Ubiquitin Expression in the Lumbar Spinal Cord Motoneurons of Postnatal Mice-- an Immunohistochemical Study

PDF Version Also Available for Download.

Description

Maturation of spinal motoneurons in rodents is characterized by a period of cell loss in the embryo, but researchers have claimed that some cell death occurs postnatally. This form of cell death is called apoptosis and involves active participation of the cell. Apoptotic cells have certain recognizable morphological and molecular features. I have used a monoclonal antibody against ubiquitin, (a putative marker of apoptotic cells), to do immunochemistry on mouse spinal cords at various postnatal ages till early adulthood. Staining is seen in large amotoneurons in the ventral horn. Staining is intense till P28, and faint thereafter. Substantial proportions of … continued below

Physical Description

vi, 56 leaves : ill.

Creation Information

Chaube, Sanjay December 1994.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 185 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Chaube, Sanjay

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Maturation of spinal motoneurons in rodents is characterized by a period of cell loss in the embryo, but researchers have claimed that some cell death occurs postnatally. This form of cell death is called apoptosis and involves active participation of the cell. Apoptotic cells have certain recognizable morphological and molecular features. I have used a monoclonal antibody against ubiquitin, (a putative marker of apoptotic cells), to do immunochemistry on mouse spinal cords at various postnatal ages till early adulthood. Staining is seen in large amotoneurons in the ventral horn. Staining is intense till P28, and faint thereafter. Substantial proportions of motoneurons stain till P21, followed by a sharp decline in the number of immunopositive cells. None of the cells exhibit signs of apoptosis.

Physical Description

vi, 56 leaves : ill.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 1994

Added to The UNT Digital Library

  • Aug. 27, 2014, 7:42 a.m.

Description Last Updated

  • Sept. 10, 2020, 5:56 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 185

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chaube, Sanjay. Ubiquitin Expression in the Lumbar Spinal Cord Motoneurons of Postnatal Mice-- an Immunohistochemical Study, dissertation, December 1994; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc332620/: accessed May 5, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen