AUTHOR QUERY FORM

	Journal: JQSR	Please e-mail or fax your responses and any corrections to:		
		E-mail: corrections.eseo@elsevier.tnq.co.in		
ELSEVIER	Article Number: 3616	Fax: +31 2048 52789		

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

Location in article	Query / Remark: Click on the Q link to find the query's location in text Please insert your reply or correction at the corresponding line in the proof Please check telephone/fax number of the corresponding author, and all author names and their corresponding footnotes and correct if necessary.			
Q1				
Q2	The citation "Nunn and Briton, 2001; Porteus, 1978" has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences.			
Q3	Uncited references: This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section. Thank you.			
Q4	Please confirm that given names and surnames have been identified correctly. Please check this box or indicate your approval if you have no corrections to make to the PDF file			

Thank you for your assistance.

Quaternary Science Reviews xxx (2013) 1

Contents lists available at SciVerse ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev

Highlights

- We perform a multiproxy analysis of a sediment core from Lake Raraku (Easter Island).
- Shorter gaps than in earlier studies strengthen evidence on environmental changes.
- Both climate and humans play a major role in ecological change in the last millennia.
- Long, gradual and stepped palm-forest demise, and herb spread occurred from c. 450 BC.
- The expansion of the weed Verbena litoralis suggests early human colonisation.

0277-3791/\$- see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.quascirev.2013.04.004

SFV

Quaternary Science Reviews xxx (2013) 1-14

Contents lists available at SciVerse ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev

Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments

Q4 JNúria Cañellas-Boltà ^{a,b,*}, Valentí Rull^{a,1}, Alberto Sáez^{b,2}, Olga Margalef^c, Roberto Baq^d, Sergi Pla-Rabes^{e,f}, Maarten Blaauw^g, Blas Valero-Garcésⁿ, Santiago Giralt^c

^a Laboratory of Palynology and Paleocology, Botanic Institute of Barcelona (IBB-CSIC-ICUB), Palynology & Paleoecology Group, Passeig del Migdia s/n, E-08038 Barcelona, Spain ^b Department of Stratigraphy, Paleontology and Marine Geosciences, Universitat de Barcelona, Marti Franques s/n, E-08028 Barcelona, Spain

^c Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), Lluís Solé Sabarís s/n, E-08028 Barcelona, Spain

^d Faculty of Sciences, University of A Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain

e Biogeodynamics and Biodiversity Group, Center for Advanced Studies of Blanes (CEAB-CSIC), Cala St. Francesc 14, E-17300 Blanes, Spain

^f Centre for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, E-08193 Barcelona, Spain

^g School of Geography, Archaeology and Palaeoecology (GAP), Queen's University Belfast, Belfast BT7 1NN, UK

^h Pyrenean Institute of Ecology (IPE-CSIC), Apdo. 13034, E-50080 Zaragoza, Spain

ARTICLE INFO

Article history: Received 2 February 2013 Accepted 8 April 2013 Available online xxx

Keywords: Easter Island Paleoecology Late Holocene Human settlement Deforestation Verbena litoralis

ABSTRACT

Earlier palynological studies of lake sediments from Easter Island suggest that the island underwent a recent and abrupt replacement of palm-dominated forests by grasslands, interpreted as a deforestation by indigenous people. However, the available evidence is inconclusive due to the existence of extended hiatuses and ambiguous chronological frameworks in most of the sedimentary sequence studied. This has given rise to an ongoing debate about the timing and causes of the assumed ecological degradation and cultural breakdown. Our multiproxy study of a core recovered from Lake Raraku highlights the vegetation dynamics and environmental shifts in the catchment and its surroundings during the late Holocene. The sequence contains shorter hiatuses than in previously recovered cores and provides a more continuous history of environmental changes. The results show a long, gradual and stepped landscape shift from palm₁dominated forests to grasslands. This change started c. 450 BC and lasted about two thousand years. The presence of Verbena litoralis, a common weed, which is associated with human activities in the pollen record, the significant correlation between shifts in charcoal influx, and the dominant pollen types suggest human disturbance of the vegetation. Therefore, human settlement on the island occurred c. 450 BC, some 1500 years earlier than is assumed. Climate variability also exerted a major influence on environmental changes. Two sedimentary gaps in the record are interpreted as periods of droughts that could have prevented peat growth and favoured its erosion during the Medieval Climate Anomaly and the Little Ice Age, respectively. At c. AD 1200, the water table rose and the former Raraku mire turned into a shallow lake, suggesting higher precipitation/evaporation rates coeval with a cooler and wetter Pan-Pacific AD 1300 event. Pollen and diatom records show large vegetation changes due to human activities c. AD 1200. Other recent vegetation changes also due to human activities entail the introduction of taxa (e.g. Psidium guajava, Eucalyptus sp.) and the disappearance of indigenous plants such as Sophora toromiro during the two last centuries. Although the evidence is not conclusive, the American origin of V_i litoralis re-opens the debate about the possible role of Amerindians in the human colonisation of Easter Island.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

* Corresponding author. Laboratory of Palynology and Paleocology, Botanic Institute of Barcelona (IBB-CSIC-ICUB), Palynology & Paleoecology Group, Passeig del Migdia s/n, E-08038 Barcelona, Spain. Tel.: +34 934034489, +34 93 2890611; fax: +34 93 4021340, +34 93 2890614.

E-mail address: nuriacatcb@gmail.com (N. Cañellas-Boltà).

- ¹ Tel.: +34 93 2890611; fax: +34 93 2890614.
- ² Tel.: +34 93 4034489; fax: +34 93 4021340.

0277-3791/\$ – see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.quascirev.2013.04.004 Easter Island is a tiny and remote island in the South Pacific Ocean (Fig. 1). The island has achieved global fame as the home of an ancient and complex society that erected megalithic statues, known as moai, and as an example of dramatic environmental degradation wrought by humans. This latter view is largely based on the palynological studies of lake sediments which have been

Q1

N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

Fig. 1. Map of Easter Island. Above: map of Easter Island showing the location of the three permanent water resources on the island (Rano Raraku and Rano Kau crater lakes and Rano Aroi fen). Below: the location of the island in the SE Pacific Ocean (map modified from Elix and McCarthy, 2008).

interpreted as palm-dominated forests that were recently and suddenly replaced by grasslands. This apparently abrupt landscape change has been attributed to deforestation by the indigenous population (Flenley and King, 1984; Flenley et al., 1991; Flenley and Bahn, 2003; Diamond, 2005; Mann et al., 2008; Mieth and Bork, 2010). As a consequence, Easter Island has traditionally been regarded as an illustrative example of how humans can destroy their own habitat and cause a societal breakdown (Flenley and Bahn, 2003; Diamond, 2005), and it is often used as a model for the possible consequences of the over-exploitation of natural resources. Nevertheless, the environmental history of the island is poorly understood, and controversies about the timing and causes of the assumed deforestation, its consequences, and the role of humans are still ongoing (Mann et al., 2008; Rull et al., 2010).

According to the prevailing view of the history of Easter Island, a small group of Polynesian settlers reached the island from the west, most likely from the Marquesas, Tuamotu, Gambier or Austral Islands (Stefan, 2001; Flenley and Bahn, 2003) around AD 800– 1000 (Martinsson-Wallin and Crockford, 2002; Vargas et al., 2006) (Fig. 1). As the islanders grew in number, the need for open spaces for agriculture and dwellings as well as the demand for firewood and timber would have increased rapidly. This would have led to rapid deforestation and soil degradation, thereby initiating a positive feedback of catastrophic consequences. According to this view, before the arrival of Europeans in the 18th century, the inhabitants had completely deforested the island, which would have led to wars, famine and, finally, to cultural collapse (Flenley et al., 1991; Flenley and Bahn, 2003; Diamond, 2005).

Nevertheless this proposed sequence of historical events is not shared by all scholars. The settlement date is controversial and different chronologies ranging from AD 100 to AD 1200_1290 have been suggested (e.g. Heyerdahl and Ferdon, 1961; Hunt and Lipo, 2006; Butler and Flenley, 2010; Wilmshurst et al., 2011). Moreover, dating uncertainties have complicated the assignment of the precise age of the alleged deforestation, and its causal relationship with human activities has not been wholly accepted. Other additional or alternative causes for the vegetation clearance, such as climatic changes (McCall, 1993; Hunter-Anderson, 1998; Nunn, 2000) or the action of introduced fruit-eating rats preventing palm regeneration (Hunt, 2007; Hunt and Lipo, 2009) have also N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

306

307

308

309

310

311

312

313

314

315

316

317

318 319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

been proposed. Even the scenario of a completely forested island remains to be demonstrated (Rull et al., 2010). Likewise, the link between deforestation and cultural collapse has not been proved conclusively. Climate changes (Nunn, 2000; Stenseth and Voje, 2009), the European contact (Rainbird, 2002; Hunt and Lipo, 2009), a possible contact with the Amerindians (Dumont et al., 1998) or the isolation itself (van Tilburg, 1994) are also regarded as potential drivers of the cultural demise.

One of the main reasons for the ongoing debate about the ecological history of the island is the occurrence of extended hiatuses in most of the sedimentary sequences studied to date, which prevents us from understanding the events that occurred during the time when the great vegetation change took place (Flenley and King, 1984; Flenley et al., 1991; Dumont et al., 1998; Mann et al., 2008; Sáez et al., 2009; Rull et al., 2010).

Here we present the results of a multi-proxy study (sedimentology, geochemistry, diatoms, charcoal and pollen) of a radiocarbon-dated core recovered from Lake Raraku that seek to account for the tempo and mode of the vegetation changes in the last millennia, and to provide insights into how and when climate and/or human activities caused the paleoecological changes. The sedimentary record studied here has the advantage of having much shorter hiatuses than the cores analysed to date, thus providing a more complete palaeoecological sequence including new evidence from the period previously masked by sedimentary gaps. In addition, the identification of Verbena litoralis, a new pollen type observed within the island's sediments provides new and important information about potential causes.

2. Regional setting

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

301

Easter Island, which is a tiny (164 km²) volcanic island located in the South Pacific Ocean (27°07'16"/S, 109°21'59"/W), constitutes the easternmost Polynesian island (Fig. 1). It is one of the remotest places on Earth, about 3600 km from the Chilean coast and 2030 km from the nearest inhabited island (Pitcairn). The island has a triangular shape resulting from lava flows from three main volcanoes located at each of the three corners, and around 70 satellite cones. The Terevaka volcano (511 m) is the highest peak on the island. Hydrologically, the island is characterized by the absence of permanent surface streams due to the high permeability of the volcanic rocks (Herrera and Custodio, 2008). Two lakes (Rano Raraku and Rano Kau) and a fen (Rano Aroi) are the only permanent areas of surface freshwater. The climate is subtropical, with an average annual temperature of 21 °C and a range of average monthly temperatures between 18 °C in August and 24 °C in January (Mann et al., 2008). The total annual precipitation is highly variable, ranging between 500 and 2000 mm, with long alternating dry and humid periods (Horrocks and Wozniak, 2008). The current flora contains more than 200 vascular plants (Flenley, 1993), most of which (\sim 85%) have been recently introduced (Flenley et al., 1991; Zizka, 1991; Flenley, 1993). Today the island is almost entirely covered by grassland (90%), with some forests, shrublands and urban pioneer vegetation patches, mainly of introduced plants. Little is known about the native flora and fauna but they are described as very poor owing to the island's isolation and small area (Skottsberg, 1956; Zizka, 1991).

298 Raraku Lake is a small (0.11 km²), shallow (\sim 3 m), freshwater 299 lake, situated at 75 m altitude a.s.l., inside a volcanic crater older 300 than 300,000 yr (Baker et al., 1974; Sáez et al., 2009). The lake has a flat-bottom morphology and the margins of the small watershed 302 are relatively steep. It is hydrologically closed, disconnected from 303 the island's main groundwater aquifers and fed solely by precipi-304 tation (Herrera and Custodio, 2008). The catchment area is about 305 0.35 km² and it is composed of volcanic tuff rich in glass, feldspar, and ilmenite (González-Ferran et al., 2004). Lake waters are well mixed, acidic (pH around 6.3), dilute (average conductivity is 640 mS cm⁻¹, Geller, 1992) and of Cl-HCO₃-Na type (Sáez et al., 2009). A dense littoral belt, mainly of Scirpus californicus, currently surrounds the lake and forms some floating mat patches.

3. Methods

A multiproxy analysis was carried out on the uppermost section of the core RAR-08 recovered from Lake Raraku using a UWITEC corer installed on a UWITEC platform raft (see Sáez et al., 2009 for coring details).

3.1. Radiocarbon dating and age-depth model

Twelve AMS radiocarbon dates (Table 1) from the uppermost 41 cm of the core RAR 08 were used to construct the age-depth model. Samples were processed following the standard pollen protocol excluding acetolysis, alcohol dehydration and silicone oil storage. Dating was performed at Poznan Radiocarbon Laboratory (Poland) and Beta-Analytic (USA).

Radiocarbon dating of the lake Raraku sediments has been surrounded by controversy. Besides the discontinuity of the sedimentary record (hiatuses) observed in the Lake Raraku sequences, another difficulty in establishing a sound chronological framework is the frequent existence of many chronological inversions in the radiocarbon dates (Flenley and King, 1984; Flenley et al., 1991; Flenley, 1996; Butler et al., 2004; Horrocks et al., 2012), which has been attributed to different sedimentary processes (Butler et al., 2004; Mann et al., 2008). In order to improve the chronological framework of the sequence studied, an age-depth model was built with a Bayesian approach using the Bacon software (Blaauw and Christen, 2011). This approach was chosen since it allows the incorporation of previously known stratigraphic information (i.e. presence of one or more gaps or hiatuses) as well as constraints on accumulation rate and variability in model building, which is crucial for a realistic chronological interpretation. Earlier works carried out on the Lake Raraku sediments have demonstrated the presence of hiatuses in its sedimentary record (Flenley et al., 1991; Dumont et al., 1998; Mann et al., 2008; Sáez et al., 2009). In the core studied in the present work (RAR 08), two hiatuses were inferred at 19.5 and 10 cm depth, taking into consideration the raw radiocarbon dates, X-ray Fluorescence (XRF) core scanner images (not shown), and the lithological and sedimentological features of the core. See Appendix 1 for the detailed specification of settings used for the building of the age-depth model with Bacon.

Table 1

AMS ¹⁴C radiocarbon dates. Radiocarbon dates obtained from pollen-enriched extract from Raraku Lake core used for age-depth modelling.

_	Sample name	Laboratory name	Depth (cm)	Fraction dated	¹⁴ C yr BP	±
	RAR 08-01-4	Poz-42955	4	Pollen-extract	$106.94\pm0.39\text{ pMC}^{a}$	
	RAR 08-01-09	Poz-42957	9	Pollen-extract	101.03 ± 0.35 pMC ^a	
	RAR 08-01-10-11	Beta-316585	11	Pollen-extract	380	30
	RAR 08-01-12-13	Poz-32007	13	Pollen-extract	505	30
	RAR 08-01-17	Poz-42958	17	Pollen-extract	840	30
	RAR 08-01-17-18	Beta-316586	18	Pollen-extract	780	30
	RAR 08-01-18-19	Beta-316587	19	Pollen-extract	1180	30
	RAR 08-01-21	Poz-42959	21	Pollen-extract	2120	35
	RAR 08-01-22-23	Beta-316588	23	Pollen-extract	2970	30
	RAR 08-01-25	Poz-19940	25	Pollen-extract	2160	30
	RAR 08-01-29	Poz-42960	29	Pollen-extract	4800	35
	RAR 08-01-40-41	Poz-32120	41	Pollen-extract	4530	40

^a Radiocarbon date post-bomb.

3.2. Multiproxy analysis

Magnetic susceptibility and density were measured every cen-timetre using a GEOTEK™ Multi-sensor Core Logger and total ni-trogen (TN), total carbon (TC) and δ^{13} C were determined by a Finnigan delta Plus EA-CF-IRMS spectrometer. Twenty-four sam-ples were extracted from the upper 26 cm of the core and processed for pollen analysis according to slightly modified standard labora-tory procedures (Rull et al., 2010b), which include sieving, KOH, HCl and HF digestions, and acetolysis. Lycopodium tablets were added to each sample before chemical processing as an exotic marker. Microscopic slides were mounted in silicone oil and pollen count-ing was performed until at least 200 pollen grains had been reached, excluding aquatic and semi-aquatic taxa (Cyperaceae and Polygonum). Charcoal particles larger than 5 µm of twenty-five randomly distributed fields at ×20 magnification were counted, and the total concentration was inferred using the exotic markers (Lycopodium). The charcoal counts were carried out using the same pollen slides. The charcoal influx was calculated from total con-centration, using accumulation rates and sediment density. Their values for the uppermost centimetres of the sequence were not calculated owing to the lack of suitable density measurements. Samples for diatom analysis were taken every 2.5 cm and were processed using standard techniques (Renberg, 1990). The cleaned subsamples were dried onto coverslips and mounted on microscope slides with Naphrax[®] high refractive medium (R. I. = 1.73). At least 400 valves were counted per sample. Diagrams for both pollen and diatom data were plotted with psimpoll 4.26 (Bennett, 2009). Statistically significant pollen and diatom zones were obtained with the same software, using the method of optimal splitting by information content (OSIC) (Bennett, 1996).

4. Results and interpretation

4.1. Sedimentological, geochemical and chronostratigraphic data

According to the age-depth model (Fig. 2), the section of the core records the time spanning 1790 yr BC ($\sim 2570 - 1270$ BC at 95% uncertainty intervals). The sequence is interrupted by two sedimentary hiatuses that span from c. AD 500 to c. AD 1165 and from c. AD 1570 to c. AD 1720.

This stratigraphic interval, which is 26 cm thick, is composed of diatom-bearing, peaty sediments. Two different facies were identified (Fig. 3). The lowest part of the core, below 19.5 cm depth, is composed of reddish-brown massive or banded muddy peat, formed mainly by macroremains of sedges. It has been interpreted as deposited in a mire environment (Sáez et al., 2009; Cañellas-Boltà et al., 2012). Above this depth, the sediments are composed of silicate-rich silty peat, interpreted as deposited in a shallow lake surrounded by floating mats as currently shown by the Raraku crater (Sáez et al., 2009; Cañellas-Boltà et al., 2012). See Sáez et al. (2009) for a more detailed lithostratigraphic description. According to the age model, the mire episode recorded in this short core comprises the last 2290 years (from c. 1790 BC until c. AD 500) of a long Holocene mire sedimentation phase initiated approximately 8900 years ago. The upper lacustrine interval covers the remaining ~800 years until the present (Sáez et al., 2009).

Slight changes in density, magnetic susceptibility (MS), C/N ratio, total carbon (TC), δ^{13} C and total nitrogen (TN) are observed along the core (Fig. 3). After an initial increase of up to 24 cm, TC and C/N values tend to decrease up to 17 cm depth. In contrast, density, δ^{13} C, and TN remain fairly constant up to this depth. A large peak of magnetic susceptibility is observed at the bottom. From 17

N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

Fig. 3. Lithology, physical and geochemical data. Physical and geochemical parameters from the Lake Raraku sequence. Lithostratigraphy and AMS ¹⁴C radiocarbon dates are indicated on the left of the diagram and calibrated dates according to the age model used on the right. Dashed horizontal lines indicate depth of the discontinuity of sedimentary hiatuses.

to 10 cm depth, TC, TN, C/N, δ^{13} C and MS values remain essentially constant except for a peak of magnetic susceptibility detected around 16 cm depth, which coincides with a decrease in TC, C/N and density. From 10 to 6 cm depth, a marked decrease in sediment density, TC, TN and in δ^{13} C is observed. The C/N peak at 8 cm depth coincides with a TN fall. From 6 cm depth to the top, the values of the parameters remain constant with minor fluctuations.

4.2. Pollen and charcoal data

The pollen results (percentage) and charcoal data (influx) are depicted in Fig. 4. The palynological record is characterised by the occurrence of few pollen types, with palm, grasses and V₁ *litoralis* Kunth as the predominant elements. Besides palms, *Triumfetta semitriloba* Jacquin, *Sophora toromiro* (Philippi) Skottsb., and Asteraceae are the other main woody taxa identified through the record. Several ferns, Cyperaceae, *Polygonum acuminatum* Kunth and cf. *Solanum* are also present in moderate to relatively high percentages. The main change identified is the replacement of the woody plant pollen (mainly palms) by herbaceous plant pollen (primarily Poaceae and V₁ *litoralis*). Two zones are statistically significant, highlighting this main shift around 18.5 cm depth. Some changes inside these zones allow us to distinguish different sub-zones (Fig. 4).

4.2.1. Pollen zone RAP-1 (26–18.5 cm, c. 1790 BG–c. AD 1200)

This zone is characterised by a high dominance of tree and shrub pollen, particularly from palms, with smaller amounts of *Triumfetta* and *Sophora*. Fern spores show low abundances in this zone, as does Asteraceae pollen, which is absent from several samples. Two subzones can be identified. The subzone RAP-1a (26–22.5 cm depth; 1790 BG–c. 450 BC) is clearly dominated by palm pollen, with values around 90% of the total pollen sum. *Triumfetta*, *Sophora*, and few Asteraceae complete the tree and shrub pollen record in this subzone. A few Cyperaceae and herb pollen are also observed. In the subzone RAP-1b (22.5–18.5 cm depth; c. 450 BG–c. AD 1200), palm pollen declines markedly, with percentage values reaching only up 60–70% of the pollen sum. Poaceae, V₁ *litoralis* and Cyperaceae pollen percentages show a marked increase. *Solanum* and psilate monolete fern spores undergo a slight increase and psilate triletes appear in the record for the first time. *Triumfetta* and *Sophora* are still present and charcoal influx shows a slight increase. Asteraceae are absent.

4.2.2. Pollen zone RAP-2 (18.5 cm depth to top) (c. AD 1200 to present)

Palm pollen undergoes a second significant drop at 18.5 cm and herb pollen becomes dominant, with alternating dominance of Poaceae and V₁ litoralis. Ferns spores (primarily psilate monoletes) and Asteraceae pollen are also more abundant in this zone than in RAP-1. The considerable increase in charcoal influx throughout this zone is also noteworthy. Three subzones can be distinguished according to changes in the record of palms, herbs and charcoal. The subzone RAP-2a (from 18.5 to 12.5 cm depth; c. AD 1200-c. AD 1475) is characterized by co-dominance of Verbena and Poaceae, intermediate abundances of palm pollen (20-37%), and high abundances of Cyperaceae. Charcoal influx is remarkably higher than in the previous zone. In the subzone RAP-2b (from 12.5 to 6.5 cm; c. AD 1475-c. AD 1875), palm pollen falls and shows the lowest percentages in the record (<10%), Poaceae shows a slight decrease and V₁ litoralis becomes dominant. Other distinctive features of this subzone are the decrease in Cyperaceae and the highest charcoal influx values. The uppermost section of the core (the subzone RAP-2c, 6.5 cm depth to the top; from c. 1875 to present) is characterised by a marked increase in Poaceae, which become dominant at the expense of Verbena. New pollen taxa

N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

appear in the record such as P₁ guajava L., Plantago sp. and Euca*lyptus* sp.. The absence of *Sophora* and the slight increase in palm pollen are also significant.

4.3. Diatom data

Pseudostaurosira trainorii E.A. Morales. Pseudostaurosira neoelliptica (Witkowski) E.A. Morales and Pinnularia ioculata (Manguin) K. Krammer are the most abundant diatoms in the record (Fig. 5). The main shift is the replacement of benthic by tychoplanktonic taxa around 19.5 cm depth, which marks the boundary between two statistically significant zones. This boundary roughly coincides with the boundary between the previous pollen zones.

4.3.1. Diatom zone RAD-1 (26-19.5 cm depth) (c. 1790 BG- c. AD 500)

This zone is dominated by benthic diatoms, notably *P*, joculata. The presence of numerous aerophilic benthic taxa (e.g. Eolimna minima (Grunow) H. Lange-Bertalot, Hantzschia amphioxys (Ehrenberg) Grunow, Luticola sp. aff. mutica (Kützing) Mann, Nitzschia debilis (Arnott) Grunow, Pinnularia sp. aff. divergentissima) is also noteworthy. Above 22.5 cm (c. 450 BC) slight changes in the diatom assemblages are observed, with an increase in non aerophilous P. joculata up to values of 80% of the total assemblage. Most of the diatoms in this zone have an acidophilic character. The diatom frustules/chrysophycean stomatocysts ratio shows low values.

4.3.2. Diatom zone RAD-2 (19.5 depth to top) (c. AD 1165 to the present)

This zone is characterised by the predominance of tychoplanktonic and alkaliphilic diatoms belonging to the Fragilaria s. l. group, basically *P*, *neoelliptica* and *P*. *trainorii*, which replace the benthic diatoms of the former zone. Furthermore, two subzones can be differentiated. The subzone RAD-2a (19.5-10 cm depth, c. AD 1165₁c. AD 1570) is dominated by *P. neoelliptica* and *P. trainorii* (absent in the previous zone), and displays a diverse assemblage of benthic diatoms, with *P. joculata* as the most abundant one but with lower values than in RAD-1. By contrast, the subzone RAD-2b (10 cm depth to the top, c. AD 1570 to the present) is almost entirely dominated by tychoplanktonic diatoms, and benthic diatoms are practically absent with a minor presence of *Pinnularia*.

An overall upward increase in the frustules/chrysophycean stomatocysts ratio is observed in this zone. After an isolated peak around 16 cm depth, a gradual rising trend occurs from 14 to 4 cm. This ratio shows a marked decrease in the four top centimetres.

4.4. Vegetation and palaeoenvironment reconstruction

The reconstruction of the environmental and vegetation dynamics in the Raraku catchment and surroundings through time is based on pollen and diatom zoning, taking into consideration changes in the sedimentary facies, the charcoal influx and the physical and geochemical proxies. Five main phases can be recognised (Fig. 6).

Fig. 5. Diatom diagram of the sequence from Lake Raraku. AMS ¹⁴C radiocarbon dates are indicated on the left of the diagram and diatom zones on the right. Calibrated dates according to the age model used are indicated on the right.

Please cite this article in press as: Cañellas-Boltà, N., et al., Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments, Quaternary Science Reviews (2013), http://dx.doi.org/10.1016/j.quascirev.2013.04.004

Fig. 6. Summary multiproxy diagram of the sequence from Lake Raraku. AMS ¹⁴C radiocarbon dates are indicated on the left of the diagram, and calibrated dates according to the age model used on the right. The arrows in the Arecaceae curve indicate palm decline events discussed in the text. Dashed horizontal lines indicate phases identified in this study. The two sedimentary hiatuses in the sequence are depicted by horizontal lines. The sedimentary hiatuses observed in other studies are indicated on the right. Note that early human settlement (450 BC) and the gradual nature of ecological change fall within the hiatuses of earlier studies.

4.4.1. Phase 1: c. ~1790 to c. 450 BC

Both the sedimentary composition (peaty deposits) and the diatom data suggest that the bottom of the Lake Raraku crater was covered by a mire during this period. As in earlier studies, the Lake Raraku pollen record provides evidence of a wooded landscape dominated mainly by palm trees in the Lake Raraku surroundings around the start of the late Holocene. T₁ semitriloba and S₁ toromiro shrubs would have dominated the understorey. High total carbon (TC around 40%), C/N values exceeding 10 and heavy δ^{13} C values indicate the prevalence of terrestrial organic matter in the sedi-ment, mainly derived from C3 plants (Meyers and Terranes, 2001). The predominance of benthic diatoms, many of which show an aerophilic affinity, points to a mire environment with ephemeral and shallow water ponds. Furthermore, the presence among the aerophilic taxa of subaerial species such as H. amphioxys, Luticola mutica, N. debilis and Pinnularia borealis Ehrenberg (Fig. 5) could indicate periods with higher aridity and drying out conditions (Denys, 1991; Johansen, 2010).

4.4.2. Phase 2: c. 450 BC–c. AD 1200

At the start of this period, the characteristics of the sediments point to the continuity of the mire conditions of Phase 1. However, the decrease in benthic diatoms with aerophilic affinity and the progressive diminution of the C/N ratio during this phase suggest a peaty environment that gradually became waterlogged. This environment could have favoured the growth of semiaquatic plants such as Cyperaceae.

Sedimentary and chronological evidence indicate a period of
subaerial exposure of the depositional surface after AD 500 and
before AD 1200 and the subsequent erosion resulting in a hiatus in
the sequence. This hiatus was probably the result of drought phases
between AD 500 and AD 1200 (Mann et al., 2008; Sáez et al., 2009).
The Raraku basin was flooded again c. AD 1200, as evidenced by

changes in the composition of the sediment, and by the onset of a trend towards tychoplanktonic dominance in diatom assemblages.

The first significant vegetation change in the sequence occurred c. 450 BC (790 BG–90 BC) when a trend of replacement of wooded landscape by herb-dominant communities starts. In this regard, a marked increase in herbaceous taxa (notably grasses, *V*₁ *litoralis* and *Solanum* sp.) coupled with a fall in palm pollen indicates a reduction in the arboreal cover, and an openness of the landscape (Fig. 6). The expansion of herbs, especially the spread of *V*. *litoralis*, a weed/ruderal plant that is associated with human-disturbed sites (Zizka, 1991; Wagner et al., 1999), suggests the possible onset of human presence at the beginning of this phase. A slight increase in charcoal influx during this period, pointing to greater fire incidence, could also support human presence. The small rise in fern spores (mainly psilate monoletes) could be due to the increase in local burning. Secondary fern communities are rapidly established in areas affected by fire (McGlone and Wilmshurst, 1999; Rull, 1999).

4.4.3. Phase 3: c. AD 1200-c. AD 1475

The sharp increase in tychoplanktonic diatoms and the compositional and geochemical data (lower values of TC, C/N and δ^{13} C) demonstrate that the Raraku site was transformed into a shallow lake with abundant littoral vegetation not unlike conditions at present. Indeed C/N and δ^{13} C values strongly suggest that the organic matter is mainly terrestrial in origin. Geochemical data show a higher increase in sediment delivery to the lake (higher silicate content). The dominance of small diatoms of the *Fragilaria* (s.l.) group, which includes the genus *Pseudostaurosira*, also corroborates the increased erosion in the catchment. Indeed, this group of diatoms is typical of shallow but open waters and littoral zones, and their growth is favoured by alkalinizing base cations released from the catchment (Reed et al., 1999; Axford et al., 2009). The dominance of these diatoms would indicate enhanced runoff

and increased cation input to lake waters, probably as a result of
vegetation clearance. The increase in the frustules/chrysophycean
stomatocysts ratio could also point to enhanced eutrophication
conditions (Smol, 1985).
A second notable vegetation shift took place c, AD 1200 and

A second notable vegetation shift took place c. AD 1200 and entailed a drastic landscape transformation. The pollen record was no longer dominated by palms but by herbaceous taxa, indicating the increasing prevalence of open herbaceous communities (Fig. 6). Poaceae and V₁ litoralis continued their expansion initiated in the previous phase, but this time with a pronounced acceleration. Although the palm pollen decreased gradually during all this period, palms remained as an important element of the vegetation, together with *Triumfetta*, *Sophora*, and Asteraceae, which increased in abundance during this phase. The large rise in charcoal influx suggests higher fire frequency, which is probably associated with continued human disturbance.

4.4.4. Phase 4: c. AD 1475-c. AD 1875

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

The sedimentary, geochemical and diatom records indicate persistent shallow-lake conditions during this period. However, a sedimentary hiatus between c. AD 1570 and AD 1720 indicates other period of drought. During this phase the palm pollen attains its lowest values (<10%), suggesting a landscape almost entirely dominated by herbaceous plants, with abundant *Verbena*, and a few sparse palms. A notable increase in *Verbena* percentage and charcoal influx values probably indicate the continued intensification of disturbance by humans.

4.4.5. Phase 5: c. AD 1875 to present

Significant changes in vegetation took place during this last phase. The Raraku landscape became dominated by Poaceae after a sharp fall in V₁ *litoralis*. However, *Verbena* continued to be an important element of the vegetation as shown by the marked pollen values still observed in the sediment. Another striking change is the presence of pollen of plants known to be introduced by humans during the 20th century, such as P₁ guajava and Eucalyptus, showing an increase in allochthonous elements. The endemic shrub S₁ toromiro, which survives today only as a cultivated plant on the island and in botanical gardens in other parts of the world (Zizka, 1991), disappears from the Raraku area during this phase. The highest values of the frustules/chrysophycean stomatocysts ratio also suggest the maximum eutrophic conditions in this record.

Unfortunately, as stated in the Methods section (Section 3), it was not possible to calculate charcoal influx in the uppermost centimetres of the sequence, which prevents the interpretation of fire dynamics in this period.

5. Discussion

The multiproxy study of a Lake Raraku sedimentary core provides relevant information about the late Holocene vegetation dynamics and environmental changes in the Lake Raraku catchment and surroundings. Despite the presence of two sedimentary hiatuses, the unrecovered time span in this study is considerably shorter (around 650 and 200 yr, respectively) than in earlier studies of the Lake Raraku sediments (around 3000_6000 yr in e.g. Flenley et al., 1991; Mann et al., 2008) (Fig. 6). Our record therefore provides a more comprehensive view of the late-Holocene history of the lake and furnishes empirical evidence for vegetation changes and their potential causes that have remained hidden to date.

5.1. Climate changes

Earlier studies of the island have suggested significant climatic changes during the Last Glacial Maximum and the early-mid

1086 Holocene (Flenley et al., 1991; Azizi and Flenley, 2008; Sáez et al., 1087 2009) but there are very few data on more recent times. Our 1088 study shows that both climate and human activities have largely modified the landscape during the last millennia. Besides changes 1089 1090 in the aquatic organisms and chemical proxies (Section 4.4), the occurrence of sedimentary gaps in the record could be interpreted 1091 1092 as a result of intensified erosion during dry climatic phases (Mann et al., 2008; Sáez et al., 2009). These dry phases would have 1093 resulted in a fall in the water level or in a total drying out, thus 1094 favouring peat erosion and/or preventing its growth. The older gap 1095 (c. AD 500-c. AD 1200) is roughly coeval with the Medieval Climate 1096 1097 Anomaly (ca 9th–14th centuries) when warm and dry conditions prevailed in the South Pacific Basin (Nunn and Britton, 2001; Nunn, 021098 2007). After this dry period, the rise in the water level at Raraku led 1099 to the formation of a lake. This climate shift could be attributed to 1100 1101 the AD 1300 event, a phase of rapid cooling and wetter conditions, 1102 especially in the eastern Pacific Basin, which has been linked to an 1103 increase in the frequency of El Niño events (Nunn, 2000, 2007; Nunn and Britton, 2001). The younger hiatus (~AD 1570–AD 1720) 1104 1105 could be associated with the occurrence of several drought phases 1106 in the Pacific Basin during the Little Ice Age (Nunn, 2000, 2007). The continued dominance of tychoplanktonic diatoms and the sedi-1107 1108 mentary composition suggest higher lake levels and a prevailing wet climate from c. AD 1200. These climatic changes would have 1109 been coupled to human activities, resulting in synergistic effects 1110 that could have favoured or slowed down population growth, palm 1111 growing and regeneration, or fire incidence. 1112

5.2. Palm forest decline and recent vegetation changes

1116 Palynological evidence from Raraku sediments supports the occurrence of former palm-dominated vegetation at the start of the 1117 late Holocene and the progressive grassland expansion that 1118 replaced these palm forests (Fig. 6). This significant change in 1119 1120 vegetation, which started c. 450 BC, entailed a gradual and stepped replacement that lasted about two thousand years. Three main 1121 1122 palm declines are identified in the record. The first decline took 1123 place c. 450 BC although palms still remained as the dominant element in the landscape. At c. AD 1200, the second palm decline 1124 1125 led to a more open landscape with the probable onset of dominant 1126 herbaceous communities. The last palm decrease occurred c. AD 1475, but palm pollen did not disappear entirely from the record as 1127 1128 has been reported in other paleoecological studies (Dumont et al., 1129 1998). This is consistent with the presence of some isolated palm 1130 trees as noted by the first Europeans reaching the island during the 18th century (Zizka, 1991; Hunt, 2007; Mann et al., 2008). The 1131 progressive palm decline observed in our results is at variance with 1132 earlier studies that have proposed a sudden and rapid vegetation 1133 change, i.e. a catastrophic palm forest demise (Flenley and King, 1134 1984; Flenley et al., 1991; Mann et al., 2008). In these studies, 1135 1136 which were also performed in the Lake Raraku sediments, palm 1137 pollen sharply declines and is replaced abruptly by grass pollen, probably as a result of sedimentary gaps masking the trends shown 1138 1139 by our data.

Of the three recorded palm declines, only the second can be 1140 linked to a sedimentary gap (\sim AD 500 to \sim AD 1200), which is 1141 interpreted as indicative of dry climates (Fig. 6). This would suggest 1142 some influence of climate on the palm demise. However, the 1143 1144 decline occurred immediately after the hiatus, coinciding with the 1145 transition between lower and higher water levels, as indicated by 1146 diatoms, and also by a marked increase in charcoal, which strongly 1147 suggests human disturbance. It may be that the vegetation change was brought about by a combination of climatic and anthropogenic 1148 1149 forcings. Dry climates would have depleted natural resources and 1150 favoured vegetation ignitability, leading to an intensification of

Please cite this article in press as: Cañellas-Boltà, N., et al., Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments, Quaternary Science Reviews (2013), http://dx.doi.org/10.1016/j.quascirev.2013.04.004

9

1113

1114

forest exploitation and local burning. The first and third palm de-clines occurred without evidence of significant climate change. The first decline took place within a lowstand phase and coincides with increases in charcoal and herbs, suggesting human disturbance. However, there is no evidence of human occupation of Easter Island at that time. This possibility is discussed in the next Section 5.3 on the basis of new evidence provided in this paper. The last palm decline occurred in a lake highstand situation (i.e. wetter climates) and is coeval with a second notable increase in charcoal influx, which strongly suggests intensification of burning. The second sedimentary gap (c. AD 1570-c. AD 1720) does not appear to have affected the vegetation significantly.

In the two last centuries, floristic and vegetation changes con-sisted in the introduction of allochthonous plants, such as Euca-*lyptus* and *P* guajava, and the disappearance of native ones as is the case of Sophora (Figs. 4 and 6). The last appearance of Sophora in the record roughly coincides with the onset of sheep farming on the island (Porteous, 1978; Mieth and Bork, 2005). It is well docu-mented that sheep farming at the end of the 19th century and throughout 20th century intensified the degradation of the land-scape (Porteous, 1978; Mieth and Bork, 2005), which would have contributed to the extinction of Sophora. The indigenous vegetation of Easter Island has been relegated to a few isolated locations and have been mainly replaced by allochthonous grasses and other introduced plants (Zizka, 1991).

5.3. V₁ litoralis colonisation and expansion

The decline of palm forest was accompanied by the expansion of herbs, mainly Poaceae and V₁ *litoralis*. The presence of the pollen of the V₁ *litoralis* (Fig. 7) in the sedimentary records of Easter Island has not been documented to date, although this plant forms part of the present vegetation. V. *litoralis* is a native species of America commonly associated with disturbed sites (agricultural or ruderal) (Zizka, 1991; Wagner et al., 1999) and is considered to have been introduced to the island during the two last centuries (Zizka, 1991). The continued and predominant occurrence of V₁ *litoralis* pollen, and its trends over time, in the Raraku record from 450 BC could be due *a priori* to three causes: 1) arrival of the plant in the island by non-human (natural) dispersal mechanisms, such as birds or rafting, and establishment and expansion as a result of favourable environmental conditions; 2) arrival by natural dispersal agents but spreading and expansion as a result of human activities and 3)

arrival, establishment and population expansion linked to human activities.

In the first case, the onset of herb expansion coinciding with the first palm decline would have been due to environmental, probably climatic, causes. According to this hypothesis, palm forests were already decaying when humans colonised the island. A scenario of this type was suggested by Hunter-Anderson (1998), who proposed a geo-climatic model to account for the disappearance of the palms in which mid to late-Holocene climatic instability would have played a major role. According to this author, humans arrived in the island during "favourable conditions of the Little Climatic Optimum" between AD 800 and AD 1400 (1200 and 600 yr BP), when the island was already covered by grasses with only few trees and shrubs growing at protected sites. Likewise, droughts and changes in ENSO frequency have been proposed as possible causal agents for vegetation changes by other authors (Orliac and Orliac, 1998; Nunn, 2000; Orliac, 2000; Nunn and Britton, 2001). However, no conclusive evidence has been obtained to date. This hypothesis has been dismissed using inferences from the climate dynamics of the last 50 years (MacIntyre, 2001; Genz and Hunt, 2003). There is no independent evidence in the palynological record to either support or challenge this hypothesis (Rull et al., 2010). Other possible causal agents of vegetation change could have been short-term perturbations such as intense storms. The continuous nature of the trend of change observed in our records does not appear to support the occurrence of episodic events as potential causes.

The two other hypotheses attribute the expansion of V_i litoralis and the associated landscape transformations to human activities. Both hypotheses suggest human presence on the island to at least \sim 450 BC, some 1500 years before the commonly accepted date (discussion in Section 5.4). The main difference between these two hypotheses is the dispersal agent responsible for the transportation of the plant to the island, either by non-human agents (hypothesis two) or by the eventual first colonisers (hypothesis three). As stated above, V₁ litoralis, which is commonly associated with human activities, it is also regarded as a weed. At present, the species is well established on the island, especially along waysides, coasts and lake shores (Zizka, 1991). Moreover, it has been suggested that V. litoralis (known as "puringa" by present-day Easter Islanders) was cultivated on the island in historical times for its medicinal properties (Zizka, 1991; Rauch et al., 1996), which could have favoured the spread of this herb. Therefore, the relationship between this plant and human activities seems, at present, fairly clear.

Fig. 7. Photographs of a Verbena litoralis growing at present around Lake Raraku (A_1D) and pollen identified as Verbena litoralis in the microscopic slides (E_1H) Bar = 10 μm. The slightly smaller size of fossil pollen is probably because of the use of silicone oil during pollen protocol and storage (Rull and Rinaldi, 1988).

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

The Raraku record shows a significant correlation between 1281 1282 charcoal and V. litoralis (r = 0.61, p-value = 0.003), and between charcoal and herbs (basically V. litoralis + Poaceae) (r = 0.70, p-1283 1284 value = 0.0004), which highlights a relevant role of fire in the 1285 replacement of palms by open vegetation and with the expansion 1286 of V. litoralis. This indirectly supports the role of humans through 1287 burning in the vegetation changes of the last millennia. Indeed, 1288 vegetation clearance, which has been associated with high in-1289 creases in charcoal influx and grasses, sedges and ferns at the 1290 expense of trees, has been commonly attributed to human activities on Easter Island and on many other Pacific islands (e.g. Kirch, 1291 1292 1986; McGlone and Wilmshurst, 1999; Anderson, 2002; Kennett 1293 et al., 2006). In this regard, the initial spread of the V. litoralis 1294 (and Poaceae too), which occurred c. 450 BC, was probably the 1295 result of a low environmental impact caused by a small human 1296 population during the initial settlement. Further V. litoralis and 1297 grass expansions would have been favoured by the continued 1298 population growth and intensification of agriculture. Numerous 1299 studies have reported intensive agricultural practices on Easter 1300 Island c. AD 1200-1600 (e.g. Stevenson, 1997; Stevenson et al., 2002; Mieth and Bork, 2005). Recently, Horrocks et al. (2012) 1301 1302 have suggested that the Lake Raraku crater was also intensively 1303 multi-cropped. Our results support the interpretation of the 1304 intensification of human impact c. AD 1200. They confirm a highly 1305 modified landscape surrounding Lake Raraku as evidenced by the 1306 striking abundance of V₁ litoralis and herbs, the marked decrease 1307 in palms and the increase in charcoal influx. Moreover, the pres-1308 ence of diatoms of the genus Fragilaria s.l. indicates enhanced 1309 runoff and cation input to lake waters, also suggesting increased 1310 catchment erosion at that time. 1311

Finally, the pattern of ecological transformation is continuous and irreversible, which is consistent with the action of a persistent forcing mechanism hampering an eventual vegetation recovery. Overall, these changes strongly support the role of humans in landscape transformation since c. 450 BC.

5.4. Early human settlement and potential origins

1312

1313

1314

1315

1316

1317

1318

1319 Our results show that vegetation change starts c. 450 BC (790 1320 BG_{-90} BC) according to the age-depth model inferred, which is 1321 about 1500 years before the date generally accepted for palm 1322 decline as well as for the arrival of Polynesian settlers. The first 1323 archaeological works on Easter Island suggest that the initial hu-1324 man settlement took place around AD 400 (Heyerdahl and Ferdon, 1325 1961). Further palynological studies have proposed that human 1326 arrival and initial deforestation occurred c. AD 750-1200 (Flenley 1327 and King, 1984; Flenley et al., 1991; Flenley, 1993), and that island 1328 deforestation was complete by AD 1500 (Flenley, 1993). However, 1329 an earlier date of c. AD 300 for colonisation has been subsequently 1330 put forward (Flenley, 1996). Increasing archaeological work and the 1331 reanalysis of previous radiocarbon dates led to Martinsson-Wallin 1332 and Crockford (2002) to propose the interval AD 800-1200 as the 1333 most reliable date for the first human settlements, which is 1334 currently the most commonly accepted date (Vargas et al., 2006). 1335 Nevertheless, earlier and later dates for these events have also been 1336 proposed since then. Hunt and Lipo (2006) proposed that the 1337 colonization occurred around AD 1200, a date supported by 1338 deforestation records according to Mann et al. (2008). Recently, even later dates, around AD 1200-1290 have been suggested 1339 1340 (Wilmshurst et al., 2011). The earliest date proposed to date has 1341 been AD 50-100 (1900 cal yr BP) (Butler and Flenley, 2010). These 1342 authors speculated about human presence at this date on the basis 1343 of a charcoal peak and a short palm pollen decline at Lake Kau. The 1344 evidence proved to be inconclusive because the palm pollen 1345 showed a rapid recovery and because it was not possible to ascertain whether the fires were of human or natural origin (Butler 1346 and Flenley, 2010). 1347

1348 These different chronologies of settlement on Easter Island are also significant in terms of the debate on the timing of the eastward 1349 1350 spread of Polynesians across the Pacific. A definitive consensus remains to be achieved on many islands including Easter Island. 1351 1352 Divergent settlement chronologies that vary by more than 1000 vears coexist (Kirch and Kahn, 2007: Wilmshurst et al., 2008). This 1353 precludes the knowledge of the regional pattern of settlement 1354 (Wilmshurst et al., 2011). Most researchers accept the existence of a 1355 "long pause" of several centuries to a millennium between the 1356 initial Lapita settlement on Tonga-Samoa (occurred during the first 1357 or second millennia BC) and the subsequent expansion of the 1358 1359 Polynesian population to the east (Kirch and Kahn, 2007; Wilmshurst et al., 2011) (Fig. 1). The most accepted view is that the 1360 1361 initial colonisation of central Polynesia (including Marguesas and 1362 Society Islands) followed by the settlements in remote islands 1363 occurred c. AD 300-900 (Kirch and Kahn, 2007; Wilmshurst et al., 2011), although a recent work suggests later dates (AD 1025-1120) 1364 (Wilmshurst et al., 2011). Our results, which suggest early human 1365 1366 presence, would give further support to an early age of eastward 1367 spread of the Polynesians without a pause or with only a short time 1368 lag between the colonisation of West and East Polynesia. 1369

Another classic controversy concerns the American or Polynesian origin of the first Easter Island settlers. Several lines of evidence (cultural, archaeological and genetic) suggest that the modern islanders are descended from Polynesians (Flenley et al., 1991; Hagelberg et al., 1994; van Tilburg, 1994; Flenley and Bahn, 2003). They probably came from some French Polynesian archipelago situated >2000 km to the west and northwest of Easter Island (Flenley and Bahn, 2003) (Fig. 8). Nevertheless, the American origin of V₁ litoralis and its continued presence during the last millennia revives the idea of a possible role of American connection in the history of Easter Island. Heyerdahl and Ferdon (1961) were the first to formally suggest that the island was colonised initially by Amerindians. Their hypothesis was founded on the possibility

Fig. 8. Possible migration routes to Easter Island. Easter Island (EI) is indicated by a circle. A) Directly from French Polynesia. B) On a return voyage of French Polynesians from American. C) From America. Map modified from Storey et al. (2007).

1411 that travel from South America to Easter Island was favoured by 1412 dominant currents and winds, and on the similarity of some 1413 archaeological elements. On other hand, Gill (1998) proposed that 1414 the settlement of Easter Island was the result of a two-stage process 1415 of colonisation from East Polynesia to America and then to Easter 1416 Island. These hypotheses have been ruled out for lack of conclusive 1417 evidence (Flenley and Bahn, 2003). However, evidence does exist in 1418 support of a prehistoric contact between South American and 1419 Polynesian peoples, although when and where this occurred is 1420 unclear. Evidence for this contact includes the prehistoric intro-1421 duction of South American crops such as sweet potato (Ipomoea 1422 batatas (L.) Lamarck) and the bottle gourd (Lagenaria siceraria 1423 (Molina) Standley) to Polynesia (Green, 2005; Clarke et al., 2006), 1424 and the pre-Columbian introduction of Polynesian chickens to Chile 1425 (Storey et al., 2007). The most accepted view is that Polynesians 1426 would have reached the American continent and later come back to 1427 Polynesia. However, some archaeological studies have emphasised 1428 the capacity of Amerindian societies for long distance oceanic 1429 travelling (Montenegro et al., 2008) and potential long voyages of 1430 Amerindians have been also proposed (Dumont et al., 1998; 1431 Montenegro et al., 2008).

1432 The Polynesian origin of the modern Easter Islanders is not 1433 incompatible with a short-lived American influence. In this regard, 1434 recent studies in molecular genetics have shown a prehistoric Amerindian contribution to the human gene pool of Easter Is-1435 1436 landers although after Polynesian settlement (Thorsby, 2012). 1437 Possible hypotheses to be tested by future studies in the light of our 1438 results include: 1) the eventual presence on the island of a small 1439 Amerindian population that disappeared after the Polynesian 1440 arrival or was assimilated into the subsequent settlers, and 2) the 1441 possible arrival of a Polynesian group from America (Fig. 8). Alter-1442 natively, as stated before, the V₁ litoralis could have reached the 1443 island through natural vectors, as is the case of other plants of 1444 American origin (e.g. S. californicus) (Zizka, 1991). Our study shows 1445 that, despite the absence of conclusive evidence, further research is 1446 warranted to support or challenge these possibilities. 1447

1448 6. Conclusions and final remarks

1449

1450 This multiproxy study of a Lake Raraku core (Easter Island) 1451 shows that climate and, especially, human activities have brought 1452 about significant environmental and vegetation changes during the 1453 last millennia. From c. 1790 to c. 450 BC, a mire covered the bottom 1454 of the Raraku crater, which was surrounded by a wooded landscape 1455 dominated by palms. The first landscape opening occurred c. 450 1456 BC, as evidenced by the palm decline and the increase in herbs 1457 (mainly Poaceae and the weed V₁ litoralis). This change coincided 1458 with a slight charcoal increase, and may indicate human arrival in 1459 the island. The presence of a sedimentary gap (c. AD 500 to c. AD 1460 1165) would indicate drought phases that could be related to some 1461 dry phases of the Medieval Climatic Anomaly. The bottom of the 1462 Raraku crater was flooded again c. AD 1200, which resulted in a 1463 shallow lake. This suggests a higher precipitation/evaporation ratio 1464 that could match the AD 1300 event, a pan-Pacific phase of rapid 1465 cooling and wetter conditions. At c. AD 1200, a second step of 1466 vegetation clearance took place, and herbs became progressively 1467 dominant, coinciding with further increases in fire incidence, 1468 which suggests an intensification of human impact. From c. AD 1469 1475 to c. AD 1875, the landscape was probably almost entirely 1470 dominated by herb communities, with abundant V. litoralis, and a 1471 few scattered palms. The highest frequency of burning is observed 1472 during this period. A short hiatus (c. AD 1570-1c. AD 1720) inter-1473 rupted sedimentation, indicating a new drought phase. This could 1474 be related to drought events during the Little Ice Age. Since c. AD 1475 1875, grass communities have proliferated and several allochthonous plants have been introduced and have spread at the expense of native ones.

Shorter sedimentary gaps in our study than those obtained in earlier works provide a more comprehensive record of ecological and sedimentary changes. Our results show that the replacement of the palm-dominated vegetation by herb-dominant communities was a long, gradual and stepped process. This is in sharp contrast to the commonly accepted scenario of a catastrophic vegetation change, resulting in sudden and rapid deforestation. According to our data, the vegetation change started c. 450 yr BC, some 1500 yr earlier than the accepted date. On the other hand, the expansion of the weed V. litoralis, which is linked to the palm demise, suggests a relationship between human activities and early landscape modification. This hypothesis is also supported by notable increases in charcoal. Moreover, the significant correlation of herbs with charcoal values suggests that burning played a prominent role in shaping the landscape. Further studies on sedimentary cores from other sites of the island are warranted to ascertain whether the observed changes are local or more widespread on the Island. Our data suggest that human presence on Easter Island may be significantly older than commonly accepted, which would have farreaching implications for the Pacific colonisation chronologies. The American origin of V. litoralis precludes the rejection of the possibility of an early American influence on Easter Island history. In light of the results obtained, several hypotheses to be tested with future studies are erected.

Acknowledgements

This work was supported by funding from the Spanish Ministry of Science and Education through the projects LAVOLTER (CGL2004-00683/BTE), GEOBILA (CGL2007-60932/BTE) and CON-SOLIDER GRACCIE (CSD2007-00067) and through an undergraduate grant (BES-2008-002938 to N. Cañellas-Boltà). We gratefully acknowledge CONAF (Chile) and the Riroroko family for the facilities provided on Easter Island. We also thank Josep Vigo for the identification of *Verbena litoralis* and Arturo Morales for his assistance in the identification of the small *Pseudostaurosira* species. Grateful thanks are also due to Raymond Bradley, José Carrión, William Gosling and Peter Kershaw for their critical revision of an earlier version of the manuscript and to Vera Markgraf for her suggestions and revision of the final version.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.quascirev.2013.04.004.

Uncited references

Christen and Pérez, 2009; Hua and Barbetti, 2004; McCormac et al., 2004.

References

Please cite this article in press as: Cañellas-Boltà, N., et al., Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments, Quaternary Science Reviews (2013), http://dx.doi.org/10.1016/j.quascirev.2013.04.004

- Anderson, A., 2002. Faunal collapse, landscape change and settlement history in Remote Oceania. World Archaeology 33 (3), 375–790.
- Axford, Y., Briner, J.P., Cooke, C.A., Francis, D.R., Michelutti, N., Miller, G.H., Smol, J.P., Thomas, E.K., Wilson, C.R., Wolfe, A.P., 2009. Recent changes in a remote Arctic lake are unique within the past 200,000 years. PNAS 106, 18443–18446.
- Azizi, G., Flenley, J.R., 2008. The Last Glacial Maximum climatic conditions on Easter Island. Quaternary International 184 (1), 166–176.
- Baker, P.E., Buckley, F., Holland, J.G., 1974. Petrology and geochemistry of Easter Island. Contributions to Mineralogy and Petrology 44, 85–100.
- Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical, sequence. New Phytologist 132, 155–170.
- Bennett, K.D., 2009. Documentation for Psimpoll 4.10 and Pscomb 1.03, C Programs for Plotting Pollen Diagrams and Analysing Pollen Data. Uppsala University,

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488 1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1521 1522

Q3

1523 1524

1537

1538

1539

N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

	, .
1541	Uppsala. Update to v. 4.27. http://www.chrono.qub.ac.uk/psimpoll/psimpoll.
1542	Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an
1543	autoregressive gamma process. Bayesian Analysis 6, 457–474.
1544 1545	Butler, K.K., Flenley, J.R., 2010. The Rano Kau 2 pollen diagram: paleoecology revealed. Rapa Nui Journal 24 (1), 5–10.
1545 1546	Butler, K., Prior, C.A., Flenley, J.R., 2004. Anomalous radiocarbon dates from Easter
1540	Island. Radiocarbon 46, 395–405.
1548	Birks, H.J.B., Pla-Rabes, S., 2012. Macrofossils in Raraku Lake (Easter Island)
1549	integrated with sedimentary and geochemical records: towards a palae-
1550	113–126.
1551	Christen, J.A., Pérez, E.S., 2009. A new robust statistical model for radiocarbon data.
1552	Radiocarbon 51 (3), 1047–1059. Clarke, A.C., Burtenshaw, M.K., McLenachan, P.A., Erickson, D.L., Smith, B.D.,
1553	Penny, D., 2006. Reconstructing the origins and dispersal of the Polynesian
1554	bottle gourd (<i>Lagenaria siceraria</i>). Molecular Biology and Evolution 23, 893–900
1555 1556	Denys, L., 1991. A check-list of the diatoms in the Holocene deposits of the western
1550	Belgian coastal plain with a survey of their apparent ecological requirements. I.
1558	Professional Paper 246, 1–41.
1559	Diamond, J., 2005. Collapse. How Societies Choose to Fail or Survive. Allen Lane,
1560	Dumont, H.J., Cocquyt, C., Fontugne, M., Arnold, M., Reyss, JL., Bloemendal, J.,
1561	Oldfield, F., Steenbergen, C.L.M., Korthals, H.J., Zeeb, B.A., 1998. The end of moai
1562	quarrying and its effect on Kano Karaku, Easter Island. Journal of Paleolimnol- ogy 20. 409–422.
1563	Elix, J.A., McCarthy, P.M., August 2008. Checklist of Pacific Island Lichens. Australian
1564	Biological Resources Study, Canberra. Version 21. http://www.anbg.gov.au/abrs/ lichenlist/Pacific_introduction.html
1565	Flenley, J.R., 1993. The palaeoecology of Easter Island, and its ecological disaster. In:
1566	Fischer, S.R. (Ed.), Easter Island Studies: Contribution to the History of Rapanui in Memory of William T. Mulloy. The Short Run Press. Oxhow. Oxford, pp. 27–45
1568	Flenley, J.R., 1996. Further evidence of vegetation change on Easter Island. South
1569	Pacific Studies 16 (2), 135–141. Flenley LR, Bahn P. 2003. The Engroups of Faster Island. Island on the Edge Oxford
1570	University Press, New York.
1571	Flenley, J.R., King, S.M., 1984. Late Quaternary pollen records from Easter Island.
1572	Flenley, J.R., King, S.M., Jackson, J., Chew, C., Teller, J.T., Prentice, M.E., 1991. The Late
1573	Quaternary vegetational and climatic history of Easter Island. Journal of Qua- ternary Science 6 (2) 85–115
1574	Geller, W., 1992. The temperature stratification and related characteristics of Chil-
1575	ean lakes in midsummer. Aquatic Sciences 54 (1), 37–57.
1570	Rapa Nui Journal 17, 7–14.
1578	Gill, G.W., 1998. Easter Island settlement: current evidence and further research
1579	Context: South Seas Symposium. Proceedings of the Fourth International
1580	Conference on Easter Island and East Polynesia. The Easter Island Foundation,
1581	Los Osos (CA), pp. 137–142. González-Ferran, O., Mazzuoli, R., Lahsen, A., 2004. In: Centro de Estudios Volcá-
1582	nologicos (Ed.), Geología del Complejo Volcánico Isla de Pascua Rapa Nui, Chile.
1583	Carta Geológica-Volcánica. Santiago-Chile. 1:30.000 Geol. map. Green R.C. 2005. Sweet potato transfers in Polynesian prehistory. In: Ballard, C.
1584	Brown, P., Rourke, R.M., Harwood, T. (Eds.), The Sweet Potato in Oceania: a
1585	Reappraisal. Oceania Monographs, Sydney, pp. 43–62.
1587	Islanders. Nature 369, 25–26.
1588	Herrera, C., Custodio, E., 2008. Conceptual hydrogeological model of volcanic Easter
1589	1329–1348.
1590	Heyerdahl, T., Ferdon, E.N., 1961. Reports of the Norwegian archaeological expedi-
1591	Publishing House, Stokholm.
1592	Horrocks, M., Wozniak, J.A., 2008. Plant microfossil analysis reveals disturbed forest
1593	Archaeological Science 35, 126–142.
1594 1505	Horrocks, M., Baisden, W.T., Flenley, J., Feek, D., González Nualart, L., Haoa-
1595	Easter Island's statue guarry: evidence for past elevated lake level and ancient
1597	Polynesian agriculture. Journal of Paleolimnology 48 (4), 767–783.
1598	Hua, Q., Barbetti, M., 2004. Review of tropospheric bomb C-14 data for carbon cycle modeling and age calibration purposes. Radiocarbon 46 (3) 1273–1298
1599	Hunt, T.L., 2007. Rethinking Easter Island's ecological catastrophe. Journal of
1600	Archaeological Science 34, 485–502. Hunt, T.L., Lipo, C.P., 2006. Late colonization of Faster Island. Science 311, 1603–
1601	1606.
1602	Hunt, T.L., Lipo, C.P., 2009. Revisiting Rapa Nui (Easter Island) "Ecocide". Pacific Science 63 (4), 601–616.
1003	

1604

1605

Hunter-Anderson, R., 1998. Human vs. climatic impacts: did the Rapa Nui really cut down all those trees? In: Stevenson, C.M., Lee, G., Morin, F.J. (Eds.), Easter Island International Conference on Easter Island and East Polynesia. Easter Island Foundation, Los Osos, CA, pp. 85–99.

- Johansen, J.R., 2010. Diatoms of aerial habitats. In: Smol, J.P., Stoermer, E.F. (Eds.), The Diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press, Cambridge, pp. 465-472.
- Kennett, D., Anderson, A., Prebble, M., Conte, E., Southon, J., 2006. Prehistoric human impacts on Rapa French Polynesia. Antiquity 80, 340-354.
- Kirch, P.V., 1986. Rethinking east Polynesian prehistory. The Journal of the Polynesian Society 95 (1), 9-40.
- Kirch, P.V., Kahn, J.G., 2007. Advances in Polynesian prehistory: a review and assessment of the past decade (1993-2004). Journal of Archaeological Research 15 (3), 191-238.
- MacIntyre, F., 2001. ENSO, climate variability, and the Rapa Nui, part II. Oceanog-raphy and Rapa Nui. Rapa Nui Journal 15, 83–94.
- Mann, D., Edwards, J., Chase, J., Beck, W., Reanier, R., Mass, M., Finney, B., Loret, J., 2008. Drought, vegetation change, and human history on Rapa Nui (Isla de Pascua, Easter Island). Quaternary Research 69, 16–28. Martinsson-Wallin, H., Crockford, S.J., 2002. Early settlement of Rapa Nui (Easter
- Island). Asian Perspectives 40 (2), 244-278.
- McCall, G., 1993. Little ice age, some speculations for Rapa Nui. Rapa Nui Journal 7 (4), 65-70.
- McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J., 2004. SHCal04 southern hemisphere calibration 0-11.0 cal yr BP. Radiocarbon 46 (3), 1087-1092.

McGlone, M.S., Wilmshurst, J.M., 1999. Dating initial Maori environmental impact in New Zealand. Quaternary International 59, 5-16.

- Meyers, P.A., Terranes, J.L., 2001. Sediment organic matter. In: Last, W., Smol, J.P. (Eds.), Physical and Geochemical Techniques. Tracking Environmental Change Using Lake Sediments, vol. 2. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 239-269.
- Mieth, A., Bork, H.R., 2005. History, origin and extent of soil erosion on Easter Island (Rapa Nui). Catena 63, 244-260.
- Mieth, A., Bork, H.R., 2010. Human, climate or introduced rats which is to blame for the woodland destruction on prehistoric Rapa Nui (Easter Island)? Journal of Archaeological Science 37, 417-426.

Montenegro, A., Avis, C., Weaver, A., 2008. Modeling the prehistoric arrival of the sweet potato in polynesia. Journal of Archaeological Science 35 (2), 355-367.

- Nunn, P.D., 2000. Environmental catastrophe in the Pacific Islands around A.D. 1300. Geoarchaeology 15 (7), 715-740.
- Nunn, P.D., 2007. Climate, Environment and Society in the Pacific During the Last Millennium. Elsevier, Amsterdam, The Netherlands.
- Nunn, P.D., Britton, J.M.R., 2001. Human-environment relationships in the Pacific, Islands around A.D. 1300. Environment and History 7, 3-22.
- Orliac, C., 2000. The woody vegetation of Easter Island between the early 14th and the mid-17th centuries AD. Easter Island archaeology. In: Stevenson, C.M., Ayres, W.S. (Eds.), Research on Early Rapa Nui Culture. Easter Island Foundation, Los Osos, pp. 211-220.
- Orliac, C., Orliac, M., 1998. The disappearance of Easter Island's forest: overexploitation or climatic catastrophe? In: Stevenson, C., Lee, G., Morin, F.J. (Eds.), Easter Island in Pacific Context: South Seas Symposium Proceedings of the Fourth International Conference on Easter Island and East Polynesia. Easter Island Foundation, Los Osos, pp. 129-134.
- Porteous, J.D., 1978. Easter Island: the Scottish connection. Geographical Review 68 (2), 145 - 156.
- Rainbird, P., 2002. A message for our future? The Rapa Nui (Easter Island) ecodisaster, and Pacific island environments. World Archaeology 33, 436-451.
- Rauch, M., Ibañez, P., Ramírez, J.M., 1996. Vegetación de Rapa Nui, historia y uso tradicional. Ministerio de Agricultura. Corporación Nacional Forestal, Parque Nacional Rapa Nui. Chile.

Reed, J.M., Roberts, N., Leng, M.J., 1999. An evaluation of the diatom response to Late Quaternary environmental change in two lakes in the Konya Basin, Turkey, by comparison with stable isotope data. Quaternary Science Reviews 18, 631-646.

- Renberg, I., 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology 4, 87-90.
- Rull, V., 1999. A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. Journal of Quaternary Science 14 (2), 137-152.
- Rull, V., Rinaldi, M., 1988. Size Variations of Kochia Scoparia Pollen Under Different Treatments, Mounting and Storing Media.
- Rull, V., Cañellas-Boltà, N., Sáez, A., Giralt, S., Pla, S., Margalef, O., 2010. Paleoecology of Easter Island: evidence and uncertainties. Earth-Science Reviews 99, 50-60.
- Rull, V., Stansell, N.D., Montoya, E., Bezada, M., Abbott, M.B., 2010b. Palynological signal of the Younger Dryas in tropical Venezuelan Andes. Quaternary Science Reviews 29, 3045-3056.
- Sáez, A., Valero-Garcés, B.L., Giralt, S., Moreno, A., Bao, R., Pueyo, J.J., Hernández, A., Casas, D., 2009. Glacial to Holocene climate changes in the SE Pacific. The Raraku lake sedimentary record (Easter Island, 27° S). Quaternary Science Reviews 28, 2743-2759.
- Skottsberg, C. (Ed.), 1956. The Natural History of Juan Fernández and Easter Island. Almqvist & Wiksells Boktryckeri, Uppsala.
- Smol, J.P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123, 199-208.
- Stefan, V., 2001. Origin and evolution of the Rapa Nui of Easter Island. In: Stevenson, C.M., Lee, G., Morin, F.J. (Eds.), Pacific 2000: Proceedings of the Fifth International Conference on Easter Island and the Pacific. Easter Island Foundation, Los Osos, pp. 495-522.

Please cite this article in press as: Cañellas-Boltà, N., et al., Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments, Quaternary Science Reviews (2013), http://dx.doi.org/10.1016/j.quascirev.2013.04.004

13

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

- J.R., 2004. Anomalous radiocarbon dates from Easter
- áez, A., Margalef, O., Giralt, S., Pueyo, J.J., Birks, H.H., ., 2012. Macrofossils in Raraku Lake (Easter Island) ntary and geochemical records: towards a palaehe last 34,000 years. Quaternary Science Reviews 34,
- 9. A new robust statistical model for radiocarbon data. -1059
- I.K., McLenachan, P.A., Erickson, D.L., Smith, B.D., tructing the origins and dispersal of the Polynesian siceraria). Molecular Biology and Evolution 23,
 - f the diatoms in the Holocene deposits of the western a survey of their apparent ecological requirements. I. code and complete list. Belgische Geolgische Dienst, -41.
- How Societies Choose to Fail or Survive. Allen Lane,
- ontugne, M., Arnold, M., Reyss, J.-L., Bloemendal, J., C.L.M., Korthals, H.J., Zeeb, B.A., 1998. The end of moai on Rano Raraku, Easter Island. Journal of Paleolimnol-
- ust 2008. Checklist of Pacific Island Lichens. Australian y, Canberra. Version 21. http://www.anbg.gov.au/abrs/ tion.html.
- ecology of Easter Island, and its ecological disaster. In: sland Studies: Contribution to the History of Rapanui in Illoy. The Short Run Press, Oxbow, Oxford, pp. 27-45.
- vidence of vegetation change on Easter Island. South -141
- e Enigmas of Easter Island. Island on the Edge. Oxford, rk
- . Late Quaternary pollen records from Easter Island.
- on, J., Chew, C., Teller, J.T., Prentice, M.E., 1991. The Late and climatic history of Easter Island. Journal of Qua--115.

- Niño/southern oscillations and Rapa Nui prehistory.
- d settlement: current evidence and further research C., Lee, G., Morin, F.J. (Eds.), Easter Island in Pacific mposium. Proceedings of the Fourth International and and East Polynesia. The Easter Island Foundation, 42.
- li, R., Lahsen, A., 2004. In: Centro de Estudios Volcádel Complejo Volcánico Isla de Pascua Rapa Nui, Chile. a. Santiago-Chile. 1:30.000 Geol. map.
- ato transfers in Polynesian prehistory. In: Ballard, C., Harwood, T. (Eds.), The Sweet Potato in Oceania: a nographs, Sydney, pp. 43–62.
- urbon, D., Clegg, J.B., 1994. DNA from ancient Easter -26.
- . Conceptual hydrogeological model of volcanic Easter nical and isotopic surveys. Hydrogeology Journal 16, 961. Reports of the Norwegian archaeological expedi-
- the East Pacific. Archaeology of Easter Island 1. Forum, olm.
- 008. Plant microfossil analysis reveals disturbed forest production system at Te Niu, Easter Island. Journal of 5. 126-142.
- , Flenley, J., Feek, D., González Nualart, L., Haoaorman, T., 2012. Fossil plant remains at Rano Raraku, rry: evidence for past elevated lake level and ancient ournal of Paleolimnology 48 (4), 767-783.
- eview of tropospheric bomb C-14 data for carbon cycle tion purposes. Radiocarbon 46 (3), 1273–1298. Easter Island's ecological catastrophe. Journal of
- 4. 485-502. ate colonization of Easter Island. Science 311, 1603-
- Revisiting Rapa Nui (Easter Island) "Ecocide". Pacific Science 63 (4), 601–616.
- in Pacific Context: South Seas Symposium Proceedings of the Fourth

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

N. Cañellas-Boltà et al. / Quaternary Science Reviews xxx (2013) 1-14

- 1671 Stenseth, N.C., Voje, K.L., 2009. Easter Island: climate change might have contrib-1672 uted to past cultural and societal changes. Climate Research 39, 111–114.
- Stevenson, C.M., 1997. Archaeological Investigations on Easter Island: Maunga Tari, an Upland Agricultural Complex. In: Easter Island Occasional Paper 3. Bearsville
 Press and Cloud Mountain Press, Los Osos, CA.
- Stevenson, C.M., Ladefoged, T., Haoa, S., 2002. Productive strategies in an uncertain environment: prehistoric agriculture on Easter Island. Rapa Nui Journal 16 (1), 17–22.
- Storey, A.A., Ramírez, J.M., Quiroz, D., Burley, D.V., Addison, D.J., Walter, R., Anderson, A.J., Hunt, T.L., Athens, J.S., Huynen, L., Matisoo-Smith, E.A., 2007. Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. Proceedings of the National Academy of Sciences U. S. A. 104, 10335–10339.
- 1681Thorsby, E., 2012. The Polynesian gene pool: an early contribution by Amerindians
to Easter Island. Philosophical Transactions of the Royal Society B 367, 812–819.

- van Tilburg, J.A., 1994. Easter Island: Archaeology, Ecology and Culture. British Museum Press, London.
- Vargas, P., Cristino, C., Izaurieta, R., 2006. 1000 años en Rapa Nui. Arqueología del asentamiento. Ed. Universitaria, Santiago de Chile.

Wagner, W.L., Herbst, D.R., Sohmer, S.H., 1999. Manual of the Flowering Plants of Hawaii, revised ed.. In: Bernice P. Bishop Museum Special Publication University of Hawai'i Press/Bishop Museum Press, Honolulu.

Wilmshurst, J.M., Anderson, A.J., Higham, T.F.G., Worthy, T.H., 2008. Dating the late prehistoric dispersal of Polynesian to New Zealand using the commensal Pacific rat. PNAS 105, 7676–7680.

Wilmshurst, J.M., Hunt, T.L., Lipo, C.P., Anderson, A.J., 2011. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. PNAS 108, 1815–1820.

Zizka, G., 1991. Flowering Plants of Easter Island. Palmarum Hortus Francofurtensis. Frankfurt Am Main, Germany. Scientific Reports.