The Molecular Evolution of Hedgehog in Stolidobranchia Ascidians

René K. Miller ${ }^{1,2}$, Billie J. Swalla ${ }^{1,2,3}$

Evolution and Development of Metazoans
Summer 2011
Friday Harbor Laboratories
${ }^{1}$ Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250
${ }^{2}$ Department of Biology, University of Washington, Seattle, WA 98195
${ }^{3}$ Center for Developmental Biology, University of Washington, Box 351800, Seattle, WA 98195

Contact Information:
René K. Miller
29093 Gamble Pl NE
Kingston, WA 98346
renekat@me.com

Abstract

Ascidians are highly studied in evolution and development because they have a tiny chordate tadpole larva. As a sister clade to vertebrates, ascidian research has lead to greater understanding of the molecular roles of developmental genes in vertebrates. However, recent research on a Phlebobranchia ascidian Ciona intestinalis indicates that the developmental gene hedgehog (hh) may have undergone a duplication independent to the $h h$ duplications in vertebrates (Hudson, et al. 2011). To investigate this hypothesis, more research is needed on the other ascidian clade, Stolibranchia. In this study we strived to use maximum-likelihood analysis to compare the evolution of $h h$ in Stolidobranchia and Phleobranchia ascidians. Future research will investigate the different developmental roles of $h h$ in Stolidobranchia and Phlebobranchia ascidians.

\section*{Introduction}

The members of the chordate phylum-ascidians, cephalochordates, and vertebrates-share specific homologous structures including; the notochord, dorsal nerve cord, pharyngeal gill slits, and post-anal tail (Figure 1). Ascidians have a simplified chordate body plan, and thus many researchers have focused their work on characterizing ascidian development in order to better understand chordate evolution (Imai and Meinertzhagen 2007; Brown et al. 2008). Ascidian development is important for understanding chordate evolution and conserved chordate developmental signaling pathways (Lemaire 2009).

The tadpole larvae of ascidians have a body plan surprisingly similar to that of vertebrate embryos, which suggests a degree of conservation in the developmental mechanisms used to generate this body plan (Hudson et al. 2011). Approximately 3000 cells constitute the ascidian tadpole larva, which form many distinct tissues including: the dorsal central nervous system, notochord, muscle, epidermis, mesenchyme, and endoderm (Figure 1) (Takatori et al. 2002). Molecular analysis of solitary ascidian embryogenesis has created a blueprint for the patterning of chordate tissues, which is highly conserved between ascidians and vertebrates (Davidson et al. 2003).

Ascidians can be subdivided into three clades: Thaliacea, Phlebobranchia, and Stolidobranchia; in which the latter two contain the majority of ascidians (Zeng, et al. 2006). The major differences in development being that in Stolidobranchia the branchial sac itself is folded, and the regenerative tissue is ectodermal (Kott 1985). Differences in the development of their nervous system are unknown

Studies in evolutionary developmental biology have uncovered a 'toolkit' of developmental genes that perform similar functions in various animals (Satou et al. 2009). One of these genes, hedgehog (hh), was discovered to affect segment number and polarity in the fruit fly Drosophila melanogaster (Nüsslein-Volhard and Wieschaus 1980). Mammals have three $h h$ homologs that play important roles in development: Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh) (Takatori et al. 2002). Hh proteins are autocatalyticly cleaved and function as morphogenesis, signals that elicit concentration-dependent responses from target cells (Takatori et al. 2002, Satou 2009). In vertebrate embryos, Shh protein expression is concentrated to the underlying notochord, the ventral midline of the neural tube, and the floor plate (Hudson et al. 2011). Additionally, Shh signals emanating from the notochord and floor plate induce the formation of somatic motor neurons in ventrolateral regions of the neural tube (Takatori et al. 2002, Hudson et al. 2011). Hh signaling has an essential role in humans to
regulate cell fate and number in their brains and spinal cords (Jiang and Hui 2008). Aberrant expression of Hh proteins contributes to birth defects and cancer, including medulloblastoma and childhood diffuse intrinsic pontine gliomas (DIPGs) (Jiang and Hui 2008, Monje et al. 2011).

Patterns of developmental gene expression suggest a similarity between the vertebrate posterior neural tube and ascidian nerve cord (Takatori et al. 2002; Hudson et al. 2011). Therefore, to better understand Hh's developmental role in embryogenesis, efforts have been focused on the Phlebobranchia ascidian Ciona intestinalis. However, recent data suggests that the floor plate and Hedgehog signaling are not acting in the same way during vertebrate and C. intestinalis motor neuron formation (Hudson et al. 2011). To address this issue and get a better understanding of the evolution of $h h$ in tunicates, examining $h h$ in ascidians from the clade Stolidobranchia is important in order to reach a consensus on the developmental role of hedgehog in ancestral chordates.

Materials and Methods

Animals. B. villosa were collected at Friday Harbor Laboratories, WA, San Juan Island and kept under constant light in circulating seawater $\left(12^{\circ} \mathrm{C}\right)$. Adults were bisected longitudinally through the siphons and the gonads manually macerated through $300-\mathrm{mm}$ Nitex mesh. Egg and sperm were segregated, and sperm activated by adding Tris pH 9.5 until the solution reached pH 9.0 . B. villosa are not self-fertilizing, thus a different individual was used to fertilize eggs. After insemination, embryos were reared at $12^{\circ} \mathrm{C}$ in bag-filtered seawater (FSW).
B. villosa were collected at the following stages of development for in-situ hybridization: $\mathrm{F}+0$ (fertilized egg), $\mathrm{F}+30 \mathrm{~min}$ (first cleavage), $\mathrm{F}+2 \mathrm{~h}$ (4-cell stage embryo and 8 -cell stage embryo), $\mathrm{F}+3.5 \mathrm{~h}$ (16-cell stage embryo), $\mathrm{F}+5 \mathrm{~h}$ (32-cell stage embryo), $\mathrm{F}+6 \mathrm{~h}$ and $\mathrm{F}+8$ (gastrulation), $\mathrm{F}+17 \mathrm{~h}$ (early and middle tailbud-stage embryos), $\mathrm{F}+27 \mathrm{~h}$ (tadpole), and $\mathrm{F}+48 \mathrm{~h}$ (tail absorption).
B. violaceus colonies were collected off the docks in Roche Harbor, WA, San Juan Island and were maintained in plastic colanders submerged in circulating seawater $\left(12^{\circ} \mathrm{C}\right)$ on sea tables at Friday Harbor Laboratories.

Sequence comparisons and molecular phylogenetic analysis. A BLASTp search was conducted on the NCBI database for hedgehog (hh) using Ciona intestinalis hh2 as the query sequence. Vertebrate (Homo sapiens, Mus musculus, Xenopus laevis, and Danio rerio) and invertebrate (Drosophila melanogaster, Saccoglossus kowalevskii, Strongylocentrotus purpuratus, Branchiostoma floridae, and Ciona intestinalis) hedgehog DNA and protein sequences were aligned using MEGA5 (http://megasoftware.net) and MAFFT (http://www.ebi.ac.uk/Tools/msa/mafft/). Nonhighly conserved regions were excluded from the analysis using Gblocks (http://molevol.cmima.csic.es/castresana/Gblocks_server.html) (Figure 2). Molecular phylogenetic relationships among the $h h$ genes were estimated using the maximumlikelihood method on RAxML. 100 Bootstraps were used to assess the degree of support for internal branching of the tree (Figure 4).

Primer design. Primers were designed for $h h 1$ and $h h 2$ from the highly conserved 5' and 3' end regions of the above DNA alignments (Figure 3). Sb-SHH primers designed for Saccoglossus kowalevskii by Leonid Moroz and Billie Swalla were also used in this study. Each primer is between 18-21 bp and has minimal degeneracy
(Table 1).
Polymerase Chain Reaction (PCR). DNA was extracted from the gonads of B. villosa and the tadpoles of B. violaceus using a Qiagen DNeasy kit. RNA was extracted from the gonads of B. villosa and tadpoles of B. violaceus using Qiagen RNeasy Protect mini kit. cDNA was made from RNA using Ambion RETROscrip kit. PCR was ran on the genomic DNA and cDNA of B. villosa and B. violaceus, and genomic DNA from Molgula ficus and Saccoglossus bromophenolosus using the above primers at the following conditions: initial denature at $94^{\circ} \mathrm{C}$ for 4 minutes; 35 cycles of denature $94^{\circ} \mathrm{C}$ for 1 minute, annealing temperatures varied from $37^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$ for 30 seconds, extension at $72^{\circ} \mathrm{C}$ for 1 minute; final extension at $72^{\circ} \mathrm{C}$ for 10 minutes. PCR products were ran on a 0.7% agarose gel at 110 v . PCR inserts were extracted and purified using the Illustra GFX Gel Band Purification kit.

Cloning. Putative $h h$ genes isolated by PCR of B. violaceus and M. ficus were ligated into the pCR II-TOPO 4.0 kb vector and transformed into chemically competent TOP10 Escherichia coli using the heat shock method. hh genes purified from B. villosa were ligated into the pGEM-T 3kb Easy Vector and transformed into JM109 Highly Efficient Competent Cells. Both vectors have the T7 and SP6 promoter regions and EcoR1 restriction sites. TOP10 transformed cells were plated on kanamycin+X-gal LB agar plates. JM109 transformed cells were plated on ampicillin+IPTG+X-gal LB agar plates. Plates were incubated over night at $37^{\circ} \mathrm{C}$. White colonies were selected and grown up in culture. Plasmids were then extracted using 5Prime FastPlasmid mini kit. Digesting 10uL of plasmid DNA with EcoR1 restriction enzyme identified successful clones. Digestion reactions were ran on a 0.7% agarose gel at 110 v .

Sequencing. Successfully cloned plasmids were sent to Genewiz for sequencing.
Dechorination and fixation. B. villosa and B. violaceus embryos were dechorinated using a dechorionation solution (4\% Na thioglycolate in FSW, 2\% pronase E, pH using 1 M NaoH) and fixed in 4% paraformaldehyde. Embryos are stored in 80% ethanol at $-20^{\circ} \mathrm{C}$.

Results

No bands were obtained by PCR using the genomic DNA of B. villosa or S. bromophenolosus. PCR products were obtained using an annealing temperature of $37^{\circ} \mathrm{C}$ on genomic DNA from M. ficus and B. violaceus (Figure 5a). Successfully cloned plasmids had two bands at 4 kb and 300bp (Figure 6). BLASTx was performed on the sequences of these products, however they did not correlate to hedgehog. PCR products were obtained using an annealing temperature of $37^{\circ} \mathrm{C}$ on cDNA from B. villosa (Figure $5 b)$. These genes will be sent for sequencing.

A gene tree comparing $h h$ in chordates produced monophyletic clades of vertebrate $S H H$, IHH, and $D H H$. The invertebrates branch off separately, with C. intestinalis as the outgroup. C. intestinalis $h h$ genes are not grouped in any of the vertebrate clades. In the IHH clade there is a low bootstrap value of 14 at node B. The other invertebrates S. kowalevskii, S. purpuratus, and B. floridae only have evolved one $h h$ gene.

Discussion

Ascidians are highly studied in evolution and development because they have a tiny chordate tadpole larva. As such, ascidian research has lead to a greater understanding of the molecular roles of development in vertebrates. However, recent research in C. intestinalis on the molecular role of $h h$ in motoneuron development is non-homologous to its role in vertebrates.

Figure 4 suggests that C. intestinalis had a $h h$ duplication independent of the vertebrate $h h$ duplications, resulting in $\mathrm{HH1}$ and HH 2 . The tree suggests that the ancestor at node A had one $h h$ gene. The vertebrates branched off and had two gene duplications, resulting in homologous $S H H, I H H$, and $D H H$. This theory is supported by $h h$ not being expressed in the notochord, nor playing a role in motoneuron development in C. intestinalis (Hudson et al. 2011).

In the IHH clade there is a low bootstrap value at node B . This may be caused by an independent gene duplication of $I H H$ in D. rerio. In the DHH clade, one of the duplicated genes may have been lost, resulting in only one DHH gene in D. rerio.

Based on current research from C. intestinalis, we hypothesize that tunicates are not the ideal organism to study hedgehog in vertebrates (Hudson et al. 2011). However, in-situ hybridizations for hedgehog has not been studied in the sister clade Stolidobranchia. Therefore, further research is needed in Stolidobranchia to determine if hedgehog is expressed in the notochord of ascidians.

Acknowledgements

I would like to take this opportunity to thank the faculty, students, and staff at Friday Harbor Laboratories. I greatly appreciate the opportunity to work alongside so many talented individuals. I would like to extend my thanks to my professors Dr. Billie Swalla and Dr. Ken Halanych, and to my TAs Joie Cannon and Kevin Kocot for all their patience and time. Thank you to Max Maliska for allowing me to use his M. ficus DNA. Thank you to all the students in my EvoDevo class for teaching me how to dance and putting a smile on my face.

Additionally, I'd like to thank my father Rick Miller for always believing in me and motivating me stay true to myself. Finally, I'd like to thank my mentor Hector Rincon, for his many late night talks, research knowledge, and patience.

References

Brown FD, Prendergast A, Swalla BJ. 2008. Man is but a worm: Chordate origins. Genesis 46 (11) (NOV): 605-13.

Davidson B, Wallace SES, Howsmon RA, Swalla BJ. 2003. A morphological and genetic characterization of metamorphosis in the ascidian Boltenia villosa. Development Genes and Evolution 213 (12) (DEC): 601-11.

Hudson C, Ba M, Rouviere C, Yasuo H. 2011. Divergent mechanisms specify chordate motoneurons: Evidence from ascidians. Development 138 (8) (APR 15): 1643-52.

Imai JH, Meinertzhagen IA. 2007. Neurons of the ascidian larval nervous system in Ciona intestinalis: I. central nervous system. Journal of Comparative Neurology 501 (3) (MAR 20): 316-34.

Jiang J, Hui C. 2008. Hedgehog signaling in development and cancer. Developmental Cell 15 (6) (DEC 9): 801-12.

Kott, P. (1985). The Australian Ascidiacea Pt 1, Phlebobranchia and Stolidobranchia.

Mem. Queensl. Mus. 23: 1-440
Lemaire P. 2009. Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Developmental Biology 332 (1) (AUG 1): 48-60.

Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, Attema JL, et al. 2011. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proceedings of the National Academy of Sciences of the United States of America 108 (11) (MAR 15): 4453-8.

Nüsslein-Volhard C, Wieschaus E. 1980. Mutations affecting segment number and polarity in Drosophila. 287 (5785) (10/30/print): 801, http://dx.doi.org/10.1038/287795a0.

Satou Y, Kusakabe T, Araki L, Satoh N. 1995. Timing of initiation of muscle-specific gene expression in the ascidian embryo precedes that of developmental fate restriction in lineage cells. 37 (3): 327, http://dx.doi.org/10.1046/j.1440-169X.1995.t01-2-00010.x.

Takatori N, Satou Y, Satoh N. 2002. Expression of hedgehog genes in ciona intestinalis embryos RID C-4123-2009. Mechanisms of Development 116 (1-2) (AUG): 235-8.

Zeng L, Jacobs MW, Swalla BJ. 2006. Coloniality has evolved once in Stolidobranch Ascidians. Integrative and Comparative Biology. 46,3: 255-268.

Figures

Figure 1. Diagram of a settling ascidian larva, showing the chordate dorsal nerve cord, notochord, mesenchyme, and endoderm (Davidson et al. 2003).

	1020	0	40	50			60
DHH_Homo_sapien	RYARKQLVPLL K V GVP	RTLGASGPA	GRVARGS R RDLV		II	K	S
DHHa_Xenopus_la	RRYMRKLV LH K V VP	KTLGASGKS	GKIHRGS R I LV		II	K	KT
DHHb_Xenopus_la	RRYMRRLVPLLK VP VP	KTLGASGKS	GKIRRGS R IKLV		II	K	T
DHH_Xenopus_(Si	RRYMRKLVPLR K VP VP	KTLGASGKS	GKIRRGS R I LV		I	K	T
DHH_Mus_musculu	RYVRKQLV LL V SMP	RTLGASGPA	GRVTRGS R RDLV		IIF	K	S
DHH_Danīo_rerio	RHRQRKLT MS K YVGVS	NNLGASGRA	GRITRS R N LVC	T	ID	K	RS
SHH_Mus_musculu	RRH KKLT LA K I VA	KTLGASGRY	GKITRNS R K LT		II	K	T
SHH_Xenopus_lae	RRHPKKLT LA K IP VA	KTLGASGRY	GKITRNSDC K LT		IM	K	ST
SHH_Homo_sapien	RRH KKLT LA K I VA	KTLGASGRY	GKISRNS R K LT		II	K	T
SHH_Danio_rerio	RRH KKLT LA K I VA	KTLGASGRY	NS R K LT		IIF	K	T
SHH_Xenopus_(Si							
IHH_Homo_sapien	RRP RKLV LA K S	,	K		IIF	K	T
IHH_Mus_musculu	RRP RKLV LA K S VP	KTLGASGRY	GKIARSS R K LT		I	K	T
IHH_Danio_rerio	RRP KKLT LN K S VA	KTLGASGRI	ITRNS REK LT		I	K	T
IHHb_Danio_reri	RRT RKLT LA K S VA	KTLGASGRY	GKVTPS REK LT		I	K	T
IHH_Xenopus_lae	RRRTKLS LS K VP	KTLGASGRY	KISRNS R K LT		I	K	IT
HH_Drosophila_m	RHRARNLYPLVLK TIP LS	YTNSASGPL	GVIRRDSPK KDLV	R	IL	R	GT
HH_Branchiostom	RRHPRKLT FV K QM AVS	NTFGASGLFN	GGITRDS R HTLKQ F		II	K	KT
HH_Saccoglossus	RRPSRELT LL K CIP VS	NTLGASGPN	KKITREDDE KDLQTV	A	IM	K	GT
HHtw_Danio_reri	RRH KKLT LA K I VA	KTLGASGKY	GKITRNS R K LI		II	K	T
HH_Strongylocen	SHR RNRT LQ K RV IS	DTFGASGPP	GRINRND R NTLS N	D	IV	K	GT
HH1_Ciona_intes	RMPGRELV FLKGEYV KMS	QTIGASGPVT	GRIRADTPR R LV		IE	R	ES
HH2_Ciona_intes	RPNQRNLRPLLRQ YVPHVS G	GTIGASGPS	GRIYRNTPRYRKLER				
	\#						

		70	0		9		100		10	120
DHH_Homo_sapien	A	RLMTRCKERV	M	M	PGVRLRVT	G	GHHA	SLH	RAL	TS R
DHHa_Xenopus_la	GA	RLMTRCK RV	ALAISVM	M	PGVKLRVT	G	GHHAHD	DSLH	GRAL	ITTS R
DHHb_Xenopus_la	GA	RLMTRCK RV	ALAISVM	M	PGLKLRVT	G	GHHAHD	DSLH	GRAL	ITTS R
DHH_Xenopus_(Si	GA	RLMTRCK RV	ALAISVM	M	GVKLRVT	G	GHHAHD	SLH	GRAL	ITTS
DHH_Mus_musculu	GA	RLMTRCKERV	ALAIAVM	M	T	G	,	SLH	GRAL	ITTS
DHH_Danio_rerio	N	RFMTRCK CL	M	Q	VT	A	GHHPPG	GSLH	GRAV	S
SHH_Mus_musculu	GA	RLMTRCK KL	LIAISVM	Q	PGVKLRVT	G	GHHS	SLH	GRAV	ITTS R
SHH_Xenopus_lae	GA	RLMTRCK KL	ALAISVM	Q	PGVKLRVT	G	GHHL	SLH	GRAV	ITTS R
SHH_Homo_sapien	GA	RLMTRCK KL	ALAISVM	Q	IPGVKLRVT	G	GHHS	SLH	GRAV	ITTS
SHH_Danio_rerio	GA	RLMTRCK KL	SLAISVM	H	VPGVKLRVT	G	GHHF	SLH	GRAV	ITTS
SHH_Xenopus_(Si					---VKLRVT	G	GHHS	SL	GRAV	ITTS
IHH_Homo_sapien	GA	M-RCK R	\#AISVM	Q	GVKLRVI	G	GHHS	SL	GRAV	ITTS
IHH_Mus_musculu	GA	RLMTRCK RL	SLAISVM	Q	PGVKLRVT	G	GHHS	SLH	GRAV	ITTS
IHH_Danio_rerio	GA	RLMTRCK KL	LAISVM	M	PGVKLRVT	G	GNHF	DSLH	GRAV	ITTS
IHHb̄_Daniō_reri	GA	RMMTRCK KL	LAISVM	L	PGVRLRVT	G	GLHS	SLH	GRAV	ITTS
IHH_Xenopus_lae	GA	K RL	SLAISVM	Q	WPGVKLRVT	G	GHHF	LH	RAV	TS
HH_Drosophila_m	GA	GLMSRCKEKL	LAYSVM	E	-IRLU1	S	YHHGQ	SLH	GRAV	IATS
HH_Branchiostōm	GA	RFMTRCK KL	ALAISVM	Q	EGVKLRVT	G	GFHT	SLH	GRAV	ITTS
HH_Saccoglossus	GA	RLMTRCK RL	SLAISVM	Q	JPGVKLRVT	G	GHHAPN	NSLH	GRAV	ITTN R
HHtw_Danio_reri	NA	RLMTRCK KL	SLAISVM	H	VPGVKLRVT	G	GRHL	SLH	GRAV	ITTS R
HH_Strongylocen	GA	RLMTRCK KL	TLAISVM	E	PGIKLRVV	A	QPNV	-PLHA	GRAV	ITTS R
HH1_Ciona_intes	NE	RFMTICRARLD	YLAILVA	Q	ARVKLKVL	A	DGNDKAND	DPLH	GRAV	ITTD A
HH2_Ciona_intes	GS	K KV	SML		AGVSLKVI		G GVHR	SLH	GRAV	IKTS N
		\#\#\#\#\#\#\#\#\#\#\#\#	\#\#\#\#\#\#\#		\#\#\#\#\#\#\#\#\#		\#\#\#\#\#	+	\#\#	\#\#\#\#\#\#

DHH_Homo_sapien DHHa_Xenopus_la DHHb_Xenopus_la DHH_Xenopus_(Si DHH_Mus_musculu DHH_Danio_rerio SHH_Mus_musculu SHH_Xenopus_lae SHH_Homo_sapien SHH_Danio_rerio SHH_Xenopus_(Si IHH_Homo_sapien IHH_Mus_musculu IHH_Danio_rerio IHHb_Danio_reri IHH_Xenopus_lae HH_Drosophila_m HH_Branchiostom HH_Saccoglossus HHtw_Danio_reri HH_Strongylocen HH1_Ciona_intes HH2_Ciona_intes

| | 190 | | 200 | 210 |
| :--- | :--- | :--- | :--- | :--- |AVGVFAPLTAHGTLLVNDVLASCYAVL SHQWAHRA APLRGMH WY SRLL

QTGV APMTEHGTLLV GVLTSCYATV SHTLAHVSLAPLRGVHWCHIL
QTGV APMTEHGTLLV GVLTSCYATV SHTLAHASLAPLRGVH
QTGV APMTEHGTLLV GVLTSCYATV SHTLAHASLAPLRGVH CHIL
AVGVFAPLTAHGTLLVNDVLASCYAVL SHQWAHRAFAPLRGMHWYSRLL
RMGV APLTEHGNLFV GVLASN ATFQDHGLAHTV WPFREY ARLLH
EAGA APLTAHGTILINRVLASCYAVI EHSWAHRAFAPFRGIHWYSQLL
DTGA APLTAHGTVVI QVLASCYAVI EHTWAHLAFAPLRGIHWYSQLL
AAGA APLTAQGTILINRVLASCYAVI EHSWAHRAFAPFRGIHWYSQLL
QRGSFAPVTAHGTIVV RILASCYAVI DQGLAHLAFAPARGVH
DIGAFAPVTAQGTVVI EVLASCYAVI EHRWAHLAFAPLRGIHWYSRLI
ALGA APLTKHGTLVVEDVVASCFAAVADHHLAQLA WPLRGVH PQLL
ALGS APLTRHGTLVVEDVVASCFAAVADHHLAQLA WPLRGVH PQML
DRGVFAPLTSHGTVVVNGIVSSCYAAVDQHWLAHWA GPLRGIHWYSSLLH
DQGL PPLTAHGTVVVNDVLTSCYAAVNRQRLAHWAFAPLRGLHWYSQVLI
NYGA APLTQHGTLVV DVVVSCFALVQKQRLAQIVYWPLRGIHWYSKAL
SKGVVAPLTREGTIVVNSVAASCYAVINSQSLAHWGLAPMRGIH ANAL
EKGA APLTVHGTVVV NVAMSCYALI SQALAHWV APFRGVH PSFF
NVGV APLTREGTIIINNIVASCYAMV-NHNIAQFA GPIRGVH PYLL
HEGSFAPVTAHGTIIV QVLASCYAVI NHKWAHWA APVRGIHWYSNLF
GRTAVAPVTRQGSLVI DVAISS AVMRDEWIAHAS APVRRVH TQRL
ASGA APLTYSGTIIVGGTAASCYAVI SDVIAHTVVS FRGISL SKLLH
GDGL APLTAHGTVVV GIVASC GVIGSETLAHAAML IRGIH AKSLA

Figure 2. Multiple alignment of hedgehog protein in chordates.

B.

D.

Figure 3. Alignments done using MEGA5 and Gblocks to locate conserved regions for primer design. Yellow blocks show primers. A. $b v-H H 1$ forward primer, B. $b v-H H 1$ reverse primer, C. $b v-$ HH2 forward primer, D. bv-HH2 reverse primer.

Table 1. $b v-H H 1, b v-H H 2$ forward and reverse primers showing their respective melting temperatures (Tm).

primer	Forward	Tm	Reverse	Tm
$b v-\mathrm{HH1}$	GCGAACCAATGGGCGCGT	$74^{\circ} \mathrm{C}$	GATGACGGCGTAACATGACGC	$70^{\circ} \mathrm{C}$
$b v-\mathrm{HH} 2$	GTGAAGAACACATGGGCCGGT	$71^{\circ} \mathrm{C}$	GTGCGGTAAGCGGGGCAT	$71^{\circ} \mathrm{C}$

Figure 4. Maximum-likelihood gene tree showing evolution of hedgehog in vertebrates and invertebrates. Numbers at nodes show bootstrap values.

B.

Boltenia Botrylloides

Figure 5. PCR gels. A. PCR ran on genomic DNA from B. villosa, B. violaceus, M. ficus, and S. bromophenolosus. B. PCR ran on cDNA from B. villosa and B. violaceus.

Figure 6. Gel ran on miniprep plasmid DNA from B. violaceus and M. ficus digested with EcoR1.

