SOME IRREDUCIBLE CHARACTERS OF GROUPS WITH BN PAIRS

BY

R.B.HOWLETT, B.A. (ADELAIDE)

A thesis submitted to the University of Adelaide in December 1975 for the degree of Doctor of Philosophy. The work was done in the Department of Pure Mathematics at the University of Adelaide.

TABLE OF CONTENTS

Summary (i)
Signed Statement (ii)Acknowledgements(iii)

1. Statements of the main theorems 1
2. Finite groups generated by reflections 4
3. Split BN pairs 11
4. Chevalley groups 15
5. The characters discovered by Dagger 28
6. The Hecke algebra $\overline{\mathrm{X}} \mathrm{k} G \overline{\mathrm{X}}$ 31
7. Some more characters 37
8. On the degrees of components of 1_{x}^{G} 42
9. An automorphism of $\bar{X} k G \bar{X}$ 49
10. The structure of $B_{\lambda} k G B_{\lambda}$ 52

Summary
Let G be a finite group with a split $B N$ pair at characteristic p (as defined in [16]), let $H=B \cap N$, $W=N / H$ and X the Sylow p-subgroup of B. Thus G may be any of the finite Chevalley groups, including the twisted types. We make an additional assumption concerned with the derived group (commutator subgroup) of X, and show (theorem A) that with a few exceptions the Chevalley groups and twisted types do satisfy this condition. This thesis is chiefly concerned with irreducible characters of G which are components of the character 1_{x}^{C} (induced from the principal character of X).

Specifically, let λ be a linear character of H and extend λ to B by defining $\lambda(x)=1$ for all $x \in X$. Let μ be a linear character of Y (the product of the negative root subgroups) which is nontrivial on the root subgroup $X . r$ whenever r is fundamental. There exists an irreducible character $x(\lambda, \mu)$ of G which has multiplicity 1 in λ^{G} (theorem B; these characters were discovered by Dagger [9]). Generalizing the isometry argument used by Curtis in [6] another character $\zeta(\lambda, \mu)$ is constructed which also has multiplicity one in λ^{G} (theorem C). As a by-product we derive a formula for the multiplicity with which a linear character of a Sylow p-subgroup occurs in the restriction of an irreducible component of λ^{G} (theorem D). It is shown that any component of 1_{x}^{G} with degree prime to p is of the form $\zeta(\lambda, \mu)$ (theorem E).

Let k be the complex field and B_{λ} the primitive idempotent in $k B$ affording the character λ. We use the technique (used by Curtis, Iwahori and Kilmoyer [8]) of investigating components of λ^{G} by investigating characters of the Hecke algebra $B_{\lambda} k G_{\lambda}$. Irreducible components of λ^{G} with multiplicity m restrict to irreducible characters of $B_{\lambda} k g B_{\lambda}$ of degree m (Curtis and Fossum [7]). Thus the existence of the characters $x(\lambda, \mu)$ and $\zeta(\lambda, \mu)$ guarantees the existence of linear representations of $B_{\lambda} k G B_{\lambda}$. The structure of $B_{\lambda} k G B_{\lambda}$ is closely related to that of KSH_{λ} where $\mathrm{S}=\left\{\mathrm{w} \in \mathrm{W} \mid \lambda^{\mathrm{w}}=\lambda\right\}$ and $H_{\lambda}=\Sigma \lambda\left(\mathrm{h}^{-1}\right) \mathrm{h}$, and we are able to deduce the existence of a linear representation of $S H$ which extends λ (theorem F).

It is also proved (theorem G) that S is the split extension of W_{S} by D where D is an abelian p^{\prime}-group and W_{S} a Weyl subgroup of W, and we give a set of relations which aetermine the multiplication of basis elements of $B_{\lambda} k \mathrm{~KB}_{\lambda}$. In theorem H we obtain a formula for the degrees of components of multiplicity one in λ^{G} and prove that in most cases there are precisely $|D|$ components with degree prime to p, all having the same degree. For any parabolic subgroup G_{J} and any component ψ of $\lambda^{G_{J}}$ there exists a corresponding irreducible character ξ of $N \cap G_{J}$; the correspondence $\psi^{\mathrm{G}} \leftrightarrow \xi^{N}$ is an isometry between the spaces generated by these characters (as J, λ vary) (theorem I).

Finally, an automorphism of order 2 of $\overline{\mathrm{X} k G \bar{X}}$ is obtained which provides an alternative method of constructing the $\zeta(\lambda, \mu)$ from the $\chi(\lambda, \mu)$ (theorem J), and shows that for each component of λ^{G} there is a "dual" component.

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University and, to the best of my knowledge and belief, contains no material previously published or written by another person, except when due reference is made in the text of the thesis.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. R.J. Clarke who suggested the area of research and whose guidance and suggestions have been invaluable.

I am also indebted to my fellow research students and the staff of the Mathematics Departments at the University of Adelaide for providing a competent mathematical environment for research and to Miss D.J. Potter who typed the thesis.
R. HOWLETT.

STATEMENTS OF THE MAIN THEOREMS

THEOREM A Let G be any finite Chevalley group (of normal or twisted type) other than $B_{\ell}(2), C_{\ell}(2), F_{4}(2), G_{2}(2)$, $G_{2}(3)$ or $F_{4}^{1}(2)$ (in the notation of [2]). Let $X_{1}, X_{2}, \ldots X_{n}$ be the fundamental root subgroups of G. Then the natural $\operatorname{map} \pi X_{i} / X_{i}^{\prime} \rightarrow X / X^{\prime}$ is an isomorphism, and all root subgroups for non-fundamental positive roots are contained in X^{\prime}. (The prime denotes "commutator subgroup").

In all the remaining theorems G will be an arbitrary finite group with split $B N$ pair satisfying this condition on X^{\prime}, and λ will be a linear character of B with kernel containing X. For each $w \in W$ define $\lambda^{w}(h x)=\lambda\left(w h w^{-1}\right) \quad(h \in H, x \in X)$ so that λ^{w} is another such linear character of B. Let $S=\left\{w \in W \mid \lambda^{w}=\lambda\right\}$. THEOREM B For each fundamental root r_{i} choose a nontrivial linear character μ_{i} of Y_{i}, the root subgroup corresponding to $-r_{i}$. Let $J \subseteq\{1,2, \ldots n\}, G_{J}$ the corresponding parabolic subgroup, Y the product of the negative root subgroups in G_{J}, and μ_{J} the linear character of Y extending each μ_{i} for $i \in J$ and trivial on Y_{i} for i$i \not J$. Then for each $w \in W, \quad\left(\lambda^{w}\right)^{G_{J}}$ and $\left(\mu_{J}\right)^{G_{J}}$ have a unique common component $X_{J w}$, and it has multiplicity one in each.
THEOREM C For any subset J of $\{1,2, \ldots n\}$ let W_{J} be the corresponding parabolic subgroup and define $\varphi_{J}=\Sigma \chi_{J v}^{G}$, where v runs through a set of representatives of the $S \backslash W / W_{J}$ cosets. Then $\zeta=\Sigma(-1)^{\prime J} \varphi_{\mathrm{J}} \quad$ (summation over all
subsets J) is an irreducible character of G occurring with multiplicity \quad in λ^{G}.

THEOREM D Let σ be any component of λ^{G} and α the restriction of σ to Y (with Y as defined in theorem B). Then for any $J \subseteq\{1,2, \ldots n\}$,

$$
\left(\alpha, \mu_{\mathrm{J}}\right)=\left(\sigma, \varphi_{\mathrm{J}}\right)
$$

(n.b. this is the usual inner product for characters). THEOREM E Any irreducible component of 1_{x}^{G} which cannot be obtained by the method given in theorem C has degree divisible by p.

THEOREM F The character λ of H may be extended to a linear character of SH. (One particular extension will be denoted by " λ ").

THEOREM G (i) S is the split extension of W_{S} by D, where W_{S} is a Weyl subgroup of W and D an abelian p^{\prime}-group.
(ii) Let Γ be the root system of W_{S}. Then $B_{\lambda} k G B_{\lambda}$ has a basis $\left\{\gamma_{w} \mid w \in S\right\}$ such that if $w \in S, v \in D$, and r is a fundamental root of Γ with corresponding reflection s,
(a) $\quad \gamma_{v} \gamma_{w}=\gamma_{v w}$ and $\gamma_{w} \gamma_{v}=\gamma_{w v}$,
(b) $\quad Y_{w} \gamma_{s}=\gamma_{w s}$ if $w(r)$ is positive $\gamma_{w} \gamma_{s}=p_{r} \gamma_{w s}+\left(p_{r}-1\right) \gamma_{w}$ if $w(r)$ is negative,
(c) $\quad \gamma_{\mathrm{s}} \gamma_{\mathrm{w}}=\gamma_{\mathrm{s} w}$ if $\mathrm{w}^{-1}(\mathrm{r})$ is positive $\gamma_{s} \gamma_{w}=p_{r} \gamma_{s w}+\left(p_{r}-1\right) \gamma_{w}$ if $w^{-1}(r)$ is negative.

The constants p_{r} are nonnegative integral powers of p such that $p_{a}=p_{b}$ if a and b are in the same S-orbit of Γ.

THEOREM H (i) Let ν be any linear character of W_{S} and η any linear character of D. Then there exists an irreducible character $\psi(\nu, \eta, \lambda)$ of G which has multiplicity 1 in λ^{G} and degree given by $|D|^{-1} W(\underset{\sim}{q}) / W_{S}(\underset{\sim}{\theta})$. Here $W(t)$ and $W_{S}(u)$ are the Poincare polynomials of W and W_{S}. Thus $\underset{\sim}{u}$ has one component for each W_{S}-orbit of $\Gamma ; \underset{\sim}{\theta}$ is calculated by setting the component corresponding to $r \in \Gamma$ equal to p_{r} if $\nu(s)=1$ and equal to $\mathrm{p}_{\mathrm{r}}{ }^{1}$ if $\nu(\mathrm{s})=-1$ (where s is the reflection corresponding to r). The components of $\underset{\sim}{q}$ are just the orders of corresponding root subgroups. Any component of multiplicity 1 in λ^{G} is of the form $\psi(\nu, \eta, \lambda)$.
(ii) There are precisely $|\mathrm{D}|$ components of λ^{G} with degree prime to p, namely the characters $\psi(1, \eta, \lambda)$ as η varies through all linear characters of D, except that if W_{S} has a Weyl subgroup which is dihedral of order 4 m and $\mathrm{pa}_{\mathrm{a}} \mid \mathrm{m}$ for all roots a of this subgroup, then λ^{G} may have further components with degree prime to p. THEOREM I Corresponding to the character $\psi(\nu, \eta, \lambda)$ of G there is an irreducible character $\xi(\nu, \eta, \lambda)$ of N, Given by inducing the character $u n \lambda$ of $S H$. Similarly for any parabolic subgroup G_{J} and any component ψ of multiplicity 1 in $\lambda^{G_{\mathbf{J}}}$ there exists an irreducible character ξ of $N \cap G_{j}$, and the correspondence $\psi^{G} \leftrightarrow \xi^{N}$ is an isometry between the inner product spaces generated by these characters (as J; vary).

THEOREM J There exists an automorphism f of $\bar{X} k G \bar{X}$ of order two such that for all λ, μ_{i} if e is a primitive idempotent in $\bar{X} k G \bar{X}$ affording the irreducible character X of G defined in theorem B, then $f(e)$ affords the character ζ of theorem C .

FINITE GROUPS GENERATED BY REFLECTIONS

In this chapter some standard results on root systems and reflection groups are listed. More detailed descriptions can be found in [3] and [18].

Let V be a real n-dimensional Euclidean space with inner product (,). For $r \in V$ the orthogonal linear transformation

$$
s: v \Leftrightarrow v-\frac{2(v, r)}{(r, r)} r
$$

is the reflection in the hyperplane orthogonal to r. A root system Δ in V is a finite set of vectors which generate V such that:
(1) For each $r \in \triangle$, $-x \in \triangle$, but no other multiple of r is contained in Δ.
(2) If $r \in \Delta$ and s is the reflection in the hyperplane orthogonal to $r, s(\Delta)=\Delta$. The elements of Δ are called roots and the reflections corresponding to the roots generated a finite group W, called a finite group generated by reflections or g.g.r. If x is a fixed but arbitrary vector in V satisfying $(x, r) \neq 0$ for all $r \in \Delta$, we define

$$
\Delta^{+}=\{r \in \Delta \mid(x, r)>0\}
$$

the set of positive roots, and

$$
\Delta^{-}=\{r \in \Delta \mid(x, r)<0\}
$$

the set of negative roots. Any root system has a base which is a subset π of Δ^{+}satisfying
(3) $\pi=\left\{r_{1}, r_{2}, \ldots r_{n}\right\}$ is a basis of V,
(4) If $r=\sum_{i=1}^{n} t_{i} r_{i}$ is an element of Δ, then all the t_{i} are nonnegative or all nonpositive. The elements of π are called fundamental roots, and the corresponding reflections $s_{1}, s_{2}, \ldots s_{n}$ fundamental reflections. It can be proved that any root is the image of a fundamental root under the action of some $w \in W$. 2.1 THEOREM (Coxeter [5,59.3]) W is generated by $s_{1}, s_{2}, \ldots s_{n}$ subject to the defining relations

$$
\left(s_{i} s_{j}\right)^{n_{i j}}=1 \text { for all } i, j \quad l \leq i \leq j \leq n
$$

where $n_{i j}$ is the order of $s_{i} s_{j}$ in W.
For $w \in W$ define $\ell(w)$ to be the least m such that there exists an expression

$$
w=w_{1} w_{2} \ldots w_{\mathrm{m}} \quad\left(w_{i} \in\left\{s_{1}, s_{2} \ldots s_{n}\right\}\right.
$$

for each i)
for w as the product of fundamental reflections. Such an expression with $m=\ell(w)$ is called reduced. 2.2 LEMMA (Solomon [17 lemma l]) If $w \in W$ and $l \leq i \leq n$ then $\ell\left(w s_{i}\right)=\ell(w)+1$ if $w\left(r_{i}\right)$ is a positive root, and $\ell\left(w s_{i}\right)=\ell(w)-1$ if $w\left(r_{i}\right)$ is a negative root. Similarly $\ell\left(s_{j} w\right)=\ell(w)+1$ if $W^{-1}\left(r_{i}\right) \in \Delta^{+}$and $\ell\left(s_{i} w\right)=\ell(w)-1$ if $w^{-1}\left(r_{i}\right) \in \Delta^{-}$.
2.3 COROLLARY If $W_{1} W_{2} \ldots W_{\mathrm{m}}$ is a reduced expression for $w, ~ a n d ~ i f ~ a_{1}, a_{2}, \ldots a_{m}$ are the fundamental roots corresponding to $w_{1}, w_{2}, \ldots w_{m}$ (i.e. if $w_{i}=s_{j}$ then $a_{i}=r_{j}$) then the positive roots r such that $w(r)$ is negative are:

$$
a_{m}, w_{m}\left(a_{m \circ 1}\right), \quad w_{m} w_{m<1}\left(a_{m-2}\right), \ldots, w_{m} w_{n l e} 1 \ldots w_{2}\left(a_{1}\right) .
$$

In particular for each $w \neq 1$ there is a fundamental root $r_{j}\left(=a_{m}\right)$ such that $w\left(r_{j}\right)$ is negative.

Let I be a set of roots and suppose that the corresponding reflections generate a subgroup T of W. Let $\quad \Omega=T(\Gamma)$. Then Ω is a root system for T acting on the subspace of V spanned by Ω. The positive roots of Ω can be chosen to be those which are positive in Δ. Hence if P is the set of fundamental roots for $\Omega \quad P \subseteq \Delta^{+}$. 2.4 LEMMA Each coset $w T$ ($w \in W$) contains unique elements v_{1} and v_{2} such that $v_{1}(r)$ is positive and $V_{2}(r)$ negative for all positive roots $r \in \Omega$.

Proof It is well known that if r is a fundamental root and s the corresponding reflection then s permutes the positive roots other than r. Let $w \in W$ and choose $v_{1} \in W T$ which negatives a minimal number of positive roots in Ω, and suppose that $v_{1}(r)$ is negative for some r in P. Then if s is the reflection corresponding to r,

$$
v_{1} s(r)=v_{1}(-r)=-v_{1}(r) \text { is positive, }
$$

and since
$\{a \mid a \in \Omega, a$ is positive, $a \neq r\}=\{s(a) \mid a \in \Omega, a$ is positive, $a \neq r\}$ it follows that the number of positive $a \in \Omega-\{r\}$ such that $\mathrm{V}_{1}(\mathrm{a})$ is negative equals the number of positive $a \in \Omega-\{r\}$ such that $\mathrm{v}_{1} \mathrm{~S}(\mathrm{a})$ is negative. Thus $\mathrm{v}_{1} \mathrm{~s}$ negatives fewer positive roots in Ω than does v_{1}, a contradiction since $v_{1} s \in W T$. Therefore v_{1} negatives no element of P, and therefore no positive linear combination of elements of P either, as required. To prove uniqueness, assume $v \in T$ and that $V_{1} v$ also does not negative any positive root in Ω. If $v \neq 1$ there exists a positive root $r \in \Omega$ with $v(r)$ negative. Since $v_{1} v(r)$ is positive, $-v(r)$ is a positive
root in Ω negatived by v_{1}. This is a contradiction, and so $v=1$ and hence $v_{1} v=v_{1}$.

A similar proof applies for V_{2}, which is characterized as the element of $w T$ which negatives a maximal number of positive roots in Ω.
2.5 LEMMA Let $J \subseteq\{1,2, \ldots n\}$ and W_{J} the group generated by the s_{i} for $i \in J$. Then $\left\{r_{i} \mid i \in J\right\}$ is a base for the root system of W_{J}. Each coset $w W_{J}(w \in W)$ contains exactly one v such that $v\left(r_{i}\right)$ is positive for all i $\in J$. In particular W_{J} contains a unique involution W_{J} which maps the roots $\left\{r_{i} \mid i \in J\right\}$ to the roots $\left\{-r_{i} \mid i \in J\right\}$, and there exists $w_{0} \in W$ mapping $\left\{r_{i} \mid l \leq i \leq n\right\}$ to $\left\{-r_{i} \mid l \leq i \leq n\right\}$.

The proof of this (which is similar to the proof of 2.4) follows from 1.12 and 1.16 of [18].

A g.g.r. is said to be reducible if its root system can be divided into two nonempty subsets such that all the roots in one are orthogonal to all the roots in the other. In this case the group is a nontrivial direct product of two smaller g.g.r.'s. Conversely if W_{1} and W_{2} are two g.g.r's acting on Euclidean spaces V_{1} and V_{2} respectively, then $W_{1} \times W_{2}$ is a g.g.r. acting on the direct sum of V_{1} and V_{2} (making V_{1} orthogonal to V_{2}). The root system of $W_{1} \times W_{2}$ is the union of the root systems of W_{1} and W_{2}. The irreducible g.g.r.'s have been classified by Coxeter. Using the notation of [5] they are:

Symbol	Lie Algebra	Number of generators	Diagram
[3 n. ${ }^{1}$]	A_{n}	$\mathrm{n} \geq 1$	\cdots
$\left[3^{n-2}, 4\right]$	B_{n} and C_{n}	$\mathrm{n} \geq 2$	-
$\left[3^{n-3,1,1}\right]$	D_{n}	$\mathrm{n} \geq 4$	$\cdots \rightarrow \ldots$
[r]	G_{2} if $\mathrm{r}=6$	2	$\stackrel{\square}{r}$
$[3,5]$	-	3	$\xrightarrow[5]{ }$
[$3,3,5$]	-	4	5
$[3,4,3]$	F_{4}	4	
$\left[3^{2,2,1}\right]$	E_{6}	6	.
$\left[3^{3,2,1}\right]$	E_{7}	7	\cdots
[$3^{4,2,1]}$	E_{8}	8	. . 1

Certain g.g.r.'s are Weyl groups of Lie algebras and for convenience the correspondence is given in the table. The correspondence is relevant since Chevalley groups (which are the topic of chapter 4) are constructed from Lie algebras. Furthermore there is a theorem of Feit and Higman [10] that only those g.g.r.'s which are Weyl groups of Lie algebras and the dihedral group of order 16 (i.e. [8] in the notation of the above table) can be Weyl groups of $B N$ pairs (BN pairs will be defined in chapter 3). The diagram of a g.g.r is obtained from the generators and relations given in theorem 2.1 by placing one node for each generator and joining the ith and jth nodes by a bond of strength $n_{i j}$. Bonds of strength two are omitted, and unmarked bonds are understood to have strength 3 .
2.6 DEFINITION Let W be a g.g.r. with root system Δ. Let the orbits of W on Δ be $\Omega_{1}, \Omega_{2}, \ldots \Omega_{\mathrm{m}}$. For each $w \in W$ let $N_{i}(w)$ be the number of positive roots in Ω_{i}
, negatived by w. The Poincare polynomial of W is defined to be

$$
W(t)=\sum{t_{1}}^{N_{1}(w)} t_{2}^{N_{2}(w)} \ldots . t_{m}^{N_{m}(w)} \quad(w \in W)
$$

(where $\underset{\sim}{t}=\left(t_{1}, t_{2}, \ldots t_{m}\right)$).
For the purpose of computing values taken by these polynomials it is useful to be able to factorize them, and for this the reader is referred to [14]. In fact the Poincare polynomial of a reducible g.g.r. is the product of the Poincare polynomials of the component irreducible g.g.r.'s, and the factors of each of the Poincare polynomials of irreducible g.g.r.'s are listed in [14].

Now suppose that S is any subgroup of the g.g.r.W, and that for each root r there exists $\theta_{\mathrm{r}} \in \mathrm{k}$ (where k is any field) such that
(i) $\theta_{\mathrm{r}}=\theta_{\mathrm{w}(\mathrm{r})}$ for all $r \in \triangle$ and $w \in S$
(ii) $\theta_{\mathrm{r}}=1$ if the reflection s corresponding to r is not in S.

Let $\theta_{\mathrm{w}}=\Pi \theta_{\mathrm{r}}$ where the product is over all positive roots r negatived by W. Let W_{S} be the subgroup of S generated by the reflections corresponding to roots r such that $\theta_{\mathrm{r}} \not \equiv$ l. Then we have the following result, which will be used in chapter 8:
2.7 LEMMA (i) Let $D=\{v \in S \mid v(r)$ is positive for all positive roots r of W_{S}. Then D is a subgroup of S which normalizes $W_{S}, S=D W_{S}$, and $D W_{s}=1$
(ii) $\sum_{w \in S} \theta_{w}=\left[S: W_{S}\right] W_{S}(\underset{\sim}{\theta})$ (i.e. the value taken by $W_{S}(\underset{\sim}{t})$ when t_{i} is replaced by θ_{r}, where r is any root in the corresponding W_{S}-orbit).

Proof (i) From 2.4 it is clear that $S=D W_{S}$ and $D \cap W_{S}=1$. Let $v, w \in D$ and let r be a positive root of W_{s}. Then $w(r)>0$ (since $w \in D)$, and $w(r)$ is a root of W_{S} since $\theta_{w(r)}=\theta_{r} \neq 1$. Hence $v(w(r))>0$, since $v \in D$. It follows that $v w(r)>0$ for all positive roots r of W_{S}, and so $v w \in D$. Hence D is a subgroup. Furthermore, if $v \in D$ and $s \in W_{S}$ is the reflection corresponding to the root r, then Vsv^{-1} is the reflection corresponding to $\mathrm{v}(r)$, and it follows that $\mathrm{vsv}^{-1} \in W_{S}$. Since W_{S} is generated by such reflections s, D normalizes W_{S}.
(ii) Obviously $W_{s}(\underset{\sim}{\theta})=\sum \theta_{w}\left(w \in W_{s}\right)$. Let $v \in D, w \in W_{s}$, and r a positive root of W_{S}. Then $V w(r)$ is negative if and only if $w(r)$ is negative, and so $v w$ and w negative the same positive roots of W_{S}. But $\theta_{r}=1$ for all other positive roots and so $\theta_{\mathrm{vw}}=\theta_{\mathrm{w}}$. The rest is obvious.

From the generators and relations given in theorem 2.1 it follows that a g.g.r. W has a linear character ε such that $\varepsilon(s)=-1$ for each fundamental reflection s. For each subset J of $\{1,2, \ldots n\}$ let W_{J} be as in 2.5 and let δ_{J} be the character of W induced from the principal character (1-character) of W_{J}. 2.8 THEOREM (Solomon [17, Theorem 2])

$$
\varepsilon=\Sigma(-1)^{|J|} \delta_{J}
$$

where the summation is over all subsets J of $\{1,2, \ldots, n\}$.

CHAPTER 3

SPLIT BN PAIRS
3.1 DEFINITION (Tits [20]) A finite group G has a BN pair if there exist subgroups B and N of G which generate $G, H=B \cap N$ is a normal subgroup of N, and $W=N / H$ is generated by involutions $s_{1}, s_{2}, \ldots s_{n}$, and
(l) $s_{i} B w \subseteq B w B \cup B s_{i} w B$
(2) $S_{i} B S_{i} \neq B$
for all $w \in W$ and $1 \leq i \leq n$.
W is called the Weyl group of the $B N$ pair, and n its rank.

The elements $w \in W$ are cosets of H in N. We will choose a fixed but arbitrary set of coset representatives, and following the notation of Richen [16] (w) will be the coset. representative corresponding to $w \in W$. The parentheses are omitted when the choice of coset representative does not alter the object in question (e.g. 'wB' for '(w)B', as in the above definition.
3.2 THE BRUHAT THEOREM (Tits [20]). If G has a BN pair then
(1) $G=U B w B$ (union over all $w \in W$)
(2) If $B w B=B w^{\prime} B$ for $w, w^{\prime} \in W$, then $w=w '$.
(3) If $\ell\left(s_{i} w\right)>\ell(w)$ for $l \leq i \leq n$ and $w \in W$
then $s_{i} B w \subseteq B s_{i} w B$.
3.3 THEOREM (Iwahori and Matsumoto [15]).

If $W=\left\langle s_{1}, S_{2}, \ldots, s_{n}\right\rangle$ is the Weyl group of a finite $B N$ pair then the relations

$$
\begin{aligned}
& \qquad\left(s_{i} s_{j}\right)^{n_{i j}}=l \text { for all } i, j \quad 1 \leq i \leq j \leq n \\
& \text { (where } n_{i j} \text { is the order of } s_{i} s_{j} \text { in } W \text {) are defining }
\end{aligned}
$$

relations for W.
3.4 COROLLARY The Weyl group of a finite BN pair of rank n is isomorphic to a finite group generated by reflections in n-dimensional Euclidean space.

As a consequence of this corollary we may use the notation of chapter 2: Δ is a root system for W and $\pi=\left\{r_{1}, r_{2}, \ldots r_{n}\right\}$ a base for Δ.
3.5 DEFINITION (Richen [16]) G is said to have a split BN pair of rank n at characteristic p (where p is any prime number) if G has a $B N$ pair of rank n, $\mathrm{H}=\mathrm{B} \cap \mathrm{N}=\mathrm{nw}^{-1} \mathrm{BW}$ (w w) is an abelian p^{\prime}-group, and $\mathrm{B}=\mathrm{XH}$ where X is a normal p-subgroup of B.
3.6 THEOREM (Richen [16, theorem 2.12]). For each w $\in W$ (the Weyl group of a split $B N$ pair), let $X^{w}=w^{-1} X w$ and define $\mathrm{X}_{\mathrm{w}}=\mathrm{x} \cap \mathrm{X}^{\mathrm{w}}$ and $\mathrm{X}_{\mathrm{i}}=\mathrm{X}_{\mathrm{w}}$ when $\mathrm{w}=\mathrm{w}_{\mathrm{o}} \mathrm{S}_{\mathrm{i}}$ (w_{o} as defined in 2.5). Then W acts as a permutation group on $\Sigma=\left\{w X_{i} w^{-1} \mid w \in W, \quad l \leq i \leq n\right\}$ under $\mathrm{w}: \mathrm{Z} \mapsto \mathrm{wZw}^{-1}$ (for each $\mathrm{Z} \in \Sigma$)
and $w X_{i} W^{-1} \mapsto \mathrm{w}\left(r_{i}\right)$ is a well defined isomorphism $(W, \Sigma) \cong(W, \Delta)$. (In effect, Σ is a root system for W). 3.7 DEFINITION Let $r \in \triangle$. The root subgroup X_{r} of G is defined by

$$
X_{r}=w X_{i} w^{-1}
$$

where $w \in W$ and $l \leq i \leq n$ such that $r=w\left(r_{i}\right)$.
This definition is justified by 3.6 and the fact that any root is the image of some fundamental root under the action of some $w \in W$.

```
The proofs of all the following facts can also be
```

found in Richen's paper.
3.8 LEMMA Let G be a finite group with a split BN pair. With the notation as above:
(1) H normalizes each root subgroup.
(2) If $W_{1} W_{2} \ldots W_{m}$ is a reduced expression for $w \in W$ and if we let $v_{j}=w_{m} w_{m \circ 1} \ldots w_{j} \quad(j=1,2, \ldots n)$ then
 where $Z_{1}, Z_{2}, \ldots Z_{m}$ are the fundamental root subgroups corresponding to the fundamental reflections $w_{1}, w_{2}, \ldots w_{m}$. Thus we see that

$$
X_{w_{o} w}=X_{a_{m}} X_{v_{m i}\left(a_{m-1}\right)} X_{v_{m-1}\left(a_{m}-2\right)} \ldots X_{v_{2}\left(a_{1}\right)}
$$

where $a_{1}, a_{2}, \ldots a_{m 1}$ are the roots corresponding to $W_{1}, W_{2}, \ldots W_{m}$ (so that $X_{a_{1}}=Z_{1}$, etc.) Notice that $X_{w_{0}} w$ is a product of the root subgroups corresponding to the positive roots negatived by w (see 2.3). In particular $X\left(=X_{w_{0} w_{0}}\right)$ is a product of the root subgroups corresponding to the positive roots.
(3) For all $w \in W$

$$
\mathrm{X}=\mathrm{X}_{\mathrm{w}_{0} \mathrm{w}} \mathrm{X}_{\mathrm{w}} \quad \text { and } \quad \mathrm{X}_{\mathrm{w}_{0} \mathrm{w}} \cap \mathrm{X}_{\mathrm{w}}=\{1\}
$$

In chapter 5 it will be necessary to deal with linear characters of X, and this will involve investigation of the derived group X^{\prime} of X. In the case of the Chevalley groups (see section 4) this is accomplished by means of the Chevalley commutator formula, and since the axioms for a split $B N$ pair have no analogue of this formula it seems necessary to assume another axiom.
3.9 AXIOM The natural map ${\underset{i}{n}=1}_{n}^{=1} X_{i} / X_{i}^{\prime} \rightarrow X / X^{\prime}$ is an isomorphism. All root subgroups X_{r} corresponding to non-
fundamental positive roots r are contained in x^{\prime}.
In chapter 4 theorem A will be proved; that is that with a few exceptions 3.9 is satisfied by the Chevalley groups, including the twisted types.
3.10 LEMMA (Richen [16, definition 3.7]) Let $x \in X_{i}$, $x \neq 1$. Then there exist unique elements $f_{i}(x) \in X_{i}, h_{i}(x) \in H$, and $g_{i}(x) \in X$ with

$$
\left(s_{i}\right) x\left(s_{i}\right)^{-1}=g_{i}(x) h_{i}(x)\left(s_{i}\right) f_{i}(x)
$$

(This differs slightly from Richen's notation: ' $f_{i}(x)$ ' replaces ' $f_{i}\left(x^{-1}\right)^{-1}$ ' etc.) The equations given in 3.10 are called by Richen the structural equations of G.

CHAPTER 4

CHEVALLEY GROUPS

The Chevalley groups are our chief object of interest; for their construction the reader is referred to [2] and the references given there. In this chapter we will prove that 3.9 holds and obtain the structural equations for these groups. The normal types.

Let L be a simple Lie algebra over the complex field, with weyl group W and root system Δ. (\triangle is also a root system for W. The lengths of the roots are specified, and in such a way that a non-integral linear combination of linearly independent roots cannot be a root). An ordering of Δ is fixed in the usual way. If q is a power of a prime p there exists a Chevalley group $G=L(q)$, which has a split $B N$ pair at characteristic p. For each $r \in \Delta$ there is an isomorphism $t \mapsto X_{r}(t)$ from the additive group of $G F(q)$ to the root subgroup X_{r} of G. For linearly independent roots r and s we have the Chevalley commutator formula:
$\left[X_{s}(u), X_{r}(t)\right]=X_{s}(u)^{-1} X_{r}(t)^{-1} X_{s}(u) X_{r}(t)=\prod_{i r}+j s\left(c_{i j} ; r s t^{i} u^{j}\right)$ where the $\mathbf{c}_{\mathbf{i} j ; r}$; are certain integers. The product, over positive integers i, j such that ir+jses is taken in the order of increasing roots.

Let P be the free abelian group generated by the roots, and let $X: P \rightarrow G F(q) * \quad$ (the nonzero elements of GF (q)) be a linear character of P. Then there exists an automorphism of G such that

$$
x_{r}(t) \mapsto x_{r}(X(r) t) \quad \text { for all } r \in \Delta, t \in G F(q)
$$

The subgroup H of G consists of elements $h(X)$ such that
and

$$
\begin{gathered}
h(x) x_{r}(t) h(x)^{-1}=x_{r}(x(r) t) \\
h\left(x_{1}\right) h\left(x_{2}\right)=h\left(x_{1} X_{2}\right)
\end{gathered}
$$

where the product of the characters X_{1}, χ_{2} of P is defined by $\quad X_{1} X_{2}(a)=X_{1}(a) X_{2}(a) \quad(a \in P)$. Indeed there exists a group \hat{G} containing G and a subgroup \hat{H} comprising elements $h(X)$ for all characters $X: P \rightarrow G F(q) *$. If r is any root and s the corresponding reflection, $(s) x_{r}(t)(s)^{-1}=x_{-r}(-t)=x_{r}\left(-t^{-1}\right) h\left(X_{r, t}\right)^{-1}(s) x_{r}\left(-t^{-1}\right)$
(where (s) is n_{r} in the notation of [2]), the character $X_{r, t}: P \rightarrow G F(q) *$ being defined by

$$
\chi_{r, t}(a)=t^{\frac{2(r, a)}{(r r)}}
$$

This gives the structural equations for the non-twisted Chevalley groups, and the next theorem shows that 3.9 is also satisfied, except for $B_{\ell}(2), C_{\ell}(2), F_{4}(2), G_{2}(2)$ and $G_{2}(3)$. 4.1 THEOREM (Howlett [12 lemma 7]) Let Z be the subgroup of X generated by the X_{r} for $r \in \Delta^{+}-\pi$. Then with the above exceptions, $Z=U$, the derived group of U. Proof We use the Chevalley commutator formula and the fact (see [3]) that if $r-s$ is not a root then $c_{1, j ; r, s}= \pm 1$. It is clear that $U^{\prime} \leqslant Z$. Let $r \in \Delta^{+}-\pi$. Then there exist positive roots a and b (different from r) such that r is in the root system spanned by a and b, and $a-b$ is not a root. (i.e. a and b are fundamental roots for the root system they span).
Case 1. If a and b span a root system of type A_{2} then

$$
\left[x_{a}(t), x_{b}(u)\right]=x_{b+a}(c t u) \quad(c= \pm 1, t, u \in G F(q))
$$

and thus $x_{b+a}(t) \in U^{\prime}$ for all $t \in G F(q)$. Therefore $X_{r} \leqslant U^{\prime}$ in this case.

Case 2. If a and b span a root system of type B_{2} then L is of type B_{ℓ}, C_{l} or F_{4}, and $\left[x_{a}(t), x_{b}(u)\right]=x_{b+a}(c t u) x_{b+2 a}\left(d t^{2} u\right) \quad(c, d= \pm 1, t, u \in G F(q))$. Replacing u by $t^{-1} u$ and t by $-t$ if necessary gives

$$
\begin{equation*}
x_{a+b}(u) x_{2 a+b}(t u) \in U^{\prime} \quad(t \neq 0, u \in G F(q)) \tag{1}
\end{equation*}
$$

Therefore $x_{a+b}(u) x_{2 a+b}(t u)\left(x_{a+b}(u) x_{2 a+b}(u)\right)^{-1} \in U^{\prime}$
and so $\quad x_{2 a+b}(u(t-l)) \in U^{\prime}$
So $X_{2 a+b} \leqslant U^{\prime}$ if $G F(q)$ contains an element $t \neq 0,1$. Then $X_{a+b} \leqslant U^{\prime}$ also (from (l) above)

$$
X_{r} \leqslant U^{\prime} \quad \text { if } \quad q \neq 2
$$

Case 3. If a and b span a root system of type G_{2} then $L=G_{2}$ and $\Delta^{+}=\{a, b, a+b, 2 a+b, 3 a+b, 3 a+2 b\}$. Then b and $3 a+b$ span a system of type A_{2}, and so $X_{3 a+2 b} \leqslant U^{\prime}$ by case 1. Now $\left[x_{a}(t), x_{b}(u)\right]=x_{b+a}\left(c_{1} t u\right) x_{b+2 a}\left(c_{2} t^{2} u\right) x_{b+3 a}\left(c_{3} t^{3} u\right) x_{2 b+3 a}\left(c_{4} t^{3} u^{2}\right)$

$$
\begin{equation*}
\left(c_{1}, c_{2}, c_{3}= \pm 1, c_{4}, t, u \in G F(q)\right) \tag{2}
\end{equation*}
$$

$x_{a+b}\left(c_{1} t u\right) x_{2 a+b}\left(c_{2} t^{2} u\right) x_{3 a+b}\left(c_{3} t^{3} u\right) \in U^{\prime}$
$x_{a+b}\left(c_{1} u\right) x_{2 a+b}\left(c_{2} t u\right) x_{3 a+b}\left(c_{3} t^{2} u\right) \in U^{\prime}$
$(t \neq 0, u \in G F(q))$
$x_{2 a+b}\left(c_{2} u\left(t_{1}-t_{2}\right)\right) x_{3 a+b}\left(c_{3} u\left(t_{1}^{2}-t_{2}^{2}\right) \in U^{\prime}\right.$

$$
\begin{equation*}
\left(t_{1}, t_{2} \neq 0, \quad u \in G F(q)\right) \tag{4}
\end{equation*}
$$

Suppose first of all that q is even and greater than 2. Then $\left(t_{1}-t_{2}\right)^{2}=t_{1}^{2}-t_{2}^{2}$, and each element of $G F(q)$ may be written as $t_{1}-t_{2}$ for $t_{1}, t_{2} \neq 0$. Hence

$$
x_{2 a+b}(t u) x_{3 a+b}\left(t^{2} u\right) \in U^{\prime}
$$

and by (3)

$$
\begin{equation*}
X_{a+b} \leqslant U^{\prime} \tag{5}
\end{equation*}
$$

Now (2) gives $\mathrm{x}_{2 \mathrm{a}+\mathrm{b}}\left(\mathrm{t}^{2} \mathrm{u}\right) \mathrm{x}_{3 \mathrm{a}+\mathrm{b}}\left(\mathrm{t}^{3} \mathrm{u}\right) \in \mathrm{U}^{\prime}$, and replacing u by $t^{-2} u$ gives

$$
\begin{array}{cc}
x_{2 a}+b(u) x_{3 a+b}(t u) \in U^{\prime} & (t \neq 0) \\
x_{3 a+b}(u(t-1)) \in U^{\prime} & (t \neq 0) \\
x_{3 a+b} \leqslant U^{\prime} &
\end{array}
$$

since t can be chosen so that $t-1 \neq 0$.
Using (5) and (2), $X_{2 a+b} \leqslant U^{\prime}$ also. Hence $X_{r} \leqslant U^{\prime}$.
Suppose alternatively that q is odd and greater than 3. Then (4) gives (on replacing t_{2} by t and t_{1} by $t+1$)

$$
\begin{gathered}
x_{2 a+b}\left(c_{2} u\right) x_{3 a+b}\left(c_{3} u(2 t+1)\right) \in U^{\prime} \quad(t \neq 0,-1) \\
x_{2 a+b}\left(c_{2} u\right) x_{3 a+b}\left(c_{3} u(2 t+1)\left(x_{2 a+b}\left(c_{2} u\right) x_{3 a+b}\left(3 c_{3} u\right)\right)^{-1} \in U^{\prime}\right. \\
x_{3 a+b}\left(2 c_{3} u(t-1)\right) \in U^{\prime} \\
(t \neq 0,-1) \\
x_{3 a+b} \leqslant U^{\prime}
\end{gathered}
$$

Now (2) and the argument used in case 2 gives X_{a+b} and $X_{2 a+b} \leqslant U^{\prime} \quad$ as well.

So except in the cases $B_{\ell}(2), C_{\ell}(2), F_{4}(2), G_{2}(2)$ and $G_{2}(3), X_{r} \leqslant U^{\prime}$ for all $r \in \Delta^{+}-\pi$. Thus $Z \leqslant U^{\prime}$ and so $Z=U^{\prime}$.

The twisted types.
Let G be one of the groups $A_{\ell}\left(q^{2}\right) \quad(\ell \geq 2)$
$D_{\ell}\left(q^{2}\right)(\ell \geq 4)$ or $E_{6}\left(q^{2}\right)$. Then the diagram corresponding to the root system has a symmetry of order two which gives rise to an automorphism $r \mapsto \bar{r}$ of the root system. The field $G F\left(q^{2}\right)$ also has an automorphism of order two, namely $t \mapsto \bar{t}=t^{q}$. It can be shown that

$$
\sigma: x_{r}(t) \Leftrightarrow x_{r}(\bar{t}) \quad r \in \pi
$$

extends to an automorphism of G. Define X^{1}, Y^{1} to be the sets of elements of $X, Y=W_{0}{ }^{1} X_{w}$ respectively which are invariant under σ, and G^{1} to be the subgroup of G generated by X^{1} and Y^{1}.

Similarly when $G=D_{4}\left(q^{3}\right)$ there is a symmetry of the diagram which has order 3 , and the automorphism $t \mapsto \bar{t}=t^{q}$ of $G F\left(q^{3}\right)$ also has order 3. These yield an automorphism

$$
\sigma: \quad x_{r}(t) \mapsto x_{\bar{r}}(\bar{t})
$$

of G. Define X^{2}, Y^{2} to be the sets of elements of X, Y invariant under σ, and G^{2} to be the subgroup of G generated by X^{2} and Y^{2}. These groups G^{1} and G^{2} are the twisted types which were discovered by Steinberg.

In a similar fashion it is possible to construct twisted types (discovered by Ree and Suzuki) from the groups $B_{2}(q)$ when $q=2^{2 n+1}, F_{4}\left(q_{1}\right)$ when $q=2^{2 n+1}$, and $G_{2}(q)$ when $q=3^{2 n+1}$. Again it is possible (see [2]) to construct a permutation $r \mapsto \bar{r}$ of the root system, such that $\overline{\mathrm{r}}=\mathrm{r}$, and there exists an automorphism of G

$$
\sigma: x_{r}(t) \leftrightarrow x_{\bar{r}}\left(t^{\lambda(\bar{r}) \theta}\right) \quad r \in \pi
$$

where $\lambda(r)=(r, r)$ and $t^{\theta}=t^{2^{n}}$ if $q=2^{2 n+1}$ and $t^{\theta}=t^{3^{n}}$ if $q=3^{2 n+1}$. Using this automorphism σ the group G^{1} is constructed as in the other cases.

The twisted types all have split $B N$ pairs, and in particular the Weyl group W^{1} (or W^{2}) is

$$
\{w \in W \mid w(\bar{r})=\overline{w(r)} \text { for all } r \in \Delta\}
$$

(1) $\quad A_{2 \ell}^{1}\left(q^{2}\right)$

In this case W^{1} is isomorphic to the weyl group of type B_{ℓ}, and the fundamental reflections are $S_{1}=S_{1} S_{2 \ell}, \quad S_{2}=S_{2} S_{2 \ell, 1}, \ldots, S_{\ell-1}=S_{\ell-1} S_{\ell+2}, \quad S_{\ell}=S_{\ell} S_{\ell+1} S_{\ell}$ The root subgroup corresponding to S_{1} is $X_{1}^{1} \cap S_{1} Y^{1} S_{1}$, which is clearly equal to ($\mathrm{X} \cap \mathrm{s}_{1} \mathrm{~s}_{2 \ell} \mathrm{Y}_{1} \mathrm{~s}_{2 \ell}$) $\cap \mathrm{G}^{1}$

$$
\begin{aligned}
& =\left\{x_{a}(t) x_{b}(\bar{t}) \mid t \in G F\left(q^{2}\right)\right\} \\
& \text { where } a=r_{1} \text { and } b=r_{2 \ell}
\end{aligned}
$$

The structural equation is (for $t \neq 0$)

$$
\begin{gathered}
\left(S_{1}\right) x_{a}(t) x_{b}(\bar{t})\left(S_{1}\right)^{-1}=x_{-a}(-t) x_{a b}(-\bar{t}) \\
=x_{a}\left(-t^{-1}\right) x_{\mathrm{a}}\left(-\bar{t}^{-1}\right) h\left(x_{a}, t\right)^{-1} h\left(x_{b}, \bar{t}\right)^{-1}\left(S_{1}\right) x_{a}\left(-t^{-1}\right) x_{a b}\left(-\bar{t}^{-1}\right)
\end{gathered}
$$ where $\left(S_{1}\right)=\left(S_{1}\right)\left(s_{2 \ell}\right)$. The same formulae hold when S_{1} is replaced by any of $S_{2}, S_{3}, \ldots S_{\ell-1}$, and a and b are appropriately chosen. The root subgroup corresponding to S_{ℓ} is $\left(X \cap S_{\ell} Y S_{\ell}\right) \cap G^{1}$

$$
\begin{aligned}
& =X_{a} X_{b} X_{a+b} \cap G^{1} \quad \text { where } a=r_{\ell}, b=r_{\ell+1} \\
& =\left\{x_{a}(t) x_{b}(\bar{t}) x_{a+b}(u) \mid t, u \in G F\left(q^{2}\right), u+\bar{u}=c t \bar{t}\right\}
\end{aligned}
$$

where c may be either +1 or -1 . The structural equation is (for $u \neq 0$)

$$
\left(S_{\ell}\right) x_{a}(t) x_{b}(\bar{t}) x_{a+b}(u)\left(S_{\ell}\right)^{-1}=x_{a} b(-t) x_{-a}(-\bar{t}) x_{-a} a b(u)
$$ $=x_{a}\left(-c t u^{-1}\right) x_{b}\left(-c \bar{t} \bar{u}^{-1}\right) x_{a+b}\left(u^{-1}\right) h(x)\left(S_{l}\right) x_{a}\left(-c t \bar{u}^{-1}\right) x_{b}\left(-c \overline{t u}{ }^{-1}\right)$:

$$
\cdot x_{a+b}\left(u^{-1}\right)
$$

where $h(X)=h\left(X_{a, ~ c u}\right)^{-1} h\left(X_{b, c \bar{u}}\right)^{-1} \quad$ and $\quad\left(S_{\ell}\right)=\left(s_{\ell}\right)\left(s_{\ell+1}\right)\left(s_{\ell}\right)$. Next we show that the derived group Z of X^{1} contains all nonfundamental positive root subgroups T of $A_{2 \ell}^{1}\left(q^{2}\right)$. The group T is either of the form $X_{r} X_{r} \cap X^{1}$ or $X_{r} X_{r} X_{r}+\cap X^{1}$ where r is a root of $A_{2 \ell}$. In either case r can be written as the sum of two positive roots in $A_{2 \ell}$, and
there is a corresponding expression for \bar{r}. The roots of $A_{2 l}$ thus obtained generate a subsystem of type $A_{2} \times A_{2}$ or A_{4}, with fundamental roots a, b, c and d.

For $A_{2} \times A_{2}$ we have $\left[x_{a}(t) x_{d}(\bar{t}), x_{b}(1) x_{c}(l)\right]$

$$
\begin{aligned}
& =\left[x_{a}(t), x_{b}(1)\right]\left[x_{d}(\bar{t}), x_{c}(1)\right] \\
& =x_{a+b}(\alpha t) x_{c+d}(\alpha \bar{t})
\end{aligned}
$$

and since $a+b=r$ it follows that in this case T is contained in Z.

For $A_{4}, \quad\left[x_{a}(t) x_{d}(\bar{t}), x_{b}(u) x_{c}(\bar{u}) x_{b+c}(v)\right] \quad(v+\bar{v}= \pm u \bar{u})$
$=x_{d}(t)^{-1}\left[x_{a}(t), x_{c}(\bar{u}) x_{b}(u) x_{b+c}(-\bar{v})\right] x_{d}(\bar{t})\left[x_{d}(\bar{t}), x_{b}(u) x_{c}(\bar{u})\right.$. . $\left.\mathrm{X}_{\mathrm{b}+\mathrm{c}}(\mathrm{v})\right]$
$=x_{d}(\bar{t})^{-1}\left[x_{a}(t), x_{b+c}(-\bar{v})\right]\left[x_{a}(t), x_{b}(u)\right] x_{d}(\bar{t})\left[x_{d}(\bar{t}), x_{b+c}(v)\right]$. - $\left[x_{d}(\bar{t}), x_{c}(\bar{u})\right]$.

Call this formula (A). Putting $u=0$ and using the Chevalley commutator formula we see that Z contains
$x_{a+b+c}(t \bar{v}) x_{b+c+d}(\bar{t} v) x_{a+b+c+d}(\pm t \bar{t} v)$ where $v+\bar{v}=0$. This same formula with v replaced by $t \overline{t v}$ and t by l gives that Z contains $x_{a+b+c}(t \bar{v}-t \bar{t} \bar{v}) x_{b+c+d}(\bar{t} v-t \bar{t} v)$. Therefore $T \leqslant z$ if $r=a+b+c$. The other possibility is $r=a+b$, and for this case set $u=1$ in (A) above. Combining this with $\left[x_{a}(t), x_{b+c}(-\bar{v})\right]\left[x_{d}(\bar{t}), x_{b+c}(v)\right] \in Z \quad$ (which follows from what we have just proved) we get

$$
x_{a+b+c+d}(\pm \bar{t} \bar{v}) x_{a}+b(t) x_{c+d}(\bar{t}) \in z \quad(v+\bar{v}= \pm 1)
$$

and so $T \leqslant Z$ in this case too.

It can be proved readily that if $T=X_{a} X_{b} X_{a+b} \cap G^{1}$ is the root subgroup corresponding to S_{ℓ} then the derived group of T is $X_{a+b} \cap G^{1}$. It is now clear that $Z=X^{\prime} \cap X^{1}$ and that $A_{2 \ell}^{1}\left(q^{2}\right)$ satisfies 3.9 .
(2) $A_{2 l, 1}^{1}\left(q^{2}\right), D_{\ell}^{1}\left(q^{2}\right), E_{6}^{1}\left(q^{2}\right)$

$A_{2} \ell=1$
D_{ℓ} E_{6}

In these cases W is isomorphic to the Weyl groups of types $B_{l}, B_{\ell} .1$, and F_{4} respectively. The fundamental reflections are:
(for $A_{2 \ell, 1}$) $S_{1}=S_{1} S_{2 \ell-1,} S_{2}=S_{2} S_{2 \ell-2}, \ldots, S_{\ell-1}=S_{\ell-1} S_{\ell+1}, S_{\ell}=S_{\ell}$
(for D_{ℓ}) $\quad S_{1}=s_{1}, \quad S_{2}=S_{2}, \ldots S_{\ell, 2}=S_{\ell-2}, S_{\ell-1}=S_{\ell-1} S_{\ell}$
(for E_{6}) $\quad S_{1}=S_{1} S_{5}, \quad S_{2}=S_{2} S_{4}, \quad S_{3}=S_{3}, \quad S_{4}=S_{6}$
The root subgroups are either of the form $X_{r} X_{\bar{r}} \cap G^{1}$ or $X_{r} \cap G^{1}$ if $r=\bar{r}$. For those of the latter kind the structural equations are as for the Chevalley groups of normal type, for the former kind the structural equations are the same as for the root subgroups of $A_{2 \ell}^{1}\left(q^{2}\right)$ which are of the same form.

To show that Z (derived group of X^{1}) contains all positive nonfundamental root subgroups we proceed in the same manner as for $A_{2 l}^{1}\left(q^{2}\right)$. In this case we obtain a subsystem which may be of type $A_{2}, A_{2} \times A_{2}$ or A_{3}. $A_{2} \times A_{2}$ is treated exactly as before. The other possibilities are

where $\mathrm{a}=\overline{\mathrm{a}}$ and $\mathrm{b}=\overline{\mathrm{b}}$
where $c=\bar{a}$ and $b=\bar{b}$
For A_{2} we have $x_{a+b}(\pm t)=\left[x_{a}(t), x_{b}(1)\right] \in Z \quad$ (where $t=\bar{t}$).
For $A_{3}, \quad\left[x_{a}(t) x_{c}(\bar{t}), \quad x_{b}(u)\right]$ ($u=\bar{u}$)
$=x_{c}(\bar{t})^{-1}\left[x_{a}(t), x_{b}(u)\right] x_{c}(\bar{t})\left[x_{c}(\bar{t}), x_{b}(u)\right]$
and so

$$
\begin{equation*}
x_{a+b}(t u) x_{b+c}(\overline{t u}) x_{a+b+c}(\pm t \bar{t} u) \in Z \tag{B}
\end{equation*}
$$

Replacing u by $t \overline{t u}$ and t by l in (B) gives
$x_{a+b}(t \bar{t} u) x_{b+c}(t \bar{t} u) x_{a+b+c}(\pm t \bar{t} u) \in z$
Hence

$$
x_{a+b}(t \bar{t} u-t u) x_{b+c}(t \bar{t} u-\bar{t} u) \in z .
$$

It follows that $x_{a+b}(v) x_{b+c}(\bar{v}) \in Z$ for all $v \in \operatorname{GF}\left(q^{2}\right)$ (since any element $(\neq 1)$ of $G F\left(q^{2}\right)$ can be written in the form $t \bar{E} u-t u)$ and hence $x_{a+b+c}(w) \in Z$ if $w=\bar{w}$ (using (B) again). Thus 3.9 is also satisfied for these groups.
(3) $D_{4}^{2}\left(q^{3}\right)$

In this case W^{2} is isomorphic to the Weyl group of type G_{2}. The fundamental reflections are $S_{1}=S_{1}$ and $S_{2}=S_{2} S_{3} S_{4}$. The root subgroup corresponding to S_{1} is $X_{a} \cap G^{2}=\left\{X_{a}(t) \mid t=\bar{t}\right\}$ where $a=r_{1}$. The root subgroup corresponding to S_{2} is $X_{b} X_{c} X_{d} \cap G^{2}$

$$
=\left\{x_{b}(t) x_{c}(\bar{t}) x_{d}(\overline{\bar{t}}) \mid t \in G F\left(q^{3}\right)\right\}
$$

where $b=r_{2}, c=r_{3}, d=r_{4}$. The structural equations are obvious.

Let Z be the derived group of x^{2}. Let $t \in G F\left(q^{3}\right)$ such that $\bar{t}=t$. Then z contains

$$
\left[x_{a}(t), x_{a}+b+c+d(l)\right]=x_{2} a+b+c+d(\pm t),
$$

showing that one of the nonfundamental root subgroups is contained in Z. For the others note that by the Chevalley commutator formula, $\quad\left[x_{a}(u), x_{b}(t) x_{c}(\bar{t}) x_{d}(\overline{\bar{t}})\right]$ $=x_{a+d}(\alpha \overline{\bar{t}} u) x_{a+c}(\alpha \bar{t} u) x_{a+b}(\alpha t u) x_{a+c+d}(\beta \overline{\bar{t}} \bar{t} u) x_{a+b+d}(\beta \overline{\bar{t}} t u)$. $. x_{a}+b+c(\beta \bar{t} t u) x_{a}+b+c+d(\gamma t \bar{t} \overline{\bar{t}} u)$ where $\alpha, \beta, \gamma= \pm 1$, and $u=\bar{u}$. Call this formula (C). In (C) replace t by tu and u by 1. The result, together with (C) itself, gives formula (D) :
$x_{a}+c+d\left(\overline{\bar{t}} \bar{t}\left(u^{2}-u\right)\right) x_{a+b+d}\left(\overline{\bar{t}} t\left(u^{2}-u\right)\right) x_{a+b+c}\left(\bar{t} t\left(u^{2}-u\right)\right.$. $x_{a}+b+c+d\left(\pm t \bar{t} \overline{\bar{t}}\left(u^{3}-u\right)\right) \in Z$.

Similarly we can now replace u by $-u+l$ and prove that Z contains $x_{a+b+c+d}\left(t \overline{\bar{t}}\left(2 u^{3}-3 u^{2}+u\right)\right)$. Thus clearly Z contains all elements of the form $x_{a+b+c+d}(v)$ where $v=\bar{v}$, and substituting back in (D) and (C) it follows that Z also contains
$x_{a+c}+d(t) x_{a+b+d}(\bar{t}) x_{a+b+c}(\overline{\bar{t}})$ and $x_{a+b}(t) x_{a+c}(\bar{t}) x_{a+d}(\overline{\bar{t}})$ for $a l l$ $t \in G F\left(q^{3}\right)$. And hence $D_{4}^{2}\left(q^{3}\right)$ satisfies 3.9.

$q=2^{2 n+1}$
$\mathrm{B}_{2} \quad \lambda\left(\mathrm{r}_{1}\right)=1, \quad \lambda\left(\mathrm{r}_{2}\right)=2$
$\mathrm{F}_{4} \quad \lambda\left(\mathrm{r}_{1}\right)=\lambda\left(\mathrm{r}_{2}\right)=1, \quad \lambda\left(\mathrm{r}_{3}\right)=\lambda\left(\mathrm{r}_{4}\right)=2$

For $B_{2} W^{1}$ has order 2 , generated by $\left(s_{1} s_{2}\right)^{2}$.
For F_{4} it is dihedral of order 16 , the fundamental reflections being $S_{1}=s_{1} S_{4}$ and $S_{2}=\left(s_{2} S_{3}\right)^{2}$. Define elements $\alpha_{i}(t), \beta_{i}(t), \gamma_{i}(t)$ in $F_{4}^{1}(q) \quad(i=1,2,3,4, t \in G F(q))$ by

$$
\alpha_{\mathrm{i}}(\mathrm{t})=\mathrm{x}_{\mathrm{a}}\left(\mathrm{t}^{\theta}\right) \mathrm{x}_{\mathrm{b}}(\mathrm{t}) \mathrm{x}_{\mathrm{a}+\mathrm{b}}\left(\mathrm{t}^{\theta+1}\right)
$$

$$
\beta_{i}(t)=x_{a+b}\left(t^{\theta}\right) x_{2 a+b}(t)
$$

$$
\gamma_{i}(t)=x_{c}\left(t^{\theta}\right) x_{d}(t)
$$

for the following values of a, b, c and d :

i	a	b	c	d
1	r_{2}	r_{3}	r_{1}	r_{4}
2	$r_{1}+r_{2}$	$r_{3}+r_{4}$	$r_{1}+2 r_{2}+r_{3}$	$2 r_{2}+2 r_{3}+r_{4}$
3	$r_{1}+r_{2}+r_{3}$	$2 r_{2}+r_{3}+r_{4}$	$r_{1}+2 r_{2}+r_{3}+r_{4}$	$2 r_{1}+2 r_{2}+2 r_{3}+r_{4}$
4	$r_{2}+r_{3}+r_{4}$	$2 r_{1}+2 r_{2}+r_{3}$	$r_{1}+2 r_{2}+2 r_{3}+r_{4}$	$2 r_{1}+4 r_{2}+2 r_{3}+r_{4}$

The root subgroup corresponding to S_{1} is $\left\{\gamma_{1}(t) \mid t \in G F(q)\right\}$, and the structural equation is obvious in this case. The root subgroup corresponding to S_{2} is $\left\{\alpha_{1}(t) \beta_{1}(u) \mid t, u \in G F(q)\right\}$, and the root subgroup in $B_{2}^{\frac{1}{2}}(\mathrm{q})$ is of this form also. PROPOSITION Let $t, u \in G F(q)$ and let $v=t^{2 \theta+2}+u^{2 \theta}+t u$. Then $v \neq 0$ if either $t \neq 0$ or $u \neq 0$, and each nonzero v occurs for exactly $q+1$ pairs (t, u).

Proof Define $f(u)=u^{2 \theta}+u+1$. Comparing $f(u)$ and $f(u)^{\theta}$ and using the fact that $2 \theta^{2}=1$ it is clear that f has no zeros in GF (q). Now if $\mathrm{t} \neq 0$

$$
t^{2 \theta+2}+u^{2 \theta}+t u=t^{2 \theta+2} f\left(t^{-1 \circ 2 \theta} u\right)
$$

which is nonzero and takes all nonzero values with equal frequency since $t^{2 \theta+2}$ takes all nonzero values as t varies. Similarly if $t=0$,

$$
t^{2 \theta+2}+u^{2 \theta}+t u=u^{2 \theta}
$$

and all nonzero values occur once.
We can now give the structural equation for the second kind of root subgroup. If $t \neq 0$ or $u \neq 0$ and if v is as defined in the proposition,
$(S) \alpha(t) \beta(u)(S)^{-1}=\alpha\left(t^{1+2 \theta} v^{-1}+u v^{-1}\right) \beta\left(u v^{-2 \theta}\right) h(X)(S) \alpha\left(u v^{-1}\right) \beta\left(t v^{-1}\right)$
where $X(a)=v^{1-2 \theta}, X(b)=v^{2 \theta-2}$ and S is the reflection. (In $B_{2}^{\frac{1}{2}}(\mathrm{q}),(\mathrm{S})=\left[\left(\mathrm{s}_{1}\right)\left(\mathrm{s}_{2}\right)\right]^{2} ;$ similarly in the other cases.)

Note that $B \frac{1}{2}(q)$ trivially satisfies 3.9 since there is only one positive root subgroup. If $q \neq 2, F_{4}^{1}(q)$ also satisfies 3.9 ; we must prove that the derived group Z of X^{1} contains the elements $\alpha_{i}(t), \beta_{i}(t), \gamma_{i}(t)$ ($i=2,3$ and 4), since these generate the non-fundamental positive root subgroups. The commutator relations that we make use of follow readily from the Chevalley commutator formula. Firstly, for each i,

$$
\left[\alpha_{i}\left(t^{-1}\right), \alpha_{i}\left(t^{2 \theta}\right)\right]=\beta_{i}(t+1) \quad(t \neq 0)
$$

and since $q>2$ it follows that $\beta_{i}(t) \in Z$ for all t.

$$
\begin{array}{ll}
{\left[\alpha_{3}(t),\right.} & \left.\alpha_{1}(1)\right]=\gamma_{2}(t) \\
{\left[\alpha_{4}(t),\right.} & \left.\alpha_{2}(1)\right]=\gamma_{3}(t) \\
{\left[\alpha_{4}(t),\right.} & \left.\alpha_{3}(1)\right]=\gamma_{4}(t)
\end{array}
$$

and so $\gamma_{i}(t) \in Z$ for $i=2,3$ and 4 .

$$
\left[\alpha_{2}(t), \alpha_{1}(u)\right]=\gamma_{2}\left(t u^{2 \theta+1}\right) \gamma_{3}\left(t^{2 \theta+1} u\right) \alpha_{4}\left(t^{2 \theta} u\right) \alpha_{3}\left(t u^{2 \theta}\right)
$$

$$
\left[\alpha_{1}(t), \gamma_{1}(u)\right]=\alpha_{2}(t u) \alpha_{4}\left(t^{2 \theta+1} u^{2 \theta}\right) \beta_{4}\left(t^{4 \theta+3} u^{2 \theta+2}\right) \gamma_{2}\left(t^{2 \theta+2} u\right)
$$ - $\beta_{3}\left(t^{4 \theta+3} u^{2 \theta+1}\right)$

and hence

$$
\begin{aligned}
& \alpha_{4}\left(t^{2 \theta} u\right) \alpha_{3}\left(t u^{2 \theta}\right) \in Z \\
& \alpha_{2}(t u) \alpha_{4}\left(t^{2 \theta+1} u^{2 \theta}\right) \in Z
\end{aligned}
$$

The latter of these two yields
and

$$
\begin{aligned}
& \alpha_{2}(1) \alpha_{4}(I) \in Z \\
& \alpha_{2}(1) \alpha_{4}(t) \in Z
\end{aligned}
$$

in the cases $t=u=1$ and $u=t^{-1}$.
Hence $\alpha_{4}(t+1) \in Z$ if $t \neq 0$. It follows that $\alpha_{4}(t) \in Z$ for all t, and accordingly that $\alpha_{2}(t) \in Z$ and $\alpha_{3}(t) \in Z$ also.

$$
\begin{equation*}
G \frac{1}{2}(q) \quad q=3^{2 n+1} \tag{5}
\end{equation*}
$$

$$
\xrightarrow[s_{1}]{s_{2}} \quad \lambda\left(r_{1}\right)=1, \quad \lambda\left(r_{2}\right)=3 .
$$

In this case W^{1} has order 2, generated by $\left(S_{1} S_{2}\right)^{3}$. Again 3.9 is trivially satisfied. The root subgroup is

$$
\begin{aligned}
& \{\alpha(t) \beta(u) \gamma(v) \mid t, u, v \in G F(q)\}, \quad \text { where } \\
& \alpha(t)=x_{a}\left(t^{\theta}\right) x_{b}(t) x_{a+b}\left(t^{\theta+1}\right) x_{2 a+b}\left(t^{2 \theta+1}\right) \\
& \beta(t)=x_{a+b}\left(t^{\theta}\right) x_{3 a+b}(t) \\
& \gamma(t)=x_{2 a+b}\left(t^{\theta}\right) x_{3 a+2 b}(t)
\end{aligned}
$$

$$
\left(a=r_{1}, b=r_{2}\right) .
$$

The structural equation is
(S)
$(u) \gamma(v)(S)^{-1}=\alpha\left(x_{1} d^{-1}\right) \beta\left(x_{2} d^{-3 \theta}\right) \gamma\left(x_{3} d^{-3 \theta-1}\right)(S) h(X)$.

$$
\alpha\left(x_{4} d^{-1}\right) \beta\left(x_{5} d^{-1}\right) \gamma\left(x_{6} d^{-2}\right)
$$

where $X(a)=d^{2 \theta-1}, X(b)=d^{3 \theta-2},(S)=\left[\left(s_{1}\right)\left(s_{2}\right)\right]^{3}$, and

$$
\begin{aligned}
& d=u^{3 \theta+1}+t v u+t^{3 \theta+3} u-t^{6 \theta+4}-t v^{3 \theta}+v^{2} \\
& x_{1}=t^{3 \theta} u^{3 \theta}-t^{6 \theta+3}-t^{3 \theta+1} v+t^{3 \theta+2} u-v u+v^{3 \theta} \\
& x_{2}=-u^{3 \theta+2}+t^{2} u^{3}+v^{2} u^{3 \theta}-t^{6 \theta+4} u^{3 \theta}-t^{6 \theta+3} v-t v^{3 \theta} u^{3 \theta}-v^{3 \theta+1}-t v u^{2}- \\
& t^{3 \theta+3} u^{2}
\end{aligned}
$$

$$
x_{3}=u x_{1} x_{2}+(t u-v) d^{3 \theta}
$$

$$
x_{4}=t^{6 \theta+3}+v^{3 \theta}+t u^{2}+v u
$$

$$
x_{5}=-u^{3 \theta}-t v-t^{3 \theta+3}
$$

$$
x_{6}=-t^{9 \theta+6}-t^{6 \theta+5} u-t^{6 \theta+3} u^{\theta}+v u^{3 \theta+1}-v^{3}-v^{3 \theta} u^{\theta}-t v^{2} u+t^{3 \theta+3} v u-t^{2} v^{3 \theta} u-
$$

$$
t^{3 \theta+3} v^{3 \theta}
$$

Note that the transformation

$$
\begin{aligned}
& t \rightarrow t \\
& u \rightarrow u+t^{3 \theta+1} \\
& v \rightarrow v+u t+t^{3 \theta+2}
\end{aligned}
$$

transforms d to $u^{3 \theta+1}-v^{3 \theta} t+v^{2}-t^{2} u^{2}-t^{6 \theta+4}$, which is zero only when $t=u=v=0$ (see [19] p.186). It is not true that each nonzero value of d occurs for the same number of triples (t, u, v). For example if $q=3$ then d takes the value -1 for 16 triples (t,u,v) and +1 for 10 triples.

CHAPTER 5

THE CHARACTERS DISCOVERED BY DAGGER

Let k be a field of characteristic zero which contains a pth root of unity, and let G be a group with a split $B N$ pair of rank n at characteristic p. Let μ_{i} be a nontrivial linear character of $X_{i}^{s_{i}}\left(=X_{r_{i}}\right)$ for $i=1,2, \ldots n$. Since we assume 3.9 it follows that

$$
X^{w_{J}} /\left(X^{w_{J}}\right)^{\prime} \cong \prod_{i=1}^{n} X_{i}^{w_{J}} /\left(X_{i}^{w_{J}}\right)^{\prime}
$$

where w_{J} is as defined in 2.5. (J is any subset of $\{1,2, \ldots n\})$ Now as a consequence of 3.6 the subgroups $\left\{X_{i}^{w} \mid i \in J\right\}$ equal the subgroups $\left\{X_{._{i}} \mid i \in J\right\}$ in some order (see 2.5); so we may define a linear character μ_{J} of X^{w} which coincides with μ_{i} on $X_{o_{i}}$ if iEJ and is trivial on $X_{i}^{w_{J}}$ for i\&J. Indeed μ_{J} is trivial on all root subgroups $X_{w_{j}}(r)$ for r positive and $r \notin\left\{r_{i} \mid i \in J\right\}$ since $X_{w_{j}}(r)=X_{r} w_{j}$ is contained in the derived group of X^{w} if r is not fundamental. In the case $J=\{1,2, \ldots n\}$ we write simply " μ " for " μ_{J} ".

Let us adopt the following notation: If A is a subgroup of G and α a linear character of A, let
and

$$
\begin{align*}
\bar{A} & =|A|^{-1} \sum x \\
A_{\alpha} & =|A|^{-1} \sum \alpha\left(x^{-1}\right) x
\end{align*}
$$

Throughout the rest of this thesis λ will be a linear character of B with kernel containing $X . \quad G_{J}$ will be the parabolic subgroup $U B W B\left(w \in W_{J}\right)$ corresponding to the subset J of $\{1,2, \ldots, n\}$.
5.1 LEMMA (i) The induced characters $\lambda^{G_{J}}$ and $\mu_{J}^{G_{j}}$ have a unique common component, and it occurs with multiplicity one in each.
(ii) $\left(\lambda^{G}, \mu_{J}^{G}\right)=\left|W: W_{J}\right|$

Proof Note first that

$$
\begin{aligned}
G_{\mathrm{J}}=w_{\mathrm{J}}^{-1} \mathrm{G}_{\mathrm{J}} & =\mathrm{w}_{\mathrm{J}}^{-1}(U X w B) & \text { (union over } \left.w \in W_{J}\right) \\
& =U X^{w_{J}} w B & \left(w \in W_{J}\right)
\end{aligned}
$$

and similarly $G=U X^{W_{J}} \mathrm{WB}$
For $w \in W$ let $\lambda^{w^{-1}}$ be the character of ${W B w^{-1}}^{\text {defined by }}$ $\lambda^{w^{-1}}(\mathrm{~g})=\lambda\left(\mathrm{w}^{-1} \mathrm{gw}\right)$. The restriction of this to $\mathrm{X}^{\mathrm{w} J} \mathrm{n}_{\mathrm{wB}} \mathrm{w}^{-1}$ is the l-character, since λ is trivial on elements of p-power order. Now the restriction of μ_{J} to $X^{w_{J}} n_{w B w^{-1}}$ j.s the l-character if and only if $W^{-1}\left(r_{i}\right)>0$ for all i $\in J$. For by 3.6 and 3.8 it is clear that $X^{w J} n_{w B w^{-1}}$ is a product of root subgroups, and $X_{._{i}} \subseteq \mathrm{wBw}^{-1}$ if and only if $W^{-1} X_{o_{i}} W \subseteq B$; i.e. $-W^{-1}\left(r_{i}\right)>0$. It follows from 2.5 that there is exactly one w in each $W_{J} \backslash W$ coset such that μ_{J} restricted to $\mathrm{X}^{\mathrm{w}_{J}} \mathrm{nwBw}^{-1}$ is the l-character, and the inner product of $\lambda^{w^{-1}}$ and μ_{j} over this subgroup is 1 for these w and 0 for others. So, by a well known theorem of Mackey,

$$
\begin{aligned}
&\left(\mu_{J}^{G_{J}}, \lambda^{G_{J}}\right)=\Sigma\left(\mu_{J}, \lambda^{w^{0^{1}}}\right) \quad\left(w \in W_{J}\right) \\
&=1 \text { (since only the term for } w=1 \\
& \text { contributes) }
\end{aligned}
$$

and $\left(\mu_{J}^{G}, \lambda^{G}\right)=\Sigma\left(\mu_{J}, \lambda^{w^{-1}}\right)$

$$
=\left|W: W_{J}\right|
$$

5.2 LEMMA $B_{\lambda} X_{\mu_{j}}^{W_{j}}$ is a nonzero multiple of a primitive idempotent in kG_{J}.
Proof By the proof of 5.1 the only double coset $x^{w_{J}} w B$ for which μ_{J} and $\lambda^{w^{-1}}$ agree corresponds to the case $w=1$. Hence lemma 1 of [l] applies. (See also lemma 2 of [1] and its proof).

The irreducible character of G_{J} corresponding to this idempotent (i.e. the common component of $\lambda^{\mathrm{G}_{\mathrm{J}}}$ and $\mu_{J}^{G_{J}}$) will be called χ_{J} or $\chi_{J}\left(\lambda, \mu_{1}, \mu_{2}, \ldots \mu_{n}\right)$. In the case $J=\{1,2, \ldots n\}$ we obtain an irreducible character of G (and we will write " X " for " X_{J} "). These characters, corresponding to the various λ, were discovered by Dagger [9].

For each $w \in W$ we define a linear character $\lambda^{\mathbf{w}}$ of B whose kernel contains X by setting

$$
\lambda^{w}(h)=\lambda\left(w h w^{-1}\right) \quad \text { for all } h \in H
$$

Using $\lambda^{\mathbf{w}}$ in place of λ in the above construction yields a character of G_{J} which will be called $X_{J w}$. Theorem B follows directly from 5.1.

CHAPTER 6

THE HECKE ALGEBRA $\overline{\mathrm{X} k} \mathrm{G} \overline{\mathrm{X}}$

Continuing with the same notation, define (for each $w \in W$)

$$
q_{w}=\left|x: x_{w}\right| \quad \text { (the index of } X_{w} \text { in } x \text {) }
$$

In particular for $i=1,2, \ldots n$ define

$$
q_{i}=q_{s_{i}}=\left|X: X_{s_{i}}\right|=\left|X_{i}\right| \quad \text { (see 3.8) }
$$

For each w $\in W$ define also

$$
\begin{aligned}
& \alpha_{w}=q_{w} \bar{X}(w) \bar{x} \\
& \beta_{w}=q_{w} B \lambda(w) B_{\lambda} \\
& \hat{\alpha}_{w}=q_{w} \bar{X}(w)^{-1} \bar{X} \\
& \hat{\beta}_{w}=q_{w} B_{\lambda}(w)^{-1} B_{\lambda}
\end{aligned}
$$

Let $S=\left\{w \in W \mid \lambda^{w}=\lambda\right\}$.
6.1 LEMMA The set $\left\{\alpha_{w} h \mid w \in W, h \in H\right\}$ is a basis for $\bar{X} k G \bar{X}$, and the set $\left\{\beta_{w} \mid w \in S\right\}$ is a basis for $B_{\lambda} k G B_{\lambda}$. $\left\{\beta_{w} \mid w \in W_{J} \cap S\right\}$ is a basis for $B_{\lambda} k G_{J} B_{\lambda}$.

Proof This kind of result is well known (see theorem 2.2 of [7] for example). Since H normalizes X

$$
\overline{\mathrm{X}} \mathrm{~h}=\mathrm{h} \overline{\mathrm{X}} \quad \text { for all } \mathrm{h} \in \mathrm{H},
$$

and so the elements $\alpha_{w} h$ are indeed in $\bar{x} k G \bar{X}$. The cosets $\bar{X}(w) h \bar{X}(w \in W, h \in H)$ are all distinct, as an easy consequence of the split $B N$ pair axioms and the Bruhat theorem.
6.2 PROPOSITION For $v, w \in W$,

$$
B_{\lambda^{v}} \alpha_{w}=\alpha_{w} B_{\lambda^{v} w}
$$

If $u \in W$ such that $\lambda^{u} \neq \lambda^{v w}$ then

$$
B_{\lambda^{v}} \alpha_{w} B_{\lambda^{u}}=0
$$

(In particular $\beta_{w}=0$ for $w \notin S$)
The proof of 6.2 is straightforward and is omitted.
Our interest in Hecke algebras is motivated by theorems such as the next two:
6.3 THEOREM If e and f are idempotents in $k G$ affording characters φ and ψ respectively then
$\operatorname{Hom}_{k G}(k G e, k G f) \cong e k G f$
and the dimension of these vector spaces is

$$
(\varphi, \psi)=|G|^{-1} \Sigma \varphi\left(x^{-1}\right) \psi(x)
$$

This theorem is well known and holds for an arbitrary group G, although in this thesis it will only be applied to groups with $B N$ pairs. Theorem 6.4 is also a general result, adapted to apply to the parabolic subgroups G_{J}, where J is an arbitrary subset of $\{1,2, \ldots n\}$.
6.4 THEOREM (Curtis and Fossum [7, Cor.1.2 and 2.5]). If ψ is an irreducible character of $\mathrm{kG}_{\mathbf{J}}$ such that $\left(\psi, \lambda^{G_{J}}\right)=1$ (i.e. ψ occurs with multiplicity l in the induced character $\lambda^{G_{J}}$), then the restriction of ψ to $B_{\lambda} k G_{J} B_{\lambda}$ is a homomorphism

$$
\theta: \mathrm{B}_{\lambda} \mathrm{k} \mathrm{G}_{\mathrm{J}} \mathrm{~B}_{\lambda} \rightarrow \mathrm{k} .
$$

Conversely every such homomorphism θ is the restriction of a unique irreducible character ψ of kG_{J} such that $\left(\psi, \lambda^{\mathrm{G}_{\mathrm{J}}}\right)=1$. Under these circumstances,

$$
e=\psi(I)\left[G_{J}: B\right]^{-1} \Sigma q_{w}^{-1} \theta\left(\hat{\beta}_{w}\right) \beta_{w} \quad\left(w \in W_{J} \cap S\right)
$$

is a primitive idempotent in kG_{J} such that kGe affords ψ. It is the only such idempotent in $B_{\lambda} k G_{J} B_{\lambda}$. Moreover,

$$
1=\theta(e)=\psi(1)\left[G_{J}: B\right]^{-1} \sum q_{w}^{-1} \theta\left(\hat{\beta}_{w}\right) \theta\left(\beta_{w}\right) \quad\left(w \in W_{J} \cap S\right)
$$

and for any $\beta \in B_{\lambda} k G_{J} B_{\lambda}$,

$$
\beta e=\theta(\beta) e=e \beta .
$$

Proof $\quad \beta e=\theta(\beta)$ for all $\beta \in B_{\lambda} k G_{J} B_{\lambda}$ is a consequence of the fact that $B_{\lambda} k G_{J} B_{\lambda}$ is one-dimensional (by 6.3). The only other point not proved explicitly by Curtis
and Fossum is uniqueness of e. But if $f \in E_{\lambda} k G_{J} B_{\lambda}$ is another primitive idempotent affording ψ then

$$
f=\theta(e) f=e f=\theta(f) e
$$

and so $e=f$.
6.5 LEMMA If $w \in W, l \leq i \leq n$ and $\ell\left(s_{i} w\right)=\ell(w)+l$ then $q_{s_{i w}}=q_{i} q_{w}$ and there exists $h \in H$ with $\alpha_{s_{i} w}=\alpha_{s_{i}} \alpha_{w} h$. If $w_{1} w_{2} \ldots w_{m}$ is a reduced expression for w (as in 2.3) then there exists $h \in H$ such that

$$
\alpha_{w}=\alpha_{w_{1}} \alpha_{w_{2}} \ldots \alpha_{w_{m}} h
$$

Proof By 3.8 (3) and (2)

$$
\begin{aligned}
\mathrm{q}_{\mathrm{s}_{\mathrm{i}}} & =\left|\mathrm{X}_{\mathrm{w}_{\mathrm{o}} \mathrm{siw}}\right| \\
& =\left|\mathrm{X}_{\mathrm{w}_{\mathrm{o}} \mathrm{w}_{\mathrm{w}^{-1}\left(\mathrm{r}_{\mathrm{i}}\right)}}\right|
\end{aligned}
$$

Now since $\ell\left(s_{i} w\right)=\ell(w)+1, w^{-1}\left(r_{i}\right)$ is a positive root, and it is negatived by w_{o} w. So by 3.8(2),

$$
X_{w^{-1}\left(r_{i}\right)} \leq X_{w_{o}\left(w_{o} w\right)}=X_{w} .
$$

Now 3.8 (3) gives

$$
\begin{aligned}
q_{s_{i} w} & =\left|x_{w_{o} w}\right|\left|x_{i}^{w}\right| \\
& =q_{w} q_{s_{i}} .
\end{aligned}
$$

Let h be an arbitrary element of H. Then

$$
\begin{aligned}
\alpha_{s_{i}} \alpha_{w} h & =q_{s_{i}}\left(\bar{X}\left(s_{i}\right) \bar{X}\right) q_{w}(\bar{X}(w) \bar{X}) h \\
& =q_{s_{i} w}\left(\bar{X}\left(s_{i}\right) \bar{X}_{s_{i}} \bar{X}_{i}(w) \bar{X}\right) h \quad(\text { by } 3.8(3)) .
\end{aligned}
$$

But s_{i} normalizes $X_{s_{i}}$ and $w^{-1} X_{i} w=X_{w^{-1}\left(r_{i}\right)} \leq X$. Thus $\quad \alpha_{s_{i}} \quad \alpha_{w} h=q_{s_{i} w} \bar{X}\left(s_{i}\right)(w) h \bar{X}$.
If h is chosen so that $\left(s_{i}\right)(w) h=\left(s_{i} w\right)$ it follows that

$$
\alpha_{s_{i}} \alpha_{w} h=\alpha_{s_{i} w} .
$$

The other assertion of the lemma follows by induction on $\ell(w)$.
6.6 LEMMA The elements $\alpha_{w} h(w \in W, h \in H)$ have inverses in $\overline{\mathrm{X} k G \bar{X}}$.
Proof For each i ($1 \leq i \leq n$)

$$
\begin{aligned}
\alpha_{s_{i}}^{2} & =q_{i}^{2} \bar{X}\left(s_{i}\right) \bar{x}\left(s_{i}\right) \bar{x} \\
& =q_{i}^{2} \bar{X}\left(s_{i}\right) \bar{X}_{i}\left(s_{i}\right) \bar{X} \\
& =q_{i} \bar{X}\left(s_{i}\right)^{2} \bar{x}+q_{i} \sum \bar{X}\left(s_{i}\right) x\left(s_{i}\right) \bar{x} \\
& =q_{i}\left(s_{i}\right)^{2} \bar{X}+q_{i} \sum \bar{X} h_{i}(x)\left(s_{i}\right)^{3} \bar{x}
\end{aligned}
$$

where the summation is over the non-identity elements of X_{i}, and $\quad h_{i}(x)$ is as defined in 3.10. Note that $\left(s_{i}\right)^{2} \in H$. It follows that

$$
\alpha_{s_{i}}^{2}\left(s_{i}\right)^{-2}=q_{i} \bar{X}+H_{i} \alpha_{s_{i}}
$$

where $\quad H_{i}=\sum h_{i}(x) \quad\left(x \in X_{i}, x \neq 1\right)$. Now \bar{x} is the identity element of $\overline{\mathrm{X}} \mathrm{k} G \overline{\mathrm{X}}$, and so

$$
q_{i}^{-1}\left(\alpha_{s_{i}}\left(s_{i}\right)^{-2}-H_{i} \bar{X}\right)
$$

is an inverse for $\alpha_{s_{i}}$ in $\bar{X} k G \bar{X}$. We now use induction on $\ell(w)$ to show that each $\alpha_{w} h$ has an inverse.

For $\ell(w)=0, \quad \alpha_{w} h=\bar{X} h$ and the inverse is $\bar{X} h^{-1}$.
For $\ell(w) \geq 1$ there exists i with $w=s_{i} v$
and $\ell(v)=\ell(w)-1$. The inductive hypothesis permits the assumption that each $\alpha_{v} f(f \in H)$ has an inverse, and then for appropriate choice of $f, 6.5$ gives

$$
\alpha_{w} h=\alpha_{s_{i}} \alpha_{v} f h
$$

which is a product of elements with inverses, and so has an inverse.
(Results like 6.5 and 6.6 are well known. See [21], for example).

It will be convenient to adopt the notation " $\alpha \sim \beta$ " for elements $\alpha, \beta \in k G$ to mean that α is a nonzero scalar multiple of β.
6.7 LEMMA For all $w \in W_{J}, \alpha_{w} B_{\lambda} X_{\mu}^{w_{J}} \sim B_{\lambda^{v}} X_{\mu}^{w_{J}} \quad$ (where $\mathrm{v}=\mathrm{w}^{-1}$) and $\mathrm{X}_{\mu_{J}}^{\mathrm{w}_{J}} \mathrm{~B}_{\lambda} \alpha_{\mathrm{w}} \sim \mathrm{X}_{\mu_{J}{ }_{\mathrm{J}} \mathrm{B}_{\lambda} \mathrm{w}}$
Proof The idempotents B_{λ} and $X_{\mu_{J}}^{w_{J}}$ afford the characters $\lambda^{G_{J}}$ and $\mu_{J}^{G_{J}}$ of G_{J}, and $\left(\lambda^{G_{J}}, \mu_{J}^{G_{J}}\right)=1$ by 5.1. Hence $B_{\lambda} \mathrm{kG}_{\mathrm{J}} \mathrm{X}_{\mu}^{\mathrm{w}} \mathrm{J}_{\mathrm{J}}$ is one-dimensional (by 6.3). Similarly $B_{\lambda v} \mathrm{KG}_{\mathrm{J}} \mathrm{X}_{\mu_{\mathrm{J}}}^{\mathrm{w}_{\mathrm{J}}}$ is one-dimensional. Therefore

$$
\begin{equation*}
\alpha_{w} B_{\lambda} X_{\mu_{J}}^{w_{J}}=B_{\lambda^{v}} \alpha_{w} B_{\lambda} X_{\mu}^{w_{J}} \tag{by6.2}
\end{equation*}
$$

must be a scalar multiple of $\mathrm{B}_{\lambda^{v}} \mathrm{X}_{\mu_{J}}^{\mathrm{wJ}_{J}}$. The scalar must be nonzero since α_{w} has an inverse. The proof of the second part is similar.
6.8 LEMMA $B_{\lambda} X_{\mu}^{w}{ }_{\mathbf{J}} B_{\lambda} X_{\mu}^{w}{ }^{w} B_{\lambda} \sim B_{\lambda} X_{\mu}^{w}{ }^{w} B_{\lambda}$

Proof Let Y be the product of the positive root subgroups in $X^{w}{ }^{\text {J }}$ and Z the product of the negative ones. Let

$$
\begin{align*}
\alpha & =|z|^{-1} \sum \mu_{\mathrm{J}}\left(\mathrm{x}^{-1}\right) \mathrm{x} \\
& =|z|^{-1} \Sigma \mu\left(\mathrm{x}^{-1}\right) \mathrm{x}
\end{align*}
$$

Then $\quad X_{\mu_{J}}^{w_{J}}=\bar{Y} \alpha$ and $\alpha X_{\mu}^{w_{o}}=X_{\mu}^{w_{o}}$.
Hence $B_{\lambda} X_{\mu}^{w_{J}}=B_{\lambda} \alpha$, and so $B_{\lambda} \alpha B_{\lambda} \alpha \sim B_{\lambda} \alpha$ (by 5.2)
(Note in passing that $B_{\lambda} \propto B_{\lambda} \neq 0$).
Therefore $B_{\lambda} \alpha B_{\lambda} \alpha X_{\mu}^{w}{ }^{w} \sim B_{\lambda} \alpha X_{\mu}^{w}$, and the result follows. 6.9 COROLLARY. Let X_{J} and X be the characters of G_{J} and G defined in chapter 5, and let θ_{J} and θ be the corresponding homomorphisms of $B_{\lambda} k G_{J} B_{\lambda}$ and $B_{\lambda} k G B_{\lambda}$ into k. Then $\theta_{\mathbf{J}}$ is the restriction of θ.

Proof By the note in the proof of 6.8, $B_{\lambda} X_{\mu}^{w}{ }_{j} B_{\lambda}$ is nonzero, and so is a nonzero multiple of e, the primitive idempotent in $B_{\lambda} k G_{J} B_{\lambda}$ affording X_{J} (see 6.4). Similarly
$B_{\lambda} X_{\mu}^{w}{ }^{w} B_{\lambda} \sim \mathrm{f}$, the primitive idempotent in $B_{\lambda} k G B_{\lambda}$ affording χ. By 6.8 ef $\sim f$, and so $\theta(e)=1$ (since $e^{2}=e$). For $w \in W_{J} \cap S$,

$$
\begin{aligned}
\theta_{\mathrm{J}}\left(\beta_{\mathrm{w}}\right) \mathrm{ef} & =\left(\beta_{w} \mathrm{e}\right) \mathrm{f} \\
& =\beta_{\mathrm{w}}(\text { ef })
\end{aligned}
$$

and so

$$
\begin{aligned}
& =\beta_{w} \mathrm{f} \\
& =\theta\left(\beta_{w}\right) \mathrm{f} \\
& =\theta\left(\beta_{w}\right) \mathrm{ef}
\end{aligned}
$$

($6.4,6.7,6.8$ and 6.9 will also be used with λ replaced by any of the characters $\left.\lambda^{w}(w \in W)\right)$.

CHAPTER 7

SOME MORE CHARACTERS

7.1 LEMMA (i) For a fixed $w \in W$ the elements $\left\{\alpha_{v}{ }_{w} B_{\lambda} \mid v \in W_{J}\right\}$ and $\left\{\alpha_{v} \alpha_{w} B_{\lambda} \mid v \in W_{J}\right\}$ span the same space, and similarly $\left\{B_{\lambda} \alpha_{w v} \mid v \in W_{J}\right\}$ and $\left\{B_{\lambda} \alpha_{w} \alpha_{v} \mid v \in W_{J}\right\}$ span the same space.
(ii) $k B w G_{J}=k B w W_{J} X$

Proof (ii) is a standard result about $B N$ pairs. For (i) note first that since α_{w} has an inverse in $\bar{X} k G \bar{X}$ the two spaces have the same dimension, namely $\left|W_{J}\right|$. It remains to prove that each $\alpha_{v w} B_{\lambda}\left(v \in W_{J}\right)$ can be written in the form $\alpha \alpha_{w} B_{\lambda}$ for some $\alpha \in \bar{X} k G_{J} \bar{x}$.

Use induction on $\ell(v)$. The case $\ell(v)=0$ is trivial.

Suppose $v=s_{i} u, i \in J, \quad \ell(v)=\ell(u)+1$.
Then, $\alpha_{u w} B_{\lambda}=\gamma \alpha_{w} B_{\lambda}$ for some $\gamma \in \bar{X} k G_{J} \bar{X}$, by the inductive hypothesis.

$$
\text { If } \quad \ell(v w)>\ell(u w) \text { then } \quad \begin{aligned}
\alpha_{v w} B_{\lambda} & =\alpha_{s u w} \\
& \sim \alpha_{s} \alpha_{u w} B_{\lambda}
\end{aligned}
$$

(where $s=s_{i}$), while if $\ell(v w)<\ell(u w)$ then $\alpha_{u w} B_{\lambda} \sim \alpha_{s} \alpha_{v w} B_{\lambda}$. Choosing α to be the appropriate scalar multiple of $\alpha_{s} \gamma$ or $\alpha_{s}^{-1} \gamma$ it follows that $\alpha_{\alpha} \in \overline{X k G_{J}} \bar{X}$ and $\alpha_{v w} B_{\lambda}=\alpha \alpha_{w} B_{\lambda}$.
7.2 COROLLARY Let $w \in W, J \subseteq\{1,2, \ldots n\}$. Then

$$
B_{\lambda} k G_{J} B_{\lambda} \alpha_{w}=B_{\lambda} k\left(W_{J} \cap S\right) w B_{\lambda} w \quad \text { (i.e. the space }
$$

spanned by $B_{\lambda} \alpha_{v w} B_{\lambda} w$ for $\left.v \in W_{J} \cap S\right)$. Similarly,

$$
\left.\alpha_{w} B_{\lambda} k G_{J} B_{\lambda}=B_{\lambda^{u}} k w\left(W_{J} \cap S\right) B_{\lambda} \quad \text { (where } u=w^{-1}\right)
$$

$$
\text { Proof } \quad B_{\lambda} k G_{J} B_{\lambda} \alpha_{w}=B_{\lambda} \bar{x} k G_{J} \bar{x} \alpha_{w} B_{\lambda}
$$

and this is the space spanned by $\left\{B_{\lambda} \alpha_{v} \alpha_{w} B_{\lambda} \mid v \in W_{J}\right\}$.
This is the same as the span of $\left\{B_{\lambda} \alpha_{v}{ }_{w} B_{\lambda} w \mid v \in W_{J}\right\}$.
However $\quad B_{\lambda} \alpha_{v w} B_{\lambda w}=0$ unless $\lambda^{v w}=\lambda^{w}$; i.e. unless $v \in S$. Thus the basis consists of $\alpha_{v w} B_{\lambda^{w}}$, $v \in W_{J} \cap S$.
7.3 COROLLARY Let $v, w, u \in W$ and $J, K \subseteq\{1,2, \ldots n\}$.

Then $B_{\lambda^{v}} k G_{J} B_{\lambda^{v}} \alpha_{w} B_{\lambda^{u}} k G_{K} B_{\lambda^{u}}=B_{\lambda^{v}} k\left(W_{J} \cap S^{v}\right) w\left(W_{K} \cap S^{u}\right) B_{\lambda^{u}}$
Proof First observe that both sides are zero unless $\lambda^{v w}=\lambda^{u}$; that is, unless $w \in \mathrm{v}^{-1} \mathrm{Su}$. (Equivalently, $\left.\left(W_{J} \cap S^{v}\right) w\left(W_{K} \cap S^{u}\right) \subseteq v^{-1} S u\right)$. Assuming $w \in v^{-1} S u, 7.2$ with λ^{v} replacing λ gives

$$
B_{\lambda^{v}} k G_{J} B_{\lambda^{v}} \alpha_{w} B_{\lambda^{u}} k G_{K} B_{\lambda^{u}}=B_{\lambda^{u}} k\left(W_{J} \cap S^{v}\right) w B_{\lambda^{u}} k G_{K} B_{\lambda^{u}}
$$

and this is the sum of the spaces $\alpha_{t w} B_{\lambda^{u}} k G_{K} B_{\lambda^{u}}$ for $t \in W_{J} \cap S^{v}$. But $\alpha_{t w} B_{\lambda^{u}} k G_{K} B_{\lambda^{u}}$ equals $B_{\lambda^{v}} t w k\left(W_{K} \cap S^{u}\right) B_{\lambda^{u}}$, and the sum of these as t runs through elements of $W_{J} \cap S^{v}$ is

$$
B_{\lambda^{v}} k\left(W_{J} \cap S^{v}\right) w\left(W_{K} \cap S^{u}\right) B_{\lambda^{u}}
$$

7.4 LEMMA Let $J, K \subseteq\{1,2, \ldots n\}$ and let $v, w \in W$.

Let e be the primitive idempotent in $B_{\lambda^{v}} k G_{J} B_{\lambda^{v}}$ which affords the character $X_{J v}$, and f the primitive idempotent in $B_{\lambda^{w}} \mathrm{KG}_{K} B_{\lambda^{w}}$ which affords $\chi_{K w}$. Let $t_{1}, t_{2}, \ldots t_{m}$ be representatives of the orbits of $\mathrm{v}^{-1} \mathrm{Sw}$ under premultiplication by elements of $W_{J} \cap S^{v}$ and postmultiplication by elements of $W_{K} \cap S^{w}$. Then ekGf has basis $\left\{e \alpha_{t_{i}} f \mid i=1,2, \ldots m\right\}$. Proof $B_{\lambda^{v}} k \operatorname{KBC}_{\lambda^{w}}$ has basis $\left\{B_{\lambda^{v}} \alpha_{u} B_{\lambda^{w}} \mid u \in v^{-1} S w\right\}$

$$
=\bigcup_{i=1}^{m}\left\{B_{\lambda^{v}} \alpha_{u} B_{\lambda^{w}} \mid u \in\left(W_{J} \cap S^{v}\right) t_{i}\left(W_{K} \cap S^{w}\right)\right\}
$$

Hence $B_{\lambda^{v}} k G B_{\lambda^{w}}$ is the direct sum of the spaces

$$
B_{\lambda^{v}} k\left(W_{J} \cap S^{v}\right) t_{i}\left(W_{K} \cap S^{w}\right) B_{\lambda^{w}} \quad i=1,2, \ldots m
$$

Now by 7.3,

$$
B_{\lambda^{v}} k\left(W_{J} \cap S^{v}\right) t_{i}\left(W_{K} \cap S^{w}\right) B_{\lambda^{w}}=B_{\lambda^{v}} k G_{j} B_{\lambda^{v}} \alpha_{t_{i}} B_{\lambda^{w}} k G_{K} B_{\lambda^{w}}
$$

and this contains the element $e \alpha_{t_{i}} f$. Therefore the $e \alpha_{t_{i}} f$ are linearly independent if they are nonzero. But for any $t \in v^{-1} S w$,

$$
\begin{aligned}
& \mathrm{B}_{\lambda^{v}} \mathrm{X}_{\mu}^{w_{o}} \mathrm{~B}_{\lambda^{v}} \mathrm{e} \alpha_{t} f \mathrm{~B}_{\lambda^{w}} \mathrm{X}_{\mu}^{w_{o}} \mathrm{~B}_{\lambda^{w}} \alpha_{t-1} \\
& \sim\left(\mathrm{~B}_{\lambda^{v}} X_{\mu}^{w_{o}} \mathrm{~B}_{\lambda^{v}}\right)\left(\alpha_{t} \mathrm{~B}_{\lambda^{w}} \mathrm{X}_{\mu}^{w_{o}} \mathrm{~B}_{\lambda^{w} \alpha_{t-1}}\right) \\
& \sim\left(\mathrm{B}_{\lambda^{v}} X_{\mu}^{w_{o}} \mathrm{~B}_{\lambda^{v}}\right)\left(\mathrm{B}_{\lambda^{v}} X_{\mu}^{w_{o}} \mathrm{~B}_{\lambda^{v}}\right)
\end{aligned}
$$

(by 6.8)
(by 6.7,
making use of the fact that $\lambda^{w^{-1}}=\lambda^{v}$)
and this is nonzero, by 5.2. Hence $e \alpha_{t} f \neq 0$.
It remains to prove that the $e \alpha_{t_{i}} f$ span ekGf.
It was shown above that $B_{\lambda^{v}} k G B_{\lambda^{w}}$ is the sum of the spaces $B_{\lambda^{v}} k G_{J} B_{\lambda^{v}} \alpha_{t_{i}} B_{\lambda^{w}} k G_{K} B_{\lambda^{w}}, \quad i=1,2, \ldots m$. Therefore ekGf $=e B_{\lambda^{v}} k G B_{\lambda^{w}} f$ is the sum of $\left\{e B_{\lambda^{v}} k G_{j} B_{\lambda^{v}} \alpha_{t_{i}} B_{\lambda^{w}} k G_{K} B_{\lambda^{w}} f \mid i=1,2, \ldots m\right\}$ $=\left\{\operatorname{ke\alpha }_{\mathbf{t}_{\mathrm{i}}} \mathrm{f} \mid \mathrm{i}=1,2, \ldots \mathrm{~m}\right\}$
since $e B_{\lambda^{v}} k G_{J} B_{\lambda^{v}}=k e$ and $B_{\lambda^{w}} k G_{K} B_{\lambda^{w}} f=k f$
(see 6.4)
7.5 THEOREM (i) Let $J, K \subseteq\{1,2, \ldots n\}$ and $v, w \in W$. Then $\left(X_{J V}^{G}, X_{K W}^{G}\right)$ equals the number of $\left(W_{J}^{V^{-1}} n S\right) \backslash S /\left(W_{K}^{W^{-1}} n S\right)$ double cosets.
(ii) For each subset J of $\{1,2, \ldots n\}$ and each $v \in W$ define $\delta(S, J, v)$ to be the character of S induced from the 1 -character of $W_{J^{v}}{ }^{-1} \mathrm{nS}$. Then

$$
X_{J v}^{G} \mapsto \delta(S, J, v)
$$

is an isometry between the inner product spaces generated by these characters.
Proof (i) With e,f and $t_{1}, t_{2}, \ldots t_{m}$ as in 7.4 the module kGe affords the character $X_{J v}^{G}$ of G and kGf affords $X_{K w}^{G}$. Hence 6.3 gives

$$
\left(X_{J V}^{G} \cdot X_{K w}^{G}\right)=\operatorname{dim} \text { ekGf }=m
$$

But it is clear that $\left\{v t_{i} W^{-1} \mid i=1,2, \ldots m\right\}$ is a set of representatives of the $\left(W_{J}^{v^{-1}} \cap S\right) \backslash S /\left(W_{K}^{w^{-1}} \cap S\right)$ cosets, and so m also equals the number of these cosets.
(ii) This is merely a restatement of (i) since $m=(\delta(S, J, V), \delta(S, K, W))$
7.6 DEFINITION Let $J \subseteq\{1,2, \ldots n\}$ and let V be a set of representatives of the $S \backslash W / W_{J}$ cosets. Define

$$
\varphi_{\mathrm{J}}=\varphi_{\mathrm{J}}\left(\mu_{1}, \mu_{2}, \ldots \mu_{\mathrm{n}}\right)=\sum \chi_{\mathrm{J} v}^{\mathrm{G}} \quad(\mathrm{v} \in \mathrm{~V})
$$

Note that the choice of coset representatives is immaterial. If $t \in S$ it is obvious that $X_{J_{v}}=X_{J_{t v}}$ (since $\lambda^{v}=\lambda^{t v}$). Furthermore if $w \in W_{J}$ and $u=w^{-1}$,

$$
\begin{equation*}
\alpha_{u} \mathrm{~B}_{\lambda^{\mathrm{v}}} \mathrm{X}_{\mu \mathrm{J}}^{\mathbf{w}_{\mathrm{J}}} \sim \mathrm{~B}_{\lambda^{\mathrm{v} w}} \mathrm{X}_{\mu}^{\mathbf{w}_{\mathrm{J}}} \tag{6.7}
\end{equation*}
$$

so that the right modules $B_{\lambda^{v}} X_{\mu}^{w_{J}} k G$ (which affords $X_{J_{\mathbf{v}}}^{G}$), and $B_{\lambda^{v} w} X_{\mu}^{w_{J}} k G$ (which affords $\chi_{J v w}^{G}$) are isomorphic. 7.7 LEMMA If $J, K \subseteq\{1,2, \ldots n\}$ and δ_{J}, δ_{K} are the characters of W induced from the l-characters of W_{J} and W_{K} then $\left(\varphi_{J}, \varphi_{K}\right)=\left(\delta_{J}\left|s, \delta_{K}\right| \mathrm{s}\right) \quad$ (where $\delta_{J} \mid s$ is the restriction of δ_{J} to S, etc.)

Proof This is immediate from 7.5 (ii) and 7.6 since by Mackey's theorem (with V as in 7.6)

$$
\left.\delta_{\mathrm{J}}\right|_{\mathrm{S}}=\Sigma \delta(\mathrm{S}, \mathrm{~J}, \mathrm{v})
$$

$$
\mathrm{v} \in \mathrm{~V}
$$

We can now prove theorem C :
7.8 THEOREM $\sum(-1)^{\mathrm{J} 1} \varphi_{\mathrm{J}} \quad$ is an irreducible character of G, and it occurs with multiplicity one in λ^{G} (the summation is over all subsets J of $\{1,2, \ldots n\}$).
Proof From 2.8, $\Sigma(-1)^{\mathrm{J} \mid} \delta_{\mathrm{J}}|\mathrm{s}=\varepsilon| \mathrm{s}$ is an irreducible character of S, and so

$$
\begin{align*}
I & =\left(\Sigma(-1)^{|\mathrm{J}|} \delta_{\mathrm{J}}\left|\mathrm{~S}, \sum(-1)^{|\mathrm{K}|} \delta_{\mathrm{K}}\right| \mathrm{s}\right) \\
& =\left(\sum(-1)^{|\mathrm{J}|} \varphi_{\mathrm{J}}, \sum(-1)^{|\mathrm{K}|} \varphi_{\mathrm{K}}\right) \tag{by7.7}
\end{align*}
$$

so that $\pm \sum(-1)^{\| \mathrm{J} \mid} \varphi_{\mathrm{J}}$ is irreducible.
Let L be the empty subset of $\{1,2, \ldots n\}$. Then $G_{L}=B$ and λ is the only component of $\lambda^{G_{L}}$. Thus $\lambda=X_{L}$.

$$
\left(\Sigma(-1)^{|\mathrm{J}|} \varphi_{\mathrm{J}}, \lambda^{\mathrm{G}}\right)=\Sigma(-1)^{|\mathrm{J}|}\left(\chi_{\mathrm{J} v}^{\mathrm{G}}, \chi_{\mathrm{L}}^{\mathrm{G}}\right)
$$

where J runs through subsets of $\{1,2, \ldots n\}$ and v through a set of representatives of the $S \backslash W / W_{J}$ cosets. But by 7.5

$$
\left(X_{\mathrm{J} v}^{\mathrm{G}}, X_{\mathrm{L}}^{\mathrm{G}}\right)=(\delta(\mathrm{S}, \mathrm{~J}, \mathrm{~V}), \delta(\mathrm{S}, \mathrm{~L}, \mathrm{l}))
$$

and since L is empty $\delta(S, L, I)$ is ρ, the character of the regular representation of S. Therefore

$$
\begin{aligned}
\left(\Sigma(-1)^{|\mathrm{J}|} \varphi_{\mathrm{J}}, \lambda^{\mathrm{G}}\right) & =\Sigma(-1)^{|\mathrm{J}|}(\delta(\mathrm{S}, \mathrm{~J}, \mathrm{~V}), \rho) \\
& =\left(\left.\Sigma(-1)^{|\mathrm{J}|} \delta_{\mathrm{J}}\right|_{\mathrm{s}, \rho)}\right. \\
& =\left(\left.\varepsilon\right|_{\mathrm{S}}, \rho\right) \\
& =1 \text { since }\left.\varepsilon\right|_{\mathrm{s}} \text { is }
\end{aligned}
$$

a linear character of S.
The character defined in 7.8 will be called "ち(λ)" or " $\zeta\left(\lambda, \mu_{1}, \mu_{2}, \ldots \mu_{n}\right)$ " since as well as depending on λ it also depends on the characters μ_{i} of $X_{\text {。r }_{i}} \quad(i=1,2, \ldots n)$ that have been fixed throughout. The dependence on the μ_{i} will not be investigated here, but note that if λ and λ^{\prime} are two linear characters of B such that λ^{\prime} is not of the form $\lambda^{w}(w \in W)$ then $\zeta(\lambda) \neq \zeta\left(\lambda^{\prime}\right)$, $\operatorname{since}\left(\lambda^{G}, \lambda^{\prime G}\right)=0$. It can also be seen that $\zeta(\lambda)=X(\lambda)$ if and only if ε is trivial on S, since

$$
\begin{aligned}
(\zeta(\lambda), \chi(\lambda)) & =\Sigma(-1)^{|\mathbf{J}|}\left(\varphi_{\mathrm{J}}, \chi(\lambda)\right) \quad J \subseteq\{1,2, \ldots \mathrm{n}\} \\
& =\sum(-1)^{|\mathbf{J}|}\left(\left.\delta_{\mathrm{J}}\right|_{\mathrm{s}}, 1\right) \\
& =\left(\left.\varepsilon\right|_{\mathrm{s}}, 1\right) .
\end{aligned}
$$

(Thus $\left(\zeta(\lambda), \mu^{G}\right)=0$ unless ε is trivial on S).

CHAPTER 8

ON THE DEGREES OF COMPONENTS OF $1_{\mathrm{x}}^{\mathrm{G}}$

8.1 THEOREM If σ is any component of λ^{G}

$$
\left(\alpha, \mu_{\mathrm{J}}\right)=\left(\sigma, \varphi_{\mathrm{J}}\right)
$$

where α is the restriction of σ to $x^{w_{J}}$. Proof If $S v W_{J} \neq S W W_{J}$ then $\lambda^{v} \neq\left(\lambda^{w}\right)^{u}$ for any $u \in W_{J}$ and so the characters of G_{J} induced from λ^{v} and λ^{w} have no common component. Hence $X_{J v} \neq X_{J w}$. Now if V is a set of representatives of the $S \backslash W / W_{J}$ cosets then the characters $\left\{\chi_{J,} \mid v \in V\right\}$ are distinct, and components of $\mu_{j}{ }_{j}$ J (by their definition: see 5.1). Hence

$$
\mu_{\mathbf{J}}^{G_{J}}-\Sigma \chi_{\mathbf{J v}}
$$

is a proper character (i.e. a positive integral combination of irreducible characters). Inducing to G and using 7.7

$$
\mu_{\mathrm{J}}^{\mathrm{G}}-\varphi_{\mathrm{J}}
$$

is a proper character of G. Now

$$
\left(\varphi_{J}, \lambda^{G}\right)=\left(\left.\delta_{J}\right|_{s}, \rho\right)
$$

where ρ is the character of the regular representation of S (c.f. proof of 7.8)

$$
=\left(\delta_{J}, \delta\right)
$$

where δ is the character of the regular representation of W. Therefore $\left(\varphi_{\mathrm{J}}, \lambda^{\mathrm{G}}\right)=\left|\mathrm{W}: \mathrm{W}_{\mathrm{J}}\right|=\left(\mu_{\mathrm{J}}^{\mathrm{G}}, \lambda^{\mathrm{G}}\right) \quad$ (by 5.1)
and so
$\left(\lambda^{G}, \mu_{J}^{G}-\varphi_{J}\right)=0$
Since $\mu_{J}^{G}-\varphi_{J}$ is a proper character it follows that for all components σ of λ^{G},

$$
\left(\sigma, \mu_{j}^{\mathrm{G}}-\varphi_{3}\right)=0
$$

and the result now follows by Frobenius reciprocity. (The proof given for 8.1 is an improvement of the author's original proof, given in [13], and is based on a method used in [11]).
8.2 THEOREM If σ is any component of 1_{x}^{G} other than one of the $\zeta(\lambda)$ (for some λ) then the degree of σ is divisible by p.

Proof The character μ_{J}, and hence the characters $X_{J_{w}}$, depend on the values of μ_{i} for $i \in J$ and not on μ_{i} for i\&J. Now for any choice of λ,

$$
0=\left(\sigma, \sum_{\mu_{i}} \zeta\left(\lambda, \mu_{1}, \mu_{2} \ldots \mu_{n}\right)\right)
$$

(where the summation is over all possible choices for the characters $\mu_{1}, \mu_{2}, \ldots \mu_{n}$)

$$
\begin{aligned}
& =\left(\sigma, \sum_{\mu_{i}} \sum_{J}(-1)^{|J|} \varphi\left(\mu_{1}, \mu_{2} \ldots \mu_{\mathrm{n}}\right)\right) \\
& =\left(\sigma, \sum_{J} \sum_{1} \Sigma_{2}(-1)^{|\mathrm{J}|} \varphi_{J}\left(\mu_{1}, \mu_{2} \ldots \mu_{\mathrm{n}}\right)\right)
\end{aligned}
$$

(where Σ_{1} is over μ_{i} for $i \in J$ and Σ_{2} is for i\&J)

$$
\equiv\left(\sigma, \sum_{J} \Sigma_{1}(-1)^{\mathrm{n} \cdot|\mathrm{~J}|}(-1)^{|\mathrm{J}|} \varphi_{\mathrm{J}}\left(\mu_{1}, \mu_{2} \ldots \mu_{\mathrm{n}}\right)\right) \quad(\bmod p)
$$

since the number of nontrivial linear characters of $\mathrm{X}_{\mathrm{r}_{\mathrm{i}}}$ for i\&J is congruent to -1 modulo p, and all give the same value for φ_{J}. Therefore

$$
\begin{aligned}
0 & \equiv \sum_{J} \sum_{I}\left(\alpha, \mu_{\mathrm{J}}\left(\mu_{1}, \mu_{2}, \ldots \mu_{\mathrm{n}}\right)\right) \quad \text { (as in 8.1) } \\
& =\sum_{\mathrm{J}} \sum\left(\alpha, \mu_{\mathrm{J}}\right)
\end{aligned}
$$

where the second summation is over all linear characters μ_{J} of $X^{w}{ }^{\mathrm{J}}$ which are nontrivial on exactly those root subgroups $X_{-r_{i}}$ for $i \in J$. But

$$
\Sigma\left(\alpha, \mu_{\mathrm{J}}\right)=\Sigma\left(\sigma \mid \mathrm{x}, \mu_{\mathrm{J}}^{\mathrm{w}_{\mathrm{J}}}\right)
$$

where $\mu_{J}^{w_{J}}$ is the character of X defined by $\mu_{J}^{w_{J}}(x)=\mu_{J}\left(x^{w_{J}}\right)$, and we see that $\mu_{J}{ }_{J}$ runs through all linear characters of X
nontrivial on exactly those root subgroups $X_{r_{i}} \quad i \in J$.

$$
\text { Thus } \begin{aligned}
0 & \equiv \sum_{\mathrm{J}}^{\mu_{\mathrm{J}}} \sum_{\mathrm{X}}\left(\left.\sigma\right|_{\mathrm{J}}, \mu_{\mathrm{J}}^{\mathrm{w}_{\mathrm{J}}}\right) \\
& =\sum_{\mu}\left(\left.\sigma\right|_{\mathrm{X}}, \mu\right)
\end{aligned}
$$

(mod p)
where μ runs through all linear characters of X. But if the linear character μ of X occurs with multiplicity m_{μ} in $\left.\sigma\right|_{x}$ then the degree of σ is congruent to $\sum_{\mu} m_{\mu}$, since nonlinear characters have degree divisible by p. Therefore

$$
\text { degree } \sigma \equiv \sum_{\mu}\left(\left.\sigma\right|_{\mathrm{x}}, \mu\right) \equiv 0(\bmod \mathrm{p}) .
$$

8.1 and 8.2 are theorems D and E respectively. The next lemmas prepare for theorem H.
8.3 LEMMA Let $i, j \in\{1,2, \ldots n\}$ and $w \in W$ such that $w\left(r_{i}\right)=r_{j}$. Then $\alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1}=\bar{X}\left(s_{j}\right)^{-1} \bar{X}\left(s_{j}\right) \bar{X}$ Proof $w\left(r_{i}\right)=r_{j}>0$ and so $\bar{X}(w) \bar{X}\left(s_{i}\right) \bar{X}=\bar{X}(w)\left(s_{i}\right) \bar{X}$.

Further, by 3.6 , (w) $X_{\mu_{i}}=X_{0 r_{j}}(w)$
Hence

$$
\begin{aligned}
& \bar{x}(w) \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{x} \\
= & \bar{X}(w)\left(s_{i}\right)^{-1} \bar{X}_{i}\left(s_{i}\right) \bar{x} \\
= & \bar{X}\left(s_{j}\right)^{-1} \bar{X}_{j}\left(s_{j}\right)(w) \bar{x} \\
= & \bar{X}\left(s_{j}\right)^{-1} \bar{X}\left(s_{j}\right) \bar{X}(w) \bar{X}
\end{aligned}
$$

and so $\alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X}=\bar{X}\left(s_{j}\right)^{-1} \bar{X}\left(s_{j}\right) \bar{X} \alpha_{w}$
8.4 LEMMA Let θ be a linear representation of $B_{\lambda} k G B_{\lambda}$, and let r be any root. Let $r=w\left(r_{i}\right)$ for some $w \in W$ and $i \in\{1,2, \ldots n\}$. Then

$$
\theta_{r}=q_{i} \theta\left(B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda}\right)
$$

depends only on the root r and not on the choice of w and i. Proof $q_{i}=\left|X_{i}\right|=\left|X_{r}\right|$ depends only on r. Suppose that $w\left(r_{i}\right)=v\left(r_{j}\right) \quad v, w \in W \quad l \leq i, j \leq n$. Let $u=v^{-1} w$. By 8.3,

$$
\begin{aligned}
& \theta\left(B_{\lambda} \alpha_{v} \bar{X}\left(s_{j}\right)^{-1} \bar{X}\left(s_{j}\right) \bar{X} \alpha_{v}^{-1} B_{\lambda}\right) \\
= & \theta\left(B_{\lambda} \alpha_{v} \alpha_{u} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{u}^{-1} \alpha^{-1} \quad B_{\lambda}\right) \\
= & \theta\left(B_{\lambda} \alpha_{v} \alpha_{u} \alpha_{w}^{-1} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} \alpha_{w} \alpha_{u}^{-1} \alpha_{v}^{-1} B_{\lambda}\right) \\
= & \theta\left(B_{\lambda} \alpha_{v} \alpha_{u} \alpha_{w}^{-1} B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda} \alpha_{w} \alpha_{u}^{-1} \alpha_{v}^{-1} B_{\lambda}\right)
\end{aligned}
$$

(using the fact that $B_{\lambda} \alpha_{v}=\alpha_{v} B_{\lambda^{v}}$, etc.)
$=\theta(\beta) \theta\left(B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda}\right) \theta\left(\beta^{-1}\right)$
(where $\beta=B_{\lambda} \alpha_{v} \alpha_{u} \alpha_{w}^{-1} B_{\lambda}$)
$=\theta\left(B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda}\right)$
8.5 LEMMA If r is any root and if $v \in S$ then $\theta_{r}=\theta_{v}(r)$.

Proof Let $w \in W, \quad l \leq i \leq n$ such that $w\left(r_{i}\right)=r$.
Then $\quad \theta_{\mathrm{s}}=\mathrm{g}_{\mathrm{i}} \theta\left(\mathrm{B}_{\lambda} \alpha_{\mathrm{w}} \overline{\mathrm{X}}\left(\mathrm{s}_{\mathrm{i}}\right)^{-1} \overline{\mathrm{X}}\left(\mathrm{s}_{\mathrm{i}}\right) \overline{\mathrm{X}} \alpha_{\mathrm{w}}{ }^{-1} \mathrm{~B}_{\lambda}\right)$
and

$$
\begin{aligned}
\theta_{v(r)} & =q_{i} \theta\left(B_{\lambda} \alpha_{v w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{v}^{-1} B_{\lambda}\right) \\
& =q_{i} \theta\left(B_{\lambda} \alpha_{v w} \alpha_{w}^{-1} B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda} \alpha_{w} \alpha_{v}^{-1} B_{\lambda}\right) \\
& =\theta_{r}
\end{aligned}
$$

8.6 LEMMA Let $N(w)$ be the set of positive roots r such that $w(r)$ is negative. Define $\theta_{w}=\Pi \theta_{r}, r \in N(w)$.

$$
\text { Then } q_{w}^{-1} \theta\left(B_{\lambda} \hat{\alpha}_{w} \alpha_{w} B_{\lambda}\right)=\theta_{w}
$$

Proof The result is trivial for $\ell(w)=0$. Assuming that it holds for elements of length k, suppose that $\ell(w)=k+1$ and let $s=s_{i}$ be a fundamental reflection with $w=s v, l(v)=k$.

Then

$$
q_{w}^{-1} \theta\left(B_{\lambda} \hat{\alpha}_{w} \alpha_{w} B_{\lambda}\right)=q_{w}^{-1} \theta\left(B_{\lambda} \hat{\alpha}_{v} \hat{\alpha}_{s} \alpha_{s} \alpha_{v} B_{\lambda}\right)
$$

(since if (s) $(v)=h(w)$ then $\alpha_{s} \alpha_{v}=h \alpha_{w}$ and $\hat{\alpha}_{v} \hat{\alpha}_{s}=\hat{\alpha}_{w} h^{-1}$)

$$
\begin{aligned}
& =q_{v}^{-1} q_{i}^{-1} \theta\left(B_{\lambda} \hat{\alpha}_{v} \alpha_{v} B_{\lambda} \alpha_{v}^{-1} \hat{\alpha}_{s} \alpha_{s} \alpha_{v} B_{\lambda}\right) \\
& =\theta_{v} q_{i} \theta\left(B_{\lambda} \alpha_{v}^{-1} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{v} B_{\lambda}\right) \\
& =\theta_{v} \theta_{a} \text { where } a=v^{-1}\left(r_{i}\right), \quad \text { since if we let } u=v^{-1}
\end{aligned}
$$

and $\beta=B_{\lambda} \alpha_{v}^{-1} \alpha_{u}^{-1} B_{\lambda}$ then

$$
B_{\lambda} \alpha_{v}^{-1} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{v} B_{\lambda}=\beta B_{\lambda} \alpha_{u} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{u}^{-1} B_{\lambda} \beta^{-1} .
$$

However, $N(w)=N(v) \cup\{a\}$, and $\theta_{v} \theta_{a}=\theta_{w}$ as required.
8. 7 COROLLARY Let ψ be a component of multiplicity 1 in λ^{G} and let θ be the restriction of ψ to $B_{\lambda} k G B_{\lambda}$. Then the degree of ψ is given by $\psi(1)=\sum_{w \in w} \subsetneq_{w} / \sum_{w \in S} \theta_{w} \cdot$

Proof Since $[G: B]=\sum q_{w}(w \in W)$ this is immediate from the formula given in 6.4:

$$
1=\psi(1)[G: B] \Sigma q_{w}^{-1} \theta\left(\hat{\beta}_{w}\right) \theta\left(\beta_{w}\right)
$$

and the fact that θ is a linear representation of $B_{\lambda} k G B_{\lambda}$. 8.8 LEMMA Let r be a root with corresponding reflection s, and choose any w $\in W$, $i \in\{1,2, \ldots n\}$ with $r=w\left(r_{i}\right)$. Then (i) There exists a nonnegative integer c_{r}, depending on λ but not θ, such that $\theta_{\mathbf{r}}=p^{\mathbf{c}_{\mathbf{r}}}$ or $\mathrm{P}^{\mathbf{c}_{\mathbf{r}}}$. (By 8.5, $c_{a}=c_{b}$ if a and b are in the same s-orbit.)
(ii) $\quad \theta_{\mathrm{r}}=1$ if and only if $\lambda^{\mathbf{w}}\left(H_{i}\right)=0$, where H_{i} is as defined in the proof of 6.6. This happens in particular if s\&S.

Proof Since $\bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X}=q_{i}^{-1} \bar{X}+q_{i}^{-1} H_{i} \bar{X}\left(s_{i}\right) \bar{X}$
we have $q_{i} B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda}-B_{\lambda}$

$$
\begin{align*}
& =a_{i} B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1}-B_{\lambda} \quad(\text { by 6.2) } \\
& =\left(B_{\lambda}+B_{\lambda} \alpha_{w} H_{i} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1}\right)-B_{\lambda} \\
& =\alpha_{w} \lambda^{w}\left(H_{i}\right) B_{\lambda} w\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} \\
& =\lambda^{w}\left(H_{i}\right) B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda^{s}} \quad \text { (by 6.2) } \tag{by5.2}\\
& =\gamma \text { say. }
\end{align*}
$$

If $\lambda^{w}\left(H_{i}\right) \neq 0$ then by 6.2 and 6.6 there exists $\alpha \in \bar{X} k G \bar{X}$ with $\gamma \alpha=B_{\lambda}$. Hence $\gamma \neq 0$, and since $\gamma \in B_{\lambda} k G B_{\lambda} \cap B \quad k G B_{\lambda} s$ it follows that $\lambda^{s}=\lambda$. Furthermore, since γ has an inverse in $B_{\lambda} k G B_{\lambda}$ it follows that $\theta(\gamma) \neq 0$. Thus

$$
\begin{aligned}
\theta_{\mathbf{r}} & =\theta\left(B_{\lambda}+\gamma\right) \\
& =\theta\left(B_{\lambda}\right)+\theta(\gamma) \\
& =1 \text { if and only if } \lambda^{w}\left(H_{i}\right)=0 .
\end{aligned}
$$

$$
\text { If } s \in S, \quad \lambda^{w s_{i}}=\lambda^{w} \text { and so if } P=B U B s_{i} B \text { then }\left(\lambda^{w}\right)^{P}
$$ has exactly two irreducible components, both of which occur with multiplicity one. If $\quad \beta \in B_{\lambda w} k P B_{\lambda w}$ then $\alpha_{w} \beta \alpha_{w}^{-1} \in B_{\lambda} k G B_{\lambda}$ and so $\beta \mapsto \theta\left(\alpha_{w} \beta \alpha_{w}^{-1}\right)$ is a linear representation of $B_{\lambda^{w}} k P B_{\lambda^{w}}$. Corresponding to this there is an irreducible component of $\left(\lambda^{w}\right)^{P}$ which has degree $d_{1}=\left(1+q_{i}\right) /\left(1+\theta_{r}\right)$. Let d_{2} be the degree of the other component, and let $d_{1}=m_{1} p^{a}$, $d_{2}=m_{2} p^{b}$, where m_{1} and m_{2} are not divisible by p. By theorem 3.1 of [7], m_{1} and m_{2} are both divisors of $1+q_{i}$, and since $d_{1}+d_{2}=l+q_{i}$ it follows that $m_{1}=m_{2}$. Now either $a=0$ or $b=0$, and so d_{1} and d_{2} are m and $p^{c} m$ where $m=m_{1}=m_{2}$ and $c=c_{r}=a+b$. If $d_{1}=m$ then $\theta_{r}=p$ and if $d_{1}=p^{c} m \quad$ then $\quad \theta_{\mathrm{r}}=p^{c}$.

Notice that the possibilities for c are limited by the requirement that $m=\left(1+q_{i}\right)\left(1+p^{c}\right)^{-1}$ is an integer. If the elements $h_{i}(x) \quad\left(x \in X_{i}, x \neq 1\right)$ form a group, all elements occurring with the same frequency, then $\lambda^{w}\left(H_{i}\right)=0$ or $q_{i}-1$. If $\lambda^{w}\left(H_{i}\right)=0$ then $d_{1}=d_{c}=\left(1+q_{i}\right) / 2$. If $\lambda^{w}\left(H_{i}\right)=q_{i}-1$, then setting $x=\theta\left(B_{\lambda} \alpha_{w} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w}^{-1} B_{\lambda}\right), \quad \theta_{r}-1=\left(q_{i}-1\right) x$ and so x is rational. But $q_{i} x^{2}=\lambda\left((s)^{2}\right) \theta_{r}=\theta_{r}$ since θ_{r} and $q_{i} x^{2}$ are both positive rationals. Now

$$
q_{i} x^{2}-\left(q_{i}-1\right) x-1=0
$$

gives $x=-q_{i}^{-1}$ or 1 . Thus $\theta_{r}=q_{i}$ or g_{i}^{-1}, and d_{1} and d_{2} are 1 and q_{i}. (So λ^{w} extends to a character of P). From the structural equations given in chapter 4 it can be seen that the above condition on the elements $h_{i}(x)$ is satisfied for all the Chevalley groups except for $G \frac{1}{2}(q)$ and $A_{2 l}^{1}(q)$ (for the root subgroup corresponding to S_{l}).

In fact for $G_{2}^{\frac{1}{2}}(3), q_{i}=27$ and there exists a character λ for which $\lambda\left(\mathrm{H}_{\mathrm{i}}\right)=-6$, giving $\theta_{\mathrm{r}}=3$ or $\frac{1}{3}$, and $\mathrm{d}_{1}, \mathrm{~d}_{2}$ equal to 7 and 21.

We now combine $8.7,8.8$ and 2.7 in a theorem to conclude chapter 8:
8.9 THEOREM Let ψ be an irreducible component of multiplicity 1 in $\lambda^{G}, \quad S=\left\{w \in W \mid \lambda^{w}=\lambda\right\}, \quad \theta$ the restriction of ψ to $B_{\lambda} k G B_{\lambda}, \theta_{\mathrm{r}}$ as defined in 8.4, and W_{S} as defined in 2.7. Then the degree of ψ is

$$
\psi(l)=\left[S: W_{S}\right]^{-1} W(\underset{\sim}{q}) / W_{S}(\underset{\sim}{\theta})
$$

where $W(t)$ and $W_{S}(\underset{\sim}{u})$ are the Poincare polynomials of W and W_{S} (c.f.2.6), and the coordinates of the vector $\underset{\sim}{q}$ are given by the orders of corresponding root subgroups, and those of θ by corresponding θ_{r}. (In particular the coordinates are powers of p in both cases). (The proof of this is immediate.)

CHAPTER 9

AN AUTOMORPHISM OF $\overline{\mathrm{X}} \mathrm{kG} \overline{\mathrm{X}}$.

In this chapter we prove theorem J, which is given by combining 9.1 and 9.4 .
9.1 THEOREM Define $f: \bar{X} k G \bar{X} \rightarrow \bar{X} k G \bar{X}$ by setting

$$
f\left(\alpha_{w} h\right)=\left(\hat{\alpha}_{w}\right)^{-1} h(-1)^{\ell(w)} q_{w}
$$

and extending this linearly to the whole of $\overline{\mathrm{X}} \mathrm{k} G \overline{\mathrm{X}}$. Then f is an automorphism.

Proof Let $s=s_{i}$ be any fundamental reflection. Then

$$
\begin{aligned}
f\left(\alpha_{s}^{2}\right) & \left.=f\left(q(s)^{2} \bar{X}+(s)^{2} \mathrm{H}_{i} \alpha_{s}\right) \quad \text { (where } q=q_{i}\right) \\
& =q(s)^{2} \bar{X}-(s)^{2} H_{i}\left(\hat{\alpha}_{s}\right)^{-1} q
\end{aligned}
$$

But, as in 6.6, $\hat{a}_{s}^{2}=q(s)^{-2} \bar{X}+q^{\sum\left(\bar{X}(s)^{-1} x(s)^{-1} \bar{X}\right)}$
(summation over non-identity elements of X_{i})

$$
\begin{aligned}
& =q(s)^{-2} \bar{X}+q(s)^{-2} \sum \bar{X} h_{i}(x)(s) \bar{x} \\
& =q(s)^{-2} \bar{X}+H_{i} \hat{\alpha}_{s}
\end{aligned}
$$

Therefore

$$
\left(\hat{\alpha}_{s}\right)^{-2} q^{2}=q(s)^{2} \bar{X}-(s)^{2} H_{i}\left(\hat{\alpha}_{s}\right)^{-1} q
$$

and so

$$
f\left(\alpha_{s}^{2}\right)=\left(\hat{\alpha}_{s}^{-2} q^{2}\right)=\left[f\left(\alpha_{s}\right)\right]^{2}
$$

We now show that for all w $\in W$, $f\left(\alpha_{s} \alpha_{w}\right)=f\left(\alpha_{s}\right) f\left(\alpha_{w}\right)$
Firstly, if $\ell(s w)>\ell(w)$ and $h \in H$ is such that
$(s)(w)=(s w) h$, then (as in 6.5)

$$
\alpha_{\mathrm{s}} \alpha_{\mathrm{w}}=\alpha_{\mathrm{s} w} \mathrm{~h} \text { and } \hat{\alpha}_{\mathrm{w}} \hat{\alpha}_{\mathrm{s}}=\mathrm{h}^{-1} \hat{\alpha}_{\mathrm{s} w}
$$

Thus $f\left(\alpha_{s} \alpha_{w}\right)=f\left(\alpha_{s} h\right.$ h

$$
\begin{aligned}
& =(-1)^{\ell(\mathrm{sw})}\left(\hat{\alpha}_{\mathrm{s} w}\right)^{-1} h \mathrm{q}_{\mathrm{s}}^{-1} \\
& =(-1)(-1)^{\ell(w)}\left(\hat{\alpha}_{\mathrm{s}}\right)^{-1}\left(\hat{\alpha}_{w}\right)^{-1} \mathrm{q}^{-1} \mathrm{q}_{\mathrm{w}}^{-1} \\
& =\mathrm{f}\left(\alpha_{\mathrm{s}}\right) \mathrm{f}\left(\alpha_{\mathrm{w}}\right)
\end{aligned}
$$

If $\ell(s w)<l(w)$ then by what we have just proved,

$$
\mathrm{f}\left(\alpha_{\mathrm{s}} \alpha_{\mathrm{s} w}\right)=\mathrm{f}\left(\alpha_{\mathrm{s}}\right) \mathrm{f}\left(\alpha_{\mathrm{s}} \mathbf{w}\right)
$$

$$
\begin{aligned}
& \text { Therefore } f\left(\alpha_{s} \alpha_{w}\right)=f\left(\alpha_{s}^{2} \alpha_{s} w h\right. \text { (where (s) (sw) = (w)h) } \\
& =f\left(q(s)^{2} \alpha_{s w} h+(s)^{2} H_{i} \alpha_{s} \alpha_{s w} h\right) \\
& =f\left(q(s)^{2} \alpha_{s} w h\right)+f\left((s)^{2} H_{i} \alpha_{s} \alpha_{s} w h\right) \\
& =f\left(q(s)^{2}\right) f\left(\alpha_{s} w h\right)+f\left((s)^{2} H_{i} \alpha_{s}\right) f\left(\alpha_{s} w\right) \\
& =f\left(\alpha_{s}^{2}\right) f\left(\alpha_{s} w h\right) \\
& =f\left(\alpha_{s}\right) f\left(\alpha_{s}\right) f\left(\alpha_{s} w\right) \\
& =f\left(\alpha_{s}\right) f\left(\alpha_{s} \alpha_{s} w h\right) \\
& =\mathrm{f}\left(\alpha_{\mathrm{s}}\right) \mathrm{f}\left(\alpha_{\mathrm{w}}\right)
\end{aligned}
$$

Now a simple induction completes the proof that $f\left(\alpha_{v} \alpha_{w}\right)$ $=f\left(\alpha_{v}\right) f\left(\alpha_{w}\right)$ for all $v, w \in W$, and the rest is clear.

If e is a primitive idempotent in $\bar{X} k G \bar{X}$ affording an irreducible component ψ of l_{x}^{G} then $f(e)$ is also a primitive idempotent, and the corresponding character will be called $f(\psi)$. It will be shown that for each λ, $f(\chi(\lambda))=\zeta(\lambda)$.
9.2 LEMMA Let ψ be an irreducible character of G occurring with multiplicity l in λ^{G}. Then $\psi=f(\psi)$ if and only if ε is trivial on S.

Proof Let θ be the restriction of ψ to $B_{\lambda} k G B_{\lambda}$. Then $\psi=f(\psi)$ if and only if $\theta\left(\beta_{w}\right)=\theta\left(f\left(\beta_{w}\right)\right)$ for all $w \in S ;$ i.e. if and only if $\quad 1=\theta\left(f\left(\beta_{w}\right)^{-1} \beta_{w}\right)$

$$
=\theta\left((-1)^{\ell(w)} q_{w}^{-1} B_{\lambda} \hat{\alpha}_{w} \alpha_{w} B_{\lambda}\right) \quad \text { (see 9.1) }
$$

for all $w \in S$. If ε is trivial on S then by 8.8 (ii) $\theta_{\mathrm{r}}=1$ for all r, and so $\theta_{w}=1$ for all w. Furthermore $(-1)^{\ell(w)}=1$ for all $w \in S$, and so $(-1)^{\ell(w)} \theta_{w}=1$ for all $w \in S$. Therefore $\psi=\mathrm{f}(\psi)$.

Conversely, if $(-1)^{\ell(w)} \theta_{w}=1$ for all $w \in S$ then
since θ_{w} is a positive rational number it follows that $(-1)^{\ell(w)}=1$ for all $w \in S$, and so ε is trivial on S.
9.3 LEMMA Let $J \subseteq\{1,2, \ldots n\}, w \in W$. Then

$$
\left(\chi_{J w}^{\mathrm{G}}, f(x)\right)=\left(\delta(S, J, w),\left.\varepsilon\right|_{s}\right)
$$

Proof By 7.5 (ii), $\left(X, X_{J w}^{\mathrm{G}}\right)=(1, \delta(S, J, w))=1$ and it follows that $X_{J w}$ is the unique common component of $\left(\lambda^{w}\right)^{G_{J}}$ and $\left.X\right|_{G_{J}}$. Therefore $f\left(X_{J w}\right)$ is the unique common component of $\left(\lambda^{w}\right)^{G_{J}}$ and $\left.f(x)\right|_{G_{J}}$. Therefore ($\left.\chi_{J w},\left.f(x)\right|_{G_{J}}\right)$ is zero if $X_{J w} \neq f\left(X_{J w}\right)$: and one if $\quad X_{J w}=f\left(X_{J w}\right)$.
Therefore by 9.2,

$$
\left(X_{J_{w}}^{\mathrm{C}}, f(X)\right)=(1, \varepsilon) \quad \text { (where the inner }
$$

product on the right hand side is taken over the group $W_{J} \cap S^{w}$)

$$
=\left(\delta(S, J, W),\left.\varepsilon\right|_{S}\right)
$$

9.4 THEOREM $\quad f(X(\lambda))=\zeta(\lambda)$

Proof By 9.3, $\left(\varphi_{J}, f(\chi)\right)=\left(\left.\delta_{J}\right|_{\mathrm{s}},\left.\varepsilon\right|_{\mathrm{s}}\right)$
and so

$$
\begin{aligned}
(\zeta, f(x)) & =\Sigma(-1)^{1 \mathrm{~J} \mid}\left(\varphi_{\mathrm{J}}, \mathrm{f}(x)\right) \\
& =\Sigma(-1)^{1 \mathrm{~J} \mid}\left(\left.\delta_{\mathrm{J}}\right|_{\mathrm{s}},\left.\varepsilon\right|_{\mathrm{s}}\right)
\end{aligned}
$$

(summation over all subsets J of $\{1,2, \ldots n\}$)

$$
\begin{aligned}
& =\left(\left.\varepsilon\right|_{\mathrm{s}},\left.\varepsilon\right|_{\mathrm{s}}\right) \\
& =1
\end{aligned}
$$

Let D and W_{S} be as defined in 2.7 and let Γ be the root system of W_{S}. For simplicity assume that k is the complex field.
10.1 LEMMA Let $r=r_{i}$ be a fundamental root with corresponding reflection s, and let $v, w \in W$. If $w(r) \notin \Gamma$ then

$$
B_{\lambda^{w}} \alpha_{s} \alpha_{v}=\lambda^{w}\left((s)(v)(s v)^{-1}\right) \sqrt{q_{s} q_{v} q_{s}^{-1}} B_{\lambda^{w}} \alpha_{s v}
$$

and $\quad \alpha_{v} \alpha_{s} B_{\lambda^{w}}=\lambda^{w}\left((v s)^{-1}(v)(s)\right) \sqrt{q_{v} q_{s} q_{v s}^{-1}} \alpha_{v s} B_{\lambda^{w}}$
Proof We prove only the first of these, since the proof of the other is similar. Firstly, if $\ell(s v)>\ell(v)$ then $q_{s v}=q_{s} q_{v}$ and $\alpha_{s} \alpha_{v}=(s)(v)(s v)^{-1} \alpha_{s v}$, so that the result is trivial. If $\ell(s v)<\ell(v)$ then

$$
\alpha_{s} \alpha_{v}=q_{s}(s)(v)(s v)^{-1} \alpha_{s v}+H_{i}(s)^{2} \alpha_{v}
$$

By $8.8 \quad \lambda^{w}\left(H_{i}\right)=0$, and since $q_{s} q_{s}=q_{v}$ the result follows. 10.2 LJMMA Let $v, W \in W$ and assume that $W^{-1}(r)$ is positive for all positive roots r such that $v(r)$ is a negative root of Γ. Then

$$
B_{\lambda} \alpha_{v} \alpha_{w}=\lambda\left((v)(w)(v w)^{-1}\right) \sqrt{q_{v} q_{w} q_{v}^{-1}} B_{\lambda} \alpha_{v w}
$$

Proof Use induction on $\ell(v)$. The case $\ell(v)=0$ is trivial.
Assume $\ell(v)>0$ and let $v=t s$ where $\ell(t)=\ell(v)-l$
and $s=s_{i}$ is a fundamental reflection. Let a be any positive root such that $t(a)$ is a negative root of Γ. Then a is not equal to r_{i} (since $\left.t\left(r_{i}\right)>0\right)$, and so s(a) is positive. Now vs(a) is a negative root of Γ, and so $\mathrm{w}^{-1}(\mathrm{~s}(\mathrm{a}))>0$. Thus we have shown that $(\mathrm{sw})^{-1}$ (a) is positive for all positive roots a with $t(a)$ negative root of Γ. Now

$$
\begin{aligned}
& \qquad B_{\lambda} \alpha_{v} \alpha_{w}=\lambda\left((v)(s)^{-1}(t)^{-1}\right) B_{\lambda} \alpha_{t} \alpha_{s} \alpha_{w} \\
& =\lambda\left((v)(s)^{-1}(t)^{-1}\right) B_{\lambda} \alpha_{t} B_{\lambda^{t}} \alpha_{s} \alpha_{w} \\
& =\lambda^{t}\left((s)(w)(s w)^{-1}\right) \sqrt{q_{s} q_{w} q_{s}^{-1}} \lambda\left((v)(s)^{-1}(t)^{-1}\right) B_{\lambda} \alpha_{t} \alpha_{s w} \text { (by lo.1 or } 6.6 \\
& \text { since either } w^{-1}(s)>0 \text { or else } t(s)=-v(s) \notin \Gamma \text {) } \\
& =\lambda\left((v)(w)(s w)^{-1}(t)^{-1}\right) \sqrt{q_{s} q_{w} q_{s}^{-1}} \lambda \lambda\left((t)(s w)(v w)^{-1}\right) \sqrt{q_{t} q_{s} w G_{v}^{-1}} B_{\lambda} \alpha_{v w} \\
& \text { by the inductive hypothesis, and on cancellation we obtain } \\
& \text { the required formula. Using } 10.2 \text { we can prove theorems } \\
& F \text { and } G \text { : }
\end{aligned}
$$

10.3 THEOREM The character λ of H may be extended to a linear character of SH . (The extension will also be denoted by " λ ").

Proof Let θ be the restriction to $B_{\lambda} k G B_{\lambda}$ of $X(\lambda)$. For $r \in \Gamma$ define $\eta_{r}=1$ if θ_{r} is a positive power of p and $\eta_{r}=-1$ if θ_{r} is a negative power of p (see 8.8), and for $w \in S$ let $\eta(w)=\pi \eta_{r}$ where the product is over positive roots of Γ negatived by w. It is clear from 8.5 that η is a character of S. Now for $w \in S, h \in H$ define $\lambda((w) h)=n(w)\left|\theta\left(\beta_{w}\right)\right|^{-1} \theta\left(\beta_{w}\right) \lambda(h)$.

Let $w \in S$ and s a fundamental reflection of W_{S} (i.e. the root r corresponding to s is in the base of Γ). Then by 10.2 , if $w(r)>0$

$$
\begin{aligned}
\lambda((w)) \lambda((s)) & =\lambda\left((w)(s)(w s)^{-1}\right) \lambda((w s)) \\
& =\lambda((w)(s)) .
\end{aligned}
$$

If $w(r)<0$ then $w s(r)>0$ and so

$$
\begin{aligned}
\lambda((w)) \lambda((s)) & =\lambda((w s)(s)) \lambda\left((s)^{-1}(w s)^{-1}(w)\right) \lambda((s)) \\
& =\lambda((w s)) \lambda((s)) \lambda\left((s)^{-1}(w s)^{-1}(w)\right) \lambda((s)) \\
& =\lambda\left((w)(s)^{-1}\right)[\lambda((s))]^{2}
\end{aligned}
$$

But

$$
\begin{aligned}
(\lambda((s)))^{2} & =\left|\theta\left(\beta_{s}\right)\right|^{-2} \theta\left(\beta_{s}\right)^{2}=\left|\theta\left(\beta_{s}\right)\right|^{-2} \lambda\left((s)^{2}\right) \theta\left(\hat{\beta}_{s} \beta_{s}\right) \\
& =\lambda\left((s)^{2}\right) \text { since } \theta\left(\hat{\beta}_{s} \beta_{s}\right)=q_{s} \theta_{s} \text { is real }
\end{aligned}
$$

and positive. Thus $\lambda((w)) \lambda((s))=\lambda((w)(s))$ in this case also, and it is now clear that λ is a character of SH.

It is convenient at this point to introduce some new notation. If $r \in \Gamma$ define $p_{r}=p^{c_{r}}$ (see 8.8), and for $w \in S$ define $p_{w}=\Pi p_{r}$, product over positive roots $r \in \Gamma$ such that $w(r)$ is negative. Let

$$
\gamma_{w}=\sqrt{p_{w} G_{w}^{1}} \quad \lambda\left((w)^{-1}\right) \beta_{w} .
$$

10.4 THEOREM Let $w \in S, v \in D$, and r a fundamental root of Γ with corresponding reflection s. Then
(i) $\gamma_{v} \gamma_{w}=\gamma_{v w}$ and $\gamma_{w} \gamma_{v}=\gamma_{w v}$
(ii) $\gamma_{w} \gamma_{s}=\gamma_{w s}$ if $w(r)>0$ $\gamma_{w} \gamma_{s}=p_{r} \gamma_{w s}+\left(p_{r}-1\right) \gamma_{w}$ if $w(r)<0$
$\gamma_{s} \gamma_{w}=\gamma_{s w}$ if $w^{-1}(r)>0$ $\gamma_{s} \gamma_{w}=p_{r} \gamma_{s w}+\left(p_{r}-l\right) \gamma_{w}$ if $w^{-1}(r)<0$.

Proof Elements of D permute the roots in Γ, leaving positive roots positive. Thus there are no positive roots r such that $v(r)$ is a negative root of Γ. Therefore by 10.2

$$
\beta_{v} \beta_{w}=\lambda\left((v)(w)(v w)^{-1}\right) \sqrt{q_{v} q_{w} q_{v}^{-1}} \beta_{v w}
$$

Furthermore $p_{v}=1$ and $p_{w}=p_{v} w$, and so it follows that $\gamma_{v} \gamma_{w}=\gamma_{v w}$. The formulae for $\gamma_{w} \gamma_{v}, \gamma_{w} \gamma_{s}$ when $w(r)>0$, and $\gamma_{s} \gamma_{w}$ when $w^{-1}(r)>0$ also follow easily from 10.2 , and we omit the proofs of these.

Let a be a fundamental root (i.e. fundamental in the root system of W) such that $s(a)<0$, and let w_{1} be the reflection corresponding to a. If $w_{1} \neq s$ then $\mathrm{s}(\mathrm{a}) \neq-\mathrm{a}$ and hence $\mathrm{w}_{1}(\mathrm{~s}(\mathrm{a}))$ is negative. That is, $\left(s w_{1}\right)^{-1}(a)$ is negative, and it follows that $\ell\left(\mathrm{w}_{1} \mathrm{sw}_{1}\right)=\ell\left(\mathrm{sw}_{1}\right)-1=\ell(\mathrm{s})-2$.

Continuing in this way we can find a reduced expression for
s of the form $s=w_{1} w_{2} \ldots w_{m} s_{i} w_{n 1} \ldots w_{2} w_{1}$. Let
$\mathrm{v}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{m}}$ and $\mathrm{u}=\mathrm{v}^{\mathbf{1}}$. If b is a positive root
such that $v(b)$ is a negative root in Γ then $-v(b)$ is a positive root in Γ which is negatived by u and hence by s also. Therefore $-v(b)=r$, and $b=-u(r)=-r_{i}$, contradicting the fact that b is positive. So no such b can exist, and we may apply 10.2 to conclude that

$$
B_{\lambda} \alpha_{v} \alpha_{u}=q_{v} B_{\lambda} \lambda((v)(u))
$$

Therefore

$$
\begin{aligned}
& \alpha_{u} B_{\lambda} \alpha_{v}=q_{v} B_{\lambda v} \lambda((v)(u)) \\
& \text { Now } \quad \gamma_{s}^{2}=p_{s} q_{s}^{-1} \lambda\left((s)^{-2}\right) \lambda\left((s)(u)^{-1}\left(s_{i}\right)^{-1}(v)^{-1}\right)^{2}\left(B_{\lambda} \alpha_{v} \alpha_{s_{i}} \alpha_{u} B_{\lambda}\right)^{2} \\
&=p_{r} q_{s}^{-1} \lambda\left((u)^{-1}\left(s_{i}\right)^{-1}(v)^{-1}\right)^{2} B_{\lambda} \alpha_{v} \alpha_{s_{i}}^{2} \alpha_{u} B_{\lambda} q_{v} \lambda((v)(u)) \\
&=p_{r} q_{s}^{-1} q_{v} \lambda\left((u)^{-1}(v)^{-1}\right) B_{\lambda} \alpha_{v}\left(s_{i}\right)^{-2} \alpha_{s_{i}}^{2} \alpha_{u} B_{\lambda} \\
& \text { But } \quad\left(s_{i}\right)^{-2} \alpha_{s_{i}}^{2}=q_{i} \bar{X}+H_{i} \alpha_{s_{i}}, \text { and so we have } \\
& \gamma_{s}^{2}=p_{r} q_{s}^{-1} q_{v}^{2} q_{i} B_{\lambda}+c \gamma_{s} \quad \text { for some scalar } c \\
&=p_{r} B_{\lambda}+c \gamma_{s}
\end{aligned}
$$

Let θ be the restriction to $B_{\lambda} k \mathrm{~KB}_{\lambda}$ of $\chi(\lambda)$. Then

$$
\begin{aligned}
\theta\left(\gamma_{s}\right) & =\sqrt{p_{r} q_{s}^{-1}}\left|\theta\left(\beta_{w}\right)\right| \eta(w) \\
& =\sqrt{p_{r} q_{s}^{-1}} \sqrt{q_{s} \theta_{r}} \eta(w) \\
& =p_{r} \quad \text { or }-1
\end{aligned}
$$

In either case $\theta\left(\gamma_{s}\right)^{2}=p_{r}+c \theta\left(\gamma_{s}\right)$ gives $c=p_{r}-1$.
Now if $w \in S$ such that $w(r)<0$ then

$$
\begin{aligned}
\gamma_{w} \gamma_{s}=\gamma_{w s} \gamma_{s}^{2} & =\gamma_{w s}\left(p_{r} B_{\lambda}+\left(p_{r}-1\right) \gamma_{s}\right) \\
& =p_{r} \gamma_{w s}+\left(p_{r}-1\right) \gamma_{w}
\end{aligned}
$$

(and similarly $\quad \gamma_{s} \gamma_{w}=p_{r} \gamma_{s w}+\left(p_{r}-1\right) \gamma_{w}$ for w such that $\left.W^{-1}(r)<0\right)$.

We now use 10.4 to determine representations of $B_{\lambda} k G_{\lambda}$. In particular we have the following (from which theorem H follows) :
10.5 THEOREM (i) For any linear representation v of W_{S} there exists a linear representation θ of $B_{\lambda} k W_{s} B_{\lambda}$ such that if r is a fundamental root of Γ with corresponding reflection s, then $\theta\left(\gamma_{s}\right)=-1$ if $\nu(s)=-1$ and $\theta\left(\gamma_{s}\right)=p_{r}$ if $\nu(s)=1$.
(ii) Let n be any irreducible character of D, and θ a linear representation of $B_{\lambda} k W_{S} B_{\lambda}$. Then $B_{\lambda} k G B_{\lambda}$ has an irreducible character κ such that $\kappa\left(\gamma_{v w}\right)=\eta(v) \theta\left(\gamma_{w}\right)$ for all $v \in D, w \in W_{S}$. Corresponding to K there is an irreducible character of G which has multiplicity $\eta(I)$ in λ^{G}, and degree $\eta(l)|D|^{-1} W(\underset{\sim}{q}) / W_{S}(\underset{\sim}{\theta})$.
(iii) D is an abelian p^{\prime}-group.
(iv) There are precisely $|D|$ components of λ^{G} with degree obtained by setting $n(l)=1$ and $\theta_{r}=p_{r}$ for all $r \in \Gamma$ in the formula given in (ii). (The θ_{r} are the coordinates of $\underset{\sim}{\theta})$. These are the only components with degree prime to p, unless W_{S} has an irreducible component W_{1} of the form $[2 \mathrm{~m}]$ or $\left[3^{n \cdot 2}, 4\right]$ (see chapter 2) and for all roots a of this component, $\mathrm{p}_{\mathrm{a}} \mid \mathrm{m}$ or $\mathrm{p}_{\mathrm{a}}=2$ (respectively). Then λ^{G} may have further components with degree prime to p such that $\theta_{a} \theta_{b}=l$ when a and b are in different orbits in the root system of W_{1}.

Proof (i) For $r \in \Gamma$ with corresponding reflection s let $d_{r}=-1$ if $\nu(s)=-1$ and $d_{r}=p_{r}$ if $\nu(s)=1$. Define $\theta\left(\gamma_{w}\right)=\pi d_{r} \quad$ (product over positive $r \in \Gamma$ negatived by $\left.w\right)$ and extend this linearly to the whole of $B_{\lambda} k W_{S} B_{\lambda}$. We use induction on the number of positive $r \in \Gamma$ negatived by w to show that $\theta\left(\alpha \gamma_{w}\right)=\theta(\alpha) \theta\left(\gamma_{w}\right)$ for all $w \in W_{S}$, from which it follows trivially that θ is a representation.

Firstly suppose $w=s$ is the reflection corresponding to a fundamental root r of Γ. Let $v \in W_{S}$. Then if $v(r)>0$,

$$
\theta\left(\gamma_{v}\right) \theta\left(\gamma_{s}\right)=\left(\Pi d_{a}\right) d_{r} \quad \text { (where the product is }
$$

over positive $a \in \Gamma$ negatived by v)

$$
=\left(\Pi d_{s(a)}\right) d_{r} \quad \text { (since it is clear }
$$

that $d_{a}=d_{u(a)}$ for any $a \in \Gamma$ and $u \in W_{S}$, in view of 8.8 (i)) $=\Pi d_{\mathrm{b}} \quad$ (product over positive $b \in \Gamma$
negatived by vs)

$$
\begin{aligned}
&=\theta\left(\gamma_{\mathrm{vs}}\right) \\
&= \theta\left(\gamma_{\mathrm{v}} \gamma_{\mathrm{s}}\right) \\
& \text { If } \quad \mathrm{v}(\mathrm{r})<0 \text { then } \quad \theta\left(\gamma_{\mathrm{v}}\right) \theta\left(\gamma_{\mathrm{s}}\right)=\theta\left(\gamma_{\mathrm{vs}}\right) \theta\left(\gamma_{\mathrm{s}}\right)^{2} \\
&= \theta\left(\gamma_{\mathrm{vs}}\right)\left(p_{\mathrm{r}}+\left(p_{\mathrm{r}}-1\right) \theta\left(\gamma_{\mathrm{s}}\right)\right) \\
&= \mathrm{p}_{\mathrm{r}} \theta\left(\gamma_{\mathrm{vs}}\right)+\left(p_{\mathrm{r}}-1\right) \theta\left(\gamma_{\mathrm{vs}}\right) \theta\left(\gamma_{\mathrm{s}}\right) \\
&= \mathrm{p}_{\mathrm{r}} \theta\left(\gamma_{\mathrm{vs}}\right)+\left(p_{\mathrm{r}}-1\right) \theta\left(\gamma_{\mathrm{v}}\right) \\
&= \theta\left(\gamma_{\mathrm{v}} \gamma_{\mathrm{s}}\right)
\end{aligned}
$$

Hence it follows that $\theta(\alpha) \theta\left(\gamma_{s}\right)=\theta\left(\alpha \gamma_{s}\right)$ for all $\alpha \in B_{\lambda} k W_{S} B_{\lambda}$. Now suppose that w negatives more than one positive root of Γ. Then there exists v which negatives one fewer and a fundamental reflection s of W_{s} such that $w=v s$. Then for any $\alpha \in B_{\lambda} k W_{S} B_{\lambda}$,

$$
\begin{aligned}
\theta\left(\alpha \gamma_{w}\right) & =\theta\left(\alpha \gamma_{v} \gamma_{s}\right) \\
& =\theta\left(\alpha \gamma_{v}\right) \theta\left(\gamma_{s}\right) \\
& =\theta(\alpha) \theta\left(\gamma_{v}\right) \theta\left(\gamma_{s}\right) \quad \text { by the inductive } \\
& =\theta(\alpha) \theta\left(\gamma_{w}\right) .
\end{aligned}
$$

(ii) Let R be a matrix representation of D with character n. For $v \in D, w \in W_{S}$ define $T\left(\gamma_{v}\right)=R(v) \theta\left(\gamma_{w}\right)$ and extend T linearly to the whole of $B_{\lambda} k G B_{\lambda}$. In particular, $T\left(\gamma_{v} \alpha\right)=R(v) \theta(\alpha)$
for all $v \in D$ and $\alpha \in B_{\lambda} k W_{S} B_{\lambda}$. Then T is clearly a representation, since if $v, W \in D$ and $\alpha, \beta \in B_{\lambda} k W{ }_{S} B_{\lambda}$ then

$$
\begin{aligned}
T\left(\gamma_{v} \alpha \gamma_{w} \beta\right) & =T\left(\gamma_{v w}\left(\gamma_{w}^{-1} \alpha \gamma_{w} \beta\right)\right) \\
& =R(v w) \theta\left(\gamma_{w}^{-1} \alpha \gamma_{w} \beta\right)
\end{aligned}
$$

(since by $10.4 \quad \gamma_{w}^{-1} \alpha \gamma_{w} \in B_{\lambda} k W_{S} B_{\lambda}$)

$$
=R(v) R(w) \theta(\alpha) \theta(\beta)
$$

(since θ is a linear representation)

$$
=T\left(\gamma_{v} \alpha\right) T\left(\gamma_{w} \beta\right)
$$

The character k of T obviously has the required property. NOW $\quad \sum q_{v}^{-1} \kappa\left(\hat{\beta}_{v w}\right) \kappa\left(\beta_{v w}\right)=\sum q_{v}^{-1} \eta(v) \eta\left(v^{-1}\right) \theta\left(\hat{\beta}_{v w} \beta_{v w}\right)$

$$
\begin{aligned}
& =\sum \eta(v) \eta\left(v^{-1}\right) \theta_{v w} \\
& =\sum \eta(v) \eta\left(v^{-1}\right) \theta_{w} \quad(\text { see } 2.7)
\end{aligned}
$$

where the summation is over all $v \in D$ and $w \in W_{S}$. Since $\Sigma \eta(v) \eta\left(v^{-1}\right)=|D|$, (ii) now follows from $[7$, theorem 2.4]. (iii) Choose the representation θ which corresponds to the l-character of W_{S}, as in (i). Then for each $r \in \Gamma$, $\theta_{r}=p_{r}$. Hence $W_{S}(\underset{\sim}{\theta})$ is an integer. Using (ii) in the case $\eta=1$ it follows that $|D|$ divides $W(\underset{\sim}{q})$. Hence D is a $p^{\prime-g}$ group. Apply (ii) again for the same θ and any nonlinear irreducible character η of D. The character of G obtained has multiplicity greater than 1 in λ^{G}, and so by 7.8 is not of the form $\zeta(\lambda)$. Therefore by 8.2 it has degree divisible by p. But $W_{S}(\underset{\sim}{\theta})$ is an integer and $W(\underset{\sim}{q})$ is prime to p, and so p must divide $\eta(1)$. This contradicts the fact that D is a p^{\prime}-group. Hence D has no nonlinear irreducible characters, and so is abelian.
(iv) By 8.2 and 7.8 any irreducible component ζ of λ^{G} with degree prime to p occurs with multiplicity l. By
10.4 it is clear that the corresponding linear representation of $B_{\lambda} k G B_{\lambda}$ is composed of a representation η of D and a representation θ of $B_{\lambda} k W_{S} B_{\lambda}$ in the manner described in (ii). If $\theta_{r}=\mathrm{p}_{\mathrm{r}}^{-1}$ for any $r \in \Gamma$ then it can be seen from the factorizations given in [14] that (with the exceptions given in the theorem statement) $W_{S}(\underset{\sim}{\theta})$ has a factor of p in its denominator. (For example, if W_{S} has a component of the form [2m] then $W_{S}(\theta)$ has factors $\left(1+\theta_{a}\right),\left(1+\theta_{b}\right)$ and $\left(1+\theta_{a} \theta_{b}+\theta_{a}^{2} \theta_{b}^{2}+\ldots+\theta_{a}^{m-1} \theta_{b}^{\mathrm{m} \cdot 1}\right)$ where a and b are representatives of the two orbits of the root system [2m]. Since θ_{a} and θ_{b} are powers of p and not equal to l, if $\theta_{a}=p_{a}^{-1}$ the only way to avoid a factor of p in the denominator is if $\theta_{a} \theta_{b}=1$ and p_{a} divides $\left.\left(1+\theta_{a} \theta_{b}+\ldots+\theta_{a}^{m-1} \theta_{b}^{m-1}\right)=m\right)$. If $W_{S}(\underset{\sim}{\theta})$ has a factor of p in its denominator then $p \mid \zeta(1)$, a contradiction. Thus (apart from the exceptional cases) $\quad \theta_{r}=p_{r}$ for all $r \in \Gamma$, which means that $\theta\left(\gamma_{s}\right)=p_{r}$ for the corresponding reflection s (i.e. θ corresponds to the 1-character of W_{S}). The rest follows simply.

Our next aim is to develop the theme of 7.5 (ii) in more detail. In 10.5 (i) and (ii) an irreducible character of G is obtained from linear characters v and η of W_{S} and D. Let us denote this character of G by " $\psi(\nu, \eta, \lambda)$ ". By 10.3 there is a linear character $\nu \eta \lambda$ of $S H$, and so inducing to N we obtain a character $\xi(\nu, \eta, \lambda)$ which is irreducible since for w\&S the restriction to H of $(v \eta \lambda)^{w}$ does not equal the restriction of $\nu \eta \lambda$. More generally, if J is any subset of $\{1,2, \ldots n\}$ the same process yields irreducible characters $\psi_{\mathbf{J}}(\nu, \eta, \lambda)$ of G_{J} and $\xi_{J}(\nu, \eta, \lambda)$
of $N \cap G_{j}$.
Let J, K be two subsets of $\{1,2, \ldots n\}$, and λ_{1}, λ_{2} two linear characters of H. Let $S_{1}=\left\{w \in W_{J} \mid \lambda_{1}^{w}=\lambda_{1}\right\}$ and $S_{2}=\left\{W \in W_{K} \mid \lambda_{2}^{w}=\lambda_{2}\right\}$, and $S_{1}=D_{1} W_{1}, S_{2}=D_{2} W_{2}$ (as previously we had $S=D W_{S}$). For $w \in S_{1}, v \in S_{2}$ define γ_{w} and δ_{v} in the same way as previously we defined γ_{w} for $w \in S$. We now prove theorem I:
10.6 THEOREM If ν_{1}, ν_{2} are linear characters of W_{1}, W_{2}, and η_{1}, η_{2} linear characters of D_{1}, D_{2} then

$$
\left(\psi_{1}^{\mathrm{G}}, \psi_{2}^{\mathrm{G}}\right)=\left(\xi_{1}^{\mathrm{N}}, \xi_{2}^{\mathrm{N}}\right)
$$

where $\psi_{1}=\psi_{J}\left(\nu_{1}, \eta_{1}, \lambda_{1}\right), \psi_{2}=\psi_{K}\left(\nu_{2}, \eta_{2}, \lambda_{2}\right), \xi_{1}=\xi_{J}\left(\nu_{1}, \eta_{1}, \lambda_{1}\right)$ and $\xi_{2}=\xi_{K}\left(\nu_{2}, \eta_{2}, \lambda_{2}\right)$.

First note that both inner products in the statement of the theorem are zero unless $\lambda_{2}=\lambda_{1}^{w}$ for some $w \in W$. So assuming $\lambda_{2}=\lambda_{1}^{w}=\lambda^{w}$, let θ be the restriction of $x(\lambda)$ to $B_{\lambda} k G B_{\lambda}$, and θ^{w} its restriction to $B_{\lambda^{w}} k G B_{\lambda^{w}}$. Then for any $\alpha \in B_{\lambda} k G_{\lambda}$,

$$
\begin{aligned}
\theta(\alpha) B_{\lambda} X_{\mu}^{w_{o}} & =\alpha B_{\lambda} X_{\mu}^{w_{o}} \\
& =\alpha_{w}^{-1} \alpha \alpha_{w} B_{\lambda^{w}} X_{\mu}^{w_{o}}
\end{aligned}
$$

(since there is a scalar c with $\alpha_{w} \mathrm{~B}_{\lambda^{\mathrm{w}}} \mathrm{X}_{\mu}^{\mathrm{w}}{ }^{\mathrm{o}}=\mathrm{cB}_{\lambda} \mathrm{X}_{\mu}^{\mathrm{w}_{\mathrm{o}}}$), and hence $\theta(\alpha)=\theta^{w}\left(\alpha_{w}^{-1} \alpha \alpha_{w}\right)$. Now let r be any root and suppose $r=v\left(r_{i}\right)$ for some fundamental r_{i}, and $v \in W$. Then $\quad \theta_{w(r)}=q_{i} \theta\left(B_{\lambda} \alpha_{w v} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{w v}^{-1} B_{\lambda}\right)$

$$
=q_{i} \theta\left(B_{\lambda} \alpha_{w} \alpha_{v} \bar{X}\left(s_{i}\right)^{-1} \bar{X}\left(s_{i}\right) \bar{X} \alpha_{v}^{-1} \alpha_{w}^{-1} B_{\lambda}\right) \quad \text { (cf. 8.5) }
$$

$$
=\theta_{\mathrm{r}}^{\mathrm{w}}
$$

This obviously holds for any element of $S_{1} W_{2}$.
The next step is to prove that $S_{1} W_{S}$ contains an element t such that $t(r)>0$ for all positive $r \in \Gamma_{2}$ (the root system of W_{2}) and $t^{-1}(r)>0$ for all positive
$r \in \Gamma_{1}\left(\right.$ root system of $\left.W_{1}\right)$. In fact let t be an element of $S_{1} w S_{2}$ such that the number of positive $r \in \Gamma_{2}$ negatived by t plus the number of positive $r \in \Gamma_{1}$ negatived by t^{-1} is minimal. Suppose that $t^{-1}(r)<0$ for some fundamental $r \in \Gamma_{1}$ with corresponding reflection s. Then (st) ${ }^{-1}$ negatives one fewer positive root of Γ_{1} than does t^{-1} (cf. proof of 2.4). Let a be a positive root in Γ_{2} negatived by st but not by t. Then $t(a)$ is a positive root negatived by s, and since $s \in W_{J}, t(a)$ is in the root system of W_{J}. Since $\theta_{a}^{t} \neq 1, \theta_{t(a)} \neq 1$, and so $t(a) \in \Gamma_{1}$. But the only positive root in Γ_{1} negatived by s is r, and so $t(a)=r . \quad$ But this contradicts $t^{-1}(r)<0$. Thus there can be no such a, and it follows that the number of positive roots in Γ_{2} negatived by st plus the number of positive roots in Γ_{1} negatived by $(s t)^{-1}$ is less than the same number for t, and this contradicts the definition of t. Therefore $t^{-1}(r)>0$ for all positive $r \in \Gamma_{1}$, and similarly $t(r)>0$ for all positive $r \in \Gamma_{2}$.

We now investigate $t^{-1} S_{1} t \cap S_{2}$. Let Ω be the set of roots $r \in \Gamma_{2}$ such that $t(r) \in \Gamma_{1}$ and let V be the subgroup generated by the corresponding reflections. For $r \in \Omega, r>0$, let $r=\sum \lambda_{a} a$ where each a is a fundamental root of Γ_{2} and the λ_{a} are positive scalars. Then $t(r)=\Sigma \lambda_{a} t(a)$ and since $t(r)$ is in the root system of W_{J} so is each $t(a)$. Hence each a is in Ω. Therefore V is a parabolic subgroup of W_{2} (generated by a set of fundamental reflections of Γ_{2}). If $v \in t^{-1} S_{1} t \cap S_{2}$ and $v=d x, d \in D_{2}, x \in W_{2}$ then $r \mapsto t(r)$ maps the positive roots in
Γ_{2} negatived by v onto the positive roots in Γ_{1} negatived by tvt ${ }^{-1}$. Fach such r is in Ω, and so $x \in V$. Further, $t^{-1} t^{-1}$ negatives no positive root of Γ_{1}, and so $t d t^{-1} \in D_{1}$. It can thus be seen that $t^{-1} S_{1} t \cap S_{2}=E V$ where $E=t^{-1} D_{2} t \cap D_{2}$.

For $r \in \Gamma_{1}, v \in S_{1}, p_{r}$ and p_{v} are defined as in the discussion preceding 10.4, and the character η of S_{1} as in the proof of lo.3. (η is not related to η_{1} or η_{2}). Define m_{r}, m_{v} for $r \in \Gamma_{2}, v \in S_{2}$ and a character k of S_{2} in a corresponding fashion. If $r \in \Omega$ with reflection s then $\theta_{\mathrm{r}}=\theta_{\mathrm{t}}^{\mathrm{w}}(\mathrm{r})$ and so $\mathrm{m}_{\mathrm{r}}=\mathrm{p}_{\mathrm{t}}(\mathrm{r})$ and $\mathrm{k}(\mathrm{s})=n\left(t s t^{-1}\right)$. Further, if $v \in t^{-1} S_{1} t \cap S_{2}$ then $m_{v}=p_{u}$, where $u=t v t^{-1}$, and $n(u)=k(v)$ From l0.2,

$$
B_{\lambda} \alpha_{t} \alpha_{v}=\sqrt{q_{v} q_{u}^{-1}} \lambda\left((t)(v)(t)^{-1}(u)^{-1}\right) B_{\lambda} \alpha_{u} \alpha_{t} \quad\left(\sim B_{\lambda} \alpha_{u t}\right)
$$

(n.b. If $r>0$ it is impossible for $t(r)$ to be a negative root of Γ_{1}).

Thus $\theta^{w}\left(B_{\lambda} w \alpha_{v}\right)=\sqrt{q_{v} q_{u}^{-1}} \lambda\left((t)(v)(t)^{-1}(u)^{-1}\right) \theta^{w}\left(\alpha_{t}^{-1} \beta_{u} \alpha_{t}\right)$

$$
=\sqrt{q_{v} q_{u}^{-1}} \lambda\left((t)(v)(t)^{-1}(u)^{-1}\right) \theta\left(\beta_{u}\right)
$$

and so $\lambda_{2}((v))=\lambda_{1}\left((t)(v)(t)^{-1}\right)$. Also

$$
\begin{aligned}
\delta_{v} & =\sqrt{m_{v} q_{v}^{-1}} \lambda_{2}\left((v)^{-1}\right) B_{\lambda^{w}} \alpha_{v} \\
& =\sqrt{p_{u} q_{v}^{-1}} \lambda_{1}\left((t)(v)^{-1}(t)^{-1}\right) \sqrt{q_{v}} \overline{q_{u}^{-1}} \lambda\left((t)(v)(t)^{-1}(u)^{-1}\right) \alpha_{t}^{-1} \beta_{u} \alpha_{t} \\
& =\alpha_{t}^{-1} \gamma_{u} \alpha_{t} .
\end{aligned}
$$

Let θ_{1} be the restriction to $B_{\lambda} k G_{J} B_{\lambda}$ of ψ_{1}, θ_{2} the restriction to $B_{\lambda} w G_{K} B_{\lambda} w$ of ψ_{2}, and e_{1}, e_{2} the corresponding idempotents. Suppose it is not true that $\eta_{1} \nu_{1} \lambda_{1}\left((t)(v)(t)^{-1}\right)=\eta_{2} \nu_{2} \lambda_{2}((v))$ whenever $v \in t^{-1} S_{1} t \cap S_{2}$. Then either $\eta_{1}\left(t v t^{-1}\right) \neq \eta^{\prime}(v)$ for some $v \in E$ or else $v_{1}\left(t v t^{-1}\right) \neq v_{2}(v)$ for some fundamental reflection $v \in V$. In either case it is clear from 10.5 (i) and (ii) that $\theta_{1}\left(\gamma_{u}\right) \neq \theta_{2}\left(\delta_{v}\right)$ (where $u=t^{\prime} t^{-1}$). However
$\theta_{1}\left(\gamma_{u}\right) e_{1} \alpha_{t} e_{2}=e_{1} \gamma_{u} \alpha_{t} e_{2}=e_{1} \alpha_{t} \delta_{v} e_{2}=e_{1} \alpha_{t} e_{2} \theta_{2}\left(\delta_{v}\right)$ and so $e_{1} \alpha_{t} e_{2}=0$.

On the other hand, suppose

$$
\eta_{1} v_{1} \lambda_{1}\left((t)(v)(t)^{-1}\right)=\eta_{2} \nu_{2} \lambda_{2}((v))
$$

for all $v \in t^{-1} S_{1} t \cap S_{2}$. Then using 10.5 (i) and (ii) and the fact that $p_{u}=m_{v}$ it follows that $\theta_{1}\left(\gamma_{u}\right)=\theta_{2}\left(\delta_{v}\right)$ whenever v is a fundamental reflection of V or an element of E; hence it holds for all $v \in t^{-1} S_{1} t \cap S_{2}$ (with $u=t v t^{-1}$). Let A be a set of representatives of the $t^{-1} S_{1} t \cap S_{2} \backslash S_{2}$ cosets, such that for all $x \in A, x^{-1}(r)>0$ for all positive $r \in \Omega$. Then $e_{2} \sim f e$, where $f=\sum m_{v}^{-1} \theta_{2}\left(\delta_{v-1}\right) \delta_{v}$ $\left(v \in t^{-1} S_{1} t \cap S_{2}\right)$ and $e=\sum m_{x}^{-1} \theta_{2}\left(\delta_{x-1}\right) \delta_{x} \quad(x \in A)$. Now $e_{1} \alpha_{t} e_{2} \sim e_{1}\left(\alpha_{t} f \alpha_{t}^{-1}\right) \alpha_{t} e \sim e_{1} \alpha_{t} e$.

But for all $y \in S_{1}, x \in A$

$$
B_{\lambda} \alpha_{y} \alpha_{t} \alpha_{x} \sim B_{\lambda} \alpha_{y t} \alpha_{x} \sim B_{\lambda} \alpha_{y t x} \quad \text { (since } x^{-1}
$$

negatives no positive root of $t^{-1}\left(\Gamma_{1}\right)$) and thus clearly $e_{1} \alpha_{t}$ e $\neq 0$.

We can now complete the proof of lo.6. For any coset $S_{1} w_{2}$ such that $\lambda_{1}^{w}=\lambda_{2}$ we have chosen a representative t with $t(r)>0$ when r is a positive root of Γ_{1} and $t^{-1}(r)>0$ when r is a positive root of Γ_{2}; now let $t_{1}, t_{2}, \ldots t_{m}$ be all the representatives so obtained for the various cosets. Then as in the proof of 7.4, $e_{1} \mathrm{kGe}_{2}$ has a basis consisting of those $e_{1} \alpha_{t_{i}} e_{2}$ which are nonzero. Hence the dimension equals the number of i such that $\eta_{1} \nu_{1} \lambda_{1}\left(\left(t_{i}\right)(v)\left(t_{i}\right)^{-1}\right)=\eta_{2} \nu_{2} \lambda_{2}((v))$ for all $v \in t_{i}^{-1} S_{1} t_{i} \cap S_{2}$, and this is just the number of cosets $S_{1} \mathrm{HwS}_{2} \mathrm{H}$ (w w) such that $\eta_{1} \nu_{1} \lambda_{1}\left((w) x(w)^{-1}\right)=\eta_{2} \nu_{2} \lambda_{2}(x)$ for
all $x \in w^{-1} S_{1} H w \cap S_{2} H$ (obviously this can only occur when $\lambda_{1}^{w}=\lambda_{2}$).

$$
\text { Thus } \begin{aligned}
&\left(\psi_{1}^{\mathrm{C}}, \psi_{2}^{\mathrm{G}}\right)=\operatorname{dim} \mathrm{e}_{1} \mathrm{kGe}_{2} \\
&=\text { the number of } \mathrm{S}_{1} \mathrm{H} \backslash \mathrm{~W} / \mathrm{S}_{2} \mathrm{H} \text { cosets with } \\
& \text { the above property } \\
&=\left(\xi_{1}^{\mathrm{N}}, \xi_{2}^{\mathrm{N}}\right) \quad \text { by Mackey's theorem }
\end{aligned}
$$

and the proof of 10.6 is complete.

BIBLIOGRAPHY

1.

Burrow, M.D.: A generalization of the Young diagram. Can. J. Math. 6 498-504 (1954).

Carter, R.W.: Simple groups and simple Lie algebras. J. London Math. Soc., 40, 193-240 (1965). Chevalley, C.: Séminaire, Classification des groupes de Lie algebriques (Exposé 14) Paris, 1956-1958.

Chevalley, C.: Sur certains groupes simples. Tôhuko Math. J. 11 Ser. 7, 14-66 (1965).

Coxeter, H.J.M. and Moser, O.J.: Generators and relations for discrete groups, 2nd ed., Springer-Verlag, Berlin 1965.

Curtis, C.W.: The Steinberg character of a finite group with a (B,N)-pair. J. Algebra 4, 433-441 (1966).

Curtis, C.W. and Fossum, T.V.: On centralizer rings and characters of representations of finite groups. Math. Z. 107, 402-406 (1968).

Curtis, C.W., Iwahori, N. and Kilmoyer, R.: Hecke algebras and characters of parabolic type of finite groups with BN pairs. Inst. haut. Étud. sci. Publ. math 40, 81-116 (1971).

Dagger, S.W.: A class of irreducible characters for certain classical groups. J. London Math. Soc., (2), 2, 513-520 (1970).

Feit, W. and Higman, G.: The nonexistence of certain generalized polygons. J. Algebra l, ll4-131 (1964).
11.
12.

Green, J.A. and Lehrer, G.I.: On the principal series characters of Chevalley groups and twisted types. (unpublished).

Howlett, R.B.: On the degrees of Steinberg characters of Chevalley groups. Math. Z. 135, 125-135 (1974).

Howlett, R.B.: Some irreducible characters of groups with $B N$ pairs. (to appear in J. Algebra) Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann. 199, 161-174 (1972).

Matsumoto, H.: Générateurs et relations des groupe de Weyl généralisés. C.r. Acad. Sci. Paris 258, 3419-3422 (1964).

Richen, F.: Modular representations of split BN pairs. Trans. Amer. Math. Soc. l40, 435-460 (1969).

Solomon, L.: The orders of the finite Chevalley groups. J. Algebra 3, 376-393 (1966).

Steinberg, R.: Endomorphisms of linear algebraic groups. Amer. Math. Soc. Memoirs 80 (1968).

Steinberg, R.: Lectures on Chevalley groups. Yale University, 1967.

Tits, J.: Algebraic and abstract simple groups. Ann. of Math., ll Ser. 80, 313-329 (1964). Yokonuma, T.: Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini. C.r. Acad. sci. Paris 264, 344-347 (1967).

Summary, ind page, 2.7 kG , not kg .

$$
" \quad \text { l.b.9 }
$$

p.3, 2.1
p.11, Theorem 3.2
p.12, 2.7
p. 16, et. seq.
p.30, end

$$
\begin{aligned}
\text { p.32, } & \text { z.b. } 8 \\
\text { p. } 49, & \tau . b .5 \\
& \tau . b .4
\end{aligned}
$$

p.53, Footnote to 10.3 p.56, Theorem 10.5

$$
\mathrm{p} .60,2 . \mathrm{b} .11
$$

$$
\mathrm{p} .59, \quad \text { t.b. } 3
$$

"component ψ of $\lambda^{G_{J}}$ with multiplicity 1 in $\lambda^{G_{J}}$ ".
Add "stabilized by D " to end of line 1 . Add "where $\ell(W)$ is the minimum length for W as a product of the s_{i} (c.f. $2.1 \& 2.2)^{\prime \prime}$.
Add in parenthesis "The involutions s_{1}, S_{2}, ... S_{n} of definition 3.1 become fundamental reflections, \& $r_{1}, r_{2}, \ldots r_{n}$ are the corresponding roots",
The group U referred to in theorem 4.I and its proof should be X.
(Versions of theorem B appear in the
literature: see [11] or [19] as well as
[9])"
$k G_{j} e$, not kGe.
$q_{s w}$, not $q_{s w}^{-1}$.
q_{w}, not $q^{-1} q_{w}^{-1}$.
: "See also Kilmoyer, R., Notice 711-20-46,
A.M.S. Notices 21."
(i) Add "stabilized by D" to line I
(ii) Add "stabilized by D " to end of list sentence.

Replace by

$$
\theta(\alpha) B_{\lambda w} X_{\mu}^{w_{0}}=\alpha_{w}^{-1} \alpha \alpha_{w}^{B} \lambda^{w} X_{\mu}^{w_{0}}
$$

Between the sentences insert "(Here for $w \in, \quad v \in D, \quad v \eta(W v)=v(w) n(v)$. $\quad v n$ is a character since v is stabilized by $D)^{\prime \prime}$. Should be $\theta_{t(r)}=\theta_{r}^{w}$

