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Summary

Let G be a finite group with a split BN pair at
characteristic p (as defined in t16l), let H = BfìN,

W : ÌJ/H and X the Sylow p-subgroup of B. Thus c may

be any of the finite chevarrey groups, including the twisted
types. lJe make an additional assumption concerned with the

derived group (commutator subgroup) of X, and show

(theorem A) that with a few exceptions the Chevalley groups

and twisted types do satisfy this condition. This thesj-s

is chiefly concerned with irreducible characters of c

which are components of the character 1: (induced from the
principal character of X).

Specifica1ly, 1et À be a linear character of II

and extend À to B by defining À (x) = 1 for alI x€X.

Let U be a linear character of y (the prod.uct of the

negative root subgroups) which is nontriviar on the root
subgroup x-r whenever r is fundamentar. There exists
an irreducible character X(À,U) of c which has multi-
plicity 1 in ÀG (theorem B; these characters lvere dis-
covered by Dagger t9l ) . Generalizíng the isometry argument

used by Curtis in t6l another character 6(À,U) is con-

structed whj_ch al_so has multiplicity one in ÀG (theorem C) .

As a by-product we derive a formura for the multipricity with
whi-ch a linear character of a syrow p-subgroup occurs j_n the
restriction of an irreducibre component of Àc (theorem D).

rt is shown that any component of r: with degree prime to
p is of the form 6(À,u) (theorem E).

(i)



Let k be the complex field and B¡ the primitive
i-dempotent in kB af fording the character À. tr{e use

the technique (used by Curtis, Iwahori and Kilmoyer tgl)
of investigating components of Àc by investigating
characters of the Flecke algebra BÀ kGBÀ . rrreducibl_e corTr-

ponents of ÀG with multiplicity m restrict to irreduc-
ible characters of B¡kgB¡ of degree m (curtis and Fossum

t7l). Thus the existence of the characters X(À,U) and

e(À,u) guarantees the existence of linear representations
of BrkGBÀ. The structure of BÀkGBÀ is closely rerated
to that of kSH¡ where S = {w€V{lÀw=À} and FI¡. = IÀ (fr- t )h,
and we are able to deduce the existence of a linear represent-
ation of SH which extends À (theorem F).

It is also proved (theorem G) that S is the split
extension of Vls by D where D is an abelian p'-group
and ws a weyr subgroup of w, and we give a set of rela-
tions which oetermine the multiplication of basis erements

of B¡kGB¡. Tn theorem H we obtain a formura for the
degrees of components of mur-tipricity one in ¡c and prove

that in most cases there are precisely lol components with
degree prime to p, aÌr having the same degree. For any

parabolic subgroup Gr and any component il, of ÀGJ there
exists a corresponding irreducible character E of NnGr ;

the correspondence q,G <> EN is an isometry between the
spaces generated by these characters (as J, À vary)
(theorem I).

Finallyr ân automorphism of order 2 of XteX is
obtained which provides an alternative method of constructing
the 6(À,ìt) from the X(À,U) (theorem J) , and. shows that for
each component of Àc there is a "dual" component.
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CHAPTER I

STATE}'IENTS OF THE MAIN THEOREMS

TIIEOREM A Let G be any f inite chevalley group (of

normal or twisted type) other than Bs (2), Cp (2), E+(2), Gz(2),

Gz (3) or Fl (2) (in the notation of l2i) . Let Xt ,X2 , " 'Xn

be the fundamental root subgroups of G. Then the natural

map nKi /Xi -+ X/X' is an isomorphism, and all root subgroups

for non-fundamental positive roots are contained in X' .

(The prime denotes "commutator subgroup" ) .

In all the remaining theorems G will be an arbitrary

finite group with split BN pair satisfying this condition

on X', and À will be a linear character of B with

kernel containing X. For each w € Vü define

À* (hx) = ¡.(whvi t ) (h€H, x€X) so that À* is another such

linear character of B. Let S = {w€WlÀ*=À}-

THEOREM B For each fundamental root Ei choose a nontrivial

linear character I¡ of Yi , the root subgroup corresponding

to -ri. Let J c {L,2r...n}, G¡ the corresponding para-

bolic subgroup, Y the product of the negative root subgroups

in G' and u¡ the linear character of Y extending each

þ¡ for i€J and trivial on Y¡ for ieJ. Then for each

w€W, (À*)cr and (U, )o, have a unique co*mon component

X, *, and it has multiplicity one in each-

THEOREM C For any subset J of {I,2 '. . .n} tet Wr be

the corresponding parabolic subgroup and defíne Q¡ = t*1,,

where v runs through a set of representatives of the

S\W/Vür cosets. Then (, - I (-l)' ' ' t, (summation over all
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subsets J) is an irreducible character of G occurring

with multiplicity I in ÀG.

THEOREIVI D Let Õ be any component of ¡c and o the

restriction of o to Y (with Y as defined in theorern B) -

Then for any J c {L,2,...n},
(oru¡ ) = (o,ç¡ ).

(n.b. this is the usual inner product for characters).

THEOREM E Any irreducible component of I c which cannot
X

be obtained by the method given in theorem C has degree

divisibte by p.

THEOREM F The character À of H may be extended to a

linear character of SFI. (One particular extension will

be denoted by "À").

THEOREM G (i) S is the sptit extension of V'Is by D'

where Ws is a Weyl subgroup of W and D an abelian

p'-group.

B¡ KGB¡

r isa

ion s,

(a) yn

(b) Yw

P, Y*,

(ii) Let f be the

has a basis {y* lw€S}

fundamental root of f

root system of Ws. Then

such that if w€S, v€D, and

with corresponding reflect-

YY

andyY=yt
w v !\rv

if w(r) is positive

+ (p -1)y if w(r) is negative,-r 'w

if *-' (r) is positive
+ (p, -I)y* if w-' (r) is negative.

are nonnegative integral powers of p

if a and b are in the sarne S-orbit of f

ws

YY =

(c) yry* = y.*

Y.Y* = PrY.*

The constants p.

such that pu =pu
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THEOREM H (i) Let v be any linear character of Ws

and n any linear character of D. Then there exists an

irreducible character rf (v, n, À ) of G which has multi-

in ¡c and degree given by lol-'w(q)/ws (9).

and W, (u) are the Poincare polynomials of W

Thus g has one component for each W5 -orbit

is calculated by setting the component corres-

r€f equal to p, if v(s) = I and equal- to

plicity I

Here W (t)

and Ws.

of f; 
9

ponding to

p; t if v (s) - -1 (where s is the reflection corres-

ponding to r). The components of g are just the ord-

ers of corresponding root subgroups. Any component of

multiplicity t in ÀG is of the form rf (v , n, À ) .

(ii) There are precisely lol components of

ÀG with degree prime to P, namely the characters

rþ(1,n,À) as ¡ varies through all linear characters of D'

except that if Ws has a WeyI subgroup which is dihedral

of order 4m and p" lm for aI1 roots a of this subgroup,

then ¡c may have further components with degree prime to p.

THEOREM I Corresponding to the character rl(vrn'À) of G

there is an irreducible character 6(v'n'À) of N' given

by inducing the character vnÀ of sH. similarly for any

parabolic subgroup Gr and any component {l of multiplic-

ity t in ÀGI there exists an irreclucibl-e character E of

NfìG¡ , and the correspondence UG <+ gN is an isometry be-

tween the inner product Spaces generated by these characters

(as J, À vary) .

THEOREM J There exists an automorphism f of xkcx of

order two such that for aII À,Ui if e is a primitive idem-

potent in i]<ei affording the irreducible character X of G

defined in theorem B, then f(e) affords the character C of

theorem C.
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CHAPTER 2

FINITE GROUPS GENI]P.ATED BY REFLBCTIONS

In this chapter some standard results on root systems

and reflection groups are listed. More detailed descrípt-

ions can be found in t3l and tIBl .

Let V be a real n-dimensional Euclidean space with

inner product ( , ). For r€V the orthogonal linear

transformation

s: v Þ v - 2\u't! t\t ,r )

is the reflection in the hyperplane orthogonal to r. A

root system A in V is a finite set of vectors which

generate V such that:
(1) For each r€4, -r€4, but no other multiple of

î is contained in A.

(2) If r€A and s is the reflection in the

hyperplane orthogonal to rt s(A) = A.

The elements of 
^ 

are called roots and the reflections

corresponding to the roots generatecl a finite qroup !V'

called a finite group generated by reflectþle o. g.g.r.

If x is a fixed but arbitrary vector in V satisfying

(x,r) I 0 for all r€4, we def ine

A* = {r€A | (x,r) > 0}

the set of positive roots, and

^={r€Al(x,r) 
<o}

the set of negative roots. Any root system has a base

which is a subset T of A* satisfying
(3) T : {rr ,r z, . . -rn} ís a basis of V,
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(4) If r = I t, t, is an element of A, then
i =1

all the t¡ are nonnegative or all nonpositive.

The elements of T are called fundamental roots, and the

corresponding refl-ections sr rs2 r . . .sn fundamental reflec-

tions. It can be proved that any root is the image of a

fundamental root under the action of some w€W.

2.I THEOREM (Coxeter [5,59.3] ) W is generated by

sr,s/¡...s¡ subject to the defining relations
(sis¡)"ij =l forall i,j 1<i< j<n

where ni j is the order of si sj in W.

For w€W def ine l, (w) to be the least m such

that there exists an expression

!v = w1\d2...W¡¡ (wi € {s ! tSz. ".Sn }

for each i)

for w as the product of fundamental reflections. Such

an expression with m = 1,(w) is called reduced.

2.2 LEMMA (Solomon lIl lemma 11 ) If w€ür and l<i<n

then [(ws¡ ) = f.(w) + 1 if w(ri ) is a positive root, and

Î,(ws¡ ) = f.(w) I if w(r¡ ) is a negative root. Similarly

l.(s¡w) =.q,(w) +I if r-t(r,) €A* and Î,(siw) = ø(w) I

íf w-'(ri) € A

2.3 COROLLARY If \¡Ir\¡Iz. . .\^/¡* is a reduced expression for

\^r, and if dt td2,...am are the fundamental roots correspond-

ing to \n/t rwz ¡...\Âr¡¡ (i.e. if wi =sj then âi =rj ) then the

positive roots r such that w(r) is negative are:

âmrwm(arn- r ), w6\nl6- t (a-- z) ,... rwmwn¡- 1...w2 (ar ).

In particular for each w I I there is a fundamental root

rj (= a-) sueh that w(r¡ ) is negative.
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Let f be a set of roots and suppose that the

corresponding reflections generate a subgroup T of W.

Let Q = T(f). Then CI is a root system for T acting
on the subspace of v spanned by f¿. The positive roots
of a can be chosen to be those which are positive in A.

Hence if P is the set of fundamental roots for CI p c Â+.

2.4 LEMMÄ, Each coset wT (w€W) contains unique elements

v1 and y2 such that vr (r) is positive and vz (r) neg-

ative for all- positive roots r€f).

Proof rt is well- known that if r is a fundamental_ root
and s the corresponding reflection then s permutes

the positive roots other than r. Let w€w and choose

v 1 € v¡T which negatives a minimar number of positive roots
in f¿, and suppose that vr (r) is negative for some r in
P- Then if s is the reflection corresponding to y,

vrs(r) = vr(-r) = -vr(r) is positive,

and since

{ala€fl, a is positive, alr}={s(a) la€CI, a is positive, alr}
it fol-l-ows that the number of positive a€f¿-{r} such that
vr (a) is negative equals the number of positive a€f-¿-{r}

such that vrs(a) is negative. Thus vrs negatives fewer
positive roots in CI than does Vr, a contradiction since
vrs € wT. Therefore v1 negatives no element of p, and

therefore no positive linear combination of elements of p

eitherr âs required. To prove uniqueness, assume v€T and

that vrv also does not negative any positive root in fl.
rf vll- there exists a positive root r€CI with v (r) nega-

tj-ve. Since v I v (r) is positive, -v (r) is a positive
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root in lì negatived by V1. This is a contradiction, and

so v=I and hence vrV = V1.

A similar proof appties llot v2t which is character-

ized as the element of wT which negatives a maximal number

of positive roots in f¿.

2.5 LE¡{1"1Ä, Let J c {L,2,. - .n} and !v¡ the group genera-

ted by the si for i€J. Then {rr lie.r} is a base for

the root system of Wr . Each coset \n¡!V¡ (w€ü1) contains

exactly one v such that v(ri ) is positive for all i€J.

In particular I{¡ contains a unique involution w¡ which

maps the roots {r, lie,r} to the roots i-ri li€J}, and

there exists \nlo € rrv mapping {ri lf < i < n} to

{-r¡ lr < i < n}.

The proof of this (which ís similar to the proof

of 2.4) follows from I.L2 and I-16 of tl8l .

A g.g.r. is said to be reducible if its root system

can be divided into two nonempty subsets such that all the

roots in one are orthogonal to all the roots in the other.

In this case the group is a nontrivial direct product of

two smaller g.g.r.'s. Conversely if w1 and wz are two

g.g.r's acting on Euclidean spaces v1 and vz respectively'

thenWrxWzisag.g.x.actingonthedj.rectsumofVr
and Vz (making V1 orthogonal to Vz) . The root system

of w1 ¡ wz is the union of the root systems of w1 and' wz.

The irreducible g.g.r.'s have been classified by Coxeter'

Using the notation of t5l theY are:
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SvmboI

[3"'t 1

[3n'2 r4]

[3n'3' I' I

lrl

[3,5]

[3,3,5]

13r4,31

132'z'r.,

[3t'" t 
]

Lie Alqebra Number of generators Diaqram

4
/

\\

r

5

4
5

aæ

4

Bn

Gz

An

and C"

Dn

if r=6

Fa

Eo

Et

Es

n>1
n>2

n>4

2

3

4

4

6

7

IÍ34'z'rt

Certain g.g.r.rs are vüeyl qroups of Lie algebras and for

convenience the correspondence is given in the table. The

correspondence is relevant since Chevalley groups (which are

the topic of chapter 4) are constructed from Lie algebras-

Furthermore there is a theorem of Feit and Higman t10l that

only those g.g.r.rs which are Weyl groups of Lie algebras

and the dihedrat group of order 16 (i.e. t8l in the notation

of the above table) can be t{eyl groups of BN pairs (BN pairs

wiII be defined in chapter 3). The diagram of a g.g.r is

obtained from the generators and rel-ations given in theorem

2.L by placing one node for each generator and joining the

ith and jth nodes by a bond of strength ni j . Bonds of

strength two are omitted, and unmarked bonds are understood

to have strength 3.

2.6 DBFINITION Let W be a g.g.r. with root system A-

Let the orbits of W on A be Or, Qz, .. .Qn'. For each

w€lrl let t{i (w) be the number of positive roots in Q¡
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,negatived by w. The Poincare polynomial of W is de-

fined to be

w (t) = r tr*' ( w) arN' 
( w) 

¡-Nm( 
w) (w€w)

(where ! = (tr,t2r...t,n)).

For the purpose of computing values taken by these

polynomials it is useful to be able to factorize them, and

for this the reader is referred to tf4l. In fact the

Poincare polynomial of a reducible g .9.r. is the product

of the Poincare polynomials of the component irreducible

9.9.r.'s, and the factors of each of the Poincare poly-

nomials of irreducible g.g.r.'s are listed in tl4l.

Now suppose that S is any subgroup of the g-9.r.W,

and that for each root 1 there exists 0. €k (where k

is any field) such that
(i) 0. = 0w( ¡ ) for all r€A and w€S

(ii) 0, = 1 if the reflection s corresponding to

r is not in S.

Let 0* = [0, where the product i-s over all positive roots

r negatived by W. Let Ws be the subgroup of S gener-

ated by the reflections corresponding to roots t sueh that

0. I I. Then we have the following result, which will be

used in chapter B:

2.7 LEMMA (i) Let D = {v€Slv(r) is positive for all

positive roots r of Ws Ì. Then D is a subgroup of S

which normalizes Ws , S=DWs , and DlìWs =1

(ii) I e* = [S:Ws ]ws (O) (i.e. the value taken by vüs (t)
weS

when ti is replaced by 0, , where r is any root in the

corresponding W" -orbit) .
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Proof (i ) From 2 .4 it is clear that S=DWs and DfìW. =1 .

Let v,w€D and let Í be a positive root of Ws. Then

w(r) > 0 (since w€D) , and w(r) is a root of Ws since

0*(. ) = 0. / I. Hence v (w (r) ) ¡ 0, since v€D. rt

follows that vw (r) > 0 for all positive roots r of Ws ,

and so vw€D. Hence D is a subgroup. Furthermore, íf
v€D and s€W. ís the reflection corresponding to the root

r, then vsv- t is the reflection corresponding to v (r) ,

and it follows that vsv- t €Vùs . Since l{s is generated by

such ref lections s, D norrnalizes Ws .

(ii) Obviously V'Is (0 ) = I0* (w€Ws ) . Let v€D, w€Ws , ând

r a positive root of Ws. Then vw(r) is negative if and

only if w(r) is negative, and so vw and r¡¡ negative the

same positive roots of Ws. But 0. = I for all other pos-

itive roots and so 0.*, * = 0*. The rest is obvious.

From the generators and relations given in theorem

2.I it follows that a g.g.r. VÍ has a linear character e

such that e (s) - -1 for each fundamental reflection s.

For each subset J of {I,2,. ..11} tet trVl be as in 2.5

and 1et ôr be the character of W induced from the princ-
ipal character (1-character) of Wr.

2.8 THIIOREM (Solomon lL7, Theorem 2l)

e = r(-1)'t'ô,
where the summation is over all subsets J of {L,2,...n}.



3.1 DEFINITION

BN paÍr

generate

W = Nr/H

if there

G,

CHAPTER 3

SPLIT BN PAIRS

(Tits t20l ) A finite grouP G

exist subgroups B and N of

BnN is a normal subgrouP of N'H

r1.

has a

G which

and

and

for all

generated

s¡ Bw c BwB

S¡BS¡ I B

and 1< i < n.

as

(r)

(2)

w€I{

by involutions sr ¡sz' . . .sn,

U Bs¡ wB

v'r is called the Weyl group of the BN pair, and n

its rank.

The elements w€!r7 are cosets of H in N. We will

choose a fixed but arbitrary set of coset representatives, and

followi-ng the notation of Richen 116l (w) wil1 be the coset.
representative corresponding to w€Vü. The parentheses are

omitted when the choice of coset representative does not alter

the object in question (e.9. rr,r/B' for ' (w)B', as in the above

definition.

3.2 THE BRUUAT THEOREÌ"Í (Tits t20l ). If G has a BN pair then

(I) Ç = UBwB (union over all w€!{)

(2) If BwB = BwtB for w, wt€W, then w=wt.

(3) If L(siw) > 1,(w) for I < i < n and w€W

then s¡ Bhr c Bsi wB.

3.3 THEOREM (Iwahori and Matsumoto tl5l). .

If [4f = (srrs2,...,sn) is the !Vey1 group of a finite BN

pair then the relations

1s,s¡)"ti =I forall i,j 1<i< j<n

(where ni j is the order of si sj in vü) are defining
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relations for W.

3.4 COROLLARY The Weyl group of a finite BN Pair of

rank n is isomorphic to a finite group generated by re-

flections in n-dimensional Eucl-idean space.

As a consequence of this corollary \"/e may use the

notation of chapter 2z A is a root system for W and

1T = {rrrrzr...fr,} a base for A.

3.5 DEFINITION (Richen tl6l) G is said to have a split

BN pair of rank n at characteristic p (where p is

any prime number) if G has a BN pair of rank n,

H = BfìN = nw- tBw (w€w) is an abelian plgroup, and B = XH

where X is a normal p-subgroup of B.

3.6 THEOREM (Richen 116, theorem 2.121). For each w€W

(the !Vey1 group of a split BN pair) , let X* = w- t Xw and

def ine )(* = XnXw and Xi = X* when w = wo S¡ (wo as de-

fined in 2.5). Then vl acts as a permutation group on

I - {wX¡w-t lw€w, L < i < n} under

\^/: Z>wZw-t (foreach Z€-L)

and wX¡ w- t e w(ri ) is a well defined isomorphism

(W,t) = (Wr^). (In effect, I is a root system for W) .

3.7 DEFINITION Let r€4. The root subgroup Xr of G

is defined by

xr=

wherew€Wandl<i<
This definition is

any root is the image of

action of some w€W.

The proofs of all

wX¡ w- t

n such that r = w(ri ).
justified by 3.6 and the fact that

some fundamental root under the

the following facts can also be
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found in Richen's paper.

3.8 LEMMA Let G be a finite group with a split BN

pair. With the notation as above:

(t) H normalizes each root subgroup.

(2) If \¡Ir\dz ...\^/m i-s a reduced expression for w€Vü

and if we let vj = \tl-w¡¡- r ...wj (j=Ir2,...n) then

Bnw- 1w-otBwow = FIZ,,, (v^Z^- rv--t ) (v-- r Z^-zv'^! r )..... (vzZtvZt )

where Zt ,22,...2r,7 are the fundamental root subgroups

corresponding to the fundamental ref lections hI1 r\a/z '...wm.
Thus we see that

X*o* = Xu-Xrrrn(am. r) Xt*- r( am. z) "'Xv1( a, )

where d1 ta.2 ¡...ë[.,.' are the roots corresponding to

wt rh/z ¡ . . .\,r/¡¡ (so that Xa, = Zt , etc. )

Notice that X*o * is a product of the root subgroups

corresponding to the positive roots negatived by \^/ (see

2"3). In particular X(=X*o*o ) is a product of the root

subgroups corresponding to the positive roots.

(3) For all w€W

X = X*o *X* and Xwo wÍ'ìXw : {1}

In chapter 5 it wiII be necessary to deal- with linear

characters of X, and this will involve investigation of

the derived group x' of X. In the case of the Chevalley

groups (see section 4) this is accomplished by means of the

Chevalley commutator formula, and since the axioms for a

split BN pair have no analogue of this formula it seems

necessary to assume another axiom.

3.9 AXIOM The natural map fl X¡ /Xi '+ X/X' is an iso-
i:1

morphism. All root subgroups X, corresponding to non-
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fundamental positive roots r are contained in X' .

Inchapter4theoremAwillbeproved;thatisthat

with a few exceptions 3.9 is satisfied by the chevalley

groups, including the twisted types'

3.I0 LEMMA (Richen [16, definition 3.7] ) Let x€x¡ I

xfr. Then there exist unique erements fi(x) €Xi ' hi(x) €H'

and gi(x) €x with
(sr )x(sr )-' = g,(x) hi(x) (si )fi(x)

(ttris differs slightly from Richen's notation: 'fi (x)'

replaces 'f¡ (x- t )- t , etc.) The equations given in 3.10

are called by Richen the structural equations of G.
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CHAPTER 4

CHEVALLEY GROUPS

The chevalley groups are our chief object of interest;

for their construction the reader is referred to l2l and the

references given there. In this chapter we will prove that

3.g holds and obtain the structural equations for these groups'

The normal types.

Let L be a sj-mple Lie algebra over the complex

field, with WeyI group W and root system A. (¡ is

also a root system for W. The lengths of the roots are

specified, and in such a \^ray that a non-integral linear

combination of linearly independent roots cannot be a root).

An ordering of a is fixed in the usual way. If q is a

pohrer of a prime p there exísts a chevalley group Ç = L (q) ,

which has a split BN pair at characteristic p. For each

r€A there is an isomorphism t Þ x. (t) from the additive

group of er'(q) to the root subgroup xf of G. For

linearly independent roots t and s we have the Chevalley

commutator formuÌa:

[x, (u) ,x. (t) I = xs (u)-tx, (t)-tx, (u)x, (t) = [xi,*¡s (ci¡;,.tiuj )

where the ci j ; r s are certain integers. The product' over

positive integers t,j such that ir+js€a is taken in the

order of increasing roots.

LetPbethefreeabeliangroupgeneratedbythe

roots, and let x: P + CF(q) * (the nonzelro elements of

Cf (q) ) be a linear character of P. Then there exists an

automorphism of G such that

x, (t) Þ x, (X (r) t) for aII r€4, t€GF (q)



The subgroup H of G consists of elements

16.

r¡ (x) such

that
h (x) x. (t) h (X)- ' = x' (x (r) t)

and h(xr)h(xz) = h(XrXz)

where the product of the characters XrrXz of P is

def ined by XrXz (a) = Xr (a) Xz (a) (a€P) '

rndeed there exists a group ê containing G and a subgroup

Ê comprising elements tr(X) for all characters X:P + GF(c{)*'

Ifrisanyrootandsthecorrespondingreflection'
(s)x, (t) (s)-t = x-, (-t) = x, (-t-o)h(x',')-t (s)x' (-t-t)

(where (s) is nr in the notation of I 2l\ ' the character

Xr, t iP * GF (q) * being defined bY

2(r, z')

(rlo)(rr)
Xt (a) t

Thisgivesthestructuralequationsforthenon-twisted

Chevalleygroups,andthenexttheoremshowsthat3.gisalso

satisfied, except for Bp (2) , Ce (2\ , F+ (2), Gz(2) and Gz (3)'

4.L THEOREM (How1ett l"Lz lemma 7l ) Let Z be the sub-

group of X generated by the X¡ for r € A* T' Then

with the above exceptions, z = tJ' , the derived group of u '

proof vJe use the chevatley commutator formula and the fact

(see I3l) that if r-s is not a root then cl,i;"' = tl'

It is clear that U'< Z. Let r € 
^* 

TI' Then there ex-

istpositiverootsaandb(differentfromr)suchthat

r is in the root system spanned by a and b' and a-b is

not a root. (i.e. a and b are fundamental roots for the

root system theY sPan) '

r.âqê 1 Tf a and b span a root system of type Az then
U4Jç
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[x" (t), xo (u) ] = xu*u (ctu) (c=!rrtru € GF(q) )

and thus xb+å (t) € U' for all t € CF(q) ' Therefore

xr < u' in this case.

Case 2. If a and b span a root system of type B2

then t is of type Be. , Ca or F+, and

[x" (t) , xu (u) ] = xr*u (ctu)Xb+2a (dt2u) (crd=lL,L'u€GF (q) ) '

Replacing u by t- t u and t by -t if necessary gives

Xa+b(u)xza+u(tu) € u' ftlo, u€GF(q)) (t)

Therefore xs+b (u)xza+b (tu) (xu*r (u) x2a+r, (u) )- t € U'

and so x2a+6(u(t-I)) € u'

So Xz n * ¡ ( U' Lf er' (q) contains an element Llj 'L '

Then X¿+b < U' also (from (1) above)

xf < u' if q,1 2.

Case 3. If a and b span a root system of type Gz

then L = G2 and A* = {arb,a*b ,2a*br3a+b,3a+2b} ' Then

b and 3a+b span a system of type Az ¡ and so

X¡"*zb ( u' bY case 1. Now

[x" (t) , xr (u) ]=xr*u (crtu) xai.zu (czt2u)xb+3o (c¡t3u)xzb+38 (c¿t3u2)

(cttcztcg = !I, c4rt' tl € Cf (q))

xu+6 (c1 tu)xza+r ( crL2u)X3u+o (cat3u) € U' Q)

xua6 (cru)xza+b (c2tu)x3"*6 (c.t2u) € u' (3)

(LIO, u € GF (q) )

xza+u(cru(tr-tr))x¡u*o("ru(tf 'L:) € u' (4)

(Lt,EzlO, u € Cf (q) )

suppose first of all that q is even and greater than 2.

Then (tr-tz) 2 = t?-tï, and each element of Cf'(q) may be

written as t I -tz for Lt ,Lzfj . Hence

x2r+r (tu)x¡u*r (t2u) € U'



and by (3)

Xa+b ( Ut'

Now (2) gives X2¿+b (t'u)X3a+t (t3u) € U'

u by t-'u gives

X2a+b (u)x¡o+t (tu) € U'

X3a+r (u(t-1) ) € U'

X¡a+b < U'

t can be chosen so that t-l I
(5) and (2), X2¿+b < U' also.

Suppose alternativelY that q

. Then (4) gives (on rePlacing

r+1 )

x2a+¡ (czu)x¡u*6 (cru(2t+1) ) €

lB.

and replacing

(rlo)
(Llo)

0.

Ilence X. < U' .

is odd and greater

Lz bY t and

U,

(s)

since

Using

than 3

tr by

(rlo, -1)

X2¿+b (czu)X3"+r (c¡u(2t+1) (xz"*o (cru)x¡a+o (3cau) )'I € u'

X3a+t(2ctu(t-I)) € U' (t10,-f)

X3¿+b < U'

Now Q) and the argument used Ín case 2 gives X¿+b and

Xzu*b < U' as well.

So except in the cases Be (2) , ca (2) , F4 (2) , G2 Q)

and G2 (3), xr < u' for all x e A+ T' Thus z < u'

andsoZ=lJ'.

The twisted tvpes.

Let G be one of the groups As (q2) (l' > 2)

Ds (q') (r, > 4) or us (q2) . Then the diagram correspond-

ing to the root system has a symmetry of order two which

gives rise to an automorphism r lÐ t of the root system.

The field GF(q2) also has an automorphism of order turo,

namely t t+ E = tq . It can be shown that
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o: x, (t) h' x; (t)

extends to an automorPhism of G'

r€T

Define xi,Yr to be

the sets of elements of X,Y = titXte respectively which

are invariant under o I and Gl to be the subgroup of G

generated bY xI ancl Y]'

Similarty when Ç = ¡u(q3) there is a symmetry

of the diagram which has order 3, and the automorphism

t r+ E = tq of GF(q3) also has order 3' These yíeld an

automorphism

o: x. (t) > x.- (t)

of G. Define xr, Y2 to be the sets of elements of X,Y

invariant uncler o, and Gz to be the subgroup of G

generated by x2 and Y2 ' These groups Gr and G2 are

the twisted types which were discovered by steinberg.

Inasimilarfashionitispossibletoconstruct

twisted types (discoverecl by Ree and suzuki) from the groups

Bz(q) when q = 22n+1, F+(cI) when q = 22n+t ' and Gz(q)

when q = 32n+r. Again it is possible (see t2l) to con-

struct a permutation E ¡¡ I of the root system' such that

i = r, and there exists an automorphism of G

o: x, (t) t-' x'(tÀ('-)d) r € îT

where À(r) = (rrr) and t0 = Lzn if q = 22n+t and

¡e=t3nifq=32n+l.Usingthisautomorphismõthe

group Gr is constructed as in the other cases'

The twisted types all have split Bt'I pairs ' and in

particular the WeyI group WI (or vü2) is

{w€I¡IlwtI) = \nIG) for atl r € A}
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(1) 2qI
A

2 I

S1 52 53 szc

In this case wr is isomorphic to the v']ey1 group

of type Bq, and the fundamental reflections are

Sr=stS,2e, Sz=sz Szq- r , " " rSq- r=SQ' I SQ+2 ' Sl=Sc Sq+1 sp

The root subgroup corresponding to S1 is xï I Sl Yt S, ,

which is "'":'l:";ï",,.î 
,:..'jl;',;T"'="" 

n Gr

where a=f1 and b-tzp

The structural equation is (for Ll}l.

(s, )xu (t)xo (E) (s, )- t = x- a (-t)x- o (-E)

= X- a (-t- t )x- o (-Ð t )h(Xo,, )- th(xo, r-)- t (sr )x- " 
(-t- t )*-, (-É t 

)

where (Sr ) = (s, ) (szq ) . The same formulae hold when 51

is reptaced by any of 52rSar...Sq-r, and a ancl b are

appropriatel.i; chosen. The root subgroup corresponding to

Ss is (XnSaYSp ) n GI

= XuX¡Xa+b n Gl where â = fQ, b = fQ+t

{x" (t)xb (E)Xa+b (u) lt,.u€GF (q') ,

where c may be either +1 or -I.

tion is (for ulO)

structural equa-

(sq)xu (t)xr (E)x"*r (u) (sq)-1=X-b (-t)x-" (-E)x'u-t (u)

=Xa (-ctu't )*o (-cEü- t )*u*u (u- t )h(X) (so ¡xu (-ctÚ t )*o (-cEu- t ).
.Xo+b (u- t )

where h(X) = h(x",",,f t h(X0,"üf t and (sl)=(sr) (sq+r) (sc)'

Next we show that the derived group Z of Xr con-

tains all nonfundamental positive root subgroups T of

A2rq (q2). The group T is either of the form X. X;nXr or

XrXr-X,+r-rìXt where r is a root of Azq' In either case r

can be written as the sum of two positive roots in Aze., and

u+u

The

ctE]



there

Az a.

Aq,

is a corresponding expression for t

thus obtained generate a subsystem of

with fundamental roots a'b'c and d

AzxAz

2L.

The roots of

type Azx1z or

a c d

Aa
a b c d

For AzxLz we have lxu (t)xo (t) , xu (I)x" (1) ]

= [x" (t), xr (I) ] tx¿ (E) , x" (1) l

= xa+r (clt)x"*¿ (clE) o'=!1

and since a*b=r it follows that in this case T is con-

tained in Z.

For Aq r [x" (t)x¿ (t) , xu (u)x" (u)x¡+c (v) ] (v+v=tuü)

= x¿ (t)-' lxu (t), x" (ú)xu (u)Xr*" (-v) 1xu (E) txu (E),xo (u)x" {[) -

.xo*" (v) I

= xd (E)- t [*u (t) ,x¡*. (-V) ] [x" (t),xr (u) ]x¿ (E) [x¿ (E),xu*" (v) ]

. [x¿ (E) ,x" ([) ] .

CaIl this formula (A). Putting u=0 and using the Chevalley

commutator formula we see that Z contains

xâ+b+" (tv¡X6+ç+¿ (Ev)X¡+b+c+d ltttv) where v*l = O' This

same formula with v replaced by tEv and t by I gives

that Z contains Xa+b+" (t¡¡-tEv)xu*"*¿ (Ev-tEv) . Therefore

T < 7" Lf r = a*b*c. The other possibility is r=a*b, and

for this case set u=f in (A) above. Combining this with

lx" (t),X6+c (-l)l tx¿ (E),xb+c (v)l € Z (which follows from what

we have just proved) we get

xa+b+c+dttEÇlx¡+b(t)x"*¿(E) € z (v+l= tl)

and so T < Z ín this case too.
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T=X¿X6X"+¡0Gl asIt can be Proved readilY

the root subgroup corresponding

group of T is X"a6fìGr. It

and that e), (ø' ) satisfies 3.

(2) Orto. , (q') ,DoI (g2 ¡ ,Eur {Q2 )

sl s2 stq-zsze-t

sr s2 sQ- 2 ..sg- 1

-'-

that if

to Sq then

is now clear
o

the derived

that z=x' rìx l

Azç- t

DJ¿

Eo

the Weyl groups

The fundamental

sr s2 Só S4 55 S!

s3

In these cases W

of types Bq, Bt-r, and

reflections are:

(for Azç- t ) Sr =sl s2 Q- t t

(for Dp ) 51 =s1 r

(for Es) S1=s1s5¡

is isomorphic to

Fa respectivelY.

S2=SzSze-2 r... tSp- r=SQ- r Sg+1 rSq=Sç

Sz=Sz, . - .Sp - 2=s9.- z,SP- 1 =sQ. r sq

S2=s2s4¡ S¡=s¡r Sq=se

The root subgroups are either of the forrn

X, Xr-ncl or X, nct if r=1. For those of the latter kind

the structural equations are as for the Chevalley groups of

normal type, for the former kind the structural equations

are the same as for the root subgroups of Arto (q') which

are of the same form.

To show that Z (derived group of Xt ) contaíns

all positive nonfundamental root subgroups \^7e proceed in

the same manner as for Arlo (q'). In this case we obtain

a subsystem which nay be of type Az, AzxAz or A3'

AzxAz is treatecl exactly as before. The o+-her possibitit-

ies are
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bl

cba

vlhere

vrhere

and þ=

and b-

cL-4.

ac

b

b

For Az h/e have xa+u (lt) = lxu (t),xu (1) ] € Z

For Ag, [x" (t) x" (t) , x6 (u) I

= x" (E)- t [*u (t),xu (u) ]x" (E) [x. (E) ,xu (u) ]

and so

X¿+b (tu)xt*" (Eu)Xa+b*" ltttu) € Z

Replacing u by tEu and t bY I in

xa+¡ (tEu)xr*" (tEu)xa+b*" (ttEu) €

Hence Xs+b (tEu-tu)xb+c (tEu-Eu) € z.

rt f ollows that x¿ + b (v) xr * " 
(l) €

v € cp(q2) (since any element (lL) of GF(q2)

in the form tEu-tu) and hence xa+b*" (w) € z

(using (B) again) . Thus 3.9 is also satisfied

groups.

(3) DÎ (q3 )

s2

s4

(where t=t) .

(u=u)

(B)

(B) gives

z

Z for al-1

can

if

for

be written

\^/=W

these

In this

of type Gz.

Sz=S2S3Sra.

Xu rìc2 = {x" (t) lt =

corresponding to

s3

case v'12 is isomorphic to the WeyI group

The fundamental reflections are St=s1 and

The root subgroup corresponding to Sr rs

Ì where a = rr. The root subgrouP

is Xb Xc Xd fìG2

{xu (t) x" (E)x¿ (E) | t

t

S2

c=f3, d.=r4. The

€ cF(qt)]

structural equations arewhere b=Yz t

obvious.

Let Z be the derived grouP of x2

Then Z containssuch that t=t.

Let t € GF(q3)
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[xu (t) rX¿+b*"*¿ (1)] = x2a+b+c+o (tt)'

showing that one of the nonfundamental root subgroups is

contained in Z. For the others note that by the Chevalley

commutator formula, [xu (u), xr (t) x" (E) x¿ (E) ]

=X" +d (oEu)Xu *" (clEu¡xu +u (otu)Xa +c+¿ (ßEEu)Xa +b*¿ (ßEtu)

.X¿+b*" (ßEtu)Xa+b+c+d (VtEEu) where a,ß,\ = !1, and u=u.

Call- this formula (C) . In (C) replace t by tu and u

by 1. The result, together with (C) itself, gives formula

(o) :

Xaac+¿ (EË(u'-u))xo*r*¿ (tt(u2-u) )xu *u*" (Et(u2-u)

xa+b+"+¿ (!t€=t(u3-u)) € z.

Similarly \^re can now replace u by -u*1 and prove

Z contains xâ+b+c+¿ (tEE(2u3-3u'+r) ). Thus clearly

contai-ns aII elements of the form Xa+b*"*¿ (v) where

and substituting back in (D) and (C) it follows that

also contains

that

Z

V=V r

z

Xa+c+a (t)xo+b+d (E)x"*r*" (E) and

t € cF(q'). And hence Dl (q3)

(4) Bå(q) , Fl(q) . q=

Xa+b (t)xu*" (E)xu*¿ (E) for all

satisfies 3.9.
2î+ I

À(rr)=1, X(rr)=2

tr (r I ) =À (rz ) =1, À (r s ) =À (r +)=2

2

sl s2 B2

F4

4

S ,s

For

For Fa it
tions being

cl¿i (t) , ß¡ (t)

o¿i

opi

Yi

Bz WI has order 2, generated by (srsz)2.

is dihedral- of order L6, the fundamental reflec-

S1=s1s4 and Sz=(szss) 2. Define elements

, yi (t) in ei (q) (i=r,2,3,4, t € cF (q) ) by

(t) = xa (to)xu (t)xu*u (to*r )

(t) = Xa+r., (to )X2a+¡ (t)

(t) = x" (to ) x¿ (t)
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for the

a

following values of a,brc and d:

abc d

1

2

3

4

X2 t3 f1 E4

E1*:t:z rt*Y+ t7i-2rzi-Tz 212I2t3Ira

r 1 *r2tr 3 21 2Ir si-r a r r+2r 2*r 3*ra 21 7+2t 2*2r 3*r a

y 2lr 3*r a 21 1*2r zlr z r r+2Y 2*2t 3*r a 2x ¡*4r 2t2r 3*r a

The root subgroup corresponding to S1

and the structural equation is obvious

root subgroup corresponding to Sz is

and the root subgroup in el (q) is of

PROPOSITION Let t,u€GF (q) and let

is {y, (r) lr€cF (q) } ,

in this case. The

{o, (t) ßr (u) lt,u€GF(q) },

this form also.

v=t2o+2+u.20+tu. Then

vlj if either Llj or ul}, and each nonzero v occurs

for exactly q+l pairs (t,u) .

Proof Def ine f (u) = ,r2 d +u+1. Comparing f (u) and f (u) 0

and using the fact that 202=L it is clear that f has no

zeros in er (q) . Now if Llj

¡2e+2 +u20+tu = ¡20+2 f(t- 1- z0u)

which is nonzero and takes all nonzero values with equal

frequency since L20+2 takes all nonzero values as t varies.

Similarly if t=0,

¡20+2+u2d+tu _ .,J20

and all nonzero values occur once.

We can now give the structural equation for the second

kind of root subgroup. If tlI or vf} and if v is as

defined in the proposition,

(s) o(t) ß (u) (s)-' =o¿ (tr +20 v-' +uv-' ) ß (rrn' " )h(x) (s)cv, (uv-' ) ß (tv-' )

where X(a) = yt'20 , X(b) - v20'2 and S is the reflection.
(rn så(q), (S) = [(sr) (sr)]'; similarly j-n the other cases. )
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Note that Bå (q) trivialty satisfies 3.9 since

there is only one positive root subgroup. If ql2, F'l (q)

al-so satisfies 3.9i we must prove that the derived group

z of XI contains the elements oi (t) , ßi (t), Yi (t)

(i=2,3 and 4) , since these generate the non-fundamental

positive root subgroups. The commutator relations that we

make use of follow readily from the Chevalley commutator

formula. Firstly, for each i,

lcr, (t-t), cr, 1t'a)l = ßi (t+1) (tlo)

and since q>2 it follows that ßi (t) € z for a1I t.

lcv,s (t) ' o¿r (1) I = Yz (t)

[o,,*(t) , az(1)] = Y3(t)

lcrq (t), c*e (f )l = Y4 (t)

and so yi (t) € z for í:2,3 and 4 -

lcrz (t) ,crr (u) ] = y2 (tu20+ r ¡ Ye (t2o + I u) cr+ (t20 u) cl3 (tu2d )

lcrr (t) ryr (u) ] = oz (tu) cr,* (t2 0 + t 1r2u ) ßu (t+0 + 3 uza +' ) \ r(t20 + 2u)

. ß s ( ,+o + t rr" * t 
)

and hence

cru(t",r)os(tu2

c*z (tu)cl ,* (L2o+t

,)

20u)

z

€

€

z

The l-atter of these two Yields

crz (1) crq (1) € Z

and crz (I)cl,- (t) € Z

in the cases t=u=I and u=t- 1 
.

Hence cr.4 (t+l) € z if Llj - rt

cr+ (t) € Z Íror a1l L' and accordingly

and c)¿s (t) € z also-

(rlo )

follows that

that crz (t) € Z



(s) cä(q) q = 3

sr s2

In this case WI

Again 3.9 is triviallY

{cr (t) ß (u¡ y 1v) I

27.

2¡+ I

À(rr)=I, À(rr)=3'

has order 2, generated bY (s, s, ) ' '

satisfied. The root subgrouP ís

t, u,v € cF (q) ] ' where

60+4

a(t) = x" (t0 )xb (t)x"*o (tu*t )*ru*o (t"*t )

ß(t) = Xa*u (to )X3a+u (t)

y(t) = x2^*o (t' )X¡a+2b (t)

(a=rl , b=rz) .

The structural equation is

(s) cr (t) ß (u) y (v) (s)- t =cr, (xrd- t ) ß (* ,d' 
tu 

) y (xrd' 'u' t 
) (s) h (x) '

o (x+d- t ) ß (xsd- t )y (*rd- t )

where x(a) =d'u't, x(b) =d'u'', (s) = [(sr)(sr)]" and

d=u +tvu+t 30+3 u-t 30-tv +v 2

Xr

*2 = -Ll

30+l

30+2

30tu 30 60+3 .30+l .30+2 30'"-t-" --t-- -vr-t u-vu+v
60+4 3e .60+3 30--30

-t" " 'u- - -t v-tv u
30 + | -tvu

t 10+3 2
u

30+3 30v

3 2 3e
+ t u +vu2 -v

30
X3

X4

Xs

X6,

-u

-t

= lL XIX2 +

60+3 30t +v
30

(tu-v) d
2+tu +vu

30+3-tv-t
30 + I 3 3090+6 60+5 .60+3-t u-E u +vu -v -vu u 

-Lu" u+t3 t 
*'vu-t'rrt'o-0

t

Note that the transformation

t+t
30+1u-àu+t

v -+ v + ut + L'o*'

transforms d to ,rtu*t-rr"t+v2-t2"'-tuu*o, which is zero

only when t-u=v=o (see trgl p.186) . It is not true that ea-ch

nonzero value of d occurs for the same number of triples

(tru,v). For example if q=3 then d takes the value-1 for t6

triples (t,urv) and +I for I0 triples.
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CHAPTER 5

THE CHARACTERS DISCOVERED BY DAGGER

of characteristic zero whichLet k beafield

contains a pth root of

with a split BN Pair of

Let Ii be a nontrivial

for i--I,2,...n. Since

X*I / 1X*I ¡' -

unity,

rank

ancl let G be a group

n at characteristic P

linear character of *:' (=X- .,)

\^/e assume 3 .9 it follows that
n

il. x:J / 6:t )'r =l I r

where lr,r¡ is as def ined in 2.5 - (,r is any subset of

{I,2,...n}) . -Now-as a consequence of 3'6 the sub-

groups t"î' I ie,lÌ equal the subgroups ,*- ri I ie,JÌ in

some order (see 2.5)¡ so bre may define a linear character

Þ¡ of X*r which coincides with þi on X-,, íf i€J

and is triviar on xît for LFJ' rndeed u¡ is triviar

on al1 root subgroups Xw, (. ) for r positive and

tfl{ri lie'r} since x*, (. ) = xïr is contained in the derived

group of X*r if r is not fundamental. In the case

J = {I ,2, .. .n} we write simply rrurr for "uJ "'

Let us ad,opt the following notation: If A is a

subgroup of G and o¿ a linear character of A' let

Ã = lal-'rx (x€A)

and Ad : le l- 
t lcr (x- ' ) x (x€A)

Throughout the rest of this thesis À wilt be a linear

character of B with kernel containing X. Gr will be

the parabolic subgroup UBwB (w€W¡ ) corresponding to the

subset J of {I,2,-..n}.

5. r LEMMA (i) The induced characters ÀGr and ur"' have

a unique common component, and it occurs with multiplicity

one in each.
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(w€W, )

the terrn for w=I
contributes)

(w€vr)

Proof

( ii)

Note

(r ,

G¡ =w, 'G, = *ìt (uxwB) (union over w€W¡ )

(w€W, ¡ux*J \nrB

and similarly Ç = Uxwr wB (w€!V)

For w€W let À*'t be the character of wBw- 
t defined by

À*' 
t (g) = À (b7- t gw) . The restriction of this to ¡*r fìwBvi I

is the I-character, since À is triviat on elemenÈs of

p-po$rer order. Now the restriction of u¡ to x*r rìwBvf, t

j_s the l-character if and only if w- t (ri ) > 0 for all i€J'

For by 3.6 and 3. B it is clear that X*r nwBw- t is a product

of root subgroups, and X. r, I wBw-t if and only if

w- t x-.. \^r c Bi i.e. -w- 
t (ri ) > 0. It follows from 2'5 that

-1

there is exactly one w in each wr \ w coset such that l-lr

restricted to X*r fìwBvi-t is the l-character, and the inner

product of À*- 
1 and Þ¡ over this subgroup is I for these

r^7 and 0 f or others. so, by a well known theorem of

Mackey,

first

G J GJ(u

and (u

idempotent in

Proof By the

which ur and

Ilence lemma I

its proof).

= I(u¡rÀ* )

= I (since only

-1

À

T,^o, = r(u, 'À
= lw:w, I

)

5.2 LEMMA BIX
wJ is a nonzero mu1tiPle of a primitive
trr

kG¡ .

proof

À*' 
1

of tIl

of 5.1 the only double coset x*rwB for

agree corresPonds to the case w=l'

applies. (See also lemma 2 of tll and
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The irreducible character of GJ corresponding to

this ictempotent (i.e. the common component of ÀGJ and

u:t ) witl be called X¡ or Xr (Àrþr rÞ 2t " 'u" ) ' rn the

case J = {I,2r...n} we obtain an irreducible character

of G (and we will write rrxrr for "X, ") ' These charac-

ters, corresponding to the various À, were discovered by

Dagger t9l.
For each w€w we define a linear character À* of

B whose kernel contains X by setting

À* (h) = I (wtrvf I ) for a1I h€H'

Using À* in place of l. in the above construction yields

a character of G¡ which will be called Xr*' Theorem B

follows directly from 5.1.
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CHAPTER 6

THE HECKE ALGEBRA XKGX

Continuing with the same notation, define (for each

w€W)

g* = lx:x* I (ttt" index of xw in x)

In particular for t=L,2,...n define

gi=e,i=lxtx., I =lxtl ("""3.8)

For each w€W define also

oúw = 9*X (w) X

ßw = ewBl (w) Bl

ô* = q*x(w)-tÍ

Ê* = qwBr. (w)- t Br

s = {w€I{ll*=l}.
LEMMA The set { cr*h lw€W, h€H }

and the set { B* lw€S} is a basis for BÀkGBÀ ' { ß* lw€W¡ nS}

is a basis for BÀkGrBÀ.

Proof This kind of result is well known (see theorem 2'2

of l7l for example). Since H normalizes x

Xfr = fri for all h€H,

and so the elements 0*h are indeed in itCÍ. The cosets

¡(w)frX (w€W,h€H) are all distinctr âs an easy consequence

of the split BN pair axioms and the Bruhat theorem.

6.2 PROPOSITION For v,w€Vü,

Bnv 0w = 0*BÀr * .

If u€Vl such that Àu I À'* then

B^.,, 0*B¡, = 0

(In particular ß*=0 for wÉS)

The proof of 6.2 j-s straightforward and is omitted.

ourinterestinHeckealgebrasismotivatedbytheor-

ems such as the next two:

is a basis for XkGX,
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6.3 THEOREM If e and f are idempotents in kG afford-

ing characters tp and i|r respectively then

Hom¡6 (kGe, kcf ) - ekGf

and the dimension of these vector spaces is

(p,rf) = le l-trç(x-'),1,(*) (x€G)

This theorem is well known and holds for an arbitrary group

c, aÌthough in this thesis it will only be applied to groups

with BN pairs. Theorem 6.4 is also a general result'

adapted to apply to the parabolic subgroups G¡, where J

is an arbitrary subset of {I,2r. -.n}.

6.4 THEOREM (Curtis and Fossum l'7, Cor.L'2 and 2'5)) '

If rf is an irreducible character of kG¡ such that

(rlr,Àtr ) = I (i.e. (./ occurs with multiplicity I in the

induced character ÀGr ), then the restriction of 11, to

BrkG¡Br is a homomorPhism

0: BÀkGJBÀ + lç.

Conversely every such homomorphism 0 is the restriction

of a unique irreducible character u of kG¡ such that

(,1r,ÀGr ) = 1. Under these circumstances'

e = ll./(I) tcJ :Bl- l Iq-*'e (ô*) ß* (w€W¡ fìS)

is a primitive idempotent in kG¡ such that kGe affords ü

It is the only such idempotent in BrkGJ BÀ. Moreover,

r - 0 (e) = v (r) [G¡ :B]-'rqî'0 (ê*) 0 (ß*) (w€w¡ fìs)

and for any ß€B¡rkG¡ Bl ,

ße = 0(ß)e = eß.

Proof ße = 0(ß)e for all ß€BÀkGrBÀ is a con-

sequence of the fact that B¡kG¡ B¡ is one-dimensional (by

6.3). The only other point not proved explicitly by curtis
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and Fossum is uniqueness of

another primitive idemPotent

f - O(e)f = ef

and so e=f.

6 5 LENII{A If w€W, I < i < n and 1'(s¡ w) = 'A'(w)+t

then

0ri*

for

Then

e. But if f €BrkGr B¡.

affording Ú then

: 0 (f )e

IS

9s¡* = 9i 9* and there exists h€H with

= c{,si 0*h. If wrwz...\¡lm is a reduced expression

\^r (as in 2.3) then there exists h€H such that

Proof

Oúw = Clwl C[*Z''' O¿*r,th

By 3.8 (3) and (2)

9s¡w = lX*orr*l
= l**o*"*-,{.i)l

Novü since .Q,(si w) = 1,(w)+1, w- t (r¡) is a positive root, and

it is negatived by wow. So by 3'8(2),

X*-,(ri)l x*o1*o*¡ = x*'

Now 3.8 (3) gives

cr = lx llxll
=siw l- wow I I I I

= 9*9t¡

Let h be an arbitrarY element of H'

o.i cr*h = 9,i (i { s, ) x ) q* (i (w) i) rr

= 9.i * (x(s, ) &i *ttlxl rt (by 3.8 (3) ) .

< x.
w"I(ri)But s¡ normalizes

Thus osi 0*h

If h is chosen so

The other assertion

!, (\^/) .

Xsi and w- t X, t¡¡ = X

9,i *i(sr ) (w)rrx.

that (si ) (w)h = (si w) it follows that

clùr.cl*h = 0ri*.

of the lemma follows by induction on
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have inverses6.6 LEMMA The elements o*h (w€W' h€H)

in XkGX.

Proof For each i (I <i<n)

ot
2

si
q,'i(s¡ )i(s¡ )x

= q,'x(si )Ii (si )i

= q¡ i(si ) 2i + q¡ ri(si )x(si )x

= qi (si ) tx + q¡ rih¡ (x) (si )3 i

wherethesummationisoverthenon.identityelementsofxi
and h,(x) is as def ined in 3.10. Note that (s, ) t€ H'

It follows that
2

siO[ = qrx + H¡0.i

l1).
of xtci, and so

where Hi = Ihi(x¡ (x€Xi r x

Now X is the identitY element

q;' (c,, (", )-' -

is an inverse for or, in Ífei' we now use induction

1,(w) to show that each cr*h has an inverse'

For 1, (w) = O, cr*h = ih and the inverse is ffr- t

For 1, (w) > I there exists i with w = si v

and l,(v) = f,(w) I. The inductive hypothesis permits

assumptionthateacho"f(f€H)hasaninverse'andt'hen

appropriate choice of f, 6'5 gives

c[*h = clr. clrfh

whichisaproductofelementswithinverses,andsohas

Hi x)

on

the

for

an

inverse.

(Results like 6'5 and 6'6 are well known' See l2Ll '

for example).

It will be convenient to adopt the notation "G-ß" for

elements cx, ß € kG to mean that o is a nonzero scalar

multiple of ß.



6.7 LEMIUA Forall w€Wr, o*BÀXii
Àu

V w )andX B . CÌ, x*r!1' J

lt¡

Proof The idempotents BÀ

Bl*

and

u:t of Gt , and (Ào'

is one-dimensional (by

is one-dimensional.

x*J afford the characters
,lJ

, uro' ) = l- by 5. r. Hence

6.3) . SimilarlY

Therefore

(by 6.2)

The scalar must be

The proof of the second

positive root

B

negative ones.

n^, cr*nr xil

35.

(where

(x€z)

(x€z)

tty 
J

tt¡

ÀG¡ and

BÀ kcr xil
X

J
KGBl t

must be

nonzero

part is

6.8 LEMMA

Proof

J

cl*BÀ x;l =

a scalar multiple

since c[w has an

similar.

of
Àv

r_nverse.

xriB

l_n X

Let Y

J and

s^xijBÀx;oBr - BÀxi"e^

be the product of the

the product of the

o¿ = lzl' , ru¡ (x- ' )x

= lzl-' rp(x-1)x

subgroups

Letz

Then x*J = fcv, and ox*o = x*o .
N¡ P P

Hence B^ X;; = BÀ o, and so B^ crBn cl - B^ ot (by 5 .2)

(Note in passing that B¡08¡ I 0).

Therefore e^ oen clxio - BÀ cr,xlo , and the result f ollows.

6.9 COROLLARY. Let X¡ and X be the characters of GJ

and G defined in chapter 5, and let 0r and 0 be the

corresponding homomorphisms of BÀkcrBÀ and BÀkGBÀ into k-

Then er is the restriction of 0.

Proof By the note in the proof of 6.8, BÀX;lBÀ is nonzero'

and so is a nonzero multiple of e, the primitive Ídempotent

in Br kG¡ B¡. af f ording X¡ ( see 6 .4) . Similarly

BÀX;oBÀ f, the primitive idempotent in BÀkGBÀ affording X

By 6.8 ef - f , and so 0(e) = I (since e2=e) . For \n/€I¡ü¡0S,

er ( ß*, ., 
: jj;"I,



and so

(6.4, 6.7,

by any of

o, (ß*) =

8 and 6.9 will

characters À

6

the

36.

ß*f

0 (ß*)f

0 (ß*)ef

0 (ß*)

also be used with À rePlaced

w (w€w) ) .
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CHAPTER 7

SOME MORE CHARACTER.S

7 .L LEMMA (i) For a fixed w€Vü the elements

and {uu c**B¡ lv€w, } span the same space' and
{ orn *B¡ | v€W¡ }

similarly {B^or*u lv€W, } and {B^o*ot' lv€w¡ } span the same

space.

(ii) kBwG, = kBwW¡ X

Proof (ii) is a standard result about BN pairs' For

(i) note first that since o¿w has an inverse in ircx the

two spaces have the same dimension, namely lwt l' It re-

mains to prove that each ot', *BÀ (v€W, ) can be written in

the form clcl*B^ f or some cl€XkGr X '

Use induction on l, (v) - The case L (v) = 0 is

trivial.
SuPPose v = si u r i€J, f' (v) = 'e' (u) +1'

Then ,orr*BÀ = ycr,¡¡yBa, for some yeifCl i, by the

inductive hYPothesis.

If !, (vw) > 1, (uw) then cr,.,*BÀ = ors uw

- cl, c[r, *rBn

(where s=s¡ ), while if .4,(vw) < .Q,(uw) then crr,*BÀ-crs ctv*Br'

Choosingcltobetheappropriatescalarmultipleof

os y or cv.] 
t Y it follows that cleifc, i and cx"* BÀ = cx'cl*B¡ '

7 .2 coRoLLARY Let w€W, J c {L,2,'"n}' Then

BÀ kGI B¡. cr* - B¡ k (Wr nS) wBn* ( i ' e' the space

spanned by B¡cr.,,*B^w for v € vür nS) ' Similarly'

cl',"BÀkcJ BÀ = BÀ' kw(W¡ flS)B¡' (where u=w- t )
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Proof BÀ kcr Bl o* = BÀ xkGJ iot*B^* (by 6 ' 2)

and this is the space spanned by {Blcru o*B^* lv€vr¡ } '

This is the same as the span of {B^cru*B^* lv€W¡ }'

However BÀou*BÀ* = 0 unless Àv*=À-; i'e' unless v€S'

Thus the basis consists of o.v wB^w , v€Wt fìS '

7.3 COROLLARY Let v'wru € I'{ and J,K c {L,2,"'n}'

Then B^n kGr B^., o[*B¡u kG¡<B^,, = BÀr k (wJ nsv ) w (wxns" )8r,,

Proof First observe that both sides are zero unless Àv w=Àu i

that is, unless w€v- t Su. (Equivalently'

(w¡ nsu )w(Wr0S') 
= 

v- t Su). Assuming w € v- t Su, 7 '2 with.

À' replacing I gives

B^n kGl B¡u 0*B¡' kGKBr,, =

and this is

But 0t *BÀ,

these as t

the sum of the

kGKBÀr, equals

runs

Bnu k (Wr nsu ) wB^u kGKBÀu

spaces cr1 wB^u kGxB^,, for t€W¡ 0S" '

B^u tw k (WK0S" )Bn' , and the sum of

through elements of Wr nsu is

BÀn k (Wr nS" ) w (Wrnsu )BÀ,",

7.4 LEMMA Let JrK c {I,2, -..n} and let v,w€w'

Let e be the primitive idempotent in Bnn kGr Bn" which

affords the character Xr\/ , and f the primitive idempotent

in Bn*kGxB^* which affords Xrw. Let trrt2""L^ be

representatives of the orbits of v- t Sw under premultiplica-

tion by elements of w¡ nsY and postmultiplication by ele-

ments of WKnS*. Then ekGf has basis {ecr,. f li=I ,2,...m}.

Proof B^v kGB^* has basis {B^,, a,'Bn* lu€v- 
t Sw}

= , ü, {B^u o,,BÀ* lu€ (w¡ nsu ) ti (wKns*) }

Hence Bn.t, kGB^* is the direct sum of

B^.', k (w, nsu ) ti (wKns*) Br*

Now by 7 .3,

the spaces

i=lr2,...fr.



Bnu k(wr ns" ) ti (wKns*)BÀ* = Bnu

and this contains the element

€cr,1 , f are linearlY indePendent

39.

trw

Therefore the

are nonzero. But

kG, B^-', ofi

eclr. f .

if they

xBl*KGB

for any t€v- I Sw,

:^;Ï;:;:;,":;Ï.';: .,,,

(Br" Xio BÀ" ) (BÀ., Xf," n^, )

making use of the fact that À*t -' = À')

and this is nonzero, by 5.2. Hence eatf I 0.

It remains to prove that the êo1 ¡ f span ekGf.

It was shown above that Bn' kGB^* is the sum of

BÀn kGJ Bln ori B^* kG¡¡Bnw , i=I ,2, . . .m- Therefore

(bv

(bv

6.8)

6.'7 ,

the spaces

ekGf

= eB^n kGB^w f is the sum of

{eBnu kGJ BÀv o,, B^* kG¡çB^* f li=f ,2, - - -m}

= {kecxr. f li=t ,2, ...m}

sínce eB^,, kGrBn, = ke and Bn* kG¡çB^* f = kf (see 6-4)

7.5 THEOREM (i) Let J,K c {L,2,...n} and v,w€[rl. Then

- c c v'I - 1

(X¡ n ,Xx*) equals the number of (wl - 
ns)\ s/ (v'ri - ns) doubl-e

cosets.

(ii) For each subset J of {L,2,. . .n} and

each v€vü def ine ô (s,Jrv) to be the character of s in-

duced from the l-character of ,oî' 
t 
nr. Then

xÏ' t ô(s'J'v)

is an isometry between the inner product spaces generated

by these characters.

proof (i) vüith ê,f and tr,t2¡...L^ as in 7.4 the module

kGe affords the character X:" of G and kGf affords X:*'

Hence 6.3 gives

{x.f-",x1*l = dim ekGf = m
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But it is clear that {vt' w- t li=l ,2, . . -m} is a set of

representatives of the (*;' t 
ns)\ s/ {wi' 

t 
ns) cosets, and

so m also equals the number of these cosets.

(ii) This is merely a restatement of (i) since

m = (6 (SrJ,v) , ô (S,K,w) )

7.6 DEFrNrrroN Let J c {r,2' " 'n} and let v be a

set of representatíves of the S\WWr cosets. Define

Q, = Q, (ur ruz r... Þn ) = rxl, (v€v)

Note that the choice of coset representatives is

immaterial. If t€S it is obvious that X, .,, = X, , ., ( since

Àu = Àt 
u 

) . Furthermore if w€w, and u=vi t ,

cr" e^" xi j - B¡,, * xil rc -7 )

so that the right modules Br" x;l kG (which affords X:" )

and BÀ"* x;l kc (which affords X;..,*) are isomorphic.

7 .7 LEMMA If J, K c {L,2r. ..n} and ôr ,ôK are the

characters of W induced from the l-characters of Wr and

llr
vüK then (Qr ,tçlx) = (ôr lr ,ô* l. ) (where ô, l. is the re-

striction of ôr to S' etc.)

Proof This is immediate from 7.5 (ii) and 7 -6 since by

Mackey¡s theorem (with V as in 7 .6)
I

ô- l^ = t ô(S,J,v) v€V.
J IS

lte can now prove theorem C:

7 .8 THEOREM t (-r)l t l g¡ is an irreducible character of G,

and it occurs with multiplicity one in ÀG (the summation

all subsets J of {I,2, . . .n}) .

From 2.8, t(-t)''' 6, l* = els is an irreducibre' , l" I

l_s over

Proof

character of S, and so



(r (-1) ô s, r(-1)'*' ð*

4r.

7.7)

Then

À=Xl .

v through

But by 7.5

tJlI s)

= (r (-t)' t' ,p, , r (-r)l *l ç*) (by

so that tI (-l-)l tl g, is irreducible.

Let L be the empty subset of {I,2, . . .n}.

Gr=B and À is the only component of ÀGL. Thus

(r(-r)'tler,Ào) = r(-r)ltl txf",xf l

where J runs through subsets of {I,2r...n} and

a set of representatives of the S\WWr cosets.

and

the

- G G.(xr-,,xJ) = (ô(s,J,v), ô(s,L,1))

since L is empty ô (S,L,l) is Q, the character of

regular representation of S. Therefore

(r (-1)l 'l ,p, ,Àt) : r (-r)l t l (ô (s,J,v),0)

= (r(-r)'''6, l*o)
= (elr,o)

= 1 since e .Ls
S

a linear character of S.

The character defined in 7.8 will- be called "6(À)"

or "e (ÀrUr rl-l 1¡. t -Un ) " since as well as clepending on À it

also depends on the characters Ui of 
"- r, 

(i=1r2r...n)

that have been fixed throughout. The dependence on che Ui

will not be investigated here, but note that if À and .L'

are two linear characters of B such that À' is not of

the form Àw (w€w) then 6(À) I õ(À'), since (ÀG,À'G ¡ = O.

It can also be seen that e(À) = X(À) if and only if e is

trivial on S, since

(6(À),¡(À)) =
lIl(e¡,x(À)) J c {L,2,...n}

(6¡

r (-1)

r (-1)

(r 
l, ,

s rl)
J

1).

(Thus (6 (l ) , uG ) 0 unless e is trivial on S).
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CHAPTER 8

oN THB DEGREES OF COMPONENTS OF 1Î

8.1 THEOREM If o is any component of ¡c

(clru¡)= (orel)

where cÌ is the restriction of o to X*r .

Proof rf SvW, I Swvü, then Àu I (À*)" for any u€w,

and so the characters of Gr incluced from À* and À*

have no common component. Hence Xr" I X¡*. Now if V

is a set of representatives of the S\WWr cosets then

the characters {Xr" lv€V} are distinct, and. components

of urot (by their definition: see 5.r). Hence

'',t, r (v€v)uJ" ¿X¡n

is a proper character (i.e. a positive integral combina-

tion of irreducible characters). Inducing to G and

using 7 .7

,o.J

is a proper character of
(e¡,À") = (6, l.,o)

of the regular representation of

QJ

G. Now

where p

S (c.f.

where ô is the

is the character

proof of 7.8)

Therefore

and so

s ince uro-q,

components

(er,ÀG)

(À

isa

oof

= (6I ,ô)

character of the regular

= lw:w, | = (uro, r"¡
o'ul a¡) = o

proper character it

representation of W.

(bY s.1)

.GÀ,

0(o, u
G -a

follows that for all
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and the result now follows by Frobenius reciprocity.

(The proof given for 8.1 is an improvement of the author's

original proof, given in [I3], and is based on a method

used in tlll ) .

8.2 THEOREM If o is any component of IG other thanx

one of the 6 (À) (for some À) then the degree of Õ is

divisible by p.

Proof The character U¡, and hence the characters XJ*,

depend on the values of Ui for i€J and not on Ui for

LÉJ. Now for any choice of À,

0 - (o, I 6(ÀrUr,:uz...Lr"))
tti

(where the summation is over all possible choices for the

characters Þr rl-lz r...iln )

= (o, I I (-I)l tl ç (ur,uz. . .tr,, ) )
,Ji J

= (o, I Ir Lz? I)l t l ç¡ (U t tuz...u" ) )
J

(where 11 is over Ui for i€J and I'z is for

= (o,x Ir(-1¡n'lrt
J

(-1)l t' *, (ur ruz. -.Ìrn ) )

since the number of nontrivial linear characters of X-,, for

igJ is congruent to -t modulo Pr and aII give the same

value for e¡. Therefore

0 = I Ir (o,U¡ (Utt:u2r...u")) (as ín 8.1)
J

= t I (crrU¡)
J

where the second summation is over all linear characters U¡

of X*r which are nontrivial on exactly those root subgroups

¡ -ri for i€J. But

I (o,, u¡ ) = X (o l;ç, ui' )
I

where uî' is the character of x defined by uiJ tx)=u¡ (x*r ),

and we see thaÈ Ui' runs through all linear characters of X

iøJ)

(mod p)



nontrivial on

Thus

exactly those root subgrouP" Xri

tol*,uiJ )
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i€J.
(mod p)

X occurs with muItiPIicitY

o is congruent to uI *u ,

degree divisible bY P.

=0 (mod p) .

respectively. The

and w€W such that

B¡KGB¡,

w€W

O=II
J PJ

ç
p

(o ,U)
X

where U runs through all linear characters of X- But

if the linear character U of

mp l_n o then the degree ofx

since nonlinear characters have

Therefore

degree o = ,I (o 
l*,u)

8.r

next

8.3

and 8.2 are theorems D and E

lemmas prepare for theorem H.

LEMMA Let i, j € {L,2,...n}

\,f (ri )

Proof

Further,

Hence

and so

x3 . Then cr*X(si )- t x{s1 ) Xcl-*t =

w(ri ) = r¡ > 0 and so x(w)X(si )

by 3.6, (w)x.r, = X-,j (w)

x(w)i{s, )-'x(si )i
= i(w) (s, )- t & (s, )i
= i("¡ )- '\ (s¡ ) (w)x

= x(s¡ )-'x(s¡ )x(w)i
o*i(si )-tx(sr )x = x(sj ) ti(s¡ )xcr*

x (s¡ )- 'Í(s¡ )x

r be any root. Let r = w(ri ) for some

€ {r,2,...n}. Then

0" = ei 0(B¡cr*Í(si )-ti(", )xoîls^)

Xx = X(w) (s

8.4 LEMMA Let 0 be a Iinear representation of

and

and

let

depends only on the root r and not on the choice of \^I and i

Proof g¡ = lx, | = lx" I depends only on r. suppose that

w(ri) = v(rj) vrw€W I { i, j < n. Let tl = v-tw.

By 8 .3,

a



o (B^ a" x (s¡ )- t x (s¡ )io-" t en )

= 0 (Brcrv cl"i(si )- t i(sr )icr-" 
t ol t B^ )

= 0 (B^ g" or, oi to*i(si ) t i{s, ) x"*t o*o-o 
t 

cr-.,, 
t 8¡ )

= 0 (Brcrv o,roît B¡tcl¿*i(si )- t x(si )iclît Blcrwcl-u 
t 

cl-u 
t Bl )

(using the f act that B¡ o* = c¡¿' BÀ* , etc. )

= o (ß)0 (B^cr*F(si ) t i(s¡ )xcr;'BÀ ) e (ß-' )

(where ß = Blo., a' oiut B¡ )

= 0(B^o*x(s, )-ti(si )icr-*ta^)

45.

r is any root and if v€S then 0, =0u ( r ) '

I<isn such that w(ri ) = t-

q¡ 0(Brcr*x(si )-ti(sr )icrî's),)

9i o(8r0,*Í(si )-ti(=, )icr"|a^¡

q¡ 0 (Blo., *o-*t B¡ o*Í(si )- t Í(si ) xcl*t e¡ cl*cl-u |n^ ¡

Avr

8.5 LEMMA Tf

Proof Let w€W,

Then 0,

^-0v ( r )and

8.6 LEMMA Let u (w) be the set of positive roots r such

that

Proof

holds

let

Then

w(r) is negative. Define O* = [0. , r€N(w) .

Then q;t e (Br ô*a*Bl ) = O*.

The resurt is trivial for 1' (w) =9 ' Assuming that it

for elements of length k, suppose that 1,(w)=k+1 and

s=si be a fundamental reflection with w=sv, .[(v)=k.

q;t e (Br d*cl*Bl ) = q;t e (BÀ ôu ô,, cr¿. o¿" B¡r )

(since if (s) (v) = h(w) then G* on = hcr* and ôu ô, =6*¡- t ¡

= q-" t qi t e (B¡. ôu o¿., Br o-t t ô, ot, cr B¡ )

0.,, where a = v- t (r¡ ) , since if we let u=v- t
0 a

and ß = B¡. cr,-u 
I 

cl-,r 
t B^ then

B¡. clî t x(st )- t x (si )icr,, B¡t ßB¡.crrri(si )- t x (s¡ )icr-r 
t B^ ß- 

t 
-



the

However, N (w)

8.7 COROLLARY

Àc and let 0

degree of

we have

I * nl 'Hr i(si )x

B¡

B¡ (bY 6.2)

Since x(sr )- 'X (st )x = gi t

e¡ B¡ s*x(si )- t x (s, ) xcl-*t s¡

= ei Brcr*x(si )- tX(si )iclît
= (B¡. * B¡,o,*H¡ x(si )io-*l )

= 0w À* (Hi ) Bn* ( si ) xcl]t

= À* (Hi )B^ cr*i(s¡ ) icl-*t n^,

Y say.

I 0 then by

BÀ. Hence

that Às =À.
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= tJ(v) U{a}, and 0u 0u = 0* as required.

Let U be a component of multiplicity 1 in

be the restriction of ü to BÀ kGBÀ . Then

U is given by U(1) = I q*/ I o*.
w€W w€S

Proof Since [c:B] = Iq* (w€W) this is immediate from

the forrnula given in 6.42

I - {., (1) tc:Bl xq-*l e (ô*) e (ß*)

and the fact that 0 is a linear representation of BrkGBÀ.

8.8 LEMMA Let r be a root with corresponding ref lectíon
s, and choose any w€i^í, i € {I,2,...n} with r = w(r¡ ) .

Then (i) There exists a nonnegative integer ct t depending

on À but not 0 , such that 0, = p"' or p- "' (By 8.5,

ca = cb if a and b are in the same S-orbit. )

(ii) 0. =1 if and only if À* (H, ) = 0, where FIi is

as defined in the proof of 6.6. This happens in particular

if sÉS.

Proof

BÀ

(by 6.2)

6.2 and 6.6 there exists cr€XkGX

\10 , and since y€B¡, kGBÀ nB kGBÀs

rf tr* (Hi )

with Y0 =

it follows

verse in BÀ kGBÀ it
A:vr

Furthermore, since y

follov¡s that 0 (y) I 0.

0 (B¡. + y)

o(Br) + 0(y)

I if and only if À* (Hi )

has an in-

Thus

0
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rf s€S, À*'¡ =À* and so if P = BUBsr B then (À*)n

has exactly two irreducible components, both of which occur

with multiplicity one. rf ß€BÀw kPBÀ* then cl* ßcl-*t €B^ kGBn

and so ß rt o (cl*ßcr-*t ) is a Iínear representation of BÀ* kPBÀ* .

Corresponcling to this there is an irreducible component of

(À-)P v¿hich has degree clr = (l+qi ) / (t+0,'l . Let dz be

the degree of the other component, and tet clr = IlllPu,

d.z = mzPb , where Ir1 and Iû2 are not divisible by p. By

theorem 3.1 of l7l , nr1 and Ir2 are both divisors of I*q,

and since d1*d2 = 1+q, it follows that lrr=Ilì2. Now either

a=0 or b=0, and so d1 and dz are m and p"m where

Íì=IÌt1=In2 and c=cr =a+b. If dr=m then 0, =P9 and if

d1=pcm then 0. =P'" .

Notice that the possibilities for c are limited by

the requirement that m = (t+q, ) (1+p" )-t is an integer. If

the elements ht(x) (x€Xt ,xfI) form a group, all elements

occurring with the same frequency, then À*(H¡ )=0 or gi -1.

If À* (Hi ) =0 then d, =d, = (L+q, ) /2. If À* (Hi ) =qi -1, then

setting x = 0 (Brcl*i(si )icl-*t B¡, ) , 0, -1 = (qi -I)x and so x

is rational. But qr x2 = À ( (s) 2 ) e, = 0r since 0, and

g,ix2 are both positíve rationals. Now

qix' (qi -1)x 1 = 0

gives x = -q;t or 1. Thus e, = g¡ or gi' , and dr

and <12 are 1 and ei . (So À* extends to a character

of P). From the structural equations given in chapter 4

it can be seen that the above condition on the elements h¡( x)

is satisfied for all the Chevalley groups except for Gå (q)

and ArIo (g ) (for the root subgroup corresponCing to sq ).



rn fact for cå (¡) , ei =27 and

for which À (Hi ) = -6, giving

equal to 7 anð. 2I.

trr7e now combine B

conclude chapter 8:

8.9 THEOREI4 Let t|.,

7 , 8.8 and 2.7 in a theorem to

be an irreducible component of multi-

= {w€r¡ü | À*=À } , 0 the restriction of

in I .4 , and I{s as def ined

S

1ur=Jor=

there exists

fs
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a character À

, anC dr rdz

plicity I in Ào,

ü to B¡ kGB¡ , 0,

in 2.7 . Then the

Il (I) =

as defined

degree of tl

Is:ws]-'w(q)/I^Is (o)

where I^I (t) and Vls (y) are the Poincare polynomials of !ü

and Ws (c.f.2.6), and the coordinates of the vector g

are given by the orders of corresponding root subgroups '
and those of 9 ¡V corresponding 0. . (In particular

the coordinates are pov¿ers of p in both cases). (The

proof of this is immediate. )
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CHAPTER 9

AN AUTOI{ORPHISM OF XKGX.

In this chapter we prove theorem J, rvhich ís given

by combining 9.1 and 9.4.

9.I TFIEOREM Ðef ine f:XkGX + xkGX by setting

f(o*h) = (ô*)- th(-1)o(*) q*

and extencling thj-s linearly to the whole of itCi. Then

f is an automorphism.

Proof Let s=si be any fundamental reflection. Then

f (cr.2) = f (q(s) 2x + (s) 2u, cr, ) (where e=gi )

= q(s)2i - (s) 2Hi (ô, )- t q

But, as in 6.6, ôr'= q(s)-'i + qI(x(s)-tx(s)-tX)
(summation over non-identity elements of Xi )

= q(s)-'x + q(s)-'lih,(x) (s)x

= q(s)-tX + H, ô,

Therefore

(ô. )''q' = q(s)2x - (s)'Hi 1ô, )- t 9

and so f (cr.2¡ = (ôi'q2¡ = [f (o,, )]2.
We now show that for all w€W, f (4. o,*) = f (cl* ) f (cl*)

Firstly, íf [(sw) > f.(w) and h€H is such that
(s)(w) = (sw)h, then (as in 6.5)

0s 0* = oú. *h and ô*ô. = h- t ô. *.

Thus f (o' cr*) = f (9, *h)

= (-1)o('*) (ô.*)- trrq;i"

= (-t) (-l)o ( *' (û, )-' {ô*)-'q- t qi'

= f(a,)f(o*).

If .t(sw) < 1,(w) then by what we have just proved,

f (a, cr. *) = f (cl, )f (4. *) .
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Therefore f (o, o*) = f (cl¿r2cr. *h) (where (s) (sw) = (w)h)

= f (q (s) 2o. *h * (s) 2Hi cr, cl. *h)

= f (q(s)2cr, *h) + f ( (s)2H¡ o, cx, *h)

= f (q (s) ')f (q. *h) + f ( (s) 'Hi o, ) f (o, *h)

= f (or2)f (or*h)

= f (o. )f (a. ) f (o. *h)

= f (cl. ) f (o' cr. *h)

= f(cl, )f(cl*)

Now a simple induction completes the proof that f(ano*)

= f (cr', )f (cl*) for all v, w€W, and the rest is clear.

If e is a primitive iclempotent in Xfci affording

an i-rreducible component V of 1: then f (e) is also

a primitive idernpotent, and the corresponding character will

be called f(ú). It will be shown that for each À,

f (x(À)) = 6(r).
9.2 LEMMA Let rlr be an irreducible character of G

occurring with multiplicity t in ÀG. Then V = f (!r) if

and only if e is trivial on S.

Proof Let 0 be the restriction of U to Bl kGB¡r . Then

U = f (ú) if and. only if 0 (ß*) = 0 (f (ß*) ) for all w€S; i.e

if and only if I - 0 (f (ß*)- I ß*)

= e((-1)q(*)g-*tgnô*cl*B¡r) (see 9.1)

for all w€S. If e is trivial on S then by 8. B (ii)

0, =1 for all r, and so 0*-1 for all w. Furthermore

(-1) o ( *) = r for arr w€s, and so (-t) o t *"*=r for arr w€s.

Therefore U = f ((r).

Conversely, if (-I)at*'t* = I for aI1 w€S then

since 0* is a positive rational number it follows that

(-I¡a(*l = I for aII w€S, and so e is trivial on S.
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Let J c {I,2,...n}, w€W. Then

(x:*,f (x)) = (ô(s,.r,w),e1.)

Proof By 7.5 (ii), {X,Xru*) = (I,O(S,J,w)) = I
and it follows that X¡ * is the unique common component of
(À*)G¡ and *lor. Therefore f(X¡*) is the unique common

component of (À*)c¡ and f(X) lcI. Therefore (X¡*,f(x) 
1", 

)

is zero if X¡* I f (X¡*) , and one if Xrw = f (X¡*).

Therefore by 9.2,

{xr"*, f (x)) = (r,e) (where the inner
product on the right hand side is taken over the group wr ns*)

= (ô (S,J,w) , .l. ).

9.3 LEMMA

9.4 THEOREM f (x(À)) = q(À)

Proof By 9.3, (tO'f (X)) = (6rlr, rl.)
and so (6,f (x) ) = I (-I)l t l (to, ,f (x) )

= r(-t)rtl(ô, lr, ,1.)
(summation over aII sut¡sets J of {IrZr...n})

t^l ^ I \\rlsr rlr,
f
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CHAPTEP. ]-O

TFIE STRUCTURE OF BÀ KGBÀ

Let D and lVs be as def ined in 2.7 and let f
be the root system of Ws. For simplicity assume that k

is the complex field.

IO.1 LEM}{A Let r=rí be a fundamental root with corres-

ponding reflection s, and let vrw€W. If w(r)Cf then

and Q', 9, Qi å 0u , B^*

Proof Inle prove only the first of these, since the proof of

the other is similar. Firstly, if [ ( sv) > 1. (v) then

Ç[. ' = 9s 9v and cxs otv = (s) (v) (sv)- t or,, , so that the result

is trivial. If .e, (sv) < f, (v) then

os cÌv = g. (s) (v) (sv)- t o, " + Hi (s) 2o,, .

By B.B À* (H, )=0, and since gr g,,=g, the result follows.
L0.2 LEMI,IA Let vrw€$I and assume that \d- t (r) is positive
for all positive roots r such that v (r) is a negative

root of f. Then

B^cxv crw = À ( (v) (w) (vw)- t )

Proof Use induction on .0 (v) . The case [ (v)=9 is trivial.
Assume !, (v) > 0 and let v=ts where [ (t) =.Q, (v) -1

and s=si is a fundamental reflection. Let a be any

positive root such that t (a) is a negative root of f.
Then a is not equal to r¡ (since t(ri ) > 0), and so

s(a) ís positive. lrlow vs(a) is a negative root of l,
and so w- t (s(a) ) > 0. Thus we have shown that (sw)-' (a)

is positive for all positive roots a with t (a) a negative

root of f. Now

Bn* c!, orv = À* ( (s) (v) (sv)- I ¡

0r,., or, B^* = À* ( (vs)- t (v) (s) )

e.grgif, B^w0sv

9" 9*9î iu BÀ 0u *
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B¡otu oü* = À ((v) (s)- t (t)- t )B^o,0r 0*

= À ( (v) (s)- t (t)- t )Bn*, B^t ors orw

: À'((s) (w) (sw)-'),G;E;q;i" À((v) (s)-'(t)-')B¡.ortcrsw (by 10.r or 6.6

(by 6 .6)

since either w- t (s) >0

= À ( (v) (w) (sw)-' (t)-' )

or else t(s) = -v(s) e f)

G;E;õil À ( (t) (sw) (vw)-') Qt 9. *9i ì' BÀ 0u *

by the inductive hypothesis, and on cancellation we obtain

the requj-red formula. Using 10.2 we can prove theorems

F and G:

10.3 THEOREI4 The character À of H may be extended to a

linear character of SH. (rfie extension will al-so be denoted

by "À").

Proof Let 0 be the restriction to BrkGBr of X(À).
For r€f def j-ne rì, =1 if 0, is a positive power of p

and nr = -1 if 0, is a negative power of p (see 8.8),
and for w€S let n (w) = IIn, where the product is over

positive roots of f negatived by w. It is clear from

8.5 that I is a character of s. llow for w€s, h€H

def ine À ((w)h)=n (w) lo (ß*) I -'e (ß*)À (h) .

Let w€S and s a fundamental reflection of Ws

(i.e. the root t corresponding to s is in the base of f).
Then by I0.2, if w(r) > 0

À ((w) )À ((s)) = À ( (w) (s) (v¡s)-') I ( (ws))

= À((w) (s)).
rf w(r) < 0 then ws(r) > 0 and so

À ((w) )À ((s)) = À ( (ws) (s))À ((s)-' (ws)-' (w) ) À ( (s) )

= À ( (ws ) ) À ( ( s ) ) r ( ( s ) 
- ' (rs ) 

- ' (w) ) À ( ( s ) )

= À((w) (s)-' ) tÀ((s))12
Bur (^((s)))2 = le(9,) l-'0(ß*)2 = lo(ß.) l-'r((s)2)0(ô*ß_)

= f( (s) 2) since 0 (ô, ß. ) : es 0s is real
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and positive. Thus I ( (w) )À ((s)) = À ((w) (s)) in this case

also, and it is now clear that À is a character of SH.

It is convenient at this point to introduce some

new notation. If r€f define pr = p"' (see 8.8), and

for w€S define p* = ilp. , product over positive roots

r€f such that w(r) is negative. Let

y* = /p*qin/ À((w)-')ß*.
10.4 THEORE¡! Let w€S, v€D, and r a fundamental root
of f with corresponcling reflection s. Then

(i ) yu yw = y" w and y*y., = ywu

(ii) y*y. = yws if w(r) > 0

y*ys = p, y*. + (p, -I)y* if w(r) < 0

(iii) ysy* = ysw if w-t (r) > O

Ys Y* = pr Ys w + (p, -1)y* if w- t (r) < 0.

Proof Elements of D permute the roots in l, leaving

positive roots positive. Thus there are no positj-ve roots

r such that v(r) is a negative root of f. Therefore

by L0.2

ß, ß* = À ( (v) (w) (vw)-' ) q" q*q;; ß, *
Furthermore pu=I and pw=pvw¡ and so it follows that

YvYw = Yvw. The formulae for Y*Yv, Y*Ys when w(r) ¡ 0,

and ys yw v¡hen w- t (r) > O also follow easily from IO .2,

and we omit the proofs of these.

Let a be a fundamental root (i.e. fundamental in
the root system of W) such that s(a) 4 0, and let w1

be the reflection corresponding to a. If v/1 I s then

s (a) I -a and hence wr (s (a) ) is negative. That is,
(swr)-t (-) is negative, and it follows that

!,(wrswr) = 1,(swr)-1 = L(s)-2.

Continuing in this \^/ay \^re can find a reduced expression for
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s of the form S = wt\tlz...\¡/*Si wil...\¡Izwr . Let
V = hrrw2...w¡¡ and u = v'l. rf b is a positive root
such that v (b) is a negative root in f then _v (b) is
a positive root in f which is negatived by u and hence

by s also. Therefore -v(b) = r, and b - -u(r) = -¡i t

contradicting the fact that b is positive. so no such b

can exist, anC we may apply IA.2 to concl_ude that
B^ clt,r, crúu = 9., Btr, À ( (v) (u) ) .

Therefore

ct,rB¡or,r, = grB^, À ( (v) (u) ) .

Now \: = p,q;'l((s)-')À((s) (u)-'(s, )-'(v)-'), (Bno.uo,,. *uB¡)2

= p,eltÀ((rr)-t (si )-t (v)-t),B¡,o.,,o.1 c,¿,,Blg,À((v) (u))

= pr gl t q,, À ((u)- t (n)- t)B^o, (=, )-'ol ouB¡r

But (st )-'ol = gi X * IIi crs. , and so we have

y.' = p, q; t q3 q, e^ + cys for some scalar c

= p, B¡r. * cys

Let 0 be the restriction to BÀkcBÀ of X(À). Then

o (y. ) = /p-- lo {o*) ln (w)

P. 9i /q. o, n (w)

=p, or _1

Ineithercase O(y.)2=p, +cO(y.) gives c=pr-l.
Now if w€S such that w(r) < O then

Y*Y* : Y*, Yr2 = Y*s (p, B¡.+(p. -1)y, )

= Pr Yws + (P. -I) Y*

(and similarly y, y* = p, ys ** (p, -1) y* for \,v such that
vr-t1r) <.o).

I¡Ie now use 10.4 to
In particular we have the

follows):

representations of BÀkGBÀ .

(from which theorem H

determine

following
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For any linear representation v of Ws

there exists a linear representation 0 of Br kWs Br such

that if r is a fundamental root of f with corresponding

reflection s, then O(y, ) = -1 if v(s) - -1 and

0(y,) = p. if v(s) = 1.

(ii) Let n be any irreducible character of D' and e a

Iinear representation of BÀkWsBr. Then BÀkGBÀ has an

irreducible character K such that r (Y.,,*) = n (v) 0 (y*) for

all v€D, w€Ws. Corresponding to < there is an irreduc-

ible character of G which has multiplicity n(1) in Àt,

and degree n(1) lol-'w(q),/ws (e) .

(iii) D is an abelian p'-group.

(iv) There are precisely lOl components of ¡c with de-

gree obtained by setting n (I) = I and 0, = P, for all

r€f in the formula given in (ii). (The 0i are the coord-

inates of 0). These are the only components with degree

prime to p, unless Ws has an irreducible component I/Vl

of the form [2m] or 13"'2 ,41 (see chapter 2) and for all

roots a of this component, p" lm or P" = 2 (respectively).

Then ÀG may have further components with clegree prime to p

such that 0" 0r = I when a and b are in different orbits

in the root system of Vtr.

Proof (i) For r€f with corresponding reflection s let

d, = -I if v(s) = -I and d. = P, if v(s) = 1. Define

0 (y*) = [d. (product over positive r€f negatived by w)

and extend this linearly to the whole of B¡ kitls B¡ . We use

induction on the number of positive r€f negatived by w to

show that 0 (cly*) = O (cr)0 (y*) for aII w€W., from which it

follows trivially that 0 is a representation.
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if

Firstly suppose w=s is
to a fundamental root r of
v(r) ¡ 0,

the

r

0 (cr)0 (y*) .

representation of D with character

T(Yn*) : R(v)0('y-) and extend T lin-
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reflection correspond-

Let v€Ws. Then

0 (y, ) 0 (y. ) = (IIdu ) d, (where the product ís
over positive a€f negatived by v)

= (IId, ( 
" ) )d. (sj-nce it is clear

that d" =do ( " ) for any a€f and u€W, , in view of B. B (i) )

= [dr (product over positive b€f

negatived by vs)

= o (y". )

= o(y"yr)

rf v(r) < 0 then 0(y")0(y,) = 0(yu,)0(y,)2

Hence

root

and

Then

(ii) Let R

n. For v€D,

be a matrix

w€Vü. def ine

= 0 (y.,, ) (p, + (p. -1) 0 (y, ) )

= p. 0 (yu. ) + (p. -t) 0 (y,, )0 (y* )

= p,0(yu.) + (p,-1)0(y,)

= 0(YuYr)

it follows that 0 (o) 0 (y, ) = 0 (ay. ) for all cr€B^kWrB^.

Now suppose that v/ negatives more than one positive
of f. Then there exists v which negatives one fewer

a fundamental reflection s of Ws such that w=vs.

for any o€B^ kWs B¡ r

o (cly*) = o (clyu y" )

= o(sy,,)o(y-)

= 0 (a) 0 (y" )0 (y, ) by the induct.ive

hypothesis

early to the whole of B¡kGBÀ. In particular, T(y.,,d)=R(v)O(a)
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for all v€D and cl€B¡kIrtrsB¡. Then T is clearly a

representation , since if v, w€Ð and cr , $€B¡ kl^7s B¡ then

T(y" cry*ß) = T(yr* (y-*t oy*ß) )

= R(vw) e (y;t oy*ß)

(since by tO.4 yi"t qy* € BÀ kI^Is BÀ )

= R(v) R(w)o(ct)o(ß)

(since 0 is a l-inear representation)

= T (y.,, o) t (y* ß) .

The character r of T obviously has the required property.

Now rq;i," (ô,,*) r (ß"*) = ¡q,l,n (v) n (v-' )o (ô.,,*ßu*)

= rn(v)n(v-t)ou*

= rn (v) n (v- t ) o* (see 2 -7)

where the summation is over aII v€D and w€Ws. Since

In (v) n (v- t ) = lol, (ii) nov¡ follows from 17, theorem 2.41 .

(iii) Choose the representation 0 which corresponds to

the l-character of Ws, as in (i). Then for each r€f,

0, =p, . Hence w. (9) is an integer. Using (ii) in the case

n=l it follows that lol divides w(q) . Hence D is a

p''-group. Apply (ii) again for the same 0 and any non-

linear irreducible character n of D. The character of G

obtained has multiplicity greater than I in Ào, and so by

7.8 is not of the form 6(À). Therefore by 8.2 it has de-

gree divisible by p. But I,[s (9) is an integer and lv(q)

is prime to p, and so p must divide n (1) . This con-

tradicts the fact that D is a p'-group. Hence D has no

nonlinear irreducible characters, and so is abelian.

(iv) By 8.2 and 7 .8 any irreducible component e of ÀG

with degree prime to p occurs with multiplicity t. By
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10.4 it is cl-ear that the corresponding linear representa-
tion of BÀ kGBÀ is composed of a representation I of D

and a representation 0 of BÀ kws BÀ in the manner describ-
ed in (ir) . rf 0. = p;t for any r€f then it can be

seen from the factorizations given in t14l that (with the
exceptions given in the theorem statement) W. (9) has a

factor of p in its denominator. (ror example , íf
I{s has a component of the f orm [ 2m] then lVs (9 ) has

factors (1+0u ), (r+00 ) and (t+'a eo+eu2 e3+...+0i' t oil't )

where a and b are representatives of the two orbits of
the root system [2m]. Since e" and 0r are powers of p

and not equal to I, if 0a = p; t the only way to avoid a

factor of p in the denominator is if 0" 0r = 1 and pu

divides (l-+0" 0r*...+0i't e;'' t ) = m) . ïf ws (g) has a

factor of p in its denominator then pl6(r), a contra-
diction. Thus (apart from the exceptional cases) 0. =p,
for all r€f, which means that 0 (y. ) = p. for the corres-
ponding refl_ection s (i.e. 0 corresponds to the l_charac_
ter of Ws ) . The rest follows simply.

Our next aim is to develop the theme of 7.5 (ii) in
more detaí1. Tn 10.5 (i) and (ii) an irreducible character
of G is obtained from linear characters v and n of vüs

and D. Let us denote this character of G by ",1, (v, t, À ) ,, .

By 10.3 there is a rinear character vnÀ of sH, and so

inducing to tI we obtain a character 6(v,n,À) which is
irreducibl-e since for wÉs the restriction to H of (vnÀ)*
does not equal the restriction of vn^. More generar]_y, if
J is any subset of {I,2,...n} tne same process yielcls
irreducible characters ,lr, (v,t,À) of Gr and 6¡ (v,|,À)
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of |InGr .

Let J'I( be two subsets of {1,2, . . 'n}, and

Àr,À, two linear characters of H. Let SI = {w€!{, lÀi=f t}

and 32 = {w€W* lÀi=1, }, and S1 = DrlVr, 32 = D2trl2 (as

previously we had S = DWs ) . For w€S1 , v€Sz define Y*

ancl 6u in the same \^lay as previousty we defined' Y* for

rv€S. We now Prove theorem I :

10. 6 THEOREM If V r , V 2 are linear characters of Wr ,Vfz ,

and rìrrrìz linear characters of Dt, D2 then

tul ,{,11 = tEl ,E)l

where rf l = Ú, (V1¡rìrrÀr), þz = ü*(vzt\z,Xz), Et =

and Ez = 6r(v2,\2t)\2).
First note that both inner products in the

of the theorem are zero unless X2

assuming À2=Àl=¡*, let 0 be the restriction of

BÀkGBÀ, and e* its restriction to B^* kGB^* .

any o€B¡kGB¡,

o (cr ) e^ xi'
= cr-*t crcr*B^* x[o

is a scalar c with c,l*B^* XI

o* (clr;'oo*) . Now let x be

v (ri ) for some fundamental

o

E¡ (vr'nrrÀr)

statement

w€W. So

X(À) to

Then for

(by 6.7\

cBrXlo ) , and(since there

hence 0 (cl) =

suppose t =

Then 0*(, )

any root

Ei t and

and

v€W.

(cf . 8.5)

0

q¡ o (Br 0*.,, i( si ) 
- t x (=, )xcr*l 3^ ¡

gi 0 (B¡.ot*cx,.,,Í(s, )- t f (si )io" t cl-*t n¡ )

This obviously holds for any element of S1\'{S2.

The next step is to prove that SrwSz contains an

element t such that t (r) > 0 for all positive r€l z

(tfre root system of Wz) and t't (r) > 0 for all positive
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r€fr (root system of Wr). In fact let t be an efement

of SrwSz Such that the number of positive r€.f z negatived

by t plus the number of positive r€f r negatived by t- I

is minimal. Suppose that t- t (r) < 0 for some fundamental

r€f 1 with corresponding reflection s. Then (st)- ' tt.g-

atives one fewer positive root of f I than does t- I (cf.

proof of 2.4). Let a be a positive root in 12 negatived

by st but not by t. Then t(a) is a positive root neg-

atived by s, and since s€W¡ , t (a) is in the root system

of I{¡ . Since etuli-, 0t ( alfl, and so t(a) € f r. But

the only positive root in f I negatived by s is r, and

so t(a) = r. But this contradicts t-1 (r) < 0. Thus

there can be no such a, and it follows that the number of

positive roots in I 2 negatived by st plus the number of

positive roots in f1 negatived by (st)- t is less than the

same number for L, and this contradicts the clefinítion of t

Therefore t- 1 (r) > 0 for al-] positive r€f r , and. similarly

t(r) > 0 for all positive r€12.

we now investigate t- t S1tl-1S2. Let CI be the set of

roots r€l z such that t (r) € f 1 an<1 let V be the sub-

group generated by the corresponding reflections. For

r€fl, r>0, let r = IÀua where each a is a fundamental

root of I 2 and the Àu are positive scalars. Then

t (r)

wr so is each t(a). Hence each a is in CI. .Therefore

V is a parabolic subgroup of W2 (generated by a set of

fundamental ref lections of f z) . If v€t- t SrtfìS2 and

v=dx, d€D2, x€W2 then r Þ t(r) maps the positíve roots in
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I 2 negatived by v onto the posítive roots in f 1 neg-

atived by tvt- I Each such r is in Q, and so x€V.

Further, tdt- t negati-ves no positive root of f r, and

so tdt- 1€Dr. It can thus be seen that t- t S1tflS2 = EV

where f, = t-tD1tflD2.

For r€f1, v€S1, pr and pv are defined as in the

discussion preceding 10.4, and the character n of S 1 as

in the proof of 10.3. (t is not related to rìr or tz) .

Define n, r mv for r€l 2, v€Sz and a character < of 52

in a corresponding fashion. If r€f) with reflection s

then 0,=0r*(,) and so mr = pt1,¡ and r(s) = n(tst-t).

Further , lf v€t- t srtflSz then Ítv =pu , where u=tvt- t 
,

and n (u) =r (v) . From I0.2,

B¡o1 o, = /q"q"-r( (t) (v) (t)-' (u)- t )B¡a,cr1 (-Bro,,t )

(n.b. If r>0 it is impossible for t(r) to be a negative

root of fr).

Thus g* (Br.*0u ) 9., 9i' À ( (t) (v) (t)-' (u)-' )e* (crl'ß,,cr., )

q" q; À ((r) (v) (r)-' (u)-')o (ß" )

and so Àz ((v) ) = Àr ((t) (v) (t)-') . Also

ô.,, mugi'Àz((v)- t 
) B^* c1.,,

='SffiTlr ( (t) (v)-' (t)-')/q"q;' À( (t) (v) (t)-' (u)-' )cr¡' 9,,a1

-l= 0r Yr0t.

Let 0 1 be the restriction to BÀ kGJ BÀ of ú r , 0 2

the restriction to BÀ* kGKBÀ* of þ2, and ê1 , ê2 the

corresponding idempotents. Suppose it is not true that

rìrvrÀr ((t) (v) (t)-') = I-tz\zÀz ((v) ) whenever v€t- t Sltns2.

Then either ¡ 1 (tvt- t 
) ln ín) for some v€E or else

vr (tvt-')lvz (v) for some fundamental reflection v€V.

In either case it is clear from 10.5 (i) and (ii) that

0r(y,) I 0z(ôu) (where u = tvt-1). However



63.

0l(Yu)e1cl1 e2 = ê1]uot1 ê2 = €1o1 ôue2 = €10ü1 êz0z(ôr) anc so

ê1Ct1 ê2 = 0.

On the other hand, suppose

rìrvrÀr((t)(v) (t)-') = \z-rzÀz((v) )

for all v€t- lSrtns2. Then using 10.5 (i) and (ii) and

the fact that p'=ñ., it. follows that 0 r (y,, )=02 (ô., ) when-

ever v is a fundamentar reflection of v or an el-ement

of E; hence it holds for all v€t- I Sr t0Sz (with u=tvt- 1 
)

Let A be a set of representatives of the t- t S, tôSz \ Sz

cosets, such that for atl ¡¡eAr x- I (r) > O for aII posj_-

tive r€f). Then e2-fe, where f = tm-u102(ôu_,)ô.,,

(v€t- t S, tns, ) and e = lrn] 10, (6*-, ) 6* (x€A) . Now

ê1cr¡êz - êr(otfclit)or" - êroúte.

But for all y€Sr, x€A

Bn o," o,1 cli,* - B¡r o,y r ox - B¡. Cry r x (since x- 1

negatives no positive root of t- I (fr) ) and thus clearly
elcli,¡ e f 0.

We can now complete the proof of 10.6. For any

coset S1wS2 such that Ài=lz \¡rrê have chosen a represent-
ative t vrith t(r) > 0 when r is a positive root of f 1

and t- t (r) > 0 when r is a positive root of f zì

now let trrt2¡...L,p be arl the representatives so obtained

for the various cosets. Then as in the proof of 7.4,
e1kGe2 has a basis consisting of those eroti ê2 which are

nonzero. Hence the dirnension equals the number of i such

that rrvrÀr ( (t¡ ) (v) (t, )- t )=rì z,)zXz ( (v) ) for alt
v€ti I Sr t¡ 0Sz , and this is just the number of cosets

SrHwSzH (w€W) such that rìrVrÀr ( (w)x(w)- t )=t z.vz),2(x) for



a1I x€\^/- 1 Sl HwnS2 H (obviously this can only

Ài=Àz).

Thus t,i,Î , r/,! I

and the proof of 10.6
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occur when

dim e 1kGe2

the number of 51H\W52H cosets with

the above property

tql,E)) by Mackey's theorem

is complete.



1

2

3

4

5

65.

B IBL I OGRAPHY

Burrow, M.D.: A generalization of the young diagram.

Can. J. Math. 6 498-504 (1954) .

Carter, R.W.: Simple groups and simple Lie algebras.

J. London Math. Soc., 40, 193-240 (I965).

Chevalley, C.: Séminaire, Classification des groupes

de Lie algebriques (uxposé l4) paris, 1956-1958.

Chevalley, C.: Sur certains groupes simples.

Tôhuko Math. J. 11 Ser. 7, 14-66 (1965).

Coxeter, H.J.M. and Moser, O.J.: Generators and

relations for discrete groups , 2nd ed.,
Springer-Verlag, Berlin 1965.

Curtis, C.I¡ü.: The Steinberg character of a f inite
group with a (B,N)-pair. J. Algebra 4,

433-44r (1966).

Curtis, C.W. and Fossum, T.V. : On centralizer rings
and characters of representations of finite
groups. Math. Z. L07, 402-406 (1968).

Curtis, C.W., Iwahori, N. and Ki1moyer, R.: Hecke

algebras and characters of parabolic type of
finite groups with BII pairs. Inst. haut.

Étna. sc i . publ. math 40 , 8l--116 ( 19 7L) .

Dagger, S.W.: A class of irreducible characters for
certain classical groups. J. London Math.

Soc., (2), 2, 5I3-520 (1970) .

Feit, InI. and l{igman, G.: The nonexistence of certain
generalized polygons. J. Algebra L, 114-13I

(le64 ) .

6

7

B

9

10.



r1.

L2.

13.

L4.

l_5.

16.

L7.

18.

19.

20.

2T

66.

Green, J.A. and Lehrer, G.I.: On the principal

series characters of Chevalley groups and

twisted types. (unpublished) .

Howlett, R.B.: On the degrees of Steinberg characters

of Chevalley groups. Math. Z . l-35, 125-135

(Le1 4) .

ÊIow1ett, R.B.: Some irreducible characters of groups

with BN pairs. (to appear in J. Algebra)

Macdonald, I.G.: The Poincaré series of a Coxeter

group. Math. Ann. 1-99, I6L-I74 (L972) .

llatsumoto, H.: Générateurs et relations des groupe

de Weyl généralisés. C.r. Acad. Sci. Paris

258, 34L9-3422 (1964) .

Richen, F.: Modular representations of split BN

pairs. Trans. Amer. Math. Soc. I40, 435-460

(re6e).

Solomon, L.: The orders of the finite Chevalley groups.

J. Algebra 3, 376-393 (1966).

Steinberg, R.: Endomorphisms of linear algebraic

groups. Amer. Math. Soc. I'Iemoirs B0 (1968) .

Steinberg, R.: Lectures on Chevalley grollps.

Yale University, L967.

Tits , J. z Algebraic and abstract simple groups.

Ann. of Math., lt Ser. 80, 3L3'329 (1964).

Yokonuma, T.: Sur la structure des anneaux de Hecke

d'un groupe de Chevalley fini. C.r. Acad. sci.

Paris 264, 344-347 (1967) .



CORRE CT IONS

SummarY, 2nd PaBe I

t L.b.9

L. (

Theorem 3.2 (3)

kG, not kg'

rr sgrnponent iþ of ÀGI with multiplicity

1 in ¡Grt''

Add rrsta,oilized by D" to end of line l '

Add ,,where l,(w) is the minimum length

for w as a Product of the s' (c'f'

2.r & 2.2)tt '

Add. in parenthesis "The involutions sr ¡s2:

...sn of definition 3'1 brecome fundamental

reflections, & Yt'T2'"'Tn a?e the

corresponding roots" '

The group U referred to in theorem

and its Proof should be X'

1

t

¡'1
Þ.J, u

P. 11,

1

p.I2, L'7

4.r

p. 16, et'seq'

P.30, end

p.32,

p.49 '

p.53,

L.b.B

1.b.5

L.b.)

Footnote to 10 ' 3

P.56, Theorem 10 ' 5

(Versions of theorem B appear

Iiterature: see t11l or [19]

Ig])"
kG, e, not kGe '

-1
Q. *, not Q, *'

1 -1
qq,notqq*

: t'See also KilmoYer '

A.M.S. Notices 2L'"

(i) Add rrstabilized

(ii) Addrrstal¡ilized

sentence '

RePlace bY

.wo = .r.- 
1OO

0 (a) uÀ*^U - **

in the

as well as

Notice 7IL-2O'\6 '

to line 1

to end of 1st

R t

- nllOYn

by Dtt

i p.60, L 'b 'Lr

P.59, L'b'3

B X
wo

Àw u

insert tt(Here f oY

= v(*)n(v)' vn is a

is stab' i-l zed bY D) "'

Bet\^reen the sentences

r,{€,,- , v€D, vn(wv)

character sirlce V

^=Should be \7 I(r) f0

p.62 , L .Lr




