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Bivalve molluscs stand out for their ecological success and their key role in the functioning
of aquatic ecosystems, while also constituting a very valuable commercial resource. Both
ecological success and production of bivalves depend on their effective immune defence
function, in which haemocytes play a central role acting as both the undertaker of the
cellular immunity and supplier of the humoral immunity. Bivalves have different types of
haemocytes, which perform different functions. Hence, identification of cell
subpopulations and their functional characterisation in immune responses is essential
to fully understand the immune system in bivalves. Nowadays, there is not a unified
nomenclature that applies to all bivalves. Characterisation of bivalve haemocyte
subpopulations is often combined with 1) other multiple parameter assays to determine
differences between cell types in immune-related physiological activities, such as
phagocytosis, oxidative stress and apoptosis; and 2) immune response to different
stressors such as pathogens, temperature, acidification and pollution. This review
summarises the major and most recent findings in classification and functional
characterisation of the main haemocyte types of bivalve molluscs.

Keywords: granulocyte, hyalinocyte, immune response, haematopoiesis, phagocytosis
1 INTRODUCTION

Marine invertebrates constitute the largest group of macroscopic species in the sea (1). The phylum
Mollusca is the second most diverse group of animals after Arthropods; among them, Bivalvia class
is the second largest group of Mollusca that is worldwide distributed (2). They are often the major
macrofauna on rocky substrates of littoral, shallow sub-littoral and deep-sea vents (3, 4). Bivalve
molluscs are abundant in marine and freshwater ecosystems and perform important ecological
functions. Bivalves have epifaunal or infaunal lifestyles and they are largely filter feeders that couple
the water column and benthos. This filter-feeding habit adds greatly to their ecological significance
in that bivalves are important calcium and carbon accumulators, they link primary producers
(bacteria and phytoplankton) with higher organisms in aquatic food chains and are responsible for
filtration of the water body (5, 6). Therefore, bivalve molluscs stand out for their fundamental role in
the functioning of the aquatic ecosystems, impact nutrient cycling, create and modify habitat, and
affect food webs (6). Moreover, they are used as environmental monitors because of the materials
org April 2022 | Volume 13 | Article 8262551
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accumulated in their soft tissue and shells (7). Most bivalves, as
sessile aquatic organisms, are exposed to an environment in
continuous confrontation with pathogenic organisms and
stressful conditions, such as dynamic variation in temperature,
salinity and prolonged desiccation; so that throughout the
evolution, these organisms have developed an array of effective
strategies to protect themselves from the attacks of fast-evolving
pathogens and environmental stresses, which has allowed them
to obtain a high adaptation capacity to the different
environments in which they live (8–11). In addition, both
climate change and environmental pollution significantly affect
the health of molluscs, potentially reducing the capacity of the
bivalve immune system and increasing susceptibility to diseases
(12–18). Altogether, the evolutionary ecological success of
bivalves, showing a considerable resilience and occupying
niches in a wide range of aquatic environments, is largely due
to a robust, effective and multifaceted immune system which
incorporates cellular and humoral components (8–11).

Hence, immune responses in bivalves and the processes that
govern them, are important areas of active research. These
immunological processes are centrally coordinated by a group
of cells known as haemocytes which may act directly or in
concert with humoral factors in the haemolymph to defend the
animal against infection. Haemocytes constitute the cellular
component of the haemolymph; they move through the
circulatory system and migrate to other locations, such as the
connective tissue and epithelia (19, 20). Among the important
functions they perform in bivalves, haemocytes are best known
for their primary role in phagocytosis, encapsulation and
production of cytotoxic molecules, such as reactive oxygen
species, antimicrobial peptides (AMPs) and secretion of
inflammatory cytokines involved in pathogen killing and
elimination (9, 19, 21–27). In addition to their role in host
defence, bivalve haemocytes perform various important
physiological functions, including nutrient digestion,
transportation and distribution, wound healing, detoxification
processes, shell mineralisation and excretion (25, 28, 29). The
composition and dynamics of the bivalve haemocyte population,
as well as the functional properties of circulating cells, reflect
fairly objectively the general physiological and immunological
status of bivalve molluscs and have an enormous potential for the
study of physiological ecology (29–35). Due to the haemocyte
major role in the immune system and homeostasis and the fact
that few reports aimed to establish functional relationships
between bivalve haemocytes subpopulations and immune
response capacity, this review paper aims (i) to summarise
current knowledge about bivalve haemocyte subpopulations
classification and (ii) to point out functional differences
between the main haemocyte types.
2 BIVALVE HAEMOCYTES CLASSIFICATION

The classification of haemocyte populations or cell types in
bivalve molluscs has been the subject of multiple studies since
early 1970s. Research on haemocytes has been hindered by the
lack of a consensus on their classification. A plethora of
Frontiers in Immunology | www.frontiersin.org 2
categories have been established on the basis of different
parameters and techniques and, as a consequence, it is often
difficult to compare results and draw general conclusions from
the literature. Various criteria have been considered: cellular
morphology (including ultrastructure), enzymatic cytochemistry,
physicochemical features and cell population separation, and
biological activities and functions. Numerous authors have
focused their efforts on developing a classification of the
different blood cell types present in bivalves. The researchers
Cheng (1981) and Hine (1999) published two of the most
important reviews on morphofunctional aspects of haemocytes
of the Phylum Mollusca (19, 23). In the early studies, the
haemocytes were characterised mainly by morphological and
cytochemical criteria, such as the size, nucleus/cytoplasm (N/C)
ratio, cytoplasmic complexity and enzyme content (36, 37). More
recent trends for identifying haemolymph cell types are focused on
flow cytometry, tool that allows determining the size and
granularity of haemocytes (38). Most studies have classified
bivalve haemocytes into two main groups: granulocytes, cells
with granules in the cytoplasm and typically a low N/C ratio,
and hyalinocytes (or agranulocytes), cells containing few or no
granules within the cytoplasm and a higher N/C ratio (19, 21, 36,
39) (Figure 1). Table 1 brings together the different studies
focused on categorising the haemocytes subpopulations in
bivalves. Both cell types, granulocytes and hyalinocytes (or
agranulocytes), have been found in clams, razor shells, scallops,
FIGURE 1 | Micrographs of haemocyte types of various bivalve species, all
them corresponding to haemolymph samples collected from the adductor
muscle, cytocentrifuged onto slides and fixed and stained with the kit Hemacolor®

(Merck). (A–D) Blast-like cells of Ruditapes decussatus, Ruditapes philippinarum,
Aequipecten opercularis and Mimachlamys varia, respectively. (E–H) Hyalinocytes
of R. decussatus, R. philippinarum, A. opercularis and M. varia, respectively. (I–K)
Eosinophilic granulocytes of R. decussatus, R. philippinarum and Ostrea edulis,
respectively. (L) Basophilic granulocyte of O. edulis. Scale bar: 10 µm.
April 2022 | Volume 13 | Article 826255
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TABLE 1 | Haemocyte subpopulations in bivalve mollusc species.

SPECIES HAEMOCYTE TYPES REFERENCES

G sG H sH B Other cells

CLAMS (32 species)

Family Astartidae

Astarte borealis (*Mactra veneriformis) G P sG AG (Small & Large) (40) P

Family Cardiidae

Tridacna crocea G H Morula-like (41)

Tridacna maxima 2types (42)

Family Cyrenidae

Corbicula japonica 2types H sH (43)

Villorita cyprinoides G (44)

Family Hiatellidae

Panopea globosa G P
OX H sH (45) POX

Family Laternulidae

Laternula elliptica G AG (46)

Family Mactrinae

Mactra antiquata
(*Coelomactra antiquata)

G sG H (47)

Spisula solidissima G AG (18)

Family Mesodesmatidae

Amarilladesma mactroides
(*Mesodesma mactroides)

G H (48)

Paphies ventricosa G H (49)

Family Myidae

Mya arenaria G AG (50)

G H (51)

Family Psammobiidae

Hiatula diphos (*Sanguinolaria diphos) G sG H (47)

Family Semelidae

Scrobicularia plana 2types AG (52)

Family Solecurtidae

Tagelus plebeius G H (53)

Family Tellinidae

Tellinimactra edentula (*Macoma edentula) G H (54)

Family Veneridae

Callista chione 2types 2types (55)

Chamelea gallina G H (56)

Leukoma thaca (*Protothaca thaca) G H (57)

Macrocallista nimbosa Haemocyte (58)

Meretrix lusoria G sG H Fibrocyte (59)

G sG H B (60)

G P sG H (61) P

Meretrix meretrix G sG AG, Lymphoid cell (62)

Meretrix petechialis G B AG, Degranulated cell (63)

Mercenaria campechiensis G AG (64)

Mercenaria mercenaria G P H Fibrocyte (65–67) P

2types B AG (68)

Paratapes undulatus
(*Paphia undulata)

G sG H (47)

2types 2types (69)

Protapes gallus (*Paphia malabarica) G AG (70)

(Continued)
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TABLE 1 | Continued

Ruditapes decussatus 3types P H (71, 72) P

G ox H Intermediate cell (73) ox

Ruditapes philippinarum
(*Tapes philippinarum)

G H B Serous cell (74)

G P
OX

H B (29, 75) POX
Sunetta scripta G AG (44)

Family Vesicomyidae

Abyssogena phaseoliformis 2types Erythrocyte (76)

Phreagena okutanii 2types Erythrocyte

COCKLES (2 species)

Family Cardiidae
Cerastoderma edule G H Type III cell (77)

2types AG, Type III eosynophil (78)

Cerastoderma glaucum 2types P 2types (79) P

ARK CLAMS (9 species)

Family Arcidae

Anadara antiquata Red cells,
White cells, Thrombus cells

(80)

Anadara broughtonii (*Scapharca broughtonii) Red cells, White cells, Platelets (81)

G P
OX H B Erythrocyte I & II (82) POX

Anadara inaequivalvis (*Scapharca inaequivalvis) 3types Erythrocyte (83)

3types AG, Fibrocyte,
Monocyte, Platelets

(84)

Anadara kagoshimensis (*Scapharca subcrenata) G H Erythrocyte (85)

Amebocyte, Erythrocyte,
Intermediate cell

(86)

G P
OX H B Erythrocyte I & II (82) POX

Anadara trapezia Amebocyte, Erythrocyte (87)

Lunarca ovalis (*Anadara ovalis) G AG, Erythrocyte (64)

Senilia senilis (*Anadara senilis) Red cells, White cells, Platelets (88)

Tegillarca granosa 2types H (89)

G P
OX

H B Erythrocyte I & II (82) POX

Tegillarca rhombea G Red cells, AG, Platelets (90)

RAZOR SHELLS OR RAZOR
CLAMS (3 species)

Family Pharidae

Ensis leei (*Ensis directus) G sG H sH Vesicular cell (91)

Ensis siliqua 2types AG (78)

Sinonovacula constricta G P H SemiG (92) P

SCALLOPS (4 species)

Family Pectinidae

Argopecten irradians G P sG H sH (93) P

Argopecten purpuratus G H (94)

(Continued)
Frontiers in Immunology | www.frontiersin.org
 4
 April 2022 | Volume
 13 | Article 82625
5

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de la Ballina et al. Bivalve Haemocyte Subpopulations
TABLE 1 | Continued

Azumapecten farreri (*Chlamys farreri) G H (95)

2 types P sG H sH (96) P

Nodipecten subnodosus H B (97)

H B SemiG (98)

MARINE MUSSELS
(21 species)

Family Mytilidae

Aulacomya atra (*Aulacomya ater) G H (99)

Bathymodiolus azoricus G P H B (100, 101) P

Bathymodiolus japonicus 2types AG (102)

Gigantidas platifrons (*Bathymodiolus platifrons") 2types AG

Bathymodiolus septemdierum 2types AG

Brachidontes pharaonis G sG H (103)

Modiolus kurilensis G B AG, SemiG (104)

G B AG (35)

Modiolus modiolus G H SemiG (105)

Mytella strigata (*Mytella falcata) G AG (106)

Mytilisepta virgata G P H B (107) P

Mytilus californianus G AG (2types) (108)

Mytilus chilensis G P H (109) P

Mytilus edulis G P Lymphoid cell, Macrophage (110) P

2 types AG (111)

G H Basophil (112)

Mytilus galloprovincialis 3types P H (113) P

G ox H SemiG (Small & Large) (114) ox

G H (115)

Mytilus platensis (*Mytilus edulis desolationis) G H (99)

Mytilus trossulus G AG (116)

Mytilus unguiculatus (*Mytilus coruscus) G P
OX

H B (117) POX
Perna canaliculus 2types H (118)

G P
OX H B (119) POX

Perna perna G P H (120) P

G H B SemiG (121)

Perna viridis G P
OX H (122) POX
G H B SemiG (Small & Large) (123)

Xenostrobus securis G P
OX

H B (124) POX

FRESHWATER MUSSELS
(18 species)

Family Dreissenidae

Dreissena bugensis G H B (125)

Dreissena polymorpha G H (126)
G H B (127)

Family Hyriidae

Diplodon chilensis G P H B (128) P

Family Mycetopodidae

Anodontites trapesiali G H sH B (129)

Family Unionidae

Amblema plicata 2types P AG (Small & Large) (130, 131) P

Anodonta anatina G H (132)

(Continued)
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TABLE 1 | Continued

Anodonta cygnea G H (133)

2types H B Vesicular cell (134)

Anodonta woodiana G H AG, Lymphoidocyte (135)

Cristaria plicata G sG H Lymphoid cell (136)

Elliptio complanata G H (137)

Hyriopsis bialata G AG (Small & Large) (138)

Lamellidens marginalis G P
OX H B AG, Asterocyte (139, 140) POX

Lampsilis rafinesqueana G H (141)

Quadrula sp. 2types P AG (Small & Large) (131, 142) P

Solenaia oleivora G sG H Lymphoid cell (143)

Sinohyriopsis schlegelii (*Hyriopsis schlegeli) G H Serous cell, Lymphoid cell,
Spindly cell, Thrombocyte

(144)

Sinohyriopsis cumingii (*Hyriopsis cumingii) G P H (145) P

G H Lymphocyte, Spindly cell,
Thrombocyte

(146)

Unio pictorum G H (147)

OYSTERS (17 species)

Family Gryphaeidae

Hyotissa hyotis G P
OX

H B (148) POX
Family Ostreidae

Alectryonella plicatula (*Ostrea plicatula) 2types 2types 2types (69)

Crassostrea brasiliana (*Crassostrea gasar) G H B (149)

Crassostrea ariakensis G H sH (150)

G P
OX H B (151) POX

Crassostrea corteziensis G H (152)

Crassostrea gigas G H sH (153)

G H Small AG (154) ox

G H B (155)

G P
OX AG, SemiG (156) POX

Crassostrea hongkongensis G P
OX H (157) POX
G AG, SemiG (158)

Crassostrea madrasensis G H SemiG (159)

Crassostrea nippona G P
OX H B (160) POX

Crassostrea rhizophorae G H (161)

G B AG (162)

Crassostrea plicatula 2types P 2types 2types (163) P

Crassostrea virginica G H Fibrocyte (164)

G sG H (165)

G sG H sH (166)

G P
OX H Intermediate cells (167) POX

Ostrea chilensis (*Tiostrea chilensis) 2types H Serous cell (168)

2types P
OX

H (169) POX
Ostrea circumpicta G P

OX
H B (148) POX

Ostrea edulis G P H sH (153, 170) P

2types sG H sH (171)

Saccostrea cuccullata G H (172)

Saccostrea glomerata 5types P
OX H B (173) POX

G H Small AG (174)

Saccostrea kegaki G P
OX H B (148) POX

(Continued)
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cockles, mussels, and oysters. In many of these species,
granulocytes contain hydrolytic and oxidative enzymes and may
be further subclassified into different categories based on granular
affinity to specific dyes, such as acidophilic/eosinophilic,
basophilic and neutrophilic granulocytes; or different subtypes
according to the size and granularity (23, 60, 108, 181). Cheng
suggested that the occurrence of various types of granules might be
related to differentiation and maturation processes; specifically,
basophilic granules were hypothesised to be immature granules
which mature and become acidophilic (19). Recently, up to
fourteen types of granules were identified in the clam Ruditapes
philippinarum granulocytes (75) and up to twelve haemocyte
subpopulations were identified in the oyster Crassostrea
hongkongensis, the latter based on transcriptomic profile of
single cell RNA-seq data (182). One of the most recent
morphology classification of bivalve haemocytes was made with
a new computational approach that combines fractal formalism
with linear methods of image analysis (183, 184); however, results
are not easily comparable with classic haemocyte classification.

The relative abundance of each cell type in the haemolymph
of bivalve molluscs is variable, being affected by seasonal
changes, temperature, size, sex, maturity, food availability and
inter-individual variability (43, 70, 185–190). In bivalves,
granulocytes are generally considered the most abundant cell
type (191). Nevertheless, in some studies a greater number of
hyalinocytes (or agranulocytes) have been observed, such as in
the marine mussels Perna perna (120), Perna canaliculus (119)
and Mytilus chilensis (109); the freshwater mussels Dreissena
polymorpha (127) and Diplodon chilensis (128); the clams
Chamelea gallina (56), Meretrix meretrix (62) and Ruditapes
decussatus (192); the lantern clam Laternula elliptica (46); the
boreal tridonta Astarte borealis (40); the geoduck clam Panopea
globosa (45); the scallop Argopecten irradians (93); the oysters
Crassostrea brasiliana (149), Crassostrea gigas (155), C.
Frontiers in Immunology | www.frontiersin.org 7
hongkongensis (157), Crassostrea rhizophorae (162), Saccostrea
glomerata (173), Saccostrea kegaki, Ostrea circumpicta (148),
Ostrea edulis (171) and Hyotissa hyotis (148); the wing-shell
Pteria hirundo (180); and the pearl oysters Pinctada fucata (176)
and Pinctada margaritifera (177).

Although in almost all the studied species it is possible refer to
the two cell types as hyalinocytes (agranulocytes) and
granulocytes, there are some exceptions and not all haemocyte
types occur in each bivalve species. In the clam Macrocallista
nimbosa, flow cytometrically characterised haemocytes appeared
as an unique population, both in terms of morphology and
intracellular parameters (58). Some authors disagree with the
existence of granular cells in pectinids (23, 39, 193); however,
different studies have found granulocytes in the haemolymph of
some scallop species (93–96), thus a sole rule would not apply for
all the scallop species. In the scallop Nodipecten subnodosus,
classification into main types of haemocytes (hyalinocyte and
granulocyte) was not deemed totally correct, considering a
haemocyte subpopulation as semi-granular cells (98). Most of
ark clams, species of the family Arcidae, also known as “blood
clams”, have erythrocytes, haemocytes containing the respiratory
pigment haemoglobin, a rare occurrence in invertebrates (194,
195). Although generally shallow-sea veneroid clams have no
erythrocytes in the haemolymph, erythrocytes were found as the
most abundant cells in the species Phreagena okutanii and
Abyssogena phaseoliformis (76). A particular type of
haemocyte, without cytoplasm granules, with a large vacuole
occupying most of the cytoplasm and peripheral flattened
nucleus, has been observed in the common edible cockle
Cerastoderma edulis, reported as type III (77, 78), and in the
lagoon cockle Cerastoderma glaucum, reported as acidophil
granulocyte (79).

Another haemocyte type frequently found in bivalves is the
blast-like cell (Figure 1, Table 1), this cell type exhibiting high
TABLE 1 | Continued

PEARL OYSTERS (3 species)

Family Margaritidae

Pinctada imbricata G P sG H B Serous cell (175) P

Pinctada fucata G H sH (176)

Pinctada margaritifera G H sH (177)

PEN SHELLS and WING
SHELLS (2 species)

Family Pinnidae

Pinna nobilis 3types 2types sH (178)

3types H (179)

Family Pteriidae

Pteria hirundo G H sH B (180)
April 2022 | Volume
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p: Species in which granulocytes show higher phagocytosis capacity than hyalinocytes.

ox: Species in which granulocytes show higher oxidative activity through ROS production than hyalinocytes.
Species in bold: haemocyte subpopulations vary according to different authors for the same species.
*synonym.
G, granulocyte; sG, small granulocyte; H, hyalinocyte; sH, small hyalinocyte; B, blast-like cell; AG, agranulocyte; SemiG, semigranulocyte.
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N/C ratio and small size and apparent low levels in biological
activities (hydrolytic enzymes, oxidative activity, phagocytosis,
number of lysosomes) (74, 127, 151). Blast-like cells designation
remains variable and different authors use different denominations
to identify this cell type: lymphoid haemocytes (62, 110, 136),
basophils (112), haemoblast-like (104, 123, 162, 173) or small
hyalinocytes (170), referring to the same haemocyte type (127). As
discussed below, blast-like cells are considered haemocyte
precursors according to their morphometric parameters and low
organelle content (19, 23, 162).

There is not a unified classification system for haemocytes in
bivalve molluscs, thus far. On the contrary, the haemocyte types
have been reported differentially between species. Even for the
same species, different haemocyte classification has been
proposed, as shown in Table 1 (species in bold). This diversity
may be in part due to some true differences, but also resulting
from the use of different classification criteria or experimental
procedures, endogenous and exogenous factors, like age,
pollution or the high inter-individual variability (71, 77, 79,
112, 196, 197). Additionally, different nomenclatures adopted by
various researchers due to lack of biological markers for specific
cell lineages or maturation stages contribute to the problem
(198). Moreover, the process of haematopoiesis in bivalves is not
completely clear yet, therefore, the lack of evidence on the origin
of haemocytes hampers classification because no correspondence
between haemocyte subtypes and ontogeny can be made (162).
3 BIVALVE HAEMATOPOIESIS

Haematopoiesis is a crucial and vital process for homeostasis and
immune response against infection in invertebrate animals and
therefore for survival (198). Various theories have been proposed
to elucidate the lineage of haemocytes in bivalves. Cheng (1981)
and Auffret (1988) propose two types of initial cell precursors
capable of differentiating into granulocytes and hyalinocytes (19,
39). Alternatively, a model with a single precursor cell type giving
rise to hyalinocytes that later mature into granulocytes was
suggested first by Mix (199), and then by Hine (23). In the
case of the mussel M. galloprovincialis haemolymph, the
occurrence of only one haemocyte type represented by two
different ageing-related stages has been proposed; specifically,
hyalinocytes in a proliferative stage which mature to become
granulocytes (200), consistently with the Mix’s one-cell-type
model (199). In the clam R. philippinarum, a single population
of precursor cells lacking granules in their cytoplasm called blast-
like cell has been described; these cells were mitotic haemocytes
positive for CD34, a transmembrane glycoprotein characteristic
of haematopoietic mammalian cells (74, 201), thus supporting
the hypothesis proposed by Hine (23). Unlike granulocytes and
hyalinocytes, precursor cells do not contribute to immune
response mechanisms such as phagocytosis or encapsulation,
and they also lack common intracellular enzyme systems
associated with host defence. The presence of few cytoplasmic
organelles and low enzyme activity suggests that these precursor
cells are immature haemocytes (23, 74) leaving open the
Frontiers in Immunology | www.frontiersin.org 8
possibility that these cells act as stem cells from which derive
the two classes of mature haemocytes. In many invertebrates,
multiple types of haemocytes appear to derive from the
differentiation of stem cells that have a morphology very
similar to the cells of S. glomerata that are considered
haemocyte precursors (173, 202, 203). Those potential
haemocyte precursors, also called blast-like cells, have been
widely found in clams, ark clams, scallops, marine mussels,
freshwater mussels, oysters, pearl oysters and wing-shells as
shown in Table 1 (column B). Rebelo et al. (162) proposed
another hypothesis in which the different haemocyte types derive
from the same cell type that matures first without granules
(hyalinocyte), later produces granules (granulocyte) and finally,
eventually, they can lose the granules being an agranular cell
again. Thus, different haemocyte subpopulations have been
indicated as different stages of one cell type only; theory
similar to that proposed by Ottaviani (200). The hypothesis by
Rebelo et al. is based on observations made in C. rhizophorae
(162) and later in C. virginica (204). A recent study identified
different stages of granulocytes in oysters C. hongkongensis,
which led authors to propose that several differentiation states
may exist within one cell type in the haemocyte formation
process (182). Despite various theories, the detailed
characterisation of larval and adult haematopoiesis in bivalves
will only be possible by sequencing mollusc genomes and
identifying the full set of transcription factors and biomarkers
that regulate haematopoiesis (198, 205, 206).

Even being an essential process in bivalve immunity, there is
no clear haematopoietic organ or cell precursor, although the
generally accepted belief is that haemocytes can originate from
connective tissue and/or mantle (19, 199, 207). In spite of some
haemocytes may mature before entering the circulation (29, 79,
123, 162), evidence is accumulating that mitosis may also occur
after haemocyte release into the haemolymph (201). In the oyster
C. gigas, important vertebrate embryonic haematopoiesis
transcription factors have been found expressed during
ontogeny (208, 209), which were observed only in cells
attached to the blood vessel endothelium, leading the authors
to hypothesise that haematopoietic cells could derive from the
vessel and/or artery endothelial cells (209). It has been also
proposed that haemocytes can be differentiated from a
population of adult somatic cells residing in an irregularly
folded structure in the gill of the adult oyster C. gigas (210),
suggesting that gills can potentially act as the haematopoietic
organ in oysters (211), which bears out the early proposition by
Cuénot (212) that bivalve haemocytes originate in the gills. To
this extent, a very recent study suggests that stem cells firstly
divide and differentiate into pro- haemocytes in gills (213). Also
in the oyster C. gigas, some haematopoietic relative genes have
been found up-regulated after bacterial infection (214); this
evidence also supports the hypothesis that in bivalves the
proliferation of circulating haemocytes may occur as a
consequence of an immune challenge (215). In addition, in the
same species some transcription factors were identified in
granulocyte-specific genes with strong potentials in regulation
of haematopoiesis (216). In the scallop Azumapecten farreri,
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several molecules associated with the proliferation and
differentiation of pro-haemocytes have been identified and
characterised from the circulating haemocytes (217). These
molecular studies are providing evidence that precursors of
fully differentiated haemocytes can occur in the circulatory
system of bivalves, where presumably they continue to mature
(218). In oysters C. gigas, a conserved haematopoietic
transcription factor has been found expressed in important
immune organs, such as gills, mantle and haemocytes (219).
Moreover, recently, another transcription factor involved in
haematopoiesis has been found highly expressed in gills and
haemocytes, with higher abundance in semigranulocytes and
agranulocytes (220). This fact, added to that a definitive
haematopoietic site common to all bivalves has yet to be
identified, lead to the possibility that adult bivalves do not
produce haemocyte precursors or mature haemocytes from a
centralised organ, as occurs in other molluscan taxa; multiple or
ubiquitous sites of haematopoiesis may exist, comprising a
system in which stem-like cells receive determining signals
from neighbouring specialised cells or tissues (206). Therefore,
a bivalve haematopoietic organ is not the norm; haemocytes may
instead be formed in various ways (216). Spontaneous mitosis of
haemocytes increases during circulation in haemolymph vessels,
sinuses, and soft tissues (19, 198), which raises the possibility of
observing plasticity during various stages of haemocyte
maturation (162, 199, 200).
4 FUNCTIONAL DIFFERENCES BETWEEN
HYALINOCYTES AND GRANULOCYTES

For the purposes of this review, we will refer to the two
haemolymph cell types as hyalinocytes (agranulocytes) and
granulocytes, while acknowledging that these may be different
life stages of the same cell type in some species. In spite that
Cheng (36) suggested that different haemocyte types perform
distinct functions in the 1980s, the involvement of the different
haemocyte subpopulations in immune functions is still far from
well understood. Initially, the distinction between hyalinocytes
and granulocytes was made based on morphological parameters,
years later it has been confirmed that there are also functional
differences between both haemolymph cell types after analysis of
metabolic and functional parameters (122, 221). Recently,
research efforts are focusing on revealing dissimilar immune
functions among marine invertebrate haemocyte subpopulations,
for example in ascidians (222); crustaceans as shrimps (223–228),
lobsters (229) and crabs (230); gastropod molluscs as sea snails
(231–234), abalones (235) and sea hares (236); and bivalve
molluscs as oysters (182, 216, 237, 238). This review focuses on
the major findings in functional differences between the main
bivalve haemocyte types.

4.1 Immune Parameters
In the last two decades, the application offlow cytometry analysis
and molecular characterisation of different immune-related
molecules have greatly improved our knowledge of the
Frontiers in Immunology | www.frontiersin.org 9
functional characterisation of haemocytes, underlying both
common and distinct features of the immune system in
different bivalve species (9, 148, 165, 221). Although
granulocytes were largely suspected to play a prominent role in
defence, few reports aimed to establish functional relationships
between bivalve haemocyte subpopulations and immune
capabilities (114, 170, 239). Therefore, this work attempts to
gather information on different immune competencies among
types of bivalve haemocytes.

4.1.1 Phagocytosis and Encapsulation
One of the most important mechanisms of pathogen elimination
in bivalves is phagocytosis, i.e. the engulfment of those foreign
structures by haemocytes and their destruction (240).
Phagocytosis of foreign structures by bivalve haemocytes was
firstly reported in the oyster C. gigas (241). Studies on
phagocytosis activity of bivalve haemocyte subpopulations have
found diverse results. In the majority of bivalve species, both
granulocytes and hyalinocytes are able to internalise foreign
particles and pathogens; however, some studies have found
that only granulocytes have phagocytic activity; this is the case
of C. edule (77), Tridacna crocea (41), M. galloprovincialis (181),
C. virginica (204), P. nobilis (179) and P. fucata (242).
Nonetheless, other studies performed in some of the
aforementioned species have pointed out that both haemocyte
types have phagocytic ability as is indicated below.

Generally, granulocytes show higher phagocytosis capacities
than hyalinocytes, which has been documented in oysters
C. ariakensis (151), C. gigas (156), C. hongkongensis (157),
C. nippona (160), Crassostrea plicatula (163), C. virginica
(167), Hyotissa hyotis (148), O. chilensis (169), O. edulis (170),
O. circumpicta, S. kegaki (148) and S. glomerata (173); in clams
M. lusoria (61),M. mercenaria (66, 67), R. decussatus (72) and R.
philippinarum (75); in the boreal tridonta A. borealis (40); in the
geoduck clam P. globosa (45); in ark clams A. broughtonii, A.
kagoshimensis and T. granosa (82); in the razor clam
Sinonovacula constricta (92); in the cockle C. glaucum (79); in
scallops A. irradians (93) and A. farreri (96); in marine mussels
B. azoricus (101),Mytilisepta virgata (107),M. chilensis (109),M.
edulis (110),M. galloprovincialis (113),M. unguiculatus (117), P.
canaliculus (119), P. perna (120), P. viridis (122) and X. securis
(124); and in freshwater mussels Amblema plicata, Quadrula
quadrula (131), D. chilensis (128), L. marginalis (140) and S.
cumingii (145) and in the pearl oyster P. imbricata (175). There
are also studies where no differences in immune responses
between the haemocytes types were found, as it happened in
the ark clam A. kagoshimensis (86). In the clam Callista chione no
differences in phagocytosis activity between granulocytes and
hyalinocytes were observed (55).

Within granulocytes, eosinophilic granular haemocytes
exhibited higher phagocytic activity than the basophilic ones in
mussels, clams, cockles and oysters (23, 34, 72, 76, 78, 79, 102,
111, 163, 181, 243). Higher activity levels for phenoloxidases,
peroxidases and superoxide dismutases, a greater production of
superoxide radical (72, 111, 243), and a higher phagosome-
lysosome fusion rate in eosinophilic granulocytes than in
basophilic ones have been observed (76). Altogether suggest
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de la Ballina et al. Bivalve Haemocyte Subpopulations
that eosinophilic granulocytes are more immune-reactive than
basophilic granulocytes in bivalve immune defence (163).

Encapsulation is another major cellular immune defence
process to eliminate foreign particles that are too large to be
phagocytosed, by which haemocytes attach to the foreign
organism to extracellularly destroy it (244). Different
encapsulation activity was witnessed between haemolymph
cells. In the oyster C. virginica, several studies reported the role
of agranulocytes in encapsulation (245, 246). However, more
recent studies propose granulocytes as the predominant cell
types involved in such process in the oysters S. glomerata and
C. gigas (156, 173).

Altogether it seems clear that in the vast majority of studied
bivalves, granulocytes are the most active phagocytic cells. It has
been hypothesised that the high phagocytosis activity of
granulocytes is associated with the presence of granules with
high levels of enzymatic activities which could act to kill and
degrade the phagocytosed particles. Moreover, granulocytes had
high ability to produce reactive oxygen species (ROS, radicals
with microbicidal potential) and to form pseudopods. Finally,
granulocytes contained more mitochondria, which could provide
energy in the phagocytosis process to result in higher
phagocytosis ability (75). However, some studies consider that
hyalinocytes, as well as granulocytes, can be regarded as
professional phagocytes (247), suggesting that they may target
different types of microorganisms. While granulocytes possess a
constantly high phagocytic index, the phagocytic index of
hyalinocytes seemed related to the nature of the foreign
material in the clam R. decussatus (72). The granulocytes of
C. gigas were found to exhibit higher levels of phagocytic activity
against bacteria and yeast than the agranulocytes, while the
agranulocytes exhibited higher levels of phagocytosis against
latex beads than granulocytes (248). In the same oyster species,
hyalinocyte phagocytosis is regulated by an integrin-dependent
mechanism, and it is thought that granulocytes have other
receptors, still to be identified, to carry out this function (247).
Different degradation pathways could be linked to different cell
phagocytic abilities, depending on particle nature, to optimise
degradation efficiency (127). Such observations suggest
functional differences between haemocyte types and receptor-
based initiation of phagocytosis (29).

4.1.2 Enzymatic Lysosomal Content
Quantitative differences in the content of lysosomes between
haemocyte types might be related to different cellular functions
(148). The intracellular lysosomal enzyme contents of
granulocytes have been reported much higher than those of
hyalinocytes in several oyster species (148, 159, 169, 173),
mussels (117, 122, 123, 181), clams (72, 74), ark clams (82),
razor clams (92) and scallops (95). Granulocytes contain higher
peroxidase, phenoloxidase and alkaline phosphatase activity than
hyalinocytes in the scallop A. farreri (95). Granulocytes of the
oyster S. glomerata are the haemocyte subpopulation with
greater levels of acid phosphatase and phenoloxidase
enzymatic activities (173). Acid phosphatase activity have been
found only in granulocytes in the boreal tridonta A. borealis (40).
In the pen-shell P. nobilis, granulocytes were more positive to
Frontiers in Immunology | www.frontiersin.org 10
hydrolases than hyalinocytes (179). These results indicate the
important role played by granulocytes in immune reactions.

On the contrary, agranulocytes (large and small hyalinocytes)
seemed more diverse in protein content than the granulocytes in
the oyster O. edulis (249). In the freshwater mussel D.
polymorpha, presence of acid phosphatase and non−specific
esterase was detected in both hyalinocytes and granulocytes,
while ß−glucuronidase was detected only in hyalinocytes (126).
The differential distribution of hydrolytic enzymes between
granulocytes and hyalinocytes is associated with different
physiological and immune responses (74).

4.1.3 Oxidative Activity
The production of radicals with microbicidal activity, such as
reactive oxygen species (ROS) and reactive nitrogen species
(RNS), is induced after phagocytosis and it may be used to
evaluate the immunocompetence in different haemocyte subsets
(156). Oxidative activity through ROS production is generally
higher in granulocytes than in hyalinocytes, which was observed
in oysters C. ariakensis (151), C. gigas (154, 156, 250, 251), C.
hongkongensis (157), C. nippona (160), C. virginica (167, 252), O.
chilensis (169), Hyotissa hyotis, Ostrea circumpicta, S. kegaki
(148), and S. glomerata (173); in clams R. decussatus (73) and
R. philippinarum (75); in the geoduck clam P. globosa (45); in ark
clams A. broughtonii, A. kagoshimensis and T. granosa (82); in
marine mussels M. galloprovincialis (114), M. unguiculatus
(117), P. canaliculus (119), P. viridis (122), and X. securis
(124); and in freshwater mussels L. marginalis (140). In L.
marginalis, granulocytes were identified as the principal
phagocytes with prominent activity of superoxide anion (a
ROS) and nitric oxide (NO, a RNS) (140). The higher ROS
production of granulocytes may be also related to a more active
metabolism (253). Moreover, it has been shown that the
oxidative process within haemocytes plays a key role in the
formation of extracellular DNA traps in oysters (254), clams
(255, 256) and mussels (257). These extracellular traps (ETs)
carrying AMPs and hydrolases released from granules could
surround, entangle and eventually kill the pathogens, operating
as antimicrobial effectors during the innate immune response.
Thus, in marine bivalves, ETs participate in host defence by
capturing large numbers of microbes and preventing their
dissemination (254, 258, 259). Differences in ROS production
between bivalve haemocyte subpopulations could be related with
differences on such immune responses (158); in higher
organisms granulocytes seem to be more implicated in ETs
formation (260).

Other studies showed that granulocytes and hyalinocytes
have the ability to produce different ROS and RNS (148). In
the freshwater mussel D. polymorpha, hyalinocytes showed the
highest intracellular ROS production (127). Oyster C. gigas
hyalinocytes produced more reactive nitrogen species (RNS)
than granulocytes (250). These results could indicate that the
main haemocyte types have different capabilities for ROS/RNS
production response. Both cell types possess NADPH-oxidase
and NO-synthase-like pathways to produce ROS/RNS but the
NO-synthase pathway seemed more dominant in hyalinocytes,
whereas NADPH-oxidase was more active in granulocytes (250).
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Thus, differences in oxidative activity between the granulocytes
and hyalinocytes could be associated with the differential
involvement of ROS production pathways of the two haemocyte
types. Moreover, regulation of phagocytosis of diverse targets and
regulation of ROS and NO production, reveals haemocyte type-
specific variations in signalling mechanisms, which could be due
to the differential expression of membrane receptors (114). These
observations led to hypothesise that mechanisms for killing
foreign particles might be different between hyalinocytes and
granulocytes (204). It was also suggested that differences in ROS
production between haemocyte types may be associated with the
functional role and the morphological structure of each cell type
(261), being granulocytes more oxygen demanding than agranular
cells, because the former type possess more complicated
ultrastructure with numerous mitochondria and endoplasmic
reticulum (60).

4.1.4 Aggregation and Wound Healing
Even though the hyalinocytes are not as avidly phagocytic as
granulocytes, it is believed that they play a central role in
haemocyte aggregation processes and wound healing (20, 173,
240, 262, 263). In the giant clam T. crocea, hyalinocytes were
located in the core of haemocyte aggregations associated with
wound healing (41). In the oyster S. glomerata, hyalinocytes were
shown to have a central role in haemocyte aggregation processes
(173). Similar results have been observed in the clam R.
philippinarum (75). In the mussel P. viridis, hyalinocytes were
shown to have a central role in either haemocyte aggregation or
coagulation processes (123).

4.1.5 Apoptosis
Granulocytes normally show higher levels of apoptosis than
hyalinocytes, possibly due to increased phagocytic activity and
respiratory burst (264, 265). Differences in mortality have been
found between both cell types, being greater in granulocytes;
such difference in mortality may be related to the difference in
ROS production (266). In musselsM. galloprovincialis, apoptotic
levels seemed to be higher in granulocytes (267). Similarly,
apoptosis after pesticides exposure have been found higher in
granulocytes than in agranulocytes in the freshwater mussel L.
marginalis (268). In the mussel M. galloprovincialis, although
both haemocytes subpopulations were susceptible to UV light
treatment, the damages induced in hyalinocytes were detected
earlier than in granulocytes, which led authors to suggest that the
cytoplasmic granules of granulocytes could have some protective
effect against apoptosis induced by UV radiation (269). On the
contrary, in the oyster O. edulis, granulocytes appeared more
affected by apoptosis than hyalinocytes (270); after a proteomic
approach more proteins related with apoptosis were identified in
granulocytes (237, 238). In the clam R. decussatus, haemocytes
stimulation with lipopolysaccharide induced a significant up-
regulation of a gene with important roles in the apoptotic
process, with a maximum level registered in granulocytes (73).
A recent study suggested that apoptosis of C. virginica
granulocytes may be Apoptosis protein inhibitor (IAP)-
dependent and involve caspase-independent pathways (271).
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4.1.6 Immune Molecules and Pathways
Higher content of molecules involved in immune response and
higher expression levels of various immune related genes in the
granulocytes of the oyster C. gigas compared to semigranulocytes
and agranulocytes led to suggest that the granulocytes are the main
immunocompetent haemocytes (156). Previous studies have
shown that defensins and mytilins are stored mainly in
granulocytes (272, 273). Myticin C was found expressed in
granulocytes of mussels M. galloprovincialis (274); on the
contrary, Myticin C was identified expressed in hyalinocytes and
not in granulocytes in the oyster O. edulis (238). Haemolymph
cells exhibited distinct inter-specific lectin binding in clams (275),
marine mussels (101, 102, 276) and freshwater mussels (132),
suggesting that haemocytes subpopulations may express different
sugar moieties and perform disparate functions. Oyster C.
virginica galectins CvGal1 and CvGal2 and clam R.
philippinarum galectin MaGal1 were identified with strong
ability to recognise parasites of the genus Perkinsus (277–279);
one of them, CvGal1, has been observed to be secreted by
granulocytes (277). In oysters O. edulis, the lectins galectin-4
isoform X1 and ß-1,4-N-acetylgalactosaminyltransferase bre-4-
like appear to be expressed in hyalinocytes (238). Lectin-like
receptors (LLRs) were found to play important roles in the
phagocytosis of granulocytes and semigranulocytes in C. gigas
(280). In the same way, antimicrobial peptides were found within
granular haemocytes in the scallop N. subnodosus (97). ATP-
binding cassette (ABC) proteins associated with the
multixenobiotic resistance were observed expressed differently
between haemocyte types in mussels and oysters (281, 282).
Cathepsin L gene expression, involved in the inflammatory
response, was strongly associated with the number of circulating
granulocytes in C. gigas (283). SPRY (sp1A/ryanodine receptor)
domain-containing SOCS box protein (CgSPSB), which play an
important role in the regulation of cytokine production in C. gigas,
was found mainly distributed in the cytoplasm of granulocytes
(284). In the same species, immune related genes, including
CgTLR, CgClathrin, CgATPeV, CgLysozyme, CgDefensin and
CgIL-17, were mainly expressed in granulocytes (156).
CgCaspase-8-2 was found mainly distributed in granulocytes.
This protein functioned as important protease to be involved in
the anti-bacterial immunity responses through inducing the
expressions of cytokines, defensin and autophagy-related genes
(285). Aminopeptidase was found expressed in eosinophilic
granulocytes from M. edulis (286). Chitinase (Cg-Chit) seems
to play redundant functions for the immune responses in C.
gigas and it is specifically expressed in granulocytes (287).
Alcohol acyltransferase (CgAATase), enzyme involved in
immune response, was found to be mainly expressed in
granulocytes (288). Glutamic acid decarboxylase (CgGAD),
enzyme responsible to catalyse the production of gamma
aminobutyric acid (GABA), an important neurotransmitter of
the GABAergic system, was dominantly expressed in
granulocytes of C. gigas (289). In the same species, dopamine
b-hydroxylase (DBH), a norepinephrine synthesising enzyme,
was highly expressed in granulocytes and involved in
neuroendocrine and immune response (290). Differences in the
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expression of neuroendocrine immunomodulation (NEI) related
proteins between oyster O. edulis haemocyte types have been
detected (238). Some antigens reacted differently in granulocytes
and agranulocytes in the deep-sea symbiotic mussel B.
japonicus (291).
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Different proteins with key roles in important immune
pathways were identified in the main haemocyte types of the
oyster O. edulis, with more proteins involved in the MAPK, Ras
and NF-kb pathways in granulocytes, while in hyalinocytes there
were more identified proteins that participate in the Wnt
TABLE 2 | Literature survey of reported effects of biotic stress on bivalve haemocyte subpopulations.

Species Type of pathogen or disease Effect References

Juvenile
oyster disease

Bonamiosis Perkinsosis Marteliosis Bacteria Trematodes Copepods

Anadara trapezia X ≠ G/H ratio (87)
Cerastoderma edule X Recruiting G (305)
Azumapecten farreri X ↓ G (306)
Crassostrea brasiliana X ≠ G/H ratio (149)
Crassostrea gigas X ↑ ROS H

↑↑ ROS G
(307)

X ≠ G/SemiG/H ratio (308)
Crassostrea madrasensis X ↓ H ↑ G (309)
Crassostrea virginica X ↑ % G (31)

X ↓ G apoptosis (271)
Mya arenaria X ≠ G/H ratio (310)
Mytilus galloprovincialis X ↓ % G (311)

X ↓ % G (185)
Ostrea edulis X ↑ G (312)

X ↑ sH ↓ G (171, 313)
Perna perna X ↓ % G (314)
Ruditapes philippinarum X ↓ H ↑ G (315)

X ↓ G (316)
X ↑ G (303)

Sinohyriopsis cumingii X ↑ G (146)

Species
(resistant or tolerant
selected stocks)

Type of pathogen or disease Effect References

MSX disease Perkinsosis Bacteria Bonamiosis Marteliosis

Crassostrea virginica X ↑ % G (317)
X ↑ % G

↑ [lysozyme]
(318)

Ostrea chilensis X H more infected (319)
Ostrea edulis X ↑ % G (313, 320)

X Multiply more in H (321)
Ruditapes philippinarum X ↑ G ↑Phagocytosis (191)
Saccostrea glomerata X ↑ G ↑Phagocytosis (322)

X ↑ G ↑ ROS (174)

Species HAB Effect References

Argopecten irradians
irradians

X 1° ↑ H ↓ G 2° ↓ H ↑ G (323)

Crassostrea gigas X ↑ G (324)
X ↑ G size (325)
X ≠ G/H ratio (326)

Saxitoxin H more susceptible (327)
Crassostrea virginica X ↑ G ↑Phagocytosis (328)
Dreissena polymorpha Cyanotoxin* ↑ G (329)
Mytilus chilensis Saxitoxin Affect more G (109)
Mytilus edulis X 1° ↓ G 2° ↑ G (330)

X ↓ G (331)
Mytilus galloprovincialis X ↓ G (332)

X ≠ G/H ratio (333)
Perna perna X ↓ G (334)
Ruditapes philippinarum X ↑ G (335)
A
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*Cyanotoxin is produced by bacteria, not by HABs.
G, granulocyte; sG, small granulocyte; SemiG, semigranulocyte; H, hyalinocyte; sH, small hyalinocyte; HAB, harmful algal bloom.
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TABLE 3 | Literature survey of reported effects of abiotic stress on bivalve haemocyte subpopulations.

Effect Reference

OPs

↓ % G (293)
↓ G (306)

↓ G mortality ↓
ROS

(266)

↑ AG↓ ROS G (261, 336)
↑ % G (30)

↑ H mortality (252)
≠ G/H ratio (337)
↑ G damage
↓Phagocytosis

(338)

↓ G (339)

↑ G ↓ ROS G
↓ AG

(115)

↑ lH ↑ G (176)
↑ G (340)

↓ % G (341)

↑ G (303)
↓ % G (18)
↓ % rG (342)

X ↓ % rG ↑ bG
↓Phagocytosis

(343)

↑H mortality (147)

Effect Reference

tics Nanoplastics
(NPs)

↑ G (129)

↓ G
↓Phagocytosis

(344)

↓ G (155)
↑

% G
(345)

↑ G mortality
↓ G ↑ AG

↑semiG
G + sensitive

(158)

H + sensitive (346)

1° ↓ G 2° ↑ G (347)
↓ eG ↑ bG (348)

Granulocytoma (349)
↓ G (350)

↑ G/H ratio (351)
↓ G ↓ G/H

ratio
(352)

↑ G/H ratio (353)
↓ G/H ratio (354)

↑ G (355)
X ↓ bG ↑ H (356)
X G + sensitive (357)
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Species Type of stressor

Temperature increase Acidification Salinity Hypoxia Heavy Metals P

Azumapecten farreri X

Crassostrea gigas X X

Crassostrea virginica X
X

Mytilus coruscus X X
Mytilus edulis X

Mytilus
galloprovincialis

X X X X

X

Pinctada fucata X X
Pinctada imbricata ↓
Ruditapes
philippinarum

↑

X
Spisula solidissima X
Tegillarca granosa X

X

Unio pictorum X

Species Type of pollution

Crude
oil

Pharma
ceutical

contaminants

Insecti
cides

Cigarette
butts

PCBs Trace
Metals

Cadmium
(Cd)

Copper
(Cu)

Zinc
(Zn)

Xeno
biotics

POPs Micropla
(MPs

Anodontites
trapesiali

X

Azumapecten farreri X

Crassostrea gigas X
X

Crassostrea
hongkongensis

X

Dreissena
polymorpha

X

Mytilus edulis X
X

X
X

Mytilus
galloprovincialis

X
X

X
X
X

s
)
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signalling pathway (238). In the oyster C. gigas, the MAPK
pathway was found to participate in granulocytes to regulate
functional activities prior than in hyalinocytes, also suggesting
functional differentiation of haemocyte types (216). A recent
study proposed that oyster C. hongkongensis granulocytes mainly
participate in immune response through the NF-kB pathway and
autophagy process (182).

4.2 Other Physiological Processes
Differences in cellular metabolism suggest, as discussed above,
that granulocytes and hyalinocytes may be involved in different
physiological functions.

4.2.1 Motility
Motility is crucial for haemocytes to carry out multiple functions,
including immune response. Previous reports showed variations
related to the locomotion and cytoskeleton properties among
haemocyte types of bivalves. In the pearl oyster P. imbricata,
granulocytes showed amoeboid locomotion and directional,
while hyalinocytes appeared to be less mobile, often adhered to
a substrate and spread multidirectionally (175). However,
hyalinocytes also showed the ability for amoeboid movement
in the oyster C. hongkongensis (157). Motility dynamics (either
ameboid or based on pseudopod formation) has been
emphasised as an important criterion for morphofunctional
classification of mussel M. edulis haemocytes (112).

4.2.2 Spawning
Spawning in marine bivalves is a great energy-demanding process,
and it often results in lethal and sublethal stresses during the post-
spawning period, including depressed immune capacity (292).
Female and male clams R. philippinarum showed different
haemocyte populations during the pre-spawning phase, females
having a higher fraction of granulocytes and males of hyalinocytes
(188). Granulocyte percentage was higher in spring and early
summer in the scallop A. farreri, and lower in summer and early
autumn, the period corresponding to reproduction completion
(293). The phagocytosis capacities of haemocytes were
significantly reduced during the post-spawning period in the
oyster S. kegaki, being more pronounced in granulocytes (190).
In the oyster C. hongkongensis, males exhibited a more powerful
cellular immune response than females after spawning, the former
showing higher esterase activities, lysosomal masses, nitric oxide
levels, and granulocyte numbers (294). Spawning was shown as a
stressful activity inducing depressed immunological capacities in
the ark clam T. granosa, with dramatical decline of granulocyte
phagocytosis capacity in individuals engaged in active spawning
while the production of ROS (indicative of stress) of the
granulocytes and the erythrocytes type II increased linearly
during the post-spawning period (292).

4.2.3 Shell Formation and Repair
Regarding shell regeneration, granulocytes have been shown to
participate in the synthesis and transportation of CaCO3 in
oysters C. virginica (25, 295) and C. gigas (296, 297), as well as
in the deep-sea vent mussel B. azoricus (100, 298) and in pearl
oysters P. fucata (242, 299). In the oyster C. gigas, several shell
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formation-related genes are highly expressed in H2 and H3
haemocytes (similar to granulocytes), thus these haemocyte
types are potential players in biomineralisation processes (300).
Moreover, the direct involvement of granulocytes in the
formation of the prismatic layer has been found in the pearl
oyster P. fucata (299). In the same species, Huang et al. (2018)
successfully identified numerous calcium-rich vesicles and
crystals in granulocytes and assigned to this cell type the
strongest ability of migration (242). Altogether, the
granulocytes may be a calcium pool and act as a calcium
conveyor during shell formation and may participate in the
initiating process of bivalve shell mineralisation (301).
5 DIFFERENTIAL RESPONSE TO STRESS

Bivalve molluscs are poikilotherm organisms and multiple
physiological functions of bivalves show seasonal variation.
Consistently, as haemocytes are involved in multiple functions,
total haemocyte count and the relative abundance of each
haemocyte type in the haemolymph of bivalves also show
seasonal variation (161, 302–304), which has to be considered
normal. Additionally, the internal responses of bivalves to
invasive pathogens, natural environmental impacts, and
pollutants are mediated at least in part by haemocytes (23, 39).
Furthermore, any effect that environmental stressors exert on the
bivalvehaemocyte proportionsor functioningmayultimately result
in a reduction of immune response effectivity, whereas bivalves are
able to overcomewell exposure to a wide variety of pathogens if the
immune system is not over-challenged (147). Changes in total
haemocyte count and the relative proportions of granular and
agranular cells often are used as indices of bivalve immune status
(30, 31, 248). There are many studies focused on the haemocyte
immune response to a wide range of stressors in which it is possible
to suggest functional differences between haemolymph cell types.
Research literature focusing on effects of biotic and abiotic stress on
bivalvehaemocyte subpopulations is summarised inTables2 and3.

5.1 Biotic Stress: Pathogens and Harmful
Algal Blooms
The relative abundance of each cell type in the haemolymph of
bivalve molluscs is variable and is influenced by the presence of
certain pathogens (321). Regarding the reaction against bacteria,
juvenile oyster disease was correlated with altered cell ratios
resulting in an increase in the percentage of granulocytes in
oysters C. virginica (31). Clams R. philippinarum challenged with
various Vibrio species showed significant decrease of
hyalinocytes and increase of granulocytes, suggesting different
involvement of each haemocyte type in antibacterial defence
(315). On the contrary, the granulocyte concentration decreased
in the same clam species after infection with Vibrio tapetis (316).
In the oyster C. gigas, strong enhancement of haemocyte ROS
production following bacterial infection was observed, which was
higher in granulocytes than hyalinocytes (307). In the same
species, modifications of the proportion of the haemolymph
cells have been observed after bacterial challenge (308).
Frontiers in Immunology | www.frontiersin.org 15
Granulocytes were reported as the main haemocyte type
involved in antibacterial response in the freshwater mussel A.
cygnea (370). In the marine mussel M. galloprovincialis, the
haemocyte types exhibited distinct responses to infection by
various bacterial species of the genera Vibrio and Micrococcus
(221, 371). The infection with bacteria Listonella anguilarum also
induced changes in the relative abundance of haemocyte types of
the oyster O. edulis haemolymph, favouring granulocytes (312).
In the clam Mya arenaria, independent modifications after
bacterial infection were observed in the proportions of
haemocyte subpopulations established by their lysosomal
content, suggesting specific modulation of bivalve responses
against pathogenic bacteria that would include degranulation
(310). Bacterial challenge produced an increase in the percentage
of granulocytes and a decrease in that of hyalinocytes in the
oyster C. madrasensis, suggesting the main involvement of
granulocytes in immune response (309). Similar results were
found in the freshwater mussel S. cumingii, with total haemocyte
count increase, especially the proportion of granulocytes, after
bacterial infection (146). On the contrary, granulocyte count
decreased in the scallop A. farreri when challenged with bacteria;
such decline increased at high temperature (306). Regarding
metazoan pathogens, it has been suggested that the bivalve
immune system responds to trematode invasion by recruiting
granulocytes (305). Thus, in the mussel P. perna a decrease in the
percentage of granulocytes in the circulating haemolymph was
observed associated with trematode infection (314). Trematodes
also caused change in the proportions of the haemocyte types in
the ark clam A. trapezia (87). A decrease in the percentage of
granulocytes upon infestation by copepods was found in the
mussel M. galloprovincialis, which was interpreted as a tendency
for invertebrate haemocytes to degranulate in response to
parasitism (185). Regarding responses to protistan pathogens,
Perkinsus spp. appear to induce changes in the proportions of
haemocyte types in the oyster C. brasiliana (149), suppression of
granulocyte apoptosis in C. virginica (271) and a significant
increase in granulocyte concentration in clams R. philippinarum
(303). In the oyster O. edulis, increase of the proportion of small
hyalinocytes and decrease of that of granulocytes associated with
Bonamia ostreae infection was observed (171, 313). Hyalinocytes
were abundant in tissues heavily infected with Haplosporidium
sp. in the oyster S. cucullata (172). In the mussel M.
galloprovincialis, lower percentage of granulocytes was
observed in the presence of Marteilia spp. parasites (311).

A more precise perspective on the relevance of the haemocyte
types in the response against pathogens can be attained from
comparison between resistant (or tolerant) and susceptible hosts
(372). Oysters C. virginica resistant to the protistanHaplosporidium
nelsoni showed significantly higher percentage of granulocytes
(317). In the same species, higher percentage of granulocytes was
found in the haemolymph of oysters with higher tolerance to
infection with the protistan Perkinsus marinus (318). Similarly,
clams R. philippinarum resistant to Vibrio tapetis had relatively
more granular haemocytes, resulting in increased phagocytic
capacity (191). Oysters O. edulis with increased resistance to
B. ostreae showed different haemocyte counts than susceptible
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ones (320), displaying higher percentage of granulocytes (313).
Remarkably, the intracellular parasite B. ostreae multiplies more
successfully within hyalinocytes than granulocytes (321); similarly,
hyalinocytes of the oyster O. chilensis are known to be preferentially
infected by Bonamia exitiosa (319). In oysters S. glomerata,
resistance to the protistan Marteilia sydneyi is linked to increased
frequencies of granulocytes, likely due to higher phagocytic activity
and higher levels of phenoloxidase in this haemocyte type (322) and
higher ROS production (174). A positive health effect of treatment
of C. gigas with brown and red seaweeds has been suggested; treated
oysters showed significant increase in granulocyte count and a low
pathogen prevalence (373).

Several studies have reported modulation of bivalve haemocyte
variables in response toharmful algal bloom (HAB) exposure (374).
Exposure to toxin-producing dinoflagellates increased oyster C.
virginica haemocyte phagocytosis ability and granulocyte
subpopulation (328). In the case of the scallop A. irradians, a
biphasic effect was detected, with initial increase of hyalinocyte
count anddecreaseof thatof granulocytes andposteriorhyalinocyte
decrease and increase of granulocyte count (323). Variation of the
differential haemocyte count was also detected in the mussel M.
edulis, in which eosinophilic granulocytes decreased at the
beginning of exposure but increased after a few days (330). In the
same mussel species, degranulation of eosinophilic granulocytes
associated with exposure to toxin-producing dinoflagellates was
reported (331). Other reported effects of exposure to toxin-
producing dinoflagellates were drastic increase of granulocytes
(324), increase of granulocyte size (325), and changes in the
haemocyte type relative abundance in the oyster C. gigas (326);
doubling number of granulocytes in clams R. philippinarum (335);
decrease in the percentage of granulocytes in the mussel P. perna
(334); and anomalous decrement of granulocytes (332) and
variations of the granulocytes/hyalinocytes (G/H) ratio in the
mussel M. galloprovincialis (333). In vitro exposure to saxitoxin, a
neurotoxin produced by dinoflagellates, affectedmore granulocytes
than hyalinocytes of the mussel M. chilensis (109), while oyster C.
gigas hyalinocytes were found to be highly responsive (327).
Exposure to cyanotoxin producing bacteria increased the relative
proportion of granulocytes in the freshwater mussel D.
polymorpha (329).

5.2 Abiotic Stress: Temperature, Salinity,
Acidification, Hypoxia and Pollution
High water temperature can influence haemocyte parameters in
bivalves, including haemocyte number, motility, viability, adhesive
capacity, phagocytic ability, membrane permeability, and
intracellular enzyme activities, which may result in weakened
ability to mount an immune defence (375, 376). Temperature
increase was associated with higher percentage of granulocytes in
the oyster C. virginica (30) and higher mortality of hyalinocytes
(252). A positive correlation between temperature and granulocyte
counts was observed in the clam R. philippinarum (303). High
values of granulocyte percentage were observed in the scallop A.
farreri during the period of favourable water temperature, whereas
low values were found during the period of high water temperature
(293). Increase of the percentage of large hyalinocytes and
Frontiers in Immunology | www.frontiersin.org 16
granulocytes in the pearl oyster P. fucata was proposed to be
associated with warming and ocean acidification (176). On the
contrary, increasing temperature was found associated with
decrease of the percentage of granulocytes in the clam Spisula
solidissima (18). Hyalinocyte mortality was significantly increased
at high temperature while no effect of temperature was evident in
the granulocyte mortality of the freshwater mussel Unio pictorum
(147). The phagocytic capacity of granulocytes from themusselsM.
virgata under the heatwave condition decreased to one-third of the
values in control mussels (107). Regarding salinity effects, decrease
of the number of granulocytes in the clam R. philippinarum was
reported as consequence of salinity increment (341). Similarly, the
frequencyofgranulocytes increased significantlywhenpearl oysters
P. imbricata were stressed by hypo-saline conditions (340). In the
oyster Crassostrea corteziensis, hyalinocyte and granulocyte counts
have higher values in hyposaline stress conditions and lower values
in hypersaline stress conditions; however, these haemocyte type
counts change at a different rate (377). Realistic pH reduction, as
expected with ocean acidification, induced a decrease of the
percentage of red granulocytes in the ark clam T. granosa (342)
and an increment of the ratio of damaged granulocytes in mussels
M. edulis (338). Mussels M. galloprovincialis co-exposed to high
temperature, acidification and cadmium experienced significantly
reduction of the granulocyte proportion (339). Changes of the three
subpopulations of the mussel M. coruscus under a short-term
exposure to acidification and hypoxia have been observed (337).
Hypoxia also induced substantial increase of granulocytes and a
decrease of agranulocytes and intracellular ROS production in
granulocytes in the musselM. galloprovincialis (115). However, in
the oyster C. gigas, hypoxia influenced agranular and granular cells
differently, with a higher decrease of ROS production in
granulocytes and an increase of agranulocytes number (261, 336).
In the same species, O2 deprivation resulted in a strong decrease of
granulocyte mortality potentially linked with a decrease of ROS
production (266).

Bivalves have been widely used as sentinel organisms in the
biomonitoring of aquatic pollution (7). Pollution may result in the
death of haemocytes owing to lysis and in changes in the proportions
of theirmain cell types; this fact hadbeenobserved inmussels, oysters
and clams (155, 348, 378). Moreover, the formation of
granulocytomas is an inflammatory cellular response associated
with environmental pollution. Granulocytomas are a bioindicator
of the haemocytic response to pollutants as well as a general loss of
health in bivalves (379, 380). Thus, morphometric alterations of
granulocytes may be used in a biomarker battery in aquatic
environmental monitoring (381). The clam M. arenaria collected
from polluted sediments had a higher proportion of granulocytes
compared to those from a relatively clean area, indicating possible
haemocyte involvement in sequestration of chemical pollutants
(382). Also in the mussel M. galloprovincialis, the numbers of
eosinophilic and basophilic granulocytes were higher in polluted
than in clean areas (383). In the mussel M. kurilensis, pollution
resulted in significantly decrease of the percentage of agranulocytes
andphagocytic activity and the formation of granulocytomas (35). In
mussels M. edulis exposed to crude oil, initial reduction of
granulocytes followed by granulocyte increase was observed, which
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was considered an adaptive response to stress (347). One year after a
disastrous oil spill in Korea, decreased granulocyte count was
reported in the oyster C. gigas (155), while higher proportion of
granulocytes in the clam R. philippinarum was reported two years
after the spill (361). Different types of pharmaceutical contaminants
produce variation in the mussel M. galloprovincialis physiological
response, particularly inducing changes of the G/H ratio, some
compounds increasing (351), while decreasing it others (352).
Insecticides also impair bivalve physiology and, in the oyster S.
glomerata, granulocytes and hyalinocytes respond differently to
different concentrations of pesticides (362). Pollution by leachates
fromcigarettebutts induced increaseofgranulocyteproportion in the
freshwater mussel A. trapesiali (129). A variety of responses in
differential haemocyte count have been previously reported
in bivalves upon exposure to metal toxicants. The proportion of
red granulocytes were significantly reduced after 10 days exposure of
the ark clam T. granosa to Cd2+ spiked seawater, which suggested
significant immunotoxicity of Cd2+ to this species (363). In mussels
M. edulis, decrease of the proportion of circulating eosinophilic
granulocytes and increase of basophils after copper exposure was
observed (348). InmusselsM. galloprovincialis, granular haemocytes
were found less sensitive to genotoxic damage compared with
agranular haemocytes (384). Exposure to Cd increased the
proportion of granulocytes in the mussel P. canaliculus (118) and
the G/H ratio in M. galloprovincialis (353). Also in the mussel P.
canaliculus, metal pollution induced hyalinocyte decrease (360). In
freshwater mussels D. polymorpha, the different response of
haemocyte types to Cd led to consider granulocytes with higher
capacity to regulate oxidative stress and greater involvement in
essential metal transport or sequestration of heavy metals (346). In
theclamR.decussatus, higherphagocytic activity inhyalinocytes than
in granulocytes was reported when the cells were in vitro exposed to
CuSO4 (192). Zinc-contaminated oysters C. hongkongensis showed
increase of granulocyte mortality, which suggested that granulocytes
were the most sensitive cell type in responding to Zn; moreover, the
granulocyte number decreased whereas those of semigranulocytes
and agranulocytes increased (158). In the same species, specific
responses of granulocyte, semigranulocyte and hyalinocyte have
been detected to copper; granulocyte was the most important
responsive cell type and displayed heterogeneity responses of its
two distinguished subtypes (385). In the oyster C. gigas, granulocyte
percentage increased in the presence of hydrocarbons, which led
authors to hypothesise that granulocytes may be more resistant than
hyalinocytes (345). The proportion of granulocytes and phagocytosis
abilitydecreasedwhile theproportionofhyalinocytes increased in the
scallopA. farreri after exposure to polychlorinated biphenyls (PCBs)
(344). In thearkclamT. granosa, exposure tohighdosesofPCB led to
red granulocyte percentage decrease and basophil granulocyte
increase (367). Nanoplastics (NPs) and microplastics (MPs) had a
significant effect onG/H ratios ofMytilus spp. (356, 358, 359), with a
decrease of granulocyte concentrations by MPs (359), a decrease in
basophil granulocytes and an increase in hyalinocytes in M.
galloprovincialis by NPs (356). Exposure of mussels M.
galloprovincialis to benzo[a]pyrene (B[a]P) and MPs increased
granulocytes proportion (355), while, in another study, MPs
induced decrease of the G/H ratio (354). In musselsM. edulis, MPs
Frontiers in Immunology | www.frontiersin.org 17
caused the formation of granulocytomas, an inflammatory response
mainly due to eosinophilic granulocytes (349). Exposure to NPs
causes different immune responses between haemocyte
subpopulations. In fact, granulocytes of the mussel M.
galloprovincialis appeared to be more sensitive than hyalinocytes
(357). Ark clams T. granosa showed phagocytic activity and red
granulocytes ratio significantly reduced after exposure toNPs (364–
366) and B[a]P (368). Similarly, exposure to MPs and polycyclic
aromatic hydrocarbons (PAHs) led to a significant decrease of the
proportionof redgranulocytesand increaseof basophil granulocytes
inT. granosa.Moreover, the ark clams coexposed toMPs and PAHs
showed significantly lower proportion of red granulocytes and
higher of basophil granulocytes than clams exposed to MPs or
PAHs alone (369). In the same species, a significant decrease
detected in phagocytosis when exposed to B[a]P under low pH
simulating future ocean acidification scenarios may be attributed to
significant reduction of red granulocyte count (343). Long-time-
exposure to persistent organic pollutants (POPs) in mussels M.
edulismay decrease the proportion of granulocytes, suggesting that
suchhaemocyte typemaybemore sensitive to thesepollutants (350).

Considering the important effects of biotic and abiotic stressors
on the bivalve haemolymph cells, extensive monitoring studies of
the morphofunctional properties of the haemocytes of bivalves in
the natural environment would be useful to state reliable criteria for
diagnosing the physiological status of bivalves (34).
6 CONCLUSION

Due to bivalve mollusc diversity and functional heterogeneity,
haemocyte types vary from species to species and, nowadays,
there is not a unified nomenclature that applies to all bivalves.
Moreover, functions of each haemocyte type cannot be reliably
extrapolated among all species. Haemocyte subpopulations own
distinct properties that should be considered when characterising
the overall immune related functions of bivalves. Granulocytes and
hyalinocytes display differences in their metabolism and immune
abilities, which implies that they play different physiological and
immunological roles that should be deeply explored. Infections
induce changes in theproportionsofhaemocyte types,whichpoints
out differential involvement of the haemocyte types in immune
response. Abiotic stressors also alter the relative abundance of
haemocyte types, which highlights functional differences. The
ratio of cell types in the haemocyte community could be noted as
indicator of immune function, being an important immune
parameter to assess the bivalve health-status.
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137. François G, Mélanie D, Marlène F, Michel F. Effects of a Municipal Effluent
on the Freshwater Mussel Elliptio complanata Following Challenge With
Vibrio anguillarum. J Environ Sci (China) (2015) 37:91–9. doi: 10.1016/
j.jes.2015.03.029

138. Soimalaitong S, Srakaew N, Kovitvadhi U, Kovitvadhi S. Morphology of the
Hemocytes in the Freshwater Pearl Mussel Hyriopsis bialata Simpson, 1900.
J Kasetsart Vet (2018) 28:29–38.

139. Das K, RayM, Ray S. Cypermethrin Induced Dynamics of Hemocyte Density
of Indian Mollusc Lamellidens marginalis. Anim Biol J (2012) 3:39–49.
doi: 10.1002/9783527678679.dg02126

140. Ray M, Bhunia NS, Bhunia AS, Ray S. A Comparative Analyses of
Morphological Variations, Phagocytosis and Generation of Cytotoxic
Agents in Flow Cytometrically Isolated Hemocytes of Indian Molluscs.
Fish Shellfish Immunol (2013) 34:244–53. doi: 10.1016/j.fsi.2012.11.006

141. Shiver MA. Reproduction and Propagation of the Neosho Mucket, Lampsilis
rafinesqueana. Cape Girardeau (MO: Southwest Missouri State University
(2002). [Dissertation/Naster’s Thesis].

142. Burkhard MJ, Leavell S, Weiss RB, Kuehnl K, Valentine H, Watters GT, et al.
Analysis and Cytologic Characterization of Hemocytes From Freshwater
Mussels (Quadrula Sp.). Vet Clin Pathol (2009) 38:426–36. doi: 10.1111/
j.1939-165X.2009.00148.x

143. Li Q, Zhang G,Wei K, Wang Y, Guo X, Chen Z, et al. A Preliminary Study on
Morphology and Phagocytic Ability of Hemocytes From Solenaia oleivora.
J Hidroecol (2012) 33:116–21.

144. Guo L, Sheng J-Q, Hong Y-J, Wang Y-F, Guo H-J, Wang J-H. Microscopic
Observing on Hemocytes of Hyriopsis schlegeli. Acta Hydrobiol Sin (2008)
32:840–44. doi: 10.3724/SP.J.1035.2008.00839

145. Li W, Shi Z, He X. Study on Immune Regulation in Hyriopsis cumingii Lea:
Effect of Pearl-Nucleus Insertion in the Visceral Mass on Immune Factors
Present in the Hemolymph. Fish Shellfish Immunol (2010) 28:789–94.
doi: 10.1016/j.fsi.2010.01.019

146. Yang Q, Yu X, Du C, Ni X, Li W, Yao W, et al. Bacterial Challenge
Undermines the Innate Immune Response in Hyriopsis cumingii.
Aquaculture (2021) 530:735783. doi: 10.1016/j.aquaculture.2020.735783

147. Beggel S, Hinzmann M, Machado J, Geist J. Combined Impact of Acute
Exposure to Ammonia and Temperature Stress on the Freshwater Mussel
Unio pictorum. Water (Switzerland) (2017) 9:3–5. doi: 10.3390/w9070455

148. Hong H-K, Kang H-S, Le TC, Choi K-S. Comparative Study on the
Hemocytes of Subtropical Oysters Saccostrea kegaki (Torigoe & Inaba,
1981), Ostrea circumpicta (Pilsbry, 1904), and Hyotissa hyotis (Linnaeus,
1758) in Jeju Island, Korea: Morphology and Functional Aspects. Fish
Shellfish Immunol (2013) 35:2020–5. doi: 10.1016/j.fsi.2013.09.022

149. Queiroga FR, Marques-Santos LF, Hégaret H, Soudant P, Farias ND,
Schlindwein AD, et al. Immunological Responses of the Mangrove Oysters
Crassostrea gasar Naturally Infected by Perkinsus Sp. In the Mamanguape
Estuary, Paraıb́a State (Northeastern, Brazil). Fish Shellfish Immunol (2013)
35:319–27. doi: 10.1016/j.fsi.2013.04.034

150. Sun J, Wu X, Zhang W. Morphological, Structural and Functional
Characteristics of the Hemocytes of the Oyster, Crassostrea ariakensis.
J Shellfish Res (2006) 25:55–64. doi: 10.2983/0730-8000(2006)25[55:
MSAFCO]2.0.CO;2

151. Donaghy L, Kim BK, Hong HK, Park HS, Choi KS. Flow Cytometry Studies
on the Populations and Immune Parameters of the Hemocytes of the
Suminoe Oyster, Crassostrea ariakensis. Fish Shellfish Immunol (2009)
27:296–301. doi: 10.1016/j.fsi.2009.05.010
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