
International Journal of Industrial Organization 90 (2023) 102987

Available online 6 July 2023
0167-7187/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Price and quantity discovery without commitment☆ 

Stefan Bergheimer a, Estelle Cantillon b,*, Mar Reguant c 

a Compass Lexecon 
b Université Libre de Bruxelles, FNRS and CEPR 
c Northwestern University, Barcelona School of Economics, NBER and CEPR   

A R T I C L E  I N F O   

JEL classification: 
Codes D47 
D83 
G14 

Keywords: 
Electricity markets 
Price discovery 
Pre-play communication 
Non-trading mechanisms 
Coordination 
Intertemporal optimization 

A B S T R A C T   

Wholesale electricity markets solve a complex allocation problem: electricity is not storable, 
demand is uncertain, and production involves dynamic cost considerations and indivisibilities. 
The New Zealand wholesale electricity market attempts to solve this complex allocation problem 
by using an indicative price and quantity discovery mechanism that ends at dispatch. Can such a 
market mechanism without commitment provide useful information? We document that indic-
ative prices and quantities are increasingly informative of the final prices and quantities and that 
bid revisions are consistent with information-based updating. We argue that the reason why the 
predispatch market is informative despite the lack of commitment is that it generates private 
benefits in terms of improved intertemporal optimization of production plans.   

1. Introduction 

Markets and prices play an important coordinating role in our economies. They direct producers where there is demand, help 
consumers optimize, and, more generally, foster efficient allocation of resources. This coordination role is especially crucial in 
wholesale electricity markets where demand and supply are uncertain and largely inelastic in the short run, and yet, because electricity 
is difficult to store, demand and supply must be balanced at all times to avoid system outages. 

Existing electricity markets typically solve this problem by organising a sequence of markets (typically week-ahead, day-ahead, and 
real-time) to coordinate supply and demand. The markets gradually lock in demand and supply and reduce uncertainty for market 
participants. New Zealand is an exception. The market is only called once, and all physical allocation decisions are based on bids 
submitted one hour prior to dispatch. To nevertheless help market participants coordinate supply and demand, the New Zealand 
electricity system operator organises a series of indicative markets (called predispatch) starting 36 hours before dispatch where 
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participants can submit and update bids freely, and indicative prices and quantities are produced on a regular basis. Only the last bids 
submitted are used for the final allocation. 

Can markets without commitment, such as the New Zealand electricity market, foster efficient price and quantity discovery? We 
examine bidding behaviour and bid revisions in the predispatch market. Our data spans 4 years and over 80,000 trading periods, each 
with a predispatch market called 24 times before actual dispatch. We observe individual market participants’ bids and revisions, 
indicative prices and quantities during predispatch, and final allocations. 

We provide evidence that indicative prices and quantities are increasingly informative of final prices and quantities and that bid 
revisions are consistent with information-based updating. On average, 7% of generation is reallocated during predispatch as a result of 
these bid revisions. Prices increase very slightly (less than 1%) and become less volatile over the course of the predispatch. We provide 
suggestive evidence that the predispatch market facilitates generation coordination across trading periods and therefore acts as a 
complement to the otherwise static (single period) allocations produced by the New Zealand electricity market model. 

The New Zealand predispatch market is an example of what is called an iterative mechanism, a market organisation that allows 
participants to update their bids based on feedback about the ongoing price before allocations are finalized. Iterative mechanisms are 
credited with at least three advantages. First, iterative mechanisms facilitate and support participants’ decision-making. Decisions 
typically take the form of whether to stay in or drop-out or adjust a bid at the margin, and participants receive direct feedback on how 
their choices impact their allocation. 

Second, iterative mechanisms elicit and aggregate private information, which can foster competition. This is the famous “linkage 
principle” first identified by Milgrom and Weber (1982) and generalized to multi-unit auctions by Ausubel (2004). The insight here is 
that iterative mechanisms generate information that helps participants update their estimates of costs or value and protect them from 
the winner’s curse, a phenomenon that typically holds back aggressive bidding. 

A third advantage of iterative mechanisms is that they help market participants optimize their allocation when the bidding lan-
guage is not rich enough to capture underlying costs and preferences. Nisan and Segal (2006) have characterized the communication 
requirements of efficient allocations in the presence of nonconvex preferences and indivisible goods. In electricity markets, these 
correspond to fixed start-up costs, ramp-up and ramp-down production constraints, and unit commitment (see e.g. Reguant (2014) for 
evidence). Nisan and Segal (2006) show that the number of prices needed, and therefore the complexity of the required bidding 
language, grows exponentially with the relevant states of the world. Iterative mechanisms, which run parallel markets for commodities 
that are related from the participants’ perspective, partially overcome this curse of dimensionality (Ausubel and Cramton, 2004). They 
have been used, for example, by EDF to auction generation capacity in France and by the US Federal Communication Commission to 
auction spectrum. 

Participants in electricity markets are typically sophisticated and well-informed. Moreover, the level of market transparency in 
New Zealand is particularly high. So the first two advantages of iterative mechanisms we have described are unlikely to be first order in 
the context of the New Zealand electricity market. In contrast, Nisan and Segal (2006)’s findings imply, in particular, that market 
participants in electricity markets should be able to condition their allocation in one trading period on their allocation in some other 
trading periods, something that the New Zealand market model does not allow. This provides a rationale for an iterative mechanism 
such as the predispatch. 

To support genuine price discovery, iterative mechanisms often include an activity rule designed to curb manipulative bids. 
Participants can revise their bids but cannot make a “worse” offer (where what “worse” means depends on the specific context). 
Alternatively, some mechanisms include a random end-time that ensures that bidders are committed to their bids. What’s remarkable 
about the New Zealand predispatch market is that it does not contain any such form of commitment.1 This means that bids during the 
predispatch can be seen as “cheap talk”. 

Another example of iterative mechanisms without commitment are preopening periods at stock exchanges. During preopening, 
traders submit and freely revise their offers during a certain period, until the market is called and the produced price serves as the 
opening price for the regular market. The existing literature documents that such markets are informative despite the lack of 
commitment (see e.g. Biais et al., 1999; Cao et al., 2000, and Barclay and Hendershott, 2008). The reasons proposed all include a 
reduction in adverse selection due to either getting access to a larger pool of liquidity at the opening of the regular trading day (Biais 
et al., 1999) or information-sharing (Hong and Pouget, 2021).2 

We too document that prices and quantities are increasingly informative of final prices and quantities despite the lack of 
commitment. However, our proposed explanation for why this happens has nothing to do with adverse selection, which is nonexistent 
in the New Zealand electricity market, but with the ability of iterative mechanisms to coordinate allocations across several markets, in 
our case, across several trading periods. We document that virtually all bid revisions involve several trading periods and provide 
examples illustrating how market participants use the predispatch market to reorganize their generation dispatch across time. 

Finally, a natural concern about the New Zealand predispatch market is that it may foster tacit collusion, or at least facilitate the 
exercise of market power. Tacit collusion arises when market participants coordinate on a less competitive equilibrium without explicit 
communication or enforcement mechanisms. Markets with multiple equilibria are prone to tacit collision. Bolle (1992) and Ausubel 
et al. (2014) show that markets, such as the New Zealand electricity market, where participants submit supply functions typically have 
multiple equilibria. In such markets, high levels of market transparency can help participants coordinate on the least competitive 
equilibrium (see von der Fehr (2013) for a general argument, and Brown and Eckert (2022) for evidence in the Alberta wholesale 

1 We will argue in Section 2 that forward markets in electricity do not provide a substitute for commitment during the predispatch.  
2 This does not mean that commitment may not be valuable nevertheless (see e.g. the experimental evidence reported in Biais et al., 2014). 
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electricity market). 
We make no claims as to the nature - collusive or not - of the equilibrium in the New Zealand wholesale electricity market. After all, 

like most other electricity markets, the New Zealand electricity market is characterized by a small number of participants, repeated 
interactions, inelastic demand, and limited informational asymmetry, all conditions that are favorable to the emergence of collusion, 
or at least tacit collusion. 

However, our results do not provide any indication that the predispatch market facilitates participants’ coordination on a high price 
equilibrium: prices barely rise over the course of the predispatch and bid revisions are largely driven by new information arrival. 
Moreover, the exact mechanism through which predispatch could incrementally support such coordination is unclear. In a recent 
paper, Kamada and Kandori (2020) study what they call “revision games” where players can update their actions repeatedly until the 
market is called. The predispatch market can be seen as a revision game. They show that even a small probability of not being able to 
upgrade their action (in our context, market participants missing the deadline for submitting their bids) can help support coordination 
on a less competitive equilibrium. However, in their setting, play evolves over time to an increasingly competitive outcome as players 
update their actions. This is not borne out in our data: if anything prices increase very slightly (by less than one percent) over the course 
of the predispatch. 

In a separate paper (Bergheimer et al., 2023), we explore the impact of the reduced uncertainty produced by the predispatch market 
on participants’ ability to unilaterally exert market power. We find that the reduced uncertainty about residual demand facilitates the 
exertion of market power by market participants and, in particular, by hydro-based generators, who can easily reallocate their intraday 
production to take advantage of price differences. 

2. The New Zealand predispatch market for electricity 

The current organization of the electricity market in New Zealand is the result of the economy-wide pro-market reforms that swept 
the country in the 1980s and 1990s. Before that, electricity production, transmission, distribution, and retail were all under public 
ownership and vertically integrated. Transmission was separated early on through the creation of Transpower, which today acts as the 
system operator. Between 1996 and 1999, the generating assets of the monopoly generation company were progressively split to make 
way for five independently-operated firms: Contact, Genesis, Meridian, Mighty River Power (now Mercury), and Trust Power (now 
Manawa Energy). Distribution and retailing were also separated at that time, with the five incumbent generation companies inheriting 
the retail business of the former electricity monopoly. 

The foundations for the electricity wholesale market were laid out in 1996. The design relies on a single settlement (dispatch) 
market where energy and reserves are co-optimized on the basis of the bids received by electricity producers and industrial consumers. 
The dispatch algorithm maximizes the area between the demand and supply curves, taking physical constraints into account.3 Co- 
optimization means that dispatch may occasionally deviate from the cost-minimizing dispatch when doing so reduces the cost of 
reserves. Prices are nodal, i.e. location-specific, reflecting the geography of the country and the large transmission losses that go with it. 

Participation in the wholesale market is compulsory for all electricity producers and industrial consumers, including vertically- 
integrated firms. Electricity producers are asked to submit energy and reserve bid schedules, i.e. step functions that describe quan-
tities offered at each price, as well as maximal capacity and ramp-up and ramp-down constraints for each half-hour (trading period).4 

Bid schedules are specific to units or stations. Industrial consumers are also requested to submit bid schedules. (For simplicity, we will 
use the term “bid” as short-hand notation for bid schedule in the rest of the paper.) 

The market is cleared for each trading period sequentially. This means that the only dynamic consideration that the market model 
takes into account is ramp-up and ramp-down constraints from the previous trading period. It is preceded by a predispatch market, that 
opens 36 hours before dispatch, where indicative prices and quantities are generated using exactly the same inputs and optimization 
model as for the final dispatch. Specifically, every 2 hours, Transpower runs the model over a 72-period horizon (the so-called long 
schedule) and, every half hour, it runs it over an 8-period horizon (short schedule). This means that, for every trading period, 24 
indicative predispatch markets are run (initially at the frequency of once every two hours, then once every half an hour) prior to final 
dispatch. 

During the predispatch, market participants can update these bids at their will until “gate closure” which happens one hour before 
dispatch (two hours before dispatch until June 28, 2017). After gate closure, restrictions apply. Intermittent generators (wind) and 
industrial consumers are expected to update their estimates of their generation and load after gate closure. Other market participants - 
generators - can only update their bids in exceptional circumstances (e.g. an unplanned outage) and can only change the quantity 
offered, not the price, starting from the highest price band. Commitment is limited. Wind generators and industrial consumers are 
never bound by their bids. Other generators are only committed by their last bids. 

Real-time dispatch uses the latest load forecast, current generation, and the last submitted bids during predispatch as inputs to the 
market model and generates dispatch instructions at the frequency of once every 5 minutes. 

The wholesale market is complemented by a voluntary hedge market, where market participants take positions either on the 
Australian Security Exchange (ASX) (mostly) or in the over-the-counter market. This hedge market operates on a very different time 
horizon. Around 97% of traded contracts are monthly or quarterly contracts that cover all trading periods, or all peak trading periods, 

3 Retail demand does not participate actively in the wholesale market. Forecast load is instead used when producing dispatch instructions. Alvey 
et al. (1998) describe the model used for scheduling, pricing, and dispatch (SPD) in detail.  

4 A bid schedule can have up to 5 price bands for generation bids, and up to 10 price bands for demand-side bids. 
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in a given month or quarter. This means that this hedge market does not provide a substitute for the lack of commitment in the 
predispatch market. 

Market transparency is promoted at all stages. After each predispatch, price forecasts, load forecasts and the aggregate supply curve 
at reference nodes are published. In addition, individual market participants are informed about their cleared bids. The entire history 
of bids and offers during predispatch and all inputs to the final dispatch and pricing are published within two or three days. A website, 
WITS (which stands for Wholesale Information Trading System), provides real-time information about the state of the market and 
operational constraints, including prices, load, generation, outages, transmission constraints and flows between the North and South 
islands. Separate websites provide anonymized data on hedging positions and information about hydro reserves. 

3. Data 

Our data span the period between 1 January 2014 and 30 September 2018. For each half hour (trading period) and each node,5 we 
observe the bidding behavior of market participants during the predispatch market, indicative prices and quantities generated by each 
predispatch, and final prices and quantities.6,7 We additionally observe all public market-relevant information such as installed ca-
pacity at all nodes, load forecasts, planned and unplanned outages for each node and trading period, hourly regional weather re-
alizations, and daily levels of hydro reservoirs. 

Table 1 provides an overview of our bidding data and outcomes at different stages of the market. By default, each generator and 
each industrial consumer must submit a bid schedule at the time of the first predispatch round for all the nodes at which they are active. 
The top panel of Table 1 shows that generation is the active side of the market during predispatch: bidding on the demand side mostly 
sticks to the minimum level of activity, whereas the median producer submits three different bid schedules for the same node and 
trading period over the course of the predispatch. 

The second panel of the table shows that prices go up by less than 1% over the course of the predispatch and that their dispersion 
goes down. 

The third panel documents generation. Aggregate scheduled generation barely changes over the course of the predispatch (median 
change of 12 MWh, less than 0.25% of aggregate generation) but, nevertheless, around 7% of generation is reshuffled, where 
reshuffling in a trading period is defined as the sum of absolute node-level changes in scheduled generation between the first and last 
predispatch, divided by twice total generation that trading period. 

The last panel shows that industrial consumers account for approximately 20% of electricity consumption. Their scheduled con-
sumption does not change much over the course of the predispatch, and when it does, it mostly goes down, in line with the observation 
that submitted demand schedules by industrial consumers adjust quantities downward for very high prices, but are essentially vertical 
otherwise. About 4% of industrial load gets reshuffled over the course of the predispatch. 

Table 2 provides summary statistics for realized generation for each technology. Schedulable hydro accounts for 55% of electricity 
generation on average. It is followed by geothermal and gas (combined cycle), with 18% and 10% generation share, respectively. 

Technologies differ in their production profiles. Given its importance in the New Zealand electricity mix, hydro generation is active 
both off-peak and on-peak (with a smaller proportion of nodes active during off-peak time). Cogeneration and geothermal are two 
baseload technologies with little variation in generation levels and stable production patterns independent of the time of the day, as 
witnessed by the stable fraction of nodes active both during peak and off-peak times and the low standard deviation relative to mean 
generation. Wind generation is highly variable, but its production profile is independent of the state of demand. Finally, thermal 
production varies considerably and, except for combined cycle, increases during peak times, reflecting their cost structure and the role 
that these technologies play in the electricity generation mix.8 

4. The role for a market 

Economists since Hayek have valued markets, and the prices they generate, for their ability to enable “rapid adaptation to changes 
in the circumstances of time and place” facing decentralized economic agents (Hayek, 1945, p. 524). In this section, we quantify the 
residual uncertainty about final allocations that prevails in the system 36 hours before dispatch. After all, if this is minimal, there is 
little role for a market, be it with or without commitment. Central planning would do. 

One source of residual uncertainty stems from wind and load forecasts. The system operator Transpower produces load forecasts for 
all nodes not participating in the wholesale market (essentially retail nodes). These are used as inputs to the predispatch and dispatch 

5 With some slight abuse of language, we call a node, not only the physical injection or exit point on the grid but every unique “node x bidding 
unit” observation. When two participants are active at a physical node, they face the same price, but their behavior may still differ. Likewise, several 
generating units owned by the same participant may be connected to the grid at the same physical node while submitting different bids.  

6 Transpower solves two versions of its program, one in which bids from industrial consumers are taken into account as submitted (the so-called 
price-responsive schedule), and one where they are replaced by a vertical demand at their maximum demanded quantity (non-responsive schedule). 
For the purpose of our paper, we use the price-responsive schedules for the predispatch data.  

7 Predispatch data are missing for 2083 trading periods (2.5%) so our final dataset covers 81,146 trading periods. There is no indication of 
systematic bias in this censoring.  

8 The main economic difference between a combined cycle gas turbine and an open cycle gas turbine is their cost structures, with open cycle gas 
turbines being more expensive to operate. 
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models. In addition, windmill operators have a bona fide obligation to submit accurate generation forecasts and must update those at 
least once every 30 minutes within 2 hours of dispatch. Table 3 shows that wind generation and load tend to be overestimated at the 
time of the first predispatch. As these effects go in opposite directions, their net effect is symmetric around zero, with most observations 
falling within 6% of the actual market size. 

Other sources of uncertainty include short-run changes in production and transmission circumstances. To systematically explore 
how these, together with uncertainty about load and wind generation, impact actual allocation of generation, we apply machine 
learning techniques to predict prices and generation at each production node based on information available before bidding starts. Any 
discrepancy between our best prediction and the observed allocation provides a measure of the residual uncertainty about final al-
locations that prevails 36 hours before dispatch. 

We consider two broad sets of models: LASSO penalized regressions and random forests. The models include as predictors very 
much the same kind of information that Transpower uses to predict load (weather, seasonal, week and hour-of-the-day variables, 
lagged dependent variables) as well as node-specific information and system-level information about generation, such as hydraulic 

Table 1 
Bidding behavior and market outcomes during predispatch.   

# nodes 5% 25% 50% 75% 95% 

Generation bids per trading period 77 1 1 3 5 11 
Demand bids per trading period 34 1 1 1 2 6 
Prices (NZ$/MWh)       
First predispatch price 89 9.5 43.5 57.8 79.0 158.6 
Last predispatch price 89 23.2 47.4 58.3 75.1 123.2 
Change from first to last predispatch 89 -58.3 -13.5 0.1 14.1 44.2 
Generation (MW)       
First predispatch quantity 89 3,392 3,966 4,797 5,307 6,061 
Last predispatch quantity 89 3,386 3,964 4,781 5,289 6,043 
Reshuffling from first to last predispatch 89 0.04 0.06 0.07 0.10 0.14 
Industrial consumers (MW)       
First predispatch quantity 34 943 989 1,017 1,047 1,094 
Last predispatch quantity 34 885 935 970 1,004 1,052 
Change from first to last predispatch 34 -132 -81 -47 -15 27 
Reshuffling from first to last predispatch 34 0.01 0.02 0.04 0.05 0.08 

Notes: The unit of observation for bids is a trading period x node. Generation bids exclude bids from wind units. Time stamps uniquely define bids. The 
unit of observation for prices and quantities is a trading period. Nodal prices are quantity-weighted to produce an average price for the trading period. 
There are 81,146 trading periods with complete coverage for predispatch prices and quantities between 1 January 2014 and 30 September 2018. Last 
predispatch prices and quantities use the last bids submitted and updated load and wind forecast at the beginning of the trading period. Reshuffling 
refers to the sum of node-level absolute changes in quantities, divided by two, and normalized by the total generation (resp. total industrial load) for 
that trading period. 

Table 2 
Characteristics of realized generation, by technology.   

# % active nodes Generation (MWh) Gen. share  

Nodes Off-peak Peak Mean SD Min Max Mean 

Coal 4 0.25 0.33 117.0 130.0 0.0 500.0 0.02 
Cogeneration 8 0.92 0.94 200.0 42.0 40.0 374.0 0.04 
Diesel 1 0.00 0.01 0.0 4.0 0.0 156.0 0.00 
Gas, combined cycle 3 0.62 0.63 460.0 195.0 0.0 1,139.0 0.10 
Gas, open cycle 5 0.14 0.38 87.0 98.0 0.0 391.0 0.02 
Geothermal 12 0.94 0.94 798.0 64.0 0.0 888.0 0.18 
Hydro, run of river 8 0.79 0.91 176.0 66.0 26.0 319.0 0.04 
Hydro, schedulable 36 0.77 0.89 2,604.0 658.0 917.0 4,438.0 0.55 
Wind 11 0.89 0.89 247.0 138.0 0.0 589.0 0.05 

Notes: The unit of observation is a trading period (N = 81,146). A trading period is considered to be a peak trading period when generation in that 
trading period belongs to the top 10 percentile of generation observed in the sample. One generation node consisting of a battery is excluded. 
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information about reservoirs and outage status.9 Importantly, the model relies only on information available 36 hours before dispatch. 
Generation and prices are predicted at the node level. We focus on average predictions for prices due to higher volatility in prices. We 
split the sample into training and testing observations and provide summary statistics on the performance of predictions on the testing 
set.10 

Table 4 summarizes the results from these prediction models. We compare the predictive power of three models: forest (F), LASSO 
(L), and the first predispatch (P). The predictive power of the models is evaluated based on the mean absolute errors (MAE) between 
the prediction and the outcome of the final predispatch, root mean squared error (RMSE), and R2. To make the MAE and RMSE more 
comparable across technologies, we normalize the MAE and the RMSE by the average generation of each technology. 

The top panel describes the results for the quantity predictions for each technology. The results indicate large differences across 
technologies in terms of predictability. Hydro, combined cycle gas, and geothermal generation are highly predictable, as implied by 
the small MAE and RMSE, and high R2. While hydro and combined cycle units adjust significantly during the predispatch process, a 
large share of their generation can be predicted. Open cycle gas and wind generation are less predictable, which is intuitive given that 
open cycle gas units tend to manage last-minute changes in dispatch as a much larger share of their output and the fact that wind is 
intermittent. For example, for open gas units the MAE can be as high as 45%. For wind, errors are estimated to be around 20–30% of 
average production in the first predispatch, which are not uncommon forecast errors for wind generation. The specification of random 
forests performs better than LASSO for all technologies, with lower MAE and RMSE, and higher R2. Our predictions also tend to 
outperform predictions produced by the first predispatch, particularly the forest models. 

The bottom panel summarizes the results for quantity-weighted prices at the island level. Prices are less predictable than generation 
for most technologies, and the first predispatch can be substantially noisier than a prediction model. This is in part due to the fact that 
the first predispatch provides a first pass at the market dispatch, and firms re-adjust their bids, reducing the volatility in prices, as 
already shown in Table 1. 

While the predictions models can get an average prediction of market outcomes, there is still substantial uncertainty. Furthermore, 
the first predispatch appears to be noisier. This suggests that there is room for updating between the first and the last predispatch. 
While some of this reallocation can be predicted, not all of it can. There remains a good amount of uncertainty about final allocations 
36 hours before dispatch. This provides a role for informative price signals to further coordinate supply and demand.11 Comparing the 
numbers in Table 3 and Table 4, this uncertainty is not limited to the aggregate level of generation needed (load and wind uncertainty) 
but also to the allocation of generation across units. 

5. Price and quantity discovery during the predispatch 

In this section, we document the process of price and quantity discovery during predispatch. We first show that predispatch prices 
and quantities are increasingly informative of final prices and quantities. We then explore the extent to which predispatch prices reflect 
developments inside the predispatch market rather than developments in the contemporaneous spot prices. The findings support the 
hypothesis that information arises from the predispath market itself. We then zoom in on bid revisions and document that (1) bid 
revisions are more frequent during the short schedule part of the predispatch, and that (2) everything else equal, bid revisions are more 
frequent when new information arises (wind and load forecast revisions, new outage announcements). 

Table 3 
Load and wind forecast errors.   

5% 25% Median 75% 95% 

Demand forecast errors (MWh) -230 -86 -11 60 218 
Demand forecast errors relative to market size -0.05 -0.02 0.00 0.01 0.05 
Wind forecast errors (MWh) -142 -61 -16 30 112 
Wind forecast errors relative to market size -0.03 -0.01 0.00 0.01 0.02 
Net forecast errors (MWh) -248 -93 3 96 274 
Net forecast errors relative to market size -0.05 -0.02 0.00 0.02 0.06 

Notes: The unit of observation is a trading period (N = 81,146). Forecast errors for load are computed as the difference between forecast load in the 
last and first predispatch. Wind forecast errors are computed as the difference between the final forecast at dispatch time and the wind forecast for the 
first predispatch. The first predispatch is used as reference to compute the relative numbers.  

9 It is worthwhile to note that the exercise we carry out is different from the one that Transpower solves. Transpower seeks to predict load, which 
it uses, together with the bids submitted by market participants, as an input to the New Zealand electricity market model to pin down generation 
dispatch. What we are doing is exploring to what extent we can bypass the market (i.e., participants’ bids) and predict final generation allocations 
based on information available 36 hours before dispatch.  
10 Our training sample uses 20% random days. Lagged variables are generated before taking the training sample, so that the random sample 

already contains all necessary variables. One aspect that departs from what one would do in practice is that we train the model using a random draw 
of the entire period, i.e., from 2014 to 2018. As an alternative approach, we could have more explicitly considered a model that only uses past data. 
In previous iterations of the prediction model, we estimated some models for 2017 with only past data and we obtained similar results.  
11 For another perspective on the value of markets to allocate electricity production, see Cicala (2022). 
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5.1. Convergence and increasing informativeness of predispatch prices and quantities 

The first part of our empirical exploration into price and quantity discovery in the predispatch market builds on an approach first 
implemented by Biais et al. (1999) to study price discovery in the preopening period of the Paris stock exchange. 

Let qr
nt denote the indicative quantity for node n at time period t produced during the rth round of the predispatch, with the 

convention that q0
nt is the best forecast based on information available before the start of the predispatch. 

For every predispatch round r, we regress the quantity revision over the entire predispatch on quantity revisions up to round r: 

q24
nt − q0

nt = αr + βr
(
qr

nt − q0
nt

)
+ εrnt. (1) 

If predispatch quantities are uninformative, then βr should be equal to zero. Conversely, if predispatch quantities are informative, βr 
should be positive. If predictions are unbiased but noisy, we would expect βr to be between zero and one. As predictions become more 
accurate, βr should converge to one.12 

Regressions are carried out separately for each predispatch round to account for the non-stationary process of learning during the 
predispatch. We are thus comparing the same predispatch round, for different production nodes and trading periods. We run the 
equivalent regressions for prices. As best forecasts based on information before the predispatch, q0

nt and p0
nt , we use the forecasts 

produced by the random forest predictor from Section 4. 
Fig. 1 reports the slope estimates for the quantity equation  (1) and for the North Island price equation (the results for the South 

Island are qualitatively similar). Consistent with the hypothesis that the predispatch market generates information, the coefficient βr 
increases over the course of the predispatch and reaches one by the end of the predispatch. The estimated slope coefficient for the price 
equation remains low until the beginning of the short schedule, suggesting that information aggregation is picking up only then. The 
slope for the quantity equation increases steadily over the course of the predispatch. 

Section 4 showed that residual uncertainty at the time the predispatch market opens differed across production technologies. 
Production at combined cycle gas power plants and geothermal stations could be predicted with little uncertainty, whereas residual 
uncertainty remained high for production at open cycle gas turbines nodes. Fig. 2 reports the result of running equation  (1) separately 
for four different technologies: schedulable hydro, run-of-river hydro, combined cycle gas and open cycle gas. The results reflect the 
combination of the quality of the random forests forecast, and the flexibility and exposure to last minute events of the specific 
technologies. Specifically, the main difference between schedulable hydro and run-of-river hydro is that run-of-river hydro is more 
dependent on short-run variations in river flows, leaving some generation uncertainty until close to dispatch. Comparing Fig. 2 (a) and 
Fig. 2 (b) confirms that quantity discovery indeed picks up later for run-of-river hydro than for schedulable hydro. In contrast, there is 
little difference in the evolution of the estimated βr for combined and open cycle gas turbines, except for the slightly later start of 
quantity discovery for open cycle gas turbines. This may be due to both technologies being subject to similar operational constraints. 
We will see later (Table 7) that the time horizon of bid revisions is similar for both technologies. 

5.2. Parallel markets and contribution to price and quantity discovery 

A challenge when studying markets where identical or similar assets are traded is the potentially confounding effect of 

Table 4 
Residual uncertainty about generation allocation and prices.   

MAE RMSE R2  

F L P F L P F L P 

Technology-level generation          
- Hydro, run of river 0.07 0.10 0.12 0.10 0.13 0.18 0.95 0.92 0.86 
- Hydro, schedulable 0.03 0.04 0.05 0.04 0.05 0.07 0.98 0.97 0.95 
- Gas, combined cycle 0.07 0.14 0.12 0.10 0.20 0.21 0.97 0.89 0.87 
- Gas, open cycle 0.29 0.45 0.45 0.43 0.61 0.74 0.87 0.74 0.65 
- Geothermal 0.01 0.03 0.02 0.02 0.04 0.03 0.99 0.95 0.97 
- Coal 0.21 0.42 0.34 0.34 0.58 0.66 0.92 0.77 0.72 
- Wind 0.16 0.25 0.26 0.21 0.31 0.34 0.87 0.73 0.73 
Average prices          
- North Island 0.14 0.19 0.32 0.25 0.30 0.52 0.73 0.60 0.35 
- South Island 0.15 0.20 0.33 0.24 0.30 0.63 0.78 0.66 0.33 

Notes: F = forest predictions, L = LASSO predictions, P = first predispatch. The results only include testing observations. MAE stands for mean 
absolute errors between the prediction and last predispatch, normalized by mean quantities at the technology level, RMSE stands for root mean 
squared error, also normalized by mean quantities. The top 0.1% observations with high prices (either final price or predispatch) are censored due to 
the importance of outliers driving the R2 measure.  

12 Another way to see this is to rewrite (1) in the mathematically equivalent, but statistically less convenient, equation q24
nt = αr + βrqr

nt + (1 −

βr)q0
nt + εrnt . βr can then be interpreted as the weight of round r’s indicative quantity in predicting final quantity. 
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contemporaneous transactions in related markets. In our case, this takes the form of spot market transactions, which are based on the 
last predispatch, happening at the same time as earlier predispatch rounds for future trading periods. How can we know that the 
informational role that we have documented is performed by the predispatch, rather than the contemporaneous spot market, which 
involves commitment? 

We examine the relationship between predispatch prices over time by regressing the quantity-weighted predispatch price for a 
given round r and trading period t, pr

t , on previous lagged predispatch prices for the same trading period, and the most recent spot 
market price, i.e., the price of the trading period that has cleared right before the current predispatch round (and lags thereof): 

pr
t = α + β11pr− 1

t + β12pr− 2
t + ⋯ + β21pspot

τ(t,r) + β22pspot
τ(t− 1,r) + ⋯ + ϵr

t ,

where pspot
t refers to the quantity-weighted spot price at trading period t and τ(t, r) gives the time period for which the spot market just 

cleared when round r of trading period t is happening. This means that such spot price is already known to market participants.13 It is 
important to note that, by design, this spot price applies to a different hour of the day. Its defining feature is that it will be financially 
settled, as opposed to just being indicative. 

Due to the high degree of correlation between predispatch rounds, we also consider a differenced model, in which the variables are 
first differenced in the regression. 

Table 5 shows the results from the regression above. One can see in columns (1) and (2) that predispatch prices are very well 
predicted by the prices in previous rounds while the spot price is not nearly as important. This should not be surprising as we have 
already established that predispatch prices converge. Columns (3) and (4) focus on the differenced model, which more directly ex-
amines price updates in the predispatch market. Changes in spot prices are only weakly correlated with changes in predispatch prices 
and the coefficients are not significant, while lagged changes in predispatch prices are strongly correlated with current changes in 
predispatch prices. This suggests that price discovery is indeed happening in the predispatch market, independently of developments in 
the spot market. 

The negative coefficients on lagged changes in predispatch prices shown in Table 5 are interesting on their own. They suggest some 
kind of reversion to the mean where an increase in price in one round is followed by a correction downwards, in the spirit of 
tâtonnement. Indeed, in the data, we find that almost 50% of the time price changes occur in the opposite direction from one round to 
the other. This suggests that prices in the predispatch market oscillate as information is revealed. 

5.3. New information arrival and bid updates 

The previous results have established that the indicative prices and quantities produced by the predispatch market are increasingly 
informative and that this information is largely produced by the predispatch market itself, rather than the contemporaneous spot 
market. In this section, we zoom in on the bid revisions submitted by market participants since they drive the price and quantity 
revisions that we observe during the predispatch market. 

Fig. 1. Evidence for quantity and price discovery. 
Notes: The figure displays the estimated βr coefficient and its 5% confidence interval for equation  (1), and its equivalent for prices, as a function of 
the predispatch round. 

13 For example, at the 21st predispatch round for 4 pm in the afternoon, the last dispatch price at 2:00 pm has just been revealed. This is what we 
call the spot price. 
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Market participants can submit a bid revision any time during the predispatch, up to gate closure (conditions apply afterwards). A 
bid revision is characterized by a time stamp and the identity of the market participant who submitted it. We focus on generation-side 
bid revisions. We find that virtually all bid revisions involve several trading periods. Two thirds of bid revisions involve several nodes. 

Fig. 3 shows the evolution of the number of bid revisions during the predispatch. Since predispatch rounds last for different lengths, 
the numbers are normalized and expressed as the percentage of nodes subject to revision per hour. The figure shows that the number of 
revisions increases significantly after predispatch switches from the long schedule, when predispatch rounds last two hours, to the 
short schedule, when predispatch rounds last half an hour (vertical line). At the beginning of the predispatch, about 3% of node-level 
bids are revised every hour. This increases to 11% when the predispatch switches to the short schedule. Bid revision activity drops at 
gate closure, as constraints apply to bid revisions. Acceleration of trading activity close to the market end-time is also documented for 
preopening periods at stock exchanges (Biais et al., 1999). 

We next explore the determinants of bid revisions. Let yintr ∈ {0,1} denote whether firm i revises their bid for node n and trading 
period t during the rth round of the predispatch.14 Similarly, let yitr ∈ {0,1} denote whether firm i revises any bid for trading period t in 
the rth round of the predispatch. 

We construct several measures of exogenous information arrival at the market and node level. First, we measure changes, during 
the predispatch, in available generation capacity. For each node, we define ΔCapacitynrt (Δ own capacity, in the table) as the absolute 
value of the change in available capacity between round r − 1 and round r at that node (firm-level change in own capacity is defined as 
the mean of the node-level absolute value changes). This information is reported by participants alongside their bids. We use it as a 

Fig. 2. Quantity discovery differences across technologies. 
Notes: The figure displays the estimated βr coefficient and its 5% confidence interval for equation  (1) for a range of technologies. 

14 By convention, we say that a market participant revised their bids in the rth round if they submitted a bid revision between the time of the 
(r − 1)th and the rth predispatch. 
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proxy for unplanned outages.15 Likewise, we define ΔCapacity(− i)rt (Δ others’ capacity) as the changes between round r − 1 and round r 
in available capacity at nodes owned by other market participants, again measured as the sum of nodel-level absolute changes. Second, 
we measure market-level revisions in net load forecasts defined as the net change in load and wind forecasts between round r − 2 and r 
− 1 (Lagged Δ net load). This information is available to participants when they bid in round r. 

Finally, we construct two measures for the market feedback received in the previous round. Let Δqntr =
⃒
⃒qr− 1

nt − qr− 2
nt

⃒
⃒ (Lagged Δ 

quantity) describe the change in indicative quantity at node n and trading period t from predispatch round r − 2 to predispatch round r 
− 1 (Δpntr is defined analogously). A positive value for Δqntr can be the result of a previous change in bids (between round r − 2 and r −
1) or a change in market circumstances that leads the market model to select another point on the market participant’s bid schedule at 

Table 5 
Predispatch price updates based on lagged predispatch and spot prices.   

Levels First Differences  

(1) (2) (3) (4) 

L.Weighted price 0.679 0.493 -0.338 -0.431  
(0.022) (0.024) (0.019) (0.025) 

L2.Weighted price  0.176  -0.226   
(0.020)  (0.016) 

L3.Weighted price  0.100  -0.118   
(0.010)  (0.010) 

Spot price 0.015 0.017 0.008 0.013  
(0.014) (0.016) (0.008) (0.013) 

L.Spot price  0.000  0.009   
(0.000)  (0.008) 

L2.Spot price  0.000  0.004   
(0.000)  (0.004) 

Constant 20.411 14.010 -0.303 -0.263  
(1.713) (1.240) (0.069) (0.081) 

Observations 1,841,258 1,672,969 1,756,867 1,589,409 

Notes: The unit of observation is a trading period x predispatch round. The price is a quantity-weighted average across nodes using final generation 
quantities. The spot price is a quantity-weighted average following the same approach and represents the price of the last trading period that has 
cleared at the time market participants bid in the market and will be financially settled. The goal of the regression is to separate “indicative” set-
tlements vs. settlements that involve commitment. Clustered standard errors at the trading period reported in parenthesis. 

Fig. 3. Bid revision activity during the predispatch. 
Notes: The figure shows the frequency of node-level bid revisions, for a given predispatch round (mean in solid line; 10 and 90 percentiles in dotted 
lines). The unit of observation is a trading period x predispatch round x generation node. Wind generation nodes are excluded. Bid revision fre-
quency is defined as the percentage of nodes subject to a bid revision per hour. Vertical line at round 17, the round at which predispatch switches 
from the long to the short schedule. Gate closure starts at round 20 until June 28, 2017 and at round 22 afterwards. 

15 News about new and unplanned outages is available in real-time to all participants on the WITS system. 
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node n.16 The interpretation for Δpntr is similar and the two variables will tend to be correlated, except that, because bid schedules are 
step functions, indicative quantities can change without indicative prices changing, and vice versa. Firm-level changes in indicative 
price and quantity are defined as the average of the node-level changes in price and quantity. 

We run two sets of linear probability regressions, one at the node level and, because two-thirds of bid revisions involve several 
nodes, one at the market participant level. Fig. 3 shows that bid revisions are more frequent in later stages of the predispatch. 
Additionally, some technologies might be more prone to frequent revisions than others. Therefore, we control for round-node (in node- 
level regressions) and round-market participant fixed effects (in firm-level regressions). 

Table 6 summarizes the results. All coefficients are positive, as expected, and significant at the 1% level, except lagged own quantity 
change in specifications 6 and 7. Changes in the available capacity of a market participant increases the likelihood that they revise their 
bids. Changes in the indicative price and quantity at a node during the previous round are also associated with an increased probability 
of submitting a bid revision for that node, but their explanatory power is small. Finally, changes in competitors’ available capacity and 
changes in net load increase the probability of a bid revision and these variables have a strong explanatory power as evidenced by the 
increase in the adjusted R2. These results confirm that the predispatch market reacts to new information. 

6. Why does price and quantity discovery happen without commitment? 

So far, we have shown that market participants actively participate in the predispatch market and that their revised bids contribute 
to making indicative predispatch prices and quantities increasingly informative. In this section, we explore the possible private in-
centives for bid revisions given the absence of commitment. After all, there is no reason for a market participant to submit a bid 
revision if they do not privately benefit from it. 

We already noted that essentially all bid revisions involve several trading periods. Table 7 provides a detailed breakdown of the 
number of trading periods involved in a bid revision, by technology. The time span of bid revisions reflects the technical attributes of 
each technology. For example, more than 25% of bid revisions for gas-powered thermal units involve at least 21 trading periods 
according to Table 7. This is close to the typical warm-up time for these units, which is evaluated to be at around 10–12 hours. Coal- 
powered plants have faster start-up times and bid revisions tend to involve fewer trading periods for this technology. Half of the bid 
revisions for cogeneration involve at least 29 trading periods, presumably reflecting the production constraints of the industrial process 
(paper and pulp, dairy, ...) paired with electricity generation. At the other extreme, 75% of bids for schedulable hydro involve less than 
12 trading periods (6 hours). 

Unlike most other electricity markets, including the Continental West European (CWE), the Iberian and Nordic markets in Europe, 
and PJM, California, and Colombia in the Americas, the New Zealand wholesale electricity market does not allow market participants 
to express preferences over intertemporal production profiles.17 Prices and quantities are set for each trading period sequentially. The 
only dynamic consideration taken into account is ramp up and ramp down constraints from the previous trading period. 

This means that the predispatch market, and the indicative prices and quantities it produces, is the only mechanism through which 
generation units are able to optimize their production profile over time. Specifically, whenever Transpower calls the market, it pro-
duces indicative prices and quantities for 8 (during the short schedule) or 72 (during the long schedule) consecutive trading periods. 
Market participants can then get a good sense of the forecast generation schedule of their plants over this time horizon, in the absence 
of further changes. The prices and aggregate supply curves generated in the process also give them an indication of how to adjust their 
bids to change their forecast generation schedule, if desirable.18 This will of course not guarantee that they will secure the desired 
schedule since prices and quantities are not final, but the probability that it does steadily increases over the course of the predispatch, 
given the convergence we have documented. Such benefit of iterative mechanisms has been emphasized by Ausubel and Cramton 
(2004) among others. 

Fig. 4 provides one example of intertemporal reallocation of production over the course of the predispatch. It shows the evolution of 
scheduled production on January 13, 2016, for the first and second coal units at Huntly, a station located on the North Island and 
operated by Genesis. At the first round of the predispatch, the second unit was on only for 10 hours of the day, starting at trading period 
28 (1:30 pm). By the end of the predispatch, it is committed for a longer period, a useful property given the ramp-up costs of such units. 

To provide a more systematic assessment of the presence of improved intertemporal allocation, we construct two measures of 
dynamic efficiency at the day and technology level. First, we define the number of daily startups as follows: 

Startupr
d,tech =

∑

n∈tech
1{

qr
ndt>0 & qr

nd,t− 1=0
},

where r refers to the predispatch round, n is a node belonging to a technology tech, d is a day, and t is a trading period. Everything else 
equal, a day with fewer startups will tend to be dynamically more efficient. Second, we define a measure of ramping, i.e., the change in 

16 Brown et al. (2018) find that participants in the Alberta’s wholesale electricity market respond to rival offer changes, as revealed by the local 
market authority’s historical trading reports.  
17 These can take the form of a minimum revenue requirement as in the Iberian market (Reguant, 2014), explicit fixed costs bids in addition to 

“simple” bids as in the Colombian market (Balat et al., 2022), block and linked orders and other multi-period contingent bids (Tirez et al., 2012) as 
used in the CWE area.  
18 For example, a market participant who is allocated a time-varying schedule of production, based on the current predispatch results, might want 

to adjust their bids to smooth out their production level and avoid costly short-run changes in generation. 
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quantities from one trading period to the next. Thermal power plants have additional costs from quickly changing their output, and 
therefore, we consider our ramping to be quadratic in output changes: 

Rampr
d,tech =

∑

n∈tech

∑

t∈TP

(
qr

ndt − qr
nd,t− 1

)2 

Fig. 5 shows evidence consistent with dynamic efficiency improving over the course of the predispatch market. Panel (a) shows that 
the number of coal start-ups decreases from the first to the last predispatch. Due to the large startup costs of coal power plants (Wolak, 
2007; Reguant, 2014; Gowrisankaran et al., 2023), the reduced number of startups can reduce operational costs. Panel (b) shows that 
the output in the last predispatch is also less subject to ramping costs. 

Panels (c)-(d) show the same patterns, albeit less stark, for combined cycle gas units. As Table 2 indicated, these units were largely 
used as baseload during our sample period, explaining the low number of start-ups and the little change thereof. 

As a point of comparison, panels (e)-(f) show the value of our dynamic efficiency measures for schedulable hydro. Schedulable 
hydro adjusts production during the day, with several nodes going from zero to positive production on a daily basis, as shown by the 
number of startups.19 Contrary to the thermal plants, there is no discernible difference between the first and last predispatch. This is 
intuitive as ramping constraints and dynamic costs are not as relevant for schedulable hydro. 

Improved intertemporal allocation of production is clearly a private benefit. To materialize it requires informative prices and 
quantities, so market participants have a collective interest in the quality of the predispatch. When a market participant revises their 
bids, they are not only optimizing their own production but also improving information for other market participants. In turn, more 
informative prices provide an incentive for market participants to use them to update their bids, thereby creating a virtuous cycle. This 

Table 6 
Determinants of bid revisions (linear probability model).   

Node-level Firm-level  

(1) (2) (3) (4) (5) (6) (7) 

Δ own capacity  0.00461 0.00464 0.00317 0.03994 0.04052 0.02971   
(0.00113) (0.00115) (0.00081) (0.00804) (0.00825) (0.00545) 

Δ others’ capacity    0.00092   0.00128     
0.00005   0.00012 

Lagged Δ net load    0.00004   0.00008     
(0.00001)   (0.00001) 

Lagged Δ quantity   0.00076 0.00064  0.00068 0.00058    
(0.00013) (0.00010)  (0.00061) (0.00047) 

Lagged Δ price   0.00011 0.00004  0.00015 0.00005    
(0.00001) (0.00001)  (0.00002) (0.00001) 

Round-node FE X X X X    
Round-firm FE     X X X 
Obs. (million) 132.7 132.0 126.3 126.3 20.7 19.8 19.8 
Adjusted R2 0.02 0.05 0.05 0.26 0.15 0.15 0.38 

Notes: The unit of observation is a trading period x generation node x predispatch round for node-level regressions and a trading period x generation 
firm x predispatch round for firm-level regressions. At the firm level, a revision is defined as taking a value of one as long as the bid schedule of one of 
its plants is revised. Wind excluded. Standard errors clustered at the node level (specifications (1)-(4)), and at the firm level (specifications (5)-(7)) in 
parenthesis. 

Table 7 
Number of trading periods involved in a bid revision (node level).   

# revs. 5% 25% 50% 75% 95% 

Overall 5.76 1.0 3.0 6.0 15.0 48.0 
- Coal 4.76 1.0 2.0 6.0 15.0 34.0 
- Cogeneration 3.77 2.0 11.0 29.0 48.0 69.0 
- Diesel 2.02 1.0 3.0 8.0 24.0 44.0 
- Gas, combined cycle 4.66 1.0 3.0 9.0 23.0 45.0 
- Gas, open cycle 2.74 1.0 3.0 8.0 21.0 48.0 
- Geothermal 3.03 1.0 5.0 13.0 23.0 48.0 
- Hydro, run of river 5.50 1.0 2.0 5.0 14.0 49.0 
- Hydro, schedulable 6.29 1.0 3.0 5.0 12.0 48.0 

Notes: The unit of observation is a node-level bid revision (timestamp x node). The first column reports the average number of bid revisions per node 
and trading period. Note that we only include bid revisions that happen during the predispatch, i.e., revisions submitted after the first predispatch. N 
= 980,777.

19 Note that there are 36 schedulable hydro nodes and, therefore, the number of daily startups can be quite high. 
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provides a rationale for the observed active participation in the predispatch market and its informativeness, despite the lack of 
commitment. Note, however, that the level of bid revisions that we observe, and therefore the level of price informativeness, may not 
be optimal, given that bid revisions produce a positive externality. 

7. Concluding comments 

Wholesale electricity markets are notoriously incomplete (Wilson, 2002). Existing market designs are all pragmatic attempts to 
solve the complex allocation that electricity production and dispatch entail. The New Zealand electricity market is no exception. Its 
distinguishing feature is the use of a non-binding indicative predispatch market, before final allocations are decided. 

Non-binding iterative markets are uncommon: preopening periods at stock exchanges and initial public offerings (IPOs) seem to be 
the other two examples. They raise the concern that participation is uninformative at best, manipulative at worst. We show that bid 
revisions in the New Zealand market are motivated by new information arrival and that predispatch prices and quantities are 
increasingly informative of final prices and quantities. 

Our explanation for the informativeness of the predispatch market is that market participants derive a private benefit from effective 
price discovery, in the form of improved intertemporal coordination of production plans. This contrasts with the reasons given for the 
informativeness of preopening periods at stock exchanges and IPOs which rely on asymmetric information and adverse selection. 

Could commitment nevertheless help? Introducing some form of commitment is on the agenda of New Zealand policy-makers. It is 
motivated by the observed increasing frequency of peak periods when offered generation is tight relative to load (despite otherwise 
sufficient installed capacity), and the perception that this arises because the financial incentives for keeping thermal generation ca-
pacity “warm” for the probable event that it may be needed have decreased in the context of higher fuel and carbon prices and 
increased wind penetration that makes prices more difficult to predict. The proposed solutions include measures to improve the ac-
curacy of wind generation forecasts, predispatch market feedback based both on predicted load (like today) but also on load forecast 
sensitivity cases, and the introduction of commitment in the form of a hours-ahead market that would lock in parts of the supply and 
demand 8 hours or so before dispatch (Electricity Authority, 2023). 

Our results provide two insights into this question. First, our argument that there is a virtuous cycle at play in the predispatch 
market implies, by the same token, that any external measure to improve the informativeness of the resulting price signals will 
strengthen the incentives of market participants to use the predispatch market to convey information about their production plans, 
thereby further improving the informational value of the predispatch. Second, the intertemporal nature of market participants’ 
optimisation problem that we have documented suggests that careful attention should be paid to the way commitment is introduced 
unless some form of multiperiod bidding is introduced. 

Our paper has documented the efficiency benefits of information in terms of improved production scheduling. The flip side of 
information is that it also increases the market participants’ ability to exert market power. We turn to this question in our follow-up 
paper (Bergheimer et al., 2023). 

Fig. 4. Evidence for intertemporal optimization. 
Notes: The figure shows an example of scheduled generation over the course of the day (48 trading periods) for the Huntly coal power station. One 
can observe that Unit 2 changes its schedule to improve its ramping profile over the course of the predispatch market. 
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Fig. 5. Measures of dynamic efficiency over the course of the predispatch market. 
Notes: The figure shows how alternative measures of dynamic efficiency evolve between the first and last predispatch. The unit of observation is a 
day x technology pair. Startups are measured as the daily number of startups for units of a given technology. Ramps for each node are measured as 
the sum of squared changes in output from one trading period to the next. This number is then aggregated at the technology level. 
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