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Abstract A Lehmer number is a composite positive integer n such that φ(n)|n − 1. In this paper, we
show that given a positive integer g > 1 there are at most finitely many Lehmer numbers which are
repunits in base g and they are all effectively computable. Our method is effective and we illustrate it
by showing that there is no such Lehmer number when g ∈ [2, 1000].
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1. Introduction

Let φ(n) be the Euler function of the positive integer n. Clearly, φ(n) = n − 1 if n is a
prime. Lehmer [4] (see also [3, Problem B37]) conjectured that if φ(n)|n − 1, then n is
prime. To this day, no counter-example to this conjecture has been found. A composite
number m such that φ(m)|m − 1 is called a Lehmer number. Thus, Lehmer’s conjecture
is that Lehmer numbers do not exist, but it is not even known if there should be at most
finitely many of them.

Given an integer g > 1, a base g repunit is a number of the form m = (gn−1)/(g−1) for
some integer n � 1. We will refer to such numbers simply as repunits without mentioning
the dependence on g. It is not known whether, given g, there are infinitely many repunit
primes. When g = 2 such primes are better known as Mersenne primes. In [5], it was
shown that there is no Lehmer number in the Fibonacci sequence. Here, we use some ideas
from [5] together with finer arguments to prove the following results. In what follows, we
write un = (gn − 1)/(g − 1).

Theorem 1.1. For each fixed g > 1, there are only finitely many positive integers n

such that un is a Lehmer number, and all are effectively computable.

Theorem 1.2. There is no Lehmer number of the form un when 2 � g � 1000.
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2. Preliminaries

For a prime q and a non-zero integer m we write νq(m) for the exponent of q in the
factorization of m. We start by collecting some elementary and well-known properties of
the sequence of general terms un = (gn − 1)/(g − 1) for n � 1.

Lemma 2.1.

(i) un = gn−1 + · · · + g + 1. In particular, un is coprime to g.

(ii) The sequence un satisfies the linear recurrence

u1 = 1, un = gun−1 + 1, n � 2. (2.1)

(iii) If d|n, then ud|un.

(iv) Let q be a prime. If q|n, then q|φ(un).

(v) Let q be a prime not dividing g. If q|n, then νq(un−1) � νq(uf ) � νq(uq−1), where
f is the order of g modulo q.

(vi) If un is a Lehmer number, then (un, g − 1) = 1.

Proof. Parts (i) and (ii) are obvious. For (iii), we observe that

un =
gn − 1
g − 1

=
(gd)n/d − 1

gd − 1
gd − 1
g − 1

= ((gd)(n/d)−1 + · · · + 1)ud.

(iv) If q = 2, then un � u2 = g + 1 > 2; therefore φ(un) is even. Assume now that q is
odd. Let p be a prime which divides uq. Then, gq ≡ 1 (mod p), so the order of g modulo
p is 1 or q. If it is q, then q|p − 1|φ(uq). Since by (iii) we know that uq|un, we get that
q|φ(uq)|φ(un), which is what we wanted. Assume now that the order of g modulo p is 1
for all primes p dividing uq. Let us show that this cannot happen. If it could, then p|g−1
for all such primes p. Since also p|uq, we have

0 ≡ uq ≡ gq − 1
g − 1

= gq−1 + · · · + g + 1 ≡ 1 + · · · + 1 + 1 ≡ q,

where all congruences above are modulo p. Thus, p|q, and therefore p = q. Hence, uq = qα

for some positive integer α. However, writing g − 1 = qλ with some positive integer λ,
we get

uq = (1 + qλ)q−1 + (1 + qλ)q−2 + · · · + (1 + qλ) + 1

≡ (1 + (q − 1)qλ) + (1 + (q − 2)qλ) + · · · + (1 + qλ) + 1(mod q2)

≡ q + qλ((q − 1) + · · · + 1)(mod q2)

≡ q + 1
2q2(q − 1)λ(mod q2)

≡ q(mod q2).

In the above chain of congruences, we have used the fact that q is odd, and therefore
(q − 1)/2 is an integer. The above argument shows that q‖uq; hence, α = 1. So, uq = q.
However, we clearly have uq � 2q − 1 > q, which is a contradiction.
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(v) We may also assume that q|un−1, otherwise νq(un−1) = 0 and the first inequality
is clear. Now gn−1 ≡ 1 (mod q), and so f |n − 1. We now write

un−1 = ((gf )(n−1)/f−1 + · · · + 1)uf .

The quantity in brackets above is not divisible by q since it is congruent to (n − 1)/f

modulo q and q|n. Thus, νq(un−1) � νq(uf ) � νq(uq−1), where the last inequality follows
because f |q − 1; so, uf |uq−1 by (iii).

(vi) Suppose that q is a prime dividing both un and g − 1. We then have that g ≡ 1
(mod q) and un = gn−1 + · · ·+1 ≡ n (mod q). Thus, q|n. By (iv), we know that q|φ(un).
Since un is a Lehmer number, we know that φ(un)|un−1 = gun−1. Since q divides g−1, it
cannot divide g; therefore, q|un−1. Hence, q|un −un−1 = gn−1, which is not possible. �

In the next lemma, we gather some known facts about Lehmer numbers.

Lemma 2.2.

(i) Any Lehmer number must be odd and square-free.

(ii) If m = p1 · · · pK is a Lehmer number, then K2K

> m.

(iii) If m = p1 · · · pK is a Lehmer number, then K � 14.

Proof. (i) If m > 2, then φ(m) is even, and since φ(m)|m − 1 we get that m must be
odd. If p2|m, then p|φ(m), and since φ(m)|m − 1 we have p|m − 1, which is not possible.
Part (ii) was proved in [6], while part (iii) was proved in [2]. �

Lemma 2.3. Theorems 1.1 and 1.2 hold when g is even.

Proof. Note that

2K |(p1 − 1) · · · (pK − 1) = φ(un)|un − 1 = gun−1.

We observe that if g is even, then un−1 is odd. In that case, we have

K � ν2(φ(un)) � ν2(gun−1) = ν2(g), (2.2)

implying, by Lemma 2.2 (ii), that

gn−1 < un < K2K � (ν2(g))2
ν2(g) � (ν2(g))g.

Thus,

n � 1 +
⌊

g log(ν2(g))
log g

⌋
.

For Theorem 1.2, we observe that ν2(g) � 9 for any g � 1000, and we obtain a contra-
diction from (2.2) and Lemma 2.2 (iii). �
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From Lemma 2.1 (i), we see that if g is odd and n is even, then un is even, so
Lemma 2.2 (i) shows that un cannot be a Lehmer number. From now on, we shall assume
that both g and n are odd and larger than 1 and that un = (gn − 1)/(g − 1) is a Lehmer
number. We also keep the following notation:

n = qα1
1 · · · qαs

s , where 2 < q1 < · · · < qs, (2.3)

are primes and α1, . . . , αs are positive integers, and

un = p1 · · · pK , where 2 < p1 < · · · < pK , (2.4)

are also primes.

3. Proof of Theorem 1.1

3.1. Primitive divisors

Let (An)n�1 denote a sequence with integer terms. We say that a prime p is a primitive
divisor of An if p|An and gcd(p, Am) = 1 for all non-zero terms Am with 1 � m < n.

In 1886, Bang [1] showed that if g > 1 is any fixed integer, then the sequence (An)n�1

of nth term An = gn − 1 has a primitive divisor for any index n > 6.
We will apply this important theorem to our sequence un.

Lemma 3.1. If d > 1 is odd, then ud has a primitive divisor pd. Furthermore, pd ≡
1(mod 2d).

Proof. We revisit the argument used in Lemma 2.1 (iv). We write vn = gn − 1. It is
well known that gcd(vn, vm) = vgcd(n,m). Observe also that

vd

v1
= ud = gd−1 + · · · + 1 ≡ d(mod g − 1).

Therefore, if d is a prime not dividing g − 1, then vd has primitive divisors. If d > 2
is a prime dividing g − 1, then the above argument, or the argument from the proof of
Lemma 2.1 (iv), shows that gcd(vd, v1) is a power of d. Write g − 1 = dλ and observe
that

vd

v1
= (1 + dλ)d−1 + (1 + dλ)d−2 + · · · + 1

≡ (1 + (d − 1)dλ) + (1 + (d − 2)dλ) + · · · + 1

= d + dλ((d − 1) + (d − 2) + · · · + 1) (mod d2)

≡ d + 1
2d2(d − 1)λ(mod d2) ≡ d (mod d2).

Thus, d‖vd/v1, and therefore

vd

dv1
=

1
d
(gd−1 + · · · + 1) > 1
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is an integer coprime to v1, so vd again has primitive divisors. Thus, v3 and v5 (and, of
course, v1 if g > 2) have primitive divisors. The fact that vd has primitive divisors for all
odd d � 7 follows from Bang’s result.

We now note that if p is a primitive prime divisor of vd for d > 1, then gd ≡ 1 (mod p),
and d is the order of g (mod p). Indeed, for if not, then f < d and p|vf , contradicting
the fact that p is primitive for vd. So, d|p− 1, and since d is odd, we get that d|(p− 1)/2.
Thus, p ≡ 1(mod 2d).

Since a prime factor of g − 1 cannot be a primitive divisor for vd except for d = 1,
we deduce that if d > 1, then the primitive prime divisors for vd are exactly those of
ud = vd/(g − 1), and we get the first assertion of the lemma. �

In what follows, for a positive integer m we use ω(m) and τ(m) for the number of
prime divisors and the total number of divisors of m, respectively.

Lemma 3.2. If un is square-free, n is odd and (un, g − 1) = 1, then

log
(

un

φ(un)

)
<

ω(n)
2q

(
1 + log

(
q log g

log(2q + 1)

))
+

τ(n) − 2
2q2

(
1 + log

(
q2 log g

log(2q2 + 1)

))
,

where q is the smallest prime dividing n.

Proof. We write Pd = {p is primitive prime divisor for ud}. We shall first prove that∏
:=

∏
1<d|n

∏
p∈Pd

p = un.

To prove the above formula, we observe that if p|ud and p � g − 1, then p ∈ Pd for some
divisor d > 1 of n. Since un is square-free, we have that un|

∏
. On the other hand, the

sets Pd are disjoint, and if p ∈ Pd, then p|ud|un. Thus,
∏

|un.
Now, since un is square-free,

φ(un) =
∏

1<d|n

∏
p∈Pd

(p − 1),

and then

log
(

un

φ(un)

)
<

∑
d|n
d>1

∑
p∈Pd

1
p − 1

.

Since all the primes p ∈ Pd are congruent to 1(mod 2d), we have

Sd :=
∑

p∈Pd

1
p − 1

� 1
2d

#Pd∑
j=1

1
j

� 1
2d

(1 + log #Pd).

To bound the cardinality of Pd, we observe that (2d + 1)#Pd � ud < gd, so

#Pd <
d log g

log(2d + 1)
.
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We observe that d � q and if d is not a prime, then d � q2. Then∑
1<d|n

Sd =
∑
d|n

d prime

Sd +
∑
d|n

d composite

Sd

� ω(n)
1
2q

(
1 + log

(
q log g

log(2q + 1)

))
+ (τ(n) − 2)

1
2q2

(
1 + log

(
q2 log g

log(2q2 + 1)

))
.

�

3.2. Bounds for q1 and τ (n)

Recall that we keep the notation from (2.3) and (2.4).

Lemma 3.3. If un is a Lehmer number and n is odd, then

τ(n/qi) � 1
2αi(αi + 1)τ(n/qαi

i )

� νqi(φ(un))

� νqi
(gun−1)

�
{

νqi(g) if qi|g,

νqi
(uqi−1) if qi � g

(3.1)

for all i = 1, . . . , s.

Proof. Lemma 3.1 implies that for each divisor of n of the form qα
i d with 1 � α � αi

and d|(n/qαi
i ), the divisor uqα

i d of un has a primitive prime factor pqα
i d ≡ 1(mod dqα

i ). In
particular, qα

i |pdqα
i

− 1, and the primes pdqα
i

are distinct as d ranges over the divisors of
n/qαi

i . Thus,

q
(1+···+αi)τ(n/q

αi
i )

i

∣∣∣∣ ∏
1�α�αi

∏
d|n/q

αi
i

(pdqα
i

− 1)
∣∣∣∣ ∏

p|un

(p − 1) = φ(un)|un − 1|gun−1,

which gives the two central inequalities. The first inequality is trivial and the equality
holds when αi = 1. When qi|g, the last inequality follows from Lemma 2.1 (i), while
when qi � g, then νqi(gun−1) = νqi(un−1), and we apply Lemma 2.1 (v) to get the desired
conclusion. �

Lemma 3.4. Let un be a Lehmer number with both n and g odd. If qi >
√

g, then

τ(n/qi) � qi − 2.

Proof. If qi|g and qi >
√

g, then νqi(g) = 1, and Lemma 3.3 gives

τ(n/qi) � νqi
(g) = 1 � qi − 2. (3.2)

If qi � g, then, again by Lemma 3.3, we have

τ(n/qi) � νqi(uqi−1).
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Observe that
uqi−1|gqi−1 − 1 = (g(qi−1)/2 − 1)(g(qi−1)/2 + 1).

Since qi cannot divide both factors above, we have that

τ(n/qi) � νqi(g
(qi−1)/2 + ε) for some ε ∈ {−1, +1}.

If τ(n/qi) � qi − 1, then

qqi−1
i � q

τ(n/qi)
i � g(qi−1)/2 + 1 � (q2

i − 1)(qi−1)/2 + 1, (3.3)

and we get a contradiction for qi > 3, because

qqi−1
i = ((q2

i − 1) + 1)(qi−1)/2

and the expression on the right is larger than (q2
i − 1)(qi−1)/2 + 1 except when qi = 3.

Finally, if qi = 3, the only odd g < q2
i with qi � g are g = 5 and g = 7. But in both cases

we have τ(n/3) � ν3(u2) � 1 � qi − 2, which completes the proof of this lemma. �

Lemma 3.5. Let un be a Lehmer number with both n and g odd. Then

q1 � max{√
g, 19}. (3.4)

Proof. Assume that the above inequality does not hold. Then q1 � 23, g � q2
1 − 1,

and since q1 >
√

g we can apply Lemma 3.4 to deduce that τ(n) � 2τ(n/q1) � 2q1 − 4.
We also observe that τ(n) � 2ω(n), so ω(n) � log(2q1 − 4)/ log 2.

Since un is a Lehmer number, we have that 2 � un/φ(un). Now Lemma 3.2 and the
bounds above give

log 2 <
log((2q1 − 4)/ log 2)

2q1

(
1 + log

(
q1 log(q2

1 − 1)
log(2q1 + 1)

))

+
2q1 − 6

2q2
1

(
1 + log

(
q2
1 log(q2

1 − 1)
log(2q2

1 + 1)

))
,

which is false for q1 � 23. �

For a given value of g, Lemma 3.5 gives us our bound for q1 and then this is used
in Lemma 3.3, since τ(n) � 2τ(n/q1), to give a bound for τ(n). Observe also that
ω(n) � log τ(n)/ log 2.

3.3. The conclusion of the proof of Theorem 1.1

Since we have already proved that both s = ω(n) and τ(n) are bounded by effectively
computable constants depending only on g, in order to conclude the proof of Theorem 1.1
it is enough to prove that all the primes qi with i = 1, . . . , s are also bounded by effectively
computable constants depending on g. We shall prove this by induction on i = 1, . . . , s,
observing that this has already been achieved for i = 1. Let i � s − 1 and assume that
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qi has been bounded. Put Qi =
∏j=i

j=1 q
αj

j . There are only finitely many possibilities for
this number. We put gi = gQi , ni = n/Qi and rewrite the condition that un is Lehmer
as

aφ

(
gQi − 1
g − 1

gni
i − 1
gi − 1

)
= un − 1 =

gQi − 1
g − 1

gni
i − 1
gi − 1

− 1

with some integer a � 2. We put wm = (gm
i − 1)/(gi − 1) for the sequence of repunits in

base gi. Then, since un is square-free, we get that

aφ(uQi
)φ(wni

) = uQi
wni

− 1,

and therefore

a
φ(uQi)

uQi

=
wni

φ(wni)
− 1

uQiφ(wni)
. (3.5)

The left-hand side takes only finitely many values, which are all effectively computable.
Assume that it takes some value δ � 1. Then

wni − 1 < wni − 1
uQi

= δφ(wni) � φ(wni),

which is a contradiction. Thus, it remains to study the case when the right-hand side
of (3.5) is greater than 1. Let δi > 1 be the smallest possible value larger than 1 of the
left-hand side of (3.5). Clearly, this is effectively computable. We then get

δi <
wni

φ(wni)
.

We observe that wni is a sequence similar to un but the new value of g is gi = gQi

and the new value of n is ni = n/Qi. Thus, the smallest prime factor of ni is qi+1.
We also note that τ(ni) = τ(n/Qi) < τ(n), which is bounded, and that ω(ni) < ω(n).
Finally, we observe that (wni , g

Qi − 1) = 1; otherwise, since (wni , g − 1) = 1, the number
un = (gQi − 1)wni/(g − 1) would not be square-free.

We now apply Lemma 3.2 to obtain that

log δi <
ω(ni)
2qi+1

(
1 + log

(
Qiqi+1 log g

log(2qi+1 + 1)

))
+

τ(ni) − 2
2q2

i+1

(
1 + log

(
Qiq

2
i+1 log g

log(2q2
i+1 + 1)

))
.

(3.6)
Hence, log δi � (log qi+1)/qi+1, where the constant implied by the Vinogradov symbol
� above depends only on g, implying that qi+1 must be bounded by some effectively
computable constant depending only on g. This concludes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

We assume that g is odd and that 3 � g � 999, so that 3 � q1 � 31 by Lemma 3.5.

Claim 4.1. The fact that νq1(uq1−1) � 5 can be checked with Mathematica. In
particular, by Lemma 3.3, we have that if q1 � g, then νq1(φ(un)) � 5.
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Claim 4.2. τ(n/q1) � νq1(φ(un)) � 6 and s � 3.

Suppose first that q1|g. Then, by Lemma 3.3,

τ(n/q1) � νq1(φ(un)) � νq1(gun−1) = νq1(g) �
⌊

log g

log q1

⌋
�

⌊
log 1000

log 3

⌋
= 6.

In the above expression, in fact, νq1(g) < 6 unless (q1, g) = (3, 729). Then, for any q1,
by Claim 4.1, either q1 = 3 and τ(n/q1) � 6, or τ(n/q1) � 5. In particular, τ(n) �
2τ(n/q1) � 12, which shows that s � 3.

Claim 4.3. s � 2.

Let us see that indeed for our particular case we cannot have s = 1. If this were so,
then n = qα1

1 . Then each prime factor pj of un is primitive for some divisor d > 1 of n,
which is a power of q1 (again, this is because gcd(un, g − 1) = 1). Thus, pj ≡ 1(mod q1)
for all j = 1, . . . , K, showing that νq1(φ(un)) � K � 14 (see Lemma 2.2 (iii)), which
contradicts the fact that νq1(φ(un)) � 6. Hence, s � 2.

Claim 4.4. α1 = 1 except when (α1, q1, g) = (2, 3, 729).

As in the proof of Theorem 1.1, again set Q1 = qα1
1 . By Lemma 3.3 and the fact that

s � 2, we have

α1(α1 + 1) � α1(α1 + 1)
2

τ(n/qα1
1 ) � νq1(φ(un)).

By Claims 4.1 and 4.2, we know that νq1(φ(un)) � 5, except when (α1, q1, g) = (2, 3, 729).
So, α1 = 1 except for this case.

Note that, at any rate, since s � 2, it follows that 2 � τ(n/q1) � νq1(guq1−1). A
computation with Mathematica revealed 431 possibilities for the pairs (q1, g) in our
range satisfying νq1(guq1−1) � 2.

Claim 4.5. q2 � 19.

The smallest left-hand side of (3.5) computed over all the 432 possible pairs (Q1, g) has
δ1 > 1.49 (it was obtained for g = 809, Q1 = q1 = 3 and a = 2, for which the obtained
value is greater than 1.495). Of course, we did not factor all the numbers of the form
(gQ1 − 1)/(g − 1). If q1 = 31, then the smallest prime p1 ≡ 1(mod q1) is 311. The number
K of prime factors of u31 therefore satisfies

K <
log uq1

log p1
<

3 · 31 · log 10
log 311

< 38;

hence,

a
φ(uq1)

uq1

� 2(1 − 1
311 )37 > 1.7.

Similarly, using the fact that when q1 = 29 and 23 the first two primes congruent to
1(mod q1) are 59 and 233, and 47 and 139, respectively, and

3 · 29 · log 10
log 233

< 37 and
3 · 23 · log 10

log 139
< 33,
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we have that

a
φ(uq1)

uq1

� 2 min{(1 − 1
59 )(1 − 1

233 )36, (1 − 1
47 )(1 − 1

139 )32}

> 1.55,

whenever q1 ∈ {23, 29}. Thus, we have factored only the numbers uQ1 with Q1 � 19. We
now use inequality (3.6) for i = 1 to obtain

log(1.49) <
ω(n1)
2q2

(
1 + log

(
Q1q2 log g

log(2q2 + 1)

))
+

τ(n1) − 2
2q2

2

(
1 + log

(
Q1q

2
2 log g

log(2q2
2 + 1)

))
.

If q1 > 3, then Q1 = q1 � 31. If q1 = 3, then Q1 = q2
1 = 9. Thus, Q1 � 31 in both cases.

We also saw in Claims 4.1 and 4.2 that τ(n1) � τ(n/q1) � 6, so also ω(n1) � 2. Hence,

log(1.49) <
1
q2

(
1 + log

(
31q2 log 999
log(2q2 + 1)

))
+

2
q2
2

(
1 + log

(
31q2

2 log 999
log(2q2

2 + 1)

))
,

and this inequality does not hold when q2 � 23.

4.1. The conclusion of the proof of Theorem 1.2

So far, we have shown that 3 � q1 < q2 � 19. The argument showing that α1 = 2
except if (q1, g) = (3, 729) now shows that α2 = 1. We are now able to show that s = 2.
Indeed, if it were not so, then we would have both τ(n/q1) � 4 and τ(n/q2) � 4. A
quick computation with Mathematica shows that while there are pairs (q, g) such that
νq(guq−1) � 4 in our ranges, there is no odd g in [3, 999] that has the above property
with respect to two different primes 3 � q1 < q2 � 19. Thus, either n = q1q2 or n = 9q2

and g = 729. To test these last possiblilites, we proceeded as follows. First we detected
all pairs (n, g) with n = q1q2 with 3 � q1 < q2 � 19 and odd g ∈ [3, 999] such that
νqi

(gun−1) � 2 holds for both i = 1, 2. There are 2043 such pairs. For each one of these
we checked that ν2(un−1) < 14. Similarly, when Q1 = 9 and g = 729, the only possibility
for q2 in our range such that νq2(uq2−1) � 2 is q2 = 11, but in this case n = 99 and
ν2(un−1) = 1 < 14. This finishes the proof of Theorem 1.2.
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