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sSummary

Let G be a finite group with a split BN pair at
characteristic p (as defined in [161), let H = BNN,
W= DN/H and X the Sylow p-subgroup of B. Thus G may
be any of the finite Chevalley groups, including the twisted
types. We make an additional assumption concerned with the
derived group (commutator subgroup) of X, and show
(theorem A) that with a few exceptions the Chevalley groups
and twisted types do satisfy this condition. This thesis
is chiefly concerned with irreducible characters of ¢
which are components of the character li (induced from the
principal character of X).

Specifically, let A be a linear character of H
and extend A to B by defining A(x) = 1 for all <x€X.
Let u be a linear character of Y (the product of the
negative root subgroups) which is nontrivial on the root
subgroup X. . whenever r 1is fundamental. There exists
an irreducible character y(A,u) of ¢ which has multi-
plicity 1 in A% (theorem B; these characters were dis-
covered by Dagger [9]). Generalizing the isometry argument
used by Curtis in [6] another character ¢ (\,u) is con-
structed which also has multiplicity one in A% (theorem C).
As a by-product we derive a formula for the multiplicity with
which a linear character of a Sylow p-subgroup occurs in the
restriction of an irreducible component of A¢ (theorem D).
It is shown that any component of li with degree prime to

p 1is of the form ¢ (Xx,pn) (theorem E).

(i)



Let k Dbe the complex field and B, the primitive
idempotent in kB affording the character ). We use
the technique (used by Curtis, Iwahori and Kilmoyer [8])
of investigating components of A€ by investigating
characters of the Hecke algebra By kGB, . Irreducible com-
ponents of A¢ with multiplicity m restrict to irreduc-
ible characters of BpkgB, of degree m (Curtis and Fossum
[71). Thus the existence of the characters x(X,u) and
c(A,u) guarantees the existence of linear representations
of B, kGB,. The structure of B,kGB, is closely related
to that of kSHy, where S = {w€W|AY=)A} and Hx.= ZA(h”')h,
and we are able to deduce the existence of a linear represent-
ation of SH which extends )\ (theorem F).

It is also proved (theorem G) that S is the split
extension of Ws by D where D 1is an abelian p' -group
and Ws a Weyl subgroup of W, and we give a set of rela-
tions which cetermine the multiplication of basis elements
of B, kGB, . In theorem H we obtain a formula for the
degrees of components of multiplicity one in ¢ and prove
that in most cases there are precisely |ID| components with
degree prime to p, all having the same degree. For any

°7  there

parabolic subgroup G; and any component ¢ of A
exists a corresponding irreducible character £ of NNG;y ;
the correspondence y¢ ¢ ¢N is an isometry between the
spaces generated by these characters (as J,\ vary)
(theorem I).

Finally, an automorphism of order 2 of XkGX is
obtained which provides an alternative method of constructing

the ¢(x,n) from the x(A,n) (theorem J), and shows that for

each component of A6 there is a "dual" component.



This thesis contains no material which has
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CHAPTER I

STATEMENTS OF THE MAIN THEOREMS

THEOREM A Let G be any finite Chevalley group (of

normal or twisted type) other than B (2), Ce (2), Fu(2), G2(2),

G,(3) or Fi(2) (in the notation of [2]). Let Xi,X2,...%n
be the fundamental root subgroups of G. Then the natural
map IX; /Xi - X/X is an isomorphism, and all root subgroups

’

for non-fundamental positive roots are contained in X .
(The prime denotes "commutator subgroup").

In all the remaining theorems G will be an arbitrary
finite group with split BN pair satisfying this condition

on X, and A will be a linear character of B with

kernel containing X. For each w € W define
AW (hx) = A(whw ') (h€H, x€X) so that A" 1is another such
linear character of B. Let S = {w€W|Av=)l}.

THEOREM B For each fundamental root rj choose a nontrivial
linear character y; of Y;, the root subgroup corresponding
to -rj. Let J < {1,2,...n}, G; the corresponding para-

bolic subgroup, Y the product of the negative root subgroups

in G,, and u; the linear character of Y extending each

Uj for i1€J and trivial on Y; for idJd. Then for each
we€W, (A¥)%1  and (1)€Y have a unique common component
X;w, and it has multiplicity one in each.

THEOREM C For any subset J of {1,2,...n} 1let W, be
the corresponding parabolic subgroup and define ¢y = Zx?v,

where v runs through a set of representatives of the

S\W/W, cosets. Then ¢ = Z(-l)'”(pJ (summation over all
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subsets J) 1is an irreducible character of G occurring
with multiplicity 1 in AC,

THEOREM D Let o be any component of A¢ and a the

restriction of ¢ to Y (with Y as defined in theorem B).

Then for any J < {1,2,...n},
(a,uy) = (0,0;).

(n.b. this is the usual inner product for characters).
THEOREM E Any irreducible component of ls which cannot
be obtained by the method given in theorem C has degree
divisible by p.
THEOREM F The character X of H may be extended to a
linear character of SH. (One particular extension will
be denoted by "A").
THEOREM G (i) S is the split extension of Ws by D,
where Ws 1s a Weyl subgroup of W and D an abelian
p -group.

(ii) Let T Dbe the root system of Wg. Then
B,kGB, has a basis {vy, |w€S} such that if we€S, v€D, and

r is a fundamental root of T with corresponding reflect-

ion s,
(@) v, v, =¥, and Y v, =Y
(b) Y. Y. T Yo if wi(r) is positive
Y. = B Y, T (pr—l)Yw if w(r) is negative,
(c) Y, Y = Y. if w ' (r) is positive
Y, Y, =P Y, t (p,-Ly if w ' (r) 1is negative.

The constants p, are nonnegative integral powers of p

such that p,=p, 1f a and b are in the same S-orbit of



3.

THEOREM H (i) Let v be any linear character of Wy
and 1n any linear character of D. Then there exists an
irreducible character ¢ (v,n,A) of G which has multi-
plicity 1 in A® and degree given by |D|™'W(q)/Ws (8).
Here W(t) and Wg (u) are the Poincare polynomials of W
and Ws. Thus u has one component for each Wg-orbit

~

of TI'; 8 is calculated by setting the component corres-

ponding to r€l' equal to p, if v(s) =1 and equal to
p:' if wv(s) = -1 (where s is the reflection corres-
ponding to r). The components of q are just the ord-
ers of corresponding root subgroups. Any component of

multiplicity 1 in A® is of the form Y (v,n,A).

(ii) There are precisely |D| components of
A¢ with degree prime to p, namely the characters
¥(1,n,X) as n varies through all linear characters of D,
except that if Wg has a Weyl subgroup which is dihedral
of order 4m and ©p, |m for all roots a of this subgroup,
then A® may have further components with degree prime to p.
THEOREM I Corresponding to the character y(v,n,A) of G
there is an irreducible character &(v,n,A) of N, given
by inducing the character wvnA of SH. Similarly for any
parabolic subgroup G; and any component ¢ of multiplic-
ity 1 in AT there exists an irreducible character £ of
NNG; , and the correspondence ¢ < gN is an isometry be-
tween the inner product spaces generated by these characters
(as J,\X vary).
THEOREM J There exists an automorphism £ of XkGX of
order two such that for all A,y; if e 1is a primitive idem-
potent in XkGX affording the irreducible character x of G
defined in theorem B, then f(e) affords the character ¢ of

theorem C.



CHAPTER 2

FINITE GROUPS GENLRATED BY REFLECTIONS

In this chapter some standard results on root systems
and reflection groups are listed. More detailed descript-
ions can be found in [3] and [18].

Let V be a real n-dimensional FEuclidean space with

inner product ( , ). For r€V the orthogonal linear
transformation
s: v v - 2.0 L r
(r,r)
is the reflection in the hyperplane orthogonal to r. A

root system A in V is a finite set of vectors which
generate V such that:

(1) For each r€A, -r€A, but no other multiple of
r 1is contained in A.

(2) TIf reA and s 1is the reflection in the
hyperplane orthogonal to r, s(A) = A.
The elements of A are called roots and the reflections
corresponding to the roots generated a finite group W,

called a finite group generated by reflections or g.g.r.

If x is a fixed but arbitrary vector in V satisfying
(x,r) # 0 for all rehA, we define

At = {reA | (x,r) > 0}
the set of positive roots, and

A = {rer | (x,r) < 0}
the set of negative roots. Any root system has a base
which is a subset 1©m of A" satisfying

(3 7= A{r;,r2,...r,} 1s a basis of V,
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n

(4) If r = ) t;jr; 1is an element of A, then
i=1

all the t; are nonnegative or all nonpositive.

The elements of 7w are called fundamental roots, and the

corresponding reflections s:,s82,...8;, fundamental reflec-
tions. It can be proved that any root is the image of a
fundamental root under the action of some WwEW.

2.1 THEOREM (Coxeter [5,89.3]) W is generated by

S1/,S2,...5n subject to the defining relations
(sisj) i =1 forall i,j 1 <1i < 3j <n
where n;j is the order of s; s; in W.

For w&€W define 2(w) to be the least m such

that there exists an expression

W = WiW2...Wn (w;, € {s1,82...8,}
for each 1i)
for w as the product of fundamental reflections. Such
an expression with m = {(w) is called reduced.
2.2 LEMMA (Solomon [17 lemma 11) If wé€W and 1<i<n
then (ws;) = 2(w) + 1 1if w(r;) 1is a positive root, and
L(ws;) = 2(w) - 1 if w(r;) 1is a negative root. Similarly

L(s;w) = 2(w) + 1 if w'(r) € AY and (sjw) = 2(w) - 1
if wl(r;) € A .

2.3 COROLLARY If w;ws...Wm 1s a reduced expression for

w, and if a;,a;...ay are the fundamental roots correspond-
ing to Wy ,W3,...Wyn (i.e. 1f w; =s; then ai=r;) then the
positive roots r such that w(r) is negative are:

AW (@me 1) 7 WmWiae 1 (@me 2 ) 70 e o s WinWnie 1 -0 oWz (81)

In particular for each w # 1 there is a fundamental root

r; (= am) such that w(r;) 1is negative.



Let I be a set of roots and suppose that the
corresponding reflections generate a subgroup T of W.
Let Q = T(T). Then { 1is a root system for T acting
on the subspace of V spanned by . The positive roots
of { can be chosen to be those which are positive in A.
Hence if P is the set of fundamental roots for Q P c AT,
2.4 LEMMA Each coset wT (w€W) contains unique elements
vy and v, such that v, (r) is positive and v, (r) neg-
ative for all positive roots req.

Proof It is well known that if r is a fundamental root
and s the corresponding reflection then s permutes

the positive roots other than r. Let we&W and choose

v, € WI' which negatives a minimal number of positive roots

in €, and suppose that v;(r) is negative for some r in
P. Then if s is the reflection corresponding to r,
vis(r) = v, (-r) = -v,; (1) is positive,

and since
{aja€n, a is positive, afrl={s(a) |a€R, a is positive, a#r}
it follows that the number of positive a€Q-{r} such that

vi(a) 1is negative equals the number of positive a€Q-{r}

such that v;s(a) is negative. Thus v;s negatives fewer
positive roots in Q than does v,, a contradiction since
vis € wT. Therefore v, negatives no element of P, and

therefore no positive linear combination of elements of P
either, as required. To prove uniqueness, assume VET and
that v,;v also does not negative any positive root in .
If v#1 there exists a positive root r€Q with v(r) nega-

tive. Since wv;v(r) 1is positive, -v(r) is a positive



root in § negatived by V.. This is a contradiction, and
so v=1 and hence v,;v = Vv;.

A similar proof applies for v,, which is character-
ized as the element of wT which negatives a maximal number

of positive roots in .

2.5 LEMMA Let J < {1,2,...n} and W; the group genera-
ted by the s; for i€J. Then {r; |i€J} 1is a base for
the root system of W,. Each coset wW; (w€W) contains

exactly one v such that v(r;) is positive for all i€J.
In particular W; contains a unique involution w; which
maps the roots {r; |i€J} to the roots {-r; [1€J}, and
there exists wo, € W mapping {r;i |l < i < n} to

{-r; |1 < i < n}.

The proof of this (which is similar to the proof
of 2.4) follows from 1.12 and 1.16 of [18].

A g.g.r. is said to be reducible if its root system
can be divided into two nonempty subsets such that all the
roots in one are orthogonal to all the roots in the other.

In this case the group is a nontrivial direct product of

two smaller g.g.r.'s. Conversely if W; and W, are two
g.g.r's acting on Euclidean spaces V; and V, respectively,
then W; X W, is a g.g.r. acting on the direct sum of V,

and V, (making V, orthogonal to V). The root system
of W, X W, 1is the union of the root systems of W, and W;.
The irreducible g.g.r.'s have been classified by Coxeter.

Using the notation of [5] they are:
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Symbol Lie Algebra Number of generators Diagram

[(3n-1] An n=>1 ——— L ——
[3"-2,4] B, and C, n > 2 . -
[3n-3: 1, 1] Dy n > 4 ——— _h4<

[r] G, if r=6 2 —

[3,5] - 3 =
[3,3,5] - 4 s
[3,4,3] Fy 4 e

(3% 20 1] Ee 6 P
[ 3° 2 %] E, 7 s
[3%:2: 1] Eg 8 R

Certain g.g.r.'s are Weyl groups of Lie algebras and for
convenience the correspondence is given in the table. The
correspondence is relevant since Chevalley groups (which are
the topic of chapter 4) are constructed from Lie algebras.
Furthermore there is a theorem of Feit and Higman [10] that
only those g.g.r.'s which are Weyl groups of Lie algebras
and the dihedral group of order 16 (i.e. [8] in the notation
of the above table) can be Weyl groups of BN pairs (BN pairs
will be defined in chapter 3). The diagram of a g.g.r is
obtained from the generators and relations given in theorem
2.1 by placing one node for each generator and joining the
ith and Jjth nodes by a bond of strength n;j. Bonds of
strength two are omitted, and unmarked bonds are understood
to have strength 3.

2.6 DEFINITION Let W be a g.g.r. with root system A.

IL.et the orbits of W on A be Qi1, Q2,...0m. For each

wEW let N; (w) be the number of positive roots in
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negatived by w. The Poincare polynomial of W 1is de-

fined to be

N N, N
Wit) = 5 £, 0 (W, N0 Em)

(where t = (t1,t2,..-tm)) .

(WEW)

For the purpose of computing values taken by these
polynomials it is useful to be able to factorize them, and
for this the reader is referred to [14]. In fact the
Poincare polynomial of a reducible g.g.r. is the product
of the Poincare polynomials of the component irreducible
g.g.r.'s, and the factors of each of the Poincare poly-
nomials of irreducible g.g.r.'s are listed in [14].

Now suppose that S 1is any subgroup of the g.g.r.W,
and that for each root r there exists ©6,€k (where k
is any field) such that

(1) O = Ow(r) for all r€A and we€S

(ii) 6, 1 if the reflection s corresponding to
r 1is not in S.
Let 6, = I8, where the product is over all positive roots
r negatived by W. Let Wg be the subgroup of S gener-
ated by the reflections corresponding to roots r such that

6, # 1. Then we have the following result, which will be

T

used in chapter 8:

2.7 LEMMA (i) Let D = {ve€sS|v(r) 1is positive for all

positive roots r of Wgl. Then D is a subgroup of S
which normalizes Wy, S=DWs, and DNWs=1

(ii) 7 0w = [S:WslWg(0) (i.e. the value taken by Ws (t)
we S ~ ~

when t; is replaced by 6,, where r 1is any root in the

corresponding Wg-orbit).
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Proof (i) From 2.4 it is clear that S=DWs and DnNWg=1l.
Let v,w€D and let r be a positive root of Ws. Then
w(r) > 0 (since we€D), and w(r) is a root of Wy since
Owery = O # 1. Hence v(w(r)) > 0, since vVE€D. It

follows that wvw(r) > 0 for all positive roots r of Ws,
and s0 VWwED. Hence D 1is a subgroup. Furthermore, if
veéD and s€Wg 1is the reflection corresponding to the root
r, then vsv ' is the reflection corresponding to v (r),

and it follows that vsv '

EWs . Since Ws 1is generated by
such reflections s, D normalizes Wg. |
(ii) Obviously Ws (6) = 26, (w€Ws). Let ve€D, w€Ws, and
r a positive root of Wg. Then vw(r) 1is negative if and
only if w(r) is negative, and so vw and w negative the
same positive roots of Wg. But ©6;, =1 for all other pos-
itive roots and so 6,, = 8,. The rest is obvious.

From the generators and relations given in theorem
2.1 it follows that a g.g.r. W has a linear character ¢
such that ¢(s) = -1 for each fundamental reflection s.
For each subset J of {1,2,...n} 1let W, be as in 2.5
and let ¢§; Dbe the character of W induced from the princ-

ipal character (l-character) of W;.

2.8 THEOREM (Solomon [17, Theorem 21])

b

e = Z("l) (SJ

where the summation is over all subsets J of {1,2,...n}.
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CHAPTER 3

SPLIT BN PAIRS

3.1 DEFINITION (Tits [20]) A finite group G has a

BN pair if there exist subgroups B and N of G which
generate G, H = BAN is a normal subgroup of N, and
W = N/H 1is generated by involutions s;,sS2,...S., and

(1) s;Bw < BwB U Bs; wB

(2) s;Bs; # B
for all we€W and 1 < i < n.

W 1is called the Weyl group of the BN pair, and n
its rank.

The elements w€W are cosets of H 1in N. We will
choose a fixed but arbitrary set of coset representatives, and
following the notation of Richen [16] (w) will be the coset -
representative corresponding to weEW. The parentheses are
omitted when the choice of coset representative does not alter
the object in question (e.g. 'wB' for '(w)B', as in the above
definition.

3.2 THE BRUHAT THEOREM (Tits [20]). If G has a BN pair then

(1) G = UBWB (union over all weEW)

(2) If BwB = Bw'B for w, w'€W, then w=w'.

(3) If Rf(sjw) > (w) for 1 < i < n and weEW
then s; Bw < Bs; wB.

3.3 THEOREM (Iwahori and Matsumoto [15]).

If W= <S1,52,.-.,5a> 1is the Weyl group of a finite BN
pair then the relations
(s;s; )11 =1 for all 1i,j 1 <ic<d<n

(where ny; is the order of s; s;j in W) are defining
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relations for W.

3.4 COROLLARY The Weyl group of a finite BN pair of

rank n is isomorphic to a finite group generated by re-
flections in n-dimensional Euclidean space.

As a consequence of this corollary we may use the

notation of chapter 2: A 1is a root system for W and
m={r,,ry,,...rn} a base for A.
3.5 DEFINITION (Richen [16]) G 1is said to have a split

BN pair of rank n at characteristic p (where p 1is
any prime number) if G has a BN pair of rank n,

H

BAN = Nw 'Bw (W€W) is an abelian p-group, and B = XH
where X is a normal p-subgroup of B.

3.6 THEOREM (Richen [l16, theorem 2.12]1). For each weEW

(the Weyl group of a split BN pair), let XV = w 'Xw and

define X, = XNX¥ and X; = X, when w = w,s; (w, as de-
fined in 2.5). Then W acts as a permutation group on
I = {wX;w ' |w€W, 1 < i < n} under

w: 2 b wiw ' (for each Z€X)
and wX;w ' © w(r;) is a well defined isomorphism
(Ww,2) = (W,A). (In effect, I 1is a root system for W).
3.7 DEFINITION Let ©r€A. The root subgroup X, of G

is defined by
X, = wX;w '
where we€W and 1 < i < n such that r = w(r;).
This definition is justified by 3.6 and the fact that
any root is the image of some fundamental root under the

action of some WwEW.

The proofs of all the following facts can also be
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found in Richen's paper.

3.8 LEMMA Let G be a finite group with a split BN

pair. With the notation as above:

(1) H normalizes each root subgroup.

(2) If wywz...wm 1is a reduced expression for weEW
and if we let v, = W W, ...V, (j=1,2,...n) then
BNw 'wy 'BwoWw = HZm (VimZme 1Vim' ) (Ve 1 Bme 2 Vine 1) oo v o (VaZ1V2 ")
where 2:,%,,...2Zm are the fundamental root subgroups
corresponding to the fundamental reflections w; ,Wz,...Wn-

Thus we see that

XWoW=XamXVm(am-l)XVm-l(am-2)"'XV’z(ax)
where a;,a,,...a, are the roots corresponding to
Wi ,W2,...-Wm (SO that X,, = %Z,, etc.)

Notice that X, ,w 1is a product of the root subgroups
corresponding to the positive roots negatived by w (see
2.3). In particular X(=Xw,w,) 1s a product of the root
subgroups corresponding to the positive roots.

(3) For all wew

X = Xy, wXw and Xy, whXy = {1}

In chapter 5 it will be necessary to deal with linear
characters of X, and this will involve investigation of
the derived group X of X. In the case of the Chevalley
groups (see section 4) this is accomplished by means of the
Chevalley commutator formula, and since the axioms for a
split BN pair have no analogue of this formula it seems
necessary to assume another axiom.

3.9 AXIOM The natural map n X /X, » X/xX' is an iso-

i=1

morphism. All root subgroups X, corresponding to non-
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fundamental positive roots r are contained in X
In chapter 4 theorem A will be proved; that is that
with a few exceptions 3.9 is satisfied by the Chevalley
groups, including the twisted types.

3.10 LEMMA (Richen [16, definition 3.7]) Let Xx€X;,

xX#1. Then there exist unique elements £;(x) €X;, h;(x) €H,
and g;(x) €X with

(si)x(si)” ' = gi(x) hi(x) (si)fi(x)
(This differs slightly from Richen's notation: £ (x)!
replaces 'E(x )T etc.) The equations gi&en in 3.10

are called by Richen the structural equations of G.
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CHAPTER 4

CHEVALLEY GROUPS

The Chevalley groups are our chief object of interest;
for their construction the reader is referred to [2] and the
references given there. In this chapter we will prove that
3.9 holds and obtain the structural equations for these groups.

The normal types.

Let L be a simple Lie algebra over the complex
field, with Weyl group W and root system A. (A is
also a root system for W. The lengths of the roots are
specified, and in such a way that a non-integral linear
combination of linearly independent roots cannot be a root).
An ordering of A is fixed in the usual way. If g 1is a

power of a prime p there exists a Chevalley group G = L(q),

which has a split BN pair at characteristic p. For each
r€A there is an isomorphism t p %, (t) from the additive
group of GF(gq) to the root subgroup X; of G. For

linearly independent roots r and s we have the Chevalley
commutator formula:
[xe (1) ,%: (£)] = % (W)™ "% (£)" '%s (W Xe (£) = IXirajs (Cijsest W)
where the c¢jj,rs are certain integers. The product, over
positive integers 1i,j such that ir+js€A 1is taken in the
order of increasing roots.

Let P be the free abelian group generated by the
roots, and let x: P - GF(q)* (the nonzero elements of
GF(g)) be a linear character of P. Then there exists an
automorphism of G such that

X, (£) b % (x(r)t) for all r€A, t€GF(q)
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The subgroup H of G consists of elements h(x) such
that
h(x)% (£)h(x)™' = % (x(x) )
and h(x1)h(xz2) = h{xiX2)
where the product of the characters ¥Xi1rX2 of P is
defined by x1X2 (@) = ¥ (a) x2 (a) (a€P) .
Indeed there exists a group & containing G and a subgroup
i comprising elements h(yx) for all characters x:P > GF(g)*.
If r is any root and s the corresponding reflection,
()%, (£) ()" = %, (-t) = % (-7 )h (X, )7 (8) % (£ ")
(where (s) 1s n in the notation of [ 2]), the character

T

Xr,t:P > GF(q)* being defined by

2(r,a)

Xe, ¢ (@) = ) (£t#0)

This gives the structural equations for the non-twisted
Chevalley groups, and the next theorem shows that 3.9 is also

satisfied, except for By (2), Ce (2), Fu(2), G,(2) and G2(3).

4.1 THEOREM (Howlett [12 lemma 71) Let 2 Dbe the sub-
group of X generated by the X for r € A" - m. Then
with the above exceptions, Z = U’ , the derived group of U.

Proof We use the Chevalley commutator formula and the fact

(see [3]) that if r-s is not a root then ¢cy, j;r,s = 1.

It is clear that U' < 7. Let r € AY - m. Then there ex-—

ist positive roots a and b (different from r) such that
r is in the root system spanned by a and b, and a-b 1is
not a root. (i.e. a and b are fundamental roots for the

root system they span).

Case 1. I1f a and b span a root system of type A, then
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[x, (t), X, (W)] = Xu., (ctu) (c=%1,t,u € GF(q))
and thus xy+a, (t) € U for all t € GF(q). Therefore
X, < U in this case.

Case 2. If a and b span a root system of type B;

then L is of type By, C, or F4, and
[x, (£), %p (W] = Xp+a (CtU) Xps2a (AE70) (c,d=+1,t,u€GF (q)) -

Replacing u by t 'u and t by -t if necessary gives

Xa+b (W) X2a+b (Eu) € U (t#0, u€GF(q)) (1)
Therefore x“b(u)xzwb(tu)(x,,ﬂ,(u)xz“b(u))-1 € v
and so Xya4p (U(t=-1)) € U

SO X,.+5 < U if GF(g) contains an element t#0,1.

!

Then X;+p S U also (from (1) above)
U

X, <U if q # 2.
Case 3. If a and b span a root system of type G
then L = G, and N {a,b,a+b,2a+b,3a+b,3a+2b}. Then
b and 3a+b span a system of type Az, and so
X3a42p S U by case 1. Now
[%a (t), xp (1) ]=Xp+a (C1EU) Xpi2a (C2t2U) Xp+3a (C3t’U)Xabr3a (Cat’u®)
(c,,C2,c5 = t1, cu,t, u € GF(q))
Xo4p (C U)Xy, 4p (Cat2U)Xy,4p (c3t’u) €U (2)
Xaep (C U)Ky, 4y (CptU) Xy, ,p (Cyt?u) € U (3)
(t#0, u € GF(q))
Xaa+b (Cult, ~t,))%,, ., (culEl-t)) €U (4)
(t1,t27#0, u € GF(q))
Suppose first of all that gq is even and greater than 2.
Then (t;-t,)? = ti-t3, and each element of GF(q) may be
written as t;-t, for t;,t»#0. Hence

x2a+b(tu)x3a+b(t2u) €U
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and by (3)
X,0p S U . (5)
Now (2) gives Xaasp (£2U)X3a+p (t’u) € U, and replacing
u by t *u gives
Xza+b (U)X3a+b (tu) € U (£#0)
X3a4+p (U(t-1)) € U (£#0)
X3a+b < U
since t can be chosen so that t-1 # 0.
Using (5) and (2), Xaa+v» < U also. Hence X, < U
Suppose alternatively that g is odd and greater
than 3. Then (4) gives (on replacing t, by t and
t1 by t+l)
X2a+b (CaU)X3a4p (C3u(2t+l)) € U (t#0,-1)
Xpa+b (Cau) X3, 4p (C3u(2841) (K544 (Cou)X3,+p (3c30))° ted
X344+ (2c3u(t-1)) € U (t#0,-1)
X3a4p < U
Now (2) and the argument used in case 2 gives Xj+p and
Xyaep < U as well.
So except in the cases By (2), Co (2), Fq(2), G, (2)

and G, (3), X, <U for all r € At - . Thus 2 < U
’

and so Z = U

The twisted types.

Let G be one of the groups A (g?) (& 2 2)
D, (g%) (& = 4) or Eg(g?). Then the diagram correspond-
ing to the root system has a symmetry of order two which
gives rise to an automorphism r P r of the root system.
The field GF(g?) also has an automorphism of order two,

namely te t = t%. It can be shown that
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o: x, (t) v x;(f) r €1
extends to an automorphism of G. Define X!,Y' to be
the sets of elements of X,Y = wo ' Xwo respectively which
are invariant under o, and ¢! to be the subgroup of G
generated by X! and Y.

Similarly when G = Di(g’) there is a symmetry
of the diagram which has order 3, and the automorphism
twt=1t" of GF(g’) also has order 3. These yield an
automorphism

o: %, (£) » %£(£)
of G. Define X2, Y? to be the sets of elements of X,¥
invariant under o, and G2 to be the subgroup of G
generated by X? and YZ. These groups G'! and G? are
the twisted types which were discovered by Steinberg.

In a similar fashion it is possible to construct
twisted types (discovered by Ree and Suzuki) from the groups
B, (g) when g = 2**"!, F.(q) when q = 22n*l  and G(qg)
when g = c Again it is possible (see [2]) to con-

struct a permutation I r of the root system, such that

T = r, and there exists an automorphism of G

or % (t) & x;(tA(F)o) r €
where A(r) = (r,r) and £ = ¢2" if g = 2*""!' and
£ = 3" if g = 32"*!, Using this automorphism o© the

group G! 1is constructed as in the other cases.
The twisted types all have split BN pairs, and in
particular the Weyl group w! (or W?) is

{weW|w(r) = w(r) for all r € A}
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S Sa S3 Sag

- P - —
= e = =

In this case W! is isomorphic to the Weyl group
of type Bq, and the fundamental reflections are
S;=5,S39s S527S3S30.17r++--¢50.17Sg.1S0+2+ SgTSgSg+15¢
The root subgroup corresponding to S; is Xi N S;Y's;,
which is clearly equal to (X N s;S;pe¥s;S2¢) N e

= {x, (£)x, (E) | t € GF(g®)}
where a = r; and b = rjg
The structural equation is (for t#0)

(8,)%, (£)x, () (S;)"" = x., (=t)x. (-t)
= %, (=t )% e (-F ) h(Xa, ) 'hXe, £)7 " (S1)%a (-t ) x.p (=€ 1)
where (S;) = (s1) (s2¢)- The same formulae hold when S,
is replaced by any of S;,S3,..-.5,.,, and a and b are
appropriately chosen. The root subgroup corresponding to

S, is (XNSg¥Se) N G*

XaXbXa;b n Gl where a = Ygq., b = ro+1

Il

{xa(t)xb(E)xa+b(u)|thu€GF(q2), u+u = ctt}
where ¢ may be either +1 or -1. The structural equa-
tion is (for u#0)

(Sg)Xa (£)%p (E)Xarp (W) (Se)™ ' =x.p ()% o (-E) % 4. b (W)
=xa(—ctu—l)xb(—c£ﬁ'l)xa+b(u'l)h(x)(Sg)xa(-ctﬁhl)xb(—cEﬁ"l);
Xy (W)

where h(yx) = h()(a,cu)-1 h(x, y! and (Sg)=(sg) (sg+1) (se) .

,cu
Next we show that the derived group Z of X! con-

tains all nonfundamental positive root subgroups T of

A;Q(qz). The group T is either of the form X, Xy NX' or

X, X7 X, +7NX! where r is a root of Az,. In either case ¢

can be written as the sum of two positive roots in A,,, and
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there is a corresponding expression for r. The roots of
A, thus obtained generate a subsystem of type Ax*xA; Or

A,, with fundamental roots a,b,c and d.

- - » A'-i-

For A,xA, we have [X, (t)Xq (£), Xp (1)xc (1)]

[x, (t), Xp (1)1 [xq (£), % (1)]

= X, 4p (0t)Xc4q (OF) - oa=tl
and since a+b=r it follows that in this case T 1is con-
tained in Z.
For A, [xa (£)xa (E), xb (0)xe (W) Xp+e (V)] (v+v=tuu)
= xq (£)7 " [%a (£), Xe (W Xp (W) Ky, (=v) 1%4 (€) [%4 (€) 1%, (@)%, (W) .

°Xb+c (V)]

Xg (8)7 1 [Xa (£) 1%pre (V)1 [%, (£) %5 (u) 1%a (F) [3xq (£) ;Xb 4 (V)]

[x4 (£) ,%c (W) ].
Call this formula (A). Putting u=0 and using the Chevalley
commutator formula we see that Z contains
Xa+btc (EV)Xpsc+d (EV)Xasb+c+a (2tEV) where v+v = 0. This

same formula with v replaced by ttv and t by 1 gives

that 2 contains X,+p+c (EV-tEV)Xp+c+a (EV-tEv). Therefore
T< 2% if r = a+b+c. The other possibility is r=a+b, and
for this case set u=l1 in (A) above. Combining this with

[Xa (£) ,Xpsc (=V) ] [%q (£) ,Xp+c (V)] € 2 (which follows from what
we have just proved) we get
Xa+bto+d (EV)Xavp (E)Xe+a (B) € Z (v+v = %1)

and so T < Z in this case too.
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It can be proved readily that if T=X, XpXa+p NG' is
the root subgroup corresponding to Sy then the derived

group of T is X,4+pNG'. It is now clear that 2=X nx!'
and that A;Q(qz) satisfies 3.9.

(2) Al (a*),D;(a®),E; (a®)

51 82 520 —2 8,9

——, st e —————— Az;z_l

8, S, Sg-2 . Sp.1

— ... e D,
™

8y S Iss S4 S5 5Q
- — EG

In these cases W is isomorphic to the Weyl groups
of types By, Bg.i1, and Fu respectively. The fundamental

reflections are:

(for Aze.1) S1=S1S20-1, S2=52820<2,+++r59.1=Sg.1Sg+1 15 =Sy
(for DQ) Sl=sll S2=SZ,-..SQ‘,2=SQ_2,SQ_1=SQ,.ISQ
(for Eg) S1=s18s5, S2=S2Su, S3=s3, Sy=Ss

The root subgroups are either of the form
X, X-NG' or Xx,NG' if r=r. For those of the latter kind
the structural equations are as for the Chevalley groups of
normal type, for the former kind the structural equations
are the same as for the root subgroups of A;Q(qz) which
are of the same form.

To show that 2 (derived group of X') contains
all positive nonfundamental root subgroups we proceed in
the same manner as for Asg (g%) . In this case we obtain
a subsystem which may be of type A,, AyXA; oOr Agj.

A,xA, 1is treated exactly as before. The other possibilit-

ies are
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a b where a=a and b =b
3 b < where c =a and b =b
For A, we have Xa+b (*t) = [Xa (£),%p (1)] € 3 (where t=t).
For A;, [x, (t)x. (£), Xp ()] (u=u)
= % (B)7 ' [%a () ,%p (W) Ixe () [%e (£) ,%p (W) ]
and so
Ka+b (EW) Xp+c (EW) Xa4b+c (tttu) € 2 (B)

Replacing u by ttu and t by 1 in (B) gives
Xa+b(tEﬁ)Xb+c(tEﬁ)Xa+b+c(itEﬁ) €z

Hence Xs +p (tEu-tu) Xp+c (ttu-tu) € Z.
Tt follows that X,+p (V)Xp+c (V) € Z for all

v € GF(q?) (since any element (#1) of GF(g®) can be written

in the form ttu-tu) and hence Xz+v+c (W) € Z2 if w=w

(using (B) again). Thus 3.9 is also satisfied for these
groups.
(3) Di(g’)

In this case W? is isomorphic to the Weyl group

of type G». The fundamental reflections are S;=s; and
S,=5253Sy . The root subgroup corresponding to S: 1is
X, NG2 = {x%, (t) |t = £t} where a = r:. The root subgroup

corresponding to S, is X, X, X4NG?
= {x, (£)x, (D)xa (E) | t € GF(g®)}
where b=r,, c¢=r;, d=ry. The structural equations are
obvious.
Let % be the derived group of XZ”. Let t € GF(q?)

such that t=t. Then % contains
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[Xa (£) yXa+b+c+a (1)] = X2avv+c+a (¥E),
showing that one of the nonfundamental root subgroups is
contained in Z. For the others note that by the Chevalley
commutator formula, [X, (4), X (£) X (£) Xq (E)]
(0EU) X, 4 p (QEU)K, 4 ¢4 q (BEEU) K, 4 p4q (BELW)

=X, .4 (QtU) X, ,

-Xa+b+c(BEtU)Xa+b+c+d(YtE§U) where o,B,y = *¥1, and u=u.
Call this formula (C). In (C) replace t Dby tu and u
by 1. The result, together with (C) itself, gives formula

(D) :

Karera (EE(U2-0)) Ky spea (EE(U2-0) ) Xe4p4c (EE(u”-0)

Xa+b+c+d (¥tEE(u’-u)) € z.

Similarly we can now replace u by -ut+l and prove that

7 contains X,s+p+c+a (tEE(2u’-3u?+u)). Thus clearly 2
contains all elements of the form X,,,...q (V) where v=v,
and substituting back in (D) and (C) it follows that Z
also contains

Xyterd (E)Xasvsa (E)Xawvec (E) and Xesp (£)Xasc (E)Xa+a (E) for all

t € GF(q?). And hence D2 (g®) satisfies 3.9.
(4) Bi(q), Fi(q). g = 2n+!
W B, A(r1)=1, A(r,)=2
S, Sy 8y s, Fy Ar,)=A(ry)=1, A(rj3)=A(r,)=2

! has order 2, generated by (s182) 2.

For B, W
For F, it is dihedral of order 16, the fundamental reflec-
tions being S;=s;s, and S,=(s,s;3)?. Define elements

O (t) r Bl(t) r Yi (t) in Fll; (q) (i=lI2I3I4I t € GF(q)) by

o (£) = X, (£2)Xp (E)Kasp (EOF1)
Bl(t) = xa+b(t0)x2a+b(t)
v, (8) = x. (£%) x4 ()
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for the following values of a,b,c and d:

i a b C d

1 r, r; r i

2 ri+ro ri+ry ri+2r,+ry 2r,+2r 341y

3 Yi+ro+r, 2r,+r3+ry, r;+2r,+r3+ry 2r 1+2r,+2r 3+,
4 ro+ra+ry 2r 1+2r,+r; r,+2r,+2r3+r, 2r +4r,+21r 3+

The root subgroup corresponding to S; is {vy;(t)|t€GF(q)},

and the structural equation is obvious in this case. The
root subgroup corresponding to S, is {a;(t)B:(u)|t,u€GF(q)},
and the root subgroup in B3 (g) is of this forﬁ also.

PROPOSITION Let +t,u€GF(q) and let v=t??*2+u?%+tu. Then

v#0 1f either t#0 or u#0, and each nonzero VvV oOcCcurs
for exactly g+l pairs (t,u).
Proof Define f(u) = u?’+u+l. Comparing f(u) and f(u)®
and using the fact that 206%=1 it is clear that f has no
zeros in GF(q). Now if t#0

t20+2+u26+tu - t20+2f(t-1u20u)
which is nonzero and takes all nonzero values with equal

t29*?2  takes all nonzero values as t varies.

frequency since
Similarly if +t=0,

t20+2+u26+tu — u26
and all nonzero values occur once.

We can now give the structural equation for the second
kind of root subgroup. If t#0 or u#0 and if v 1is as
defined in the proposition,

(S)a(t)B(u) (S)™'=a(t'*??v '+uv™ 1) B (uv' *? )h(x) (S)a(uv™ ") B (v )
where x(a) = v!-2%2%, y(b) = v2?%-2 and S 1is the reflection.

(In Bi(q), (8) = [(s1)(s2)]1%; similarly in the other cases.)
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Note that Bi(qg) trivially satisfies 3.9 since
there is only one positive root subgroup. 1If g#2, Fil(q)
also satisfies 3.9; we must prove that the derived group
7 of X! contains the elements a;(t), Bi(t) v; (%)

(i=2,3 and 4), since these generate . the non-fundamental
positive root subgroups. The commutator relations that we
make use of follow readily from the Chevalley commutator
formula. Firstly, for each i,

20

log (£7'), o5 (£ )] = B; (t+1) (t#0)

and since g>2 it follows that B;(t) € z2 for all t.

[ag(t), a;(l)] Yo ()

[oy (£), a2(1)] Y3 ()

lay (t), as(l)] = vy (t)

and so yi(t)E 72 for 1i=2,3 and 4.

[og (£) , 0y ()] Yo (£U20F 1)y (229 T u)ay (£2%u) ag (tu??)

[og (1) ,v1 (@)1 = a, (bu) oy (8204 Tu2?) By (240727 #2) v, (2277 21)
. 83(t40+3u20+1)

and hence

ay (£ 0w as (tu’’) € 2

az(tu)aq(t20+lu20) € Z
The latter of these two yields

ar(l)oy (1) € Z
and o, (Lo, (E) € 2 (t#0)
in the cases t=u=l and u=t"'
Hence o, (t+1l) € Z 1if t#0. It follows that

o, (t) € zZ for all t, and accordingly that a,(t) € Z

and oa3(t) € 2 also.
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= Alry)=1, A(r,)=3.

In this case W' has order 2, generated by (5152)3
Again 3.9 is trivially satisfied. The root subgroup is

{a(t)B@)Y(v) | t,u,v € GF(g)}, where

6+1 20+1

%, (£ )%y (£) a1 (£ ) Xpqaup (€ )

Xa+b(t0)x3a+b(t)

o(t)
B(t)

I

y(t) = X23+b(t0)x33+2b(t)
(a=r1’ b=r2).

The structural equation is

- - - 30 «=360-1
(S)a(t)B(u)y(v) (8) 'zo(x,d ') B(x.d Yy (x3d ) (SYh(X) .
o (xyd™ 1) B(xsd ')y (xed *)
20-1 36-2
where x(a) = d , x(b) = d , (8) = [(s1)(s2)]1®, and
d — u””+tvu+t36+3u—t66+4—tv36+v2
X, = taeuse—t66+3~t36+lv‘#t3e+2u—vu+v30
X, = _u30+2+t2u3+v2u30_t60+4u30_t60+3v_tv30u36_V30+1_tvu2_
306+3 2
u
36
X3 = u X1X, + (tu-v)d
Xy = t60+3+v30+tu2+vu
30 36+3
x5 = -u -tv-t
X = _t90+6_t60+5u_t66+3u6+vu36+1_V3_v30u6_tv2u+t39+3vu_t2v36u_
t30+3vse
Note that the transformation
t > t
36+1
u-u-+ t
v - v + ut + t”+2
[} . .
transforms d to 30+1-th+v2—t2u2—t6 +4, which 1s zero

only when t=u=v=0 (see [19] p.186). It is not true that each
nonzero value of d occurs for the same number of triples

(t,u,v). For example if g=3 then d takes the value -1 for 16

triples (t,u,v) and +1 for 10 triples.
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CHAPTER 5

THE CHARACTERS DISCOVERED BY DAGGER

Let k be a field of characteristic zero which
contains a pth root of unity, and let G be a group

with a split BN pair of rank n at characteristic p.

Let 1; be a nontrivial linear character of X? (=Xﬂ”)
for i=1,2,...n. Since we assume 3.9 it follows that
n
XM = o X/ x)
where w; 1is as defined in 2.5. (J is any subset of
{1,2,...n}). Now as a consequence of 3.6 the sub-

groups {XYJ |i€J} equal the subgroups {X . |i€g} in

some order (see 2.5); so we may define a linear character
y,; of X"? which coincides with on an if i€Jd
and is trivial on XYJ for 1fJ. Indeed 1 is trivial

on all root subgroups X for r positive and

WJ(I)

rf{ri |1€J} since Xy (1) = X'V is contained in the derived
group of X'V if r is not fundamental. In the case
Jg=1{1,2,...n} we write simply "u" for "u;".
Let us adopt the following notation: If A is a

subgroup of G and o a linear character of A, let

A= |al""zx (x€A)

and Ay = |A|"'Za(x"")x (x€R)
Throughout the rest of this thesis A will be a linear
character of B with kernel containing X. Gy will be

the parabolic subgroup UBwB (w€W; ) corresponding to the

subset J of ({1,2,...n}.
5.1 LEMMA (i) The induced characters 2%7 and ufj have

a unique common component, and it occurs with multiplicity

one in each.
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(i) °, i) = |wew |

Proof Note first that

G = W;IGJ = w}l(UXwB) (union over WwE€W;)
= UX T wB (WEW; )
and similarly G = Ux" wB (WEW)
For weE€W let » ' be the character of wBw ' defined by
Kw-l(g) = Aw 'gw). The restriction of this to XV1 NwBw '

is the l-character, since A 1is trivial on elements of

p-power order. Now the restriction of u; to X" I NwBw

is the l-character if and only if w '(x;) > 0 for all i€dJd.

1

For by 3.6 and 3.8 it is clear that X7 NwBwW is a product

1

of root subgroups, and X c wBw ' if and only if

-]‘i

w'X ., wcB; i.e. -w ' (x;) > 0. It follows from 2.5 that

there is exactly one w in each W;\W coset such that

restricted to X" nwBw ' is the l-character, and the inner
-1
product of AY and y; over this subgroup is 1 for these
w and 0 for others. So, by a well known theorem of
Mackey,
G G g
(7,277 = Ty A ) (WEW, )
= 1 (since only the term for w=l
contributes)
G .G W
and (UJ P A ) = Z(UJ P A ) (WEW)

= |w:wy |

5.2 LEMMA B,X,' is a nonzero multiple of a primitive
Ky

idempotent in KkGj .

Proof By the proof of 5.1 the only double coset Xx"JwB for
which y; and xw'l agree corresponds to the case w=1.
Hence lemma 1 of [1] applies. (See also lemma 2 of [1l] and

its proof).
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The irreducible character of G corresponding to

this idempotent (i.e. the common component of A%7  and
u?’) will be called ¥, ©Or X;{(A,HisH2r+--Hn). In the
case J = {1,2,...n} we obtain an irreducible character
of G (and we will write "x" for "x,"). These charac-

ters, corresponding to the various X, were discovered by
Dagger [9].
For each we€W we define a linear character AY of
B whose kernel contains X by setting
A" (h) = A(whw ') for all heH.
Using AY in place of X in the above construction yields
a character of G; which will be called Xjw- Theorem B

follows directly from 5.1.
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CHAPTER 6

THE HECKE ALGEBRA XkGX

Continuing with the same notation, define (for each

weW)
qQw = |X:Xy| (the index of X, in X)
In particular for i=1,2,...n define
G = as; = |X:iXs| = |% | (see 3.8)

For each w€W define also

Ow = GwX (W)X
Bw = gwBa (w) Ba
w = qwX (w) - -)—(—

gw = gwBa (W)- IB;\
Let S = {we€wWw|A"=Al}.

6.1 LEMMA The set {ay,h|we€W,h€H} is a basis for XkGX,

and the set {B,|w€S} is a basis for B kGB,. {B|w€W;NS}
is a basis for B, kG;B,.

Proof This kind of result is well known (see theorem 2.2

of [7] for example). Since H normalizes X

Xh = hX for all he€H,
and so the elements ayh are indeed in XkGX. The cosets
X(w)hX (w€W,h€H) are all distinct, as an easy consequence

of the split BN pair axioms and the Bruhat theorem.

6.2 PROPOSITION For v,wEw,

By Oy = OyBoyw
If uw€Ww such that A" # AV then
B, 0wBu = 0
(In particular B,=0 for wgS)
The proof of 6.2 is straightforward and is omitted.

Our interest in Hecke algebras is motivated by theor-

ems such as the next two:
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6.3 THEOREM If e and f are idempotents in kG afford-

ing characters ¢ and respectively then

Homy; (kGe, kGf) = ekGf
and the dimension of these vector spaces 1is

(@, ¥) = |67 'Zo(x ")y (x) (XEG)

This theorem is well known and holds for an arbitrary group
G, although in this thesis it will only be applied to groups
with BN pairs. Theorem 6.4 is also a general result,
adapted to apply to the parabolic subgroups Gy, where J
is an arbitrary subset of {1,2,...n}.

6.4 THEOREM (Curtis and Fossum [7, Cor.l.2 and 2.51).

If ¢ is an irreducible character of kGj such that
(w,2%%) =1 (i.e. ¢ occurs with multiplicity 1 in the
induced character KGJ), then the restriction of ¢ to
BrkGyByn 1is a homomorphism
0: B,kG;B, — k.
Conversely every such homomorphism 6 is the restriction
of a unique irreducible character ¢ of kG; such that
(w,AGJ) = 1. Under these circumstances,
e = Y(1)[Gy:Bl™ " Zqgy" 6 (Bw) Bw (WEW; NS)

is a primitive idempotent in kG; such that kGe affords .
It is the only such idempotent in B, kG; B, . Moreover,

1 =06() = ¥(1)[G :Bl"'2qy ' 0(B,)6(By) (WwEW;NS)
and for any BE€B)kGjBa,

Be = 6 (B)e = eB.

Proof Be = 8(B)e for all BREBkG;Byx 1is a con-
sequence of the fact that B kG;B), is one~dimensional (by

6.3). The only other point not proved explicitly by Curtis
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and Fossum is uniqueness of e. But if f€BAkGiBax is
another primitive idempotent affording ¢ then

f =6(e)f = ef = 06(fe

and so e=f.

6.5 LEMMA If weW, 1 < i <n and 2(sw) = 2 (w)+1
then gsw = didw and there exists h€H with
Qgw = Oy Owh e If wW,Wz...Wwm is a reduced expression

for w (as in 2.3) then there exists heH such that
Ow = OwyOwg s« «Qwph

Proof By 3.8 (3) and (2)

s;w = leosiw|

I Wowa' 1 ri)

Now since 2L(s;w) = 2(w)+1, w ' (r;) is a positive root, and
it is negatived by Ww,w. So by 3.8(2),
< -
Xw"(ri)_ wo (wWgw) Xw'

Now 3.8 (3) gives

w
q:r,iw = lxwowl |Xi l
= dwds;
Let h be an arbitrary element of H. Then

a, oyh = g, (X(s;)X)a, (X(w)X)h

1

Os; w (X (8 )% X(w)X)h (by 3.8(3)).

But s; normalizes X and w '¥;w = > ST < X.
i

Thus 0o Owh = Qg w X(S; ) (w)hX.

1

If h is chosen so that (s;)(w)h = (s;w) it follows that
Og . Owh = 0Os; w.

1

The other assertion of the lemma follows by induction on

L (w) .
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6.6 LEMMA The elements awh (w€W, hEH) have inverses

in XkGX.
Proof For each i (1 < i £ n)
u: = g2?X(s; )X(s;)X

= q’X(si )% (si)X

= g X(s;)2X + g IX(s; )% (s )X

= q (82K + q IXh (x) ()X
where the summation is over the non-identity elements of X,
and hx) is as defined in 3.10. Note that (s; ) %€ H.

It follows that

a? (s,)° % = @i X + Hios,

where H; = Ihi(x) (x€Xi , X # 1).

Now X 1is the identity element of XkGX, and so

-1

q; (o (s:)°7 - HX)
is an inverse for o in XkGX. We now use induction on
1
2 (w) to show that each awh has an inverse.

—_ w1

For %(w) = 0, a,h = Xh and the inverse is Xh ".
For &{(w) = 1 there exists i with w = sV
and (v) = 2(w) - 1. The inductive hypothesis permits the

assumption that each o, f (fEH) has an inverse, and then for
appropriate choice of £, 6.5 gives
owh = asiavfh

which is a product of elements with inverses, and so has an
inverse.

(Results like 6.5 and 6.6 are well known. See [21],
for example).

It will be convenient to adopt the notation "a~B" for
elements a,B8 € kG to mean that o is a nonzero scalar

multiple of B.
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6.7 LEMMA For all w € W, owBaXi) ~ B, X! (where

- w
v=w') and X 'Bya,6 ~ XIB
Ky w my A

Proof The idempotents B, and Xri afford the characters

Gy

A°1  and uf’ of Gy, and (AG],u] ) =1 by 5.1. Hence
BAkGJXX} is one-dimensional (by 6.3). Similarly
vakGJX:j is one-dimensional. Therefore

0, BaXy! = By awByXy) (by 6.2)
must be a scalar multiple of B Xzi. The scalar must be
nonzero since o, has an inverse. The proof of the second

part is similar.
6.8 LEMMA By Xp I B\ X, By ~ BrX,°By

Proof Let Y be the product of the positive root subgroups

Wi

in X and 7 the product of the negative ones. Let
o= |Z2|7 Iy (x)x (xX€Z)
= |z|7 ' Tux" ")x (X€2)
Then X:; = Yo and aXI° = X:°.
Hence kay; = B,a, and so B,aB,a ~ Bya (by 5.2)

(Note in passing that B,aB, # 0).

Therefore BAaBAuXX° = BAGXIO, and the result follows.

6.9 COROLLARY. Let ¥, and ¥x be the characters of G

and G defined in chapter 5, and let ©6; and 06 be the
corresponding homomorphisms of B,kG;B, and B,kGB, into k.
Then 6; 1is the restriction of 6.

Proof By the note in the proof of 6.8, BAXX;BA is nonzero,
and so is a nonzero multiple of e, the primitive idempotent
in BakGy; By affording X (see 6.4). Similarly

BAXX°BK ~ f, the primitive idempotent in B, kGB, affording x.
By 6.8 ef ~ £, and so 6(e) = 1 (since e’=e). For WEW;NS,

6; (B,)ef

(B, e)f

By (ef)



and so 6, (By)

(6.4, 6.7, 6.8 and 6.9 will also be used with

by any of the characters

Il

)\W

0(Bw) £
6 (By)ef

6 (Bw)

(WEW) ) .

A

36.

replaced
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CHAPTER 7

SOME MORE CHARACTERS

7.1 LEMMA (i) For a fixed we&W the elements

{a, wBx |VEW; }  and {a, 0,B) |VvEW; } span the same space, and
similarly {B,o,, |[VEW, } and {B, 0,0y |[VEW; } span the same
space.
(ii) kBwG; = kBwW;X
Proof (ii) is a standard result about BN pairs. For
(i) note first that since o, has an inverse in XkGX the
two spaces have the same dimension, namely |W; |. It re-
mains to prove that each oywB, (VEW; ) can be written in
the form aa,B, for some a€XKG,X.

Use induction on &(v). The case &(v) = 0 is
trivial.

Suppose Vv = s;u, i€J, L(v) = L(u)+1.

Then ' o,4By = YoawBa for some YEXkGy X, by the
inductive hypothesis.

If 2(vw) > f(uw) then oavwBx = Osuw

~ O Oy wDBa

(where s=s;), while if &(vw) < 2 (uw) then oOuwBa~0s 0vwBy -
Choosing o to be the appropriate scalar multiple of

1

as Y or o; Yy it follows that uEXkGJX and Oyy Ba = QOwBy «

7.2 COROLLARY Let we€W, J c {1,2,...n}. Then
By kGy; By 0w = Bxk(W]nS)wBﬂ, (i.e. the space
spanned by ByoywBw for v € W;NS). Similarly,

awBy kGy By = B,y kw (W; NS) By (where u=w ')



38.
Proof B, kG, By 0,, = B, XkG; X0,,B (by 6.2)
and this is the space spanned by {Bkuvawav|v€WJ}.
This is the same as the span of {BAuVWBNN|v€WJ}.
However Bya,,B, w = 0 unless AY¥=A%; 1i.e. wunless VES.

Thus the basis consists of uvayw, vEW; NS.

7.3 COROLLARY Let v,w,u € W and J,K c {1,2,...n}.

Then B,, kGyB,y awB,, kGkB,y = B,y k (W; NSY ) w (WgNS® ) B,

}\V
Proof First observe that both sides are zero unless AV W=AY;
that is, unless we€v 'Su. (Equivalently,

1

(W; NSY )w (WgNS*) < v 'Su). Assuming w € Vv~ Sﬁ, 7.2 with
AY replacing A gives
B, kG, B,, 0,B,, kGgB,, = B,, k(W;NS")wB,, kGgB,,
and this is the sum of the spaces otwBa kGkB u for t€wWyns'.
But oy wB,u KGkBu equals thka(WKnS“)BNI, and the sum of
these as t runs through elements of W, Ns' 1is
B, k (WyNS")w(WNS")B,, .

7.4 LEMMA Let J,K c {1,2,...n} and let V,wEW.

Let e be the primitive idempotent in B}\v kG,BKv which
affords the character Y¥;v, and f the primitive idempotent
in B}\WkGKB}\W which affords Xkw- Let ti,t2,...tn Dbe
representatives of the orbits of v !'Sw under premultiplica-
tion by elements of W;Ns’ and postmultiplication by ele-
ments of Wygns"™. Then ekGf has basis {eoy £li=1,2,...m}.

Proof By kGB,w has basis {B,v uquyluEV'ISw}

m
= U {B, ouBw |u€(W NS )t (Wgns¥) }
Hence B}\v kGB)\W is the direct sum of the spaces

Bﬂ k(WJﬂS")ti(WKﬂS“')BRW i=1l,2,...m.

Now by 7.3,
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By k(W,NS")t; (Wens“)B,, = B, kG;B, a, B,, kG¢B,,
and this contains the element eo;, f. Therefore the
eoy; £ are linearly independent if they are nonzero. But

1

for any te€v ' Sw,

-1

Wo Wo
B}\v Xu B}\v eolt fB}\w Xu B}\w OLt

~ (B, X, ° Bv ) (04 Bw b i Biw 0, ., ) (by 6.8)
~(By X,°B,y ) (Byy Xu°B,, ) (by 6.7,
making use of the fact that A"~ = )\")
and this is nonzero, by 5.2. Hence eotf # 0.

It remains to prove that the ea;; f span ekGEf.
It was shown above that B}\v kGBMN is the sum of the spaces
B v kGyBv 0y, B w kGgB,w , i=1,2,...m. Therefore ekGE
= eBy kGprf is the sum of
{eBv kG; B,y 0, B,wkGgB,w fli=1,2,...m}
= {kea,, fli=1,2,...m}
since eB. kG; By = ke and BwkGyBwf = kf (see 6.4)

7.5 THEOREM (i) Let J,K c {1,2,...n} and v,w€W. Then

(X?V,X;w) equals the number of (wﬁ'lnS)\S/(WX'lnS) double
cosets.

(ii) For each subset J of {1,2,...n} and
each VEW define §6(S,J,v) to be the character of S in-

-1
duced from the l-character of W¥ ns. Then

vafé §(S8,J,Vv)
is an isometry between the inner product spaces generated
by these characters.
Proof (i) With e,f and t,,ts,...tm as in 7.4 the module
kGe affords the character va of G and kGf affords xiw
Hence 6.3 gives

G G

(x” ,wa) = dim ekGf = m
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But it is clear that {vt;w ']i=1l,2,...m} is a set of
representatives of the (W:EInS)\S/(Wz-lﬂS) cosets, and
so m also equals the number of these cosets.
(ii) This is merely a restatement of (i) since

m = (S(SIJIV)I (S(SIKIW))

7.6 DEFINITION Let J < {1,2,...n} and let V be a

set of representatives of the S\W/ W; cosets. Define

G
@, =@ (U1,U2/e.-Mn) = LX;, (Vev)

Note that the choice of coset representatives is

immaterial. If te€sS it is obvious that X, = X;,, (since
Vo=t Furthermore if w€W, and u=w ',
w w
auBy Xu] ~ Byvw Xuj (6.7)

so that the right modules Bﬂ-X::kG (which affords va)

and B X7

: G . .
=l “JkG (which affords Xva) are isomorphic.

7.7 LEMMA 1f J,Kc {1,2,...n} and & ,%8k are the

characters of W induced from the l-characters of W; and

Wxg then (g¢; ,0) = (Sj‘s,éK s) (where 6;|s 1is the re-
striction of §; to S, etc.)
Proof This is immediate from 7.5 (ii) and 7.6 since by

Mackey's theorem (with V as in 7.6)

S

] =3I 6(S,J,V) VEV.

S

We can now prove theorem C:

7.8 THEOREM Z(—l)'”q)J is an irreducible character of G,

and it occurs with multiplicity one in A%  (the summation
is over all subsets J of {1,2,...n}).
Proof From 2.8, Z(—l)'Jldjis = E‘S is an irreducible

character of S, and so
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(z(-1)'" s, g 2= ey |)

=
]

| KI

= -1, -1 op) (by 7.7)

so that iZ(—l)'J'(pJ is irreducible.

Let L be the empty subset of {1,2,...n}. Then
G,=B and A 1is the only component of ASv, Thus A=Xp.
I 31 'J1 , G G
(Z(-1) " @ ,A%) = Z(=1) " (x,, #%)
where J runs through subsets of {1,2,...n} and v through
a set of representatives of the S\W W, cosets. But by 7.5
G G
(XJV’XL = (8(s,J,v), ¢6(S,L,1))

and since L is empty ¢(S,L,1) is p, the character of

the regular representation of S. Therefore

I 31

-0 "o 2% = - s(s,3,v),0)

[
= D' g0
= (e Slp)
=1 since ¢ . is

a linear character of S.

The character defined in 7.8 will be called "g(x)"

or "z(A,U1,M2,..-Hn)" since as well as depending on A it

also depends on the characters of X . (i=1,2,...n)
=T

that have been fixed throughout. The dependence on the y;

will not be investigated here, but note that if A and )
are two linear characters of B such that A’ is not of

the form MV (we€W) then <¢()) # z()'), since (XG,A'G

) = 0.
It can also be seen that ¢(\A) = x(A) if and only if € 1is

trivial on S, since

(e, x () = 21" (9, x () Jc{1,2,...n}
= 2(-1)""" (8 |s41)
|
= (e|g,1).

(Thus (z(A),p%) = 0 unless € 1is trivial on S).
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CHAPTER §

ON THE DEGREES OF COMPONENTS OF lg

8.1 THEOREM If o is any component of A¢

(o uy) = (0,04)
where o is the restriction of o to X!
Proof If SvW, # SwW, then A" # (A")" for any u€w,
and so the characters of G; induced from X' and AV
have no common component. Hence X;, # Xjw- Now if Vv

is a set of representatives of the S\W/ W; cosets then

the characters {y;, |VEV} are distinct, and components

Gy

of W, (by their definition: see 5.1). Hence
ufj - X5y (vev)
is a proper character (i.e. a positive integral combina-
tion of irreducible characters). Inducing to G and
using 7.7
W - e,

is a proper character of G. Now

(03 ,A%) = (8, |g,0)

where p 1is the character of the regular representation of
S (c.f. proof of 7.8)
= (5] +S)

where & 1is the character of the regular representation of

Therefore (wJ,XG) = |wW:w, | = (uf,AG) (by 5.1)

and so A%,uy - @) =0

G .
Since Y;-¢; 1is a proper character it follows that for all

G
components o of A,

G
(o,uj—w ) =0

H
]
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and the result now follows by Frobenius reciprocity.
(The proof given for 8.1 is an improvement of the author's
original proof, given in [13], and is based on a method
used in [111).

8.2 THEOREM If o 1is any component of li other than

one of the ¢z (X&) (for some A) then the degree of o 1is
divisible by p.
Proof The character Wy o and hence the characters X; .
depend on the values of for 1i€J and not on for
igJd. Now for any choice of ), |

0 = (o, E Z(A,U1,H2..etn))
(where the summationlis over all possible choices for the

characters Uji,U27s-««Mn)

(o, L %(-1)'J'w (M1sU2eeotin))
i

. |
(0, L £12,(-1) o (M1 Maeeotn))

(where I; 1is over for i€J and I, is for iéJ)

na- | J| 113

= (0,2 21(-1) -1)' "o, (1, u2. . u0))  (mod p)
since the number of nontrivial linear characters of X .  for
i¢J is congruent to -1 modulo p, and all give the same
value for ;. Therefore
0 = % Zi(o, sty (MisH2seeely)) (as in 8.1)
B % Z (a,uy)

where the second summation is over all linear characters y;

of X’ which are nontrivial on exactly those root subgroups

X oy for 1ie€dgd. But
Z(OCIUJ) = % (o XIU;VJ)
where u?’ is the character of X defined by u?’(x)=ul(xw’),

and we see that u?’ runs through all linear characters of X
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nontrivial on exactly those root subgroups X, i€d.
Thus 0 = I I (o‘ TN (mod p)
Ty % W
= E (GIX,U)
where u runs through all linear characters of X. But

if the linear character W of X occurs with multiplicity
m, in o|  then the degree of ¢ 1is congruent to E m, ,
since nonlinear characters have degree divisible by p.
Therefore

degree o = E (o x,u) = 0 (mod p).
8.1 and 8.2 are theorems D and E respectively. The

next lemmas prepare for theorem H.

8.3 LEMMA ILet i,j € {1,2,...n} and w€W such that
w(r;) = ry. Then o,X(s;) 'X(si)Xa]' = X(s; )" 'X(s;)X
Proof w(r;) =1r; > 0 and so X(w)X(s; )X = X(w) (s )X.
Further, by 3.6, (w)X_ri = X:rj(W)
Hence X(w)X(s; ) 'X(s; )X

= X(w) (8;)7 "% (8)X

= X(s;)7'% (5;) (W)X

8.4 LEMMA Let 6 be a linear representation of BkGB,,

and let r be any root. Let r = w(r;) for some we€W
and i € {1,2,...n}. Then
8, = q 6 (BrawX(si )™ 'X(si)Xay By)

depends only on the root r and not on the choice of w and i.
Proof g, = |X;| = |X,| depends only on r. Suppose that

wlr;) = v(r;) v,WwEW 1 <i, j £ n. Let u=v w.

By 8.3,
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0 (By oy X (57 )™ ' X (s )Xoy ' By )

1

8 (BravouX(si) "X(si)Xas'a”' Ba)

G(Bkavauu;‘awi(si)'lg(si)fa;'uwalla;le)

= 8 (B Oy Oy O’ Br 0w X (5i )™ ' X (s; ) X5 Byowon oy ' By)
(using the fact that Byoy = uvBﬂ , etc.)
= 0(B)0(ByoyX (s )™ X(s; )Xy, By)o(g™")
(where B = By 0y OyOw Bp)
= 0(B,a,X(s, )" 'X(s; )Xo, B,)
8.5 LEMMA If r is any root and if v€S then 6:r=6y(r) .

Proof Let w€W, 1l<i<n such that w(r;) = r.

Then 6, = q 0 (BrowX(s;) *X(s; )Xas'By)

G 6 (Br oy wX (si )™ ' X (si )Xoy wBa)

and ev(r)
= q; 6 (By Oy wOu BaowX(s; ) 'X(s ) Xag, " By GOy B )
= 8,

8.6 LEMMA Let N(w) be the set of positive roots r such

that w(r) is negative. Define 0, = I6,, TrEN(w).

Then g’ 6 (BxOwowBy) = 0Oy.
Proof  The result is trivial for &(w)=0. Assuming that it
holds for elements of length k, suppose that &(w)=k+l and
let s=s; be a fundamental reflection with w=sv, L(v)=k.
Then

Q' 0 (ByGwawBy) = Qw 6 (B Gy 8s as 0y By)

(since if (s)(v) = h(w) then 0,0, = ha, and G§,08,=08,h ")

= q",lqi'1 0 (Ba Gy oy By oy ! G5 Os Oy Ba )

6y i 6 (Byoy 'X(s; )™ "X (s; )Xoy By)
- 0,0, where a = v '(r;), since if we let u=v '
and B = Bya,'ay'B, then

Bku;li(si)_li(si)ideh = BBAauXKSi)-lifsi)idalBABQI-
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However, N(w) = N(v)u{a}l, and 6,6, = 6w as required.

8.7 COROLLARY Let ¢ be a component of multiplicity 1 in

A“ and let 6 be the restriction of ¢ to BykGB,. Then
the degree of ¢ is given by ¢(1) = | aw/ ) Ow-

weEWwW weES
Proof Since [G:B] = Igq, (wW€W) this is immediate from

the formula given in 6.4:
1 = ¥(1) [G:B]Iq,’ 6 (B,) 6 (B,)
and the fact that 6 1is a linear representation of B, kGB, .

8.8 LEMMA Let r be a root with corresponding reflection

s, and choose any we€W, i € {1,2,...n} with r = w(x;).
Then (i) There exists a nonnegative integer c¢;, depending
on A but not 6, such that 6, = p° or p °r . (By 8.5,
Ca = ¢Cp 1f a and b are in the same S-orbit.)

(ii) 6,=1 if and only if AY(H;) = 0, where H; is

as defined in the proof of 6.6. This happens in particular
if sé€S.
Proof Since X(si) 'X(si)X = qi'X + qi 'Hi X(si)X
we have q; ByoawX(s; ) 'X(s; )Xo, ' By - By
= gi BaawX(s; )™ 'X(si )Xoy - By (by 6.2)

(By + BpowHi X(s;)Xay') - B,

awAW(Hi)Bxy(si)id;l

A (H; ) By oy X (s )Xoy, Bys (by 6.2)

= Yy say.
If X (H,) # 0 then by 6.2 and 6.6 there exists A EXKGX
with vo = B,. Hence +v#0, and since Y€B, kGB,NB kGB}\S
it follows that A®=A. Furthermore, since Y has an in-

verse in B, kGB, it follows that 6(y) # O. Thus

el' . e(Bi\ + Y)

9(Br) + 6(Y)

1 if and only if AW (H ) = 0.
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If ses, A" =2 and so if P = BUBs;B then (A")'
has exactly two irreducible components, both of which occur
with multiplicity one. If BEB,, kPB,,  then o, Ba, ' €B, kGB,
and so B b e(uwsa;‘) is a linear representation of BkaPBmv.

Corresponding to this there is an irreducible component of

(\W)?  which has degree d; = (l+qg; )/ (1+6;). Let d, Dbe
the degree of the other component, and let d; = m;p*,

d, = myp®, where m; and m, are not divisible by p. By
theorem 3.1 of [7], m; and m, are both divisors of 1l+q; ,
and since d;+d, = l+g; it follows that m1=m2; Now either
a=0 or b=0, and so d,; and d, are m and p‘m where
m=m;=m, and c¢=c, =a+tb. If d;=m then 6,=§; and if

d1=p‘m then 6;=p"°.

Notice that the possibilities for c¢ are limited by
the requirement that m = (1+g; ) (1+p°)”' 1is an integer. If
the elements  hi(x) (x€X; ,x#1) form a group, all elements

occurring with the same frequency, then AV (H;)=0 or g; -1l.

If AW (H; )=0 then d,=d_=(l+q;)/2. If AV (Y, )=q; -1, then
setting x = 06 (BrowX(s; )Xaw' Ba), 6, -1 = (g -1)x and so x
is rational. But qix> = A((s)?)9, = 0, since 6, and
q; x* are both positive rationals. Now

g x? - (g;-1)x = 1=0
gives x = -q;' or 1. Thus 6, =q or g , and &
and d, are 1 and gqj. (So A" extends to a character
of P). From the structural equations given in chapter 4

it can be seen that the above condition on the elements h;( x)
is satisfied for all the Chevalley groups except for G3 (q)

and AQQ(q ) (for the root subgroup corresponding to Sp).
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In fact for Gi(3), g; =27 and there exists a character A
for which A(H;) = -6, giving 6, =3 or 3, and d,,d:
equal to 7 and 21.
We now combine 8.7, 8.8 and 2.7 in a theorem to
conclude chapter 8:

8.9 THEOREM Let ¥ be an irreducible component of multi-

plicity 1 in A6, s = {WEWIXW=A}, 8 the restriction of

Y to BykGB,, 0, as defined in 8.4, and Ws as defined

in 2.7. Then the degree of ¢y 1is

v(1l) = [S:WS]_IW(g)/VYS(Q)
where W(t) and Ws (u) are the Poincare polynomials of W
and Wg (c.f.2.6), and the coordinates of the vector (¢

~

are given by the orders of corresponding root subgroups,
and those of 6 by corresponding 6, . (In particular

the coordinates are powers of p in both cases). (The

proof of this is immediate.)
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CHAPTER 9

AN AUTOMORPHISM OF XKkGX.

In this chapter we prove theorem J, which is given
by combining 9.1 and 9.4.

9.1 THFOREM Define f:XkGX > XkGX by setting

v o i
£(awh) = () 'h(-1)""" qq
and extending this linearly to the whole of XkGX. Then

f is an automorphism.

Proof Let s=s; be any fundamental reflection. Then
f(aZ2) = £(q(s)?X + (s)?H ag) (where g=q;)
= q(s)?X - (s)°H (8,)7'q

But, as in 6.6, &2 = g(s) ’X + qZ(X(s) 'x(s)”'X)
(summation over non-identity elements of X;)
= q(s)"?’X + g(s) X h;(x) (s)X
= g(s) " *X + H &,
Therefore
(8,)"%qg® = q(s)?X - (s)?%H; (8,) 'q

and so f(a?) (85 °q?) = [f(as)]2.

We now show that for all weW, f(d;ow) = £(as)f(ow)

Firstly, if 2(sw) > 2(w) and h€H is such that

(s) (w) = (sw)h, then (as in 6.5)
Os Ow = OGswh and Gwls = h™ 'G5 w-
Thus f(oasow) = £ (aswh)
= (1" (8,w) ' hai w
Q(W) A -1 A -1 -1 =1

f (o, ) f(ay).
If 2(sw) < 2(w) then by what we have just proved,

f(OLsOst) = f(OLs)f(Ost).
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Therefore f (a4 ay,) f (0Z 0 wh) (where (s) (sw) = (w)h)
= f(g(s)2aswh + (s)?H; 05 a5 wh)

= £(q(s)2aswh) + £((s)?H; asaswh)

= £(q(s)?)f(aswh) + £((s)?H as)f (a; wh)

= f(a?) £ (as wh)

= f (o, )f(o ) f(aswh)

= f(as)f(as o5 wh)

£ (as ) £ (aw)
Now a simple induction completes the proof that f(ayaw)
= f(oy)f(a,) for all v, weW, and the rest islclear.

If e is a primitive idempotent in XkGX affording
an irreducible component Y of li then £f(e) 1is also
a primitive idempotent, and the corresponding character will
be called £(¥). It will be shown that for each 1,
£(x(X)) = (X)),
9.2 LEMMA Let ¢ be an irreducible character of G
occurring with multiplicity 1 in AC. Then ¢ = £(y) 1if

and only if € is trivial on S.

Proof Let ©6 be the restriction of ¢ to BpkGBa. Then
¢ = £(y) if and only if ©O(Bw) = O(f(Bw)) for all wE€S; 1i.e.
if and only if 1 = 6(f(Bw) ' Bw)
= 6((-1)" " g BxGwawBy) (see 9.1)

for all we€S. If € is trivial on S then by 8.8 (ii)
8, =1 for all r, and so 6,=1 for all w. Furthermore
(—l)Q(w) =1 for all w€S, and so (-l)Q(w)6w=l for all weS.
Therefore ¢ = £(¢).

Conversely, if (—l)Q(W)ew = 1 for all w€S then

since 6, is a positive rational number it follows that

(—l)Q(w) =1 for all w€S, and so £ 1is trivial on S.



9.3 LEMMA Let J < {1,2,...n}, wew. Then

(X EOX)) = (8(5,3,w),e],)

J
Proof By 7.5 (ii), (Gx,,) = (1,8(s,3,w) = 1

and it follows that ¥X;+ 1is the unique common component of
(A\¥)C;  and X‘GJ' Therefore £(¥;,) is the unique common
component of (A%)® and f(Y) G, * Therefore (x;w/f (x) GJ)
is zero if ;. # f(x;,)  and one if x;, = £0Gw) -
Therefore by 9.2,

(Xfw, £f(x)) = (1,¢) (where the inner
product on the right hand side is taken over the group W, ns™)

s

= (8§(s,J,w), el ).

9.4 THEOREM E(x (X)) = ¢(A)

Proof By 9.3, (@ ,f£(x)) = (6,'8, E‘s)

-1 (e, £ 00

IJ'((SJ’ , EI )

and so (z,£(x))

= I(-1)

5 S

(summation over all subsets J of {1,2,...n})
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CHAPTER 10

THE STRUCTURE OF B, kGB,

Let D and Wg be as defined in 2.7 and let T
be the root system of Wg. For simplicity assume that k
is the complex field.

10.1 LEMMA Let r=r; be a fundamental root with corres-

ponding reflection s, and let v,wEW. If w(r)¢l' then

Bow 0s 0y = A" ((8) (V) (sv)™ ') Vgs gy Qs ¥ Byw Gsv

and oc‘,ocsB}\W

A ((vs) T (V) (8))V/ay ds av s Oy Bl

Proof We prove only the first of these, since the proof of

the other is similar. Firstly, if &(sv) > &(v) then
Qsv = @sdv and ogay = (s)(v)(sv) 'asv, so that the result
is trivial. If 2(sv) < &(v) then

as oy = g (8) (V) (sv) lagy + H; (s)2a, .

By 8.8 A% (H,)=0, and since q,q,,=9, the result follows.

10.2 I1LEMMA Let v,we€W and assume that w '(r) is positive

for all positive roots r such that v(r) is a negative
root of T. Then
B, ovow = A((v) (w) (vw)™ ") /ayqwQiw By Ovw
Proof Use induction on &(v). The case 2(v)=0 1is trivial.
Assume (v) > 0 and let v=ts where R&(t)=2(v)-1
and s=s; is a fundamental reflection. Let a be any

positive root such that +t(a) is a negative root of T.

Then a 1is not equal to r; (since t(r;) > 0), and so
s(a) 1is positive. Now vs(a) 1is a negative root of T,
and so w '(s(a)) > 0. Thus we have shown that (sw) ' (a)

is positive for all positive roots a with t(a) a negative

root of T. Now
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BaOy, Oy = A((v) (8)" ' (£)" ') B0 O Oy (by 6.6)
= A((v) ()71 ()7 1) By By 0 0w

= At((s)(w)(sw)'U/EZEZE?J A((V) (s)” ' ()" HYBrotasw (by 10.1 or 6.6
since either w ' (s)>0 or else t(s) = -v(s) € T)
= Av) (w) (sw) ™' (£)7 1) Vg quwai W A ((t) (sW) (VW) 'War s wv w BaOyw
by the inductive hypothesis, and on cancellation we obtain
the required formula. Using 10.2 we can prove theorems
F and G:

10.3 THEOREM The character ) of H may be extended to a

linear character of SH. (The extension will also be denoted
by ll)\ll)‘
Proof Let © Dbe the restriction to B kGB, of x(A).

For rel' define n,=1 if o, is a positive power of p

and n, = -1 if 6, 1is a negative power of p (see 8.8),
and for w€S 1let n(w) = In, where the product is over
positive roots of I negatived by w. It is clear from

8.5 that n 1is a character of S. Now for we€S, he€H
define A ((w)h)=n(w) |6 (Bw) | ™ 8 (Bw)A(h).

Let w&S and s a fundamental reflection of Wy
(i.e. the root r corresponding to s is in the base of T).
Then by 10.2, if w(r) > 0

A((w))A((s)) A((w) (s) (ws)™ ')A ((ws))

A((w) (s)) .
If w(r) < 0 then ws(r) > 0 and so
AW A ((8)) = A ((ws) (s))A((s)™" (ws)™ ' (w))A((s))
= A((ws))A((s))A((s)" " (ws)™ " (w))A((s))
= A ((w) (s)" ") [A((s))]?
[8(Bs) 1728(Bs )2 = |6(Bs) | A((s)2)0 (B 8)

vs)
[
t
>
0
N
1l

A((s)?) since 6(BsBs) = gs0s is real
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and positive. Thus A((w))A((s)) = A((w) (s)) 1in this case
also, and it is now clear that A 1is a character of SH.

It is convenient at this point to introduce some

Cr

new notation. If rel' define p, = p (see 8.8), and
for we€S define p, = lp,, product over positive roots
rel' such that w(r) is negative. Let

Yw = VPwqw' A((W)" ') Bw.

10.4 THEOREM Let w€S, veéD, and r a fundamental root

of I with corresponding reflection s. Then
(1) YvYw = Yvw and YwYv = Ywy
(1i1)  YwYs = Yws 1if wi(r) > 0
YwYs = PrYws + (pr-1)yvw 1if wi(r) < O
(1i1)  YsYw = Ysw 1f w '(r) > 0
YsYw = PrYsw + (pr=1)yw 1if w ' (r) < 0.

Proof Elements of D permute the roots in T, leaving

positive roots positive. Thus there are no positive roots
r such that v(r) is a negative root of T. Therefore
by 10.2

By Bw = A (V) (W) (vw)™ ')V, 0,7 b By w
Furthermore pv=1 and pw=pvw, and so it follows that
Yy Yw = Yvwe The formulae for YwYv, YwYs when w(r) > 0,
and YsyYw when w '(r) > 0 also follow easily from 10.2,
and we omit the proofs of these.
Let a be a fundamental root (i.e. fundamental in

the root system of W) such that s(a) < 0, and let w;

be the reflection corresponding to a. If w; # s then
s(a) # —a and hence w;(s(a)) 1is negative. That is,
(swi1) ' (a) is negative, and it follows that

L(wiswy) = R(sw;)-1 = 2(s)-2.

Continuing in this way we can find a reduced expression for
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s of the form g = WiWo e o eWrS; Whie « cWo Wy o Let
V=wW...ws and u = v !. If b is a positive root
such that v(b) 1is a negative root in T then -v(b) is
a positive root in I which is negatived by u and hence
by s also. Therefore -v(b) = r, and b = -u(r) = -r;,
contradicting the fact that b is positive. So no such b
can exist, and we may apply 10.2 to conclude that

BAO"VO"U . quAx((V) (u)).

Therefore
OyBroy = gy B,y A ((v) (u)).
Now vy = Psqglx((s)-Z)X((S)(u)'l(si)'l(v)'l)z(Bhava% oy B, )2
=P AW ()7 (V)T ) 2Byow ad auBagy A((V) (1))
= Py AC(W)T (V)T HBray (si )72 ad oy B,
But (s;) %0l = q;X + Hi oy, , and so we have
Ye = Prq;1Q3quA + cy;, for some scalar c¢
= pPr By + cvq
Let 0 be the restriction to B,kGB, of ¥(X). Then
0(v,) = Vb az ' |0(B,) |n(w)

]

Vpras' Vgs 6: n(w)
=p, or -1

In either case 0(y,)? = p, + cO(y,) gives c = p, -1.

Now if w€S such that w(r) < 0 then

YwYs = YwsYs = Yws (Pr Ba+(pr =1) s )
= PrYws + (Pr-1)vw

(and similarly vy,vy, = PrYswt(p -1)Y, for w such that
w ' (r) <.0).

We now use 10.4 to determine representations of B, kGB, .
In particular we have the following (from which theorem H

follows) :
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10.5 THEOREM (i) For any linear representation Vv of Ws

there exists a linear representation 6 of BxkWsBx such
that if r is a fundamental root of I with corresponding
reflection s, then 6(y,) = -1 1if v(s) = -1 and

B(ys) = pr 1if wv(s) = 1.

(ii) Let n be any irreducible character of D, and 6 a

linear representation of B, kWgB,. Then B, kGB, has an
irreducible character « such that «(y,w) = n(v)é(yw) for
all veED, we€Wg. Corresponding to «k there is an irreduc-

ible character of G which has multiplicity n(l) in AC,
and degree n(l)|D|"W(g)/WS(Q).

(iii) D is an abelian p’' -group.

(iv) There are precisely |D| components of A° with de-
gree obtained by setting n(l) =1 and 6 = p, for all

r€l in the formula given in (ii). (The 6, are the coord-
inates of Q). These are the only components with degree
prime to p, unless Wy has an irreducible component W,

of the form [2m] or [3""?,4] (see chapter 2) and for all
roots a of this component, p,|m or p, = 2 (respectively).
Then A° may have further components with degree prime to p

such that 6,6, =1 when a and Db are in different orbits

in the root system of W,;.

Proof (i) For r€l' with corresponding reflection s let
d, = -1 if v(s) = -1 and d, =p, 1if v(s) = 1. Define
6(y,) = Id, (product over positive r€l negatived by w)

and extend this linearly to the whole of BykWsB,. We use
induction on the number of positive ré€I' negatived by w to
show that 6(ay,) = 6(a)b(y,) for all we€Wg, from which it

follows trivially that 6 is a representation.
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Firstly suppose w=s 1is the reflection correspond-
ing to a fundamental root r of T. Let vVE&Wg. Then
if v(r) > 0,
0(y,)0(ys) = (IId,)d; (where the product is
over positive a€l' negatived by v)
= (IIds (ay )d: (since it is clear
that d4,=d,(.)y for any a€l and u€Wg, in view of 8.8 (i))
= [ld, (product over positive Dbe€T

negatived by vs)

0 (vys)

0 (Yy Ys)

If v(r) <0 then 6(y,)0(y;) = 8(v,s)0(ys)?

= 8 (yvs ) (Pr+(pPr=1)6 (5 ))

= P8 (yvs) + (Pr=1)6 (yvs )0 (vs)

= pPr9(yvs) + (pr-1)6(vv)

= 0(yvYs)
Hence it follows that 6(a)6(ys) = 6(ay;) for all a€B, kWgB, .

Now suppose that w negatives more than one positive

root of T. Then there exists v which negatives one fewer
and a fundamental reflection s of Wy such that w=vs.
Then for any o€B,kWgB, ,

6 (avyw) = 6 (ayyYs)

B (oyy )6 (vs)

Il

0(a)6(yy)0(ys) Dby the inductive

hypothesis

0 (a) 6 (Yw) .
(ii) Let R be a matrix representation of D with character

n. For ve€ED, we€Wg define T(yyw) = R(v)8(yw) and extend T lin-

early to the whole of By,kGB,. 1In particular, T(y, a)=R(v)6(a)
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for all ve€D and «€B,kWsB, . Then T is clearly a
representation, since if v,w€D and a,BEB\kWsB, then

T (Yyw (Yo' aYwB))

T(yy 0YwB)

R(vw) 6 (Y,  aYwB)
(since by 10.4 «v,'ay, € BykWgB,)

= R(V)R(w) 0 (a)6(B)
(since 6 1is a linear representation)

= T(y, o) T(ywB) .

The character « of T obviously has the required property.

Now Iqli(B, )k(B,,) = I in(v)n(v ')6(B, B,y

In(v)n(v ') 6, w

= In(v)n(v ') 0y (see 2.7)
where the summation is over all ve€D and weEWg. Since
In(vin(v™ ') = |D|, (ii) now follows from [7, theorem 2.4].

(iii) Choose the representation ©0 which corresponds to

the l-character of Wg, as in (i). Then for each re€T,

8, =p; . Hence WS(Q) is an integer. Using (ii) in the case
n=1 it follows that |[D| divides W(g). Hence D is a
p''~group. Apply (ii) again for the same 6 and any non-
linear irreducible character n of D. The character of G

obtained has multiplicity greater than 1 1in AG, and so by
7.8 1s not of the form <z (X). Therefore by 8.2 it has de-
gree divisible by bp. But WS(Q) is an integer and W(q)
is prime to p, and so p must divide n(l). This con-
tradicts the fact that D is a p -group. Hence D has no
nonlinear irreducible characters, and so is abelian.

(iv) By 8.2 and 7.8 any irreducible component ¢ of A C

with degree prime to p occurs with multiplicity 1. By
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10.4 it is clear that the corresponding linear representa-
tion of B, kGB, is composed of a representation n of D
and a representation 6 of BykWgB, in the manner describ-
-1

ed in (ii). If 0, = p, for any r€l' then it can be

seen from the factorizations given in [14] that (with the

exceptions given in the theorem statement) Wy (6) has a
factor of p in its denominator. (For example, if
Ws has a component of the form [2m] then Ws (60) has

~

m m« 1

factors  (1+6,), (1+8,) and (1+8,0,+0260+...4+0™ '™ ')
where a and b are representatives of the two orbits of
the root system [2m]. Since 6, and 6, are powers of P
and not equal to 1, if 6, = p;' the only way to avoid a
factor of p in the denominator is if 020p = 1 and p,

m m= 1
)

divides (140, 0, +...+0) 'of = m). If Ws(®) has a
factor of p in its denominator then p|z(l), a contra-
diction. Thus (apart from the exceptional cases) 8; =p,

for all r€lI', which means that 0(ys) = pr for the corres-
ponding reflection s (i.e. © corresponds to the l-charac-
ter of Wg). The rest follows simply.

Our next aim is to develop the theme of 7.5 (ii) in
more detail. In 10.5 (i) and (ii) an irreducible character
of G 1is obtained from linear characters v and n  of Wy
and D. Let us denote this character of @& by "y(v,n,x)".
By 10.3 there is a linear character vni of SH, and so
inducing to N we obtain a character £€(v,n,)) which is
irreducible’since for w€S the restriction to H of (vna)v
does not equal the restriction of vnai. More generally, if
J 1is any subset of {1,2,...n} the same process yields

irreducible characters y; (v,n,A) of G, and & (vym, )
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of NNG; .

Let J,K be two subsets of {1,2,...n}, and

X,,\, two linear characters of H. Let S, {wew, |AT=X,}
and S, = {w€Wg|A3=X,}, and S; = D;W,, S, = DW, (as

previously we had S = DWg). For w€S,, v€S, define vYw
and &8, in the same way as previously we defined vy, for

wES. We now prove theorem TI:

10.6 THEOREM If Vv,V are linear characters of Wi ,Wz,

and n;,n, linear characters of D,;, D, then

(VS,03) = (E1,E2)
where Y1 = Yy (Va,N1,r1), Yo = ViV, N2s,r2), &1 = Ey (Vi,N1,A1)
and £, = Ek(Vva,N2,A2).

First note that both inner products in the statement
of the theorem are zero unless X, = XY for some WwEW. So
assuming A,=A1=A", let 6 be the restriction of x(A) to
B, kGB,, and 8% its restriction to vakGBﬂy. Then for

any o€B)kGBa,

8(0)B,X,° = aB,X,° (by 6.7)
= a;luuwB»vXK°
(since there is a scalar c¢ with @wBM~X3° = cB X,°), and
hence 6(a) = 8" (o' ady). Now let r Dbe any root and

suppose r = v(r;) for some fundamental r;, and VEW.

Then ew(l') = qi 6 (B}\O{‘WV)-Z(Si )— 1>?(Si )—)ZQ‘;V\II B)\)

-1

Qi 0 (B owoy X (s; )7 "X (s )Xoy 'al By) (cf. 8.5)

w

= 0
This obviously holds for any element of S;wS:.
The next step is to prove that S,wS: contains an

element t such that +t(r) > 0 for all positive r€l;

(the root system of W;) and t '(r) > 0 for all positive
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re€l, (root system of W;). In fact let t Dbe an element
of S,wS; such that the number of positive r€l, negatived

-1

by t plus the number of positive r€I'; negatived by t

is minimal. Suppose that t '(r) < 0 for some fundamental
r€l'; with corresponding reflection s. Then (st)”' neg-
atives one fewer positive root of T, than does £ ! (cf.
proof of 2.4). Let a be a positive root in T, negatived
by st but not by t. Then +t(a) 1s a positive root neg-
atived by s, and since s€W;, t(a) is in the root system
of W . Since 6:#1, 0t (ay#1, and so t(a) € I'. But

the only positive root in TI; negatived by s is r, and

so t(a) = r. But this contradicts t ' (r) < 0. Thus

there can be no such a, and it follows that the number of
positive roots in T, negatived by st plus the number of
positive roots in [I'; negatived by (st)”'! 1is less than the
same number for t, and this contradicts the definition of t.
Therefore t ' (r) > 0 for all positive r€I;, and similarly
t(r) > 0 for all positive r€l,.

We now investigate t 'S,;tNS,. Let ©Q be the set of
roots 7r€T, such that +t(r) € I'y and let V be the sub-
group generated by the corresponding reflections. For
r€Q, r>0, let r = I),a where each a 1is a fundamental
root of T, and the XA, are positive scalars. Then
t(r) = IZ),t(a) and since +t(r) is in the root system of
W, so is each t(a). Hence each a is in . . Therefore
V is a parabolic subgroup of W, (generated by a set of
fundamental reflections of T,). If veEt 'S;tNS, and

v=dx, d€D,, X€EW; then r p» t(r) maps the positive roots in
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['; negatived by v onto the positive roots in TI'; neg-

1

atived by tvt’ Fach such r is in §, and sO X€V,.

Further, tdt’ ' negatives no positive root of T,, and

1

so tdt” '€D;. It can thus be seen that t 'S,tNS, = EV
where E = t 'D,tND,.

For <r€l',;, V€S, p: and pv are defined as in the
discussion preceding 10.4, and the character n of S; as
in the proof of 10.3. (n is not related to n; or n,).
Define m;, my for re€l,, vES, and a character « of S,
in a corresponding fashion. If re? with reflection s
then 6,=0;(ry and so m = pi(r) and k(s) = n(tst™').

1

Further, if v€t 'S,;tNS, then my, =py, , Wwhere u=tvt ,

and n((u)=x(v). From 10.2,
Byor oy = Yagyqgp' A((t) (v) (t)™! (u)-l)B}\OtuOLt (~¥Bj Oyt )
(n.b. If >0 it is impossible for t(r) to be a negative

root of TI',).

Il

Thus 6% (B, way ) Vayga A () (v) (£) "' (u)” ') e (a ' Buoy )
= Vo, g A () (V) (£)7 " (u)T )6 (By)
and so A ((v)) = A1 ((£) (v) (t)"1). Also

‘qu\-ll )\2((\7)- ' )B)\w OLV

I

Sy

YPudy ' A ((8) (V)71 (8)7 Way gt A ((8) (v) (£)=* (u)=*)ai! Byoy
= o] Y, 0 -

Let ©0; be the restriction to B,kGB, of ¢¢;, 0,
the restriction to B}\WkGKB}\W of Y,, and e;, e, the
corresponding idempotents. Suppose it is not true that
nividr ((£) (v) (£)7 1) = navaX, ((V)) whenever vet™ 's;tns,.
Then either n;(tvt ')#n{v) for some VEE or else
vy (tvt™ ' )#v, (v) for some fundamental reflection VEV.

In either case it is clear from 10.5 (i) and (ii) that

0;(Yu) # 6,(8y) (where u = tvt '). However
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01(vy)e10iez = e1v,04e; = €104 8,6, = €,0;€20,(8,) and so
ejo0p e, = 0.

On the other hand, suppose

Mividp ((£) (v) (£)7") = navadra ((V))
for all veEt 's,tNns,. Then using 10.5 (i) and (ii) and
the fact that p,=m, it follows that 0;(y,)=6,(8,) when-
ever Vv 1is a fundamental reflection of V or an element
of E; hence it holds for all ve€t™ 'S, tns, (with u=tvt™').
Let A be a set of representatives of the t 'S,tNS,\S;
cosets, such that for all =x€a, x '(r) > 0 for.all posi-
tive regn. Then e,~fe, where f = Zm;lez(dv_l)dv
(vét 'S, tNs;) and e = Im '8,(8 _,)6x (Xx€A).  Now

e10r e, ~ e (o fai')are ~ et e.
But for all vye€S;, x€A

Byayog Ox ~ Byoy¢Ox ~ ByOytx (since x '

negatives no positive root of t ' (I;)) and thus clearly
ejo0te # 0.

We can now complete the proof of 10.6. For any
coset S;wS, such that AT=A2 we have chosen a represent-
ative t with +t(r) > 0 when r 1is a positive root of T,
and t '(r) > 0 when r is a positive root of T,;
now let t,,t;,...ty be all the representatives so obtained
for the various cosets. Then as in the proof of 7.4,
€:kGe, has a basis consisting of those e,0; € which are
nonzero. Hence the dimension equals the number of i such
that mivid; ((& ) (V) (£i )7 )=n,v.r, ((v)) for all
VEt] 'S1ti NS;, and this is just the number of cosets

S1HWS,H (W€W) such that n;v;A; ((w)x(w) ')=n,v,X,(x) for
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all x€w 'S,HwNS, H (obviously this can only occur when
AT=A,) .

G G .
Thus (1,¥5) = dim e kGe,

the number of S;H\W/ S,H cosets with

the above property
= (£1,&%) by Mackey's theorem

and the proof of 10.6 is complete.
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CORRECTIONS

Summary 2nd page, 1.7

" 1.b.9

p.3> izl

p.11, Theorem 3.2 (3)

p.12, 1.7

p. 16, et.sed.

p.30,end

p-32, 7.0.8

p.49, 1.0.5

7.0.h

p.53, Footnote to 10.73

p.56, Theorem 10.5

p.60, 7.b.11

p.59, L.b.3

k@, mnot kg .

ncomponent ¥ of 2°1  with multiplicity
1 in I

Add nggpapbilized DY D" to end of line 1.

Add "where 2 (w) 18 the minimum length

for w as a product of the 8 (c.f.

0.1 & 2.2)".

Add in parenthesis n"The involutions S15525

.S of definition 3.1 become fundamental

n

reflections, & T1sT2s+++F are the

n
corresponding roots",
The group U referred to in theorem b1
and its proof should be X-.

(Versions of theorem B appear in the

1iterature: BSe€€ (111 or (191 as well as
o
kG]e, not kGe.
q , not -1
S W s W
-1 -1
qa,, not a4 9, -

ngee also Kilmoyer R., Notice 711—20—”6,
A.M.S. Notices 21."
(1) Add ngtapilized DY p" to line 1
(1i) Add ngtabilized DY D" to end of 1st
sentence.
Replace by

‘WO . 1 w0
XWXU o uukaWXp

o(a)B
Retween the sentences insert "(Here for

weE' -

5

, VED, vn(wv) = v({w)n(v). Vo is a

character since WV 1s stabilized by D).

should be  Oi¢ry T oy





