible for enhanced mobility that helps 

to spreading the virus locally (Kamita et al., 2005; Katsuma et al., 2012; van Houte 

et al., 2012). This behavior was quantified for the first time in Mamestra brassicae 

in which infected larvae moved three to five times further than healthy ones 

(Vasconcelos et al., 1996a). Climbing behavior is promoted by the egt gene 

leading infected larvae to move to the top of the plant prior to death followed by 

the dissemination of millions of OBs over the foliage below (Hoover et al., 2011). 

The comparison of wild-type and a non-functional egt gene recombinant virus 

showed that this gene also interferes in the normal insect development by 

inactivating the molting process (O'Reilly and Miller, 1989), thereby prolonging the 

larval time to death and allowing pre-death climbing behavior (Van Houte et al., 

2015). Finally the role of the chitinase and cathepsin, genes that appear to act 

together, is linked with liquefaction or the “melting” of the cadaver thereby 

enhancing the release and dispersal of OBs from insect cadavers (Hodgson et al., 

2011).  

Another viral-mediated host behavior relates to cannibalism or intraspecific 

predation. Cannibalism is observed in many lepidopteran species during the late 

instars and can lead to efficient virus transmission among conspecifics (Elvira et 

al., 2010; Bernal, 2013). An NPV-infected cadaver has been associated to 

chemical emission that results in fatal attraction for conspecific larvae (Matsumoto, 

2015). Necrophagy, contact or consumption of conspecific cadavers was studied 

in S. exigua where encounters with NPV-infected larvae resulted in high rates of 

lethal infection (82-93%). Additionally, necrophagy of infected cadavers was 

observed to be favored by the climbing behavior associated with late-stage 

baculovirus infection (Rebolledo et al., 2015). 

Factors such as host plant, host nutrition or host density modulate the vigor 

of the host and consequently the ease with which the virus can infect a new host 

(Cory and Hoover, 2006). Plant-host-pathogen tritrophic interactions have been 

addressed to explain viral transmission traits. Food quality affects the host-
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parasite interaction in different ways: poor quality food can result in detrimental 

effects both on immune response and disease resistance (Shikano et al., 2010). 

Also, to compensate for low quality diets, larvae need to increase their food intake 

thereby increasing the probability of ingesting OBs in the environment (Cory, 

2010). The possibility of food deprivation, with a low nutritional content diet, is also 

linked to immune function (Siva-Jothy and Thompson, 2002; Yang et al., 2007). 

On the other hand, plant secondary chemicals can also reduce the effectiveness 

of baculoviruses. For example, some plants produce alkaline exudates on the leaf 

surface that can inactivate baculovirus, probably by the premature dissolution of 

occlusion bodies (Duffey et al., 1995). Other chemicals like phenolics or 

peroxidases have a direct impact by damaging the occlusion derived virions, virus 

receptors or by producing oxidative stress (Cory and Hoover, 2006).  

Natural populations of Lepidoptera exhibit large fluctuations of density that 

can affect the transmission of baculovirus. High densities are expected to favor 

horizontal transmission, whereas low density periods tend to reduce the rate of 

host encounters with inoculum, but field studies have revealed less clear 

relationships. For M. brassicae and Plodia interpunctella larval densities were 

found to be positively related with NPV transmission efficiency (Vasconcelos, 

1996b; Knell et al., 1998). Conversely, transmission of the gypsy moth and its NPV 

is a non-linear process across host densities (D'Amico et al., 1996), influenced by 

heterogeneity in the virus distribution (D'Amico et al., 2005). Factors that induce 

host resistance indirectly affect baculovirus transmissibility. For example, 

SpexNPV was affected by the degree of resistance to NPV infection that is higher 

in S. exempta larvae reared gregariously compared with those reared solitary 

(Reeson et al., 1998; Vilaplana et al., 2008).  

Another source of NPV dispersion in the field, and consequently of 

horizontal transmission, is the activity of a wide range of predators and parasites 

(Lee and Fuxa, 2000; Vasconcelos et al., 1996b). The success of this dispersal 

mechanism depends mainly on whether these natural enemies are attracted by 

NPV-infected larvae and the persistence of OBs inside the vector organism. The 

interaction between coleopteran predators and baculovirus-infected larvae showed 

no discrimination between healthy and diseased larvae of the cabbage moth M. 

brassicae. OB infectivity was maintained after passage through the predator gut 

which transported enough virus to cause mortality in different instars of healthy M. 
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brassicae larvae (Vasconcelos et al., 1996b). The predator Podisus maculiventris, 

scavengers Sarcophaga bullata and Acheta domesticus were able to transport 

AcMNPV OBs at significant rates in greenhouse conditions (Lee and Fuxa, 2000), 

while different arthropods, most of them belonging to the order Hemiptera, spread 

A. gemmatalis MNPV from soya crops to the adjacent fields (Fuxa and Richter, 

1994). 

Parasitoid wasps can act as vectors transmitting the virus from infected to 

healthy hosts. No consensus results were found between discrimination studies of 

NPV-infected and healthy larvae by parasitoid females among species (Brooks, 

1993; Cossentine, 2009; Escribano et al., 2000a; Kyei-Poku and Kunimi, 1997. In 

contrast, Jiang et al. (2014) and Stark et al. (1999) observed selective oviposition 

since parasitoids preferred healthy larvae over infected ones. More noticeable is 

the role of parasitoids on virus dispersion and transmission. Namely, an 

experiment carried out with the M. pallidipes parasite and the SeMNPV showed 

that parasitoid females that had developed or oviposited in virus-infected hosts, or 

that emerged from pupae contaminated with virus, were able to transmit infective 

doses of virus to healthy host larvae. Furthermore, when parasitoids completed 

their development in virus-infected hosts before the hosts died from baculovirus, 

increased mortality of the current S. exigua generation was observed as well as an 

increase in the prevalence of virus disease in the next generation (Jiang et al., 

2011).  

6.2 Baculovirus covert infections in lepidopteran populations 

One aspect of the disease dynamics produced by baculoviruses in natural 

insect populations, which is increasingly attracting attention, is the maintenance of 

the virus in the host population when opportunities for horizontal transmission are 

unfavorable (Cory and Myers, 2003). The advent of molecular techniques has lead 

to an improved understanding on the prevalence of cryptic sublethal infections 

caused by viruses (Kane and Golovkina, 2010; Sorrell et al., 2009), including 

baculoviruses. Although baculoviruses are known for their high pathogenicity and 

virulence, there is growing evidence on covert baculovirus infections, their 

persistence and transmission and their influence on the host population dynamics 

(Burand et al., 2011; Burden et al., 2003; Cabodevilla et al., 2011a; Cory, 2010; 

Kemp et al., 2011; Vilaplana et al., 2010; Virto et al., 2014). The molecular 
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mechanisms involved for the switch between latency and active virus replication, 

or the virus strategies for its maintenance in the host tissues, however, remain 

poorly understood.  

6.2.1. Terminology 

Terminology on this issue is controversial and needs to be clearly defined to 

provide improved precision in the following arguments and explanations.   

Covert infection  

OB ingestion does not always result in symptomatic fatal infections; 

sublethal doses can establish covert infections. Fatal disease leads to horizontal 

transmission events, whereas covert infection opens the opportunity to vertical 

transmission strategies. Covert infections (also known as inapparent, sublethal, or 

occult infections) are non-lethal infections involving sophisticated interactions 

between pathogen and host in which the virus avoids clearance and remains 

within the host for extended periods of time or almost indefinitely with low 

biological costs to the host. Baculovirus covert infections are not transmitted 

between individuals of the same generation although they may or may not be 

transmitted vertically from parents to offspring (Kukan, 1999). Another 

characteristic of covert infections is that the pathogen remains fully competent 

within the host and at a certain moment the infection can activate to produce overt 

and lethal disease (Burden et al., 2006; Murillo et al., 2011). 

Covert infection is a common term in the virology literature whereas the 

medical community tends to use terms such as ‘silent’ or ‘dormant’ infection 

(Sorrell et al., 2009). Covert infections are characterized by the absence of visible 

signs of disease. However, it is convenient differentiate them from inapparent 

infections that are also asymptomatic, causing no or little disease but note that are 

transmitted exclusively horizontally (Dimmorck et al., 2007). 

Sublethal infection 

The mechanism behind the establishment of covert infections is still 

unclear, but evidence indicates that insect survivors of a virus challenge in the 

larval stage are capable of transmitting the infection to their offspring (Burden et 

al., 2002). The larvae, pupae and adults of the inoculated larvae are sublethally 

infected having controlled the replication and lethal effects of the pathogen. 
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Cabodevilla et al. (2011b) studied whether host larval stage and OB concentration 

influenced the prevalence of sublethal infections in the survivors of a virus 

challenge. They determined the stage and OB concentration that have 

subsequently been used by other authors to establish sublethal infections in S. 

exigua populations (Cabodevilla et al., 2011a; Virto et al., 2013; Virto et al., 2016).  

Persistent vs latent infections 

Spontaneous baculovirus deaths in apparently healthy insect cultures 

suggest the existence of covert infections in laboratory insect colonies. Early 

studies on covert infection and vertical transmission involved viral treatment of 

larvae from one generation and the subsequent quantification of baculovirus 

mortality in the progeny (see review by Kukan, 1999). Nowadays, evidence of 

covert infection relies on molecular analyses. The used of the reverse transcription 

polymerase chain reaction (RT-PCR) or the polymerase chain reaction (PCR) is 

very sensitive and allows differentiation between latent and persistent infections. In 

the former, the viral genome is present within the host although the virus is in a 

non-replicating form and therefore viral particles are not formed, whereas the latter 

is characterized by active virus replication where a range of viral genes are 

expressed  and viral particles can be produced (Chao et al., 1998; Dimmorck et 

al., 2007). Hughes et al. (1993) amplified by PCR polyhedrin gene sequences in 

asymptomatic insects of all stages demonstrating that latent virus infection was 

present throughout the life cycle of M. brassicae in laboratory culture. 

Subsequently, in the same pathogen-host system, evidence of a persistent 

infection was found by RT-PCR as evidence for the expression of viral genes 

(Hughes et al., 1997). In order to detect and quantify minimal amounts of viral 

replication in covertly infected insects, novel and more sensitive techniques have 

been developed such as real-time quantitative PCR (qPCR), that is able to detect 

as few as 5 or 7 viral genome copies in an insect sample using a hydrolysis 

(TaqMan) probe or SYBR green based technique, respectively (Graham et al., 

2015; Virto et al., 2013). 

Persistent infections are characterized by a constant low-level production of 

virus particles within an infected cell. These infections represent a balance 

between the host and the virus, which may be maintained thorough the interaction 

of the cells and the virus alone (Dimmock et al., 2007). 
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In latent infections, the viral genome and possibly some virus encoded 

products are present, but infectious virus particles are not formed. This scenario 

involves a shut-down in viral gene transcription with only those genes involved in 

maintaining the latent state being expressed (Chao et al., 1998; Dimmock et al., 

2007). Latent infections do not represent a dead-end for the virus as, given an 

appropriate triggering stimulus, the infection can revert to a fully overt infection. 

6.2.2. Transgenerational transmission 

The passage of virus to a subsequent generation comprises both the 

transovarial and transovum pathways. Transovarial transmission implies the 

process of virus passing to progeny within the eggs, whereas the transovum route 

involves contamination of the egg surface with viral particles that infect neonate 

larvae when they ingest the chorion (Cory and Myers, 2003; Kukan, 1999). The 

procedure to distinguish between these transmission pathways consists of 

superficial decontamination by soaking egg batches in a formalin or sodium 

hypochlorite solution during 5-10 minutes. A number of studies have reported that 

egg surface decontamination reduces the number of progeny developing a lethal 

infection from 2-80% to 0.1-9% (Kukan, 1999). Subsequent studies on the NPVs 

of L. dispar (Myers et al., 2000), Bombyx mori (Khurad et al., 2004) and 

Spodoptera exempta (Vilaplana et al., 2008) support the idea that transmission 

occurs via internal contamination of eggs since similar levels of spontaneous NPV-

induced mortality were observed in the offspring from infected adults 

independently of whether the eggs had been surface decontaminated or not. In 

line with these results Virto et al. (2013) detected by qPCR a similar prevalence of 

SeMNPV covert infection in the offspring of superficial decontaminated eggs 

comparing to those from non-decontaminated eggs. Surprisingly, lethal infections 

were found in the progeny from S. exigua females that were negative for SeMNPV 

covert infection (Cabodevilla et al., 2011a), raising possible contribution of the 

male linage to vertical transmission. Both sexes have found to be involved in 

vertical transmission since the virus persists from one generation to the next when 

infected females are mated with healthy males or vice versa (Burden et al., 2002; 

Khurad et al., 2004; Vilaplana et al., 2008; Virto et al., 2013). Furthermore, Burden 

et al. (2002) detected a high prevalence of viral transcripts in testis and ovaries of 

sublethally infected P. interpunctella adults. Similarly, histological observation of B. 
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mori gonads revealed the presence of viral particles in the reproductive organs of 

both males and females (Khurad et al., 2004). Even so, females seem to play a 

relevant role in transgenerational transmission. Maternal transmission of SeMNPV 

was approximately twice as efficient as the paternal route, not only because 

females transmitted higher percentages of infection, but also because viral loads 

were higher in the offspring of infected mothers compared to infected fathers (Virto 

et al., 2013). Similarly, studies with Drosophila sigma virus revealed that 

transmission was more efficient in females than males since a low proportion of 

infected offspring and low virus titers were present in the progeny of infected 

males (Fleuriet, 1988; Longdon et al., 2011). Venereal transmission has been 

demonstrated for different insect viruses during mating including in the nudivirus of 

Oryctes rhinoceros (Zelazny, 1976), the gonad specific nudivirus HzNV-2 of 

Helicoverpa zea (Hamm et al., 1996), a parvovirus in Aedes albopictus (Barreau et 

al., 1997), a sigma virus in Drosophila spp. (Longdon and Jiggins, 2012) and 

iflavirus in honeybees (de Miranda and Fries, 2008). 

In view of these results, the organs most affected by covert infections could 

be those of the reproductive system. Studies carried out in bees detected 

deformed wing virus (DWV) sequences in testis, seminal vesicles and vesicular 

glands of drones, and in gut, spermatheca and ovaries of queens previously 

inseminated with DWV-negative sperm (de Miranda and Fries, 2008; Yue et al., 

2007). The manner by which viral DNA remains in the host tissues is unclear, 

although a few studies have focused on the location of viral genomes during 

latency. An early study revealed viral DNA in the fat body tissues of covertly 

infected M. brassicae larvae by PCR (Hughes et al., 1993). Later, high levels of 

viral transcripts were detected in ovaries (90%) and testes (70%), but also in the 

rest of the body (60-70%) from P. interpunctella adult survivors of a GV challenge 

(Burden et al., 2002). Conversely, Graham et al. (2015) determined that the 

principal body parts harboring SpexNPV covert infections were wings, head and 

legs, although low viral titers were also found in the thorax and abdomen. More 

studies using advanced techniques could lead us to a deeper understanding of 

covert infection and the organs involved in within-host persistence and vertical 

transmission.  
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6.2.3. Maintenance and activation of covert infections 

Despite the evidence of baculovirus covert infections, the molecular 

mechanisms behind viral activation are unclear yet. Viral strategies for achieving 

covert infections include the selection of cell subset for maintenance of viral 

genomes, the modulation of viral gene expression, and the avoidance of clearance 

by the immune system (Kane and Golovkina, 2010). Two main scenarios have 

been foreseen regarding the presence of viral genomes within host cells; the 

integration of the viral DNA into the genome of the host cell, as a provirus 

structure, as occurs in polydnaviruses (Strand, 2010), or the maintenance of viral 

genomes as independent episomes as in herpesviruses (Mellerick and Fraser, 

1987). Certainly covert infections depend on host survival and consequently the 

virus has to minimize its negative impact on the host to ensure persistence and 

transmission (Moore, 2002). Studies involving microRNAs have focused on a new 

aspect of this issue. The Heliothis zea nudivirus 1 (HzNV-1) produces micro-RNAs 

to suppress certain viral genes and induce a covert infection (Wu et al., 2011). 

Also Singh et al. (2010) identified four B. mori NPV-encoded microRNAs that 

appear to be implicated in the immune defense of the host. On the other hand, 

anti-apoptotic genes (IAPs) have been described as factors involved in the 

maintenance of the virus by blocking host cells that try to enter apoptosis (Feng et 

al., 2007; Hughes, 2002; Luo and Pang, 2006). The deletion of the apoptotic 

suppressor gene p35 in AcMNPV allowed the persistence of baculovirus covert 

infection in S. frugiperda cells (Lee et al., 1998). Interestingly, certain genotypes of 

SeMNPV may have adopted a survival strategy based on covert infection and 

vertical transmission. Genotypes that are frequently transmitted to the offspring 

are less pathogenic and virulent than those that are horizontally transmitted 

(Cabodevilla et al., 2011a).  

Insects have also developed different mechanisms to protect themselves 

from, or minimize the impact of, foreign pathogens. Genetic resistance to virus has 

been documented in both laboratory (Abot et al., 1996; Haas-Stapleton et al., 

2005; Hoover et al., 2000) and field populations (Eberle and Jehle, 2006).  

European Cydia pomonella field populations have developed up to 10,000-fold 

resistance by blocking CpGV replication at an early stage of infection (Asser-

Kaiser et al., 2007; Asser-Kaiser et al., 2011; Schmitt et al., 2013; Undorf-Spahn et 
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al., 2012). Other known mechanisms that the host uses in defense include the 

development of antimicrobial peptides (Cheng et al., 2006), phagocytosis 

(Narayan, 2004; Wittig, 1968), cell apoptosis (Blissard, 1996) or cell sloughing 

(Washburn et al., 2003).  A quantitative model of damage has been proposed to 

explain the occurrence of host resistance or tolerance based on a damage 

threshold (Moreno-García et al., 2014) that determines whether the host resists 

and overcomes the infection (Marques and Carthew, 2007), adopts a covert 

infection strategy (Sorrell et al., 2009) or eventually succumbs to infection and 

dies. 

Covert infections were firstly proposed to explain the spontaneous 

outbreaks of baculovirus occurring in apparently healthy insects (Cory et al., 

1997). Early studies advanced that these events in lepidopteran populations were 

not random, and lead to examine the factors that can trigger fatal infections, an 

issue that has received little attention so far. Physical factors, rearing conditions, 

chemicals or the presence of other pathogens have been associated with the 

activation of latent virus in the past (reviewed by Podgawaite and Mazzone, 1986). 

Similarly, overcrowded rearing conditions (Fuxa et al., 1999; Opoku-Debrah et al., 

2013), changes in temperature or relative humidity (Fuxa et al., 1999; Guimares et 

al., 1998), the addition of certain chemical compounds to the diet (Ilyinykh et al., 

2004), or changes in nutrient availability (David and Gardiner, 1965; David and 

Gardiner, 1966), have been examined for their role of activators to overt disease, 

although few consistent effects have been identified to date. The most consistent 

reported effect has been a challenge by a second pathogen (superinfection), 

reported as another source of stress in the past (Jurkovicova, 1979; Longworth 

and Cunningham, 1968; Smith, 1976), and more recent confirmed by cross-

inoculation using heterologous viruses that have consistently triggered fatal 

infections in several host-virus systems (Cooper et al., 2003b; Fuxa et al., 2002; 

Hughes et al., 1993; Kouassi et al., 2009). 

6.2.4. Sublethal effects of covert infections 

The fitness costs required to fight a viral infection may compromise normal 

insect growth and development (Myers et al., 2000; Rothman and Myers, 1996). In 

this sense, a number of developmental parameters of the insect have been 
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reported to adversely be affected by baculovirus sublethal infections, but not many 

studies have addressed the consequences of long-term covert infection. 

The effect of baculovirus infections in virus-challenged insects has been 

studied by comparison of developmental parameters in healthy and infected 

insects. For instance, the developmental time for larvae increased in sublethally 

infected larvae of S. exigua (Cabodevilla et al., 2011b), Trichoplusia ni (Milks et 

al., 1998) and M. brassicae (Goulson and Cory, 1995), whereas pupal 

development time was prolonged for Spodoptera litura (Monobrullah and Shankar, 

2008), T. ni (Milks et al., 1998), M. brassicae (Goulson and Cory, 1995) and L. 

dispar (Murray et al., 1991). Reductions in fecundity and fertility have been 

described as two of the most important negative effects of sublethal infections, 

since individual fitness depends on the viability of the progeny (Rothman and 

Myers, 1994). In some cases, egg production has been reduced up to 50% 

(Cabodevilla et al., 2011b), and a correlation between pupal weight and fecundity 

per infected female has been observed in several species of insects including S. 

exigua (Cabodevilla et al., 2011b; Smits et al., 1987), S. exempta (Vilaplana et al., 

2008), Lasiommata megera (Karlsson and Wiklund, 1984) and Antheraea 

polyphemu (Miller et al., 1982). The preoviposition period, was longer in S. exigua 

(Cabodevilla et al., 2011b), S. exempta (Vilaplana et al., 2008) and Pieris 

brassicae (Sood et al., 2010) infected females, so that they might travel longer 

distances than healthy conspecifics before starting to lay eggs, resulting in greater 

dispersal of covertly infected progeny. Interestingly, alterations in sex ratio in 

emerging adults of pupae treated with virus in favor of females have been reported 

for S. exigua (Cabodevilla et al., 2011b), S. littoralis (Scheepens and Wysoki, 

1989; Vargas-Osuna and Santiago-Alvarez, 1988), M. brassicae (Goulson and 

Cory, 1995) and Mythimna separata (Patil et al., 1989). 

Long term host-pathogen interactions might convey some benefits to the 

host defense against further infection (Jones et al., 2011). For example, some 

vertically transmitted bacterial symbionts (i.e. Wolbachia), can provide protection 

to their hosts against superinfection (Hedges et al., 2008; Himler et al., 2011). For 

the insect-baculovirus pathosystems the benefits of covert infection on infection by 

additional pathogens is not clear. The Helicoverpa armigera densovirus-1 appears 

to protect its host against a second infection of baculovirus or Bt biopesticide (Xu 

et al., 2014). Conversely, S. exempta larvae infected by Wolbachia resulted 6-14 
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times more susceptible to SpexNPV than their counterparts (Graham et al., 2012). 

For S. exigua-SeMNPV pathosystem, host susceptibility increased in SeMNPV-

infected larvae two-fold when the same virus was used to produce a superinfection 

(Cabodevilla et al., 2011b). Furthermore, a S. exigua colony derived from field 

collected adults that were covertly infected was 3.4-fold more susceptible than a 

laboratory virus free colony when both populations were subjected to bioassays 

using various SeMNPV genotypes (Cabodevilla et al., 2011a). A logical 

explanation is that the endogenous virus is activated when the second infection 

occurs, as described for heterologous NPV infections (Burden et al., 2003; Cooper 

et al., 2003b; Kouassi et al., 2009; Murillo et al., 2011). 

6.2.5. Environmental relevance of covert infections 

The advent of molecular techniques led to a growing number of reports of 

widespread latent or persistent baculovirus infections that involved both laboratory 

and field populations of Lepidoptera (Table 1). Despite the techniques used for 

detection or quantification, the detection threshold, the prevalence of covert 

infections and their transmission vary considerably between virus-host species. 

Notably, the prevalence of covert infection can attain values close to 100% of 

tested individuals, such as S. exigua laboratory populations (Cabodevilla et al., 

2011b), and in S. exempta (Vilaplana et al., 2010) and M. brassicae (Burden et al., 

2003) field and laboratory cultures (Table 1). Several studies have examined 

vertical transmission in highly mobile or migratory species such as those belonging 

to the genus Spodoptera (Abul-Nasr et al., 1979; Fuxa and Richter, 1991; Smits 

and Vlak, 1988; Swaine, 1966). This is consistent with the hypothesis that the 

viruses employ covert infection and vertical transmission to efficiently disperse the 

virus long-distances in migratory host species (Burand et al., 2011; Vilaplana et 

al., 2010). However mathematical models that consider covert infections as a 

parasite virulence strategy predict lower rates of covert infections than those found 

in field populations (Sorrell et al., 2009). This suggests that additional factors not 

taken into account so far, might influence the role of covert infections in host 

population dynamics. 

From a pest control perspective, sublethal effects in insect survivors after 

field application may be desirable and benefit the pest control in subsequent 

generations as covertly infected insects might be more susceptible to a second 
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virus application and lower rates of OBs applications would be necessary for 

effective pest control. 

Table 1. Summary of prevalence of insect populations that harbor a covert infection for 
different host species, origin of the population, techniques used to detect covert infection, 
and number of generations analyzed to detect vertical transmission.  

Population Technique 
Infected 

insects (%) 
Generations 

analyzed  
Reference 

Field     

S. exigua RT-PCR 16 1st Cabodevilla et al., 2011a 
 qPCR 54 1st Virto et al., 2014 
 “      “ 21.5 2nd         “        “ 

S. exempta Nested RT-PCR 60 1st Vilaplana et al., 2010 
 “      “ 50 2nd         “        “ 
 “      “ 25 7th         “        “ 
 Nested PCR 97 1st         “        “ 
  90 2nd         “        “ 
  100 7th         “        “ 

M. brassicae Nested PCR 50-100 1st Burden et al., 2003 
 “      “ 75-80 2nd         “        “ 
 “      “ 100 6th         “        “ 

Operophtera 
brumata 

PCR 19-28 1st Burand et al., 2011 

Choristoneura 
fumiferana 

PCR 70 1st Kemp et al., 2011 

Laboratory     

S. exigua RT-PCR 15 1st to 5th Cabodevilla et al., 2011b 
 qPCR 70-100 “  “        “        “ 
S. exempta Nested RT-PCR 38 Stock culture Vilaplana et al., 2010 
 Nested PCR 93 “  “         “        “ 

P. interpunctella   RT-PCR 30-70 1st Burden et al., 2002 
      PCR 30 1st        “        “ 

Choristoneura 
fumiferana 

PCR 28 Stock culture Kemp et al., 2011 

All insects were analyzed in the adult stage, except the study carried out by Burand et al. 
(2003) that analyzed larvae and pupae.  

7. Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) 

Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) was first 

isolated by Steinhaus, (1949) and some years later was described by Hunter and 

Hall (1968). Since then, numerous SeMNPV isolates have been reported from S. 

exigua larvae collected worldwide, including California (Gelernter and Federici, 

1986), Florida (Muñoz et al., 1998), Egypt and Netherlands (Vlak et al., 1981), 

Japan (Kondo et al., 1994), Thailand (Hara et al., 1995) and Spain (Caballero et 

al., 1992a; Cabodevilla et al., 2011a; Murillo et al., 2001). The characterization of 
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SeMNPV isolates by REN analysis has revealed high genotypic diversity among 

geographically different origins (Caballero et al., 1992b; Gelernter and Federici, 

1990; Muñoz et al., 1998; Muñoz et al., 1997; Murillo et al., 2001), but also among 

closely related variants cloned from a single isolate (Muñoz et al., 1998). 

Phenotypically both isolates (Muñoz et al., 1997; Murillo et al., 2006) and 

genotypic variants (Muñoz et al., 1999) differ in their biological characteristics, 

especially those related to insecticidal properties. The value of this virus as a 

biological control agent has been tested in S. exigua populations from distinct 

geographical areas under laboratory (Caballero et al., 2009; Cabodevilla et al., 

2011a) and field conditions (Kolodny-Hirsch et al., 1997; Lasa, 2007). In some 

studies local virus isolates have been found to be more effective against local 

insect populations than against geographically distant insect populations 

(Caballero et al., 1992b). Hence, prior to the development of an SeMNPV-based 

insecticide, the biological activity of native isolates should be checked in local 

insect populations. 

SeMNPV is a totally host-specific virus (Caballero et al., 1992a; Simón et 

al., 2004b) that presents an a high degree of pathogenicity and virulence against 

its natural host (Bianchi et al., 2000; Smits et al., 1987; Smits and Vlak, 1988) and 

which can be mass-produced in vivo at a reasonable cost (Lasa, 2007). For these 

reasons it has been developed as the basis of a biological control agent in 

different countries of the world including United States, Netherlands, several 

southern Asian countries and Spain (Bianchi et al., 2002; Cunningham, 1998; 

Kolodny-Hirsch et al., 1997; Lasa et al., 2007b; Smits and Vlak, 1994). Currently 

three bioinsecticides based on different strains are commercialized under the 

trade-names of Spod-X® (Certis Corp., Columbia, USA), Spexit® (Andermatt 

Biocontrol, Grossdietwil, Switzerland) and Virex® (Biocolor, Almeria, Spain). A 

SeMNPV isolate from Florida (SeMNPV-US2) constitutes the active ingredient of 

Spod-X® which is registered in United States, Netherlands and Thailand. This 

isolate comprises at least seven different genotypes, of which two have defective 

genomes which act as parasitic genomes decreasing the pathogenicity of the 

isolate (Muñoz et al., 1998). The active ingredient of Spexit® is a SeMNPV isolate 

collected in California (Gelernter and Federici, 1986), the genotypic composition of 

which was studied in depth by Heldens et al. (1996). Finally, Virex® is based on a 

mixture of three SeMNPV genotypes that were selected from a large number of 
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SeMNPV isolates collected from greenhouses of Almeria, Spain (Murillo et al., 

2006). These isolates differed in their genotypic composition and phenotypic 

characteristics, but interestingly a specific mixture of certain genotypes resulted in 

improved pathogenicity and virulence in a local population from Almería (Murillo et 

al., 2006). This mixture has been used as the active ingredient in the Virex® 

biopesticide (Caballero et al., 2009). The development of a mass-production 

system (Lasa et al., 2007a) and formulation procedures (Lasa et al., 2007c) lead 

to the registration of this bioinsecticide in Spain. Field studies in Almería 

demonstrated that Virex® applications to greenhouse sweet pepper crops 

provided efficient control of the pest at levels that exceeded those of chemical 

insecticide treatments (Lasa et al., 2007b; Lasa et al., 2007c). Consequently, it 

has been successfully implemented in biological control pest programs in 

horticultural crops in Almería (Caballero et al., 2009). 

Subsequent studies have examined the incidence of SeMNPV in natural S. 

exigua populations from that area. A total of 16% of the insects collected in 2006 

and 2007 from Almería greenhouses harbored a persistent infection and 20% of 

the offspring succumbed to lethal NPV disease. REN analysis of these insects 

revealed two new SeMNPV genotypes that later were classified as vertically 

transmitted genotypes (Cabodevilla et al., 2011a). Further insect captures in 2011 

lead to monitoring SeMNPV covert infections in this region, revealing that NPV 

covert infections were detectable in 54% of the population (Virto et al., 2014). This 

time, analysis was performed by qPCR, a more sensitive technique that detects 

viral DNA at low copy numbers. The widespread use of SeMNPV-based 

insecticides in greenhouses of Almería probably had an influence on the high 

percentages of SeMNPV infected insects obtained in 2011. 

 A comparative study thoroughly characterized SeMNPV genotypes 

obtained either from the offspring of field-collected adults or from soil samples of 

Almerian greenhouses, including insecticidal properties and their ability to produce 

covert infections. The most pathogenic and virulent genotypes (characteristics 

related to horizontal transmission) showed a low capacity to produce covert 

infections and were considered to be horizontally transmitted genotypes. In 

contrast, the less virulent and pathogenic genotypes were transmitted to the 

offspring at a high frequency, and therefore were considered vertically transmitted 

genotypes (Cabodevilla et al., 2011a). The analysis and comparison of the 
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complete nucleotide sequence of vertically and horizontally transmitted genotypes 

identified differences in the Se4 and Se5 genes that could explain their biological 

traits (Serrano et al., 2015; Theze et al., 2014). 

8. Other viruses that infect S. exigua populations 

Recent transcriptomic analysis of an S. exigua population revealed the 

presence of sequences belonging to RNA viruses, especially picorna-like viruses 

(Pascual et al., 2012). The order Picornavirales is divided in five families, 

Dicistroviridae, Iflaviridae, Marnaviridae, Picornaviridae and Sequiviridae, and two 

genera unassigned to any family: Bacillarnavirus and Labyrnavirus (Le Gall et al., 

2008). Iflaviruses have been described infecting exclusively insects from the 

orders Lepidoptera, Hymenoptera and Hemiptera, and in bee parasitic mites (class 

Arachnida, order Acarina) (van Oers, 2010). Iflaviruses form non-enveloped 

icosahedral particles of approximately 30 nm in diameter, which contain a single-

stranded RNA genome of positive polarity with length of 8.6 – 10.3 kb (van Oers, 

2010). Initially, they were discovered causing fatal infections and important 

economic losses in insects belonging to the apiculture sector (Apis mellifera) 

(Ribière et al., 2010) and silk production (B. mori) (Aizawa et al., 1964). The 

pathology of these viruses varies widely, for instance sacbrood virus (SBV) 

produces a failure to pupate in A. mellifera larvae (Bailey and Ball, 1991; 

Gochnauer, 1990), whereas deformed wing virus (DWV) causes wing deformities, 

shortened abdomens and miscoloring of adult bees (Bailey and Ball, 1991). 

Infectious flacherie virus (IFV) causes diarrhea in the silkworm B. mori (Aizawa et 

al., 1964), but many iflaviruses can also remain in the host without showing clear 

symptoms of disease (Yue et al., 2007). Improvements in sequencing technologies 

and the use of very sensitive detection techniques have allowed the identification 

of a large number of RNA viruses that persist within the insect host in the absence 

of visible symptoms of infection. 

The study of the S. exigua transcriptome resulted in the identification of two 

novel iflaviruses (S. exigua iflavirus-1: SeIV-1 and S. exigua iflavirus-2: SeIV-2) 

that were covertly infecting a laboratory population of S. exigua (Choi et al., 2012; 

Millan-Leiva et al., 2012; Pascual et al., 2012). Jakubowska et al. (2014) confirmed 

that four laboratory S. exigua populations from geographically distinct origins 
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harbored abundant iflavirus infections. Also, in field insects captured in Almería, 

covert infections of two iflaviruses were detected causing both single and mixed 

infections comprising either two SeIV species, or alternatively SeMNPV and an 

iflavirus (Virto et al., 2014). Apparently, these infections do not have marked 

biological costs to the host and are not fatal to lepidopteran species (Vail et al., 

1983a). Interestingly, IFV has been isolated from dead insects that succumbed to 

granulovirus (Wang et al., 2004) or nucleopolyhedrovirus infections (Wang et al., 

1999). Recent transmission electron microscopy (TEM) images and RT-qPCR 

analysis of SeMNPV OBs preparations showed evidence of a physical association 

between SeMNPV and SeIV (Jakubowska et al., 2016). Icosahedral particles with 

a similar size to the iflaviruses, embedded in the polyhedrin matrix of OBs, suggest 

that the SeIV could be occluded within the SeMNPV OBs (Figure 11) (Jakubowska 

et al., 2016). Previous studies had found signs of iflavirus-like particles persistence 

in AcMNPV OBs population (Vail et al., 1983a; Vail et al., 1983b). 

 

 

Figure 11. TEM images of purified OBs from SeMNPV. Black arrows indicate ODVs of 
SeMNPV and white arrows SeIV-like particles. A red square of 25 nm per side is shown in 
each figure for size comparison (Jakubowska et al., 2016). 

Iflavirus infections can be transmitted both vertically and horizontally. DWV 

and SBV are examples in which horizontal transmission vectored by the mite 

Varroa destructor is the most virulent mode of transmission causing high bee 

mortalities (Nordström et al., 1999). However horizontal transmission through, for 

example, contaminated food, feces or regurgitate (Shen et al., 2005) and vertical 

transmission from queens to both worker and drone offspring have also been 

detected (Yue et al., 2006). High horizontal transmissibility in SeIV was suspected 
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following the observation that a virus-free colony was contaminated in just one 

generation by another population carrying SeIV that had been reared 

independently in the same growth chamber (Jakubowska et al., 2014; Millan-Leiva 

et al., 2012), even when insects were individually reared from very early instars 

(Virto et al., 2014). Vertical transmission was demonstrated from S. exigua field 

caught adults to their offspring, when individuals were carefully reared in a virus-

free environment, and the SeIV load was found to be higher in the progeny than in 

the parents (Virto et al., 2014). SeIV was also detected in individuals from eggs 

that had been previously surface-decontaminated, suggesting transovarial 

transmission (Jakubowska et al., 2014). Finally, we have to take into account that 

insects can also be infected by SeMNPV OBs that contain embedded iflavirus 

particles (Jakubowska et al., 2016). 

Mixed infections between iflaviruses and other groups of virus appear to be 

frequent in insect populations. Flacherie disease in the silkworm is often produced 

by mixed infections of IFV and densovirus (Tanada and Kaya, 1993). Bee 

infections by DWV with Varroa destructor virus-1 (Ongus et al., 2004) or 

dicistroviruses (Chen et al., 2004) have also been reported. In fact 93% of the 

queens studied by Chen et al. (2005) carried multiple infections. Due to the fact 

that multiple infections are frequent, sometimes it is difficult to attribute the 

pathology of diseased insects to a specific virus. In early studies, a treatment of 

AcMNPV containing iflavirus-like particles in T. ni larvae resulted in reduced larval 

weight (Vail et al., 1983a; Vail et al., 1983b). The pathogenicity of SeMNPV was 

reduced when OBs were contaminated with SeIV (Jakubowska et al., 2016). 

Currently some studies are being carrying out in S. exigua to examine in depth the 

fitness cost of harboring SeIV covert infections, and the implications of the SeIV on 

the insecticidal properties of SeMNPV OBs. 

9. Aims of the thesis 

The aim of this thesis was to investigate the role of covert infection and its 

vertical transmission in the S. exigua host-NPV pathosystem, as the basis for new 

application strategies for pest control using SeMNPV, which might include 

inoculative field application. 
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In chapter II, the incidence of covert infections of SeMNPV and two iflavirus 

(Iflaviridae) species (SeIV-1, SeIV-2) was quantified in a natural S. exigua 

population from a horticultural greenhouse agroecosystem in Almería. Vertical 

transmission from collected adults to their offspring was demonstrated for the 

three viruses although the prevalence of infection in the offspring differed between 

them. Co-infections involving both virus families were also analyzed and whether 

iflaviruses can affect the efficiency of baculovirus-based insecticides was 

discussed. 

To assess the importance of parental gender in baculovirus 

transgenerational transmission, four S. exigua mating groups (healthy males x 

healthy females, infected males x healthy females, healthy males x infected 

females, and infected males x infected females) were performed in chapter III. 

Viral load was quantified in parents and offspring of each mating group, confirming 

that females were twice as efficient as males in transmitting SeMNPV covert 

infection to the progeny. Also, a positive relationship was found between the 

proportion of infected insects and the viral DNA load. The study demonstrates that 

the main route of transmission is probably transovarial rather than transovum. 

Evidence for venereal transmission was not detected. 

Chapter IV is focused on the evaluation of OB mixtures of vertically (VT) 

and horizontally transmitted (HT) genotypes, to select those which retain both the 

best insecticidal properties and the ability to produce a high prevalence of covert 

infections for transgenerational host suppression. Three mixtures comprising 

different proportions of VT and HT genotypes (75:25, 50:50 and 25:75 

respectively) were evaluated for their insecticidal properties and their ability to 

produce covert infections in survivors of a virus challenge. Finally, the mixture with 

the best performance for insecticidal properties and capable of producing a high 

prevalence of covert infections, was tested as a crop protection agent in 

greenhouse assays. The mixture comprising 75% of the VT genotype was as 

effective as a chemical insecticide for pest control in greenhouse trials.  

In chapter V the use of different biological and chemical stressors was 

investigated to determine whether SeMNPV covert infection could be triggered into 

fatal overt disease. The value of this strategy to initiate an epizootic was assessed 

in greenhouse conditions using compounds that previously had activated covert 
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infections in laboratory tests. Metal salts such as copper sulfate, iron sulfate and 

sodium selenite induced NPV mortality in persistently infected larvae in the 

laboratory, but not under greenhouse conditions. 
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CHAPTER II 
 
 

Natural populations of Spodoptera exigua are 

infected by multiple viruses that are transmitted 

to their offspring 

Abstract 

Sublethal infections by baculoviruses (Baculoviridae) are believed to be common in 

Lepidoptera, including Spodoptera exigua. In addition, novel RNA viruses of the family 

Iflaviridae have been recently identified in a laboratory population of S. exigua (S. exigua 

iflavirus-1: SeIV-1; S. exigua iflavirus-2: SeIV-2) that showed no overt signs of disease. We 

determined the prevalence of these viruses in wild populations and the prevalence of co-

infection by the different viruses in shared hosts. Infection by S. exigua multiple 

nucleopolyhedrovirus (SeMNPV) and iflaviruses in S. exigua adults (N = 130) from 

horticultural greenhouses in southern Spain was determined using qPCR and RT-PCR 

based techniques respectively. The offspring of these insects (N = 200) was reared under 

laboratory conditions and analyzed to determine virus transmission. Overall, 54% of field-

caught adults were infected by SeMNPV, 13.1% were infected by SeIV-1 and 7.7% were 

infected by SeIV-2. Multiple infections were also detected, with 8.4% of individuals harboring 

SeMNPV and one of the iflaviruses, whereas 2.3% of adults were infected by all three 

viruses. All the viruses were transmitted to offspring independently of whether the parental 

female harboured covert infections or not. Analysis of laboratory-reared insects in the adult 

stage revealed that SeIV-1 was significantly more prevalent than SeMNPV or SeIV-2, 

suggesting high transmissibility of SeIV-1. Mixed infection involving three viruses was 

identified in 6.5% of laboratory-reared offspring. We conclude that interspecific interactions 

between these viruses in co-infected individuals are to be likely frequent, both in the field, 

following applications of SeMNPV-based insecticides, or in laboratory colonies used for 

SeMNPV mass production. 

 

 

This chapter has been published in Journal of Invertebrate Pathology as: Virto, C., Navarro, D., Tellez, 

M. M., Herrero, S., Williams, T., Murillo, R., Caballero, P., 2014. Natural populations of Spodoptera 

exigua are infected by multiple viruses that are transmitted to their offspring. Journal of Invertebrate 

Pathology 122, 22-27. 
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1. Introduction 

The beet armyworm Spodoptera exigua is a pest that causes important 

losses in horticultural crops worldwide. Populations of S. exigua are infected, both 

in natural and in controlled laboratory conditions, by entomopathogenic DNA and 

RNA viruses (Caballero et al., 1992; Choi et al., 2012; Millán-Leiva et al., 2012). In 

a recent transcriptome analysis of a laboratory population of S. exigua, the 

simultaneous presence of transcripts from putative DNA (S. exigua multiple 

nucleopolyhedrovirus, SeMNPV) and RNA viruses (mainly iflavirus but also 

cypovirus and noravirus) were identified (Pascual et al., 2012). SeMNPV (genus 

Alphabaculovirus, family Baculoviridae) is a highly specific pathogen of S. exigua 

with notable insecticidal properties against this pest (Kolodny-Hirsch et al., 1997; 

Lasa et al., 2007; Smits and Vlak, 1994). This virus constitutes the active 

ingredient of a number of bioinsecticides, including: SPOD-X
®
 (Certis, USA), 

SPEXIT
®
 (Andermatt Biocontrol, Switzerland) and VIR-EX

®
 (Biocolor, Spain). In 

Europe, SeMNPV-based insecticides are being incorporated into pest 

management programs including those in Europe’s largest area of horticultural 

production, in Almeria, southern Spain (Lasa et al., 2007). 

The intra- and inter-generational transmission of nucleopolyhedroviruses 

(NPVs) among individuals in a population of insects is a key factor in 

understanding the ecology of the virus, and for the efficient use of these 

pathogens as pest control agents. The highly persistent virus occlusion bodies 

(OBs) are responsible for horizontal transmission to healthy susceptible larvae that 

consume OB-contaminated plant material. However, when host population 

densities are low and conditions for horizontal transmission are unfavourable, 

vertical transmission, from parents to offspring, plays an important role in the 

survival of the virus (Cory and Myers, 2003). Vertically-transmitted infections also 

permit virus dispersal and the colonization of new areas of habitat through the 

migration of infected adult hosts (Vilaplana et al., 2010; Burand et al., 2011). For 

vertical transmission to occur the virus must persist in the adult host as a covert or 

sublethal infection which does not prevent adult reproduction. Sublethal 

baculovirus infections have been reported in a number of lepidopteran species 

(Burden et al., 2002; Burden et al., 2003; Cabodevilla et al., 2011a; Vilaplana et 

al., 2010). Vertical transmission has been reported in the S. exigua-SeMNPV 
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pathosystem (Bianchi et al., 2001; Smits and Vlak, 1988), but only recently PCR-

based quantification has been employed to estimate the importance of this 

transmission route in host populations (Cabodevilla et al., 2011b; Murillo et al., 

2011). Moreover, a recent study on S. exigua demonstrated transovarial 

transmission of SeMNPV, and the role of the parental female in the persistence of 

the virus population from one generation to the next (Virto et al., 2013). 

The iflaviruses are positive-stranded RNA viruses responsible for both lethal 

and asymptomatic infections in insects. Some iflaviruses are well known 

economically-important pathogens of silkworms (Infectious flacherie virus, IFV) 

and honeybees (Sacbrood virus, SBV, and Deformed wing virus, DWV) (van Oers, 

2010). Inapparent infections are frequent and these viruses are capable of vertical 

transmission (Yue et al., 2007). Recently novel iflaviruses have been identified 

from the transcriptome analysis of S. exigua laboratory cultures (Choi et al., 2012; 

Millán-Leiva et al., 2012; Pascual et al., 2012). Although relatively little is known 

about iflavirus pathology, these viruses have been isolated from insect corpses 

that sucumbed to baculovirus infection (Wang et al., 1999; Wang et al., 2004), and 

have also been reported in association with nucleopolyhedroviruses in studies that 

predate the development of molecular techniques (Vail et al., 1983a). Apparently, 

these viruses did not cause lethal infection, but resulted in reduced larval weight 

gain (Vail et al., 1983a; Vail et al., 1983b).  

Evidence of an association between SeMNPV and SeIV has been detected 

in OBs produced in our laboratory insect colonies, where in both virus apparently 

were co-ocluded (S. Herrero, A. Jakubowska, P. Caballero, R. Murillo, A. Carballo 

unpublished data). Further analysis revealed that this association increased SeVI 

infectivity and resistance to UV radiation and elevated temperature; two of the 

main factors affecting virus persistence outside the host. However, such an 

association was not detected between SeMNPV and other RNA viruses 

(cypovirus, noravirus, etc.). For this reason, we examined whether iflavirus 

infections occur in natural S. exigua populations that are subjected to control 

measures that include the use of SeMNPV-based insecticides. The aim of this 

study was to evaluate the prevalence of baculovirus and iflavirus inapparent 

infections in a field population of S. exigua present in the horticultural greenhouse 

agroecosystem of Almeria, and to determine their ability for vertical transmission. 
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2. Material and methods 

2.1 Field collection of S. exigua insects 

S. exigua adults were sampled in the horticultural area of Almería (southern 

Spain) during the 2011 sweet pepper growing season (September - October). 

Moths were collected from three experimental greenhouses, 100 m
2
 in area, 

planted with sweet pepper that was naturally infested by S. exigua. Samples were 

taken at intervals of 2-7 days over three consecutive weeks in October, during the 

peak of the pest infestation. Two different methods were used to capture moths 

inside greenhouses around sunset. The first method involved collecting adults that 

landed on a white sheet placed vertically behind a UV light source. These adults 

were confined individually in 25 ml plastic cups containing a piece of filter paper for 

oviposition in the case of females. The second method involved a funnel placed 

under a UV lamp and connected to a collecting box at the bottom. In this case the 

adults fell into the funnel and the collecting box after being attracted to the UV 

light. Adults remained together inside the collecting box overnight and were 

separated the next morning as described above. All gravid females were allowed 

to lay eggs for two days and then all adults of both sexes were individually frozen 

at -80ºC until required for PCR analyses. Eggs were not surface decontaminated 

because a previous study determined that surface decontamination did not 

influence the prevalence of transmission of infection to progeny insects (Virto et 

al., 2013). From the eggs of each female, a group of 24 neonate larvae (1-24 

hours post-hatching) was collected and reared individually on semi-artificial diet 

(Elvira et al., 2010) through to the adult stage (F1), under standard laboratory 

conditions (25 ± 2ºC, 50 ± 10% RH, in a continuously dark room). F1 adults were 

frozen at -80ºC for subsequent analysis. 

2.2 Total DNA and RNA extraction 

For detection of viral covert infections, total DNA and RNA were purified 

from both field-caught and F1 adults after being sexed by observation of the 

external genitalia. Master Pure Complete DNA and RNA Purification kit (Epicentre 

Biotechnologies) protocols were used for total DNA and RNA extraction. The 

abdomens of frozen adults were dissected and placed individually in a 2 ml 

microfuge tube with ceramic beads, 300 µl tissue lysis solution and 1 µl proteinase 
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K (50 ng/µl). Samples were homogenized using MP FastPrep-24 tissue cell 

homogenizer at 4 m/s for 20 s and incubated at 65ºC for 15 min at constant 1100 

rpm orbital agitation. Samples were divided in two 150 µl aliquots. One aliquot was 

used for DNA extraction and treated with 1 µl RNAse at 37ºC for 30 min. Debris 

was pelleted by adding protein precipitation reagent. The supernatant was washed 

with isopropanol, twice with 70% ethanol, and the pellet was resuspended in 30 µl 

milli-Q water and stored at -20ºC. For RNA extraction, a protein precipitation 

reagent was added to the 150 µl aliquot, centrifuged at maximum speed for 13 min 

and the supernatant washed with isopropanol to precipitate the nucleic acids. 

Pellets were treated with RNAse-free DNAse buffer and 5 µl of DNAse for 30 min 

at 37ºC. A volume of 200 µl of 2 × T and C lysis solution was added and vortexed 

for 5 s followed by 200 µl of protein precipitation reagent and vortex for 10 s. The 

debris was pelleted by centrifugation and the supernatant was washed once with 

isopropanol and twice with 70% ethanol. Finally, RNA was resuspended in 30 µl 

DEPC (di-ethylpyrocarbonate) water and stored at -20ºC. Blank extraction 

samples containing only water were processed in parallel to detect 

cross-contamination during the extraction process. All equipment and reagents 

were previously sterilized and treated with DEPC to remove RNases. 

2.3 Detection of SeIV and SeMNPV by RT-PCR and qPCR 

The presence of two single-stranded RNA viruses belonging to the 

Iflaviridae family, named SeIV-1 and SeIV-2, was determined by multiplex RT-

PCR. Specific primers were designed to amplify a 457-bp and 297-bp in the RNA-

dependent RNA polymerase (RdRp) region (SeIV1-Fw: 5’-

CATTCAAGACGGTTACACCATTC-3’; SeIV1-Rv: 5’-

GACTTTGAATACACGGGACGG-3’; SeIV2-Fw: 5’-

GAGTCCATCGTTCATCTTGGC-3’; SeIV2-Rv: 5’-

TAGGAGAGCCACAGAGGACTTG-3’) designed using the genomic sequences of 

SeIV-1 (Millán-Leiva et al., 2012) and SeIV-2 (Choi et al., 2012), respectively. 

Before reverse transcription, an 8 µl volume of RNA solution was treated with 1 µl 

DNAse and 1 µl DNase buffer (Promega) at 37ºC for 30 min to remove DNA 

contamination. Following this, 1 µl DNase stop (Promega) was added and 

incubated at 65ºC for 10 min. Finally, a 4 µl volume of the resulting RNA solution 

was incubated at 70ºC for 5 min with 1 µl dT primer. The reverse transcription mix 
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consisted of 2 µl 5× buffer (Promega), 1.2 µl MgCl2 (25 mM), 0.5 µl dNTP mix (10 

mM), 0.8 µl DEPC water and 1 µl ImProm-II reverse transcriptase (Promega). The 

mix was added to RNA samples and incubated at 25ºC for 5 min, followed by 42ºC 

for 60 min and 70ºC for 15 min. For PCR amplification, 1 µl cDNA was used as 

template and mixed with 2.5 µl NH4 (10×), 1.25 µl MgCl2 (50 mM), 0.25 µl dNTPs 

mix (10 mM), 0.5 µl of both SeIV1-Fw and SeIV1-Rv primers (10 µM), 0.3 µl of 

both SeIV2-Fw and SeIV2-Rv primers (10µM), 18.15 µl sterile milliQ water and 

0.25 µl Taq DNA polymerase (Bioline). The PCR protocol consisted of an initial 

denaturation cycle at 95ºC for 1 min, 35 cycles of 95ºC for 30 sec, 60ºC for 30 sec 

and 72ºC for 2 min, and an extension cycle of 72ºC for 5 min. PCR products were 

visualized by electrophoresis in 1% agarose gels containing ethidium bromide. A 

Bioline Hyper-Ladder IV size marker was used for size determination. cDNA 

fragments were visualized in a UV transilluminator, Chemi Doc (Syngene). Primer 

specificity and the identity of amplified fragments were validated previously in 

samples of virus-free insects and virus-infected insects. The sensitivity of the 

reaction was estimated using 10-fold serial dilutions of a mixture of SeIV-1 and 

SeIV-2 cDNA containing from 1.66 pg/µl to 1.66 × 10
-5

 pg/µl and from 1.50 × 10
-2 

pg/µl to 1.50 × 10
-7

 pg/µl of SeIV-1 and SeIV-2, respectively. This mixture 

originated from viral transcription of iflavirus infected larvae, kindly provided by A. 

Jakubowska (unpublished results). The limit of detection was defined as the lowest 

concentration producing a clear electrophoresis band, corresponding to 1.66 × 10
-4

 

pg/µl and 1.50 × 10
-4

 pg/µl, which equated to 18 and 29 genome copies per 

reaction for SeIV-1 and SeIV-2 respectively, according to the reported genome 

sizes (Choi et al., 2012; Millán-Leiva et al., 2012). cDNA of each iflavirus was used 

as positive control in all multiplex reactions to ensure correct identification of the 

amplified fragments. 

To detect SeMNPV infections we used a qPCR-based method described by 

Cabodevilla et al. (2011b) and slightly modified by Virto et al. (2013). Briefly, 

specific primers (DNApol149-Fw: 5’-CCGCTCGCCAACTACATTAC-3’; 

DNApol149-Rv: 5’-GAATCCGTGTCGCCGTATATC-3’) were designed to amplify a 

149-bp region within the DNA polymerase gene based on the full genome 

sequence of SeMNPV-Al1 (Thézé et al., 2014). qPCR based on SYBR Green 

fluorescence was carried out in an ABI PRISM 7900HT Sequence Detection 

System (Applied Biosystems) in 96-well reaction plates. A Mastermix containing 
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10 µl SYBR Premix Ex Taq (2×), 0.4 µl ROX Reference Dye (50×) and 0.4 µl of 

both DNApol149Fw and DNApol149Rv primers (10 µM) was added to a 1 µl 

template DNA. A blank extraction and four non-template reactions were included 

in each run. For the standard curve, CsCl-purified SeMNPV-Al1 DNA was 

quantified using a spectrophotometer (Eppendorf BioPhotometer plus). Ten-fold 

serial dilutions in sterile MilliQ water (from 100 to 1 × 10
-3 

pg/µl) were used to 

construct the standard curve in duplicate. The amplification reaction consisted of 

denaturation at 95ºC for 30 s, followed by 45 amplification cycles at 95ºC for 5 s 

and 60ºC for 30 s. Finally, a melting curve analysis, involved a dissociation stage 

of 95 ºC for 15 s, 60ºC for 15 s and 95ºC for 15 s was added to confirm a single 

peak of the target product. The regression parameters of the standard curve were 

R
2 

= 0.997 and slope = -3.570 (approximately 91% efficiency) (Bustin et al., 2009). 

The limit of detection was defined as the last standard concentration showing 

correct amplification curves and the expected melting temperature (83.5ºC) point 

for the specific amplification product. This limit was determined at 10
-3

 pg/µl, 

representing 6.8 SeMNPV genomes per reaction. By extrapolation against the 

standard curve, this corresponded to a critical Cq (quantification cycle) value of 

33.3 cycles. Data acquisition and analyses were performed using Sequence 

Detector Version 2.2.2 software (Applied Biosystems). 

The frequencies of the different viruses in field-caught adults were 

compared for sampling method and adult gender using Pearson’s χ
2
 test in the 

SPSS Statistics package (v.19 IBM). The prevalence of infection in the progeny of 

covertly infected and non-infected parental females was examined by fitting 

generalized linear models (GLM) using the GLIM 4 program (Numerical Algorithms 

Group 1993) with a binomial error specified. For this, the progeny of each female 

was considered as a distinct group. Changes in model deviance following 

sequential steps of model simplification approximate to a χ
2
 distribution. Means 

separation was achieved by t-test (Crawley, 1993). The prevalence of infections 

among the sexes in progeny insects was compared by χ
 2
 test. 
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3. Results 

3.1 Prevalence of SeMNPV and SeIV covert infections in field-caught 

adults 

To evaluate the presence of SeMNPV and SeIV infections in S. exigua field-

caught adults, abdomens of 130 moths were analyzed by qPCR and RT-PCR. A 

total of 70 (53.8%) insects were positive for the DNA polymerase SeMNPV gene, 

whereas the prevalence of iflaviruses was significantly lower (χ
 2

 = 38.75, df = 1, P 

< 0.05), with 17 (13.1%) and 10 (7.7%) adults infected by SeIV-1 and SeIV-2, 

respectively (Figure 1). Co-infections involving both virus families were also 

detected, with 11 individuals (8.4%) harboring both SeMNPV and one of the 

iflaviruses, and three adults carrying the three viruses (Table 1). Similar 

proportions of males and females were infected by SeMNPV (χ
 2

 = 0.331, df = 1, P 

= 0.56) or the iflaviruses (χ
 2
 = 0.625, df = 1, P = 0.20) (Figure 1). 

 

 

Figure 1. Percentage of SeMNPV, SeIV-1 or SeIV-2 covert infection in field caught-adults 
according to gender and sampling method. Numbers in the columns indicate the percentage 
of individuals that tested positive for each virus. Numbers above the columns indicate the 
number of individuals tested. 

Sample methods were compared to assess whether the virus could be 

transmitted during overnight contact of adults in funnel traps. Similar frequencies 

of SeMNPV infections were detected in moths caught in funnel traps or individually 

attracted to the white sheet (χ
 2

 = 0.663, df = 1, P = 0.20). SeIV-2 was the only 
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RNA virus detected in trap-collected insects (Figure 1).  The proportion of SeIV1-

infected insects was significantly greater when moths were captured individually 

compared to those caught and held overnight in funnel traps (χ
 2

 = 22.82, df = 1, P 

< 0.05). 

Table 1. Number of adults infected by multiple viruses in both field adults and F1 generation. 
A total of 330 individuals were tested by qPCR and RT-PCR to detect a SeMNPV, SeIV-1 or 
SeIV-2 infection, respectively. Numbers in brackets indicate the number of individuals 
analyzed. 

 

3.2 Transgenerational transmission 

Virus transmission to offspring was investigated by detection of SeMNPV 

and SeIVs in offspring (F1) adults. Ten field-caught females, either infected or non-

infected by SeMNPV and proved to be RT-PCR negative for SeIV-1 or SeIV-2, 

were selected at random from those that had produced offspring. Groups of ten 

offspring that reached the adult stage were analyzed for each of the 10 maternal 

females. All descendents included in the analysis were reared individually from 

neonate larvae through to adulthood. Although we could not rule out the possibility 

of horizontal transmission in neonate insects, we did not observe overt infection by 

either virus (SeMNPV or SeIV) in any of the offspring included in this study. 

The three viruses were detected in the laboratory-reared offspring (F1). 

Overall, SeMNPV was detected in 21.5% of F1 adults, whereas the overall 

prevalence of the iflaviruses (58%) was markedly higher in offspring (F1) compared 

to that of field-caught adults (GLM: χ
 2
 = 3.94, df = 1, P < 0.05).  

Among the progeny of field-caught insects, the overall prevalence of 

infection did not differ according to the infection of the parental female (GLM: χ
 2

 = 

0.009, df = 1, P > 0.05), although the prevalence of SeIV-2 infection was 

significantly lower than that of SeMNPV in the progeny of females that were not 

infected by SeMNPV (Figure 2). The prevalence of SeIV-1 infection in progeny 

insects (39%) was consistently higher than that of SeMNPV or SeIV-2 (GLM: χ
 2

 = 

Mixed infection Field adults (130) F1 generation (200) 

SeMNPV+ SeIV-1 + SeIV-2 3 13

SeMNPV+ SeIV-1 8 8

SeMNPV+ SeIV-2 3 1

SeIV-1 + SeIV-2 2 17
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23.68, df = 2, P < 0.05) (Figure 2). The prevalence of SeMNPV (χ
 2

 = 0.57, df = 1, 

P = 0.45) or SeIV (χ
 2

 = 0.14, df = 1, P = 0.71) infections did not differ significantly 

in male and female F1 adults. 

 

 

Figure 2. Mean percentage of F1 adults positive for SeMNPV, SeIV-1 or SeIV-2 among the 
offspring of field collected females that were classified as infected (SeMNPV positive) or 
non-infected (SeMNPV negative) and that were negative for iflavirus infection. Columns 
labeled with identical letters did not differ significantly for comparisons of the prevalence of 
each type of virus within each maternal infection status (GLM, t-test, P > 0.05). 

Mixed infections involving both virus families were detected in the F1 

individuals. All three viruses were detected in 13 out of 200 individuals tested 

(6.5%), whereas nine (4.5%) harboured two viruses (SeMNPV plus one of the 

SeIV variants). Both SeIV variants were detected in the same host in 17 out of 200 

individuals (8.5%) (Table 1). 

4. Discussion 

Infections by single or multiple baculoviruses and iflaviruses, were detected 

both in S. exigua field-collected adults and in laboratory-reared offspring. The 

findings of the present study reveal that both types of virus naturally co-infect field 

populations of S. exigua. Moreover, laboratory rearing favoured this association, 

particularly with respect to the elevated transmission of the SeIV-1 variant. The 

natural association of the two viruses could have major implications for the mass 

production of SeMNPV-based insecticides and possibly for the efficacy of these 

products in pest control. 
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Covert infections by baculoviruses have been detected in field-caught 

adults of Lepidoptera, such as S. exigua (Cabodevilla et al., 2011a), Spodoptera 

exempta (Vilaplana et al., 2010), Mamestra brassicae (Burden et al., 2003), 

Choristoneura fumiferana (Kemp et al., 2011) Operopthera brumata (Burand et al., 

2011) and in phytophagous larvae of the hymenopteran sawfly Neodiprion sertifer 

(Krokene et al., 2013). Similarly, iflaviruses produce sublethal infections in the 

European honeybee Apis mellifera (Yue et al., 2007), the Varroa mite, Varroa 

destructor (Ongus et al., 2004), the brown planthopper Nilaparvata lugens 

(Murakami et al., 2013) and S. exigua (Choi et al., 2012; Millán-Leiva et al., 2012). 

The viruses studied here were selected from those RNA viruses with potential to 

influence S. exigua population dynamics (Pascual et al., 2012). PCR-based 

techniques had been successfully used to detect inapparent infection by these 

viruses in laboratory S. exigua colonies (Jakubowska et al., 2014; Millán-Leiva et 

al., 2012).  

Field-collected adults were found to harbour SeIV and SeMNPV, alone and 

in mixed infections, in reproductively active moths. A high prevalence of sublethal 

infection was detected; overall 62% of moths had one or more of the viruses, the 

majority of which were individuals infected by SeMNPV (54%). A previous study 

using RT-PCR to detect SeMNPV transcripts in adults, performed using insects 

from the same region, reported a prevalence of sublethal infection of 16% 

(Cabodevilla et al., 2011a). This difference in reported prevalence may reflect the 

greater sensitivity of the qPCR (6.8 genome copies per reaction, Virto et al., 2013) 

technique that we employed compared to the RT-PCR technique (35 genome 

copies per reaction; Cabodevilla et al., 2011a), or could also be a result of within-

season or year-to-year variations in the prevalence of SeMNPV infections in S. 

exigua populations, that tend to increase during sequential cropping cycles 

(Cabodevilla et al., 2011a). Here we used qPCR due to its high sensitivity, as 

demonstrated in previous studies by us on SeMNPV covert infections (Cabodevilla 

et al., 2011b; Virto et al., 2013). For the first time, iflaviruses were detected in field-

collected S. exigua adults, although the prevalence of infection (20%) was lower 

than that of SeMNPV. Assuming that the qPCR-based method is more sensitive 

than RT-PCR, the greater prevalence of SeMNPV covert infection compared to 

that reported in previous studies is possibly explained by the technique used or by 
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spatial or temporal variation in the prevalence of SeMNPV covertly infected 

insects. However by using multiplex RT-PCR the presence of mixed infections 

involving both iflaviruses was demonstrated. Although the difference in sensitivity 

of these techniques may have influenced the results, it is clear that the iflaviruses, 

particularly SeIV-1, were prevalent in natural populations of S. exigua. 

We examined whether the presence of SeMNPV might influence the 

transmission of the iflaviruses (or vice versa) from field-collected insects to their 

laboratory-reared offspring. Unexpectedly, the prevalence of iflavirus infection 

increased dramatically in F1 insects, as high percentages of the offspring of 

iflavirus-negative females were found to be positive for SeIV-1 (39%) or SeIV-2 

(19%) infection. A combination of highly efficient vertical and horizontal 

transmission could explain these results, since under laboratory conditions the 

transition from apparently healthy S. exigua colonies to 100% infection by the 

SeIV-1 was achieved in a single host generation (Millán-Leiva et al., 2012). 

Horizontal transmission of iflavirus most likely occurs via regurgitation or the 

production of feces that contaminate the larval diet, especially in laboratory reared 

insects (Murakami et al., 2013; van Oers, 2010). This is because the midgut is the 

most abundantly infected larval tissue and gregarious rearing conditions could 

lead to rapid contamination of diet by iflavirus particles in frass (Millán-Leiva et al., 

2012). For this reason, F1 neonates were individualized, reared individually and 

confined in the adult stage until qPCR analysis, in our study. The contribution of 

the male lineage to vertical transmission has been demonstrated in Apis mellifera 

eggs that were artificially inseminated with DWV-contaminated semen (Yue et al., 

2007). In our study, the male contribution to virus transmission was not examined, 

but as males and females were infected at similar frequencies with the iflaviruses, 

it is possible that males could contribute to transgenerational transmission. In line 

with previous studies, the sex-specific distribution of SeMNPV infections in field-

caught adults and their offspring was similar between male and female moths 

(Virto et al., 2013). 

Co-infection by SeMNPV and SeIV in both field-collected populations and in 

the F1 generation was detected at low prevalence. Also, SeIV-1 and SeIV-2 mixed 

infections rarely occurred in field-caught adults (2/130) but were more frequent in 

laboratory-reared individuals (17/200). Intriguingly, both Ectropis obliqua iflavirus 

and Perina nuda iflavirus were isolated from lepidopteran pests that had died from 
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an associated baculovirus infection (Wang et al., 1999; Wang et al., 2004). These 

observations provided support for previous findings by Vail et al. (1983a; 1983b) in 

which AcMNPV OB preparations were found to be contaminated with an iflavirus-

like pathogen that persisted in the baculovirus population. Similarly, mixed 

infections caused by alphabaculoviruses and betabaculovirus were detected at low 

prevalence in a laboratory population of C. fumiferana, but not in field-sampled 

insects (Kemp et al., 2011). It seems that laboratory insect colonies often harbor 

persistent infections (Hughes et al., 1993; Kemp et al., 2011; Kouassi et al., 2009; 

Murillo et al., 2011). Interactions between co-infecting microorganisms are 

invariably complex and their consequences unpredictable. For instance, 

Wolbachia infection of dipteran species seemed to protect the host against RNA 

viruses (Glaser and Meola, 2010), whereas mortality due alphabaculovirus 

infection of S. exempta was 6-14 fold higher in Wolbachia infected hosts 

compared to healthy conspecific populations (Graham et al., 2012). Previous 

studies on S. exigua indicated that covert infections by SeMNPV affect host fitness 

by increasing their susceptibility to superinfection (Cabodevilla et al., 2011b). In 

line with this result, SeMNPV pathogenicity differed when bioassayed in covertly 

infected insects in comparison with virus-free insect lines (Cabodevilla et al., 

2011a). Increased susceptibility to alphabaculovirus infections may be desirable in 

pest populations targeted for virus-based biological control, but ongoing laboratory 

bioassays will reveal whether covert infections by SeIV modify insect responses 

following consumption of lethal or sublethal doses of SeMNPV OBs. 

Inapparent iflavirus infections of field captured insects used to start 

laboratory colonies for in vivo production of baculovirus have the potential to 

influence the fidelity of the mass production process and the efficacy of 

baculovirus-based insecticides. Previous findings on iflaviruses in association with 

lethal baculovirus infections underline the value of determining whether 

susceptibility to baculoviruses is modulated by sublethal iflavirus infections or 

whether iflaviruses can affect the insecticidal properties of baculovirus 

insecticides. These studies are currently being performed by us.  
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CHAPTER III 
 
 

Gender-mediated differences in vertical 

transmission of a nucleopolyhedrovirus  

Abstract 

With the development of sensitive molecular techniques for detection of low levels of 

asymptomatic pathogens, it becoming clear that vertical transmission is a common feature 

of some insect pathogenic viruses, and likely to be essential to virus survival when 

opportunities for horizontal transmission are unfavorable. Vertical transmission of 

Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) is common in natural 

populations of S. exigua. To assess whether gender affected transgenerational virus 

transmission, four mating group treatments were performed using healthy and sublethally 

infected insects: i) healthy males (H♂) × healthy females (H♀); ii) infected males (I♂) × 

healthy females (H♀); iii) healthy males (H♂) × infected females (I♀) and iv) infected males 

(I♂) × infected females (I♀). Experimental adults and their offspring were analyzed by qPCR 

to determine the prevalence of infection. Both males and females were able to transmit the 

infection to the next generation, although female-mediated transmission resulted in a higher 

prevalence of infected offspring. Male-mediated venereal transmission was half as efficient 

as maternally-mediated transmission. Egg surface decontamination studies indicated that 

the main route of transmission is likely transovarial rather than transovum. Both male and 

female offspring were infected by their parents in similar proportions. Incorporating vertically-

transmitted genotypes into virus-based insecticides could provide moderate levels of 

transgenerational pest control, thereby extending the periods between bioinsecticide 

applications. 
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1. Introduction 

Nucleopolyhedroviruses (genus Alphabaculovirus, family Baculoviridae) are 

arthropod-specific viruses that have been used in many parts of the world as 

biological insecticides due to their insecticidal properties towards certain insect 

pests and their outstanding biosafety characteristics (Eberle et al., 2012). They are 

also commonly employed in biotechnological applications for the production of 

recombinant proteins (Hitchman et al., 2011).  

Nucleopolyhedrovirus populations adopt one of two transmission pathways 

to infect susceptible host insects. Horizontal transmission occurs when virus 

occlusion bodies (OB) from an infected cadaver are consumed in sufficient 

quantity by a healthy conspecific larva. This is, by far, the best understood 

mechanism of transmission (Cory and Myers, 2003). Little is known about vertical 

transmission of entomopathogenic viruses from infected parents to their offspring, 

but this has been proposed as a survival strategy to overcome periods of host 

scarcity when opportunities for horizontal transmission are limited (Cory and 

Myers, 2003). Clearly the ability to adopt horizontal or vertical transmission routes 

depends on the virulence of the infection; only persistent sublethal infections with 

reduced virulence will be capable of vertical transmission (Burden et al., 2002). 

Persistent infections have been reported in a number of lepidopteran species from 

field-collected (Burand et al., 2011; Vilaplana et al., 2010), and laboratory 

populations (Fuxa et al., 2002; Fuxa et al., 1999; Kukan, 1999; Murillo et al., 

2011).  

The beet armyworm, Spodoptera exigua is a major pest of greenhouse 

crops in many parts of the world (Belda, 1994). The multiple nucleopolyhedrovirus 

of S. exigua (SeMNPV) has been developed as the basis for several bioinsecticide 

products (Lasa et al., 2007). Vertical transmission of SeMNPV was a common 

feature in field-collected adults of S. exigua in southern Spain (Cabodevilla et al., 

2011a). In that study, a selection of vertically transmitted (VT) genotypes, were 

isolated and their insecticidal properties were characterized. Among these, the VT-

SeAl1 genotype had the greatest capacity to induce persistent infections 

compared to genotypes associated with the horizontal transmission pathway. 

Sublethal infections by VT genotypes persisted for at least five generations after 

their inoculation in a healthy experimental laboratory colony of S. exigua 
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(Cabodevilla et al., 2011b). Transgenerational transmission can involve the 

transovarial or transovum pathways. Transovarial transmission describes the 

process of virus passing to progeny within the eggs, whereas the transovum route 

involves contamination of the egg surface with viral particles that infect neonate 

larvae when they ingest the chorion (Kukan, 1999; Vilaplana et al., 2008).  

Unexpectedly, Cabodevilla et al. (2011a) observed that a fraction of field-

caught gravid females produced virus-infected offspring even though no evidence 

of infection was seen in these females using sensitive PCR methods targeted at 

the detection of viral transcripts. This led us to suspect that these females may 

have mated with infected wild males, suggesting that both sexes could contribute 

to vertical transmission of the pathogen. In the present study we determined the 

effect of parental gender and the importance of the transovum vs. transovarial 

routes on the transmission efficiency of this virus. 

2. Material and methods 

2.1 Insects and viruses 

A healthy S. exigua culture was obtained from Andermatt Biocontrol AG 

(Grossdietwil, Switzerland) and reared on artificial diet (Elvira et al., 2010) at a 

constant temperature (25 ± 1ºC), relative humidity (50 ± 5%), and photoperiod (16 

h:8 h light:dark cycle) in the insectary facilities of the Universidad Pública de 

Navarra, Pamplona, Spain. A single genotype of SeMNPV, named VT-SeAl1, was 

used in the experiment. This genotype was previously isolated from a sublethally 

infected colony of insects collected in the greenhouses of Almeria (Spain) and was 

known to be capable of parent to offspring transmission (Cabodevilla et al., 2011a; 

Cabodevilla et al., 2011b). 

2.2 DNA extraction 

Total insect DNA was extracted using MasterPure Complete DNA 

Purification kit (Epicentre Biotechnologies) standard protocol for tissue samples. 

Abdomens of recently thawed adults were dissected individually, and sexed by 

observation of external genitalia. The dissected abdomen was placed in a 2 ml 

tube with ceramic beads and 300 µl of lysis solution with 1 µl of 50 µg/µl 

Proteinase K added. The tissue was homogenized using MP FastPrep-24 tissue in 
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a cell homogenizer at 4.0 m/s for 20 s. The mixture was incubated at 65ºC for 15 

min with a constant 1100 rpm orbital agitation. A 150 µl volume of the sample was 

then treated with RNase for 30 min at 37ºC. Debris was pelleted by adding protein 

precipitation reagent and centrifuged at 10000 × g for 15 min. DNA was 

precipitated using cold isopropanol, washed twice with 70% ethanol, resuspended 

in 20 µl Milli-Q water and stored at -20ºC. Blank extraction samples containing only 

water were processed in parallel to detect cross-contamination during the 

extraction process. 

2.3 Detection of sublethal infections 

Quantitative PCR based on SYBR fluorescence was performed in an ABI 

PRISM 7900HT Sequence Detection System (Applied Biosystems) in 96-well 

reaction plates. To detect virus genomic DNA specific primers were designed to 

amplify a 149-bp region of the SeMNPV DNA polymerase gene (DNApol149-Fw: 

5’- CCGCTCGCCAACTACATTAC-3’; DNApol149-Rv: 5’- 

GAATCCGTGTCGCCGTATATC-3’) based on the complete genome sequence of 

the SeMNPV strain VT-SeAl1 (unpublished data). Amplifications were performed 

in a total reaction of 10 µl containing 5 µl of SYBR Premix Ex Taq (2×), 0.2 µl of 

ROX Reference Dye (50×), 0.2 µl of both forward and reverse primers (10 

pmol/µl), and 1 µl of DNA template containing up to 50 ng of DNA. Three non-

template reactions were included in each run and a standard curve was prepared 

in duplicate to determine the efficiency of each reaction. The qPCR protocol 

consisted of an initial denaturation step at 95ºC for 30 s, followed by 45 

amplification cycles of 95ºC for 5 s, 60ºC for 30 s, and finally added dissociation 

steps of 95ºC for 15 s, 60ºC for 15 s, 95ºC for 15 s. Data acquisition and analysis 

were handled by Sequence Detector System version 2.2.2 software (Applied 

Biosystems). For the standard curve VT-SeAl1 DNA was extracted from OBs, 

purified thorough CsCl gradients, quantified using a spectrophotometer (Eppendorf 

BioPhotometer plus) and then serially diluted in sterile MilliQ water to the following 

concentrations: 10, 1, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001 pg/µl. A total of seven 

replicates of the DNA dilutions were performed and the average Cq value for each 

point was calculated and used to fit a linear regression. DNA quantities were 

consistently estimated per sample by extrapolation of Cq values from the standard 

curve. Every DNA sample was performed in triplicate and the specificities of PCR 
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products were monitored by analyzing amplification profiles and the corresponding 

dissociation curves. Quantified viral DNA was normalized based on the total DNA 

concentration for each sample and measured using a NanoDrop 2000 (Thermo 

Scientific). 

2.4 Gender effects on vertical transmission 

To determine gender effects on vertical transmission of SeMNPV, groups of 

adults that were either sublethally infected (infected males: I♂ and infected 

females: I♀) or were not subjected to prior virus treatment (virus-free adults, 

healthy males: H♂ and healthy females: H♀). For this, two genetically identical 

subpopulations were generated by inducing sublethal infections in experimental 

insects (qPCR detection limits 10
-3

 pg of viral DNA), whereas insects from the 

healthy treatment groups were not subjected to virus inoculation. To produce 

sublethally infected insects batches of 200 newly molted S. exigua fourth instars 

were fed a virus suspension containing 9 × 10
3
 OBs/ml. In parallel, groups of 100 

larvae were treated identically using a suspension without OBs. Larvae that drank 

the suspension within 10 minutes were individually placed in perforated 25-ml 

plastic cups containing artificial diet and reared at 25 ± 2ºC and 50 ± 5% RH until 

pupation or death from virus disease. Pupae that survived inoculation were 

assigned to separate groups according to their sex and viral treatment. Once the 

adults emerged, the following mating schedules were performed: i) healthy males 

(H♂) × healthy females (H♀); ii) infected males (I♂) × healthy females (H♀); iii) 

healthy males (H♂) × infected females (I♀) and iv) infected males (I♂) × infected 

females (I♀). Five adult pairs were confined in groups in paper bags provided with 

a moist cotton water source and maintained at 25 ± 2ºC and 50 ± 5% RH for 

oviposition during a 2–4 day period. Egg batches from each treatment group were 

collected using sterilized instruments and adults were frozen at -80ºC for 

subsequent analysis (F0 generation). Egg masses laid from each paper bag were 

divided into two parts and either soaked in a 0.25 ppm sodium hypochlorite 

solution (surface decontamination) or in sterile distilled water (no decontamination) 

for 5 minutes. Groups of 24 larvae that emerged from each half of each egg mass 

were individually placed in 25 ml cups with diet, and reared individually through to 

the adult stage (F1) to avoid cross-contamination among insects in this cohort. 
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Adults were individually stored at -80ºC for subsequent analysis. The whole 

experiment was performed four times. 

2.5 Statistical analysis 

In order to determine the influence of parental infection status on the 

offspring, the prevalence of qPCR positive insects and results of virus loads in the 

offspring were analyzed by fitting generalized models in GLIM 4 (Numerical 

Algorithms Group, Oxford, UK) with a binomial or normal error distribution 

specified, respectively, and with gender or mating group treatment specified as 

factors. Proportions of infected insects were compared by Fisher’s exact test and 

subjected to t-test for pairwise comparison. Values of viral load per infected insect 

were normalized by log-transformation prior to analysis. The effect of egg surface 

decontamination on vertical transmission was examined using Pearson’s χ
2
 test in 

the SPSS Statistics program (v.19 IBM). The correlation between proportions of F1 

infected insects and their viral load was examined by Spearman’s rank correlation. 

3. Results 

3.1 Establishing qPCR amplification parameters 

Following mating and oviposition, parental insects from each of the four 

mating groups were subjected to qPCR to determine the prevalence of sublethal 

infection. A linear relationship was established between the critical quantification 

cycle (Cq) and the log-transformed amount of viral DNA (Figure 1). The regression 

coefficient (R
2
 = 0.995) and slope value (-3.215), indicated very high reaction 

efficiency (Bustin et al., 2009). 

The cut-off value was defined as the lowest concentration detected that fell 

within the linearity of the regression, in this case 1 × 10
-3

 pg. This value was used 

to set a limit of 33.4 cycles; all samples with higher Cq values were treated as 

negative, whereas all samples with a lesser number of cycles and that showed a 

single peak at the expected melting temperature (83ºC) in the dissociation curve, 

were considered as positive. As the genome of VT-SeAl1 was estimated to be 

135696 bp (unpublished data) the theoretical detection limit equates to 6.8 

genome copies per reaction. 

 



Chapter III Gender effects of SeMNPV vertical transmission 

 

99 

 

Figure 1. Standard curve for qPCR quantification. Linear regression with different critical 
quantification PCR (Cq) following serial dilution of Spodoptera exigua multiple 
nucleopolyhedrovirus (SeMNPV) genomic DNA. 

3.2 Detection of sublethal infections in parental (F0) insects 

Overall, 57.6 ± 4.4% of the larvae that consumed VT-SeAl1 OBs 

succumbed to virus infection, whereas no mortality was registered in mock-

infected control larvae. The prevalence of qPCR positive reactions in the insects 

that survived, following consumption of viral OBs in the larval stage, was clearly 

higher than that of control insects (Figure 2). Viral load in parental (F0) adults 

averaged 1.514 ± 0.287 × 10
-3

 pg viral DNA/µg total DNA per insect (N = 72 

positive samples) that represents 10.34 ± 1.96 genome copies per reaction. 

Overall, sublethally infected individuals were more abundant in the virus 

challenged groups of insects than in the mock-infected groups (χ
2 

= 60.49, df = 1, 

P < 0.001). Between 70 and 85% of adult males that survived OB treatment were 

classified as sublethally infected, compared with 65 to 80% of adult females 

(Figure 2). Unexpectedly, 12 out of the 80 insects that had not consumed OBs 

were positive for sublethal infection, suggestion a low level of inapparent or latent 

infection in the insect colony from Switzerland (Figure 2). The frequency of 

infected adults in the control group H♂ × H♀ (5 positive adults (both sexes) out of 

40 tested) was similar to that found in apparently healthy groups mated with 

infected insects (I♂ × H♀ = 4 positive females out of 20 and H♂ × I♀= 3/20 

positive males; χ
2
 = 0.392, df = 1, P = 0.531). 
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Figure 2. Prevalence of infection in parental adults in each mating group. H♂: Healthy male, 
H♀: Healthy female, I♂: Infected male, I♀: Infected female. Each mating group comprised 
20 male and female S. exigua moths. 

3.3 Transgenerational transmission 

In order to elucidate whether virus was passed to offspring via transovarial 

or transovum transmission, the prevalence of sublethal infection in F1 adults was 

compared between adults from either decontaminated or non-decontaminated 

eggs. Egg surface decontamination did not significantly affect the prevalence of 

sublethally infected F1 adults (decontaminated eggs = 16.5%; non-decontaminated 

eggs = 14.9%; χ
2
 = 0.649, df = 1, P = 0.420). Therefore, all results were pooled 

across decontamination treatments for subsequent analyses. Parental mating 

group treatment significantly influenced viral transmission to F1 adults (F = 18.95, 

df = 3, 31, P < 0.001; Figure 3). Subletally infected males that mated with healthy 

females produced offspring with an average prevalence of 26% inapparent 

infection, compared to 8% in the offspring of the control insect group. In contrast, 

when infected females mated with healthy males, the prevalence of infection in 

offspring was 49%, compared to 44% when both parents were infected (Figure 3). 

These results indicate that female-mediated vertical transmission was 

approximately twice as efficient as male-mediated transmission. Both sexes of 

offspring were equally likely to have acquired a sublethal infection from their 

parents (male mean = 34.9 ± 6.7%; female mean = 27.9 ± 7.9%; F = 0.997, df = 1, 

28, P = 0.327). Similarly, no significant interaction was observed between parental 



Chapter III Gender effects of SeMNPV vertical transmission 

 

101 

mating group and offspring gender in the prevalence of sublethal infection (F = 

0.863, df = 3, 27, P = 0.472). Importantly, none of the F1 generation insects died of 

patent virus disease during rearing from larva to adult, so that all infections that we 

detected were present in insects that showed no signs of disease. 

 

 

Figure 3. Percentage of offspring positive by qPCR according to parental infection status. 
H♂: Healthy male, H♀: Healthy female, I♂: Infected male, I♀: Infected female (N = 120). 
Columns labeled with different letters indicate signficant differences (t-test, P < 0.05). 

3.4 Virus DNA loads present in offspring 

Viral load in F1 adults was quantified and normalized by total DNA content 

for each insect sample. Mean viral load values in infected offspring were similar 

between mating groups (F = 1.31, df = 3, 12, P = 0.316) and ranged from 1.07 ± 

0.12 × 10
-3

 to 1.7 ± 0.29 × 10
-3

 pg viral DNA/mg total DNA, i.e., the quantity of viral 

DNA in each insect was independent of the parental source of the infection (male, 

female or both). 

In order to investigate whether viral loads differed according to offspring the 

viral load results of F1 infected adults were pooled and found not to differ 

significantly according to sex (male mean = 1.74 ± 0.26 pg viral DNA/µg total DNA; 

female mean = 1.46 ± 0.16 pg viral DNA/µg total DNA; t = 0.639, df = 25, P = 

0.474). 

Finally, a significant positive relationship was detected between average 

viral load per F1 infected insect and the proportion of F1 infected insects produced 
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by each mating group (Spearman rank correlation: 0.687, P < 0.05), i.e., the 

prevalence of vertical transmission was positively associated with the number of 

genome copies in each infected insect (Figure 4). 

 

 

Figure 4. Relationship between viral DNA load per F1 infected insect and proportion of F1 
infected insects in each cohort. Grey circles indicate different experimental groups taking 
into account parental treatment and replicate. Spearman rank correlation: 0.687, P < 0.05. 

4. Discussion 

The development of highly sensitive molecular tools has recently allowed 

insect pathologists to focus attention on the vertical transmission of insect viruses 

and to assess the role of this strategy in the survival of these pathogens in natural 

and laboratory insect populations (Vilaplana et al., 2010). It seems that both 

alphabaculoviruses (Burden et al., 2003; Khurad et al., 2004; Vilaplana et al., 

2010), and betabaculoviruses (Burden et al., 2002) can establish sublethal 

infections in larvae that survive after having consumed OBs. Moreover the 

prevalence of such infections can be dose-dependent (Cabodevilla et al., 2011b). 

In the present study between 65 and 85% of sublethal infection was detected in 

adult survivors of an inoculum that killed 57.6% of experimental insects. A small 

number of control insects proved positive for sublethal infection by qPCR which 

suggests a low level infection in what was believed to be a completely healthy 

insect colony. However, it was clear that deliberately infected insects harbored 

markedly higher levels of virus than the untreated insects from the laboratory 
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colony, which led us to believe that the overall findings and conclusions of this 

study are likely to be valid, despite the low level presence of virus in the host 

colony. Indeed, apparently healthy laboratory colonies of lepidopteran species are 

often found to harbor sublethal virus infections as soon as they are subjected to 

sensitive molecular techniques for pathogen detection (Burden et al., 2002; 

Hughes et al., 1993; Hughes et al., 1997; Vilaplana et al., 2010). Moreover, latent 

infections have been reported for all developmental stages of asymptomatic 

individuals of S. exigua, confirming that inapparent infections can be detected in all 

stages of the host life cycle (Murillo et al., 2011). 

Our study demonstrated biparental transmission of SeMNPV to offspring, 

although the efficiency of maternally-mediated transmission was approximately 

double that of paternally-mediate transmission. Transmission during mating has 

been described in a range of insect pathogenic viruses, including a rhabdovirus in 

a palm beetle (Zelazny, 1976), a parvovirus in a mosquito (Barreau et al., 1997), 

sigmaviruses of Drosophila spp. (Longdon and Jiggins, 2012), an iflavirus in 

honeybees (de Miranda and Fries, 2008), and nucleopolyhedroviruses of 

lepidopteran pests (Knell and Webberley, 2004), among others. Sexual 

transmission has also been demonstrated for the gonad specific nudivirus Hz-2V 

of the noctuid moth Helicoverpa zea, that was transmitted during copulation, 

through waxy virus-rich secretions at the tip of the abdomen of the infected insect 

(Hamm et al., 1996). 

Virus titers required for transmission were estimated to be very low and 

were calculated at approximately 10.4 viral genomes per reaction or 208 genomes 

per infected insect (assuming 100% efficiency in DNA extraction, which is highly 

unlikely). For the vertically-transmitted sigmavirus of Drosophila spp., the 

transmission of viral particles occurs inside the oocyte, likely due to the size and 

activity differences between male and female gametes. Infected male sperm may 

also be not as competitive as non-infected counterparts (López-Ferber et al., 

1997). Accordingly, sigmaviruses show marked parental sex differences in the 

contribution to virus transmission and quantity of virus genomes transmitted to 

offspring (Fleuriet, 1988; Longdon et al., 2011). 

Persistent infections of nucleopolyhedroviruses often have biological costs 

that include lower developmental rates, lower pupal and adult body weights and 

reduced reproductive capacity (Cabodevilla et al., 2011b; Goulson and Cory, 
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1995; Hatem et al., 2011; Kukan, 1999; Myers et al., 2000), although occasionally 

beneficial effects have been detected (Thomas-Orillard, 1990). 

The quantity of viral DNA present in sublethally infected insects of F1 did not 

differ significantly according to sex or mating group (infected fathers vs. infected 

mothers, or both), whereas lower titers of sigma virus were detected in Drosophila 

embryos when sigmavirus was paternally transmitted (Longdon et al., 2011).  

A positive correlation was detected between the percentage of infected 

adults in F1 generation and their viral load, suggesting that the adults that 

transmitted the virus to a high proportion of their progeny tended to transmit 

greater amounts of viral DNA. It may be that due to their genotype, nutritional or 

physiological characteristics, certain hosts provide better conditions for virus 

multiplication, so that they provide a greater contribution to the number of virus 

genome copies in the offspring. Further studies are required to investigate this 

hypothesis.  

Previous studies on baculovirus transmission demonstrated that both sexes 

were involved in vertical transmission for Bombyx mori nucleopolyhedrovirus 

(BmNPV) (Khurad et al., 2004), Plodia interpunctella granulovirus (PiGV) (Burden 

et al., 2002) and Spodoptera exempta nucleopolyhedrovirus (SpexNPV) (Vilaplana 

et al., 2008). Interestingly, viral particles were observed in either testis or ovaries 

cells, confirming the presence of the virus in gonads of sublethally infected 

individuals by histological observation (Khurad et al., 2004) or by viral transcript 

detection (Burden et al., 2002; Khurad et al., 2004). Vilaplana et al. (2008) 

observed lethal NPV infection in offspring in both cases, when the infected 

parental was male or female. For B. mori, mating pairs with a female infected with 

BmNPV resulted in higher mortalities of first instar offspring (78%) than observed 

in offspring from treatments in which the male was responsible for transmission 

(57%). These authors concluded that transmission occurred principally via the 

transovarial route rather than transovum transmission (Khurad et al., 2004), as did 

studies on SpexNPV on S. exempta in which the prevalence of infection in the 

offspring was independent of eggs surface decontamination treatment (Vilaplana 

et al., 2008). In contrast, in the present study patent disease was not observed in 

the offspring of covertly infected insects, perhaps as a result of low levels of stress 

during rearing or another unidentified factor that favored the maintenance of 
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sublethal infection over the expression of patent lethal disease (Fuxa et al., 2002; 

Fuxa et al., 1999; Kukan, 1999). 

In conclusion, vertical transmission of SeMNPV was observed when male 

or female parents harbored a sublethal infection, but female-mediated 

transmission was more efficient than that of males. Improving our knowledge on 

the factors affecting vertical transmission mechanisms may contribute to the 

development of optimal strategies for the use of virus-based insecticides. 

Additional studies on the mechanisms that trigger sublethal infections into lethal 

patent infections may also provide useful information aimed at reducing the 

frequency of virus insecticide applications in the field. 
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CHAPTER IV 

Can mixtures of horizontally and vertically 

transmitted nucleopolyhedrovirus genotypes be 

effective for biological control of  

Spodoptera exigua? 

Abstract 

Previous studies identified distinct genotypes of Spodoptera exigua multiple 

nucleopolyhedrovirus (SeMNPV) that were associated with horizontal transmission (named 

HT-SeG25) or vertical transmission (named VT-SeAl1) in the host insect, S. exigua 

(Lepidoptera: Noctuidae). We examined the use of mixtures of occlusion bodies (OBs) of 

these genotypes as the basis for a virus preparation that could provide immediate pest 

control and establish a persistent sublethal infection in the survivors of an OB application for 

transgenerational pest suppression. Mixtures of HT-SeG25 + VT-SeAl1 comprising 25:75% 

or 75:25% of each genotype, respectively, resulted in improved OB pathogenicity in terms of 

concentration mortality metrics compared to OBs of VT-SeAl1 alone or  similar values 

compared to OBs of the HT-SeG25 genotype alone. In contrast, no significant differences 

were observed in speed of kill or mean OB production per larva. Laboratory and greenhouse 

trials revealed that the prevalence of sublethal infection in adults that survived OB 

treatments in the larval stage increased with the proportion of VT-SeAl1 present in the 

inoculum, as determined by qPCR. Greenhouse trials indicated that the 75% VT-SeAl1 + 

25% HT-SeG25 mixture was as effective as methoxyfenozide in preventing pest damage to 

pepper fruits. The potential contribution of vertically transmitted genotypes to 

transgenerational suppression of pest populations is discussed. 

This chapter has been published in Journal of Pest Science as: Virto, C., Williams, T., Navarro, D., 

Tellez, M. M., Murillo, R., Caballero, P., 2016. Can mixtures of horizontally and vertically transmitted 

nucleopolyhedrovirus genotypes be effective for biological control of Spodoptera exigua? Journal of Pest 

Science DOI 10.1007/s10340-016-0743-x. 
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CHAPTER V 

Chemical and biological stress factors on the 

activation of nucleopolyhedrovirus infections in 

covertly infected Spodoptera exigua  

Abstract 

Following the consumption of baculovirus occlusion bodies (OBs) insects may succumb to 

lethal disease, but the survivors can harbor sublethal covert infections and may develop, 

reproduce and transmit the infection to their offspring. The use of different chemical and 

biological stressors was examined to determine whether they could be used to activate 

covert infections in populations of Spodoptera exigua larvae infected by the homologous 

nucleopolyhedrovirus (SeMNPV). Treatment of covertly infected S. exigua second instars 

with Tinopal UNPA-GX, hydroxylamine, paraquat, Bacillus thuringiensis var. kurstaki 

crystals, spores or mixtures of crystals + spores, or a heterologous nucleopolyhedrovirus 

(Chrysodeixis chalcites SNPV), did not result in activation of SeMNPV covert infections. 

Similarly, virus treatments involving permissive NPVs did not result in greater mortality in 

covertly-infected insects compared with the virus-free controls. In contrast 0.1% copper 

sulfate, 1% iron (II) sulfate and 1 mg/l sodium selenite treatments resulted in 12 – 41% lethal 

polyhedrosis disease in covertly infected larvae. A greenhouse trial using copper sulfate and 

sodium selenite as activation factors applied to covertly infected S. exigua larvae on sweet 

pepper plants resulted in very low levels of SeMNPV activation (< 3%). These results 

highlight the important roles of copper, iron and selenium in insect immunity and baculovirus 

induced disease. However, these substances seem unlikely to prove useful for activation of 

covert SeMNPV infections in S. exigua larvae under greenhouse conditions. 

This chapter has been accepted in Journal of Applied Entomology as: Virto, C., Navarro, D., Tellez, M. 

M., Murillo, R., Williams, T., Caballero, P., 2016. Chemical and biological stress factors on the activation 

of nucleopolyhedrovirus infections in covertly infected Spodoptera exigua. Journal of Applied 

Entomology. DOI: 10.1111/jen.12349.
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CHAPTER VI 
 
 

General discussion 

 

Baculovirus transmission has been thought to occur mainly via horizontal 

transmission (HT), but increasing evidence of vertical transmission (VT) that 

involves covert infection in Lepidoptera and the subsequent transmission of the 

pathogen to offspring via the host’s reproductive tissues (Cory, 2010; Cory, 2015). 

The advent of highly sensitive molecular techniques has revealed the presence of 

covert infections in laboratory and natural insect populations, previously only 

detectable by the spontaneous occurrence of disease in apparently healthy 

insects (Kukan, 1999). Spodoptera exigua (Cabodevilla et al., 2011a), Spodoptera 

exempta (Vilaplana et al., 2010), Mamestra brassicae (Burden et al., 2003), 

Choristoneura fumiferana (Kemp et al., 2011), Operopthera brumata (Burand et 

al., 2011), and Neodiprion sertifer (Krokene et al., 2013) are species in which 

covert infections have been detected in field collected insects.  

In Almería, S. exigua populations annually arrive from North Africa during 

the months of June to October, but this population also seems to be established 

as a resident species in the horticultural area due to the protection from 

environmental factors provided by greenhouses (Belda,  1994). The S. exigua 

multiple nucleopolyhedrovirus (SeMNPV) naturally contributes to suppress pest 

outbreaks (Caballero et al., 1992), although the effect of this agent is often too late 

to avoid crop production losses. Currently, horticultural growers control S. exigua 

damage by integrating SeMNPV-based insecticides in wider integrated pest 

management programs. Studies on local insect populations revealed that 

SeMNPV frequently produces asymptomatic infections that are vertically 

transmitted to the progeny (Cabodevilla et al., 2011a). Long-term data is required 

to understand this phenomenon and evaluate the frequency of this type of 

infection in natural populations.  

New Generation Sequencing (NGS) technology has proven to be a 

powerful tool for the discovery of novel insect viruses, especially those causing 

cryptic infections (Liu et al., 2011; Pascual et al., 2012). Novel RNA viruses 



Chapter VI General discussion 

156 

belonging to the Iflaviridae were identified in the transcriptome of S. exigua tissues 

in individuals from laboratory colonies (Pascual et al., 2012), and were later 

characterized (Choi et al., 2012; Millan-Leiva et al., 2012), leading me to examine 

baculovirus and iflavirus covert infections in S. exigua field populations from 

greenhouses of Almería and their influence on the transmission of SeMNPV 

(Chapter II). In this study it was demonstrated that two iflaviruses species (S. 

exigua iflavirus-1: SeIV-1 and S. exigua iflavirus-2: SeIV-2) and SeMNPV persist 

naturally in both field-caught adults and their laboratory reared offspring, causing 

single or multiple covert infections. This is the first time that iflaviruses were 

detected and quantified in S. exigua field-collected adults. The prevalence of 

SeIV-1 (13%) and SeIV-2 (8%) in field insects was lower than that of SeMNPV 

(54%). For SeMNPV, more than half of field adults (54%) were positive for 

baculovirus DNA, a higher value than the 16% of SeMNPV viral transcripts found 

in those insects collected during the 2006-2007 growing season (Cabodevilla et 

al., 2011a). This may be due to the use of a 5-fold more sensitive technique, real-

time quantitative PCR (qPCR), capable of detecting 6.8 genome copies per 

reaction (Virto et al., 2013). Additional reasons for the recent increase of SeMNPV 

prevalence could be the income of infected individuals into the local population 

coming from northern Africa, and more likely the effect of spraying SeMNPV-

based insecticides during 2010-2011. In line with previous findings, this result 

shows that baculovirus asymptomatic infection is widely spread in wild 

populations, especially those belonging to the genus Spodoptera (Abul-Nasr et al., 

1979; Cabodevilla et al., 2011a; Fuxa and Richter, 1991; Smits and Vlak, 1988; 

Swaine, 1966; Vilaplana et al., 2010), characterized by its migration behavior as 

part of an effective strategy for viral dispersal (Fuxa, 2004; Vilaplana et al., 2010) 

and the maintenance of the virus during adverse environmental conditions (Cory 

and Myers, 2003). 

Perhaps the most novel contribution of this study was to reveal mixed 

infection involving two different viral families in S. exigua. Persistent viruses are 

common in mixed infections (Carrillo-Trip et al., 2015). Here, co-infections caused 

by baculovirus and iflavirus were detected at a low prevalence (less than 9% of 

multiple infections) in both field-collected adults and their offspring. Interestingly, 

early studies already reported iflavirus-like particles contaminating Autographa 

californica NPV OB preparations (Vail et al., 1983a; Vail et al., 1983b), that 
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suggests a functional association between these two virus families. Similarly, 

Ectropis obliqua and Perina nuda iflaviruses were isolated from lepidopteran 

cadavers that succumbed to granulovirus (Wang et al., 2004) and 

nucleopolyhedrovirus (Wang et al., 1999) infections respectively. More recently, 

electron microscopy images and RT-PCR analysis support the hypothesis of a 

physical association between SeIV and SeMNPV suggesting the co-occlusion of 

both types of viruses in the same OB (Jakubowska et al., 2016).  

The exploitation of a common host allows virus-virus interactions including 

immunological relations that could affect the host response. Interactions between 

co-infecting microorganisms are invariably complex and their consequences 

unpredictable. Mutualistic host-pathogen associations include that of a novel 

densovirus infecting Helicoverpa armigera larvae that appears to confer resistance 

against baculovirus and Bacillus thuringiensis infections (Xu et al., 2014). On the 

other hand, Wolbachia covert infections increased susceptibility to baculovirus 

super-infection in S. exempta larvae (Graham et al., 2012). Whether the iflavirus-

baculovirus association could have implications for the biosafety or efficiency of 

baculovirus-based insecticides is a key point that needs to be addressed. Initial 

bioassays showed that SeMNPV pathogenicity diminish when OBs were 

contaminated with SeIV (Jakubowska et al., 2016). Current laboratory bioassays 

are being performed to determine how SeIV covert infections might affect host 

responses to SeMNPV infection and the insecticidal characteristics of iflavirus-

contaminated OBs. 

S. exigua field-caught males and females were infected by iflavirus and 

baculovirus at a similar frequency, however the fact that apparently healthy 

females produced infected individuals in the progeny was intriguing. The 

contribution of the male linage to VT was investigated in Chapter III in order to 

elucidate the gender effect on transgenerational transmission. I observed that 

sublethally infected male and female adults were capable of transmitting the 

infection to descendants, although infected females were twice as efficient as 

males in vertical transmission. Similar experiments crossing infected and 

uninfected parental lines carried out in various NPV-host systems demonstrated 

that both sexes are involved in VT (Khurad et al., 2004; Vilaplana et al., 2008). 

Moreover viral particles and viral transcripts in Bombyx mori (Khurad et al., 2004) 

and Plodia interpunctella (Burden et al., 2002) gonads, respectively (of both males 
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and females), confirmed that baculoviruses are capable of being transmitted 

transovarially. In a similar way, the Drosophila sigma virus transmission rates are 

greater in females than males of D. obscura and D. affinis (Fleuriet, 1988; 

Longdon et al., 2011), despite the fact that transmission occurs through both eggs 

and sperm. Egg surface decontamination has been used to differentiate between 

transovarial and transovum pathways (see Kukan, 1999). After soaking eggs in a 

sodium hypochlorite solution, I found similar values of transgenerational 

transmission through decontaminated and non-decontaminated eggs, supporting 

the idea of transovarial transmission. Nevertheless in natural habitats it is likely 

that both pathways contribute to VT (Cory and Myers, 2003).  

Interestingly, a positive relationship was observed in the offspring between 

the proportion of infected insects and their viral load. As such, the higher the 

prevalence of VT, the higher the virus titers found in the host insect. Unexpectedly, 

as in Chapter IV, very few insects that were not exposed to virus proved positive 

by qPCR analysis, suggesting low level of infection in the presumed virus-free 

population. With the use of highly sensitive molecular techniques, asymptomatic 

infections have been reported in apparently healthy Lepidopteran insect colonies, 

underlining the difficulty of maintaining a population totally free of virus infections 

(Burden et al., 2003; Hughes et al., 1993; Hughes et al., 1997; Vilaplana et al., 

2010). In fact, SeMNPV covert infections are detectable throughout all 

developmental stages of the host, despite noticeable viral load fluctuation (Murillo 

et al., 2011), as also observed in SpexNPV in its homologous host (Graham et al., 

2015). It is interesting to consider that insects which do not die after baculovirus 

treatment can harbour covert infections that are transmitted to the progeny, and 

that might produce sublethal effects on the host. Adverse effects such as reduced 

developmental rate (Cabodevilla et al., 2011b; Gothama et al., 1995; Milks et al., 

1998), reduced reproductive capacity (Cabodevilla et al., 2011b; Milks et al., 1998; 

Patil et al., 1989), or increasing susceptibility to superinfection (Cabodevilla et al., 

2011a; Cabodevilla et al., 2011b), have been reported in insect survivors of a 

baculovirus treatments. As covert infections can persist for several generations 

within the host (Burden et al., 2003; Cabodevilla et al., 2011b; Vilaplana et al., 

2010), virus transgenerational effects could be considered from the perspective of 

designing new pest control strategies. 
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For this reason, after studying the natural occurrence of covert infections 

and their efficient transmission in S. exigua insects, the usefulness of this type of 

infection was evaluated as an alternative to SeMNPV inundative-applications that 

are performed in the Almería region (Chapters IV and V). The addition of VT 

genotypes to baculovirus-based insecticides might result in an improvement in the 

technical product for field applications. The working hypothesis (Chapter IV) was 

that in OB mixtures, HT genotypes would confer traits for rapid pest suppression, 

whereas VT genotypes favour the establishment of covert infections for 

transgenerational transmission with medium or long term effects on the pest 

population. Based on the existence of SeMNPV genotypes associated with 

different transmission routes (Cabodevilla et al., 2011a), and considering that 

mixtures of genotypes can produce unpredictable responses (Hodgson et al., 

2001; Simon et al., 2006), I aimed to select a mixture of OBs comprising VT and 

HT genotypes which encompassed useful insecticidal properties and the ability to 

produce covert infections (Chapter IV). According to previous results (Cabodevilla 

et al., 2011a), I observed that the HT genotype was three-fold more pathogenic 

than the VT single genotypic strain, a difference attributable to genomic 

differences in the Se4 and Se5 genes (Serrano et al., 2015; Theze et al., 2014). 

Interestingly, OBs mixtures comprising either 25 or 75% of the HT genotype were 

more pathogenic than the VT genotype and equally pathogenic as the HT 

genotype alone. However, the VT genotype was the most effective in producing 

covert infections, followed by the three OBs mixtures which generated 

intermediate values and the HT genotype which was the least efficient. These 

results support the hypothesis that strains that are vertically transmitted are less 

virulent than those that only comprise HT genotypes (Lipsitch et al., 1995). Covert 

infections in field trials showed the same trend as in laboratory experiments, 

although the results of all treatments were slightly lower than those obtained in the 

laboratory, probably because larval feeding behaviour and the acquisition of a 

lethal infection could not be controlled, or the distribution of the OBs on the plant 

surface was not completely homogeneous and also due to other environmental 

factors that modulate host responses to virus infection (Chapter V). Nevertheless, 

the high prevalence of covert infection following application of OBs mixtures on 

plants is suggestive of a long-term response in the insect population, but further 
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field trials are needed to determine the magnitude of this effect over multiple host 

generations. 

So far, the selection of an active ingredient in baculovirus-based 

insecticides has been based on the insecticidal potential, principally OB 

pathogenicity and speed of kill (Arrizubieta et al., 2015; Bernal et al., 2013). 

However, these genotypes do not always have high transmissibility leading to 

long-term control (Takahashi et al., 2015), a desirable property that can be 

supplied by VT genotypes. In fact, the success of Anticarsia gemmatalis NPV in 

soya crops in Brazil is based on the virus’ capacity to persist and be transmitted 

during the crop cycle, requiring only a single application of OBs (Moscardi, 1999). 

As such, this virus is also able to cause epizootics some years after an inoculative 

release (Fuxa and Richter, 1999). In this context, transgenerational transmission 

of pathogens gains importance, not only because of the greater virus persistence, 

but also for its contribution to pest control by the long-term suppression effect of 

spontaneous disease reactivation in sublethally infected larvae.  

I also examined the susceptibility of the progeny from field-treated insects 

to superinfection. Despite previous laboratory assays indicating that sublethally 

infected S. exigua colonies tend to be more susceptible to the SeMNPV than 

virus-free populations (Cabodevilla et al., 2011a; Cabodevilla et al., 2011b), here 

laboratory-reared descendants from field treated lineages were equally 

susceptible. This discrepancy could be attributed to the lower prevalence of 

sublethal infections found in the adults challenged in the field (30-76%) compared 

to those sublethally infected in laboratory conditions (80-100%) (Cabodevilla et al., 

2011b). Field assays included the two single genotypes and the mixture that 

comprises 75% of VT + 25% of HT genotype evaluation for their efficiency as crop 

protection agents in fields. As previously described in other studies for SeMNPV 

applications (Bianchi et al., 2000; Lasa et al., 2007; Smits et al., 1987), all viral 

treatments showed evidence of providing efficient crop protection, especially when 

S. exigua larvae directly attack fruits. Results in Chapter IV demonstrated that a 

mixture that comprised 75% of a VT genotype + 25% of a HT genotype was as 

pathogenic as the HT genotype alone, while it produced similar prevalence of 

covert infection as the VT genotype alone. Moreover the mixture resulted equally 

efficient as a chemical insecticide (methoxyfenozide) for pest control. The 

incorporation of VT genotypes in baculovirus-based insecticides, that used highly 



Chapter VI  General discussion 

161 

pathogenic genotypes resulted in similar pest mortality as HT genotypes or even 

chemical-based insecticides, and may contribute to long-term suppression through 

transgenerational transmission effects. The possibility of inoculative instead of 

inundative OB releases and the incorporation of new genotypes into baculovirus-

based insecticides, might also act as a preventive strategy to avoid the 

development of resistance, which has been reported for other baculovirus 

insecticides (Asser-Kaiser et al., 2007; Asser-Kaiser et al., 2011; Schmitt et al., 

2013; Undorf-Spahn et al., 2012). 

The mechanisms by which covert infections are triggered into lethal 

infections are poorly understood. In this study I tested whether covert infections 

could be activated under certain stressful conditions to trigger lethal infections 

(Chapter V), as fatal reactivation can account for up to 20% mortality in the 

offspring of field-caught females (Cabodevilla et al., 2011a). Baculovirus infections 

not only depend on the virulence factors of the pathogen, but also on the role of 

the host immune system (Jakubowska et al., 2013; Pascual et al., 2012). Some 

essential trace elements for the insect immune system (Chaturvedi et al., 2004) 

were evaluated as stress factors to trigger lethal polyhedrosis diseases. In 

particular, under laboratory conditions, 0.1% copper sulfate, 1% iron (II) sulfate 

and 1 mg/l (1 ppm) sodium selenite triggered lethal NPV infections (12, 15 and 

41% mortality, respectively) in covertly infected S. exigua larvae. These trace 

elements, at an appropriate concentration, are required to maintain immune 

system function, preventing not only oxidative stress but also viral mutations which 

could increase viral pathogenicity (Chaturvedi et al., 2004). Alterations in the 

copper and iron levels were found in the hemolymph during the development of 

NPV infected Heliothis virescens larvae (Popham et al., 2012a; Popham et al., 

2012b). Previously, copper sulfate had been reported as an NPV activation factor 

in covertly infected Lymantria dispar larvae (Ilyinykh et al., 2004). Apart from 

chemical compounds, heterologous viruses were tested without a notable 

activation response, whilst several studies have reported virus activation following 

cross inoculation with heterologous viruses (Cooper et al., 2003; Fuxa and 

Richter, 1992; Hughes et al., 1993; Kouassi et al., 2009). In this regard, the 

prevalence of virus activation might depend on the virus species and its genotype, 

or the dosage required to initiate an infection.  
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Unfortunately, I failed to induce high rates of NPV infections in greenhouse 

trials possibly because of the behaviour of the larvae in these conditions, or due to 

biotic and abiotic factors. Host plant chemistry (Shikano et al., 2010), insect 

nutrition (Ojala et al., 2005; Vogelweith et al., 2011), or insect density (Reeson et 

al., 1998; Wilson and Graham, 2015), among others are factors that influence the 

host vigor and susceptibility to NPV infections, thereby modulating viral activation 

in covertly infected larvae. Obviously, plant crops and semi-synthetic diet differ in 

their nutritional content that may also alter the insect response after being 

challenged by baculovirus (Lee et al., 2006). Also host density can affect the 

susceptibility and immune response of the host, since Spodoptera littoralis and S. 

exempta larvae reared gregariously have been described as more resistant to 

NPV infections than those reared individually (Reeson et al., 1998; Wilson and 

Graham, 2015). Therefore, when I tried to extrapolate laboratory results to field 

conditions I had to be aware that there were a number of factors that could affect 

to the outcome of the experiment. Probably for this reason trace metals were 

capable of inducing NPV lethal disease in laboratory insects but not under field 

conditions. 

To conclude, in this thesis covert infections and vertical transmission of 

SeMNPV were observed and mainly occurred transovarially through females. 

Covert infection and transmission to offspring were common in natural S. exigua 

populations and in insect survivors of a sublethal dose of OBs. These findings 

open the door to design novel pest control strategies that maximize the 

effectiveness of baculovirus-based insecticide applications. Novel strategies have 

been proposed based on the inclusion of VT genotypes into the active ingredient 

of baculovirus-based insecticides and by the identification of chemical factors that 

triggered lethal disease in covertly infected larvae in order to initiate viral 

epizootics. 
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CONCLUSIONES 
 
 

1. Las poblaciones de Spodoptera exigua naturales de los invernaderos de 

Almería albergan infecciones encubiertas del SeMNPV, SeIV-1 y SeIV-2, 

habiéndose detectado el primero de ellos en una proporción de adultos 

significativamente mayor (54%) que la de los iflavirus 1 y 2 (13 y 8% 

respectivamente). Además la prevalencia de cualquiera de estos tres 

virus no varía en relación con el sexo de los insectos. 

2. Las infecciones encubiertas producidas tanto por el SeMNPV como por 

ambos iflavirus en adultos de S. exigua capturados en campo se 

transmiten verticalmente a la descendencia, aunque el SeIV-1 (39%) lo 

hizo con una frecuencia significativamente mayor que el SeMNPV (21%) 

y el SeIV-2 (19%). Los tres virus fueron capaces de transmitirse tanto por 

hembras supuestamente libres de virus como por aquellas otras positivas 

para el SeMNPV. 

3. Las infecciones mixtas causadas por baculovirus e iflavirus son poco 

frecuentes en poblaciones naturales de S. exigua originarias de los 

invernaderos de Almería, así como en su descendencia. No obstante, se 

observan todas las combinaciones posibles de infecciones mixtas por dos 

o tres virus que inciden tanto en los adultos de campo como en su 

descendencia.  

4. Un elevado porcentaje de los adultos de S. exigua que sobrevivieron a 

una dosis del SeMNPV adquirieron una infección encubierta, y tanto los 

machos como las hembras fueron capaces de transmitir dicha infección a 

su descendencia; no obstante, la eficiencia de transmisión por las 

hembras fue doble que la de los machos. Además, la distribución del 

virus en la progenie no está sesgada por el género, siendo igual de 

probable infectar machos o hembras. 

5. La descontaminación superficial de los huevos no afectó 

significativamente a los niveles de transmisión viral a la descendencia, lo 
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cual indica que la principal vía de transmisión del SeMNPV es intraovum 

más que transovum. 

6. En la progenie de individuos subletalmente infectados (F1), se detectó

una correlación positiva entre la carga viral que porta cada insecto y el

porcentaje de individuos infectados del grupo parental del que provienen,

es decir, cuantos más insectos infectados hay en un grupo, más carga

viral albergan dichos individuos.

7. Las mezclas de OBs de genotipos asociados a la transmisión horizontal

(TH) y vertical (TV) fueron tan patogénicas (concentración letal media)

como el genotipo de TH sólo, siendo a su vez las mezclas en las

proporciones 75:25 y 25:75 significativamente más patogénicas que el

genotipo de TV. Sin embargo, no se encontraron diferencias significativas

en cuanto a virulencia (tiempo medio de mortalidad) y productividad

(OBs/larva) entre los genotipos de TV, TH o alguna de sus mezclas.

8. En condiciones de laboratorio, la capacidad de producir infecciones

encubiertas en los individuos de S. exigua supervivientes a una dosis

subletal del virus, fue significativamente mayor utilizando el genotipo de

TV (90%) que el de TH (45%), obteniéndose valores intermedios para

cualquiera de las mezclas de OBs de dichos genotipos.

9. En condiciones de invernadero, la prevalencia de infecciones encubiertas

en adultos supervivientes a cualquiera de las aplicaciones virales fue

menor que la obtenida en condiciones de laboratorio. El nivel de

infecciones encubiertas sigue una tendencia ascendente proporcional a la

cantidad de genotipo de TV que contiene la mezcla. Esto sugiere, que la

utilización de combinaciones de genotipos de TV y TH en una adecuada

proporción, puede mantener las características insecticidas de la materia

activa y mejorar la capacidad de producir infecciones encubiertas en los

individuos que sobreviven a los tratamientos de bioinsecticidas basados

en baculovirus.

10. La mezcla de OBs de genotipos de TV y TH en la proporción 75:25%

pulverizada sobre plantas de pimiento dulce a una concentración de 5 ×

10
8
 OBs/l, fue tan eficaz como el metoxifenocida reduciendo el porcentaje
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de frutos dañados. Por tanto, la utilización de una mezcla adecuada de 

genotipos (75TV:25HV), además de ser eficaz para combatir las plagas 

causadas por S. exigua, puede contribuir a reducir  el número de 

aplicaciones y las concentraciones necesarias para un control 

satisfactorio de la plaga, aunque esto requeriría ensayos de campo 

adicionales.  

11. En condiciones de laboratorio, la aplicación de sulfato de cobre (0,1%), 

sulfato de hierro (1%) y selenito de sodio (1ppm) sobre larvas del 

segundo estadio de S. exigua que mantienen una infección encubierta del 

SeMNPV, produjo una activación del virus de 15, 12 y 41% 

respectivamente. Sin embargo, en condiciones de invernadero, la 

activación del virus fue mucho menor y varió entre un 1 y 3%, por lo que 

dichas aplicaciones no serían efectivas para reactivar infecciones 

encubiertas bajo las condiciones de invernadero descritas en este 

trabajo.  
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CONCLUSIONS 
 
 

1. Natural populations of Spodoptera exigua from Almerian greenhouses 

harbour covert infections produced by SeMNPV, SeIV-1 and SeIV-2, the 

former was detected in a significantly higher proportion of adults (54%) 

than the other two viruses (13 and 8%, respectively). Furthermore, the 

prevalence of three viruses did not vary according to host gender. 

2. Covert infections produced by SeMNPV, as well as SeIV-1 and SeIV-2, 

are transmitted vertically from field-caught adults of Almería to their 

offspring, although SeIV-1 transmission (39%) was more prevalent than 

that produced by SeMNPV (21%) or SeIV-2 (19%). The three viruses 

could be transmitted through both healthy and SeMNPV sublethally 

infected females. 

3. Mixed infections caused by both baculovirus and iflavirus occurred in 

natural S. exigua populations from Almerían greenhouses and in their 

progeny, albeit at low prevalence. Nevertheless, all possible 

combinations, double and triple infections, were detectable in field adults 

and their offspring. 

4. The prevalence of SeMNPV covert infection in adult survivors to a 

sublethal dose reached very high prevalence. Vertical transmission was 

observed when male or female parents harbored a sublethal infection, but 

female-mediated transmission was twice as efficient as that of males. 

Both male and female offspring were infected by their parents in similar 

proportions. 

5. Transgenerational transmission occurred principally via the transovarial 

route rather than via transovum transmission, as egg surface 

decontamination had no significant effect on the prevalence of 

transmission to the offspring.  

6. A positive relationship was detected between the proportion of infected 

adults in the offspring produced by each mating group and their viral load, 



Conclusions 

174 

suggesting that adults that transmit the virus to a high proportion of their 

progeny tend to transmit greater amounts of viral DNA. 

7. OBs mixed populations involving horizontally and vertically transmitted 

genotypes (HT and VT respectively) were as pathogenic (mean lethal 

concentration) as the HT genotype alone, whereas OB mixtures 

comprising 25:75% of each genotype and vice versa result in improved 

OB pathogenicity compared to the VT genotype. However, no significant 

differences were observed in speed of kill or OB production per larva 

between genotypes and their mixtures. 

8. In laboratory conditions, the ability to produce covert infections in S. 

exigua survivors of a sublethal dose of OBs was significantly higher using 

the VT genotype (90%) than the HT genotype (45%), whereas 

intermediate values of covert infections were observed using OB mixtures 

as inoculum. 

9. Under greenhouse conditions, the prevalence of covert infections in adult 

survivors of virus application was lower than that obtained under 

laboratory conditions. Covert infection increased with the proportion of the 

VT genotype in the inoculum mixture. This suggests that the use of 

appropriate combinations of VT and HT genotypes could maintain the 

insecticidal properties of the active ingredient and improve the prevalence 

of covert infections in insect survivors of baculovirus applications to crops. 

10. Greenhouse applications of 5 ×10
8
 OBs/l comprising 75% VT and 25% 

HT genotypes was as effective as a methoxyfenozide treatment in 

preventing pest damage to sweet pepper fruits. Therefore, the use of the 

75VT:25HT mixture was an effective crop protection method to control S. 

exigua and might contribute to extending the interval between applications 

of this product, although this requires additional field testing. 

11. In laboratory conditions, physiological stressors such as 0.1% copper 

sulfate, 1% iron sulfate and 1 ppm sodium selenite triggered covert virus 

infections into lethal polyhedrosis disease in 15, 12, and 41% of second 

instar larvae, respectively. However, when these compounds were tested 

under greenhouse conditions, little virus-induced mortality was observed 
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(1-3%). Consequently, these substances were not effective at activating 

covert virus infection under greenhouse conditions described in this 

assay.  
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Vertical transmission of the 

Spodoptera exigua multiple

nucleopolyhedrovirus and its 

application in biological control

The beet armyworm, Spodoptera exigua (Lepidoptera:

Noctuidae) is an important pest of pepper crops in Almería

greenhouses. Recently a baculovirus-based insecticide, which

provides better crop protection than conventional chemical

insecticides, has been developed to control this pest. However,

so far applications of baculovirus-based insecticides are almost

invariably based on inundative releases, similarly to chemical

products applications. The study of viral covert infections,

vertical transmission and their impact on successive host

generations shed some light on the basis of novel control

strategies to maximize the effectiveness of field applications by

improving the virus long-term effect on the host.




