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This work focuses on generatingmultiple coordinatedmotor skills for intelligent

systems and studies a Multi-Expert Synthesis (MES) approach to achieve

versatile robotic skills for locomotion and manipulation. MES embeds and

uses expert skills to solve new composite tasks, and is able to synthesise and

coordinate different and multiple skills smoothly. We proposed essential and

effective design guidelines for training successful MES policies in simulation,

which were deployed on both floating- and fixed-base robots. We formulated

new algorithms to systematically determine task-relevant state variables for

each individual experts which improved robustness and learning efficiency, and

an explicit enforcement objective to diversify skills among different experts. The

capabilities of MES policies were validated in both simulation and real

experiments for locomotion and bi-manual manipulation. We demonstrated

that theMES policies achieved robust locomotion on the quadruped ANYmal by

fusing the gait recovery and trotting skills. For object manipulation, the MES

policies learned to first reconfigure an object in an ungraspable pose and then

grasp it through cooperative dual-arm manipulation.
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1 Introduction

The re-usability of control policies is a challenging research area in robotics. Task-

specific controllers and learned policies have been developed to achieve a wide range of

tasks, such as locomotion (Bellicoso et al., 2018; Hwangbo et al., 2019) on quadrupeds, as

well as manipulation of objects (Levine et al., 2018). To create useful versatile robots, the

ability to perform multiple tasks is essential, however, combining and reusing these

policies in a unified manner remains an open question. This is because a learned policy is

trained specifically to solve a particular task which has limited applicability to transfer

such a single-skilled policy to other tasks. Having a control policy applicable to other tasks

commonly requires redesigning or retraining the policy.

This work investigates a systematic approach to formalise the synthesis of multiple

learned policies—a multi-expert synthesis (MES) approach that can produce versatile

robotic capabilities, in which a high-level behaviour policy recombines multiple skills and

OPEN ACCESS

EDITED BY

Yan Wu,
Institute for Infocomm Research
(ApSTAR), Singapore

REVIEWED BY

Yangwei You,
Institute for Infocomm Research
(ApSTAR), Singapore
Qinyuan Ren,
Zhejiang University, China

*CORRESPONDENCE

Zhibin Li,
alex.li@ucl.ac.uk

SPECIALTY SECTION

This article was submitted to Robot
Learning and Evolution,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 16 June 2022
ACCEPTED 26 August 2022
PUBLISHED 28 September 2022

CITATION

Yuan K and Li Z (2022), Multi-expert
synthesis for versatile locomotion and
manipulation skills.
Front. Robot. AI 9:970890.
doi: 10.3389/frobt.2022.970890

COPYRIGHT

© 2022 Yuan and Li. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 28 September 2022
DOI 10.3389/frobt.2022.970890

https://www.frontiersin.org/articles/10.3389/frobt.2022.970890/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.970890/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.970890/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.970890&domain=pdf&date_stamp=2022-09-28
mailto:alex.li@ucl.ac.uk
https://doi.org/10.3389/frobt.2022.970890
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.970890


fuses more flexible ones, using specialised experts based on the

observation of states and task. Here MES is defined as the process

of combining or blending expert skills in a latent space. This will

produce a multi-expert policy, where a high-level behaviour

policy selects the appropriate experts according to the real-

time state observation.

The essential principle of multi-expert synthesis lies in

designing a hierarchical control architecture where non-

relevant information is coordinated and hidden across the

layers: while the high-level behaviour policy requires task-

relevant information, e.g., distance to a goal or pose of the

object to grasp, the low-level expert only requires the

proprioceptive state of the robot. Thus, experts focus solely on

performing their particular skills, while the high-level policy is

responsible for drawing from the experts’ skills and completing

the task.

This idea originates from Hierarchical Reinforcement

Learning (HRL) (Barto and Mahadevan, 2003). In HRL, for

discrete and tabular cases, temporal (Sutton et al., 1999) and

state abstraction (Dietterich, 2000) determine the information

that the components receive. Despite the advantages of encoding

non-relevant information across layers, composing and

synthesising expert knowledge is not possible in the standard

HRL framework since only one expert can be selected at a time.

This problem is addressed by learning continuous latent variables

that blend the experts in a latent space (Haarnoja et al., 2018a;

Merel et al., 2018b).

The traditional approach for the latent space blending is the

Mixture of Experts (MoE), where the outputs of individual

experts (actions) specialized on sub-problems are combined

by a gating function (Jacobs et al., 1991). The core idea of

MoE, combining the outputs of experts via a gating network,

has been adapted in the areas of machine translation (Shazeer

et al., 2017), computer vision (Chang et al., 2018), robotics

(Mülling et al., 2013), Reinforcement Learning (RL) (Sun and

Peterson, 1999), and Computer Graphics (Peng et al., 2019).

However, MoE has limitations known as expert imbalance—a

form of mode collapse that arises due to the lack of diversity

across experts (Shazeer et al., 2017; Zhang et al., 2018).

Alternative to MoE, the Multi-Expert Learning Architecture

(MELA) has been proposed, where the latent space is constructed

by blending expert network weights leading to a higher-

dimensional latent space representation of the multi-expert

network than MoE (Yang et al., 2020b). It has been shown

that MELA avoids the expert imbalance problem, and

provides a framework to use experts for learning diversified

skills as well as adaptive behaviours on a quadruped robot.

In this work, we present a systematic approach to best

achieve MES and propose algorithms that address two key

problems in multi-expert methods: 1) how to select the

correct state space representation for the MES policies; and 2)

how to avoid the lack of diversity across experts leading to expert

imbalance. We will show the results of multi-expert policies for

both quadruped locomotion and cooperative bi-manual

manipulation (Figure 1).

Specifically in MES, where every expert and the gating

network has an individual state space, to correctly design the

state space is crucial and non-trivial: missing key state variables

will prevent the policy from learning the right action; whereas

having too many and unrelated states will result in slower

learning, large variances in the reward signals, and higher

probability of converging to local minima (Garcıa and

Fernández, 2015).

Our proposed procedure addresses this problem by the

automatic selection of task-relevant state variables.

Traditionally, the state space is designed relying on domain

knowledge, and extensive trial and error to find a state space

representation that yields highest performance. However, with an

increasing amount of experts for different skills this becomes

time consuming and potentially infeasible. Our proposed

automatic state space design process mitigates the

aforementioned state space issues for MES, where multiple

state spaces need to be designed for the individual experts and

gating network.

In the context of MES, our proposed method to explicitly

enforce diversity among experts allows multi-expert methods

in general to not suffer from expert imbalance. In multi-expert

systems, a common problem known as expert imbalance

occurs. This is because when one expert is over-prioritised

by the behaviour network, it results in downgrading of

other experts and the inability to learn distinct expert

behaviours.

Our contributions are summarised as follows:

1. A systematic design for Multi-Expert Synthesis (MES) enabling

learning of skill coordination and effective synthesis of

multiple experts during tasks.

2. Formulation of a state selection algorithm that uses the learned

state value function to quantitatively identify essential states

and rule out task-irrelevant variables.

3. A proposed explicit enforcement of diversity among multiple

experts by maximising their discriminability.

4. Applicability of the proposed methods for MES to achieve

motor skill synthesis in both robot locomotion and

manipulation.

We validate the MES approach in two distinct domains of

robotic skills: locomotion and manipulation. For the validation

on a quadruped robot, we show that gait recovery and

locomotion can be synthesised to achieve robust locomotion

(Figure 1 Top). Furthermore, our method can be used for

cooperative dual-arm manipulation (Figure 1 Bottom) to

grasp an object from a previously ungraspable configuration.

The effectiveness of the trained multi-expert policies were

validated in a variety of test scenarios in both simulation and

real-world experiments.
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Following, we first present related work (Subsection 2). Next,

we demonstrate how expert behaviour is obtained (Subsection 3).

Next, we present MES, the state selection process, and the types

of multi-expert policies in (Subsection 4). The results using MES

for a quadruped and dual-arm, and a comparison between MoE

and MELA is conducted in Section 5 and Section 6 respectively.

Lastly, we conclude the work in Section 7.

2 Related work

Model-based control methods have been widely use for

robotics tasks, such as locomotion, manipulation, and whole-

body control (Siciliano and Khatib, 2016). In particular, recent

optimisation based approaches enabled robots to plan (Winkler

et al., 2018) and robustly realise planned motions (Kuindersma

et al., 2016) under constraints. This paradigm of using

optimisation to first plan and then robustly track the planned

trajectory has found wide application in the control of floating-

based robots (Feng et al., 2015; Johnson et al., 2015).

Despite a wide range of applications and problems solved

through existing control methods, the requirement of large

amounts of computation power for large-scale optimisation

problems, dependence and necessity of accurate models, and

their limitation to generalise under uncertainties remain a

challenge. To this end, learning based methods offer an

alternative paradigm by learning through data while only

specifying high-level objects instead of detailed mathematical

specifications of the physical environment. Beside optimisation

methods, such as genetic algorithms (Mitchell, 1998),

evolutionary optimisation (Ha and Liu, 2016), or Bayesian

Optimisation (Snoek et al., 2012), Reinforcement Learning

(RL) (Sutton and Barto, 2018) has been the main approach to

solve problems which are difficult for classical control methods.

While gradient-free optimisation methods have been mainly

used to optimise for the parameters of a controller (Rai et al.,

2018) or a model (Yuan et al., 2019), RL is learning a

parametrised function representing both the control policy

(Yang et al., 2020a) and the model (Sutton, 1990).

For complex tasks, such as continuous control in robotics,

Deep Neural Networks have been used as function

approximators for the actor and critic, opening the field of

Deep Reinforcement Learning (DRL). In robotics, DRL has

been used on problems that are hard to solve using classical

control methods, such as control of life-like locomotion of

humanoids (Yang et al., 2020a) and animals (Yang et al.,

2020b), fall recovery for quadrupeds (Hwangbo et al., 2019),

and hand-eye coordination for grasping (Levine et al., 2018).

Due to the data demanding nature of DRL algorithms, the

policies are learned in simulation removing the risk of

FIGURE 1
Synthesis of expert skills using Multi-Expert Synthesis. Top: Versatile locomotion by recovering from a prone position first and then transitioning
into trotting. Bottom: Dual-arm cooperative manipulation, where the object is first reconfigured by the left hand into a graspable pose and then
grasped by the right hand.
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damaging the robot and leveraging advances in computation

speed and parallel computing allowing fast collection of

samples. To ensure that the simulation to reality (sim2real)

transfer of the policy yields similar performances in reality as

in simulation, the fidelity of the simulation can be increased

(Tan et al., 2018; Hwangbo et al., 2019) or the policy can be

trained to be robust to uncertainty (Peng et al., 2018b).

To complete multiple tasks using one unified framework,

hierarchical control structures can be used to select appropriate

sub-policies through a high-level gating mechanism. In HRL,

complex tasks are solved by using existing knowledge of experts

through temporal abstraction (Sutton et al., 1999). In its original

form, temporal abstraction is achieved by having the top-level

policy selecting among options, which are sub-policies that

continuously perform one action over a period of time

(Sutton et al., 1999).

With the advent of Deep Learning and Deep Neural

Network, DRL has been used to extend the discrete tabular

HRL concepts into the continuous control domain. In the

context of multi-expert learning and multi policy composition,

this led to frameworks where low-level experts encode motion

primitives or skills, while a high-level policy selects the expert

(Frans et al., 2017; Merel et al., 2018a). Alternative to learning a

high-level policy to select appropriate motion primitives,

COCoMoPL (Clever et al., 2017) proposes a framework,

where near-optimal motion primitives are learned and

synthesised into a motion as weighted combination of these

motion primitives.

In (Kumar et al., 2018), a method is proposed that does not

synthesise expert skills into a unified policy, but rather expands

the existing skill by decomposing the task into simpler subtask

and training a local policy for the subtasks.

A modular framework is proposed in (Lee et al., 2018),

which learns transition policies that connect primitive skills

to complete sequential tasks. An extended work in (Lee et al.,

2019) uses the modular framework to learn to coordinate the

learned primitive skills for task completion. In (Qureshi

et al., 2019) a method is proposed that learns task-

agnostic skills using their composite to solve new tasks in

an HRL fashion.

In contrast to aforementioned methods that select one

sub-policy, the outlined MES in this work continuously blends

all experts. From a practical perspective, this allows the multi-

expert policy to choose latent skills from multiple experts

instead of just choosing a particular skill from one expert.

Furthermore, MES continues to train the experts alongside the

high-level behaviour network, such that the learned expert

skills can be specialised and can learn new skills, while gating

network blends the experts’ skills. To increase the usability

and performance of MES, this work provides two novel

algorithms for automatic state selection and enforcing

expert diversity yielding higher performances and faster

development times.

3 Generating expert behaviours

For the multi-expert learning structure, individual narrowly-

skilled experts need to be obtained. In this work, two procedures

are presented to obtain expert behaviours: 1) autonomously

learning a policy through interactions with the environment

and 2) learning to imitate a reference policy.

In order to solve a task, a reward, whose maximisation leads

to task completion, needs to specified. If the policy is

autonomously learning from scratch, methods from Deep

Reinforcement Learning are deployed to maximise the reward.

For imitation learning of a user-designed controller, a controller

is designed first, and then a policy represented as Neural Network

(NN) is trained to imitate the controller as closely as possible

while maximising a task reward.

Using model-free DRL algorithms to learn a policy from

scratch is helpful when the solution is not straightforward. On

the other hand, using an existing manually designed controller

gives more certainty of behaviours over the robustness, stability,

and performance. Thus, combining control design for well-

defined tasks, such as locomotion, and leveraging the

exploration of learning methods for tasks in ill-defined or

uncertain states and environments, such as fall recovery from

any pose, provides experts for a variety of cases.

In the following, we will first introduce the control structure

how the robot is controlled to achieve its task, and then present

the procedure to learn experts through DRL. Lastly, we will show

how an expert can be obtained from imitation learning.

3.1 Control structure

The control structure of the robot consists of two control

loops: high-level behaviour control, and low-level joint

impedance control (Figure 2). The high-level behaviour

control loop governs the behaviour of the robot at 25 Hz by

mapping the robot’s states into actions for the joint impedance

controller, which runs at a frequency of 400 Hz. From measured

joint positions and velocities, the joint torques are generated in a

proportional-derivative control law:

τ i � KP qd − q( ) −KD _q, (1)

with joint index i = 1, . . ., N, joint torque τ, proportional gain KP,

derivative gain KD, target joint position qd, measured joint

position q, and joint velocity _q.

Here, a low-pass Butterworth filter is applied respectively on

the feedback state and actions in the high-level control

loop. Filtering the robot state allows reducing sensor noise

while also providing smoother states for the Neural Network,

thus yielding smoother target actions. Besides, to match the

torque tracking bandwidth of the actuators, desired actions of

the behaviours control are low-passed filtered and limited to

those that are able to be executed by the actuators.
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3.2 Training experts via deep
reinforcement learning

To enhance the smoothness for realisable control actions on

robotic systems, an additional smoothness objective is added to the

standard maximum entropy objective (Ziebart et al., 2008) of SAC:

J π( ) � JSAC π( ) − λJsmoothing μ( ), (2)

with stochastic policy π, smoothness regularisation parameter λ,

deterministic policy μ, maximum entropy objective JSAC(π), and

smoothness loss Jsmoothing(μ).

The maximum entropy objective JSAC(π) is defined as:

JSAC π( ) � ∑T
t�0

E r st, at( ) + αH π · | st( )( )[ ], (3)

with state st, action at, temperature parameter α, expectation E of

the reward r and policy entropy H(π). The temperature

parameter α governing the trade-off between exploration and

exploitation is automatically adapted by minimising the objective

J(α) (Haarnoja et al., 2018c):

J α( ) � Eat~πt −α logπt at | st( ) − α �H[ ], (4)

with minimum policy entropy threshold �H.

The smoothing loss Jsmoothing(μ) encourages the policy to

generate deterministic actions μ(st) that are close to the current,

measured state q:

Jsmoothing μ( ) � ‖μ st( ) − q‖2. (5)

Directly embedding a regularisation loss on the optimisation

level yielded better smoothness, compared to the additional

regularisation terms in the reward.

In the SAC algorithm, the parameters of three function

approximators are learned: parameters ϕ of the policy πϕ,

parameters θ of the soft action-value function Qθ, and

parameters ψ of the soft state-value function Vψ.

After applying the reparametrization trick, the policy

parameters ϕ can be learned by minimising the objective Jπ(ϕ)

(Haarnoja et al., 2018b):

Jπ ϕ( ) � E logπϕ at | st( ) − Qθ st, at( )[ ] + Jsmoothing μϕ1( ). (6)

The policy πϕ is re-parametrised through a neural network

transformation: the action at � f(μϕ1 , σϕ2 ) is sampled from a

squashed Gaussian distribution f(μϕ1 , σϕ2 ) � tanh(N (μϕ1 , σϕ2 )).
The deterministic policy μϕ1 and the standard deviation σϕ2 are

Neural Networks parametrised by the weights ϕ1 and ϕ2 respectively.

For stability of the training, the more conservative estimation

between two Q networks Qθ1 and Qθ2 is used for the action value

function Qθ(st, at):

Qθ st, at( ) � min
j�1,2

Qθj st, at( ). (7)

Minimising Bellman residual JQ (θj) with bellman equation

Q̂(st, at) � r(st, at) + γE[V �ψ(st+1)] and discount factor γ yields

the parameters θj for action-value function Qθj(st, at):

JQ θj( ) � E
1
2
Qθj st, at( ) − Q̂ st, at( )( )2[ ]. (8)

The parameters �ψ of the target value function network

V �ψ(st+1) are obtained by polyak averaging the parameters ψ

through minimising the objective JV(ψ):

JV ψ( ) � E
1
2
Vψ st( ) − E Qθ st, at( ) − logπϕ at | st( )[ ]( )2[ ]. (9)

FIGURE 2
Learning framework to train specialised experts and multi-expert policies.
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3.2.1 State observation
Correctly designing state space S with only essential state

variables provides clear reward signals and better success rate

of learning good policies. On the contrary, using irrelevant

states introduces large variances in the reward or feedback

signals, and consequently decrease performance.

Furthermore, from a computational perspective, high-

dimensional state spaces require more data to generalise

the whole state space, and impede convergence because the

non-linear function approximator is not able to inter- or

extrapolate the high-dimensional state space due to the

curse of dimensionality.

In Section 4.2 of the main manuscript, we proposed a

systematic approach to choose the correct subset of states

among all possible variables. Figure 3 depicts a non-

exhaustive set of potential states for floating-base and fixed-

base systems, such as quadrupeds and manipulators respectively.

For all physically measured quantities, a first-order low-pass

Butterworth filter is applied to denoise. The cut-off frequency is

individually set and is determined through a spectral analysis

based on signals from the idle system.

3.2.2 Action space
For the choice of the action spaceA, two established options

are considered: joint space for controlling the joints and task

space for controlling the end-effector pose. In this work, we use

the joint positions for quadrupeds and end-effector poses for

manipulators.

3.2.3 Reward design
As the reward function governs the behaviour of the policy,

ambiguously specifying the reward could lead to reward

exploitation and potentially failures. Here, we formulate a set

of physically-motivated reward terms ri for both floating-based

and fixed-based systems.

The reward rt at time t is calculated as weighted sum over the

individual reward terms ri with weights wi:

rt � ∑N
i�0

wiri. (10)

To both regularise and achieve desired values, a Gaussian

Radial Basis Function (RBF) ri: R → (0, 1] is used:
ri x( ) � exp −κ‖xd − x‖2( ), (11)

with desired value xd and current value x. For regularisation

terms, the desired value xd is set around the operating point. The

width κ governs the tolerance δmax of the residual error, and is

calculated as κ � −ln(C)/δ2max with small associated reward

C^0.001 at the boundaries of the tolerance. We use an

approximation C → 0 since ln (C = 0) is infinite.

Although there is no general rule for reward shaping—the

process of adding and removing reward terms and tuning the

relative weights between each other—the following guidelines

can be considered and proved helpful during the process of

designing policies for locomotion, gait recovery, pregrasping, and

grasping on quadrupeds and dual armmanipulators respectively.

• High weights on goal related terms, e.g., small residual

error between joint angles or poses for imitation terms,

small distance to goal (grasping), or small residual error in

body velocities (locomotion);

• Low weights on regularisation terms of physically

meaningful terms. Regularisation on quantities, such as

joint torque or joint velocity, or regularisation around

nominal positions, proved helpful for stability, reducing

and oscillation. This behaviour is similar to regularisation

FIGURE 3
Potential state variables as feedback states for locomotion and manipulation tasks.
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for stability and robustness purposes in optimisation in

Robotics, e.g., Whole-Body Optimisation Yuan et al.

(2019) or Trajectory Optimisation Winkler et al. (2018).

• The usage of reward terms that are non-negative or positive

terms instead of negative terms should be chosen. Having

negative rewards terms encourages the agent to terminate

early in order to prevent culminating more negative

rewards. Radial Basis Functions were found suitable as

kernel and provides good gradients. Other non-zero

kernels are suitable as well.

All single-task experts and multi-expert policies in this work

are trained by maximising rewards to follow desired link poses,

and regulate joint velocity and joint torque for smoothness in

actions. The rewards used in this work can be found in Section

5.3 of the main manuscript, and a more detailed description for

reward design can be found in (Yang et al., 2020a, 2018;

Hwangbo et al., 2019; Sun et al., 2020).

3.2.4 Training procedures
Designing training procedures for the DRL agent is required

for both the success and high quality policies. We applied four

techniques during the training of the policy: early termination,

reference state initialisation (RSI), guided curriculum, and

dynamics randomisation.

Early termination stops an episode when meeting an early

termination criterion and is therefore used to discard irrelevant

and skewed samples. Early termination biases the policy to avoid

bad states as the agent cannot collect any further rewards if the

episode is terminated. Early termination criteria are set for states

that have self-collision or unwanted collisions with the

environment. For floating-base systems, once the height of the

base falls below a threshold, the episode is terminated.

In order to generalise well across the whole state space and

thus training a robust policy, the robot is initialised in reference

states that are task-relevant but rarely encountered (Peng et al.,

2018a). Reference states include failure states, local minimum

solutions, or imitation frames (see Section 3.3).

For best performance of the policy, curriculum for the

learning process is applied. The curriculum aims to guide the

policy by gradually increasing the difficulty of the task. In general,

if the task difficulty is too high, the policy converges to a locally

optimal solution. An increase in the difficulty can be

implemented on reward weight, e.g., increasing importance on

regularisation weights (Hwangbo et al., 2019), or in the amount

of tasks which the policy needs to complete, e.g., initially standing

for a quadruped robot and gradually adding locomotion tasks

while withstanding disturbances or an increase in dynamics

randomisation (Yang et al., 2018). In our setting, the robot is

being pushed during training as in (Yang et al., 2018) to provide

additional robustness towards uncertainties.

To increase the robustness of the policy against model

uncertainties and to improve the transferability of policies

across environments, we applied dynamics randomisation

(Peng et al., 2018b) on the robot model. At the beginning of

every episode, the parameters of the robot dynamics are

uniformly randomly sampled within the range specified in

Table 1 in the Supplementary Materials.

3.3 Training expert via imitation learning

As an alternative to learning via DRL from scratch, we use

imitation learning to train a DRL agent by imitating a reference

trajectory. In the following, we present a learning scheme for

quadruped locomotion that encourages the agent to imitate a

reference motion while solving a task as described in

Section 3.2.3.

Four quantities are used for the learning algorithm to imitate:

joint positions, joint velocities, relative end-effector positions,

and contact states of the feet. The references are time-based

trajectories obtained from an optimal trajectory generator for the

Centre of Mass (CoM) and the whole-body controller that tracks

the CoM trajectory (Bellicoso et al., 2017; Yuan and Li, 2018). For

imitation learning, the reward is modified. The new reward

consists of a task reward rtask, and an imitation reward rimitation:

rt � wtaskrtask + wimitationrimitation, (12)
with weights wtask, wimitation corresponding to the importance of

task completion and imitation quality respectively.

The imitation reward rimitation is calculated as the weighted

sum of four sub-rewards:

rimitation � wqrq + w _qr _q + weefreef + wcontactrcontact. (13)

The joint position rq, joint velocity r _q, and end-effector

position reef rewards are formulated as Gaussian RBF

encouraging similarity between demonstrated and actual

robot state. For the contact state, a reward of 1 is assigned

if all four contact states match the demonstrated contact state,

and is 0 otherwise.

To prevent temporal ambiguity during the imitation of a time

series of reference frames, a variable representing time needs to

be provided, similar to (Peng et al., 2018a; Yang et al., 2020a).

Because of the periodic nature of locomotion, a periodic phase

vector ζ is formulated as:

ζ � sin Ωt( )
cos Ωt( )[ ], (14)

where Ω normalises the period to match the periodicity of the

reference time series, and the representation using ζ is compatible

with NN instead of using a monotonically increasing time as a

variable.

For RSI, the robot’s joint position and joint velocities are

initialised according to a uniformly random sample from the

reference trajectory.
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4 Multi-expert synthesis

In the following, we outline Multi-Expert Synthesis (MES)

and elaborate how the trained experts are embedded in MES. We

further formulate an automatic State Space Selection Process that

was used to determine the state space of all policy networks.

Lastly, we present how to enforce diversity among experts and

tackle the problem of mode-collapse.

4.1 Learning structure

The two-stage training process for MES policies is depicted in

Figure 4. In the first stage, individual, single-skilled experts are

trained by solving a particular task as described in Section 3. In

the second stage, the high-level behaviour network is trained

alongside the pre-trained experts. While being synthesised by the

high-level behaviour network, the pre-trained experts in the

second stage are further fine trained which allow all experts to

synergise with one another.

Based on the behaviour state sBt , the behaviour network

B(sBt ), B: Rdim(sBt ) → RN continuously synthesises the N task-

specific expert skills and builds a skill-adaptive network S(sEt ).
The skill-adaptive network (blue shaded network in Figure 4)

infers actions at � S(sEt ) from expert state sEt .
For this work, we consider two approaches—MELA and

MoE—to achieve MES. The difference between MELA and

MoE lies in how the outputs α � B(sBt ), ∑N
i�1αi � 1 from

behaviour network B are used as weights to synthesise the

expert networks into the skill-adaptive network.

For MELA, the outputs of the behaviour network α blend the

network parameters of the experts (Yang et al., 2020b), while

MoE α uses the weighted sum of the actions ai of all expert
networks.

TABLE 1 Variations of dynamics randomisation for training.

Default value Min (training) Max (training) Min (testing) Max (testing)

Contact friction 0.7 50% 150% 30% 170%

Joint torque 40Nm 80% 120% 80% 200%

Nertia link dependent 80% 120% 50% 150%

Mass link dependent 80% 120% 50% 150%

FIGURE 4
Multi-Expert Synthesis trained in a two-stage curriculum. Experts are pre-trained in Stage-1 and co-trained in Stage-2 alongside a Behaviour
Network.
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4.1.1 Multi-expert learning architecture
The skill-adaptive network’s parameters θ[l]n,SAN are obtained

as the weighted sum of the expert’s parameters θ[l]n,i :

θ l[ ]
n,SAN � ∑N

i�1
αiθ

l[ ]
n,i , (15)

for the i-th expert, neuron n in layer l, and blending weights

α � B(sBt ) with ∑N
i�1αi � 1 from the behaviour network B. All

operations in the architecture are differentiable that allow

backpropagation, and the networks are trained with SAC.

As the skill-adaptive network’s parameters are a linear

combination of all expert parameters, which have the same

amount of neurons and layers. Thus, to accommodate

different expert network sizes, the expert network size in

Stage-2 is augmented (Figure 5). The amount of layers and

neuron per layers are the same as the largest network. To keep

the input-output behaviour of the augmented neural network

unchanged, all weights w[l]
k,j of the newly added neuron

connections are initialised to zero. The output of the j-th

neuron h[l]j thus remains unchanged for w[l]
k,j � 0:

h l[ ]
j � f l[ ] ∑n

i�0
w l[ ]

i,j x
l−1[ ]
i + ∑nk

k�n+1
w l[ ]

k,jx
l−1[ ]
i + b l[ ]

j
⎛⎝ ⎞⎠, (16)

with n neurons in layer l, activation function f (·), weight w[l]
i,j ,

output x[l−1]
i of the previous layer, and bias b. Examples for

network augmentation of locomotion and manipulation

policies can be found in Section 5.3 (Figure 5).

4.1.2 Mixture of experts
For MoE, the actions a are calculated as weighted sum from

the expert’s actions ai and the behaviour network’s

output α � B(sBt ):

a � ∑N
i�1

αiai, (17)

where N is the number of experts with corresponding weights αi
on the output actions ai. Consequently, compared to MELA, the

dimensionality of the latent space of MoE is much lower by

orders of magnitudes.

FIGURE 5
Augmented expert network. Top: Originally trained expert. Bottom: Augmented expert network. All neurons are fully connected including bias
terms but omitted for clarity.
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4.2 Automatic state space selection

In the following, we present the systematic selection of the

state space based on their relevance to the task. The core idea of

the state selection process is to check whether the removal of a

sub-state space S− from state space S* has an influence on the

value function V(s),∀s ∈ S.

The value function V: Rn → R describes the accumulative

reward gained in an episode by starting in state s and applying

policy π(a|s) successively. If the reduced state space S+� S*\S−

yields a value V (s+) similar to the complete V (s*), then S− has
no influence on the accumulated reward, and can be thus

omitted.

More specifically, we have:

FIGURE 6
Results of state selection using large state space and 10 additional dimensions for locomotion andmanipulation. Top left: Full state variables for
manipulation, top right: additional 10 values as state variables, bottom left: full state variables for locomotion, bottom right: additional 10 values as
state variables for locomotion.

FIGURE 7
Performance for different state space configurations for locomotion (left) and manipulation (right).
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V s+( ) ≃ V sp( ),∀s+∈ S+, sp∈ Sp,
5

S−is not required for the task,
(18)

where S+∪ S−� Sp,S+∩ S− � ∅.

To describe the various state quantities, we use the following

notation. Symbols written in bold denote a state space S ∈ Rn

with n dimensions. The k-th dimension of the state space S �
⋃n

k�1Sk is denoted as Sk ∈ R ⊂ S, and its members are called

state variables sk ∈ Sk. In the context of state space reduction, we

use state space S* � ⋃n
k�1Sk as the union of relevant S+ and

irrelevant S− sub-state spaces. A vector s ∈ S is called a state.

In Algorithm 1, we outline how the state space is selected.

Algorithm 2 describes the practical implementation of (18) to

determine relevant state variables. For selecting relevant sub-state

spaces (Algorithm 1), the state space is repeatedly reduced using

Algorithm 2. During every iteration, value function Vπ(s) and
policy π(a|s) are trained (Section 3) using states s∈ Si. If the state

space is not further reduced, the task-relevant state space S+ is

found. Otherwise, a new policy and value function is trained

using the newly reduced state space Si+1.

In our work, the task-relevant state space is usually found

after one iteration. However, when no domain knowledge for the

initial state space S0 can be applied, then all possible state

dimensions described in Section 3.2.1 of the Supplementary

Materials are used and more iterations are needed. This is

because the learned value function V(s) is not capable of

approximating a high-dimensional state’s value with the given

amount of data. In this case, the state space needs to be

successively reduced (line 5 in Algorithm 1) for a better

approximation of the state’s values.

Algorithm 1. Pseudo code for relevant state selection.

FIGURE 8
Locomotion performance: comparison of policies trained using the optimal baseline state space versus the extended states. Failure to capture
periodicity (top) and drift of robot position (bottom) from the extended state space policy (orange), compared to our formulated baseline policy with
optimal state space (blue).
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Algorithm 2. Pseudo code for selecting relevant state variables.

For the reduction of the state space inAlgorithm2, two thresholds

δrelevant, δrequired are set. The relevance of sub-state spaceSk is evaluated

N times. If the average relevance exceeds threshold δrequired, then sub-

state space Sk is required. Averaging the relevance is necessary due to

the variance in the estimation of the value function V(s).

At every iteration of a state’s relevance (line 4 in Algorithm 2), the

relevance of every sub-state space Sk is evaluated by perturbing the

corresponding state variable sk of a measured state s. The state s is
measured while rolling out policy π(a|s). The state variable sk is

perturbed m times by setting their values to a uniformly sampled

valuewithin [Δmin,Δmax] covering the sub-state spaceSk form→∞.

If the percental change of the average perturbed value is small

for state variable sk, the sub-state space Sk is considered

irrelevant to the cumulative reward. If the relevance averaged

over N times is below threshold δrequired, implying that the sub-

state Sk is irrelevant across the whole state space S* for N→∞,

we determine sub-state Sk as not required.

In MES, state selection (Algorithm 1) is conducted for every

expert during Stage-1 and for the behaviour network in Stage-2.

Network augmentation [Eq. 16] is used in Stage-2 to unify the

network sizes across the experts.

4.3 Expert diversification

In multi-expert systems, expert imbalance commonly occurs.

For tasks requiring multiple experts as shown in Section 5.4, expert

imbalance leads to the task not being completed and a local

minimum solution.

To prevent expert imbalance, we encourage the experts to learn

easy-to-discriminate and diverse skills by including a discriminator

objective (Eysenbach et al., 2018) in the DRL objective (see Eq. 2):

Jdiversity qϕ( ) � logqϕ z | sD( ), (19)

with learned discriminator qϕ(z|sD) parametrised by weights ϕ

and one-hot vector z indicating the skill. The discriminator

estimates the likelihood of skill z conditioned on state sD, and
is trained to minimise the cross entropy H(ẑ, z) between real

skill ẑ and predicted skill z:

Jdiscriminator � 1
N

∑N
i�1

H ẑi, zi( ). (20)

The diversity objective 19) encourages the policy to

produce states as distinct as possible, so that the

discriminator can easily estimate the skill z based on the

state sD. Note that the state sD∈ SD can different from the

expert state space SE. The discriminator state space SD ∈ R6

used for the locomotion discriminator uses orientation and

velocity to discriminate between fall and locomotion. Beside

explicitly enforcing skill diversification, it shall be noted that

implicit diversity naturally emerges in MELA and RSI (Yang

et al., 2020b).

5 Results

In this section, first we outline the setup of the learning

framework. Second, we present results of our proposed state

selection process. Third, the expert behaviours of MES are

shown. Next, Multi-Expert results on the quadruped and

dual-arm robot are reported. Lastly, we show the robustness

and ability of MES to generalise across environments.

We demonstrate that our state selection process finds the

state space yielding the highest reward and is used to design the

state space for all MES components. Furthermore, MES learns

robust multi-expert policies that are effective from simulation to

the real robots and in unseen test scenarios.

5.1 Training setup

All policies were trained in PyBullet (Coumans and Bai,

2016) on a commercial computer (CPU: i7-7700K, GPU: Nvidia

GTX 1080Ti). The expert and multi-expert policies converged

after 1000 and 2000 (Figure 13) epochs respectively. Every epoch

consisted of 1000 samples using the sample collection depicted in

Figure 2 with 25 samples collected per second.

All networks are two-layered, fully connected Neural

Networks with 256 neurons in each layer. Rectified Linear

Units (ReLU) were used as activation functions. The standard

parameters of SAC were used as in (Haarnoja et al., 2018b).

We performed dynamics randomisation (Peng et al., 2018b)

during the training (see Section 3.2.4) and transferred the policy

from PyBullet to both Gazebo (Koenig and Howard, 2004) and

the real robots. During training in PyBullet a range of values were

used for dynamics randomisation (see Table 1 training in
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Supplementary Materials), and a larger range (see Table 1 testing

in Supplementary Materials) was used in Gazebo, which show

that the multi-expert policy is robust in presence of large physical

discrepancies.

5.2 Comparison of different state
observations

The state selection process described in Section 4.2 was used

to design the state space for the experts and gating network for all

policies. We demonstrate the state selection process and its

effectiveness on quadruped locomotion and reach-grasp

manipulation (see Section 5.3).

First, we determine the relevant state variables from a large

set of potential state variables. Second, we show that our

proposed method distinguishes between completely irrelevant

state variables and potentially relevant state variables by adding

10 random variables to the state space. Lastly, we compare the

performance of optimally selected state spaces and extended state

space containing irrelevant state information based on

quantitative performance and qualitative behaviour.

We chose and defined the state variables for initial state spaceS0

as: linear base velocity _x, angular base velocity ω, gravity vector g,

phase p, joint position q, joint velocity _q, joint torque τ, end-effector

force fc for locomotion, and additionally end-effector position xeef
and velocity _xeef, and quaternion Qeef for manipulation.

After one iteration of Algorithm 1 with threshold δrequired =

0.1, the least relevant state variables were found to be: joint velocity

and torque, and end-effector force for locomotion (Figure 6 top

left) and all state variables but the joint positions for manipulation

(Figure 6 bottom left). By removing the least relevant state

variables from the initial, extended state space S0, we obtain a

reduced state space with only task-relevant state variables.

The state selection process was further validated by adding

10 random variables ri, i = 1, . . ., 10 to the reduced state space.

For every sample, the value of every random variable sextra,i was

uniformly sampled sextra,i ~ U ( −1, 1). All 10 random variables

(Figure 6 top and bottom right) were identified to be irrelevant

after one iteration of Algorithm 1.

Here, we define our formulation of reduced state space as the

baseline, and those with all possible states as the extended state

space including those irrelevant to the task, as found by our

algorithms, for both locomotion and manipulation. We

FIGURE 9
Manipulation performance: comparison of policies trained using the optimal baseline state space versus the extended states for. Oscillatory
behaviour using the extended state space (orange), compared to our formulated baseline policy (blue).
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FIGURE 10
Expert policies for gait recovery (first row), trotting (second row), pregrasping (third row) and grasping (fourth row).

TABLE 2 Reward weights for quadruped experts.

wtask xvel yvel zvel zpos gL reg wimit: q q_ cont. Eef pos

rgr 1.0 1 1 1 5 10 1

rstand 1.0 2 2 2 4 4 1

rloco 0.3 6 1 0 1 3 1 0.7 0.5 0.2 0.05 0.25
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comparatively analysed the difference between the baseline and

the extended state space representations in terms of the learning

curves and the learned behaviours.

Our baseline state space converged to higher rewards in both

locomotion and manipulation tasks (Figure 7). In contrast, the

extended state space was easily stuck in local minima in almost

60% of the cases, leading to policies with lower return and the

incompletion of the task. For a fair comparison, the local minima

solutions that did not complete the task were not included in the

learning curves.

Another difference in performance between baseline and

extended state space is observed from the policy’s behaviours.

While the extended state space representation completes the

tasks, our proposed baseline performs better than the extended

case. During quadruped locomotion the extended state space

representation drifts in the y direction and is not able to encode

the periodicity of locomotion (Figure 8). Besides, the

manipulation policy exhibits oscillatory behaviour after

grasping the object (Figure 9).

5.3 Expert behaviours

Using the training procedure in Section 3, all experts were

trained for the use in Stage-2 of MES (Figure 4). In Figure 10, two

expert behaviours are shown: gait recovery and trotting. Please

see the accompanying video for further details.

5.3.1 Locomotion experts
The gait recovery and trotting experts were trained as follows.

The training of the gait recovery expert was conducted through

directly specifying a reward, with which the maximisation leads to

task completion. For trotting additional reference trajectories were

provided for imitation (see Section 3.3). The weights of the reward

terms can be found in Table 2 of the Supplementary Materials.

All reward terms were expressed as radial basis function (see

Section 3.2.3) unless stated otherwise. For gait recovery and push

recovery, the sagittal velocity xvel was set to zero; for the

locomotion gaits, xvel was provided by the imitation data, and

the lateral and vertical velocities yvel, zvel were zero. The unit

FIGURE 11
Multi-expert policies in simulation and on the real robot. Top: Robust locomotion of gait recovery from a prone position and smooth transitions
to trotting. Bottom: Dual-arm cooperative manipulation and grasping.
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gravity vector gL is the normalised gravity vector in the robot

body frame. Regularisation was performed on the joint velocities

and joint torques by using a zero vector as target value. For the

imitation terms, the target values were provided by the imitation

data from a trotting controller.

Early termination was conducted for all experts if the robot

was in self-collision. For locomotion, the episode terminated

early if any link but the feet was in contact with the ground or if

the body height fell below 0.25 m. RSI was performed for both

locomotion and gait recovery. For locomotion, the robot was

spawned in joint states from the reference imitation data. For gait

recovery, the robot was spawned in prone and supine body poses

with random joint positions.

5.3.2 Manipulation experts
For dual-arm cooperation, pregrasping and grasping experts

were trained (Figure 10). The state space of both manipulators

were determined using Algorithm 1. For grasping, the state space

Sgrasp ∈ R9 consists of 9 joint positions of the manipulator. The

action space consists of the end-effector’s pose and the parallel

grasper’s joint position Agrasp ∈ R8 . The pregrasp expert uses

end-effector pose as action space Agrasp ∈ R6, and 7 joint

positions and the object pitch angle for state space

Spregrasp ∈ R8. Both experts use a two-layered neural network

with 256 neurons in each layer.

For pregrasping, the reward has a contact and object

orientation term with weights wcontact = 1 and wobject = 3

respectively. A reward of 1 was assigned when the end-

effector was in contact with the object. The residual error in

(11) was calculated as max (θd − θ, 0) with desired orientation

θd = 45°.

The grasping reward is the sum of finger contact and end-

effector position reward with weights wcontact = 1 and weef = 1

respectively. A reward of 1 was assigned if both fingers were in

contact with the object. A reward for the end-effector link

being close to the desired position pd was assigned (Eq. 11).

Early termination was performed in case of self-collision or if

any link other than the end-effector was in contact with the

object.

5.4 Multi-expert results

The previously learned expert skills are now used for MES to

achieve robust locomotion and dual-arm manipulation. We

choose MELA over MOE as the multi-expert framework

because MELA yields better policy performance during

domain transfer and is able to diversify experts better (see

Section 6).

5.4.1 Robust locomotion
Two experts per skill were initialised for further

diversification. Using the network augmentation shown in

Figure 5, the expert’s state space can be preserved while being

embedded in Stage-2 of MES. Early termination was applied in

case of self-collision. The pose for RSI was uniformly sampled

between prone positions and reference imitation trajectories.

For robust locomotion, the gait recovery expert reward rgr is

used if the robot falls, i.e., the threshold in height pz < 0.4m or

body orientation rpy > 20° is exceeded; and the locomotion

expert’s reward rloco is used, otherwise. For the behaviour

network’s state space, the state selection process results in

sufficient forward velocity. The motion can be seen in

Figure 11 and in the accompanying video.

5.4.2 Dual-arm cooperation
The dual-arm manipulation results show how MES adapts

the experts’ access to information using the network

augmentation technique depicted in Figure 5. For the

pregrasping expert, although the object’s orientation is

relevant during the Stage-1 training, it became less relevant

after co-training with a behaviour network in Stage-2. The

relevance of the object’s orientation was determined by

looking at the values of the weights and gradient related to

the object orientation, which were almost zero. From the

hierarchical structure, this is explainable since the behaviour

network can access the object’s orientation and thus activate the

expert accordingly.

We found that MES consistently adapted the experts’

requirement of state variables throughout all trained

policies. The expert policies for the pregrasping and

grasping task only used joint positions of the pregrasper

and grasper respectively, while the behaviour network used

the object’s orientation as state input. Backpropagation

through the MES network allowed the experts and

behaviour network to share the state information for

completing the task. The coordinated motions can be seen

in the bottom of Figure 11 and the accompanying video.

5.5 Robustness and versatility of multi-
expert synthesis

For validating how robust and versatile MES is, we deployed

the multi-expert policies in test scenarios that have never been

seen during training (see Figure 12, accompanying video).

Specifically, we tested the policy under environmental and

hardware uncertainties. The policies’ ability to robustly

function in unseen environments and the successful transfer

from simulation to the real world demonstrate that the learned

MES policy is robust and can generalise across environments and

domains with varying physics and dynamics properties.

5.5.1 Environmental uncertainty
The MES policies were tested under varying dynamics

parameters from 50% to 150% of the mass and inertia of the
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robot links. For locomotion, the robot traversed test terrains

consisting of a cluster of planks, slippery objects (Figure 12 left),

and withstood large pushes on the real robot (see accompanying

video).

For dual-arm manipulation, the environment was modified

by using different objects and support bases. We replaced the flat

wall with the grasper’s base as support (Figure 12 right) and a

round wall (see video). We replaced the nominal box with a torus

(see video) as the object. Despite altering the environment in

which the robot interacts with different objects and support walls,

the policy can still adapt and complete the task. Furthermore, the

successful dual-arm cooperation was shown in real experiments

(Figure 12 right), and under disturbances applied on the object

(see accompanying video).

5.5.2 Hardware discrepancies
The multi-expert policy robustly completes the task under

hardware uncertainties from actuators, sensors, and varying

dynamic parameters, such as inertia and mass (see

accompanying video). For both actuators and sensors, we

tested three settings in simulation: adding Gaussian noise to

the signal, setting the signal to zero, and randomizing the signal

uniformly. Such setting corresponds to the actuators being

corrupted by noise, jammed in a zero position, or receiving

jerky commands. For the sensors, the measurements become

noisy, zero, and erroneous respectively.

Despite the existence of hardware discrepancies, the multi-

expert policy achieved stable trotting and completed lifting and

grasping of the object. This shows the robustness of MELA as a

feedback policy to realise different motor tasks, i.e., quadruped

locomotion and bimanual manipulation.

6 Comparison of multi-expert
learning architecture and mixture of
experts

MoE approaches have been reported to scale poorly for

control of a high degree-of-freedom systems (Zhang et al.,

2018; Yang et al., 2020b). The limited expressiveness of the

low-dimensional latent space, i.e., the action space, causes an

imbalance in expert behaviour that favours some experts and

downgrades others (Shazeer et al., 2017; Zhang et al., 2018).

6.1 Task performance

We compared MELA with MoE based on the task

performance in quadruped locomotion and dual-arm

cooperation. The learning curves can be seen in Figure 13.

To analyse the transferability and robustness of MELA and

MoE across domains, we validated the robust quadruped policy

in a different physics simulation, i.e., a simulation to simulation

(sim2sim) transfer from pybullet to Gazebo. Gazebo simulator

was chosen because the same software infrastructure was used for

running the real robot Anymal. The practical and common

discrepancies in real world experiments that can cause poor

policy performance (Peng et al., 2018b; Tan et al., 2018; Hwangbo

et al., 2019) were introduced in Gazebo, including the mismatch

in the physics model, signal noises, feedback latency, friction and

damping, and drift in sensory measurements. All quantities used

by the MES policies were directly measured and filtered from the

robot, or obtained through the state estimation algorithm that

runs on the real robot.

While both MoE and MELA can learn robust locomotion in

the PyBullet simulation, only MELA was able to transfer the

learned policy and perform successful trotting in both a different

simulator Gazebo and the real robot. In contrast, MoE was not

able to reproduce successful trotting across a different physics

simulation or real system and environment, which was shown by

a downgraded behavior of a dragging leg that caused a complete

fall (see Figure 14 and accompanying video).

In addition to the literature (Shazeer et al., 2017; Zhang et al.,

2018; Peng et al., 2019), our comparison finds that the low-

dimensional latent space of MoE lacks the complexity for

encoding sufficient features robust against physical variations,

which is needed for a domain transfer of tasks, such as gait

recovery and trotting.

In Figure 14, the qualitative differences and similarities

among baseline control, MoE and MELA are shown. The

FIGURE 12
Robustness under uncertainties and generalisation for locomotion (left) andmanipulation (right) both on real robots and in unseen test settings.
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FIGURE 13
Comparison of learning curves of MoE and MELA. The learning curves are averaged over 5 separate training runs and the robot can stand with a
reward higher than 100.

FIGURE 14
Locomotion comparison between control, MoE andMELA. Top: Joint position. Bottom: Gait pattern of Front Left (FL), Front Right (FR), Hind Left
(HL), Hind Right (HR) feet.
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baseline control data was used as imitation reference for both

MELA and MoE. The average difference of joint positions

between baseline control and MELA was 5°, while MoE

deviated by 13°. The periodicity and trotting pattern is

noticeable in both MELA and baseline control, while MoE

was could not reproduce the periodic gait pattern.

6.2 Diversity of skills

We analysed the diversity of skills of MELA and MoE by a

t-distributed Stochastic Neighbor Embedding (t-SNE)

analysis (Maaten and Hinton, 2008). T-SNE projects high-

dimensionals NN activation on a 2D plane by clustering

similar NN activations together but keeping dissimilar data

points distant, which can be used to analyse robotic

behaviours (Yuan et al., 2020).

The experts’ neuron activations (all N experts in Figure 4)

during time-step k were stacked as one high-dimensional data

point hik ∈ R(256+256+12) for all i experts. During one rollout of

250 time steps, 250 data points hik were collected to produce the

t-SNE analysis shown in Figure 15.

Figure 15 shows a t-SNE analysis comparingMELA andMoE

with and without the diversity term (19). From the distinct

clusters and separation distances (Figure 15 bottom left and

right), the diversity among experts using our technique can be

seen. MELA shows clustering without the diversity term

(Figure 15 top left) and has more distinct expert clusters

using the diversity term. For MoE, the experts collapse to one

indistinguishable cluster if no diversity term is used (Figure 15

top right) and form four clusters when diversity is enforced

(Figure 15 bottom right).

7 Conclusion and future work

In this work, we proposed: 1) aMulti-Expert Synthesis (MES)

framework that can generate motor skills by synthesising expert

skills, which is applicable for both robot locomotion and

manipulation; 2) an automatic algorithm of selecting relevant

physical variables for the state observations of reinforcement

learning; and 3) techniques to augment networks and enforce

diversify of experts which address the expert imbalance problem

in multi-expert approaches.

FIGURE 15
Comparison of the t-SNE analysis between MELA and MOE with and without the proposed diversity enforcement, using 4 experts for
locomotion (blue and purple) and gait recovery (red and green). Top left: MELA without diversity enforcement, top right: MOE without diversity
enforcement, bottom left: MELA with diversity enforcement, bottom right: MOE with diversity enforcement.
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Both simulation and experiments showed that MES can learn

robust quadrupedal locomotion by combining the skills of gait

recovery and trotting. Further, MES demonstrated dual-arm

manipulation and grasping, where one robot arm pregrasped an

object and changed it to a feasible grasp pose, and the other robot

arm grasped the object. The robustness of the learned MES policies

were rigorously tested by a range of tests in both simulation and real

world experiments, which have not been seen during training.

We evaluated two different MES approaches for locomotion

and the results were analysed in terms of gait patterns and diversity

of experts using a t-SNE analysis. The analysis suggested that our

proposed algorithm for state selection was effective allowing

locomotion that exhibits the typical gait patterns of

quadrupeds, and that our proposed technique enforcing skill

diversity between experts indeed removes expert imbalance.

In future work, we plan to expand the MES structure to

incorporate visual perception information to allow robot

motions that rely on visual inputs. Furthermore, we intend to

learn multi-expert policies that combine experts of different

morphologies to control various robots with a unified policy.
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