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How animals evolved from a single-celled ancestor, transitioning from a
unicellular lifestyle to a coordinated multicellular entity, remains a fascinat-
ing question. Key events in this transition involved the emergence of
processes related to cell adhesion, cell–cell communication and gene
regulation. To understand how these capacities evolved, we need to recon-
struct the features of both the last common multicellular ancestor of
animals and the last unicellular ancestor of animals. In this review, we sum-
marize recent advances in the characterization of these ancestors, inferred by
comparative genomic analyses between the earliest branching animals and
those radiating later, and between animals and their closest unicellular rela-
tives. We also provide an updated hypothesis regarding the transition to
animal multicellularity, which was likely gradual and involved the use of
gene regulatory mechanisms in the emergence of early developmental and
morphogenetic plans. Finally, we discuss some new avenues of research
that will complement these studies in the coming years.

1. An overview of animal origins
Animals (Metazoa) are among the major groups of complex multicellular
organisms. They rely on a wide variety of differentiated cell types that are
spatially organized within physiological systems. At the same time, animal
cells perform specialized functions, and thus evolved the capacity to integrate
and coordinate them using tightly regulated developmental programmes.
However, we still do not know which genetic and mechanistic factors
underpinned the origin and evolution of animal multicellularity.

All extant animals living today diversified froma commonmulticellular ances-
tor, also known as the last common ancestor (LCA) of animals or the animal LCA
(box 1). The animal LCA evolved from a single-celled ancestor more than
600 million years ago (Ma), transitioning from a unicellular ancestral state to com-
plex multicellularity (box 1, figure 1a). By comparing the nature of these two
ancestral states—the lastunicellularancestorand theanimalLCA—wecanuncover
the major changes that drove the transition to animal multicellularity and create
new, testable hypotheses about the origin of animals. The questions are, then:
What were these two animal ancestors like? Was the last unicellular ancestor
very simple, or was it quite complex, establishing the foundations for cell differen-
tiation and multicellularity? And what was the animal LCA like? Was it simple,
gradually acquiring new developmental capabilities while diversifying into
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Box 1. Terminology used in this review.

Last common ancestor of animals (animal LCA):
The ancestral stage from which all animal phyla living today radiated. Reconstructed from features present in, and shared by,
extant animals. Undoubtedly presenting all the features shared by all animals, including complex, coordinated multicellular-
ity. Therefore, it can be classified as an animal.

Last unicellular ancestor of animals:
The single-celled ancestor immediately preceding the emergence of the first animal.

Complex multicellularity:
An assembly of cells displaying a three-dimensional organization and complex body plans arising from a centralized devel-
opmental programme.

Simple multicellularity:
An assembly of cells, including filaments, clusters, balls, sheets or mats, that arise via mitotic cell division from a single pro-
genitor or by aggregation of independent cells. Simple multicellularity can be found in prokaryotes and eukaryotes.

First animal:
First multicellular ancestor of all extant animals. Partly reconstructed from features shared between early diverging animal
lineages (i.e. sponges, ctenophores, placozoans and cnidarians), even if these features are absent from bilaterians. This ances-
tor lived subsequent to changes that led to the foundations of complex multicellularity in animals and is unlikely to be the
same as the animal LCA.

Animal stem:
The evolutionary lineage leading to all animals, from the common ancestor of animals and choanoflagellates (Urchoanozoan)
to the animal LCA. The subsequent transition from unicellularity to multicellularity occurred along the animal stem lineage.

Urmetazoa:
A term used in the literature, that is variously defined as the first animal, the animal LCA, or as an amalgam of the two. To
avoid confusion, we do not use this term in this review

Urchoanozoan:
The last commonancestorofanimals andchoanoflagellates. Itmayormaynotbe thesameasthe lastunicellularancestorofanimals.

Holozoa:
Eukaryotic group comprising animals, choanoflagellates, filastereans, ichthyosporeans and corallochytreans/pluriformeans.
The largest clade including Homo sapiens but not Neurospora crassa [1].

Last common ancestor of Holozoa (Holozoa LCA):
The ancestor shared by Metazoa, Choanoflagellatea, Filasterea, Ichthyosporea and Corallochytrea/Pluriformea.

Metacell:
In single-cell genomics, a subgroup of homogeneous scRNASeq profiles with only local variance relative to the total dataset,
useful for clustering and quantitative gene expression analyses [2]. Ultimately, it can be related to certain cell types, but only
upon experimental validation.

Cell type:
In its simplest definition, a cell type was defined as a unit of classification to distinguish forms of cells according to different
morphologies or phenotypes. Cell types are often related to different germ layers during the formation of the embryo, with
nerve and epithelial cells coming from the ectoderm, muscle and blood cells from the mesoderm, and gut cells from the endo-
derm [3–5]. Whereas vertebrate cell types are often defined by their committed fate and being unable to de-differentiate, cells
from early branching animals are known to transdifferentiate and change their cell types [6]. This has led to numerous revi-
sions of the concept at the functional, developmental, and even molecular (gene expression) level. Here, we use the term ‘cell
type’ as ‘a classification unit based on the combined observations of a cell morphology and gene expression profile, which is
driven by a gene regulatory network and can be repeatedly found within the context of a species’. These cell types can be part
of either a spatially or a temporally integrated life cycle.

Aggregative multicellularity:
One of the two known mechanisms for evolving multicellularity. Aggregative multicellularity is the result of two or more
independent and genetically distinct cells binding to or aggregating with each other. The resulting multicellular structure
consists of a heterogeneous population of cells, and it is often formed for the purpose of reproduction and dispersion
[7–9]. It has evolved repeatedly across different eukaryotic lineages [10–14].

Clonal multicellularity:
One of the two known mechanisms for evolving multicellularity. Clonal multicellularity arises through successive rounds of
cell division from a single founder cell (spore or zygote) with incomplete cytokinesis (i.e. division of the cytoplasm of the
parental cell into two daughter cells). It has appeared on fewer occasions and is responsible for the best-known radiations
of complex multicellular life forms in the tree of life: land plants, fungi and animals.
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Figure 1. Phylogenetic classification of animals and their unicellular relatives. (a) A timeline of different events during early animal evolution. The transition to
animal multicellularity, and therefore the origin of the first animals, occurred sometime at the end of the Tonian period, according to molecular clock estimates. The
oldest fossil or geological evidence of recognizable animals dates back to the Ediacaran period, with molecular clocks extending the emergence of different animal
phyla back to the Cryogenian [15–17]. Time units are million years ago (Ma). (b) Cladogram representing the major clades of the tree of animals and the major
groups of unicellular relatives of animals: choanoflagellates, filastereans, ichthyosporeans and corallochytreans/pluriformeans. Coloured nodes indicate different ances-
tors that we can reconstruct and that are important to understand the transition to animal multicellularity; the highlighted internal branch (from the Urchoanozoan
to the animal LCA) indicates the animal stem (see box 1; LCA = last common ancestor). Uncertain positions within the animal tree [18–23] and within Holozoa
[24–26] are represented with polytomies.
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different body plans, or was it already complex, creating the
genetic conditions for a successful animal diversification?

Recent data from a broad representation of animal species,
especially from non-bilaterian animals (sponges, ctenophores,
placozoans and cnidarians), and also from unicellular species
related to animals, have enabled us to better answer these
questions. Their genome content, gene regulatory capabilities
and biological features can be compared to reconstruct the cel-
lular foundations of animal evolution and infer the minimal
genomic complexity of both the last unicellular ancestor of ani-
mals and the animal LCA. Moreover, the advent of sequencing
technologies, such as single-cell omics, and the development of
genetic tools among unicellular relatives of animals are
opening new avenues of research for gene function studies,
pointing to an ever-expanding breadth of exciting questions
that will complement these inferences from a functional and
biological perspective.

In this review, we provide an updated reconstruction
of these two evolutionary stages that are key to better
understanding the transition to animal multicellularity: 1)
the last unicellular ancestor of animals and 2) the animal
LCA.We summarize current knowledge on the genetic toolkit,
cell-type diversity and ecological context of these ancestors,
inferred by comparative genomic analyses between animals
with their closest unicellular relatives and between the earliest
branching animals and those radiating later. On this basis, we
propose an updated hypothesis to explain the transition to
animal multicellularity, stressing that animal foundations
were laid before the origin of animals and that the gradual
complexification of genetic regulatory mechanisms was key
to the progressive acquisition of animal axial cell patterning
and cell-type identity. Finally, we discuss some of the research
areas that we predict will be key to studying animal origins in
the coming years.
1.1. Phylogenetic framework of animals and their
unicellular relatives

The reconstruction of any evolutionary event relies on a well-
supported phylogenetic framework. Thus, to infer the geno-
mic and biological features of the last unicellular ancestor
of animals and the animal LCA, the first step is to define
the evolutionary relationships between animals and between
animals and their closest relatives. The animal tree of life has
been deeply studied [18,27–31] (see [32] for a review), yet a
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consistent, well-supported phylogeny remains elusive. Some
areas of uncertainty remain, especially around the root of
Metazoa, due largely to choices made in different phylo-
genomic analyses, such as the genes selected, taxon
sampling used, the assembly of the phylogenomic data
matrix or the model of sequence evolution [18,31–33]. The
latter can contribute to violations of model assumptions,
known as systematic errors (e.g. long-branch attraction arte-
facts); these may also impact animal tree reconstruction
[31]. This lack of consensus on relationships between the ear-
liest branching Metazoa [18,19,31,33,34] has hindered the
reconstruction of certain metazoan traits [33,35]. For instance,
uncertainty regarding the position of Ctenophora or Porifera
as the sister group of all other animals has led to continued
debate regarding the origin and evolution of the nervous
system [18–23,33,36–40]. Nonetheless, the robustness of
other positions in the animal phylogeny allow us to infer
many other features of the animal LCA [33].

Until recently, we knew very little about the tree of life
surrounding animals, especially because a well-supported
phylogeny relies on the availability of well-annotated genome-
scale data and the placement of key taxa. In the last decade, the
genome sequencing of several unicellular species has improved
thephylogenetic frameworkofanimals andtheirunicellular rela-
tives [24,25,41–45]. Now we know that animals are closely
related to a heterogeneous assembly of unicellular lineages
known as unicellular holozoans, which together comprise the
Holozoa clade within the eukaryotic group Opisthokonta
(figures1band3;box1) [25,46–51].Theclosestunicellular lineage
to animals isChoanoflagellatea, a groupofmore than250 species
of spherical/ovoidheterotrophic flagellates (figure1b) [52]. Their
representatives, the choanoflagellates, have been linked to ani-
mals for over a century because of their morphological
resemblance to choanocytes, a specific cell type of sponges [53].
This similarity, together with the confirmation from molecular
phylogenies of their position as a sister group of animals (figures
1b and 3a,b) [47,48,52,54–59], has historically given rise to
hypotheses of animals evolving from a choanoflagellate-like
ancestor [60–63]. Molecular phylogenies have confirmed two
additional independent lineages within Holozoa: Filasterea
and Ichthyosporea (figure 1b). Filasterea is the sister group of
Choanoflagellatea andMetazoa, and is so far known to include
only five amoeboid andamoeboflagellate species (figures 1b and
3c,d) [25,26,48–50,55,64–71]. Ichthyosporea is the sister group to
the rest of Holozoa and is a diverse group of around 40 osmo-
trophic and saprotrophic protists (figure 1b and 3e,f ) [72–82].
Nevertheless, the addition of new species has left some uncer-
tainties in the holozoan phylogeny, which appears to be highly
sensitive to taxonomic sampling.

One open question concerns the position of the free-living
osmotroph Corallochytrium limacisporum (figures 1b and 3g)
[83]. Corallochytrium was previously classified as the sister
group to Ichthyosporea, forming a monophyletic group
named Teretosporea [24,25]. However, recent analyses
including the newly described predatory flagellate Syssomonas
multiformis (figure 3h) [26,70] grouped Corallochytrium and
Syssomonas together inanew independent cladenamedPlurifor-
mea, which branches between Filasterea and Ichthyosporea
(figure 1b) [26]. A similar case concerns the unresolved position
of the recently discovered Tunicaraptor unikontum, another pred-
atory flagellate closely related to animals [84]. Depending on the
taxon sampling used, T. unikontummay be sister to filastereans,
Filozoa (which includes the filasterean–choanoflagellate–animal
group), or itmay be the earliest branchingholozoan lineage [84].
Environmental surveys have also identified other putative
new species falling within or related to different unicellular
holozoan clades and even a potential novel lineage [85–93].
This indicates that there is still a substantial hidden diversity
within the Holozoa clade, which may affect our reconstruction
of the evolution of certain traits along the Holozoa stem.
We expect future studies will improve our understanding of
unicellular holozoan diversity and clarify the evolutionary
relationships of the tree surrounding animals. Nevertheless,
despite the previously mentioned conundrums in the Holozoa
phylogeny, we can still make inferences based on the current
data that we review in the following sections.
2. Reconstruction of the last unicellular
ancestor of animals and the last
common ancestor of animals

Under the Holozoa phylogenetic framework we can compare
the genomic and biological features between unicellular holozo-
ans andanimals and reconstruct the twokeyevolutionary stages
from which animals originated: the last unicellular ancestor of
animals and the animal LCA (see box 2 for clarification).

2.1. Reconstruction of the genomic features of the last
unicellular ancestor of animals and the last
common ancestor of animals

2.1.1. The genetic toolkit of the last unicellular ancestor of
animals

The nature of the last unicellular ancestor of animals can only
be reconstructed through comparative studies between
animals and their closest extant unicellular relatives, the unicel-
lular holozoans. In the last decade, multiple omics-scale
datasets have been generated from a broad representation of
unicellular holozoan species. We currently have 11 complete
genomes at our disposal [24,25,41–45] and around 30 tran-
scriptomes and proteomes of several species, including
representatives of each unicellular holozoan lineage
[24–26,42,45,51,84,96–101]. These datasets have allowed us to
identify the genomic features that are shared between extant
unicellular holozoans and animals, which are thus inferred to
be present in their last unicellular common ancestor.

Strikingly, the genomes of extant unicellular holozoans
indeed encode a large repertoire of genes that are homolo-
gous to genes critical for multicellularity-related functions
in animals [24–26,41,42,44,45,97,98,100–104]. These include
genes related to cell adhesion, signalling pathways and tran-
scriptional regulation (figure 2a) [95,122,123]. For instance, a
rich repertoire of genes related to cell adhesion in animals is
found in the genomes of several unicellular holozoans. These
include key genes mediating animal cell–cell adhesion, such
as cadherin domain-containing proteins or C-type lectins,
which are present in choanoflagellates and have a patchy dis-
tribution in other holozoans [84,97,105,124,125]. Integrins
and associated scaffolding proteins, which mediate animal
cell–extracellular matrix adhesion, are present in filastereans,
ichthyosporeans, C. limacisporum, S. multiformis and T. unikon-
tum [26,84,97,98,103,126]. Some choanoflagellate species also



Box 2. Was the first animal similar to the animal LCA?

The shared common multicellular ancestor from which all extant animals diversified (the animal LCA) may have not been the
same as the first animal (box 1). The first animal was the first multicellular ancestor of all extant animals, and likely gave rise
to other lineages that subsequently became extinct prior to the divergence of all modern animal lineages from the animal
LCA. Despite research being so far limited to the reconstruction of the animal LCA (and the different unicellular ancestors
of animals), we can partly reconstruct the first animal based on our current knowledge of the animal LCA and also from
features shared between early diverging animals. For instance, we can infer that the genetic toolkit of the first animal was
very rich in genes related to metazoan innovations, ranging from the cellular foundations of epithelial-like layers to
neuron-like signalling cells and occurrence of muscle-like contractile cells. Many animal-specific pathways and mechanisms
were thus largely complete in the animal LCA (similar to the observations about the cnidarian–bilaterian LCA by Putnam
et al. [94]), suggesting that they were also present in previous ancestral states, possibly even in the first animals (figure 1,
box 1). Similarly, based on our inferences of cell-type diversity in the animal LCA, those ancestors prior to the animal
LCA likely had the ability to regulate cell differentiation by means of hierarchical TF networks and distal regulation in differ-
ent cells within the multicellular collective, which translates to a certain degree of spatial cell differentiation possibly present
in the first animals. Rather than a drastic bloom of innovations, it is likely that gene expansion, co-option, increased regulat-
ory sophistication and a transition from temporal to spatial gene regulation had a crucial impact on the gradually increasing
complexity of the first animals ([95], and references within).

Currently, phylogenomic studies and analysis for the reconstruction of animal ancestors are limited by the data available
for such comparisons. For instance, genomic data on early branching animals is limited to a handful of species, which may or
may not be good representatives due to gene loss and rapid evolution. Likewise, our findings would be biased towards the
assumption of numerous innovations in the animal lineage unless we include other lineages in our comparisons. For these
reasons, studying the origin and evolution of animals requires us to sequence more early branching animal genomes, and just
as importantly, to expand our focus to other lineages outside Metazoa.
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possess a small subset of the integrin adhesome system
[97,98,103]. Moreover, other structural remodelling proteins,
such as fascin or Ezrin–Radixin–Moesin and some basal
lamina elements (i.e. collagen, laminin and fibronectin), are
present in a few unicellular holozoan species [84,98,106].
Choanoflagellates and T. unikontum also encode several
domains with affinity to the animal Ig-like domain families
[41,84,97]. Altogether, this indicates that several genes from
the animal cell adhesion machinery were already present in
the last unicellular ancestor of animals (figure 2a).

The genomes of unicellular holozoans also encode homol-
ogues of key metazoan intracellular signalling components
related to cell–cell communication, immunity and environ-
mental signal/response pathways. These include Notch,
Delta, receptor tyrosine kinases and homologues of the
animal Toll-like receptor genes (figure 2a) [97,107,125,
127–131]. By contrast, several upstream receptors and ligands,
such as the spatial signalling genesHedgehog,Wnt, TGF-β and
JAK from the JAK-STAT network, are absent in unicellular
holozoans and were likely absent from the last unicellular
ancestor of animals (figure 2a) [95]. A similar pattern is
observed among some members of the Myc–Max network
[132] and the Hippo signalling pathway [108]. For example,
in the latter case, some intracellular components are present
in Capsaspora owczarzaki, whereas their metazoan upstream
receptors Crumbs and Fat are animal specific [95,108]. Thus,
despite several upstream receptors and ligands evolving after
the transition to animal multicellularity, the last unicellular
ancestor of animals already encoded several components of
key metazoan signalling pathways (figure 2a).

A number of transcription factors (TFs) formerly thought
to be animal specific are also present in unicellular holozoans.
For example, several transcriptional activators of the pre-
viously mentioned Hippo signalling pathway and the
Myc–Max network are present in some unicellular holozoans
[100,108]. A few choanoflagellates and ichthyosporeans, as
well as Capsaspora and Corallochytrium, encode LIM Homeo-
box TFs [24,104]. Several unicellular holozoans also encode
homologues of key animal developmental TFs, such as nuclear
factor-κB, the p53/63/73 family, RUNX andT-box TFs, such as
Brachyury [84,95,102,109,133]. Interestingly, some of these TFs
already display the potential to participate in gene regulatory
networks (GRNs) well established inMetazoa, such as Brachy-
ury and Myc [100]. This indicates that the last unicellular
ancestor of animals already possessed a diverse repertoire
of TFs and some of them could potentially have had similar
regulatory roles to those found in animals (figure 2a).

Finally, a few unicellular holozoans also exhibit some of
the mechanisms that animals use to regulate TF recruitment
and gene expression. For example, some species encode
genes involved in the control of chromatin accessibility,
such as the histone acetyltransferase p300/CBP or many his-
tone post-translational modifiers [24,100]. In Capsaspora, life-
stage transitions are associated with changes of chromatin
accessibility in only the proximal cis-regulatory regions
[100]. In addition, its regulatory genome lacks animal promo-
ter types and signatures of animal enhancers, indicating that
Capsaspora cis-regulatory regions are small and proximal
[100]. Moreover, the first evidence for post-transcriptional
regulation of mRNA via miRNAs has been reported in
ichthyosporeans, as some species encode several miRNA
genes and homologues of the animal miRNA biogenesis
machinery (including Drosha and Pasha) [134]. This indicates
a unicellular origin of animal miRNAs and the associated
microprocessor complex [134]. Altogether, this suggests
that the last unicellular ancestor of animals likely followed
a primarily proximal gene regulatory strategy and used few
epigenomic mechanisms to control chromatin accessibility,
which potentially could also regulate transitions between
different life stages.

Thus, these findings indicate that the last unicellular
ancestor of animals had a gene-rich and regulatorily complex
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Figure 2. An inferred gene repertoire of the last unicellular ancestor and the last common ancestor of animals. (a) The reconstruction of the last unicellular ancestor
of animals is based on the presence of key metazoan genes in the genomes of unicellular relatives of animals. (b) Inferred gains present in the last common ancestor
(LCA) of animals. Yellow indicates genes that originated prior to the emergence of the Holozoa LCA (pre-holozoan origins); green, genes that originated in Holozoa
prior to the animal LCA (Holozoa origins); red, animal-specific genes that originated at the root of animals (animal origins). bHLH, basic helix–loop–helix tran-
scription factors; BRA, Brachyury; CSK, C-terminal Src kinase; DRFs, diaphanous-related formins; EPS8, epidermal growth factor receptor kinase substrate 8; ERM,
Ezrin–Radixin–Moesin proteins; GPCRs, G protein-coupled receptors; GSK3, glycogen synthase kinase 3; HD, homeodomain; MAGUKs, membrane-associated gua-
nylate kinases; MAPKs, mitogen-activated protein kinases; MEF2, myocyte-specific enhancer factor 2; NF-κB, nuclear factor-κB; PI3 K, phosphatidylinositol
3-kinase; RFX, regulatory factor X transcription factors; RTKs, receptor tyrosine kinases; STAT, signal transducer and activator of transcription; TALEs, three amino
acid loop extensions; TFs, transcription factors; TGFß, transforming growth factor beta. Data from [24,26,44,45,97,102,105–121].
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Figure 3. (Overleaf.) Temporally alternating life cycles of unicellular holozoans. Each panel shows life stage transitions of two unicellular holozoan species representing each
clade. Arrows indicate directionality of the transition. Loop arrows indicate cell division. Dotted arrows with question marks between stages indicate potential (unconfirmed)
life-stage transitions. (a) Life stages of the colonial choanoflagellate Salpingoeca rosetta [176,187]. The asexual life cycle (on the right) includes a single-celled sessile thecate
stage (adhered to the substrate), slow and fast swimming single-celled stages, and two types of clonal colonial stages (chain and rosette colonies), in which neighbouring cells
are linked by intercellular bridges [188–190]. Starvation triggers the S. rosetta sexual cycle (on the left), in which diploid cells (slow swimmers) undergo meiosis and recom-
bination, and the resulting haploid cells (which can also divide asexually) mate anisogamously [176,178]. (b) Life stages of the colonial choanoflagellate Choanoeca flexa [96].
Light-to-dark transitions induce C. flexa colonies to rapidly and reversibly invert their curvature while maintaining contacts among neighbouring cells between their collar
microvilli, alternating between two colony conformations. In response to light, colonies exhibit a relaxed (flagella-in) feeding form. In the absence of light, colonies transition to
an inverted (flagella-out) swimming form. (c) Life stages of the filasterean Capsaspora owczarzaki [64,65,98]. In the trophic proliferative (filopodial) stage, cells are amoebae
adhered to the substrate, extending several long, thin actin-based filopodia. These amoebas can detach from the substrate and actively aggregate in the aggregative or ‘multi-
cellular’ stage, producing an extracellular matrix that presumably binds them together. In response to crowding or stress, cells from both the amoeba and the aggregative stages
can encyst by retracting the filopodia into a cystic or resistance stage. (d ) Putative life stages of the filasterean Pigoraptor vietnamica [26,70]. Swimming flagellated cells can
form long, thin, sometimes branching filopodia that can attach to the substrate. Flagellated cells can sometimes present wide lobopodia. Flagellated cells can retract the
flagellum and become roundish, to either divide into two daughter flagellated cells or transition to a cystic stage. This can, in turn, produce two flagellated daughter
cells. Cells can also form easily disintegrating aggregations of cells and feed jointly. The life stages of Pigoraptor chileana are very similar to the ones of P. vietnamica,
but P. chileana shows a much reduced capability to produce filopodia and lobopodia (both stages are extremely rare in P. chileana). (e) Life stages of the ichthyosporean
Creolimax fragrantissima [45,77]. Single-nucleated amoebae disperse until they settle and encyst. The rounded cell undergoes multiple rounds of synchronous nuclear division
(coenocytic division) without cytoplasmic division. Nuclei are later arranged at the periphery of the cell as a large central vacuole grows. Finally, the coenocyte cellularizes and
new amoebas are released to start the cycle over again. ( f ) Life stages of the ichthyosporean Sphaeroforma arctica [99,180]. Single-nucleated cells undergo multiple rounds of
synchronous nuclear division (coenocytic division) without cytoplasmic division. Nuclei are later arranged at the periphery of the cell. Finally, the coenocyte cellularizes, releasing
a number of daughter cells to start the cycle over again. (g) Life stages of the corallochytrean Corallochytrium limacisporum [22,83,191]. Reproduction in C. limacisporum occurs
mainly through binary fission (99% of the cases), during which a binucleated cell divides into two, symmetrical, uninucleate cells. Binucleate cells can form two lobes that can
lead to cellular division (forming two monoucleate cells), or can reverse towards spherical cells. At this point (*), cells can transition to coenocytic growth (1% of the cases) and
continue dividing their nuclei further forming quadrinucleated cells. Quadrinucleated cells can often form a clover-like shape (similar to bilobed cell), that generates either four
mononucleate cells or returns to spherical shape and further divides to an eight, 12 and up to 32 nuclei coenocyte. Coenocytes can release dispersive amoebas to start the cycle
over again. (h) Putative life stages of the pluriformean Syssomonas multiformis [26,70]. A swimming flagellated cell can temporarily attach to the substrate through the anterior
part of the cell body or move to the bottom and transform to an amoeboflagellate form by producing bothwide lobopodia and thin short filopodia. Flagellated cells can lose the
flagellum via different modes and transition into an amoeba stage, which produces thin, relatively short filopodia. Both amoeboflagellate and amoeba stages can transition
back to the flagellate stage. Amoeboid cells can also encyst by retracting their filopodia and rounding the cell body. Palintomic divisions may occur in the cystic stage to release
several flagellated daughter cells. Flagellated cells can partially merge and form temporary shapeless cell aggregates of both flagellated or non-flagellated cells and rosette-like
colonies composed by only flagellated cells (showing outwards-directed flagella). In richmedium, solitary flagellated cells can sometimes actively merge and form a syncytium-
like structure, which undergoes budding and releases flagellated daughter cells.
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genome. Some of the genes that were already present
in the last unicellular ancestor are important for animal
multicellularity-related functions, especially those involved
in differential gene regulation (e.g. TFs and signalling
pathways), cell adhesion (e.g. cadherins and integrins), cell-
type specification, cell cycle and immunity (figure 2a)
[34,97,122]. Nevertheless, these inferences are based on a
still limited number of currently available genomes, the
gene content of which varies considerably between unicellu-
lar holozoan species and lineages [41,42,97]. We expect to
continue elucidating the genetic toolkit of the last unicellular
ancestor of animals as more genomic data are available for
more unicellular holozoans in the coming years.

2.1.2. The genetic toolkit of the last common ancestor of animals

The genetic toolkit of the animal LCA can be reconstructed by
comparing the genomes of extant animals. However, com-
parisons between extant animals and unicellular holozoans
can also yield valuable insights into reconstructing the geno-
mic features of the animal LCA [33,34,95]. Specifically, those
features that are shared between unicellular holozoans
and animals, which are traced back to the last unicellular
ancestor of animals (see §2.1.1), can also be inferred to be
present in the animal LCA (figure 2). For example, cadherins
(molecules mediating cell–cell interactions), integrins
(mediating cell–extracellular matrix interactions) and
some basal lamina elements are shared between unicellular
holozoans and most animals and are thus inferred to be
present both in the last unicellular ancestor of animals
and the animal LCA (figure 2) [20,22,94,135–137]. The
same happens with several of the aforementioned com-
ponents related to key intracellular signalling pathways
and TFs (figure 2) [24–26,41,42,44,100,102]. Thus, the animal
LCA also possessed key genes related to cell adhesion,
signal transduction and transcriptional regulation that evolved
in a unicellular context (see §2.1.1, figure 2).

Other features that are well conserved between unicellular
holozoans and some animal lineages but absent in some early
branching animals can also be traced back to the animal LCA
[33,123]. For example, the hedgling cadherin family is
inferred to have been present in the last unicellular ancestor
of animals, as it is present in the genomes of some choanofla-
gellates, sponges and cnidarians (figure 2a) [33,41,42,138,139]
but is absent in ctenophores, placozoans and bilaterians
[33,105,138,139]. Similarly, Toll-like receptors are found in
several choanoflagellate species and in nearly all bilaterians
and cnidarians but are absent in placozoans and ctenophores
and incomplete (i.e. partial domain architectures) in sponges
[97,140,141].

Lastly, those features exclusively shared between bilater-
ian and non-bilaterian animals but absent from unicellular
holozoans can be inferred to be present in the animal LCA.
These features can be considered key animal innovations
and can help identify the set of genes and mechanisms that
evolved to support the fundamentals of animal multicellular-
ity. Strikingly, most of these genes are enriched in functions of
DNA binding, signalling pathways and innate immunity, as
well as cell adhesion and cytoskeletal regulation [34,97,110].
For example, a key animal innovation includes the emergence
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of several new classes of TFs [102,110,133]. Some of these new
TF classes include ETS, SMAD, nuclear receptor, Doublesex
and interferon-regulatory factor TFs [110,133]. As impor-
tantly, other TF families which expanded along the animal
stem (see box 1 for a definition) greatly enhanced the regulat-
ory capabilities of the first animals. These include members
of the homeobox TF family, such as Pax, Sox, basic helix–
loop–helix and zinc-finger TF families [110,133]. Thus, the
foundations of the animal TF toolkit were already integrated
in the animal LCA (figure 2b).

Components of key signalling pathways also originated
along the animal stem and are inferred to be present in the
animal LCA. The first example includes the Wnt signalling
pathway, which orchestrates cell–cell communication-
mediated cooperation, specialization and polarity during
animal development. For instance, frizzled, dishevelled and
β- and δ-catenins are inferred to have been present in the
animal LCA. Some of these members are indeed expressed
among early branching animals, such as in sponge larvae,
during cnidarian development, and in several structures of
both adult sponges and adult ctenophores [136,141–145].
Others are present only in a few highly derived taxa
[146,147]. Another key signalling pathway that evolved at the
root of Metazoa includes the developmental TGF-β signalling
pathway. Although its core components showamore scattered
distribution between lineages and species across the animal
tree, it is also inferred to be present in the animal LCA
[20,22,141]. Similarly, many other animal signalling pathways
which expanded along the animal stem (including those
responsible for patterning in bilaterians and innate immunity)
are present in early branching animal lineages, despite also
being patchily distributed and incomplete in some species
[34,141,148]. For instance, there is abundant evidence of
innate immunity components occurring in different animal
lineages, from Toll-like and Ig receptors to TFs and comp-
lement system in sponges and cnidarians [140,141,149–151].
Thus, the animal LCA already contained a rich repertoire of
genes related to key animal signalling pathways. These key
animal-specific acquisitions, especially related to members of
the Wnt and TGF-β signalling pathways, are considered hall-
marks of animal development and the acquisition of stable
multicellularity [34,97,143,145,152].

Several genes related to cell–cell adhesion and cytoskeletal
regulation also emerged at the onset of Metazoa and are
inferred to be present in the animal LCA. These include, for
example, Dystroglycan, Hemicentin, Fermitin [97] and the
multifunctional Espin gene (figure 2b) [153,154]. Other com-
ponents related to adherens junctions and cell polarity
functions are fairly well conserved in sponges [105,136,155]
with some homologues missing in ctenophores [156].

Finally, those features absent from unicellular holozoans
and most non-bilaterian animals are more difficult to infer
as present in the animal LCA [33,35]. An example includes
the reconstruction of genes critical to the development and
physiology of the nervous system [37,39,40,94]. Interestingly,
some relevant genes are present in sponges, despite the
apparent absence of a nervous system in this group
[136,141]. By contrast, ctenophores lack neurotransmitters of
the canonical nervous system toolkit present in other animals
[20], leading some authors to hypothesize a parallel evolution
of the nervous system in this lineage [39,40]. Nevertheless,
some observations indicate that early branching animals
could use this ‘simpler’ nervous system to communicate
information about their microbiomes [157,158], sharing a
common origin of the foundations of the neural and the
immune systems at the functional level. A similar scattering
pattern is observed with genes related to the development
of germ layers. Ctenophores possess an independently
derived mesodermal tissue, despite their lack of key bilater-
ian mesoderm specification genes [20,22,159]. This suggests
that the regulatory mechanisms necessary for establishing
early fates in layers of cells (such as the muscle cells in the
ctenophore-specific mesoderm) were present before the emer-
gence of bilaterians. If we consider ctenophores as the earliest
branching animal lineage, then these mechanisms would
likely have been present in the animal LCA. Thus, although
the origins of the nervous system and of developmental pro-
cesses remain elusive, the relevant toolkit may have existed in
a simpler form in the animal LCA and later evolved into
more specialized and complex systems in different lineages
during animal diversification.

Overall, the emergence and expansion of key TFs and
members of several signalling pathways (such as Wnt and
TGF-β), as well as the evolution of elements involved in
innate immunity, development and cell adhesion, were critical
acquisitions that originated in the animal LCA. These systems
may have helped establish the foundations of axial patterning
and the acquisition of stable multicellularity in animals.

2.1.3. Major forces shaping the evolution of animal genomes

Which major evolutionary mechanisms shaped the evolution
of animal genomes during the transition from unicellularity
to multicellularity? Previously, the innovation of some
genes key to animal multicellularity was considered the
most important driving force for the origin of animals. And
indeed, a relatively large number of novel gene families
(around 2000), which take part in processes that differentiate
animals from other lineages, originated in the animal stem
lineage [34,42,44,97,160]. However, only around 2% of these
gene families are conserved across animal phyla, indicating
that most genes originating in the animal LCAwere seconda-
rily lost in extant phyla [34,97]. Some studies estimate that the
rate of gene innovation in or immediately prior to the animal
LCA was larger than at other points of the animal stem. This
suggests a high gene birth rate at the onset of animals which
progressively decreased as animals diversified into clades
[34,161]. Other studies estimate approximately equal num-
bers of gains and losses, finding evidence for a burst of
gene family expansions in the last unicellular ancestor of ani-
mals stem (box 1), and an accelerated churn (i.e. both gains
and losses, rather than only gains) of gene families that
later evolved along the Metazoa stem [97,162]. In fact, a simi-
lar number of gene losses and gains are detected in animals
compared to their unicellular relatives, mostly affecting path-
ways such as amino acid biosynthesis and osmosensing
[34,97]. This points to a high turnover of genes and the poten-
tial for increased genomic plasticity during the diversification
of animals, implying that a remarkable amount of gene losses
and gene innovation contributed to shaping the genome
composition of animals [34,97,161,163–165].

As discussed in previous sections, analyses of the genomes
of extant unicellular holozoans have revealed that they indeed
share an unexpectedly large repertoire of multicellularity-
related genes with animals; these genes are therefore inferred
to have been present both in the last unicellular ancestor of
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animals and in the animal LCA (figure 2) [24–26,41,42,44,
45,97,98,100–104]. For instance, approximately one-quarter of
the genes shared between animals and their unicellular
relatives were already present in the LCA of Opisthokonta
or gained at the root of Holozoa (figure 1a and box 1). This
suggests that gene co-option of these pre-existing ancestral
genes to perform new or specialized functions was an impor-
tant driving force for animal origins [24,25,41,42,44,45,
97,102,125,166].

The changes in gene content mentioned above were facili-
tated in part by two major genome expansions that
contributed to gene family expansion and diversification in ani-
mals [161]. Gene family expansion and diversification
specifically led to changes in the regulatory capacities of animals
[34,97,110,133]. For instance, several classes of TFs also
expanded to give rise to new families at the onset of Metazoa
(see §2.1.2) [102,110,133]. This expansion of TFs in terms of
classes and families triggered the rewiring and integration of
some pre-existing core regulatory networks into more complex
regulatory programmes during animal evolution [100,133]. In
parallel, the evolution of non-codinggenes and novel epigenetic
mechanisms, such as the appearance of developmental promo-
ters and distal enhancer elements, also increased cis-regulatory
complexity in the animal stem lineage [100]. Finally, an
additional level of acquired transcriptomic regulatory complex-
ity, including alternative splicing events by exon shuffling, exon
skipping or intron retention [24,167], also contributed to novel
sources of transcriptomic innovation [24,168–171].

Overall, the evolution of animal genomes from a unicellular
ancestor was made possible through a combination of ancient
gene families with newly evolved genes in the animal stem
lineage, shaped by an unbalanced distribution of gene gain
and duplications, rampant gene family losses, gene co-option,
gene family expansion and subfunctionalization (especially of
several key TFs). The emergence of novel GRNs (especially
distal regulatory elements such as enhancers and chromatin-
structural modifications) was then a key mechanism for the
evolution of animal genomes from a unicellular ancestor
[24,25,34,41,42,44,45,97,100,102,110,125,136,161,166,172–174].

2.2. Reconstruction of the biological features of the last
unicellular ancestor of animals and last common
ancestor of animals

2.2.1. Potential lifestyles of the last unicellular ancestor of
animals

Besides analyses of their genomes, comparisons of unicellular
holozoans’ biological traits can also provide a comprehensive
reconstruction of the cellular foundations of the last unicellu-
lar ancestor of animals. In recent years, the lifestyles and cell
biology of several unicellular holozoan species have been
characterized at the transcriptomic and morphological level
[24–26,42,45,51,70,84,96–99,175–180]. Strikingly, each unicel-
lular holozoan lineage features unique and distinctive traits
that have changed our understanding of the biological
nature of the last unicellular ancestor of animals.

For example, choanoflagellates are widely distributed
worldwide in a range of primarily aquatic environments
[89,181–186]. Despite being mostly unicellular flagellates,
some species, such as Salpingoeca rosetta, are able to form
simple multicellular structures of stably adherent cells as a
result of oriented cell divisions from a single founder cell
(figure 3a, box 1) [61,187]. Under certain conditions, S. rosetta
flagellate cells are also able to transdifferentiate into
amoeboid cells [192]. Other species, such as the recently
described Choanoeca flexa, are able to form enormous cup-
shaped colonies (figure 3b) [96]. Notably, these colonies rever-
sibly invert their curvature in response to light through a
rhodopsin-cGMP pathway, representing a similar behaviour
to concerted movement and morphogenesis in animals [96].

Filastereans are found in freshwater, marine and animal-
associated environments [25,26,50,55,64–68,70,71]. Like choa-
noflagellates, some filasterean species are able to form simple
multicellular structures. But, in contrast to the clonal colonies
found in choanoflagellates, these are formed through the
active aggregation of independent cells (figure 3c,d, box 1)
[26,67,98]. The best-described species, Capsaspora owczarzaki,
has three different life stages, including an aggregative
stage; these stages are differentially regulated at the transcrip-
tomic, proteomic and phosphoproteomic levels (figure 3c)
[65,98,100,101]. Others, such as Pigoraptor spp., are morpho-
logically very plastic and are able to transition from
amoeba and amoeboflagellate stages to cysts and aggregates
of cells (figure 3d ) [26,70].

Ichthyosporeans are found in commensal, mutualistic or
parasitic relationships with aquatic (both freshwater and
marine) and terrestrial animals. Most of them have been
directly isolated from different animal tissues, especially guts
of molluscs and arthropods [73,76–79]. Some species exhibit
distinct phenotypes, such as motile pseudopodia, hyphal or
plasmodial structures [76]. Ichthyosporeans also present a
broadly conserved developmental mode consisting of large,
multinucleated spherical or ovoid coenocytes that sometimes
release multiple spherical propagules or motile limax-shaped
amoebas by cellularization of the internal nuclei (figure 3e,f )
[76–78,99,180,193]. Intriguingly, at least one of these species
appears to generate a self-organized polarized layer of cells
in the course of cellularization (figure 3f ) [180].

Members of the Corallochytrea/Pluriformea group and
T. unikontum also exhibit complex behaviours and develop-
mental modes, sometimes resembling those observed in
ichthyosporeans and filastereans. For example, C. limacis-
porum, is a small spherical free-living osmotroph originally
isolated from marine coral reefs with a still unresolved com-
plex developmental mode (figure 3g) [25,83]. Usually, cells
undergo binary cell division but occasionally cell division
occurs by coenocytic development followed by the release of
propagules or limax-shaped amoebas, similar to ichthyospor-
eans (figure 3g) [83,191]. Syssomonasmultiformis is a freshwater-
dwelling predatory flagellate that feeds on large eukaryotic
prey [26,70]. Similar to the filasterean Pigoraptor sp., it also
has a complex developmental mode that includes amoebofla-
gellate, amoeboid cells, motile swimming cells, spherical
cysts and sometimes clusters of multiple cells (figure 3h)
[26,70]. Finally, T. unikontum is a marine free-living preda-
tory flagellate that also feeds on eukaryotic prey [84]. Besides
its flagellate form, solitary cells temporarily aggregate into
flagellated or non-flagellated cell clumps as observed in
S. multiformis or the filasterean Pigoraptors spp. [84].

This diversity of phenotypes observed in each unicellular
holozoan lineage, and the evidence of temporarily regulated
life-stage transitions among some of their representatives
[42,45,98,100], indicate that the last ancestral unicellular state
was probably relatively plastic, rather than a simple
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unicellular entity (figure 4a) [95,123]. The last unicellular
ancestor of animals could probably sense environmental
stimuli and respond by transitioning to different cell stages
(figure 4a,b). Its life cycle could have included a differentiated
sedentary filter-feeding or heterotrophic life stage (most likely
bacterivorous), and a proliferative stage, possibly including
dispersive forms. It could also have included cysts or resist-
ance forms and at least one multicellular stage. These
distinct cell stages could have been regulated via temporal
gene regulatory programmes, which in turn controlled life-
stage transitions. Thus, the data gathered among unicellular
relatives of animals suggest that the last unicellular ancestor
of animals likely presented a complex life cycle integrating dis-
tinct transient cell identities, or states, and likely included a
multicellular state exhibiting the spatial coexistence of differ-
ent labile cell types. Future studies will provide deeper
insights into whether the temporal regulation of these distinct
labile cell types or stages in the last unicellular ancestor could
have gradually evolved into spatio-temporal differentiation of
cell types in the animal stem lineage. In fact, recent and
ongoing efforts are investigating whether the multicellular
structures exhibited in various unicellular holozoan species
are formed by distinct cells coexisting in those multicellular
stages (at the morphologic and genetic level) ([188,189,191];
S. R. Najle 2021, personal communication). If this is indeed
the case, then it would suggest that spatio-temporal differen-
tiated cell types might have been present in the last
unicellular ancestor of animals.

2.2.2. Potential lifestyles of the last common ancestor of animals

Comparative analyses between unicellular holozoans and ani-
mals also allow us to reconstruct the biological and ecological
features of the animal LCA. In this case, those features
inferred to be present in the animal LCA include traits pre-
dicted to have evolved along the animal stem. For example,
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the animal LCA was likely aquatic and featured obligate,
clonal multicellularity [122,123]. Importantly, the animal
LCA likely presented cell–cell communication-mediated
cooperation, specialization and polarity, allowing the spatial
distribution of labour between distinct coexisting cells. Each
cell type (box 1) was specialized to perform a different role
within the whole organism, with molecular features resem-
bling those seen in the main cell types of extant animals
[122]. For instance, each cell type would also have their own
sets of expressed genes used in different processes (e.g. con-
traction, secretion, signalling and reception), regulated by
well-defined genetic programmes (a set of TFs and other
specific regulatory mechanisms). This implies that some
genes would be expressed by certain cell types but not others
(i.e. each cell type expresses a limited number of genes encoded
in the genome). The genome partitioning into functional mod-
ules accessed by different cell types reflects an increase in
regulatory mechanisms to determine diverse cell fates [38].

From our previous ancestral gene content reconstruction,
we can also predict that the animal LCA featured cell–cell
adhesion using cadherins, cell–ECM adhesion through integ-
rin-related proteins, and orchestrated collective movement by
cell contractility [123]. It also had the capacity to sense the
environment, communicate between cells via synapse-like
pathways and employ an epithelium-like cell layer used in
part to capture bacterial or eukaryotic prey as a food source
[122,123]. Moreover, it probably reproduced sexually using
sperm and eggs, thus differentiating distinct gametes through
spermatogenesis and oogenesis (i.e. oogamy) [122,123].
Finally, the animal LCA likely presented a form of develop-
mental processes through mechanisms of cell division, cell
differentiation and invagination present in all animals
[122,123]. Such diversity of cell types and complex organiz-
ation was in turn regulated by a diverse set of TFs and
epigenomic machinery involving distal regulation, and the
initial steps of development likely involved coordinated sig-
nalling through members of the Wnt and TGF-β pathways,
paving the path to spatial distribution of labour among coexist-
ing cells. Thus, we can conclude that the animal LCA was
already rich in cell types which share some of their cellular
foundations with those found in extant species.
3. Our current perspective on the origin of
animals

The updated reconstruction of the genomic and biological
features of both the last unicellular ancestor of animals
and the animal LCA have allowed us to identify key features
and major forces shaping animal evolution. In past, this
identification was restricted by the limited information
on the evolutionary relationships of animals and other
eukaryotes. For instance, classical studies compared animals
with unicellular organisms like yeast and designated features
absent from yeast as potentially key to the origin of animals
[194,195]. Now we know that such an approach was
far from ideal due to the long evolutionary distances separ-
ating these lineages. In recent years, we have seen this
perspective gradually changing with the study of animals’
closest unicellular relatives and their comparison to early
branching animals, as discussed in previous sections.
In addition, numerous studies have increased our knowledge
of the environment in which animals originated and
diversified. These studies have allowed us to rethink the con-
text and major forces that drove the transition to animal
multicellularity.

3.1. The ecological context of the transition
External factors and ecological triggers were possibly as
important as genomic changes during animal evolution [34].
One example is the biogeochemical context in which animals
originated and diversified. Some of the potential ecological
triggers include changes in ocean chemistry, such as the avail-
ability of iron and copper [196–201] or the great oxygenation
event that occurred around 700 Ma [202] (although some
authors argue the latter was not as critical: [203,204]). As mul-
ticellular organisms, the origin of animals could also have
been influenced by all the advantages derived from being
multicellular. For example, the emergence of new ecological
niches [205] and selection for multicellularity as an escape
from predation were also potential driving forces for the
origin of animals [206,207] (but see also [208]).

The ecological context might have also had an impact on
animal evolution, such as in shaping animal feeding modes
and morphological features [209]. For instance, animals
evolved in an environment teeming with bacteria and other
eukaryotes, and have lived in close association with these
organisms throughout their subsequent evolutionary history.
Indeed, host-associated microbiota can actually regulate
development and gut morphogenesis in animals [157]. In
this context, being in a close relationship with bacteria
could have impacted animal evolution by requiring a
system of cell communication to harbour bacterial symbionts
and commensals, and a defence system to deal with bacterial
pathogens. Interestingly, bacterial interactions are also
observed among the closest unicellular relatives of animals,
especially among choanoflagellates. For instance, rosette
development in the choanoflagellate S. rosetta is known to
be triggered and enhanced by a bacterial sulfonolipid
[42,61,177,187,210]. Bacterial lipids also regulate developmen-
tal switches both activating and inhibiting rosette formation
in S. rosetta [177]. This is not the sole example of environ-
mental bacteria playing a key role during its life stages
transitions, as S. rosetta is also capable of sexually reprodu-
cing upon induction by a bacterial chondroitinase
[176–178]. Interestingly, the S. rosetta sexual cycle is induced
by a bacterial species that also regulates light-organ
development in a squid [211]. Numerous studies in other
choanoflagellates highlight the role of bacterial interactions
[179,212]. An example is Salpingoeca monosierra, a new choano-
flagellate species harbouring the first known choanoflagellate
microbiome [213]. Salpingoeca monosierra forms large colonies
of more than 100 µm in diameter (more than an order of mag-
nitude larger than those formed by S. rosetta) and harbour
around 10 bacterial symbionts within a single colony [213].
Overall, the ecological context during animal evolution was
also key for the transition to multicellularity. Living in an
environment teeming with bacteria likely provided the foun-
dations of animal-associated microbiomes and the origin of
animal interactions with microorganisms.

3.2. The origin of animals
Besides the ecological context, former biological definitions of
animals involved the capacity for cell coordination at the
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multicellular level, the presence of spatial cell differentiation
and a coordinated developmental plan starting from a
single cell. Thus, theories explaining the origins of animals
involve the acquisition of mechanisms necessary to generate
epithelium-like multicellular structures. Further studies and
comparisons revealed that the mechanisms underpinning
these features likely developed in the stem lineage of animals,
building upon pathways and features present in their unicel-
lular ancestors [24,25,45,95,98,100,122,123]. Thus, some
revised theories proposed the acquisition of spatial regulation
as one of the main drivers of the origin of animals, in contrast
to the temporal regulation of cell types exhibited by their
unicellular relatives [214,215].

We here propose an updated review of which changes
might have been key to the emergence of animals
(figure 4). To start with, in our view, multicellular structures
with different labile cell types coexisting were likely present
prior to the origin of animals. We envision an initial scenario
of an ancestral organism with a complex ontogeny and tem-
poral regulation of different transient life stages, as proposed
in Zakhvatkin [215] and revised in Mikhailov [214]
(figure 4a–c). Each stage consisted of different cell types
using distinct pathways to perform specific roles, such as sub-
strate attachment, feeding, swimming and mating. One of
those stages was a multicellular structure likely originating
through clonal division, displaying spatial coexistence of
different, non-committed cell identities driven by unique gen-
etic programmes of transdifferentiation (figure 4b,c). In this
temporal multicellular stage, different functions (feeding,
motion and secretion) occurred simultaneously as they were
performed by different cells. Thus, we propose that spatial
regulation itself was present in the last unicellular ancestor
of Metazoa.

Below, we speculate about some aspects that may have
played a key role in the origin of animals, in relation to
some of their features and in no particular order, and
always in the context of incremental complexity discussed
in this review.

3.2.1. Increased genomic innovation and co-option of
pre-existing elements

The origin of animals was accompanied by increased geno-
mic innovation, including many new, rapidly evolving and
subsequently widely conserved genes. These genes encoded
proteins known to have regulatory functions in animal multi-
cellularity: gene regulation, signalling, cell adhesion and cell-
cycle regulation. Nevertheless, co-option of and regulatory
changes in pre-existing elements present among unicellular
holozoans set the foundations for further gene family expan-
sions and diversifications. This in turn contributed to an
increased layer of regulation for cell-type specification in
the animal stem lineage, and likely played a major role in
the events discussed below.

3.2.2. Progressive acquisition of axial patterning and cell-type
identity

As previously proposed, the last unicellular ancestor of ani-
mals had a mixture of labile cell types coexisting in the
same entity (figure 4b,c) [95]. However, analyses have so far
not yet shown conclusive evidence that unicellular relatives
of animals have specific arrangements of differentiated cell
types when forming a multicellular structure. The last unicel-
lular ancestor of animals was likely able to respond to
external cues in a changing environment thanks to the signal-
ling and genome regulatory mechanisms discussed above
(figure 4b,c). Co-option of such genes for spatial cell signal-
ling between neighbouring cells might have led to the
ability to integrate positional information from within the
organism. The pathways in question would involve the trig-
gering of adjustable, non-binary responses, as in animal
morphogens, and at least one mechanism of genome regu-
lation determining different phenotypes. One potential
candidate could be the Wnt/β-catenin signalling pathway,
known to regulate the anteroposterior axis of the body plan
even in early branching animals [142,144]. A primary axis
likely arose as a result of spatial separation between different
groups of cells. These primary axes could have provided a
nucleating architecture for the different cell types to arrange
and may have led to the formation of simple morphogenetic
plans [95]. With this, spatial coordination of cells came to be
equally important to define different functions in the organ-
ism, rather than just individual coexisting cells.

The integration of temporally regulated and spatially
coexisting cell types could have contributed to a gradual
regionalization of functions that in turn fostered the emer-
gence of morphogenetic programmes (figure 4d–f ) [95].
Flexible cell identity (and in turn GRNs) became less depen-
dent on external factors, leading to a certain commitment of
cell fate (figure 4e). This might have occurred through
GRNs becoming more linked or dependent on signals
within the organism, thereby overriding the freedom of the
cell to respond to its environment by transdifferentiation.
The emergence of cell types would allow selection to operate
at the level of individual cells in terms of collective fitness,
constituting a fine-tuning of within-group selection [216].
Inherently, the emergence of multicellular structures might
have enhanced the differences between cells in different
regions of this multicellular entity [217]. Thus, the transition
to animal origins likely involved the progressive integration
of GRNs and a gradual regionalization of functions, allowing
the establishment of different spatially coexisting cell types.

3.2.3. Emergence of a conjoined gene regulatory programme of
fertilization and multicellular development

Animals produce very distinct kinds of gametes. Gamete
fusion determines initial polarity and triggers the develop-
mental programme in animal eggs [218,219], meaning that
in earlier stages of animal evolution it could have served as
an early trigger for asymmetric cell division, generation of a
rudimentary axis and establishment of cell fates. During
development and throughout the animal’s life, animal cells
are able to proliferate in response to signals from within the
organism by controlling entry into the cell cycle. The set of
Capsaspora cell cycle regulators shares some traits with
those of animals, with some conserved TFs related to prolifer-
ation as well as the timing of expression of cell cycle
checkpoint genes [100,220]. However, unicellular holozoans
lack the genes required to trigger cell cycle progression in
response to extracellular signalling in animals [220–222]. So
far, we do not know of any unicellular holozoan where the
formation of the multicellular stage is linked to the fusion
of gametes. At some point along the stem lineage leading
to animals, an ancestor with the ability to both generate a
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multicellular morphogenetic plan through axial patterning
and perform sexual reproduction likely integrated these
two programmes in a single developmental plan (figure 4).

3.2.4. Relegation of unicellular stages in favour of a multicellular
stage

The origin of animals likely involved a long, gradual evol-
utionary process rather than a single evolutionary leap,
paving the way to animal multicellularity by coupling com-
plex development, sperm–egg fusion and serial cell division
in parallel with the integration of spatial cell differentiation
[95,123]. The multicellular stage could have prevailed over
the unicellular stage by favouring escape from predators,
enhanced resource exploitation and relaxation of ecological
constraints due to increases in the availability of some nutri-
ents. The relegated unicellular stages could have later become
simple forms for dispersion, or gametes, as the emerging
properties concomitant with multicellularity, like the division
of labour, could have led the multicellular stage to thrive as a
proliferative stage [95].
4. New avenues of research into animal
origins

The improved phylogenetic framework of animals and their
unicellular relatives along with the sequencing of various
omics-scale datasets has allowed an updated reconstruction
of the genomic and biological features of both the last unicel-
lular ancestor of animals and the animal LCA. These
comparative studies have also highlighted various evolution-
ary mechanisms as important driving forces for the origin of
animals. For instance, we now know that co-option of ances-
tral genes into new functions; expansion of pre-existing GRNs
combined with the emergence of novel genomic regulatory
strategies; and the progressive acquisition of spatio-temporal
cell-type identities, were probably key for animal evolution.
Nevertheless, many questions are still left unanswered, and
further studies are needed to fully understand how those
mechanisms might have impacted the transition to animal
multicellularity.

For example, many genes critical for animal multicellular-
ity-related functions have homologues in unicellular
holozoans, but we still do not understand the function of
these homologues in non-metazoans. In addition, some
genes underwent duplications along the animal stem lineage,
and their functions prior to duplication (and sub- or neofunc-
tionalization) are not known. The functions of these genes in
extant unicellular holozoans are not necessarily identical to
those in the unicellular ancestors of animals; nevertheless,
understanding their function in a unicellular context is essen-
tial to fully address the role of co-option during the
unicellular-to-multicellular transition. In this regard, the
development of genetic tools among unicellular holozoans
is crucial to fully understand the function of these genes of
interest and assess to which extent the unicellular holozoan
orthologues perform similar or different functions in a unicel-
lular context [223]. In recent years, our joint efforts have
successfully developed transfection in several unicellular
species representing all major unicellular Holozoa clades
[191,193,224–227]. This tool has already provided some
insights into the cell biology of several unicellular holozoans.
For instance, transfection in the choanoflagellate S. rosetta
allowed the first in vivo characterization of septins, a major
class of cytoskeletal proteins [225]. Interestingly, the S. rosetta
septin orthologue localized to the basal poles of the cells,
resembling the localization of septins in animal epithelia
[225]. Transient transfection in the filasterean C. owczarzaki
revealed the three-dimensional organization of filopodia and
actin bundles in live cells [224]. In the ichthyosporean Creoli-
max fragrantissima, transient transfection allowed tracing of
nuclear divisions in a growing cell in vivo, and revealed that
these divisions were strictly synchronized [193]. Moreover,
two gene silencing strategies using RNA interference by
small interfering RNAs (siRNA) and morpholinos have also
been developed in C. fragrantissima [193]. This tool has been
used to analyse the function of c-Src kinase animal homologue
throughout its life cycle, and revealed that an existing tyrosine-
specific phosphatase was potentially co-opted for the role
of Src regulation in the highly reduced kinome of
C. fragrantissima [131,193]. Finally, transfection has also been
recently developed for two additional unicellular holozoan
species: the ichthyosporean Abeoforma whisleri [227] and the
corallochytrean C. limacisporum [191,228]. Both species can be
transiently transfected with fluorescently tagged reporter cas-
settes containing endogenous genes, using the same approach
developed in S. rosetta [191,225,227]. Indeed, C. limacisporum
transfectants can also be stably maintained using antibiotic-
based selection, a strategy that has allowed the reconstruction
of the life cycle ofC. limacisporum with an unprecedented level
of detail [191].More recently, CRISPR/Cas9-mediated genome
editing tool has been developed for S. rosetta, opening newave-
nues of research for gene function studies using reverse
genetics [226]. Under this scenario, we expect future efforts
to be invested in two main directions. First, towards taking
advantage of the tools developed to investigate the function
of key animal ‘multicellularity-related’ genes, such as those
involved in animal cell adhesion, cell communication or tran-
scriptional regulation, in the aforementioned unicellular
holozoan species. And second, towards developing genetic
tools in a broader representation of unicellular holozoan
species to continue expanding the functional platform of
experimentally tractable systems to address animal origins.

Another important pending question concerns genome
regulation in a wider representation of unicellular holozoan
species. Until now, our inferences have been based on the
analysis of the regulatory genome of only one single species,
the filasterean C. owczarzaki [100]. Based on this study, we
inferred that the last unicellular ancestor of animals probably
followed a primarily proximal gene regulatory strategy, lacking
some animal promoter types and signatures of animal enhan-
cers [95,100]. However, we still need to characterize the
genomic regulatory landscape of other unicellular holozoan
species to accurately infer the regulatory capability of the last
unicellular ancestor and fully understand how genome regu-
lation evolved during the origin of animals. Thus, we expect
future research to be directed to comparatively investigate the
epigenome (including chromatin accessibility and regulatory
dynamics, and transcription factor networks) of additional
species representing other unicellular holozoan clades (i.e.
choanoflagellates, ichthyosporeans and corallochytreans). This
will allow for a more comprehensive reconstruction of the regu-
latory capabilities of the last unicellular ancestor of animals;
address whether metazoan-like distal regulation was or was
not an animal innovation; and also provide mechanistic
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insights into the evolution of genome regulation during the
unicellular-to-multicellular transition.

We also still do not know how animal cell types appeared
nor whether spatial cell differentiation was already estab-
lished in a unicellular context. Although analyses in the
filasterean C. owczarzaki revealed that some of the mechan-
isms required for animal spatial cell differentiation were
already present in the last unicellular ancestor of animals
[100], it has been assumed that spatial cell differentiation
per se evolved at the Metazoa stem. However, we still have
not investigated whether the multicellular structures exhib-
ited by unicellular holozoans are indeed composed of
morphologically and genetically identical cells or, on the con-
trary, they are composed of distinct cell types. Recently, the
tridimensional reconstruction of rosette colonies in the choa-
noflagellate S. rosetta has unexpectedly revealed that cells
within rosette colonies exhibit spatial cell disparity, varying
significantly in cell size, shape and nuclear and mitochon-
drial content [188,189]. In parallel, microscope observations
in other unicellular holozoan species, such as in the filaster-
ean C. owczarzaki, have also pointed to at least different cell
morphologies within the same multicellular structure
(S. R. Najle 2021, personal communication). This indicates
that unicellular holozoan colonies may not be just formed
from the assemblage of identical single cells, but they may
subsequently differentiate into distinct cell types displaying
morphological modifications and, potentially, genetic modifi-
cations. Thus, we expect future studies to be directed towards
analysing cell-type diversity at the genetic and morpho-
logic level across the multicellular structures of several
unicellular holozoan species representing major unicellular
Holozoan clades. The integration of newly developed
single-cell techniques will indeed provide a unique opportu-
nity into these studies as they can allow to detect novel,
undiscovered cell types and signatures of cell-type specific
gene expression profiles [2,229–233]. Moreover, molecular
data at a single-cell resolution from several animal taxa,
especially among non-bilaterian animals (i.e. sponges, comb
jellies and placozoans) [229–232], will also complement
these studies from a comparative perspective to address
animal cell-type evolution.

Finally, we also predict future research to be directed
towards isolating and characterizing under-studied unicellu-
lar holozoan species. Particularly, those species falling within
or related to different known unicellular holozoan clades
identified from molecular environmental data, and those
related to potential novel unicellular holozoan clades [86].
First, because the discovery of new unicellular holozoan
species will clarify the evolutionary relationships of the tree
surrounding animals. And second, because their huge diver-
sity of morphologies, lifestyles and genetic repertoires will
help us continue refining the genome content and biological
features of both the last unicellular ancestor of animals and
the animal LCA.
In the coming years, the development of emerging model
systems among unicellular holozoans combined with the use
of modern research tools will allow us to fully address these
new outstanding questions with an unprecedented level of
detail. We look forward to seeing advances in this field as
we are now entering an exciting era in the study of the
origin of animals.
5. Concluding remarks
In recent years, a vast body of knowledge from molecu-
lar omics has provided not only a better phylogenetic
framework of animals and their closest unicellular
relatives but also a better understanding of the evolutionary
history of genes key to animal multicellularity. To further
expand this knowledge, we must aim to improve our
understanding of the closest unicellular relatives of animals
from different perspectives. For instance, more genome
sequences are needed to better pinpoint the origin of
some genes key to animal multicellularity. Moreover,
functional studies of some proteins would allow us to
understand how they could have been co-opted. Efforts
at the taxonomic level should also allow the identification
and isolation of more unicellular holozoan species.
Likewise, studying their biology through cell biological
and developmental approaches might help to uncover
additional aspects of their temporal multicellular stages and
their potential homology to similar structures in animals.
Finally, the recent establishment of genetic tools in those
taxa also promises to contribute to this end. Overall,
we believe the years ahead of us will be crucial to better
understand this transition and we find ourselves excited
about, but most importantly eager to begin, unravelling the
origins of animals.
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