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Abstract.

We hypothesise that human aversive learning can be described

algorithmically by Reinforcement Learning models. Our first experiment

uses a second-order conditioning design to study sequential outcome

prediction. We show that aversive prediction errors are expressed robustly

in the ventral striatum, supporting the validity of temporal difference

algorithms (as in reward learning), and suggesting a putative critical area

for appetitive-aversive interactions. With this in mind, the second

experiment explores the nature of pain relief, which as expounded in

theories of motivational opponency, is rewarding. In a Pavlovian

conditioning task with phasic relief of tonic noxious thermal stimulation, we

show that both appetitive and aversive prediction errors are co-expressed in

anatomically dissociable regions (in a mirror opponent pattern) and that

striatal activity appears to reflect integrated appetitive-aversive processing.

Next we designed a Pavlovian task in which cues predicted either financial

gains, losses, or both, thereby forcing integration of both motivational

streams. This showed anatomical dissociation of aversive and appetitive

predictions along a posterior-anterior gradient within the striatum,

respectively.

Lastly, we studied aversive instrumental control (avoidance). We designed a

simultaneous pain avoidance and financial reward learning task, in which

subjects had to learn independently learn about each, and trade off aversive
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and appetitive predictions. We show that predictions for both converge on

the medial head of caudate nucleus, suggesting that this is a critical site for

appetitive-aversive integration in instrumental decision making. We also

study also tested whether serotonin (5HT) modulates either phasic or tonic

opponency using acute tryptophan depletion. Both behavioural and imaging

data confirm the latter, in which it appears to mediate an average reward

term, providing an aspiration level against which the benefits of exploration

are judged.

In summary, our data provide a basic computational and neuroanatomical

framework for human aversive learning. We demonstrate the algorithmic

and implementational validity of reinforcement learning models for both

aversive prediction and control, illustrate the nature and neuroanatomy of

appetitive-aversive integration, and discover the critical (and somewhat

unexpected) central role for the striatum.
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1.1 Summary:

Aversive events, such as pain, are characterised (and arguably defined) by

the property by which they induce behaviour that attempts to reduce or

terminate their current and future occurrence. This thesis studies how this is

achieved in humans. We take a Marrian approach, and first formalise the

problem as one of optimal control. We propose that aversive learning can be

understood theoretically as a Reinforcement Learning problem. The

majority of our work is built on this framework and tests predictions that

come from the behavioural and implementational hypotheses that it derives.

These hypotheses manifest algorithmically as temporal difference learning

and Q learning models, based on their simplicity, biologically plausibility,

and emerging parallel evidence from studies of appetitive learning.

The first experiment tests a basic prediction of Reinforcement Learning

algorithms, that prediction errors are expressed somewhere in the brain. We

use Pavlovian aversive conditioning using visual cues and painful shocks,

and study brain activity using parametric fMRI. In particular, we use a

second-order conditioning design to look for evidence of higher order

prediction errors, which are a specific prediction of temporal difference

learning, since they reveal the mechanism by which predictive values are

‘bootstrapped’ between sequential cues. We show that prediction errors are

expressed, most robustly in the ventral striatum, providing good support for

the validity of temporal difference algorithms. What is surprising is the role

it suggests for the striatum, given its reputation as a reward-specific area –

previous studies have shown expression of appetitive prediction errors in

precisely the same region. This relationship between reward and aversion

becomes a dominant theme in subsequent experiments.

The second experiment explores the nature of pain relief. Pain relief is

inherently rewarding, and illustrates the excitatory-inhibitory opponent

relationship between rewards and punishments. Relief can be achieved

either by omission of an otherwise expected phasic aversive event, or by



13

termination of a tonic aversive event. This can be fit easily within a

Reinforcement Learning framework by postulating the existence of distinct

appetitive and aversive learning systems. We designed a Pavlovian

conditioning task with tonic thermal stimulation of capsaicin-sensitised skin

(a good physiological model of injury), in which visual cues predicted either

phasic exacerbation of tonic pain, or relief of pain (induced by transient

cooling of the skin). We show that both appetitive and aversive prediction

errors are co-expressed in anatomically dissociable regions, and in a mirror

opponent pattern. Whereas the amygdala adopts a reward specific role, and

the lateral orbitofrontal cortex an aversive-specific role, striatal activity

appears to reflect integrated appetitive-aversive activity, showing an

interaction between valence and cue type (excitatory or inhibitory): that is,

it shows positive prediction error activity for excitatory cues, regardless of

valence.

Whereas the preceding experiment provides good evidence for the

implementation of opponent temporal difference learning, it raises

important questions about exactly what is being processed in the striatum,

since it remains to be shown that it can even distinguish rewards from

punishments. The next experiment explores this in more detail. We designed

a probabilistic Pavlovian conditioning task in which visual cues predicted

either financial gains, losses, or both. This ought to force the striatum to

integrate both motivational streams, since the prediction error need be

constructed by both. This imaging data showed anatomical dissociation of

aversive and appetitive predictions, with aversive prediction errors being

expressed more posterior and dorsal to appetitive prediction errors,

consistent with recent stimulation studies illustrating a valence gradient of

motivational behaviour in rodent striatum. This experiment also illustrates

the computational and anatomical similarity between secondary

punishments – financial loss, and primary punishments such as pain.

The above studies provide a solid computational and anatomical account of

aversive Pavlovian learning. However, ignoring for a moment the influence

of conditioned responses (such as withdrawal), Pavlovian learning permits
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only prediction and not control. In both animal learning (operant /

instrumental learning) and computational Reinforcement learning theory

(eg. Q learning), the latter can be achieved by learning the outcomes of

specific actions, which allow them to manipulate their environment to

minimise (escape future threats). In instrumental avoidance learning

paradigms, the avoidance state is known to act as a reward (a conditioned

inhibitor) that can reinforce actions. In the next experiment, we studied first

whether reinforcement learning (Q learning) can capture instrumental

avoidance, and how this is represented in the brain, in relation to simple

reward based instrumental learning. To do this, we designed a simultaneous

pain avoidance and financial reward learning task, which given the two

outcomes were independently contingent on actions, forces the individual to

learn about each separately, and trade off aversive (pain) and appetitive

(money) outcome predictions. This showed that predictions for both

converge on the medial head of caudate nucleus, suggesting that this is a

critical site for appetitive-aversive integration in instrumental decision

making.

The above study also tested one further hypothesis: whether 5HT

(serotonin) mediates either phasic opponency between punishments and

rewards, or tonic opponency between phasic and tonic outcomes. Using

acute dietary tryptophan depletion to manipulate central serotonin: we

show that learning from either rewards or punishments, and the trade-off

between the two, are not substantially influenced by tryptophan status.

However, we show that the representation of average reward, which acts as

a tonic signal against which phasic rewards are compared (tonic

opponency), is significantly decreased in the depleted group. This manifests

in a subjects’ tendency to maintain responding for previous actions (‘choice

stickiness’). In the brain, we show that phasic reward and punishment

related activity converge on the medial head of caudate nucleus in the basal

ganglia, but that activity here associated with choice stickiness positively

correlates with serotonin, indicating that the modification of value according

to average reward occurs outside of the caudate. These data suggest a

specific computational account in which serotonin controls an average
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reward signal against which any choice’s outcomes are weighed, and

illustrates the integrative but partial role of the caudate nucleus in

computing values associated with choice.

In summary, our data provide a basic computational and neuroanatomical

framework for human aversive learning. We demonstrate the algorithmic

and implementational validity of reinforcement learning models for aversive

prediction and control, illustrate the nature and neuroanatomy of

appetitive-aversive integration, and discover the critical (and somewhat

unexpected) central role for the striatum. We discuss the broader

implications of these results for decision neuroscience, behavioural

economics and social neuroscience.
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1.2 Aversive animal learning theory.

1.2.1 Innate and Pavlovian value.

Our current understanding of aversive motivation owes much to many decades of

invaluable work by experimental psychologists, and to the many thousands of

brave rodents and other animals who have assisted them in their pursuits. It is the

basic tenets of animal learning theory that provide the framework for the current

work, which aims to explore the neurobiological basis of aversive motivation and

decision-making in humans.

There are two fundamental components to motivation. The first is action. Actions

allow us either to increase the probability of a rewarding outcome (appetitive

motivation), or to reduce the probability of a punishing outcome (aversive

motivation). From a motivational perspective, a reward can be defined as an

event that an animal will expend energy to bring about, whereas an aversive

event (punishment) is something an animal will expend energy to reduce or

avoid.

The second component is learning. Actions that result in a higher than expected

reward, or lower than expected punishment are reinforced – they are more likely

to be reproduced in a similar situation again. Actions that result in lower than

expected reward, or greater than expected punishment have the opposite effect,

being less likely to be produced again. It is this comparison between expected

and actual outcomes that seeds one of the fundamental concepts of both animal

learning theoretic and computational approaches to learning: that errors in

prediction should be a useful quantity in guiding future action (Rescorla and &

Wagner, 1972).

The two basic types of learning paradigm inherited from experimental

psychology - Pavlovian and instrumental conditioning – reflect an important

distinction in theoretical approaches to motivation. Pavlovian conditioning

establishes statistically predictive pairings between environmental cues
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(‘conditioned stimuli’) and salient outcomes (‘unconditioned stimuli’ such as

shocks or food), regardless of any action the individual can elicit. That is,

although the cue will come to elicit a conditioned response, this response does

not change the probability of the outcome. The fact that conditioned responses

(such as approach and withdrawal) sometimes do change the probability of an

outcome both justifies their evolution, and confounds experiments (when it

comes to interpreting data from a range of paradigms such as autoshaping,

conditioned place aversion, escape learning for example). Aside from this,

however, Pavlovian conditioning is primarily concerned with prediction, and the

magnitude of the conditioned response reflects (ie. is some function of) the

magnitude of the predicted outcome.

Instrumental learning establishes the statistical association between an action and

an outcome. That is, elicitation of a specific outcome does change the probability

of an action, in contrast to Pavlovian conditioning. In this way, an animal can

accrue rewards and avoid punishments by learning to perform certain actions

rather than others, when in a particular situation (defined by the ‘discriminative

stimulus’). In this way, instrumental learning permits control of the environment.

At the heart of attempts to formalise motivation is the concept of value. For

instance, the value of an aversive event can be considered in terms of an ordinal

scale of preference, in which, given a choice, less aversive outcomes will be

selected over higher aversively-valued ones. This concept of value is useful, as it

outlines a unitary currency against which events of different modalities can be

judged (Montague and Berns, 2002). Through learning, value incorporates

otherwise neutral states or cues that predict ‘primary’ rewards or aversive events

to some degree. To reiterate, this ‘state–outcome’ associability is embodied

within Pavlovian learning, in which a reliable predictive pairing of the

conditioned stimulus with an unconditioned stimulus. For example, being bitten

by a particular dog is likely to induce increased heart rate, sweating and fleeing

when that dog is encountered subsequently. The aversive value of the dog

reflects the severity of its bite.
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The ability to predict aversive events (and rewards) has self-evident motivational

benefits, but also yields a new set of possible events, namely those associated

with omission of an expected outcome. Accordingly, the omission of an expected

aversive event can be rewarding (an aversive inhibitor), and the omission of

reward can be aversive (an appetitive inhibitor). This relationship underpins a

basic architecture of motivational systems in which reward and aversive

mechanisms oppose each other (Dickinson and Dearing, 1979;Konorski, 1967).

This ‘Konorskian’ model consists of underlying, mutually inhibitory appetitive

and aversive systems whose operation gives rise to four basic categories of

motivation – prediction of reward (hope), prediction of aversive events (fear),

omission of reward (frustration) and omission of aversive events (relief) (figure

1.1; see also (Gray, 1991)).

Figure 1.1 Motivational stimuli can be excitatory or inhibitory, depending on whether

they predict the occurrence or the absence, respectively, of an affective outcome or of

another predictor. They can also be classified by valence, as stimuli that are associated

with either appetitive or aversive outcomes or predictors. When combined, these two

classifications illustrate the four basic motivational states of fear, relief, hope and

frustration (figure from (Seymour et al., 2007b)).

The reciprocity between appetitive and aversive motivational systems was

demonstrated in a series of elegant experiments, depicted in figure 1.2, below. In

the paradigm termed ‘blocking’ (a), there is a failure of a novel cue to acquire an

aversive conditioned response to an outcome that is already well predicted by an
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existing cue (unless it precedes it). This, at the very least phenomenologically,

appears to be because there is no ‘aversiveness’ left to predict (Kamin,

1968;Rescorla RA, 1971). In a modification of blocking, termed transreinforcer

blocking (b), a cue that already predicts an aversive outcome can block the

acquisition of a conditioned response to a novel cue that is paired with an

aversive outcome in a different modality. For example, a cue that has been pre-

trained with a painful foot-shock, presented in compound with a novel cue and

paired with a loud aversive noise, blocks conditioning to the novel cue (Kamin et

al., 1963). Even though noise and pain differ in their sensory properties, they

seem to access a common aversive system, indicating that punishments of any

modality might be treated in a similar way.

But Dickenson and Dearing provided a final, ingenious twist to transreinforcer

blocking (c): they wondered whether it could be accomplished by using a

conditioned inhibitor. In conditioned inhibition, a cue that predicts that an

otherwise expected reward will be omitted (causing frustration) acquires aversive

properties: for instance, it will suppress instrumental appetitive responding

(conditioned suppression(Bull and Overmier, 1968)), and be slow to acquire

future conditioned responses to a reward (retardation (Rescorla, 1969)).

Dickinson and Dearing showed that a cue that signals the omission of food

pellets will block a primary aversive punisher (Dickinson and Dearing MF,

1979). Rats were pre-trained with a cue that was unpaired with food (and

therefore acted as an appetitive conditioned inhibitor), and this cue was

subsequently presented in compound with a novel cue, and followed by a painful

foot-shock (d). Testing the value of this new cue (by conditioned suppression), in

comparison to controls, showed that the conditioned inhibitor for food

successfully blocked prediction of the foot-shock. This provides critical evidence

to support the existence of a common underlying Pavlovian aversive

representation.
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Figure 1.2 Learning paradigms that have helped reveals the underlying structure of

appetitive and aversive motivational systems. Panels are referred to in the text above and

below. Figure from (Seymour et al., 2007b).
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There are two important caveats to this. The first caveat is that predictive

representations, inferred by the nature of responses they induce and their

properties in experiments like that above, fall into two categories. First are

general motivational, stimulus non-specific representations: it is this

representation that is captured by the blocking experiments above, and produces

general conditioned responses such as approach and withdrawal. This

representation ignores the identity of the outcome being predicted other than

whether it is aversive or appetitive. The second category is stimulus specific

representations, which are peculiar and appropriate to the precise nature of

outcome. Thus left leg withdrawal is an appropriate response to a cue that

predicts painful shock to the left foot, but not to an air-puff to the eye. The basic

architecture of these distinct representations is shown in figure 3.

Figure 1.3. Konorskian model of Pavlovian appetitive conditioning, showing direct and

indirect pathways mediating representation of conditioned stimuli (CS) and unconditioned

stimuli (US). Redrawn and adapted from Dickinson and Balleine (2002). See also

(Seymour, 2006).
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The second caveat is that appetitive-aversive opponency can arise in a related but

slightly different circumstance. Konorski’s opponency deals with excitators and

inhibitors or phasic rewards and punishments. However, elsewhere Solomon and

Corbit studied states associated with the offset of tonically presented rewards and

punishments. For instance, if my supervisor incentivises my presence in the

laboratory with a machine that delivers Maltesers at a rate of 1 per 15mins, then

reducing the rate, or stopping it completely, becomes a punishment.

Solomon and Corbit posited the distinction between what they termed A states –

the primary excitatory tonic stimulus, and B states – those elicited by the

termination of those states (figure 1.4, below). Furthermore, they argued that B

‘states’, for example the offset relief from tonic aversive stimulation, could

independently motivate behviour. A critical feature of Solomon and Corbits

thesis related to the temporal behaviour of A and B states, and they suggested

that the latter were more resistant to habituation than the former and hence could

dominate behaviour. An example they suggested was that skydivers would

continue skydiving motivated by the pleasure in relief when their feet were safely

on the ground, having habituated to the aversion associated with plummeting

towards it at speed. More recently, the same argument has formed a major class

of theories of addiction (Koob et al., 1997).

Figure 1.4. Solomon and Corbits Theory of Opponency. This figure, taken directly from

their paper, illustrates the operation of excitatory ‘a’ process and inhibitory ‘b’ processes.

The relative resistance of ‘b’ processes to extinction allows the offset relief to dominate the

motivational value of previously aversive processes, whose excitatory aversive ‘a’ value

have habituated.
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Experimental demonstrations of the motivational value of off-set relief are

slightly less abundant than theories of its importance, but an elegant example has

been shown in Drosophila. Tanimoto and colleagues paired an odour cue with

the offset of shock, and showed that the odour subsequently attracted the flies

when presented alongside a neutral odour (Tanimoto et al., 2004).

In summary, there is reasonable evidence from experimental psychology to

support the existence of an underlying general aversive Pavlovian motivational

system, which operates alongside and as an opponent to an appetitive system.

1.2.2 Action learning.

As hinted above, Pavlovian learning involves slightly more than the acquisition

of state values (see figure 3, above), and the responses they elicit can serve an

important function. For instance, prediction of aversive events often produces

defensive or aggressive responses that clearly evolved to protect the immediate

welfare of the animal. Indeed, aggressive responses are often seen towards

inanimate aversive cues in animal experiments, these responses can even be

elicited by stimuli associated with the omission of food (appetitive inhibitors

(Hutchinson et al., 1968)), consistent with an opponent model. Pavlovian

aversive actions are often stimulus specific and diverse, indeed far more so than

for rewards, involving a wide variety of behaviours ranging from freezing,

running, and fighting. They are also often context-dependent: for instance, in a

male rat, the prediction of a painful shock may produce freezing in a solitary

animal, and aggression in the presence of another male (Ulrich and Azrin, 1962).

In addition to the nature of punishment, they are also appropriate for the timing

of it, for example eyeblink to an anticipated air-puff is scheduled for the time of

the air-puff. This specificity is not exclusively the case, however, as rats will also
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attack a cue-light that predicts shock, as they will lick and bite it if it predicts

reward (stimulus substitution). Thus, the diversity of Pavlovian actions reflects

the combination of stimulus specific and non-specific anticipatory actions.

However, Pavlovian actions provide a fundamentally restricted set of options for

action, and more flexible control is achieved by instrumental learning, whereby

an individual learns to associate a particular action with its outcome (Thorndike,

1911). Consequently, actions that lead to a reward are executed more frequently

in future, whereas those that lead to aversive events are executed less often. For

example, discovering that pressing a lever results in food delivery will cause an

animal to press that lever more often, whereas if such an action is followed by an

electric shock, the animal will press the lever less often. A wealth of data has

shown that action suppression is proportional to the magnitude, certainty, and

imminence of an anticipated punishment (Atnip, 1977;Azrin, 1956;Azrin,

1960;Azrin et al., 1963;Baron, 1965;Camp et al., 1967;Church et al.,

1967;Church, 1969a;Solomon et al., 1968;Walters and Grusec, 1977). This effect

is in part Pavlovian: cues that were previously paired with punishment suppress

instrumental responding in the absence of any instrumental contingency

(conditioned suppression (Estes and Skinner, 1941)), but adding such a

contingency substantially enhances suppression(Bolles et al., 1980;Church,

1969b).

Instrumental learning allows learning of arbitrary and potentially highly adaptive

responses beyond the restrictive set that are available to Pavlovian mechanisms.

But instrumental learning is not in itself a unitary process. There are at least two

distinct types of instrumental action: habits, and goal-orientated actions. Habits

learn the scalar value of actions, by essentially collapsing the value of future

outcomes onto a single action-value for each choice available to the animal.

Thus, although the (value of the) outcome may be directly used to reinforce, or

inhibit, the action, the resulting habit does not encode any specific representation

of that outcome, and as such is often regarded as stimulus-response learning

(although sometimes stimulus-response learning is taken to involve acquisition

of a binary, discrete action, without representation of magnitude).
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Habit-based learning may be a highly effective, and computationally simple, way

to learn and act following extensive exposure to an environment with predictable

outcomes. However, it may be a less effective way to make choices given limited

experience, or if the outcomes depend on more complex aspects of the action and

the environment. In contrast, goal-orientated actions incorporate an internal

representation of the outcome which can be used more directly to guide actions.

Experimentally, one of the hallmarks of goal-orientated action is sensitivity to

outcome devaluation: if an animal learns to press a lever for food when hungry,

and is subsequently fed to satiety, it presses the lever less frequently when

exposed to the lever again, indicating that it appropriately represents the reduced

value of the action. However, there is good behavioural evidence of a transfer of

action control from goal-orientated to habit based systems through time, and on

extensive training this sensitivity to outcome devaluation is reduced(Balleine,

2005;Daw et al., 2005;Dickinson and Balleine, 2002).

In addition to simple outcome representations, goal-orientated action selection

may accommodate substantial complexity, involving representation of potentially

intricate sequences of actions, including those whose outcomes are governed by

higher-order structure and rules. Although many animals may possess a

surprisingly sophisticated ability to model the structure of their environment to

guide goal-orientated behaviour(Blaisdell et al., 2006;Raby et al., 2007), this

capacity is clearly remarkably developed in humans. Figure 1.5 illustrates a toy

maze based navigation task, and details how different action systems can learn to

find reward and avoid punishment.
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Figure 1.5. How many action systems?

Consider the problem of learning to find the food in the maze above. The simplest solution

utilises Pavlovian conditioning and exploits innate actions such as approach and

withdrawal. During Pavlovian conditioning, positions that are associated with the outcome

acquire a positive value that causes the agent to approach them. Thus, following tendency

to approach the reward from position d, d will acquire a positive utility, causing it to be

approached d from other positions, including c. Through sequential conditioning, the

individual can potentially navigate relying purely on Pavlovian approach.

Habits involve the learning of action utilities. Trial and error will reveal that turning right at

d is immediately profitable, and the reward can be used directly to reinforce the action.

Learning the preceding actions, such as what to do at position b is more difficult, since the

outcomes are both delayed and are contingent on subsequent actions (the credit

assignment problem (Bellman, 1957)). One possibility is to use either the subsequently

available best action utility (as in Q learning (Watkins and Dayan, 1992)), or the

subsequent Pavlovian state values (as in Actor-Critic learning (Barto, 1995)), as a

surrogate reward indicator. This has the effect of propagating (or ‘bootstrapping’) action

utilities to increasing distances in chains of actions.

Goal directed learning mechanisms overcome the lack of an explicit representation of the

structure of the environment or of the utility of a goal in Pavlovian actions and habits, by

involving a model of some sort. Indeed, there may be more than one distinct forms of

model-based decision system (Yoshida and Ishii, 2006). A natural form is a map of the

area within which one’s own position and the position of the goal can be specified, in which

the structure of the model is governed by the two dimensional physical nature of the

environment. Alternatively, propositional models, which have a less constrained prior

structure, might specify actions as bringing about transitions between uniquely identified

positional states. Such models bear a closer relation to linguistic mechanisms, for instance

taking the form of ‘from the starting position, go left, left again, then right, and then right

again’, and in theory have the capacity to incorporate complex sets of state-action rules.

Lastly, control might also be guided by discrete episodic memories of previous

reinforcement. Such a controller is based on explicit recall of previous episodes, and has

been suggested to guide actions in the very earliest of trials (Lengyel and Dayan, 2007)

1.2.3 Avoidance learning

In aversive learning, the most basic instrumental paradigm is avoidance.

Typically a subject receives a warning stimulus (such as a tone or light) that

precedes delivery of an aversive stimulus, such as prolonged electrification of the
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floor of one compartment of the experimental apparatus. At first, the subject

responds only during the aversive stimulus, for instance escaping the shock by

jumping into a neighbouring compartment. Typically, the warning stimulus will

be extinguished following this escape response. After several presentations, the

escape response is executed more quickly, and eventually, the subject learns to

jump when observing the warning stimulus (again with the effect of turning off

this stimulus), thus completely avoiding the shock.

Consideration of the problems that must be solved in avoidance hints that such

behaviour may not be straightforward. For instance, how are successful

avoidance actions reinforced, if by definition they lead to no outcome? (How)

does a subject ever realise that the threat is gone, if it is never sampled? Mowrer

famously suggested that learning to avoid involves two processes: predicting the

threat, and learning to escape from the predictor (Mowrer, 1947). These

processes, proposed respectively to be under Pavlovian and instrumental control,

comprise two-factor theory, which in one form or another has survived well over

the past decades. Although there are many unanswered questions about precisely

how the different action systems are orchestrated in different avoidance

situations, some key facts are well grounded.

Notably, Pavlovian mechanisms play a critical (and multifarious) role in

avoidance, and indeed Pavlovian responses to the warning stimulus alone are

often capable of implementing successful avoidance. For example, jumping out

of an electrified chamber, blinking in anticipation of an eye-puff, leg flexion to

an electric foot plate can all completely remove an aversive stimulus, without

any need for an instrumental component. That they do pays tribute to their

evolutionary provenance, and led some to question the involvement of

instrumental responses at all (Mackintosh, 1983). The latter is implied, however,

by the arbitrariness of the required avoidance actions in some experiments

(although more arbitrary ones are slower to learn (Biederman et al., 1964;Ferrari

et al., 1973;Hineline, 1977;Riess, 1971)).

Further, there is good evidence that the safety state that arises from successful

avoidance acts as a Pavlovian aversive inhibitor. This is a state that predicts the
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absence of otherwise expected punishment. Importantly, as mentioned above, the

values of aversive inhibitors at least partly share a common representation with

those of appetitive excitators, as is demonstrated by their ability to affect

subsequent learning in appetitive domains (a phenomenon known as

transreinforcer blocking). That the safety state plays an important role in control

is suggested by the fact that avoidance responses continue long after the

Pavlovian aversive responses to the discriminative stimulus have extinguished

(as they will of course do if avoidance is successful).

This places in the spotlight the role of the value attached to the warning

stimulus(Bersh and Lambert, 1975;Biederman, 1968;De Villiers, 1974;Kamin et

al., 1963;Mineka and Gino, 1980;Overmier et al., 1971b;Overmier et al.,

1971a;Starr and Mineka, 1977). On one hand it has the Pavlovian power to

initiate Pavlovian preparatory responses. It is also known to be able to suppress

appetitive instrumental behaviour, in a similar fashion to conditioned suppression

by an aversive Pavlovian predictor. On the other, it has the instrumental power to

initiate an appropriate avoidance response.

The existence of a goal-directed component to avoidance is suggested by

sensitivity to outcome in experiments that manipulate body temperature.

Henderson and Graham trained rats to avoid a heat source when rats were

themselves hot. When subsequently tested when the animals had been rendered

cold, avoidance was attenuated, provided the rats had the opportunity to

experience the heat source in their new, cold state (Henderson and Graham,

1979).
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1.3 Neurobiology of aversive motivation and learning

systems.

1.3.1 Ascending nociceptive pathways

Injury comes in many different forms, in both routine life and scientific

experiments. This diversity is reflected by the multitude of skin and tissue

receptors which detect tissue damage (Hunt and Mantyh, 2001;Julius and

Basbaum, 2001). This includes receptors for pressure, temperature (hot and

cold), protons, inflammatory mediators, vascular damage, cell injury, etc. These

receptors reside at the terminals of specific nociceptive neurons: – either the few

large, fast, energy expensive myelinated A-delta fibres – typically responsible for

acute, sharp pain; or the numerous (80% of all sensory neurons) smaller, slower,

fibres responsible typically for long-lasting aching and burning pain. These

nerves ascend the peripheral nerve to the spinal cord, have their cell bodies in the

dorsal horn, and they synapse in certain specific layers (laminae) of the spinal

cord (Craig, 2002). Nociceptive signals then ascend the spinal cord in two

discrete pathways, the lamina 1,2 nociceptive-specific pathway and the lamina 5

wide-dynamic range pathway. As well as sending off branches to various

brainstem nuclei, their main target is the thalamus, traditionally viewed as the

gateway to the brain and cortex. In fact there are many other ways in which are

likely to be important, for instance via the many brainstem nuclei. Beyond the

thalamus, very many areas of the brain are involved in pain processing –

including subcortical areas such as basal ganglia, amygdala, and hippocampus,

and cortical areas such as somato-sensory, insula, orbitofrontal, and anterior

cingulate (Jones et al., 1992). In fact extensive regions of the brain have been

implicated in pain in some way, although it has been remarkably difficult to find

any that are specific to pain. This fact makes it rather difficult to make (‘reverse’)

inferences about function based on anatomy, a common fallacy in brain imaging

research.
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1.32 Pain anticipation

At the heart of neurobiological studies of the motivational basis of pain,

embodied for instance by learning theoretic paradigms, is activity that occurs in

anticipation of pain. This was first explored by Ploghaus and colleagues

(Ploghaus et al., 1999), who used a simple (classical) conditioning design to look

for anticipatory activity to thermal nociceptive stimuli, using fMRI. They found

that activity in regions of anterior insula, anterior cingulate cortex, and medial

prefrontal cortex correlated with the predictive period.

To look for basic representation of prediction related brain activity, related to the

errors and anticipatory uncertainty predicted by theoretical accounts described

above, we undertook a preliminary study, in which we studied the

electroencephalographic activity of 15 subjects in a sequential pain prediction

task. A series of auditory tones predicted the occurence of a painful laser

stimulus to the right arm. The intensity of the stimulus was signalled before the

auditory tones in half of the trials, whereas the other half were indicated as being

uncertain.

We found a significant negative wave in the evoked potential in the time

preceding the pain stimulus, that correlated with the predicted intensity of the

subsequent pain (when it was known). This provides evidence that basic aversive

value predictions can be detected in the brain following learning. Furthermore,

when pain was predicted (in the ‘uncertain’ condition) and subsequently omitted,

we found a significant negative wave following the omission. This activity may

reflect a (negative) prediction error, evoked by the difference between

expectation and outcome of the pain. The EEG characteristics and scalp

topography of these activities is shown in figure 1.6, below.
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Figure 1.6. 15 subjects were studied with 32 channel ERP, with forearm CO2 laser-

induced pain stimuli at 3 different intensities: High, Medium, Low (in fact zero - subjects

told ‘low’ was likely to be imperceptible. The intensity was indicated 7 seconds pre-

stimulus on a computer screen: on 50% of occasions, the forthcoming intensity was

provided (i.e. the words ‘high’, ‘medium’ or ‘low’ printed on the screen).On the other 50%

of occasions the forthcoming intensity information was withheld and ‘unknown’ printed on
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the screen. The timing of the pain stimulus was indicated by a sequence of 3 countdown

auditory tones (at 1.5 seconds interval). Throughout the experiment (both known and

unknown expectations) subjects received 60% medium, 20% high and 20% low intensity

stimuli in pseudo-random order.

Anticipation (panels 1-3): These data reveal a low frequency negative wave in the seconds

prior to stimulus onset, maximal over FCz (. The amplitude of this negative wave

correlated with the expected intensity (high: -2.68uV, medium: -1.74uV, low: -1.01uV). In

the uncertain condition, the amplitude was comparable to the medium expected condition

Omitted stimulus potential (panel 4): In the unexpected compared to the expected low

condition (omission), there was a significant late positive wave (corresponds to a negative

prediction error), maximal over CPz.

This study provided pilot data for the subsequent PhD work, in the lab of Anthony Jones in

Manchester.

These two findings – value and prediction error related activity, provide a basis

for the subsequent experiments in this thesis, which use fMRI. The design of the

ERP paradigm was further refined by Chris Brown, in Anthony Jones’ lab, and

studied using high density source localisation EEG. This found that the

anticipatory activity correlated with activity in anterior insula (Brown et al.,

2008a).

1.3.3 Aversive learning systems.

Existing studies of Pavlovian aversive learning implicate a network of

predominantly subcortical regions that coordinate the acquisition of predictive

value with the execution of responses. The amygdala is widely recognised as one

of the principal brain structures associated with aversive Pavlovian learning

(Gallagher and Chiba, 1996;H.Klüver and P.C.Bucy, 1939;LeDoux,

2000a;Maren and Quirk, 2004;Murray, 2007), especially in imaging

neuroscience (Morris et al., 1998). Broadly, it consists of two functionally and

anatomically distinct components, namely those that are affiliated with the

central and basolateral nuclei. Both are heavily connected with extensive cortical
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and subcortical regions consistent with a capacity to influence diverse neural

systems (Amaral and Price, 1984).

Early theories on the role of the amygdala centred on fear (WEISKRANTZ,

1956), in light of the key discovery that it acts as a critical seat of Pavlovian

aversive conditioning (Maren, 2005;Quirk et al., 1995). More specifically, many

elegant experiments have demonstrated that the basolateral amygdala, by way of

its extensive afferent input from sensory cortical areas, is critical for forming

cue-outcome associations, and that the central nucleus is critical for mediating

conditioned responses, by way of its projections to mid-brain and brainstem

autonomic and arousal centres (Kapp et al., 1992). In what became known as the

‘serial model’ of amygdala function, the basolateral amygdala is thought to learn

associations, with direct projections to central amygdala engaging the latter to

execute appropriate responses (LeDoux, 2000b).

In subsequent years, several key findings have emerged that have enriched this

picture. First, the amygdala has been found to be critically involved in appetitive

learning, in a similar way to its involvement in aversive learning (Baxter and

Murray, 2002). Second, the central and basolateral nuclei often operate in

parallel, as well as in series. This is thought to subserve dissociable components

of learning, whereby the central nucleus mediates more general affective,

preparatory conditioning, with the basolateral nuclei mediating more

consummatory, value specific, conditioning (Balleine and Killcross,

2006;Cardinal et al., 2002). Third, rather than just executing Pavlovian

responses, connections of both central and basolateral amygdala with other areas

such as the striatum and prefrontal cortex are critical for integrating Pavlovian

information with other decision making systems (Cardinal et al., 2002)

Single neuron recording studies have identified neurons that encode the

excitatory Pavlovian value of rewards, punishments, as well as neurons that

encode salient predictions independently of valence (Belova et al., 2007;Paton et

al., 2006). In rodents, electrophysiological data implicate the amygdala in

encoding appetitive inhibitors, suggesting that aversive value representations
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extend to opponent inhibitory stimuli (Belova et al., 2007;Konorski, 1967;Rogan

et al., 2005;Seymour et al., 2005).

The amygdala is likely to mediate conditioned responses through connections

with other brain regions such as the periaqueductal grey, hypothalamus,

parabrachial nuclei, caudal pontine nuclei of the reticular formation, ventral

striatum and ventral tegmental area (Fendt and Fanselow, 1999). Structures such

the periaqueductal grey and anterior hypothalamus mediate primitive defensive,

retaliatory and offensive responses, and encode essential motor patterning

mechanisms for fighting (Adams, 2006). Other regions implicated in aversive

value representations include the lateral orbitofrontal and anterior insula

cortex(Calder et al., 2001;Craig, 2002;Jensen et al., 2006;Nitschke et al.,

2006;O'Doherty et al., 2001;Paulus and Stein, 2006;Sarinopoulos et al.,

2006;Seymour et al., 2005;Small et al., 2001), which, we note, are also

interconnected with the ventral striatum (Mesulam and Mufson, 1982;Mufson et

al., 1981).

Pavlovian appetitive learning also involves the amygdala, and indeed many

responses, including preparatory arousal like responses, and specific

consummatory responses, are mediated through connections to brainstem

autonomic nuclei and hypothalamic centres (respectively). A substantial amount

of research has also focused on the role of the ventral tegmental area, which

sends dopaminergic projections to the ventral striatum, which underlies many

aspects of Pavlovian appetitive responding. More elaborate value representations

may rely on computations in the orbitofrontal cortex, notably those sensitive to

manipulations of outcome value (for example, by altering motivational state,

affective context, expected value, relative value, or counterfactual value(Baxter

and Murray, 2002;Milad and Quirk, 2002;Nieuwenhuis et al., 2005;O'Doherty et

al., 2001;Roesch and Olson, 2004;Rolls, 2000;Schultz, 2000;Sugrue et al.,

2005;Tobler et al., 2005a;Tremblay and Schultz, 1999;Ursu and Carter, 2005)).
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1.3 Reinforcement learning and computational

neuroscience of aversive learning.

1.3.1 General principles of a computational framework

David Marr distinguished computational, algorithmic and implementational

‘levels’ of understanding systems neuroscience. At a computational level, one

can specify the function that the system or structure under study evolved to

perform – what, formally, is the problem that an animal must solve in a particular

domain? At an algorithmic level, one can understand the mathematical strategy

that the brain uses to solve or perform this function. And finally at an

implementational level, one can address how this strategy is implemented in the

various hardware of neurons and neural circuits in the brain. Although clearly

these different levels reciprocally inform each other, and studying any one in

isolation might be less profitable than appreciating the relationship between

levels, a recognition of the fundamentally distinct nature of these levels provides

a powerful and invaluable framework on which to study systems neuroscience

(Marr, 1969;Marr, 1970;Marr, 1971).

Such an approach often exploits optimality principles, justified on evolutionary

grounds (Todorov, 2004). There are many aspects of behaviour, particularly

more complex cognitive processes (including human decision-making), where

this may not hold, but the basic functions of aversive learning systems ought to

be, in most environments, suitably primitive and evolutionarily conserved to

permit reasonable hypotheses that assume optimal (or near optimal) processing.

The Marrian framework yields an approach to systems neuroscience in which

mechanistic accounts of behaviour can be sought. Any model, psychological or

otherwise, is specifiable mathematically: this does not constrain a model, it only

forces an explicit description of the structure and parameters within that model,

which are sometimes covert in traditional psychological models. The strength of

this approach is that explicit predictions can be tested empirically and
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quantitatively. This renders them not only substantially less ambiguous, but also

open for refutation. This ought to stimulate strongly hypothesis driven

experiments, and provide a well-lit arena for different theories to be pit against

each other.

Remarkably, pain and aversive learning, at least from a systems neuroscience

perspective, has somewhat escaped a normative approach, in stark contrast to

other related disciplines in affective (such as reward processing and decision

making) and sensory (such as vision and audition) neuroscience. This is fortunate

for pain neuroscience, since it allows the field to poach insights of these other

disciplines. But this relationship may prove more symbiotic than parasitic, since

methodological reasons mean that pain is sometimes a better modality to study

general principles of behaviour (for example, the salience of pain lends itself

better to studying higher order learning than less salient reward). As a corollary,

one should also remain vigilant to the peculiarities of pain, that is, those features,

and there may be many, that cannot be generalised across valences.

Aversive events share the core feature in the capacity to threaten to a lesser or

greater extent the integrity and survival of the individual. This is fairly explicit in

the case of pain, but a diversity of stimuli or events may be judged aversive, such

as odours, tastes, loud noises, as well as social stimuli such as exclusion or

reputation loss. From a behavioural viewpoint we can make a broad definition of

aversiveness as the property describing things we would rather not have, or

things we would do work to reduce or avoid. The somatic pain system provides

an ideal system to study aversive motivation: it represents actual or imminent

tissue injury, and from an introspective perspective pain is inherently and

potently aversive.

1.32 Formalising motivation and learning

The central problem faced by any aversive motivational system can be

approached by a body of theoretical and empirical research called Reinforcement
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Learning. Reinforcement learning deals with problem of how an agent should

optimise their behaviour in an unknown environment, through experience. At the

heart of this approach are several key concepts. The first is that the agent has a

representation of some quantity that specifies inherent preferences: positive

events such as food, and negative events such as pain. If these events can be

sensed, then the behavioural problem is one of maximisation (or minimisation in

the case of punishments). Second is that the agent can learn about their

environment through trial and error experience: choosing actions and observing

the outcomes that are delivered. Knowledge of these outcomes can then be used

to improve performance in the future.

This theoretical framework is common in many disciplines (such as economics,

control theory and ethology) that aim to model how systems of any sort can learn

about the environments they inhabit, and make decisions that maximize

beneficial outcomes and minimize adverse ones (Camerer, 1995;Mangel and

Clark, 1988;Puterman, 1994;Sutton and Barto, 1998). This framework is closely

associated with dynamic programming (Bertsekas, 1995), and encompasses

many different algorithmic approaches for acquiring information about an

unknown environment, including learning from trial and error, and using that

information to specify controls.

In typical natural cases of decision making, feedback for a choice is usually only

available after some time has elapsed, and, potentially, also additional choices

(as, for instance, in a maze). This problem of delayed feedback has played an

important role in determining the nature of the neural controllers, with forms of

prediction lying at their heart (Montague et al., 1996;Sutton and Barto, 1998).

The essence of the solution to the problem of delayed feedback is prediction of

the value of being in a particular situation (typically called a ‘state’) and/or

performing a particular action at that state, in terms of the rewards and

punishments that can be expected to accrue in the future. Different ways of

making predictions underlie the different approaches to control.

To specify the problem more formally, we can consider it a form of a general

stochastic optimal control problem, defining:
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• State S – the current combination of cues and context

• Action a – an action, moves agent from state to state

• Value V – the overall value of being in state S or of taking action a from

state S

• Policy pi – determines which actions to take (e.g. always take the highest

valued action)

We first consider the situation in which outcomes are delivered independently of

any action taken. This describes the problem as purely one of prediction, as

opposed to one of control, in which actions can be enacted that actually change

the probability of an outcome. Prediction alone has a close parallel with

Pavlovian conditioning.

The goal of prediction is to learn a value function, where the value represents the

sum of future rewards or punishments expected to follow if the agent is in a

particular state.

Consider the detrerminsitic sequence of state transitions below, where an agent

moves from state s1 left to right, accruing reward r until the terminal state s4

The value of state s1 is the sum of the future expected reward from state s1:

43211)( rrrrsV 

If one assumes (exponential) discounting of future rewards, such that future

rewards are considered less value than immediate rewards, then this becomes:
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Or more simply:

n

n

n

nrsV 





1

4
1)( 

If one exploits the recursive relationship between successive states, then it can be

seen that:
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Or alternatively:
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This simple equation specifies the relationship between the value of successive

states. Reinforcement learning exploits this relationship, and uses value estimates

to update the value of preceding states.

Now consider the more general situation in which the state transitions are not

deterministic, but rather probabilistic. In this case, the value of being in a certain

state is related to the value of future states, and weighted by the probability of

reaching them. Consider the following state transition,

The value of s1 is equal to the sum of the product of the value of s2 and s3 and

their state transition probabilties:
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If actions a are permitted, which are defined by the agents policy pi, then with a

Markov assumption (that dictates that the previous trajectory to a given state has

no bearing on future state transition probabilties or rewards), then the general

equation for the value of any state is given by the Bellman equation (Bellman,

1957):

Temporal difference learning provides a mechanism to learn the value function

online. It exploits the recursive property of the Bellman equation to compare

sequential value estimates, and uses a prediction ‘error’ to improve those

estimates. The prediction error term is intuitive, and is equal to the numerical

difference between the expected outcome from a particular state, and the

subsequently experienced outcome when the next state is reached:

))(()( 1 iii sVrsV

The value of the preceding state is then updated according to the prediction error,

and the learning rate 10   :

 )()( ii sVsV

The TD rule bears close similarity with the Rescorla-Wagner rule, the error-

based algorithm from animal conditioning studies; and the delta rule (or Widrow-

Hoff rule) in associative learning theory. The bootstrapping method (which
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describes learning between successive, sequential predictors) extends Rescorla-

Wagner prediction errors to pure predictions themselves.

Average reward prediction

Another approach to acting in extended timeframes is to use average-reward TD

learning, where one determines relative value as equal to the sum of future

reward compared to the average reward rate.
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The average reward is slowly learned over time, with a learning rate much

smaller than that for the phasic outcomes, ie.   .

Action learning.

Direct action learning can proceed in a very similar manner to state-value

learning. Accordingly, the action (or ‘Q’) value is a quantity that reflects the

amount of reward that can be expected after taking a certain action. This can be

either the true expected value, or a preference weight, depending on exactly how

one specifies learning. The Q values can be learned:

 ii tQtQ )()1(

)()()( ttQtr i  

using a prediction error as previously, and judged according to the average

reward rate. This has parallels to Dayan’s advantage learning (Dayan and Abbott

LF, 2001).

In chapter 6, we extend Q learning to deal with integrated appetitive and aversive

components.

In summary, we present the hypothesis that the brain uses a temporal difference

learning mechanism to learn about aversive events.



43

Chapter 2: Methods.

The analysis of brain activity in awake, behaving humans has been studied for

many decades using electroencephalography, which records electrical activity on

the scalp with considerable temporal precision, but, despite new algorithms for

source identification, somewhat less distinct anatomical localisation. The last

20yrs has seen two new revolutionary methodologies – Positron Emission

Tomograpgy (PET), and functional magnetic resonance imaging (fMRI), which

permit analysis of brain activity, inferred from regionally distinct increases in

blood flow, with vastly improved anatomical precision, although considerably

reduced temporal resolution, given the reliance on blood flow as opposed to

directly assessing electrical neural activity.

fMRI allows inferences to made about simultaneous activity across the entire

brain. It provides two basic sources of information: first, it provides spatial

information allowing task-specific anatomical inferences, hence the commonly

used term ‘functional brain mapping’, and second, it provides temporal

information about the magnitude of task- specific brain responses, which allow,

of particular interest here, assessment of dynamic changes in brain activity

The utility of fMRI rests on the basic and well-founded principles of functional

localisation and specialisation. That is, macro-separable brain regions perform

distinct physiological functions. This is supported by multiple lines of evidence,

from the early brain stimulation studies of Olds and Milner [ref], to the

reproducibility of specific cognitive deficits associated with particular

neurological lesions, to neuro-physiological studies in primates in domains such

as vision, where functional specialisation for colour, movement, form have

provided spectacular evidence for the localisation of function.

Of particular interest from a learning perspective is the time course of activity,

since emerging models of animal learning can be used to make rather specific

predictions about both about the quantities which might be operationalised in
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certain learning processes (such as the prediction error), and how they should

change through time. This might seem to imply that from the perspective of pure

learning theory, simple anatomical localisation is rather uninteresting. However,

in appropriately designed tasks, the simultaneous measurement of multiple and

functionally distinct areas may allow disambiguation of learning related

processes with multiple components, something far less straight-forward with

conventional uni-dimensional physiological recording methods, traditionally

employed by experimental psychologists, such as skin conductance, pupillary

diameter, and heart rate measurement.
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2.1 Physics of fMRI.

Magnetic resonance imaging relies on the electromagnetic properties of

hydrogen atoms. The proton, which is positively charged, precesses on its own

axis with a particular quantum magnetic spin, creating a very small

electromagnetic field. Within a strong global electromagnetic field, as occurs

within the bore of the MRI scanner, these spins will tend to appropriately align

with the direction of the magnetic field, the field determining the precession

frequency. The alignment of protons can be momentarily disturbed by applying

brief radiofrequency pulses, which subsequently results in the release of a weak

electromagnetic signal, detectable by the MRI scanner, as the protons return to

their equilibrium state. Echoplanar imaging relies on the rapid provision of a

spectrum of radiofrequencies that allow adequate sampling within time periods

that fall inside that required to estimate the dynamics of the BOLD signal.

Functional magnetic resonance imaging provides an estimate of regional changes

in blood flow. Haemogloblin consists of two distinct polypeptide chains, which

are bound to an iron-rich protoporphyrin complex. Metabolically active tissue

requires oxygen, which diffuses down a consistent concentration gradient from

within the vasculature to the mitochondria, where it is used for oxidative

metabolism to create ATP. Oxygen dissociates from haemogloblin in afferent

capilliaries and becomes relatively deoxygentated in the efferent capilliaries and

venules. Critically, oxygenated and deoxygentaed haemoglobolin have different

magnetic properties, which alter the signal emitted by the protons of the

hydrogen atoms within them. Oxygenated haemoglobin is diamagnetic, and so is

little influenced by an external magnetic field, and consequently the phase

coherence of proton spins. Deoxyhaemoglobin is paramagnetic which causes

local magnetic field variations because of increased spin dephasing, because the

four outer electrons of the Fe 2+ are now unpaired with oxygen. Blood-oxygen

level dependent contrast (BOLD) exploits this natural difference in magnetic

properties, and uses the contrast as an index of the oxygen uptake of peripheral

tissues, which provides an indirect measure of tissue metabolism (Ogawa 1990,

Turner 1991). Given that in the brain, the principle mechanism for variable tissue
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oxygen utilisation is neuronal activity, BOLD contrasts are proposed to offer a

measure of neuronal activity. This is because of the relationship between regional

cerebral blood flow and oxygen utilisation, given that vascular tone is under

exquisitely sensitive control of local oxidative usage. Thus, increased energy

demand from active neurons results in capilliary vasodilation. In fact, this

vasodilation causes an effective over-shoot phenomneon, such that there is a

relative increase in oxyhaemoglobin when metabolic activity increases. Since

reduced deoxyhaemoglobin attentuates local susceptibilty effects, more active

regions result in an increased signal intensity on T2 weighted images. BOLD

images are, however, sucseptible to artefact due to large veins and arteries which

may have more global variance due to uninteresting factors that influence

cerebral blood flow.
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2.2 Analysis of fMRI data.

Before fMRI images are analysed to assess significant task related effects within

and between subjects, a number of pre-processing steps are performed, which

represent predominantly spatial transformations for consistency of analysis

across scans and subjects. fMRI analysis is voxel based, with each voxel

typically being 2-3mm cubes. The spatial scale of the BOLD response, estimated

by high-resolution optical imaging, is 2-5mm.

Spatial realignment.

Despite adequate head restraint in the fMRI, subjects may still move significant

amounts during the course of an experiment, causing significant variance in the

fMRI signal. To adjust for this, spatial realignment is performed to minimise

scan-to-scan variance. Sequential scans are referred to the first scan, and the 6-

parameters (in each 3 dimensional direction) are estimated for a rigid-body affine

transformation that minimises the sum-of-squares difference between each. This

transformation is applied using ‘sinc’ interpolation.

Spatial normalisation.

To allow comparison across subjects, scans are then normalised to a standard

template schema. Here, we use the standard template of the Montreal Institute of

Neurology (MNI), and all further references to anatomical co-ordinates are to

this system unless otherwise stated. For this, the mean image of the re-aligned

scans is taken, and the set of deformation parameters that maximises the

likelihood of the data is found using an approximate iterative procedure (Gauss-

Newton). These warping parameters can then be applied to all scans.

Spatial smoothing.

The are several reasons to spatially smooth data. First, by central limit theorem,

Gaussian smoothing effectively makes error components more normal, thus
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strengthening the applicability of a parametric approach to the signal analysis.

Second, smoothing can match the spatial scale of the data to the size of the effect

anticipated (matched filter theorem), which will optimising efficiency in the

detection of significant effects. Third, under random field theory, the metrics of

the assumed underlying Gaussian field must be substantially larger than voxel

size, which can be achieved by smoothing. Lastly, to accommodate functional

anatomical difference between subjects, smoothing may well counteract the

influence of inter-subject variability. Here, we generally adopt a smoothing

kernel of 6-8mm given the predominant interest in subcortical structures such as

midbrain and ventral striatum. However, kernels of 8-12mm are often superior

for detecting population effects in cortical structures.

Statistical modelling

In effect, the analysis up to this point provides a voxel-by-voxel time series of

BOLD activation throughout the scanned volume of brain. The goal of the

analysis is to relate in a statistically valid way, these time-series to some

experimentally interesting manipulation. Thus, we want to make a statistical

inference about regional brain activity given our experimental design.

The approach adopted, as is widely the case, is to propose a general linear model,

and this the basis of Statistical Parametric Mapping (SPM, Wellcome

Department if Imaging Neuroscience, London UK) used in this thesis. Thus, we

apply standard parametric statistics to estimate voxel-wise statistical parameters

in parallel. These parameters are typically T or F statistics, and their values

displayed across the brain to identify regional effects.

SPM uses a mass uni-variate approach, and thus treats each voxel separately with

respect to the experimental manipulation, and does not consider the covariance

between voxel pairs as a multivariate approach would. Given the large number of

voxels, the multivariate approach is highly inefficient, and under the security of

an appropriate institution of Gaussian random field theory in protecting against
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the problems of multiple comparisons (see below) one can proceed to assay

voxel-wise statistical parameters. In this thesis, the approach we take is based on

classical inference, that is, we consider the evidence for the null hypothesis that

some experimental manipulation has no effect on the signal in each voxel. Thus

statistics are generated by estimating the size of an effect, its variance, and the

error, in the data.

The general linear model assumes the generic form Y= beta * X + epsilon. Put

linguistically, we propose that our observed data, Y, is a function of our

experimental manipulation X, times a parameter beta that governs the size of the

‘effect’, and some residual error, or noise, or other effects (Friston 1995). Thus

analysis is based on multiple linear regression, testing the null hypothesis that the

estimated effect size of any individual regressor is zero. The central feature of the

analysis thus becomes the design matrix – the temporal sequence of possible

explanatory variables of the data. The design matrix will therefore include the

particular effects that represent the manipulation that is proposed to modulate

brain activity in some region, the so called ‘effects of interest’, plus any, and

there may be many, other potential explanatory variables, which may be

relatively uninteresting, often termed the ‘effects of no-interest’. This may

include things like session effects, uninteresting obligatory experimental

manipulations, and even the movement parameters determined from realignment

(above) to provide additional refinement of the model to account for variance not

effectively removed by re-alignment procedures. Effects of interest may

specifically relate to the influence of a single effect in specified direction, in

which case one considers the effect size divided by its standard deviation, to give

a T statistic, or by considering some (linear) combination of more than one effect

by considering the relative variances, to compute an F statistic.

The design matrix considers the various effects that may influence our data, but

we assume that most of these explanatory variables (ie, not effects like

movement parameters) influence neural activity. However, our data represent the

estimated blood flow, which is assumed to coupled to neural activity in some

meaningful way. To incorporate this to our data, we typically apply prior

knowledge about the nature of this coupling, namely, the shape of the
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haemodynamic response for some instantaneous burst of neural activity, into our

statistical model. This is termed the haemodynamic response function (HRF),

and in SPM is a synthetic, though biologically inspired (and validated), time-

dependent vector, which peaks at about 5-6 seconds. With this in hand, we can

estimate in what way our explanatory variables should influence our actual

BOLD data, if they influence neural activity and the coupled blood flow in the

manner proposed. Thus, in event-related designs, we effectively convolve (that

is, multiply) the stimulus onset vectors in the design matrix with this synthetic

function and use this as the regressors to which our multiple linear regression is

applied.

Importantly, this is not the only way to make inferences, but it is more

constrained. Outside these constraints, and if we are less sure about the nature of

the haemodynamic response, one can institute a more flexible model. The most

commonly used method of doing this is by proposing a set of (say, three) gamma

functions, which form a basis set to which our brain response can be modelled.

Less constrained still, we can use a set of small-duration (say, 2 second)

rectangular impulse functions. However, the more basis functions we use, the

less efficient, and less easy to interpret (not least because we have to estimate F

and not T statistics) our results are.

One of the potentially serious hazards of the mass voxel-based univariate

approach is the problem of false positives that arises from multiple comparisons.

If each voxel was an independent observation, then the most appropriate method

to correct for this is to perform a Bonferroni correction. However, voxels are not

independent, and we can use the assumptions of random field theory to construct

a more reasonable approach to this correction. Random field theory assumes that

the error field conforms to a lattice approximation that has an underlying

multivariate Gaussian structure, and secondly that these fields have a

differentiable and invertible autocorrelation function.

The power of an anatomical inference grows with the precision of the prior

hypothesis, and as such it is generally preferable to have some constrained

hypothesis about the brain regions one expects to be involved in our
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experimental manipulation. This would come from a body of previous

experimental work, which might include previous neuroimaging experiments,

that allow us to pre-specify our region of interest, and then apply statistical

correction derived from random field theory, within this region. This might

ideally be an accurately shaped anatomical mask of a particular area, although

practically, it is usually a sphere or 3D box centred on some pre-specified co-

ordinate. In the absence of any prior anatomical hypothesis, one should ideally

apply a whole brain level correction to the data.

2.3 Experimental design.

Block and event-related designs.

Consider experiments aimed to identify areas of the brain that respond to pain.

Early fMRI and PET studies assessed the categorical effect of some experimental

variable which was changed in different period – such as providing alternating

periods of time in which a subject received thermal pain stimuli, and period of

time in which they received non-painful thermal (warm) stimuli. The timecourse

of presentations was typically analysed in a so-called box-car or block design –

considering each period of activity as a whole, and making comparisons between

them. However, the temporal precision of fMRI permits a more focused design,

since the timecourse of the fMRI BOLD response allows disambiguation of

individual stimuli. Thus, more recent designs can randomly alternate painful and

non-painful stimuli and treat them individually, essentially as mini-boxcars of

instantaneous duration (a so called delta, or stick function). These corresponds to

an event-related design, and confers much greater flexibility in stimulus

presentation, although may be less powerful if there is no anticipated (that is,

cognitive) reason (such as habituation) why stimuli should not be presented in

blocks.

Design types.
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The simplest design types are subtraction designs. This rests on the proposition

that the difference between two experimental tasks or conditions is the cognitive

effect of interest. For instance, subtracting painful from non-painful conditions is

proposed to identify areas of the brain specifically involved in pain, whereas

subtracting highly painful from moderately painful conditions might be proposed

to identify brain areas specifically involved in the processing the intensity of

pain. However, subtraction designs can often be criticised because it is often

possible to identify effects other than that of interest which are different between

two conditions.

Considerably more powerful are parametric designs, which assess event-by-event

differences in magnitude of a particular quantity. Thus, we might be interested in

brain areas that are associated with subjective reports of pain intensity, so it is

possible to linearly correlate subjective ratings with brain responses using

parametric designs. Further still, this turns out to be a powerful tool when trying

to identify brain responses that correlate with some potentially complex

parameter. In learning experiments, one often has in mind a proposed

computational model of how the brain might learn about some quantity – such as

in reinforcement learning models of classical aversive conditioning experiments.

These models might involve some key parameter that changes according to the

complexities of the model in some determinable way, and modelling this can

provide us with the predicted magnitude of this parameter through the course of

our experiment. In this way, we can use fMRI to test the idea that such a signal

exists, and then make the inference regarding brain activity in some (ideally,

predicted) brain area is consistent with the predictions of our proposed model.

Multifactorial designs are essentially embedded subtractions, and allow

assessment of how one experimental factor influence another. That is, they look

at how the difference between tow levels of factor 1 is influenced by the

difference in factor 2 – this would be termed a 2x2 factorial design, but of course

potentially one can have multiple factors. The key advantage of factorial designs

is that they can be used to assess interactions, on top of main effects.
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Population-level inferences.

It is usually desired, and easily possible when we have potentially a sizeable

subject population (in contrast with some rare patient groups, or monkey

experiments), to make inferences that are generalizeable to the population. This

requires an estimate of the variance between subjects and constitute random

effects analysis, as opposed to an assessment of variance within subjects,

constituting a fixed-effects analysis, in which we can only make our inference

about that subject or particular group of subjects. Random effects analyses

require taking some summary statistic to the group level, usually a contrast map

from a within-subject analysis. The analysis is then usually classical, in which

one tests the null hypothesis that the contrast map is zero.

2.4 Psychophysical measures:

Pupillometry:

Pupillometry is widely used to measure autonomic activity in experimental

psychology, particularly in humans. The pupil is innervated jointly by

sympathetic and parasympathetic afferents. There are two components to the

pupillary response. The light reflex is the rapid constriction to a bright visual

stimulus, and is attenuated with emotionally valanced cues. Subsequent to this,

pupil approaches a new baseline level - which is greater for a broad range of

emotional or arousing states. Analysis relies on classical statistical inference and

is relatively well standardised (see Bitsios et al 2004). Blinks are removed by

linearly interpolating across them. The data are baseline corrected (taking the

mean diameter for 180ms before the cue). One can then take the peak minimum

diameter (i.e. the amplitude) for the light response, and the mean diameter in the

final 500ms before the delivery of the outcome.

Reaction times.
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Another useful index of emotional learning is by looking at task relevent

influences on reaction times, particularly for tasks that are orthogonal to the

manipulation of interest. Typically, reaction times are faster with emotionally

arousing values, of either valence.

2.5 Pain stimulation.

There are a number of different experimental techniques available for stimulating

ascending nociceptive pathways in humans, which have important differences in

the physiological mechanisms they engender. Broadly speaking, different

methods differ in the specificity with which they cause peripheral activation of c-

fibres, a-delta fibres, and other non-nociceptive fibres. Electrical stimuli, widely

used to elicit an painful state in experimental psychological investigations cause

a relatively non-specific activation of predominantly a and a fibres. Current

can be applied across two (oppositely charged) surface electrodes, or the

electrodes can be needles placed subcutaneously or intra-muscularly. The use of

electrical stimuli is often criticised by members of the pain community,

particularly by those concerned with the anatomical differences between the

spinothalamic (wide-dynamic range pathway, nociceptive specific pathway), and

above, beause of this non-specificity, but this of much less concern to

experimentalists concerned with learning theory, since as mentioned in chapter 1,

the aversive qualities of a stimulus are dissociable form their sensory specific

aspects. However, it might well be the case, and evidence has not been sought,

that different types of pain may be more or less efficient, in experimental

circumstances, at engaging aversive learning mechanisms. For instance, one

might suppose that the fast apain might be better able to elicit conditioning in

Pavlovian designs, since these are typically more efficient with short CS-US

intervals. With a conduction velocity of less than 1m/s, c-fibre activation, for

instance from the lower limb, may well take at least a second to arrive at the

brain, which adds a non-trivial latency and, given the variance of conduction

velocities of c-fibres, error component. In several experiments used in this thesis,

we use a concentric surface electrode to deliver pain to subjects in the scanner.
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This consists of central anode, which is pointed to allow good contact with skin,

and a concentric circular cathode, which sits on the surface of the skin, and is

typically placed on the dorsum of the hand. This electrode selectively activates

a fibres, and was originally developed for use in studying facial pain. There is

substantial subject to subject variation in the efficacy of this type of electrode

since the ability to deliver current depends on the skin impedance, which varies

widely according to subject skin character, body temperature, subject arousal and

other factors, which become significant with limits on the maximum voltage

utilisable. We note a critical safety issue with delivering electrical stimuli in the

imaging environment, and that is that a rapidly altering electromagnetic field can

induce large and potentially dangerous, currents. This often depends on

intricacies of conductor topology, such that the diameter of a coil of wire. To

protect against this, all electrodes used have high resistance (10 000 ohm)

resistors placed within a few cm.

A number of other pain stimulation techniques are available. C02 or argon laser

heat allows accurate and highly specific pain stimulation, but has several

limitations: first it causes skin damage and the laser beam must be constantly

moved around a significant area of skin to minimise burning, which is

technically difficult in the fMRI environment. Second, it is logistically difficult,

though not impossible to use in magnetic fields – the lasers themselves are

ferromagnetic, so must be housed outside the scanner room, and the laser beam

directed through shielded holes in the scanner room wall and directed to subject

using a configuration of mirrors. Third, laser devices are currently very

expensive.

Rapid, a fibre mediated mechanical pain can be delivered by pneumatic ballistic

devices, which propel a ‘ball’ of pressurised air on to the surface of the skin.

However, these devices are not available for use in the fMRI environment. Tonic

pain can be delivered by the cold pressor test – inserting the periphery of a

subject, such as the hand, into cold water. This causes an escalating cold thermal

pain, and is a safe and reliable method for delivering tonic pain, but has the

drawback that the pain is not constant, and rises progressively as the peripheral
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tissue gets colder. Alternative methods for delivering tonic pain include ascorbic

acid injection, ischemia, intradermal or superficial application of mustard oil or

capsaicin, and thermal heat. The latter two are used here and discussed below.

Thermal stimuli have become one of the preferred methods of pain delivery in

fMRI and PET studies for several reasons. First, they are relatively pain specific,

exciting thermal nocicpetive afferents on both a and c-fibres. Second, pain

thresholds and tolerance are well studied, particularly in clinical

neurophysiology, and known to be reliable and reproducible within subjects.

Third, they can be used to deliver safe pain without causing skin damage through

burning, and are susceptible to far habituation or sensitization than other

methods. Fourth, there are now several commercially available fMRI compatible

thermodes. These tend to be Peltier devices with water cooling facilities, which

can deliver thermal stimuli in the typically used experimental range of up to 5

degrees per second, with heating typically being slightly faster than cooling.

In chapter 4, we aim to study relief of pain, in addition to pain itself, for which

we use topical application of capsaicin, with overlying thermal stimulation, to

elicit a state of tonic pain. Here, we use thermal cooling as a method of inducing

a state of relief. This is not possible if thermal stimuli are used alone, because

prolonged delivery of heat at sufficient levels to cause significant prolonged pain,

such that relief is clearly and appetitively felt, will cause substantial skin damage

due to burning. Capsaicin causes thermal hypersensitivity, allowing delivery of

tonic thermal pain at much lower temperatures. Capsaicin, the ‘hot’ ingredient of

chilli peppers, activates the TRP V1 family of receptors on peripheral

nociceptive neurons, causing hyperalgesia. This provides an ecologically and

clinically valid model of injury, since this process mimics the physiological

changes that occur after many types of injury (such as burning).
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Chapter 3: Higher order aversive learning (expt. 1).

3.1 Introduction.

Predictions about potentially harmful stimuli should be available as early as they

are reliable. In Pavlovian conditioning, chains of successively earlier predictors

are studied in terms of higher order relationships, and have inspired

computational theories such as temporal difference learning (Sutton RS and

Barto AG, 1990). However, there is at present no adequate neurobiological

account of how this learning occurs. Substantial evidence in humans and other

animals has outlined a network of brain regions involved in the prediction of

painful and aversive events (Buchel and Dolan, 2000;LeDoux, 1998;Ploghaus et

al., 1999;Ploghaus et al., 2000). The majority of this work has concentrated on its

simplest realization, namely first order Pavlovian fear conditioning. However,

the predictions in this paradigm are rudimentary, revealing little of the

complexities associated with sequences of predictors critical in psychological

investigations of prognostication (Dickinson, 1980;Mackintosh, 1983). These

latter studies led to a computational account called temporal difference (TD)

learning (Sutton RS and Barto, 1990;Sutton and Barto, 1981), which has close

links with methods for prediction (and also optimal action selection) in

engineering (Sutton and Barto, 1998). When applied to first order appetitive

conditioning, TD learning provides a compelling account of neurophysiological

data, both with respect to the phasic activity of dopamine neurons in animal

studies, and with BOLD activity of human functional neuroimaging studies

(Friston et al., 1994;McClure et al., 2003;Montague et al., 1996;O'Doherty et al.,

2003;Schultz et al., 1997;Suri and Schultz, 2001). However, the utility of TD

models to describe learning beyond this simple paradigm remains largely

unexplored. Here, we provide the first neurobiological investigation based on

aversive and, importantly, sequential conditioning.

We used functional magnetic resonance imaging (fMRI) to investigate the

pattern of brain responses in humans during a second order pain learning task. In

brief, fourteen healthy subjects were shown two visual cues in succession,

followed by a high or low intensity pain stimulus to the left hand (fig 3.1a).
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Subjects were told that they were performing a reaction time study and were

required to judge whether the cues appeared on the left or right of a display

monitor. The second cue in each sequence was fully predictive of the strength of

the subsequently experienced pain; however the first cue was only

probabilistically predictive. Thus, on a small percentage of trials, the expectation

evoked by the first cue would be reversed by the second. This allowed us to

study the neural implementation of both the expectations themselves, and their

reversals.

Two key aspects of most accounts of prediction learning are the predictions

themselves (termed values), and errors in those predictions (Sutton and Barto,

1998). Fig. 1b shows the predictions (labelled TD value) associated with each

trial type – these are calculated and revised as new stimuli are presented. Fig. 1c

shows the associated prediction error. The success of TD learning in accounting

for data on dopamine cell activity stems from the nature of this signal, which

treats ongoing changes in predicted values on an exact par with actual affective

outcomes. This prediction error signal drives learning by specifying how the

predictions should change. In appetitive conditioning, the dopamine projection to

the ventral striatum is believed to be a critical substrate for this signal, though

apart from theoretical speculations about opponent processing (Daw et al., 2002),

the equivalent for aversive conditioning is less clear. As in earlier work on

appetitive conditioning, we used the TD model to generate regressors based on

the values and prediction errors appropriate to each individual subject (O'Doherty

et al., 2003). Statistical parametric mapping of the regression coefficients permits

identification of regions associated with, and in receipt of information about

predictions.
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Figure 3.1 Experimental design and TD model. a) The experimental design expressed as

a Markov chain, yielding four separate trial types. b) TD model – Value: as learning

proceeds, earlier cues learn to make accurate value predictions (i.e. weighted averages of

the final expected pain). The 4 plots correspond to the 4 trials in a). c) TD model –

Prediction error: during learning the prediction error is transferred to earlier cues as they

acquire the ability to make predictions. In trial types 3 and 4, the substantial change in

prediction elicits a large positive or negative prediction error. (Note: for clarity, early and

mid learning are shown only for trial type 1).
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3.2 Methods.

Subjects. Fourteen right handed volunteers participated in the study and gave

informed consent. All subjects were pain free on the day of study, on no

medication and had no history of neurological or psychiatric disease. The study

was approved by the Joint Ethics Committee of the National Hospital for

Neurology and Neurosurgery (UCLH NHS Trust) and Institute of Neurology

(UCL).

Stimuli. We used an electrical pain stimulus delivered by a pair of silver chloride

electrodes placed on the dorsum of the left hand 3cm apart. We delivered a

100Hz train of electrical pulses of 4ms pulse duration (square pulse waveform)

for 1 second via an in-house built fMRI compatible electrical stimulator.

Variation of current amplitude (0.5mA to 6.0mA) was used to deliver different

intensity stimuli, set individually for each subject immediately before entering

the scanner: subjects judged painfulness using a 10-point numerical rating scale

(0 score = no pain, 1 point = just perceptible pain, 8 points maximum tolerable

pain, 10 points = worst imaginable pain). We achieved mean intensity ratings of

2.9 for the low intensity stimulus and 8.0 for the high intensity stimulus. Post-hoc

debriefing revealed no evidence of habituation or sensitization.

The visual cues were abstract coloured pictures of equal size and luminescence

displayed on a screen projected into the scanner and visible by the subject

through a mirror placed on top of the head coil. In each session there were four

different cue stimuli, with a different set of pictures used in each, presented to the

left or right and above or below the centre of the display screen. Pictures were

fully counter-balanced across sessions and subjects.

Delivery of visual and electrical stimuli was controlled and synchronised with

the MR scanner using Cogent 2000 software (Wellcome Department of Imaging

Neuroscience, London, UK) implemented with Matlab 6.5 on a standard PC. The

electrical stimulator was driven by a CED 1401 amplifier (Cambridge Electronic

Devices, Cambridge, UK) with additional control using in-house software

implemented on a separate PC.
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Task. Subjects were required only to report the position of the cue (left or right)

as quickly as possible, using a keypress with their right hand. No response was

required to the pain stimulus and they were assured that the performance on the

reaction time task bore no relationship to the intensity of subsequent pain.

Subjects were not told the experiment was a learning task, and on post hoc

debriefing no subjects were able to report the full set of cue – outcome

contingencies.

Experiment. Each subject undertook two sessions. Each session represented a

complete learning experiment, and consisted of 110 trials. Each trial consisted of

the presentation of two cues in sequence followed by a pain stimulus. Each cue

was presented for 3.6 seconds in immediate succession, and the offset of the

second cue was followed immediately by the pain stimulus which lasted for one

second. After this the next trial began after a variable (randomised) delay of 5+/-

1.5 seconds.

Trials were divided into 4 types, labelled Types 1-4. Types 1 and 2 were the

standard trial types and were presented at a frequency of 82% (41% each), and

for a minimum of the first ten trials. In these trials the basic contingency of cue-

cue-pain associations was set. Thus in trial type 1, cue A was followed by cue B

which was followed by a high intensity stimulus; and in trial type 2 cue C was

followed by cue D which was followed by a low intensity pain stimulus. Trials

types 3 and 4 occurred randomly at a frequency of 18% (9% each type). In trial

type 3, cue C was followed by cue B which was followed by high intensity pain

stimulus, and in trial type 4, cue A was followed by cue D which was followed

by a low intensity pain stimulus. This manipulation would be expected to induce

second order TD prediction errors. The second cue always predicted the

appropriate pain stimulus. The duration of each session was 13 minutes, after

which the subjects underwent a high resolution structural brain scan.

TD model. We used a basic temporal difference learning model without

eligibility traces or discount factor (TD(0))(Sutton and Barto, 1998) on a trial

basis. Each trial was divided into three time points (first cue, second cue, pain
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stimulus). In our model, a state s is defined according to the particular stimulus

present at that time (i.e. there are six states). Each state has a predictive value

V(s) and a return r that represents the pain, with the high intensity pain stimulus

assigned a return of one, and the low intensity stimulus and the visual cues zero.

The predictive value of each state V(s) was initialised at zero. At each point in

time t the prediction error δ is defined as

)()( 1 tt sVsVr

In effect, this is the difference between successive value predictions taking into

account the currently observed return. The previous value predictions are then

updated according to the algorithm

  )()( 11 tt sVsV

where α is the learning rate. We used a learning rate of =0.5 (see analysis

below). The sequence of cue and pain stimuli for each subject entered this basic

computational model to produce the prediction error and value at each time point

throughout the entire session. These were then used as parametric regressors to

analyse the imaging data.

Data acquisition and analysis. We acquired T2*-weighted EPI images with

blood oxygen-level dependent (BOLD) contrast on a 1.5T Siemens Sonata

magnetic resonance scanner. To optimise signal recovery in basal forebrain and

midbrain structures, we used a tilted plane acquisition sequence (30 degrees to

the AC-PC line, rostral > caudal) designed to minimise signal dropout due to

susceptibility artefact(O'Doherty et al., 2003) and performed z-shimming in the

slice-selection direction. Imaging parameters were: echo time 50ms, field-of-

view 192mm, in-plane resolution 3mm, slice thickness 2mm, interslice gap 1mm.

We acquired 280 volumes plus 5 dummy scans for each session, with a repetition

time of 3.6 seconds. High resolution T1-weighted structural images were

acquired after the experiment and co-registered with the mean EPI images, and

averaged across the 14 subjects to allow group level anatomical localisation.
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The images were analysed using SPM2 (Wellcome Department of Imaging

Neuroscience, London UK). Functional scans were pre-processed by spatial

realignment, normalisation to a standard EPI template, and spatial smoothing

with an 8mm (full-width, half maximum) Gaussian kernel. The images were then

analysed in an event-related manner, with the events defined by the onsets of all

stimuli encoded as delta functions. To construct the regressor for the basic TD

analysis, we multiplied the delta function with the TD prediction error at each

event, provided by the computational model for each subject, and convolved the

ensuing stimulus function with a canonical haemodynamic response function

(HRF). To emulate a random effects analysis the parameter estimates (i.e. the

regression coefficients) were taken to a second level group analysis using a one-

way ANOVA.

The group level SPMs were initially thresholded at P<0.001 uncorrected (as

displayed in figs 2 and 4). To correct for multiple comparisons, we used small

volume corrections in our areas of interest, based on data from previous

investigations of Pavlovian aversive conditioning from our laboratory (Buchel et

al., 1999). Specifically, we used coordinates of ventral putamen (Right: 24,6,-6.

Left: -18,9,-6), anterior insula (Right: 48,12,-6. Left: -54,12,-9), anterior

cingulate (0,27,18), right amygdala (24,-3,-24) and cerebellum (Right: 24,-60,-

30. Left: -30,-51,-30 from ref 14). We defined areas in substantia nigra, upper

brainstem and dorsal striatum based on the anatomy from our mean structural

image. Small volume corrections were 8mm radius spherical volumes. We report

significant regressions using a family-wise error correction at p<0.05.

To explore the influence of the TD learning rate parameter, we numerically

calculated a first order derivative of the prediction error with respect to the

learning rate around a value of =0.5 for each subject. This was to linearise the

prediction error with respect to the learning rate by approximating a Taylor

expansion, allowing us to add the derivative as a separate regressor. SPMs of the

appropriate F test failed to reveal a substantial effect of variation in  from 0.5,

suggesting a learning rate of 0.5 to be approximately optimal. In support of this
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conclusion, learning rates of 0.2 and 0.8 gave similar though less robust

responses.

To characterise the impulse responses in the right ventral putamen and anterior

insula cortex (fig 3 and fig 4b), we performed a supplementary analysis using a

flexible basis set of 2 second duration finite impulse responses for each of the

four trial types. Within this design, each trial was treated as an event with the

onset being the time of the first cue for each trial. We removed the first 10 trials

from this analysis, during which early learning was taking place. On a subject by

subject basis, we took the peak voxel from the original TD analysis in the area of

interest, and plotted the time course in terms of the estimated impulse response to

each trial type. These were then averaged across sessions, and subjects.

For the analysis of value, we used the sum of TD predictive value and the pain

(return) value (given that our design is not optimal for distinction of the two) and

treated the prediction error and pain as effects of no interest. To ensure reporting

of purely predictive areas, we applied a mask (at p < 0.05, uncorrected) of areas

showing significant differences in activity in the cue periods from the finite

impulse response analysis.

To provide a behavioural index of conditioning, we took the mean reaction time

to the first cue in each trial (i.e. cue A and Cue C, fig1) in the final third of each

session (i.e. when conditioning ought to be robust). This was averaged across the

two sessions for each subject, and then taken to a second level group analysis

using a two-tailed t-test.

3.3 Results

Conditioning was demonstrated by a significant difference in reaction time to the

first cue according to trial type after learning (high pain predicting cue 637ms;

low pain predicting cue 616ms, p<0.05 two-tailed t-test).
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In the analysis of fMRI data, the prediction error was highly correlated with

activity in bilateral ventral putamen, right head of caudate and left substantia

nigra (fig 3.2).

Figure 3.2 TD prediction error - statistical parametric maps. Areas showing significant

correlation with the TD prediction error. Peak activations (MNI coordinates and statistical z

scores) are right ventral putamen (put; (32,0,-8); z = 5.38), left ventral putamen (put; (-

30,-2,-4); z = 3.93), right head of caudate (caud: (18,20,6); z = 3.75) left substantia

nigra (sn: (-10,-10,-8); z = 3.52), right anterior insula (ins; (46,22,-4); z = 3.71), right

cerebellum ((28,-46,-30); z = 4.91), left cerebellum ((-34,-52,-28); z = 4.42).

Correlations were also noted bilaterally in cerebellum and right insula cortex.

Fig.3.3 shows the estimated responses in the right ventral putamen. As the most

straightforward model coupling prediction error to BOLD signal might predict,

positive (a: trial types 3 minus 2) and negative (b: 4 minus 1) prediction errors at

various times in the trial are clearly represented, as is the biphasic form of the

prediction error in trial type 4 (c: contrasted with type 2).



66

Figure 3.3 TD prediction error – impulse responses. Time course of impulse response to

higher order prediction error in right ventral putamen: a) positive prediction error

(contrast of trial type 3 and 2), b) negative prediction error (contrast of trial type 4 and

1), c) biphasic prediction error: positive at the first cue becoming negative at the second

(contrast of trial type 4 and 2).

We also investigated the representation of value (for reasons of analysis,

combining the predicted and experienced value) by including the value term in

our regression model. This revealed correlated activity in right anterior insula

cortex (fig 3.4a). The estimated response is illustrated in figure 3.4(b). In

addition, we found value-related responses in brainstem (fig 3.4a). Precise

anatomical localisation of brainstem activation is difficult with standard

neuroimaging, though we note the consistency with the likely location of dorsal

raphe nucleus. We also observed value-related responses in anterior cingulate
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cortex and right amygdala, which did not survive statistical correction for

multiple comparisons.

Figure 3.4 TD value – statistical parametric maps and impulse response in right anterior

insula. a-b) Areas showing significant correlation with the TD value. Peak activations (MNI

coordinates and statistical z scores) in right anterior insula (ins; (42,16,-14); z = 4.16),

brainstem ((0,-28,-18); z = 3.89) and anterior cingulate cortex (acc; (8,12,32); z =

3.82). Coronal and axial slices of brainstem activation are shown, highlighting localisation

to dorsal raphé nucleus. c) Time course of impulse response in right anterior insula cortex,

from contrast of trial types 1 and 2.

3.4 Discussion

The striking resemblance between the BOLD signal in the ventral putamen and

the TD prediction error (fig. 3.3) offers powerful support for TD. This is
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particularly the case in a second order paradigm, since this captures the cue-to-

cue bootstrapping of value predictions that lies at the heart of sequential

prediction methods. Other dynamic models of Pavlovian conditioning, such as

the SOP models, do not involve this signal (Brandon et al., 2003), and deal

instead with predictions that are immediately tied to outcomes. That is, they

don’t learn using value estimates, but require actual outcomes. Our result adds to

the growing body of neural and psychological data supporting the biological

basis of TD theory. In a framework called the actor-critic model for instrumental

conditioning (and some variants) (Barto AG et al., 1983;Barto et al., 1990), the

same prediction error signal is also used to train stimulus-response habits (called

policies), ultimately leading to choice of best possible actions (Barto, 1995).

Again, this has been much more intensively studied from the perspective of

appetitive than aversive conditioning. Importantly, the higher order process

demonstrated here is a crucial substrate for learning in changing and uncertain

conditions that characterise real environments, and in principle is capable of

supporting complex behaviours.

Our findings add to the existing pharmacological, electrophysiological,

functional imaging and clinical evidence regarding the involvement of the

striatum in aversive processing and learning (Chudler and Dong,

1995;Schoenbaum and Setlow, 2003; Levita et al, 2002). Given that the BOLD

signal in the same region is correlated with temporal difference prediction errors

for rewards (McClure et al., 2003;O'Doherty et al., 2003), this structure may hold

the key to understanding precisely how aversive and appetitive information are

integrated to lead to motivationally appropriate behaviour in the light of

(predictions of) both.

At present, the nature of the phasic aversive prediction error signal is not clear.

Substantial psychological data suggest the existence of separate appetitive and

aversive motivational systems that act as mutual opponents over a variety of

timecourses (Dickinson and Dearing MF, 1979;Grossberg, 2000;Solomon and

Corbit, 1974). Given the (not unchallenged) suggestions that dopamine neurons

in the ventral tegmental area and substantia nigra report appetitive prediction

error, it has been suggested that dorsal raphé serotoninergic neurons may encode
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aversive prediction error (Daw et al., 2002). It is of interest that we show

prediction (value) related responses in an area that incorporates this nucleus.

There is an active debate about the involvement of dopamine in aversive

conditioning (Mirenowicz and Schultz, 1996;Romo and Schultz, 1989), and an

alternative possibility is that dopamine reports both aversive and appetitive

prediction errors.

Our findings have important implications for our understanding of human pain.

Existing imaging studies have concentrated more on phenomenological aspects

of pain processing. Here we have specifically explored aspects of the function of

pain. Notably, substantial evidence indicates that the experience of pain is

modified by prior conditioning (Ploghaus et al., 2003). Here, we demonstrate

regionally distinct neuronal responses that are consistent with established

computational processes that provide a mechanism through which the affective

and motivational aspects of pain can be modulated.
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Chapter 4. Appetitive and aversive Pavlovian learning of

phasic relief and exacerbations of tonic pain (expt. 2).

4.1 Introduction

Self-preservation and evolution ordain that animals act optimally or near-

optimally to minimise harm. One of the principal mechanisms for detecting harm

is the pain system, and early prediction is essential to direct appropriate pre-

emptive behaviour. However, any simple correspondence between predicted

sensory input and behavioural output is challenged by considering the nature of

relief: for example, mild pain will be rewarding if it directly follows severe pain.

This illustrates a critical issue in our understanding of pain relief as an affective

and motivational state (Cabanac, 1971;Craig, 2003;Fields, 2004), and poses a

broader question in emotion research: how do the neural processes that underlie

motivation adapt to the context provided by the ongoing affective state?

According to psychological theories (Grossberg, 1984;Konorski, 1967;Schull,

1979;Solomon and Corbit, 1974), tonic aversive states recruit reward processes

to help direct behaviour toward homeostatic equilibrium (which becomes the

motivational goal). This may offer insight into why relief is often pleasurable, for

example, the experience of cooling oneself in a swimming pool on a hot day.

Indeed, the euphoria of relief has been used to help explain a number of

seemingly paradoxical behaviours from sky-diving to sauna-bathing (Solomon,

1980b), in which relief is thought to become the dominant motivational drive.

Despite supportive psychological evidence (Daw et al., 2002;Dickinson and

Dearing MF, 1979;Solomon, 1980a;Tanimoto et al., 2004) direct observations of

neural activity consistent with such appetitive processes are lacking.

Conceptually related issues arise in diverse areas such as engineering, economics

and computer science, and offer potential insight into the underlying neural

processes involved in relief in animals. Notably, reinforcement learning models

have proved particularly useful in formalising how the brain learns to predict

rewards and punishments (Barto, 1995;Dayan and Balleine, 2002;Montague et

al., 1996;O'Doherty et al., 2003;Schultz et al., 1997;Seymour et al., 2004;Sutton
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and Barto, 1998). These models learn to make predictions by assessing previous

contingencies between environmental cues and motivationally salient outcomes.

In theory these models can be extended to deal with tonic reinforcement and

relief, by computing predictions relative to an average rate of reinforcement,

rather than according to absolute values (Mahadevan, 1996;Schwartz, 1993).

However, the extent to which average reward reinforcement learning strategies

are implemented in the brain is still unclear. With respect to pain, this may have

added importance since motivational predictions (of pain or relief) are thought to

exert substantial influence on the subsequent perception of pain (Fields,

2000;Price, 1999). Understanding the neural mechanisms by which predictions

are learned is therefore a key component to our understanding of how the brain

intrinsically modulates pain in physiological and clinical situations.

We used fMRI to investigate the pattern of brain responses in nineteen healthy

subjects as they learned to predict the occurrence of phasic relief from, or

exacerbations of, tonic pain (see methods). We employed a first order Pavlovian

conditioning procedure with a partial (50%) reinforcement schedule (figure 4.1).

Tonic pain was induced using the capsaicin-heat model. Capsaicin is the pain-

inducing component of chilli pepper, and induces sensitisation to heat by

activation of temperature-dependent TRPV1 ion channels expressed on

peripheral nociceptive neurons. This temperature sensitivity allowed us to deliver

constant but easily modifiable levels of pain for long durations, adapted for each

individual subject, at temperatures which do not cause skin damage. This

provides a unique experimental tool to study pain, since it specifically permits

investigation of the neural processes underlying the offset of pain – that is, relief.

The model has the further advantage that it induces the characteristic molecular

and cellular changes that mimic physiological injury, and so presents a

biologically realistic model of relief in natural and clinical environments.
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Figure 4.1 a) Experimental design. There were five trial types: Cue A was followed by

a temperature/pain decrease on 50% of occasions (reinforced and un-reinforced relief

cue), cue B was followed by a temperature/pain increase on 50% of occasions (reinforced

and un-reinforced pain cue), and cue C was followed by no change in temperature/pain

(control cue). b) Appetitive computational model – predicted neuronal response.

Schematic showing the mean representation of the temporal difference prediction error

according to the different cue types, where relief is represented as reward. c) Aversive

computational model – predicted neuronal response. Schematic showing the

aversive temporal difference prediction error, which treats pain exacerbation as

punishment. Note b) and c) represent the average predicted neuronal response: the

corresponding predicted BOLD response is shown in figures 3c and 4c, respectively,

following convolution with a canonical haemodynamic response function

We applied capsaicin topically to an area (12.5cm2) of skin on the left leg

causing a localised area of burning pain (which feels similar to sunburn), and

manipulated the intensity of this pain with an overlying temperature thermode

that matched the capsaicin patch. Temperature was adjusted for individual

subjects to aim for evoking an average baseline magnitude of pain rated as 6 on a

0 to 10 categorical scale. Phasic decreases in the baseline temperature to 20°C

caused complete relief of pain, and temperature increases caused exacerbation.

We used visual cues (which were abstract coloured images) as Pavlovian

conditioned predictors of these changes. Thus, in the fMRI scanner, subjects
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learned that certain images tended to predict imminent relief or exacerbation of

pain.

We used a reinforcement learning (temporal difference) model to identify neural

activity consistent with reward-like processing. The characteristic teaching signal

of these models is the prediction error, which is used to direct acquisition and

refinement of expectations relating to individual cues. The prediction error

records any change in expected affective outcome, and thus occurs whenever

predictions are generated, updated or refuted. By treating relief of pain as reward,

and exacerbation as negative reward, we sought to identify activity that

correlated with this prediction error signal. We calculated the value of the

prediction error for each subject, according to the sequence of stimuli they

received, to provide a statistical predictor of fMRI data (as has been done

previously (O'Doherty et al., 2003;Seymour et al., 2004;Tanaka et al., 2004)).

The use of a partial (probabilistic) reinforcement strategy, in which the cues are

only fifty percent predictive of their outcomes, ensures constant learning and

updating of expectations, and generates both positive and negative prediction

errors throughout the course of the experiment (Figure 4.1b). Thus, inference is

based on identification of this dynamic and highly characteristic signal.

4.2 Methods:

Subjects: 33 healthy right handed subjects (14 in a behavioural version of the

task, and 19 in the fMRI version of the task), free of pain or medication, gave

informed consent and participated in the study, approved by the Joint National

Hospital for Neurology and Neurosurgery (UCLH NHS trust) and Institute of

Neurology (UCL) Ethics Committee. Subjects were remunerated for their

inconvenience (40GBP).

Stimuli: Capsaicin model. We applied topical 1% capsaicin (8-methyl-N-

vanillyl-6-nonenamide, 98%, Sigma-Aldrich, Gillingham, UK, diluted in 5%

ethanol-KY jelly) to the lateral aspect of the left leg over an area of 2.5x5cm,

under an occlusive dressing, and left for 40 minutes, after which all subjects

reported feeling persistent (though bearable) pain, at which time the capsaicin
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and dressing was removed and the skin cleaned. A thermode matching the size of

the capsaicin application area was applied with a loose tourniquet (easily

removable in case of unbearable pain) to the treated skin. Temperature was then

manipulated using an fMRI compatible Peltier thermode (MSA thermotest,

Somedic, Sweden). Phasic variations in temperature were achieved at a rate of

5°C/sec, to the predetermined upper and lower levels, and controlled by in-house

designed software.

Pre-experimental set-up: Before the experiment, required temperature levels for

each individual subject were set by slowly increasing the cutaneous temperature

overlying the capsaicin treatment site from 20°C in 0.5°C steps, with continual

monitoring of pain ratings (on a 0-10 rating scale), to achieve a baseline level of

6/10. Subsequently, subjects received progressively higher phasic increases to

determine a satisfactory temperature for the pain exacerbations, to at least 8/10

(just-tolerable). Pain relief was induced by phasic cooling to 20°C, which

abolished pain in all subjects.

We obtained subjective ratings of pain for the increase, baseline and decreases in

pain. We asked the subjects, ‘Can you give a score, on a scale of zero to ten, as to

how painful the pain is, where zero is no pain at all, and 10 is the worst

imaginable pain’. We also took subjective ratings of pleasantness for the phasic

relief. We first asked the subjects ‘Did you find the change in temperature

unpleasant or pleasant’, to check that no subjects found the cooling as

unpleasant, and then ‘Can you give a score, on a scale of zero to ten, as to how

pleasant you found it, where zero is not at all, and ten is highest imaginable

pleasure’. Phasic changes were repeated with pain and pleasantness ratings on

capsaicin treated skin and on distant area of non-capsaicin treated skin on the

same limb well beyond the area of secondary hyperalgesia, and repeated at the

end of the experiment. We achieved mean ratings (standard error in parentheses)

for the baseline tonic pain of 5.5/10 (1.1) on capsaicin treated skin and 0.9/10

(1.5) on untreated skin. Phasic increases were rated at 9.3/10 (0.9) for capsaicin

treated skin and 3.3/10 (3.6) on untreated skin. Phasic decreases (relief) were

rated at 7.0/10 (2.4) (pleasantness scale) and 4.6/10 (2.3) on untreated skin. All

comparisons (treated vs untreated) were significant at P<0.01 with corresponding
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t-tests. Following transfer into the scanner (or behavioural testing) room (with

the thermode attached) subjects were in pain for approximately 40mins to 1 hour

by the time the experiment started.

Stimuli: Visual cues. The visual cues were abstract coloured pictures.

Task: The task was a classical (Pavlovian) delay conditioning paradigm of

temperature increases (exacerbations of pain) or decreases (relief of pain). Visual

cues were presented for 4 seconds, at the end of which the phasic pain

perturbation was applied, for 5 seconds. The precise timing was determined in

psychophysical pilot testing (to accommodate thermode and C-fibre latencies).

There were three different visual cues, each presented 30 times. Cue A (relief

related cue) was followed by decreased temperature on 15/30 (50%) of

occasions, cue B (pain exacerbation related cue) was followed by increased

temperature on 15/30 (50%) of occasions, and cue C was followed by no change

in temperature on 30/30 occasions. The control condition provides additional

control in our parametric design, although was initially included to permit a more

conventional analysis, (not reported here). The 5 different trial types were

presented in random order.

Behavioural measures: Subjects performed a reaction time task which consisted

of judging whether the visual cue appeared to the left or right of centre on the

display monitor, as quickly as possible. The resulting reaction times were taken

as a behavioural index of conditioning. Performance on this task was not

contingent on the stimuli presented and subjects were told before imaging that

their success or failure at quickly judging the position would not affect the

amount of pain or relief received. The task was performed with a two-button key-

press using the right hand. Heart rate was recorded using a pulse oximeter in

conjunction with Spike 2 (CED, Cambridge, UK) software.

A behavioural version of the task was performed that was identical to that

performed in the fMRI scanner, only it was performed in a testing room with the

subject seated in front of a computer monitor. Following this task, we performed

a supplementary cue-preference task, designed to investigate whether the
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subjects had acquired appetitive and aversive preferences for the cues, as a result

of the conditioning procedure. In this task, we presented two cues side-by-side,

and asked the subject to make a judgement as to which cue they preferred, by

pressing a key-press for left or right. Each cue-pairing was repeated 10 times,

and randomised as to which side the cue appeared on. We calculated the

preference scores by summing the total number of preference choices made for

each cue (as in an all-play-all games table, with a maximum score of 20). Mean

scores for each cue were compared across subjects using Wilcoxon sign rank

tests.

We did not attempt to formally address the issue of conscious versus non-

conscious acquisition of conditioned expectancies. However to gain some insight

into the level of explicit expectancy learning, we asked the question ‘Did you

recognise any relationship between the pictures and subsequent change in pain

level’ at the end of the experiment (for the behavioural version of the task only).

Subjects were not told the experiment was a learning / conditioning study

beforehand, rather were simply told that it was a study of pain and temperature

processing. 10/14 subjects were unable to report any association between cues

and outcomes.

Computational model: We used a temporal difference model to generate a

parametric regressor corresponding to the appetitive prediction error, which was

applied to the imaging, as previously described (O'Doherty et al., 2003;Seymour

et al., 2004). Here, we used a two time point temporal difference model with a

learning rate ( = 0.3) determined from behavioural results (see below). In this

model, the value v of a particular cue (referred to as a state s) is updated

according to the learning rule: v(s)  v(s) + δ, where δ is the prediction error.

This is defined as δ = r - a + v(s)t+1 - v(s)t where r is the return (i.e. the amount

of pain) and a is the average amount of reinforcement (tonic pain) that was

assumed to be constant. We assigned relief and exacerbations of pain as returns

of 1 and -1 respectively (i.e. a linear scale of pain from relief to exacerbation).

This is an arbitrary specification, given that is difficult to precisely scale the

relative oppositely valenced utilities of relief and exacerbations of pain. Thus, the
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model treats predictions relating to relief of pain on equal par with unexpected

omission of exacerbation of pain; and similarly treats exacerbation related

predictions equivalently to unexpected omissions of relief.

Data acquisition and analysis: These were taken as measures of cue-

reinforcement and correlated with the temporal difference value (i.e. the cue

expectancy).

Reaction time measurements: Reaction time data were individually (i.e. on a

subject by subject basis) fit to a gamma cumulative distribution function (using a

maximum likelihood function), to allow analysis across subjects, and correlated

with the TD value. This yielded a best fit with a learning rate of 0.3, and a

significant correlation with the predicted value (from the model) with both the

relief related and exacerbation related trials, independently, and in the same

direction. That is, reaction times were shorter for both high reward values and

high aversive values. To remove any possible confounding effects of early trials,

during which reaction time data habituate substantially, we repeated this

procedure after removing the first 10 trials. This yielded a correlation which just

failed to reach significance p=0.056, across both cue types. We also looked at

sensitivity to the TD initial value by setting this to the average value of 0.5,

which yielded a non-significant correlation.

Autonomic: The heart rate was found to be approximately normally distributed,

and was normalised to permit analysis across subjects. We found significant

heart rate correlations with both relief and pain cue types (independently, as for

the reaction time). For both exacerbation and relief trial types, this yielded a best

fit with a learning rate of 0.3. Across both cue types, this remained significant

(p<0.05, r=0.19) after removal of the first 10 trials and with utilisation of

different initial TD values. This is a robust correlation, therefore reported in the

main text. Consequently we used a learning rate of 0.3 for the TD model used in

the fMRI analysis.

fMRI. Functional brain images were acquired on a 3T Allegra Siemens scanner.

Subjects lay in the scanner with foam head-restraint pads to minimise any

movement associated with the painful stimulation. Images were realigned with
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the first volume, normalised to a standard EPI template, and smoothed using a

6mm FWHM Gaussian kernel. Realignment parameters were inspected visually

to identify any potential subjects with excessive head movement, none were

found. Images were analysed in an event-related manner using the general linear

model, with the onsets of each stimulus represented as a delta function to provide

a stimulus function. We employed a parametric design, in which the temporal

difference prediction errors modulated the stimulus functions on a stimulus-by-

stimulus basis. The statistical basis of this approach has been described

previously(Buchel et al., 1998). Regressors were then generated by convolving

the stimulus function with a haemodynamic response function (HRF). Effects of

no interest included the onsets of visual cues, the pain relief and exacerbations

themselves, and realignment parameters from the image pre-processing to

provide additional correction for residual subject motion. Linear contrasts of

appetitive prediction errors were taken to a group level (random effects) analysis

by way of a one-sample t-test, and the aversive prediction error was taken as the

inverse. MNI coordinates and statistical z-scores are found in table 1. This

analysis determines areas which correlate to univalent appetitive or aversive

prediction error, and does not identify areas in which these signals overlap. To

explore the possible representation of distinct prediction error signals for the pain

relief and exacerbation trials, we generated two independent regressors for the

prediction error occurring at each. Then, we took the appetitive relief and

aversive exacerbation components of the prediction error to a second level

analysis of variance, and exclusively masked the two individual contrasts (ie.

looked for areas of overlap of the independent appetitive-relief and aversive-

exacerbation prediction errors, both at p<0.001). These data are presented in

figure 5a-c.

Anatomical localization and areas of interest: Group level activations were

localized according to the group averaged structural scan. Activations were

checked on a subject-by-subject basis using their individual normalised structural

scans to ensure correct localization, since some of the reported activations are in

small nuclei (e.g. substantia nigra). We report activity in areas in which we had

prior hypotheses, based on previous data, though without specification of

laterality. These regions have established roles in both aversive and appetitive
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predictive learning, and included ventral putamen, head of caudate, midbrain

(substantia nigra), anterior insula cortex, cerebellum, anterior cingulate cortex,

amygdala, lateral orbitfrontal cortex, medial orbitofrontal cortex, dorsal raphe,

and ventral tegmental area. We report activations at a threshold of P<0.001, with

a minimum size of 5 contiguous voxels. We also report brain activations outside

our areas of interest that survive whole brain correction for multiple comparisons

(see Table1) using family-wise error correction at p<0.05.

Impulse responses: We performed a supplementary fixed-effects analyses on a

trial basis to determine impulse responses, as previously described(Seymour et

al., 2004). Note that this analysis refers to the average impulse response across

each trial throughout the experiment, and does not embody the time-dependent

nature of learning incorporated within the main parametric analysis.

4.3 Results.

Behavioural measures. Subjects rated the baseline thermal stimulation as painful,

and the decreases and increases in temperature as pleasant or more painful,

respectively (see fig 4.2a). In addition, pleasant and pain ratings were

significantly greater than equivalent temperature changes on adjacent skin,

untreated with capsaicin (p<0.05 all pair-wise comparisons)(see methods).

In a behavioural version of the task, outside of the fMRI scanner, we

demonstrated conditioning to the relief and exacerbations of pain by following

the learning task with a cue-preference task. In this, subjects (n=14) made a

forced choice preference judgement of pairs of cues, presented side by side. This

revealed a significant preference ordering, with the relief cue preferred to the

neutral cue (p<0.05, Wilcoxon sign rank test), which was, in turn, preferred to

the exacerbation cue (p<0.01, Wilcoxon sign rank test)(fig 4.2b). On post-

experimental debriefing (see methods), only 4 out of the 14 subjects could report

any contingent relationship between the cues and the outcomes.
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Figure 4.2 a) Pain ratings. Pain and pleasantness ratings for the baseline level of

thermal stimulation, and the phasic increases and decreases in temperature. Scores are on

a 0-10 magnitude rating, with error bars representing the standard error.. The graph

shows results for the capsaicin treated skin, and an adjacent area of unaffected skin. b)

Preference scores. Following the learning experiment, subjects made forced choices

between randomised pairs of cues, The scores are out of a maximum of 20 pairings for

each cue (with higher scores indicating more preferred).
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During the fMRI version of the task, we used physiological measures to assess

the acquisition of cue expectations. Heart rate changes induced by the cues

correlated with the magnitude of expectations (i.e. cue-specific temporal

difference values) both of pain relief (p<0.01) and pain exacerbation (p<0.01),

calculated from the model (see methods). This supports the hypothesis that cue

expectations are acquired in a manner consistent with the (temporal difference)

learning model, albeit in a valence-insensitive manner. That is, we observed

increased heart rate with higher valued cues, whether positive or negative,

consistent with a learned arousal-like response associated with the expectations.

Appetitive prediction error. We used the model to identify a representation of the

appetitive prediction error in the brain (see figure 1b, appetitive model). Activity

in left amygdala and left midbrain (in a region consistent with the substantia

nigra) correlated with this signal (figure 4.3a,b). Time-course analysis illustrates

the average pattern of response associated with the different trial types in the

amygdala, illustrating a strong correspondence with the predictions of the model

(figure 4.3c). These data support the hypothesis that relief learning involves a

reward-like learning signal.
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Figure 4.3 Appetitive temporal difference prediction error. Statistical parametric

maps (p<0.001) showing a) left substantia nigra (axial plane) and b) left amygdala

(coronal plane). c) Time course of inferred mean neuronal activity for the four principal

trial types in left amygdala. The black line represents the data (error bars represent 1

standard error), and the blue line is the model appetitive temporal difference prediction

error (from figure 1b) after convolution with a canonical haemodynamic response function.

Aversive prediction error. Recent evidence indicates that the temporal difference

model also provides an accurate description of aversive learning, suggesting the

existence of a separate learning mechanism that codes for aversive events
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(Seymour et al., 2004). We therefore sought to identify whether an aversive

representation of the prediction error was expressed, in which exacerbation of

pain was treated as positive punishment, and relief as negative punishment

(figure 1c, aversive model). Activity in bilateral lateral orbitofrontal cortex and

genual anterior cingulate cortex correlated with this signal (fig 4.4a,b). The time-

course of this activity, shown in figure 4.4c, illustrates the opposite pattern of

response to the appetitive prediction error. These data indicate the existence of an

aversive reinforcement signal, distinct from the reward-like signal.
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Figure 4.4 Aversive temporal difference prediction error. Statistical parametric

maps (p<0.001) showing a) lateral orbitofrontal cortex (axial plane), and b) genual

anterior cingulate cortex, highlighted (sagittal plane). c) Time course of inferred mean

neuronal activity for the four principal trial types in left orbitofrontal cortex. The black line

is the data (error bars represent 1 standard error), and the red line is the model aversive

temporal difference prediction error (figure 1c) after convolution with a canonical

haemodynamic response function.

Prediction error signal in Ventral Striatum. Psychological studies of appetitive-

aversive interactions predict that opposing, learning related activity should

converge in some areas(Dickinson and Dearing MF, 1979). This might occur in

areas such as the ventral striatum (and insula cortex), where predictive activity

has been observed in both reward and pain learning tasks, albeit in separate

studies (Jensen et al., 2003;McClure et al., 2003;O'Doherty et al., 2003;Ploghaus

et al., 1999;Setlow et al., 2003;Seymour et al., 2004). This raises a question

about how co-expressed aversive and appetitive prediction errors would be

represented by the BOLD signal, particularly if they interact. We therefore

created a new statistical model that included two regressors, modelling prediction

error for relief and exacerbation separately. This model revealed co-expression in

the ventral putamen, anterior insula and rostral anterior cingulate cortex (fig

4.5a-c). The responses in these regions showed an appetitive prediction error for

the relief related cue, and an aversive prediction error for the exacerbation related

cue (fig 4.5d). This pattern of activity is interesting, since it cannot result simply

from the linear super-position of appetitive and aversive signals, but implies
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either an interaction between prediction error and cue-valence, or the expression

of a single valence-independent prediction error.
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Figure 5. Appetitive relief-related plus aversive exacerbation-related prediction

error. Statistical parametric maps showing activity that correlates with the appetitive

prediction error for the relief cue (p<0.001), masked with the aversive prediction error for

the exacerbation cue (p<0.001). a) bilateral ventral putamen, b) bilateral ventral

putamen and right anterior insula c) rostral anterior cingulate cortex. d) Time course of

inferred mean neuronal activity for the four principle trial types in left ventral putamen.

The black line represents the data (error bars represent 1 standard error), and the blue

and red line is the model appetitive and aversive temporal difference prediction error

respectively (from figure 4.1b,c), after convolution with a canonical haemodynamic

response function.
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4.4 Discussion.

Drawing on theoretical considerations provided by reinforcement learning (Daw

et al., 2002), we suggest our data provide evidence in support of an opponent

model of pain relief. We observed two distinct patterns of neural activity,

distinguishable by their expression in separate brain areas, which correlated with

the prediction error signals of an opponent temporal difference model. This

extends our understanding of human predictive learning beyond the occurrence

of simple phasic events arising from a neutral baseline. Thus during tonic pain,

aversive and appetitive systems would appear to be simultaneously active to

encode appropriate goal-directed predictions across the spectrum of positive and

negative outcomes. Our observations provide a formal framework for

understanding the homeostatic and motivational processes engaged by pain, and

offer a paradigmatic account of motivation during tonic affective states.

The use of the temporal difference algorithm to represent positive and negative

deviations of pain intensity from a tonic background level approximates the class

of reinforcement learning model termed average-reward models (Daw and

Touretzky, 2002;Mahadevan, 1996;Schwartz, 1993). Accordingly, predictions

are judged relative to the average level of pain, rather than according to an

absolute measure. This comparative treatment of motivationally salient

predictions is consistent with both neurobiological and economic accounts of

homeostasis, which rely crucially on change in affective state (Craig,

2003;Markowitz, 1952).

Implicit in any such model is a representation of the average rate of

reinforcement, although the short time window of fMRI precludes investigation

of this directly. From an implementational perspective, one argument for

opponency relates to consideration of how a long-run average affective state

might be represented. Given our demonstration that positive and negative

prediction errors are both encoded by one system, and fully mirrored by opposite

signals in an opponent system, the requirement for one system to fully represent

both the tonic levels of reinforcement (ie. by sustained elevated activity) with

positive and negative phasic predictions simply superimposed, would appear to
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be obviated. If this is the case, the tonic level of pain would be free to have a

distinct representation, a signal that has been suggested to be conveyed by tonic

dopamine release (Daw et al., 2002).

Mirror opponency has many similarities to the appetitive-aversive reciprocity

characteristic of early psychological ‘opponent process’ theories (Grossberg,

1984;Konorski, 1967;Schull, 1979;Solomon and Corbit, 1974). In their various

forms, these theories grew out of a requirement both to explain the adaptive

changes that occur during tonic reinforcement (and that follow its termination),

and to understand the interactions between appetitive and aversive processes that

arise in certain specific learning paradigms such as conditioned inhibition and

trans-reinforcer blocking. Interestingly, recent electrophysiological recordings of

neuronal activity in mice directly indicate the involvement of opponent processes

in (context-related) conditioned inhibition, specifically implicating the ventral

striatum and amygdala (Rogan et al., 2005). Thus it seems possible (and fully

consistent with a computational account) that, at least in the ventral striatum, a

‘safety-signal’ that predicts the absence of future pain might share the same

neural substrate as the relief prediction error seen here. However, we show an

appetitive representation in the amygdala, rather than an opponent aversive

representation (which we observe instead in lateral orbitfrontal and genual

anterior cingulate cortex). This points to the expression of multiple learning-

related neural signals in the amygdala, consistent with the complex, integrative

role of this structure (and the various nuclei within) in associative learning and

pain (Baxter and Murray, 2002;Holland and Gallagher, 2004).

The finding that lateral orbitofrontal cortex demonstrates an aversive prediction

error signal is consistent with previous reports of a role for this region in aversive

learning (O'Doherty et al., 2001). In particular, this area has been shown to be

involved in evaluation of aversive stimuli in the context of different motivational

states(Small et al., 2001), as well as in short timescale pain prediction relative to

a changing (learned) baseline rate of phasic pain (Glascher and Buchel, 2005b).

Taken with the present results, this suggest that learning of aversive value

predictions in this region may be mediated by an aversive specific prediction

error signal, and particularly in circumstances that require adaptive
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representations following changing motivational state or context. However, it

should also be noted that lateral orbitofrontal cortex may not be exclusively

involved in aversive processing, as reward-related responses have also been

reported in this region in some circumstances.

In relation to pain, other cortical areas, specifically insula and anterior cingulate

cortex, have clear motivational roles in pain and have previously been implicated

in the processing of relief-related information (Fields, 2004). For example, recent

neuro-imaging studies investigating the expectation and receipt of placebo

analgesia implicate these areas in endogenously mediated analgesia (Petrovic et

al., 2002;Wager et al., 2004). Our findings provide further support, therefore, that

these areas play a key functional role in pain homeostasis (Craig, 2003).

The BOLD signal is thought to correspond to changes (increases or decreases) in

synaptic activity, and thus the activity we describe may reflect specific afferent

neuromodulatory influences that originate elsewhere (Logothetis et al.,

2001;Stefanovic et al., 2004). Substantial evidence indicates that mesolimbic

dopamine neurons both encode reward-related prediction error (Dayan and

Balleine, 2002;Schultz et al., 1997) and play a key role in analgesia (Altier and

Stewart, 1999), suggesting that dopamine could convey an appetitive relief-

related prediction error. This draws attention to activity in the ventral striatum, a

region that receives strong mesolimbic dopaminergic projections. Comparison

with previous data highlights the observation that cues signalling lower-than-

predicted pain cause deactivation in this area in the context of a neutral baseline,

as opposed to activation in the context of a tonic pain baseline (Jensen et al.,

2003;Seymour et al., 2004). This implicates adaptive changes occurring during

tonic pain, influencing ventral striatal activity, and consistent with the

representation of an appetitive signal for relief related cues. However, taken

alone, it is possible that this ventral striatal activity is modulated by a single

prediction error signal for both relief and exacerbation cues (Horvitz, 2000;Smith

et al., 2005), although recent electrophysiological evidence revealing suppression

of midbrain dopaminergic neurons to aversive stimuli would seem to require a

separate aversive opponent signal (Ungless et al., 2004). Either way, this signal

must interact with valence specific information by some additional mechanism,
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possibly through the involvement of different intrinsic sub-populations of

appetitive and aversive neurons within the ventral striatum (Roitman et al.,

2005).

That pain relief and reward might share a common neural substrate is also

suggested by the fact that many drugs that have rewarding effects have analgesic

properties. Aside from dopamine, there are many neurotransmitters with clear

combined roles in appetitive and aversive motivation, for example opioid

peptides, serotonin, substance P, and glutamate (Fields, 2004;Gadd et al.,

2003;Johansen and Fields, 2004). Of particular note are the dorsal raphe

serotonergic projections to the ventral striatum, which have been recently

proposed to encode the aversive prediction error (Daw et al., 2002).

In addition to a role in Pavlovian motivation, it is also clear that pain and relief-

related expectations exert a strong influence on the actual subsequent experience

of pain – in that perception (of intensity) is weighted by the prior expectancies

acquired through conditioning. Quite how predictive motivational values

influence perceptual inferences (such as pain intensity) is not yet clear, although

probabilistic perceptual models that incorporate economic cost functions (such as

decision theory) may offer insight at a theoretical level(Dayan and Abbott LF,

2001). From an implementational perspective, one putative mechanism exploits

an influence of ‘higher’ brain areas on ascending pain pathways via descending

modulatory control centres. A possible target is the ‘on-‘ and ‘off-‘cells of the

periaqueductal grey and rostral ventromedial medulla, which display opponent

anticipatory pain related activity under apparent higher control(Fields, 2004).

Whatever the mechanisms, these influences are thought to be clinically important

both in endogenous pain modulation (including placebo analgesia) and in the

pathogenesis of some chronic pain syndromes(Fields, 2004;Petrovic et al.,

2002;Price, 1999;Wager et al., 2004), and we suggest that integrated

psychological, neurophysiological and computational approaches offer some

promise in furthering their understanding.

Recently, Baliki and colleagues (2010) performed an experiment looking at the

offset of pain, as well as the onset (the two are de-correlated by varying the
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duration of a phasic pain stimulus). They did this in chronic back pain subjects,

and in healthy controls. What they saw was a clear difference in activity between

the two groups at the time of offset: probably the best imaging demonstration to

date of differential pain processing in patients and controls. They showed that

basic pain activation statistical maps are very similar between groups, but a

striking difference in the ventral striatum (a region that seems to include the

nucleus accumbens and ventral putamen). At the time of onset of pain, both back

pain and control subjects show phasic clear activation of this region. However, at

the time of offset of pain, the control patients show a further phasic activation,

whereas the back pain patients show a phasic decrease in activity. The authors

suggest that the phasic activity at the time of onset may represent a salience or

arousal signal associated with the pain in both groups. At the time of offset, they

suggest that the control group exhibit an appetitive relief signal, whereas the

back pain group exhibit a punishment signal as the patients return to attend to

their back pain, manifest negatively in a reward-coding system. As the authors

note, the correlation with a derivative of value has parallels with a prediction

error. However this raises a couple of awkward problems: salience-based

accounts of striatal activity are generally thought of as competing theories of

dopaminergic function, rather than in addition to the reward prediction error

theories, and so it is difficult to accommodate both accounts within the same pain

epoch. Secondly, it is tricky to imagine how a motivational system will consider

less pain as punishment, despite the attention-related decrement in back pain

during the experimental pain. If this were really the case, then why don’t back

pain patients seek out phasic pain to distract them from their chronic back pain?

An alternative explanation is that at the time of offset, control subjects adopt a

reward-valenced frame, and as such exhibit a dominant appetitive coding of

relief, as a ‘more reward’ prediction error. However the back pain patients have a

persistently aversive baseline, and so exhibit a dominant aversive representation

of relief, as ‘less punishment’, coded as an aversive prediction error. What is

needed to resolve these different interpretations is some way of

pharmacologically or anatomically dissociating appetitive and aversive pathways

within the ventral striatum.
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Table 4.1. MNI coordinates and statistical z-scores for the appetitive, aversive and joint

co-expressed appetitive-aversive temporal difference prediction error.

Region Laterality X Y Z z-score

Appetitive prediction error

Midbrain (Substantia nigra) L -18 -12 -8 3.99

Amygdala L -20 2 -26 3.33

Aversive prediction error

Lateral orbitfrontal cortex R 40 34 -20 3.72

L -34 34 -20 3.71

Genual anterior cingulate cortex R 10 42 -6 4.24

Motor cortex R 14 0 60 5.35
¶

Combined appetitive-aversive prediction error

Ventral putamen R 18 8 0 4.08

22 10 -10 3.32

L -18 8 -12 3.62

Anterior insula R 30 22 6 3.87

36 2 16 4.78

L -34 12 12 4.55

Rostral anterior cingulate cortex R 2 34 20 3.61

¶ Significant following whole brain correction
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Chapter 5. Differential striatal activity underlies

appetitive and aversive learning for monetary gains and

losses (experiment 3).

5.1 Introduction.

A wealth of human and animal studies implicates ventral and dorsal regions of

the striatum in aspects of the learned control of behaviour in the face of rewards

and punishments. In experiments involving primary rewards and punishments,

the BOLD signal in the human striatum measured using fMRI covaries closely

with key learning signals employed by abstract learning models (Haruno et al.,

2004;O'Doherty et al., 2003;Seymour et al., 2004;Tanaka et al., 2004;Tanaka et

al., 2006;Yacubian et al., 2006). These algorithms originate in sound

psychological learning accounts, and are known to acquire normative predictions

and affectively optimal behaviours (Barto, 1995;Sutton RS and Barto AG,

1990;Sutton and Barto, 1981).

However two, related, sets of findings, regarding the orientation of this signal

and the relationship between rewards and punishments, remain difficult to

accommodate fully under this interpretation. First, the BOLD signal seen in the

striatum typically takes the form of a signed prediction error, with baseline

activity when outcomes match their predictions, and above- and below-baseline

excursions when outcomes are more or less than expected, respectively. Of

course, rewards and punishments have opposite valences, with a negative

punishment (e.g., one expected but omitted) bearing a close computational and

psychological relationship with a positive reward. However, in experiments that

involve cues that predict exclusively rewards (which can be presented or

omitted), or exclusively primary punishments (which can also be presented or

omitted), the BOLD signals are apparently oppositely oriented, with positive

BOLD excursions accompanying both positive reward and positive punishment,

and below-baseline excursions accompanying both negative (or omitted) reward

and punishment (Becerra et al., 2001;Breiter et al., 2001;Delgado et al.,
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2000;Elliott et al., 2003;Jensen et al., 2003;Knutson et al., 2000;Nieuwenhuis et

al., 2005;O'Doherty et al., 2003;Pagnoni et al., 2002;Seymour et al.,

2004;Seymour et al., 2005;Tanaka et al., 2004;Yacubian et al., 2006;Zink et al.,

2003).

Second, in the above experiments that involve financial costs (in contrast to those

involving primary punishments such as physical pain), the striatal BOLD signal

is typically observed to be oriented as in rewarding tasks, with monetary gains

associated with positive BOLD activations, and losses with sub-baseline signals.

Indeed, there are few reports of any brain areas showing a positive BOLD

response to financial loss at all, and although this is not exclusively the case (for

instance in amygdala for instance (Yacubian et al., 2006), and insula cortex

(Knutson et al., 2007a), it has been suggested that monetary losses and gains

might be fully processed by a unitary (appetitive) system, centred on the striatum

(Tom et al., 2007).

Potential explanations for these puzzles include the possibility that the striatal

BOLD signal reflects the release of different neuromodulators (Daw et al.,

2002;Doya, 2002)(one reporting prediction errors of each valence), or the

possibility that that neighbouring regions of the striatu m report on the different

valences (Reynolds and Berridge, 2001;Reynolds and Berridge, 2002). Indeed,

there are sound psychological and neurophysiological reasons to think that

separate, opponent systems are responsible for the two valences (Dickinson and

Dearing MF, 1979;Gray, 1991;Konorski, 1967). But on this interpretation it

remains unclear why different circumstances implicate each signal – for instance,

why pain is apparently reported by a punishment-oriented prediction error, but

monetary losses are not. We designed a Pavlovian conditioning experiment,

involving mixed gain and loss outcomes, to address these underlying issues.

The key requirements for the task were to integrate monetary predictions about

gains and losses, and to avoid framing the problem entirely in terms of one

valence. One strategy for mitigating the latter, at the potential expense of low

experimental power and only subtle outcomes, is to make the task involve

predictions alone, with no requirement for action, and so avoiding subjects
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having expectations that they will be able to win. Thus, we used functional

magnetic resonance imaging (fMRI) to examine striatal representations of

financial loss in tasks which involve mixed gains and losses, using a probabilistic

first-order Pavlovian learning task with monetary outcomes. Importantly, the

design included both mixed and non-mixed valence outcome probabilities,

allowing us to look specifically at the influence on outcome representations

(specifically, the prediction error) of the context provided by the non-

experienced outcome (figure 5.1).

Figure 5.1. Experimental design. Visual cues were presented for 3.5 seconds, and

followed immediately with the outcome, displayed for 1.5 seconds, depicting the outcome

amount. For the analysis, events were marked at the time of the outcome, and linear

contrasts performed between the different outcome types.

5.2. Methods

Subjects: Twenty four (11 female) subjects, age range 19-35, participated in the

study. All were free of neurological or psychiatric disease, and fully consented to

participate. The study was approved by the Joint National Hospital for Neurology

and Neurosurgery (UCLH NHS trust) and Institute of Neurology (UCL) Ethics

Committee. Subjects were remunerated by amounts corresponding to their actual
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winnings during the task (mean zero), added to a fixed pre-stated amount for

time and inconvenience (£20).

Stimuli and Task: We performed a probabilistic first order Pavlovian delay

conditioning task, with visual cues predictively paired with monetary outcomes,

as demonstrated in figure 1. Visual cues were presented on a computer monitor

projected onto a screen, visible via an angled mirror on top of the fMRI headcoil.

The visual stimuli were presented for 3.5 seconds, and on termination were

followed immediately by a 1.5 sec duration image of their outcome, either an

empty circle (no outcome), a 50pence or £1.00 coin, below which was written in

bold letters the amount, and whether they had won or lost (for example ‘WIN

£1.00’). The 5 cues predicted the following outcomes:

The visual stimuli were abstract coloured images, approximately 6cm in diameter

viewed on the projector screen from a distance of approximately 50cm. They

were fully balanced and randomised across subjects, and matched for luminance.

We presented 200 trials over 2 sessions, with each trial being presented with a

jittered interval of 2-6 seconds.

Preference task: Following the conditioning task, we assessed the acquisition of

Pavlovian cue values using a preference task, involving forced choices between

pairs of cues. Each cue was presented alongside (horizontally adjacent) each

Cue Outcome Probability

Neutral £0 1

Univalent reward £0

£1

0.5

0.5

Univalent loss £0

£-1

0.5

0.5

Bivalent cue (£1) £1

£-1

0.5

0.5

Bivalent cue (50p) £0.50

£-0.50

0.5

0.5
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other cue, and subjects (still inside the fMRI scanner) made an arbitrary

preference judgement between them, using a response keypad (no outcomes were

delivered). Each possible combination was presented 5 times (making 50 trials),

in random order, and with the position of each cue (on the left or right side of the

screen) also randomised. The total number of preference choices for each cue

was summed (in a similar manner to a league table) and non-parametric

comparisons assessed statistically.

Pupillometry: Pupil diameter was measured online during fMRI scanning by an

infrared eye tracker (Applied Sciences Laboratories, Waltham MA, Model 504)

recording at 60 Hz. Pupil recordings were analysed on an event-related trial

basis, and used to find evidence of basic conditioning between the reward,

aversive and neutral cue. We used the peak light reflex following presentation of

the cue, which is a standard measure of autonomic arousal (Bitsios et al., 2004),

and we performed analyses using a repeated measures ANOVA and post hoc t-

tests. Technical problems led to the data not being collected for 4/24 subjects.

fMRI: Subjects learned the task de novo in a functional magnetic resonance

imaging (fMRI) scanner to allow us to record regionally specific neural

responses. Functional brain images were acquired on a 1.5T Sonata Siemens

scanner. Subjects lay in the scanner with foam head-restraint pads to minimise

any movement. Images were realigned with the first volume, normalised to a

standard EPI template, and smoothed using a 6mm FWHM Gaussian kernel.

Realignment parameters were inspected visually to identify any potential

subjects with excessive head movement, none was found. Images were analysed

in an event-related manner using the general linear model, with the onsets of

each outcome represented as a delta function to provide a stimulus function.

Regressors of interest (10 in total) were then generated by convolving the

stimulus function with a haemodynamic response function (HRF). Effects of no

interest included the onsets of visual cues and realignment parameters from the

image pre-processing to provide additional correction for residual subject

motion.
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Linear contrasts of the outcomes SPMs were taken to a group level (random

effects) analysis by way of a one-sample t-test. MNI coordinates and statistical z-

scores are reported in figure legends.

Group level activations were localized according to the group averaged structural

scan. Activations were checked on a subject-by-subject basis using individual

normalised structural scans, acquired after the functional test scanning phase, to

ensure correct localization. We report activity in areas in which we had prior

hypotheses, based on previous data, though without specification of laterality.

These regions have established roles in both aversive and appetitive predictive

learning, and included putamen, caudate, nucleus accumbens, midbrain

(substantia nigra), amygdala, anterior insula cortex, and orbitfrontal cortex. We

report activations at a threshold of P<0.001, which survive false discovery rate

(FDR) correction at p<0.05 for multiple comparisons using a 8mm sphere around

coordinates based on previous studies. Note that in the figures (3 and 4) we use a

threshold of p < 0.005 (with a 5 voxel extent threshold) for display purposes. No

other activation was found outside our areas of interest that survived whole brain

correction for multiple comparisons using FDR correction at P<0.05. Details and

statistics of all significant activations appear in the figure legends of the

appropriate contrasts.

We performed two central analyses. One involved trial-based contrasts for

positive reward and loss prediction errors:

i) Positive reward prediction error: bivalent £1.00 win outcome

minus univalent £1.00 win outcome.

ii) Positive loss prediction error: bivalent £1.00 loss minus univalent

£1.00 loss outcome.

In the second analysis, we used a simple reinforcement learning model to

generate a signal corresponding to the outcome prediction error, which, as in

previous studies, was applied as a regressor to the imaging data(O'Doherty et al.,

2003). Here, we used a temporal difference model with a learning rate  = 0.3

based on our previous data from Pavlovian learning(Seymour et al.,
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2005)(although note that the results presented below are robust to changes in

learning in realistic ranges (0.3 -0.7)). In this model, the value v of a particular

cue (referred to as a state s) is updated according to the learning rule: v(s)  v(s)

+ δ, where δ is the prediction error. This is defined as δ = rt - v(s)t where r is

the return (i.e. the amount of money). We employed a parametric design, in

which the temporal difference prediction error modulated the stimulus functions

on a stimulus-by-stimulus basis. The statistical basis of this approach has been

described previously(Buchel et al., 1998;O'Doherty et al., 2003). Regressors

corresponding to the outcome prediction errors were then generated by

convolving the stimulus function with a haemodynamic response function

(HRF).

Finally, we considered two further trial-based contrasts. One sought the

representation of the negative prediction errors:

iii) Negative reward prediction error: univalent £1.00 win outcome

minus bivalent £1.00 win outcome.

iv) Negative loss prediction error: univalent £1.00 loss minus bivalent

£1.00 loss outcome.

These contrasts afforded no significant difference at our thresholds.

The second contrast considered residual activity in striatum, when equal

prediction errors are subtracted:

v) Zero net prediction error: bivalent £0.50 win outcome minus

univalent £1.00 win outcome.

vi) Zero net prediction error: bivalent £0.50 loss outcome minus

univalent £1.00 loss outcome.

As expected from standard models, none of these contrasts yielded a significant

difference.

To address the possibility that cue-related responses might confound

identification of prediction error related responses, we repeated all analyses (both

trial-based and model-based), with the inclusion of a single cue related regressor.

Inspection of the regressor covariance matrix relating to parameter estimability

following convolution of the design matrix with the HRF suggested that the
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models were not over-specified. Indeed, for the model-based analysis, there was

no correlation between the cue regressor and the prediction error. In keeping with

this, the SPMs for both trial-based and model-based analyses showed minimal

changes in results. Second, we repeated the trial-based analysis with full

specification of the identity of the cue, ie, with 5 separate cue regressors. As

above, this did not alter the results to any substantial degree. Third, we

orthogonalised the outcome regressors with respect to the cue regressors, and

again, the results changed only minimally (in either direction). No significant

correlations were found with the cue-related regressors.

3. Results.

Behavioural results: The post-conditioning preference task demonstrated

significant preference for the cue associated with univalent reward cue over the

neutral cue, in turn preferred to the univalent loss cue. Preference scores for the

bivalent cues were slightly above those of the neutral cue, for which the expected

value is equivalent (see figure 5.2; see figure legend for statistics). Pupil

diameter, which is an autonomic measure of arousal, also provided evidence of

basic conditioning to the rewarding and aversive cues, compared to neutral cue

(see figure 5.2; see figure legend for statistics).
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Figure 5.2 . Behavioural results. a) Preference scores: One-way repeated measures

anova F(4,92)=5.572 p=0.0005; post-hoc two-tailed t test yielded significant differences

between univalent reward and neutral, and univalent loss and neutral (p<0.05). b) Mean

pupillometry, average across all trials across learning, in a trial specific manner. We looked

for a basic effect of conditioning between the rewarding, aversive and neutral cue, which is

a standard measure of conditioning. Repeated measures ANOVA revealed a significant

effect of trial type F(2,19)=3.342, p<0.05, and post-hoc t-tests showed a significant effect
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(increased amplitude of light reflex) for both rewarding and aversive cues when compared

to the neutral cue (p<0.05).

fMRI results: The experimental design allowed comparison of neural responses

to winning money in two conditions: one in which the alternative was winning

nothing, and one in which the alternative was losing. Similarly, it allows

comparison of neural activity corresponding to losing money when the

alternative was nothing, or winning. Thus, the key BOLD contrasts were

between the univalent and bivalent outcomes, for both gain and loss outcomes,

since these reveal appetitive and aversive (respectively) prediction errors

specifically relating to the outcomes associated with mixed-valence predictions.

In the appetitive case [bivalent cue followed by £1 reward – univalent reward cue

followed by £1 reward] this corresponds to a positive relative reward prediction

error of 50 pence, and was associated with activation in ventral striatum (see

figure 5.3a). In the aversive case [bivalent cue followed by £1 loss – univalent

loss cue followed by £1 loss], this corresponds to a positive aversive prediction

error of -50 pence, and was also associated with activation in ventral striatum

(figure 5.3b). The peak of the aversive prediction error was slightly posterior to

the appetitive prediction error, as shown in the sagittal section displayed in fig

5.3c.
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Figure 5.3. fMRI simple bivalent – univalent contrasts. a) aversive prediction error:

right ventral striatum -16 0 -10, z = 3.74, 46 voxels at p < 0.005. This contrast also

revealed a peak in right anterior insula (not shown, 30 18 -12, z = 3.60). Yellow

corresponds to p<0.005, magenta corresponds to p<0.001. b) reward prediction error:

right ventral striatum -16 6 -6, z = 3.38, 28 voxels at p < 0.005. Yellow corresponds to

p<0.005, magenta corresponds to p<0.001. c) sagittal view showing the two peaks:

reward (green) and aversive (red).

However, the magnitude of these peaks was such that this analysis could not

reliably differentiate the location of appetitive and aversive prediction errors,

with the activity in each peak being only insignificantly greater than activity

associated with the contrast that defined the other peak. Further, the trial-based

contrasts (iii and iv) testing for negative prediction errors of either valence

showed no significant effects. This could reflect an asymmetry reported at the

spiking level for dopamine neurons (Bayer and Glimcher, 2005;Fiorillo et al.,

2003;Morris et al., 2006;Niv et al., 2005), where positive errors are coded more
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strongly than negative ones. It may additionally be due to the relatively crude

trial-based measures.

Therefore, we considered a more sensitive analysis based on a temporal

difference learning model. This model is known to offer a good account of the

neurophysiological responses of dopamine cells associated with Pavlovian

learning about rewards in monkeys (Montague et al., 1996;Schultz et al., 1997),

and has been successfully used in human fMRI to probe prediction error

components of the BOLD signal from the striatal targets of these cells (Haruno et

al., 2004;O'Doherty et al., 2003;Seymour et al., 2004;Tanaka et al., 2004;Tanaka

et al., 2006). We applied the model as in previous studies, and used the

prediction error occurring at the time of the outcomes generated by this model as

a parametric regressor in the fMRI data analysis. This model incorporates both

positive and negative prediction errors, and thus identifies valence specific

responses. Aversive prediction errors should be negatively correlated with this

signal; appetitive prediction errors should be positively correlated with it.

Therefore, unlike the trial-based contrasts, this analysis should identify areas that

are specific to either valence.

In other words, this analysis identifies subject-specific, trial-specific activity that

correlates with the prediction errors fitted by the temporal difference learning

model. This analysis was applied solely to the bivalent cues (since it is during

these trials that we expected to find opponent prediction error representations).

Activity associated with an aversive temporal difference outcome prediction

error was observed posteriorly in the mid putamen (fig 5.4a). Activity associated

with an appetitive temporal difference outcome prediction error was observed in

more anterior ventral striatum, in close proximity to the nucleus accumbens (see

figure 5.4b). These activations are presented in sagittal sections (fig 5.4c; green

and red respectively), to permit comparison with the simple prediction error

contrasts shown in fig 5.3c.
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Given a recent report of identification of an aversive prediction error in amygdala

(Yacubian et al., 2006), we looked at a reduced threshold (uncorrected p<0.01)

specifically in region. However, no correlated activity was identified.

Figure 5.4. fMRI TD model: a) aversive TD error: right mid striatum (MNI coordinates:

-20 -4 6; z = 3.89, p<0.005, 21 voxels). Yellow corresponds to p<0.005, magenta

corresponds to p<0.001. Shown also in sagittal section, in red (right). b) appetitive TD

error: right ventral striatum (nucleus accumbens): MNI coordinates: 10 6 -1; z = 3.13,

shown at p < 0.005, 15 voxels); left ventral striatum (nucleus accumbens): MNI

coordinates: -12 6 -18 z = 3.62, 14 voxels). Yellow corresponds to p<0.005, magenta

corresponds to p<0.001. Shown also in sagittal section, in green (right).

5.4. Discussion.

Our results suggest a partial resolution to the puzzles outlined in the introduction.

The data suggest that aversive and appetitive prediction errors may be



106

represented in a similar manner, albeit somewhat spatially resolvable along an

axis of the striatum. The appetitive prediction error appears to direct the BOLD

signal in more anterior and more ventral regions than the aversive prediction

error. Furthermore, it appears that the prevalence of each sort of coding may

depend on the affective context.

Although one should be cautious regarding the topographic spatial resolution of

fMRI, the anterior-posterior gradient resembles that seen in stimulation studies of

the ventral striatum in rats, in which micro-injecting a GABA agonist or a

glutamate antagonist into more anterior regions produces appetitive responses

(feeding), and into more posterior regions, produces aversive responses (paw

treading, burying) (Reynolds and Berridge, 2001;Reynolds and Berridge,

2002;Reynolds and Berridge, 2003). These studies are characteristic of a growing

body of evidence pointing to role of the ventral striatum in aversive motivation,

and with distinct neuronal responses associated with appetitive and aversive

events (Levita et al, 2002;Horvitz, 2000;Ikemoto and Panksepp, 1999;Jensen et

al., 2003;Roitman et al., 2005;Schoenbaum and Setlow, 2003;Setlow et al.,

2003;Seymour et al., 2004;Seymour et al., 2005;Wilson and Bowman, 2005).

Aversive learning is well recognised to involve the amygdala. Interestingly, a

recent gambling study involving mixed gains and losses of money, at differing

amounts and probabilities, identified loss prediction errors in the amygdala, but

only gain related prediction error in the striatum (Yacubian et al., 2006).

Although it is difficult to place too much emphasis on the respective negative

findings for this and our studies, it is noteworthy that these two areas are richly

interconnected, both directly and indirectly (Russchen et al., 1985).

The anatomical separation within the striatum could well be accompanied by a

separation in terms of the relevant neuromodulators (Daw et al., 2002;Doya,

2002). A substantial body of data points to the role of dopamine in striatal reward

related activity (Everitt et al., 1999;Montague et al., 2004;Wise, 2004),

specifically relating to the representation of prediction errors that guide learning

in Pavlovian and instrumental learning tasks (Montague et al., 1996;Schultz et

al., 1997). Furthermore, dopamine has been observed to modulate striatal reward
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prediction errors in human monetary gambling tasks selectively (Pessiglione et

al., 2006). If dopamine is involved in the appetitive prediction error observed

here, this raises the question as to nature of the aversive prediction error signal,

given previous observations and current controversies concerning dopaminergic

involvement in aversive behaviours (Horvitz, 2000;Ikemoto and Panksepp,

1999;Ungless, 2004). One possibility is that serotonin released from the dorsal

raphe nucleus plays this role (Daw et al., 2002). Consistent with this hypothesis,

there is evidence of serotonin-dopamine gradient along a caudal-rostral axis in

the striatum (Brown and Molliver, 2000;Heidbreder et al., 1999). However, since

our study was not pharmacological, we cannot rule out the possibility that,

instead of there being a separate, non-dopaminergic opponent, dopamine

provides a valence-independent signal that interacts with valence-specific

activity intrinsically coded in striatum (Seymour et al., 2005).

From the perspective of studies into financial decision making and prediction, it

is noteworthy that we see striatal BOLD signals above baseline associated with

prediction errors for financial losses, whereas most previous imaging studies

involving positive and negative financial returns show only decreases below

baseline for unexpected losses. This result is important since it makes the

findings for financial losses consonant with those for primary aversive outcomes

such as pain. It also reinforces caution in the interpretation of striatal activity in

human decision making tasks, which as noted in the past (Poldrack, 2006) are

sometimes prone to the reverse inference that striatal activity implies the

operation of reward mechanisms.

One possible reason for the difference between our and previous results is that in

experimental monetary decision making tasks, subjects make choices under the

reasonable expectation (perhaps based on implicit knowledge of the mores of

ethical committees) of a net financial gain. This establishes an appetitive context

or frame within which all outcomes are judged. By contrast, most decisions in

day-to-day life involve risks that span positive and negative outcomes; we hoped

that mixed-outcome prediction, with no opportunity for choice, would avoid such

a frame. Empirical work in finance and economics has suggested that such
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mixed-outcome decisions fit rather awkwardly within the descriptive framework

usually applied to decisions that involve pure gains and losses. Constructs such

as Prospect theory suggest a strong dependence of decision-making on valence-

context (positive or negative) in which options are judged (Levy and Levy,

2002). The absence of a positive orientation for loss prediction errors in previous

studies may thus have arisen from such positive frames. Our results hint that

more naturalistic human studies that involve genuine risk of financial loss may

be critical to gain further insights into the role of the striatum and other structures

into the judgement and integration of gains and losses.
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Chapter 6: Instrumental learning for rewards and

punishments, and the role of serotonin (experiment 4).

6.1 Introduction

Despite a wealth of data implicating serotonin in motivated behaviour and

decision-making, it has been remarkably difficult to identify the precise

computational functions that it mediates. Existing theories propose roles in

aversive learning and reward-punishment opponency (both phasic and tonic),

behavioural flexibility, time discounting, and behavioural inhibition(Cools et al.,

2008;Daw et al., 2002;Dayan and Huys, 2008;Doya, 2002;Robbins and Crockett,

2009). Indeed one of the notable and consistent observations from human and

animal studies of decision-making is the persistence in choosing options that

offer dwindling returns or even intermittent punishment that occurs when central

levels of serotonin are depleted(Walker et al., 2009). This seems likely to reflect

a core process by which serotonin controls choice, but it could in principle relate

to any number of distinct mechanisms also associated with serotonergic function,

such as impaired representation or impaired learning about either obtained or

omitted rewards, or punishments, or some other aspect of behavioural flexibility.

To date, reinforcement learning theory has proved remarkably useful in pulling

apart different components of decision-making, offering an accurate account of

both behavioural and neurophysiological data (Daw and Doya, 2006). The

paradigmatic example is serotonin’s companion monoamine neuromodulator,

dopamine, which plays an increasingly well-understood role in reward learning

(Montague et al., 2004;Schultz et al., 1997). Indeed, it has been proposed that

serotonin serves in some fashion to oppose dopaminergic signaling. However,

even that mechanistic possibility suggests at least two potential computational

functions – either signalling punishments, or signalling an average reward level

against which outcomes are weighed – and these have been hard to distinguish, at

least in part for the methodological reason that existing tasks have not been able

to selectively probe distinct computational aspects of reward and punishment

learning.
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Here, we used simultaneous instrumental reward and avoidance learning in a

four-armed bandit paradigm (figure 1), and probed the contribution of

serotonergic mechanisms using acute dietary tryptophan depletion. On each trial,

subjects (n=30) selected one of four possible actions, each of which was

associated with some chance of reward (20 pence) and also some chance of

punishment (a painful electric shock). Importantly, on each trial, each outcome

was delivered, or not, according to an independent random choice – like two coin

flips – allowing us to unambiguously determine their effects on choice behaviour

and neural activity. The probabilities of reward and punishment were

independent from one another and also independent between machines, and

evolved slowly over time between zero and 0.5 according to separate random

diffusions. This required subjects constantly to relearn the values of each bandit,

and balance information acquisition (exploration) with reward acquisition and

punishment avoidance (exploitation).

Figure 6.1. Task design. Subjects play a four-armed bandit task, with each bandit

associated with an independent, non-stationary probability, between 0 and 0.5, of reward

(20 pence) or punishment (a painful electric shock to the dorsum of the left hand). Hence

subjects learn to select bandits to minimise shocks and maximise rewards, and can

receive either, neither, or both on any trial.
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In deciding what to choose, this task inherently requires participants to balance

the values of qualitatively distinct outcomes, namely a primary aversive outcome

(pain) and a secondary appetitive outcome (money). For instance, subjects could

concentrate solely on winning money and ignore the pain, or concentrate on

avoiding pain and ignore money, or somehow trade the two off. When different

appetitive outcomes are involved, “reward prediction error” theories suggest that

the neuromodulator dopamine is a candidate neural substrate for such an

integrative currency(Montague et al., 2004); it is, however, less clear and indeed

rather controversial whether aversive outcomes also engage dopamine or instead,

another “opponent” neural system.

Importantly, this relationship between rewards and punishments relates to some

of the main theories of serotoninergic function(Cools et al., 2008;Daw et al.,

2002;Dayan and Huys, 2008;Doya, 2002;Robbins and Crockett, 2009). In one

computationally specific version, it was proposed that serotonin serves as a

motivational opponent to dopamine. However, this might have at least two

effects, depending on the timescale at which serotonin opposes dopaminergic

action(Daw et al., 2002). At a fast timescale, serotonin might carry an aversive

prediction error, which guides aversive learning in much the same way as

dopamine is thought to guide reward learning. In the context of the present task,

this would predict that serotoninergic manipulation would selectively affect the

impact of punishing events, by modulating how strongly or rapidly they affect

behaviour, compared to rewards. Alternatively, at a slower timescale, an

opponent signal might carry an average reward signal (a “comparison term” or

“aspiration level”): a constant average against which individual outcomes are

weighed to determine their worth. In the present task (see Methods) the effect of

such a comparison would be to modulate the degree to which subjects tend to

switch from the current option, or stay there, notwithstanding the outcome. Low

aspiration levels lead to persistent or ‘sticky’ behaviour because, in effect,

individuals are pessimistic about reward availability elsewhere in the

environment. These different accounts lead to dissociable predictions of the

effects of serotonin disruption in the current task.
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6.2 Methods.

Subjects:

The study was approved by the Joint Ethics Committee of the Institute of

Neurology and National Hospital for Neurology and Neurosurgery, and all

subjects gave informed consent prior to participating. We studied 30 healthy

subjects, recruited by local advertisement. We also excluded subjects according

to the following criteria (numbers in brackets refer to the number of exclusions

for subjects answering our initial advert).

- standard exclusion criteria for MRI scanning (2 subjects)

- any history of neurological (including any ongoing pain) or psychiatric

illness (6 subjects).

- history if depression in first degree relative (6 subjects)

Female subjects were scanned mid-cycle.

Tryptophan depletion procedure.

We performed a randomised, placebo-controlled, double-blind, ‘low-dose’

tryptophan depletion procedure. This involved ingestion of a tryptophan depleted

or control amino acid mix according to the concentrations below:

Isoleucine 4.2g

Leucine 6.6g

Lysine 4.8g

Methionine 1.5g

Phenylalanine 6.6g

Threonine 3.0g

Valine 4.8g

Tryptophan or placebo 3g or 0g
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The amino acids mixture was commercially mixed and capsulated in 1g capsules

(making a total of 76 capsules), and labelled according to the blinding protocol

(DHP clinical). This procedure allows subjects to fully ingest all the amino acids

without significant gastrointestinal side-effects, notably nausea, common with

standard dose tryptophan depletion in which the mixture is prepared as a ‘milk-

shake’. The unblinding code was supplied in sealed envelopes opened only after

the experiment had been completed.

Subjects fasted from midnight before the day of the study. On arrival on the

morning of the study, blood was taken for estimation of serum amino acids.

Subjects then ingested the amino acid capsules, and were allowed a small

quantity of orange or apple juice (<300ml) to aid this, as well as 2-3 crackers, to

ward off hypoglycaemia. Blood was taken again at 5 hrs post ingestion, just prior

to the experiment. Subject timings were staggered allowing a maximum of 3

subjects to be tested per day.

To assess for side-effects as a result of the tryptophan depletion procedure, we

administered a standard 10 point VAS rating scale which assesses the following

criteria:

Alert / Drowsy

Calm / Excited

Strong / Feeble

Clear-Headed / Muzzy

Well-coordinated / Clumsy

Energetic / Lethargic

Contented / Discontented

Tranquil / Troubled

Quick-witted / Mentally slow

Relaxed / Tense

Attentive / Dreamy

Proficient / Incompetent

Happy / Sad

Amicable / Antagonistic

Interested / Bored

Gregarious / Withdrawn
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Subjects scored higher on the aggregate side-effects at the end of the experiment

(mean increase in VAS score 0.34 per item, standard error 0.21), but there was

no correlation with tryp:LNAA ratio (r=-0.56, p=0.77).

We also administered the Hamilton Depression (12 question version: mood,

guilt, suicide, work, retardation, agitation, anxiety (psychological and somatic),

depersonalisation, paranoia, obsessiveness) before ingestion of the amino-acids,

and before the task itself. This showed no evidence of pre-existing depression,

and no effect on mood of the tryptophan depletion procedure.

Experimental task.

Subjects performed a probabilistic instrumental learning task involving aversive

(painful electric shocks) and appetitive (financial rewards) outcomes. This

equated to a 4-armed bandit decision making task, with non-stationary,

independent outcomes. Each trial commenced with the presentation of the four

bandits as displayed in figure 1, following which they had 3.5 seconds to make a

choice. If no choice was made (which occurred either never, or very rarely across

subjects), the trial would skip to the next trial automatically. After a choice was

made, the chosen bandit was highlighted, and all bandits remained on the screen,

and an interval of 3 seconds elapsed before presentation of the outcome. If

subject won the reward, the words ‘20p’ appeared overlain on the chosen bandit.

If the subject received a painful shock, the word ‘shock’ appeared overlain on the

chosen bandit, and a shock was delivered to the hand (see below) simultaneously.

If both a shock and reward were received, both ‘20p’ and ‘shock’ appeared

overlain on the chosen bandit, one above the other, and the shock was delivered.

The outcome was displayed for 1 second, after which the bandits extinguished

and the screen was blank for a random interval of 1.5 to 3.5 seconds.

Delivery of painful shocks

Two silver chloride electrodes were placed on the back of the left hand, through

which a brief current was delivered to cause a transitory aversive sensation,
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which feels increasingly painful as the current is increased. It was administered

as a 1 second train of 100hz pulses of direct current, with each pulse being a 2ms

square waveform, administered using a Digitimer DS3 current stimulator, which

is fully certified for human and clinical use. The stimulator was housed in a

aluminium shielded and fMRI compatible box within the scanner room, from

which the electrode wires emerged and travelled to the subject. The equipment

configuration was optimised by extensive testing to minimise RF noise artefact

during stimulation.

Painful shock levels were calibrated to be appropriate for each participant.

Participants received various levels of electric shocks, to determine the range of

current amplitudes to use in the actual experiment. They rated each shock on a

visual analogue scale of 0-10 from ‘no pain at all’ to ‘the worst possible pain’.

This allows us to use subjectively comparable pain levels for each participant in

the experiment.

We administered shocks, starting at extremely low intensities, and ascending in

small step sizes, until they reach their maximum tolerance. No stimuli were

administered above the participant’s stated tolerance level. Once maximum

tolerance was reached, they received a random selection of 14 sub−tolerance

shocks, which removed expectancy effects implicit in the incremental procedure.

We statistically fitted a Weibull (sigmoid) function to participants’ rating for the

14 shocks and estimated the current intensities that related to a level 8/10 VAS

score of pain (see below).
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The participants rated another set of 14 random sub-tolerance shocks at the end

of experiment, which revealed slightly lower mean ratings in the post-

experimental testing, than in the pre-experimental testing procedure (mean

decrement = 0.86 VAS points; standard error = 0.14). This was not correlated

with tryp:LNAA ratio (r=0.07, p=0.73), showing that the tryptophan depletion

procedure had no effect on pain sensation.

Experimental procedure.

Subjects fasted on the night before the study, and were asked to avoid high-

tryptophan containing foods on the day prior to the study. They attended in the

morning, consent was gained, and blood was taken for estimation of serum

amino acid concentration. Subjects received a computerised tutorial explaining in

detail the nature of the task, including explicit instruction on the independence of

reward and punishment, the independence of each bandit from each other, and

the non-stationarity of the task. Each of these points were supported by

demonstrations and componential practice tasks, after which subjects moved on

to perform a genuine practice task, with only the absence of shock delivery (still,
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however, displayed on the screen) differing from the subsequent experimental

task. At this time, subjects also underwent the pain thresholding procedure.

Subjects then ingested the amino-acid tablets, and relaxed in our reception area

until 5hrs had elapsed, at which time blood was taken again. The subjects then

entered the scanner to perform the task.

After the amino-acid ingestion, during the waiting period, subjects completed the

Cloninger tridimensional personality questionnaire. Subscales for novelty-

seeking (which we have previously been shown to correlate with novelty-based

exploration), harm-avoidance and reward dependence did not correlate with

behavioural parameters for stickiness or reward-aversion trade-off, and as such

the data are not reported.

fMRI scanning details

Functional brain images were acquired on a 1.5T Sonata Siemens AG (Erlangen,

Germany) scanner. Subjects lay in the scanner with foam head-restraint pads to

minimize any movement. Images were realigned with the first volume,

normalized to a standard echo-planar imaging template, and smoothed using a 6

mm full-width at half-maximum Gaussian kernel. Realignment parameters (see

analysis below) were inspected visually to identify any potential subjects with

excessive head movement. This was satisfactory in all subjects, and so none were

excluded.

The task was displayed on a computer monitor projected into the head coil and

visible on a screen at the end of the magnet bore, visible by the subjects by way

of an angle head-coil mirror. Subjects made their choices using a 4 button key-

response pad held by their right side.

Behavioural analysis and RL model
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We used a ‘direct actor’ reinforcement learning model, with separate appetitive

and aversive components. For instance with punishments, the learning rule is as

follows:

)()1( rewardrewardreward
i
rewardreward

i
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Rewards and punishment action weights are integrated to provide an overall

value quantity:
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For the behavioural analysis, we used a maximum likelihood method,

implemented by Matlab (Mathworks inc.), to estimate the best fitting parameters

of the model. Parameters were estimated (as above) on a subject by subject level,
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to allow us to test hypotheses relating to tryptophan status directly, and are as

below:

Parameter Depleted Control Contrast

Aversive learning rate reward 0.33 0.36 n/s

Appetitive learning rate punish 0.64 0.48 n/s

Exploration coefficient  16.6 19.9 n/s

Trade-off parameter b 0.50 0.58 n/s

Aggregate average reward agg -0.127, , 0.036 P=0.001

For the imaging analysis, we use the approximation punishreward   to yield

separate reward, punishment, and choice kernels, with the latter reflecting the

integrated average reward term. Specifically,

reward
i
reward

i
reward oww   )1( for rewarding outcomes

(8)

punish
i
punish

i
punish oww   )1( for punishing outcomes.

(9)

For non-chosen options:

i
reward

i
reward ww )1(  for rewarding outcomes

(10)

i
punish

i
punish ww )1(  for punishing outcomes.

(11)

And a choice kernel i for each option i

iii   )1( when i is chosen

(12)

ii  )1(  when i is non-chosen

(13)

We fit a single set of parameters for all subjects, regardless of the tryptophan

status, to refute the null hypothesis that there is no difference between groups.
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fMRI analysis

Images were analyzed in an event-related manner using the general linear model,

with the onsets of each outcome represented as a stick function to provide a

stimulus function.

The regressors of interest were generated by convolving the stimulus function

with a hemodynamic response function (HRF), and were as follows:

1. Appetitive prediction error, parametrically modeled as prediction error

calculated from the reinforcement learning described in the behavioural

analysis above, using the best fitting parameters at a group level (this

yields more stable estimates. The prediction error was modeled at 2 time-

points: the onset of the cue, and the onset of the outcome.This models

rewards (money) in isolation, and ignores the aversive shocks.

2. Aversive prediction error, parametrically modeled as prediction error

calculated from the reinforcement learning described above, in a similar

manner to reward. This models painful shocks in isolation, and ignores

the money rewards.

3. Choice kernel (stickiness value function), parametrically modeled from the

reinforcement learning model above. This was modeled at the time of the

cue.

Effects of no interest included:

4.Onsets of visual cues

5.Onsets of rewards

6.Onsets of the shocks

7. Realignment parameters from the image preprocessing to provide

additional correction for residual subject motion.

We report activity at an uncorrected threshold in the following areas of interest,

based on existing work in decision-making: ventral and dorsal striatum, medial

prefrontal cortex, anterior cingulate cortex, orbitofrontal cortex, insula cortex,
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dorsolateral and inferior later prefrontal cortex, superior temporal sulcus,

amygdala, VTA, dorsal raphe, PAG. All activities reported survive correction for

multiple comparisons using 8mm sphere volumes of interest.

Note in the analysis of the choice kernel (stickiness value function), if serotonin

were to negatively covary with brain activity (in the striatum) in the parametric

contrast of the choice kernel, this would be consistent with its’ representation of

the ‘missing component’ of value that stems from the addition of the average

reward parameter in that area. However, a positive covariation suggests that this

‘missing component’ must be integrated elsewhere. This is because if the

propensity to stick with the current choice decreased with serotonin, then the

only way that you could get a stick is to have an especially large activation in the

striatum on a stick trial.

Estimation of serum amino acid concentration.

Immediately after venupuncture, blood was centrifuged at 3000rpm for 5mins,

and serum extracted and frozen prior to analysis at -20degrees Celsius. Amino

acid estimation was performed by Mike franklin, Department of Psychology,

Oxford University).

Genotyping.

Genotyping was performed for the serotonin transporter polymorphism

(SS,SL,LL alleles). The main analysis reported were tested for significant effects

of allele, and allele x tryptophan status. No significant results were found,

possibly because of the small number of subjects.

6.3 Results

Subjects performed 360 trials, concatenated over 3 sessions. We manipulated

brain serotonin using a low-dose acute dietary trypotophan depletion procedure.

This manipulation was between-subjects, randomised, placebo-controlled, and
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double-blind. Of the 30 subjects who performed the task, 15 were randomised

into the control group (whose behaviour was previously illustrated) and 15 into

the trypotophan depleted group. Tryptophan depletion reduces brain serotonin

release, and accordingly comparison of the performance of the tryptophan

depletion to control group provides insight into the function of central

serotonin(Carpenter et al., 1998).

We fit subjects’ choices to a reinforcement learning model (see methods). This

formalises an appetitive learning process that compares phasic predictions about

money to a constant average financial reward term. This is mirrored by an

exactly analogous and separate aversive learning process, that learns

independently about pain, and incorporates an average pain term. Choice is

determined by integrating the values of each pathway, and the contribution of

each is governed by an appetitive-aversive trade-off parameter.

According to the phasic opponency hypothesis, tryptophan depletion would be

predicted to reduce either the punishment-reward trade-off parameter, or,

alternatively, the punishment learning rate (relative to reward). This would make

subjects less sensitive to punishments, or less responsive to changes in

punishment contingency, respectively, and likely to accrue more pain outcomes

as a result. According to a tonic opponency hypothesis, however, tryptophan

depletion would be predicted to reduce the average reward signal (integrated

from both appetitive and aversive learning streams), which would make subjects

more persistent or ‘sticky’ in their behaviour.

Our data strongly support the latter hypothesis, with a significantly lower average

reward term in the depleted group (-2.54 pence) compared to the control group

(0.72 pence, 2-tailed t-test p= 0.001). Figure 2 shows the correlation of the

average reward with pre- and post- amino-acid ingestion ratio of blood

tryptophan to other large neutral amino acids, which is an accurate indicator of

central serotonergic signalling. The punishment-reward trade-off parameter

indicated that subjects on average judged the pain as financially equivalent to a

value of 17.0 pence. However, there was no decrease in this, nor the aversive

learning rate, in the depleted group. Together, these results support the suggested
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action of serotonin as a slow-timescale opponent to appetitive learning, carrying

an aspiration level, rather than a fast-timescale opponent carrying a prediction

error to drive aversive learning.

Figure 7.2. Behavioural results: Average reward and serotonin.

Average reward estimated from the ML fits of the behavioural data, correlated with difference

between the tryptophan:LNAA ratio at the time of testing, compared to before amino acid

ingestion. This measure provides an accurate index of CNS serotonin levels.

Next, we assessed brain activity correlated with the choices using a model-based

fMRI approach. We used the prediction errors derived from the learning model,

split into separate errors for appetitive and aversive pathways. We sought

particularly to ascertain, first, whether appetitive and aversive prediction errors

were integrated or separate (with the latter expected if they arise from separate,

opponent systems as from dopamine and a fast, potentially serotonergic aversive

opponent); whether any prediction-error-related activity was modulated by past

choices as with the effect of the average reward level; and whether any of these

effects were modulated by tryptophan status.

First, the appetitive prediction error was correlated with activity in striatum, as

has been observed in numerous previous studies(McClure et al., 2003;O'Doherty
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et al., 2003) (figure 3a). Second, the aversive prediction error was negatively

correlated with the BOLD activity in dorsal striatum (figure 3b), indeed in a

region overlapping that found for positive error (figure 3c). The negative

correlation with the aversive prediction error implies a positive correlation with

the same signal inverted: that is, oriented like an appetitive prediction error with

omitted shocks corresponding to increased BOLD activity and unexpected

shocks decreased activity. In turn, this implies that the overall BOLD signal in

dorsal striatum can be viewed as a single, unified prediction error in rewards

minus punishments (equivalent to the difference between the appetitive and

aversive prediction errors), rather than the two signals being separate. This also

suggests that both effects may have a common underlying neural substrate, or, if

not, that they at least converge in the dorsal striatum.

Third, we studied brain activity related to the average reward. It is not possible to

directly probe a constant valued signal with fMRI, however, it is possible to look

at the modulation of value induced by the average reward term on trial-by-trial

choice values. With some straightforward assumptions (see methods), the

average reward term is approximately manifests as a choice kernel (ie. a weight

that corresponds to a tendency to repeat a choice), which adds extra value to

options that have been chosen in the more recent past. For instance, a negative

average reward term will produce persistence for recent choices, since such

pessimism diminishes the anticipated worth of alternative options. This might be

apparent as an additional value based on choice and independent of actual

outcomes. This stickiness ‘value’ positively correlated with widespread activity

in medial prefrontal cortex and nucleus accumbens (figure 3d).
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Figure 6.3. fMRI results

a) Appetitive prediction error. Bilateral head of caudate nucleus ((-12,-6,12), z=4.37;

(10,2,12), z=4.29). b) Avoidance prediction error. Bilateral head of caudate ((14,4,18), z=4.72;

(-8,2,14), z=3.35); left dorsal putamen ((-18,0,4), z=3.97); bilateral superior temporal sulcus

((-26,-2,-10), z=3.84; (34,-2,-14), z=4.34). c) Overlap of appetitive and aversive prediction

error, showing bilateral medial head of caudate, and bilateral cerebellar cortex. d) Choice

kernel. Activity correlating with the choice kernel: medial prefrontal cortex, nucleus accumbens.

Finally, we assessed how brain activity related to each of the above effects

depended on tryptophan status. There was no significant effect on brain activity

related to either the reward or punishment prediction error. This is consistent

with the lack of a behavioural effect of tryptophan status on reward or

punishment, and inconsistent with the hypothesis of a separate, serotonergically

mediated aversive prediction error signal. There are two competing possible

accounts of how the serotonin might modulate choice based on its behavioural

effect on average reward. If choice value is fully constructed in the caudate,

depleted subjects ought to have greater representation of a ‘stickiness’ choice

kernel than control subjects. However, if the effect of serotonin is mediated

outside the caudate, then depleted subjects ought to have greater representation

of a ‘stickiness’ choice kernel than control subjects in this region. The data

support the latter account: figure 4a shows the positive covariation between

serotonin (5HT:LNAA ratio) and the stickiness choice kernel in the medial head

of caudate.
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Figure 6.4. Correlation of BOLD activity and tryp:LNAA ratio

a) Positive covariation between the parametric choice kernel contrast and tryp:LNAA ratio. Mdial

head of caudate ((18,4,14), z=5.10; (-16,2,18), z=3.17). This shows that subjects with greater

tryptophan (non-depleted) show higher activity in medial head of caudate associated with choice

stickiness, despite their behavioural tendency to be less sticky. b) Correlation between

tryp:LNAA and the ‘stickiness’ choice kernel derived from the average reward parameter in the

peak voxel in right head of caudate. Note that the simple t-contrast between control minus

depleted groups yields a highly similar result.

6.4 Discussion

In summary, our data provide independent behavioural and neural data showing

that serotonin modulates a tonic average-reward signal, that provides a

comparison signal or aspiration level against which options are judged. Whereas

integration of phasic opponent value prediction errors occurs in the medial head

of the caudate nucleus, the data suggest that this tonic signal modulates effective

value outside of the caudate.

Though behavioural “stickiness” might arise from multiple causes, one key

factor, which arises in many reinforcement learning models and has previously

hypothesized to be controlled by serotonin, is the effect of an average reward
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level (also called a comparison term or aspiration level). Such a signal provides

an overall estimate of how good or bad you expect the environment to be in

general, against which the individual outcomes of different choices are measured.

It functions as an aspiration level in the sense that if the average reward

prediction is high, then the outcomes of current options are judged marginally

less attractive than if the average reward prediction is low, and as such the

tendency is to switch actions and explore elsewhere, in search of higher rewards.

Alternatively, if the aspiration signal is low, current options seem marginally

better, so the tendency is to stick. In this way, perseveration is a direct

consequence of comparing immediate vs long-term predictions. That serotonin

might control long-term reward prediction has been previously predicted(Daw et

al., 2002), and draws a parallel with psychological observations of serotonin’s

putative involvement in mood. Notably, the association of decreased serotonin

signalling with depression offers at the very least a phenomenological link to the

notion of reduced aspirations about future reward.

There are other factors that may also contribute to choice stickiness, though these

have not previously been linked to serotonergic function. For instance, it could

result from a simple form of stimulus-response (SR) learning, in which

previously taken choices are ‘stamped-in’(Mackintosh, 1983). Or it can be

viewed as a process to encourage oversampling of information. This latter

process may be advantageous in widely variable environments during which

reinforcement learning has a tendency to be over-sensitive to the immediate past,

which can lead to risk-aversion(Denrell and March, 2001).

Although the lack of an observed effect of tryptophan depletion on aversive

learning or aversive-appetitive opponency does not exclude such a role for

serotonin, the comparison with the magnitude of the choice effect is particularly

striking. A caveat to the presumptive refutation of these theories is the persistent

uncertainty about exactly what aspect of serotonin signalling is disrupted by

tryptophan depletion. This uncertainty extends to broad anatomical differences

(subcortical versus cortical), timescale differences (phasic versus tonic) and

synaptic dynamics (direct signalling versus autoregulation). This suggests the

need to explore different methodologies of serotonin function in future studies,
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such as neuronal recordings, cellular imaging, and psychopharmacological

studies.

The data also refine the role of the striatum in motivation. Previous Pavlovian

punishment studies (in which punishments are delivered regardless of any action)

have shown an aversive prediction error signal, oriented positively (opposite that

seen in the present study) in the ventral and dorsal striatum(Jensen et al.,

2006;Seymour et al., 2004), suggesting a site of convergence with the (putatively

dopaminergic) reward prediction error. However, in the present study, the sign of

the aversive signal changes to a reward-signed signal. The key difference

between the studies may be the availability of choices in the present design. If so,

this would be consistent with “two-factor’ theories of instrumental avoidance, in

which avoidance is mediated by the “reward” of attaining a “safety state” that

indicates successful avoidance (Dinsmoor, 2001;Mowrer, 1947). The comparison

of these studies suggests that in passive studies on aversion, punishments may be

framed as punishments, but when control becomes possible, punishments may be

framed as missed appetitive opportunities of avoidance. In fact, this is consistent

with previous demonstrations of reference sensitivity of striatal activity, in which

the contextual valence is apparently set by predictive cues (Seymour et al.,

2005). Critically, by forcing independent representation of reward and avoidance,

our data show that avoidance prediction, carried as an opponent reward-

predictive signal, co-activates the same region of striatum (medial head of

caudate) as that involved in signalling the prediction of standard rewards. This

demonstrates that the head of caudate is an integration site for these distinct

motivational pathways. Whereas this appetitive-aversive integration

(algorithmically, the addition of appropriately scaled excitatory and inhibitory

values (Dickinson and Dearing MF, 1979;Mackintosh, 1983)) is commonplace in

everyday decision tasks, this is possibly the first direct experimental

demonstration of its neuroanatomical basis.

However, the data also yield a surprising result with respect to the role of the

striatum in choice. In particular, the data argue against the values expressed (by

way of error terms) in the striatum as being the sole determinant of choice, given

the anti-correlation of caudate activity with perseverative behaviour. Rather, it
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suggests that striatal value processing must be integrated with an average reward

signal elsewhere. As mentioned above, locating the anatomical substrate for such

a tonic signal may be difficult with fMRI, because the temporal frequency of

noise in fMRI acquisition may be similar to that of a slowly varying average-

reward signal. However other methodologies, such as lesion data, may be more

informative. Of particular note, selective prefrontal (and not striatal) serotonin

lesion studies in the marmoset monkey lead to inflexible, perseverative choice,

suggesting that this may be the mediate of an average-reward serotonergic effect

on choice(Clarke et al., 2004;Clarke et al., 2007).

Lastly, the task provides a novel way to determine the aversiveness of

incommensurable quantities such as pain. Judgements of pain have typically

relied on explicit ratings (in humans), or innate responses (in animals). The

limitations of these methods are well established, in particular for human rating

scales which are at the mercy of a range of subjective influences(Fields HL and

Price DD, 2005). The task permits assessment of judgements of aversiveness

without explicit ratings, based instead on (economic) choice.
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Chapter 7. Discussion: contributions.

In this chapter, we highlight some of the specific novel contributions the research

has made to the field. The subsequent chapter (‘The architecture of aversive

motivation’) assimilates our findings with others in the field to put forward an

integrated theoretical structure of aversive motivation, including appetitive-

aversive integration. Lastly, the final thesis chapter (‘Implications for related

disciplines’) provides a supplementary discussion of the implications of our and

other findings have towards related disciplines, in particular behavioural

economics and social neuroscience.

7.1 Methodological contributions:

7.1.1 Developing computational models of human pain and aversive

behaviour

Psychological and neurophysiological approaches to human pain have generally

been phenomenological, orientated around explicit (reportable) and implicit

responses that can be measured and categorized. Hence, inferences about the

underlying physiology have been reverse, driven by the structure of the

observable responses. Accordingly, the dominant theory of the sub-structure of

central nervous system pain systems is a tri-fold dissociation of ‘sensory-

discriminative’, ‘cognitive-evaluative’, and ‘affective-motivational’, based in no

small way on introspective evaluation of what pain ‘feels like’. Here, however,

we have taken the opposite approach, concentrating on what function pain

evolved to perform, and proposed a generative model which is tested by its

ability to reproduce behaviour and predict neural responses. The thesis represents

the first formalised attempt to approach pain in this way.

Our goal here has been to study the motivational function of pain – how the brain

learns to predict pain, and how these predictions shape behaviour. Although

motivation and decision making is well studied in human pain science, there

have been remarkably few attempts to incorporate the theory and findings of
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animal learning literature. Rather, the existing standard draws on studies of

traditional human psychology. Our thesis is primarily based on the framework

which animal learning theory provides, and illustrates the value of this approach

by its success in permitting simple, testable models of behaviour.

More generally, the thesis represents an engineering approach to pain and pain

motivation, by proposing formal mathematical models of behaviour that yield

quantitative predictions. The animal learning theoretic framework is formalised

within computational models, which are proposed de novo here. The

reinforcement learning framework espoused in the initial theoretical work has

strong parallels with that independently developed in studies of reward learning

(Schultz, Dayan, Montague 1999).

7.1.2 Applying model based fMRI to ask novel questions about brain

mechanisms.

Computational models of pain prediction can yield quantitative models of

behavioural responses in experimental tasks. In instrumental learning, this is

evident by the choices that the test subject makes, which is typically easily

defined (for instance, in a forced binary option paradigm). In Pavlovian learning,

the response is often less easy to discriminate (for instance, pupil dilatation or

skin conductance). However, even if it is, it may not be sufficient to use such

responses to test competing hypotheses about the computational structure of

processes that yield these responses. In this way, neurophysiological data can

provide adjuvant evidence to support the validity of different models, which may

be critical if competing models provide different predictions regarding the

mechanistic processes involved in generating the ultimate behavioural output. In

the case of prediction learning, one such process is the generation of prediction

errors.

Our approach yields two ways in which neurophysiological data can be

informative: firstly, it can provide evidence to support a computational model by

showing that the subcomponents are represented (anywhere) in the brain.

Secondly, it can identify where in the brain a component process is represented,
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and so allow such findings to be incorporated with the body of neuroscience data

that underlies the general understanding of the role of different brain areas in

pain and motivational learning.

The methodology that we use to achieve this is model-based fMRI, and uses

linear regression of parameters derived from a (hypothetical) computational

model computed on a trial-by-trial basis. This approach was developed in our lab

initially to study Pavlovian reward learning (O’Doherty et al, 2003), and used to

show that existing theory and data from primate reward learning experiments

could also predict neural responses in human reward learning. The data in this

thesis represent the first application of this approach to test a fundamentally new

computational theory (ie. one that was not developed elsewhere in other

experimental domains).

7.2 Computational and psychological contributions:

7.2.1 The validity of TD models for Pavlovian aversive learning

Although the thesis set’s out to formalise the motivational basis of pain, the

theory generalises, and is generalised, to any aversive outcome (such as financial

loss). The novel theoretical framework proposed is based on a view of aversive

outcomes as quantities to be minimised, in the context of an agent that can learn

about its (uncertain) environment through interacting with it. The core idea in the

thesis formalises this in terms of the Bellman equation, and proposes

Reinforcement Learning algorithms as plausible ways in which the brain can

solve the problem (ie. of predicting and minimising pain).

As mentioned above, Pavlovian responses themselves (pupillary diameter,

reaction times, skin conductance) are of insufficient fidelity to track the subtle

acquisition of learning on a trial-by-trial basis, and this reinforces the attempt to

use fMRI to provide further evidence. Ultimately, the data that support of the

temporal difference model of Palvovian learning are striking: the correlation of

BOLD responses with the temporal difference prediction error is remarkably

robust. This finding has been replicated in both our subsequent studies, and by
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other authors, such that the reinforcement learning (TD) model of aversive

motivation has become a widely accepted theory within the field.

Figure 7.1. Pavlovian learning: Vs and Vs+1 represent the aversive value at successive states.

Punishment P is delivered on state transition, and  represents the prediction error, which is used

to update the state value, to an extent dependent on the learning rate .

7.2.2 Extension of TD models for avoidance learning.

As we discuss in more detail in the next chapter, instrumental learning in the face

of aversive outcomes (escape and avoidance) is more complex than Pavlovian

learning, since ultimately the emitted behaviour involves the coordination of both

Pavlovian and instrumental processes. However, it is still possible to treat the

instrumental component as a single process, in a Thorndikian manner. Here, we

formalise this in much the same way as in the Pavlovian case, in terms of error-

based value learning rules.

Figure 7.2. Instrumental learning: Qs and Qs+1 represent the aversive action value at successive

states. Punishment P is delivered after taking an action, and  represents the prediction error,

which is used to update the action value, to an extent dependent on the learning rate .
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Within reinforcement learning, there is in fact a number of different ways of

implementing trial-and-error action learning. One can either learn the true

expected values associated with different actions, and then choose amongst the

available actions based on these values (an ‘indirect actor’). Alternatively, one

can iteratively learn action ‘weights’ directly, without going via the calculation

of expected values (a ‘direct actor’ method) (Dayan and Abbott, 2001). However,

both share the same general reliance on an action-based prediction error term to

guide either value or policy iteration, respectively. Our data finds robust

evidence for this error term, and provides compelling evidence for the validity of

Reinforcement Learning models of instrumental avoidance learning. This is

illustrated by the models ability to predict subjects’ actual choices on a trial-by-

trial basis.

7.2.3 The existence of opponent motivational systems

One of the awkward facts about neural information coding is that neurons cannot

fire both positively and negatively to encode a full scale of positive and negative

quantities. Indeed, the only way that neurons can achieve this is to have a tonic

baseline firing rate, and to encode negative quantities by pauses or reduction in

that baseline. But clearly this seems an inadequate way to deal with aversive

values, especially given the potentially important (eg. life threatening) nature of

the outcomes they convey.

The notion of distinct appetitive and aversive motivational systems has existed

for some time in experimental psychology, and indeed the notion of single

opponent, mutually inhibitory systems is supported by a number of ingenious

experiments in animals (Dickenson and Dearing, 1979). Here, we formalise this

in terms of opponent temporal difference processes, and show that this

implemented in a mirror opponent manner (as opposed, for example, to a

rectified opponent) in the brain. This represents the first directly evidence-based

computational account of dual appetitive and aversive motivation in humans.
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Figure 7.3 Different possible schemes of opponency. The neurobiological data support mirror

opponency, implement in amygdala and putamen (appetitive system) and lateral orbitofrontal

cortex and putamen (aversive system).

7.2.4 Integrated choice model.

Especially important is an understanding of how these opponent systems are

integrated to provide a unified metric to guide choice. Our thesis describes three

important processes within this, given representations derived from separate

independent opponent streams. First, the brain must generate an opponent

appetitive representation of punishment that acts as a ‘safety signal’ to guide

successful avoidance. Second, appetitive and avoidance representations must be

appropriately scaled in magnitude. Third, the brain must summate the values of

each. We show that this is implemented in the brain, and identify a unified action

value error term. Accordingly, our thesis provides a basic account of integrated

appetitive and aversive motivation across both Palvovian and instrumental

learning.
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Figure 7.4 Different stages in integrated instrumental choice. Separate appetitive and aversive

systems compute action values for rewards and punishments respectively. The outputs of each are

scaled and summated, and related to a general comparison term (average reward signal).

7.2.5 Average reward models.

We add one further complexity to our Reinforcement Learning account of

motivation, namely the representation of average-reward (or punishment). This

emerges in the Pavlovian case, from administration of tonic punishment, in

which the amount of tonic pain acts as a reference point from which

perturbations are subsequently judged. In the instrumental case, average reward

models provide a putative account of the perseveration of choice, independent of

actual outcomes, that is typically witnessed in tasks in both humans and primates.

Its implementation sees values and actions compared to an average expected

quantity that acts as a sort of ‘aspiration level’, rather than in absolute terms.

In both Pavlovian and instrumental cases, the evidence of the representation of

average reward is indirect since it is not possible to directly observe (ie. image)

the tonic outcome signal. However, it does provide the simplest and most

parsimonious account of the data.
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7.3 Neurobiological contributions:

7.3.1 The role of the basal ganglia

One of the key findings of the work has been uncovering the role of basal

ganglia structures in aversive motivational learning. This has had particular

impact since the human neuroimaging field at the time largely viewed structures

such as the striatum and substantia nigra as reward specific. Indeed, observations

of activity in these regions in complex tasks typically led to the reverse inference

that the task recruited appetitive motivational pathways. In contrast, the

amygdala was subject to a similarly widespread (mis)conception as a structure

involved almost exclusively in aversive motivation. Despite the fact that both

these accounts were clearly questionable after even briefest review of the animal

learning literature, they were undoubtedly widely held. As such, our findings

have played an important role in changing our understanding of the role of the

human basal ganglia in motivation.

At the heart of this has been the data that has shown that bilateral ventral

putamen encodes an aversive temporal difference error. This is manifest in our

studies of electrical pain, thermal pain, and financial loss, suggesting that it

represents a common aversive motivational process. Furthermore, we have

shown that this is implemented as a fully signed error signal – in that it codes

positive and negative values with increased and decreased BOLD activity

respectively. The activity co-localises with activity seen in comparable studies of

reward learning, which suggests the anatomical integration of motivational

learning systems within the ventral putamen. We also show evidence of an

anatomical dissociation along an anterior-posterior within the putamen, with

more aversive specific activity localising to posterior puamen, and appetitive

specific activity localising to more anterior-ventral putamen, towards the nucleus

accumbens. However a large region of mid-ventral putamen appears to be

sensitive to both aversive and appetitive motivational prediction errors.

Our first imaging study (chapter 3) also identified aversive prediction error

activity in caudate and substantia nigra, indicating that this pathway is expressed
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more widely than just the ventral putamen. The activity in caudate is notable,

since anterior / head of caudate prediction error activity has also been observed

in instrumental conditioning tasks, including ours in the final experimental

chapter. Previous studies of both Pavlovian and instrumental conditioning have

suggested dissociation between ventral putamen and caudate activity in

Pavlovian and instrumental tasks respectively (O’Doherty et al, 2004). The

paradigms adopted in our research have been exclusively either Pavlovian or

instrumental, but it is clear that instrumental effects may exist in Pavlovian

designs, and Pavlovian effects may exist in instrumental designs. Unless one uses

both instrumental and yoked Pavlovian designs and compare the two, which we

have not done here, it is difficult to make strong inferences about anatomical

specificity Pavlovian or instrumental systems within our data.

That being said, our final instrumental study identifies solely the head of caudate

in the dual representation of simple appetitive and avoidance errors. On the basis

of previous studies, therefore, it seems highly likely that this represents an

instrumental prediction error signal. What is most interesting is the anatomical

superposition of the two (simple appetitive and avoidance) error signals, which

arise from independent outcome statistics. Although this does not necessarily

imply functional integration, since it could still be feasible for the systems to be

distinct at a neural level, it does seem likely that this activity may play a role in

motivational learning that integrates reward and punishment. As such, both

ventral putamen and head of caudate emerge from our data as probable key brain

regions in the integration of appetitive and aversive motivational learning.

The data do not exclude the possibility of appetitive-aversive integration

elsewhere. In particular, our paradigms are designed to optimally identify

prediction error related activity, and not the representation of the aversive and

appetitive values themselves. It is likely that other brain regions may do this, in

particular the orbitofrontal cortex (for Pavlovian values) and ventromedial

prefrontal cortex (for instrumental values).
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7.3.2 The anatomy of opponent systems

Our data also illustrate the anatomy of opponent motivational systems outside of

the basal ganglia. In particular, we find evidence for aversive prediction error

representation in the lateral orbitofrontal cortex, and appetitive prediction error

representation in the amygdala.

The nature by which each is part of a functionally connected motivational

system, for example between lateral OFC and basal ganglia, remains unclear.

Correlated activated between distant neural regions could be driven by a single

neuromodulator, or could be driven by functional cortical-basal ganglia-cortical

loops. A further difficulty is in knowing whether the activity represented

represents synaptic activity (ie afferent input), or neuronal activity, or both. Thus

BOLD correlates might represent serial connectivity in a functional pathway. For

instance, prediction errors might be expressed in basal ganglia (for instance, via a

neuromodulator), which mediates the storage of aversive values via cortical-basal

ganglia-cortical loops in lateral OFC.

Lastly, we note that evidence of the role of the amygdala in relief provides an

especially limpid demonstration of this region’s role in appetitive motivation.

This is especially striking given the nature of this representation in the absence of

any primary rewards. That is, the representation is purely inhibitory, reflected

either termination of tonic pain, or omission of expected phasic pain. This

illustrates the spectrum of opponency within a nucleus which has been at the

heart of studies in emotion and motivation (which we have discussed elsewhere).

7.3.3 The role of serotonin.

Finally, our data offers a new perspective on the function of serotonin.

Undoubtedly, the diversity of projections and receptor subtypes has complicated

the search for general theories of serotonin function, but it remains likely that

within this complexity may be a computationally specific representation that is of

value to a diverse range of neural functions. Using an appropriately sophisticated

decision task, our data illustrate a remarkably selective effect of tryptophan
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depletion on choice (in both behavioural and fMRI data), in which it controls a

component of choice flexibility independent of immediate outcomes. This

suggests that it might be a slow timescale average reward signal, acting as a

comparison term or aspiration level in decision-making. In this way, greater

release of serotonin signals greater ‘hope’ about available rewards in the

environment, against which immediate outcomes are judged. This in turn leads to

greater flexibility and exploration (and less ‘pessimistic perseveration’), which

provides an intriguing phenomenological parallel with conventional accounts of

the role serotonin in mood.

In summary, the thesis provides the first computational account of aversive

motivational learning in humans, with the basal ganglia at the heart of its

neurobiological implementation. In the next chapter, we assimilate these findings

with existing data in the field to propose a basic general account of aversive

motivational systems.
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Chapter 8. Discussion: the architecture of aversive

motivation

Below, we integrate the results presented in the previous chapters with other data

to provide a general overview of the neurobiology of aversive learning. This

centres on the mechanistic structure of aversive learning in humans. We discuss

the accumulated behavioural and neurobiological evidence for multiple value

systems, and show how they are exploited by distinct action systems to allow a

range of aversive behaviours to emerge. Given that aversive learning has evolved

from one traditionally considered to have the amygdala at its heart, we pay

special attention to this region’s emerging more general role in affective decision

making, and we highlight its role in Pavlovian-instrumental interactions.

8.1 Value systems.

Aversive control requires some method of valuing both actual and predicted

losses. Understanding the different mechanisms by which this is achievable

draws on the computational problem of how this value is acquired in an uncertain

environment. That the world consists of naturally beneficial and threatening

outcomes has inspired theoretical models, most notably reinforcement learning,

that learn how to evaluate and act in the world based on experience, and learn

online using trial and error. Insights from reinforcement learning have been

remarkably successful in illuminating the neural mechanisms of motivation and

decision making, not least since some of the algorithmic solutions of the general

reinforcement learning problem seem to have direct neural implementations.

Below we describe the different aversive value systems and their neural bases.

8.1.1 Innate values

Certain stimuli are endowed with an inherent aversiveness. Pain, for instance, is

subserved by a sophisticated system of specialised nociceptive pathways

signalling of actual or imminent tissue damage to many areas of the spinal cord

and brain (Hunt and Mantyh, 2001). This results not just in a set of characteristic,

often involuntary, defensive responses, but also a perceptual representation of

negative hedonic quality. This illustrates the innate affective impact that reflects
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the evolutionary acquisition of value, guided by generations of reproductive

success.

In humans, innate aversion is often accompanied by conscious experience.

Indeed, the feeling associated with loss dictates the way these systems are often

described in traditional psychological accounts. This can be approached more

formally by considering ‘feeling’ as a process of hedonic inference. As with

many less motivationally loaded sensory systems, afferent information is rarely

perfect, and a statistically informed approach is to integrate afferent input with

either concomitant information from other modalities (multi-sensory integration),

or prior knowledge of events (expectation).

In the brain, the basic representation of innate value implicates brainstem and

midbrain structures, including the amygdala, periaqueductal grey, parabrachial

nucleus, and thalamus. Cortical structures such as insula are associated with

aversive representations across modalities, including conscious negative hedonic

experience (Craig, 2002).

8.1.2 Forward-model values

The immediacy of innate values renders them poor at guiding more planned

decisions, and undoubtedly the explicit anticipation of losses has an important

role in shaping decisions. Naturally, control systems should optimally exploit

value systems that involve prediction of an aversive event before it occurs, since

it allows possible escape or avoidance of it. One way of doing this is to generate

a hypothetical (‘imagined’) representation of an anticipated loss, incorporating

some sort of model of the state changes that might take you there. This sort of

forward-modelled value system is a key part of what might traditionally be

regarded as a cognitive value system, in that, in humans at least, they seem to

draw on an explicit representation of a future event.

The offline evaluation of aversive value, in which sequences of future events can

be ‘run-through’ in abstract representation, and values corresponding to

intermediate events calculated, bears similarity to dynamic programming

methods in reinforcement learning. Such iterative valuation schemes consider
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putative distal goals and punishments and try to inferentially work out the value

of more proximal states. Forward modelled aversive events are perhaps the least

well understood of all value systems, by virtue of their necessary complexity.

One of the remarkable, if slightly informal observations from Pavlovian

conditioning experiments (including those in chapters 3-5) is that the majority of

subjects are not aware not only of the true contingencies, but of the very

existence of contingencies at all. This suggests that such forward-modelled

values, insofar as they might be expected to be available to awareness, may in

some circumstances be inferior to other (cached, see below) value systems in

picking up statistically viable aversive contingencies in the environment.

Some additional insight into the dissociation, both behavioural and

neurobiological, between forward-modelled and cached values comes from a

recent experiment in which we explicitly sought conscious, contingency

awareness during Pavlovian conditioning, drawing on the observation that

contingency awareness interacts with conditioning differently across different

acquisition schemes (Clark and Squire, 1998;Han et al., 2003;Knuttinen et al.,

2001;Ohman and Soares, 1998). Specifically, successful trace conditioning (in

which there is a temporal gap between the offset of the CS and onset of US) is

thought to be more dependent on explicit awareness, suggesting that perhaps

these values are more related to some form of goal representation. In the study

(Carter et al., 2006), we simultaneously conditioned human subjects to predict an

aversive electrical stimulus (US) from arbitrary visual cues (CS) with concurrent

delay and trace protocols: to assess contingency awareness, subjects reported

their shock expectancy on each trial, and we also recorded skin conductance as a

putatively more implicit measure of conditioning, to identify conditioning that

wasn’t under conscious awareness. Our data indicated a clear role for the middle

frontal gyrus in contingency awareness during conditioning, correlated

specifically with the acquisition of awareness on a trial-by-trial basis. This was

contrasted with amygdala activity, which reflected acquisition of implicit

knowledge, as indexed by autonomic activity.
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8.1.3 Cached values.

In many real-life decision problems, anticipating precisely when and where

aversive outcomes may occur becomes difficult. Three things contribute to this:

i) sequentiality, in which outcomes depend on long trains of actions or state

changes, ii) stochasticity, whereby outcomes are uncertain, either with known

(risk) or unknown (ambiguous) probabilities, and iii) non-stationarity, in which

probabilities drift over-time, either slowly or abruptly.

One way round at least some of this complexity is to collapse the total

anticipated value of future state transitions or actions on those that are

immediate. This can be termed caching, in honour of its relation to a similar

process in computer science. In effect, a cached value provides a single metric as

to the overall utility of a particular state, or taking a certain action. It integrates

over the uncertainties of the various outcomes, and the times when they might be

expected, to report how bad (or good) it is.

Reducing much of the complexity of the future onto a single value is clearly

attractive, not least since it considerably simplifies action control, as we discuss

later. What had been less obvious, at least initially, is how an individual has

access to such a value. Our evidence indicates that the brain follows the simple

algorithmic scheme described by temporal difference learning (chapter 3). This

method prescribes an experience-based way of continually refining cached value

estimates, using discrepancies (prediction errors) between adjacent estimates.

Using sequential estimates to transfer value between adjacent states, as opposed

to waiting for outcomes themselves (as in Monte Carlo methods, for instance

(Sutton and Barto, 1998)), provides an effective way of propagating value to

states more distant from an outcome. However, the computational simplicity

comes at the cost, in comparison to forward modelled values, of efficiency, since

updating is tied to experience.

From an implementational perspective, the aversive temporal difference error is

expressed clearly in the striatum, across different modalities of aversion, and in

part-overlapping / part-distinct (more posterior) regions of striatum (chapter 5).
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The cached values themselves (which are equivalent to ‘expected values’ in

economics) are represented in anterior insula.

Further support for this latter finding comes from ERP data, based on the design

presented of the pilot study described in Chapter 1. Source localisation of high

density EEG recordings of anticipatory activity in pain prediction shows

temporally precise predictive value representations localising to anterior insula

(Brown et al., 2008b;Brown et al., 2008a).

8.1.4 Long-run average values

One of the deficiencies of phasic cached values is that it tells you little about the

distribution of punishments (or rewards) over time. Furthermore, many aspects of

behaviour benefit from a temporally more broad perspective than that tied tightly

to individual actions and states. Although behavioural experimentalists often

require strictly cue-evoked responses, the natural environment is rarely so

precise. Consequently, estimating a diffuse, temporally integrated average value

may be a valuable quantity.

Theoretically, average values might be used in several respects. First, since there

are almost always costs tied to actions and responses, they can be used to

determine the overall rate of responding that optimising returns. Second, they can

be used to make broad judgements to guide exploratory behaviour, that is, drive

exploration when short term cached values are lower than long-run average

values. Third, in hierarchically structured environments or decision processes,

they can be useful in valuing higher level states and actions.

Long-run average aversive values are best tied to cues that share their temporal

outlook, and hence are naturally aligned to contextual information. More

phenomenologically, their representation may have a bearing on mood states

(including physiological stress and depression), and have a natural

correspondence with tonic primary aversive stimuli such as chronic pain. In the

brain, the methodological difficulties in tracking slowly changing

neurophysiological responses over extended times (in contrast to phasic, cue-
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evoked responses) make the current knowledge about representation more

uncertain. However, their existence can be inferred indirectly from experiments

that look at phasic perturbations of tonic stimuli. Accordingly, we have shown

that relief of tonic pain, as an aversive inhibitor, elicits a positively signed

appetitive prediction error in striatum, in contrast to a negatively signed aversive

prediction error (chapter 4). Furthermore, we see striking predictive activity in

lateral orbitofrontal cortex, which hints (in the absence of any formal

demonstration) that this region may be specifically involved in computing phasic

value in the context of tonic value. This latter suggestion would certainly be in

keeping with other data on orbitofrontal cortex.

Secondly, we have also shown in chapter 6, behavioural and neurally, albeit

indirectly, that average outcome models provide the best fit for data when it

comes to aspiration and exploration. Critically, modulation of this level, that is

the putative interaction between tonic and phasic predictions) implicated the

medial head of caudate, overlapping with the representation of phasic action

value prediction errors.

Third, this tonic outcome representation appears to be modulated by serotonin, in

a manner consistent with previous suggestions that serotonin mediates a tonic

aversive outcome signal. This is notable given the long-standing association of

serotonin with depression, for which low reward aspiration might be a plausible

underlying computational component.

8.2 Control systems

The different value systems outlined above play distinct roles in guiding actions

in the face of aversive events. As we discuss below, there is good evidence that

control is governed by several distinct action systems that relate closely to the

different value systems. Ultimately, aversive events need to be escaped from,

reduced or avoided if possible, and each of these behaviours draws on different

controllers in specific, and occasionally complex, ways.
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8.2.1 Goal directed control

Goal-directed actions are characterised by the existence of some sort of

representation of the outcome of an action, relating closely to the representation

of forward-modelled values. In animals, this is well illustrated in aversive

devaluation experiments. In this, an animal is first trained to perform an action

for a food reward. Next, the food is separately paired with experimentally

induced nausea and vomiting. When subsequently tested on the original action,

animals often perform it much less often than the appropriate controls,

suggesting that they have constructed some form of internal representation that

the action leads to the ill-effects.

In humans, goal-directed action is closely affiliated to ‘cognitive’ control, in

which individuals explicitly consider the outcome of actions, and of subsequent

actions, and use some form of tree-search to inform current actions. The brain

might support different ways of doing this, for instances using propositional,

linguistic structures, or spatially based structures. It has affinity with the classical

notion of outcome-expectancy expounded by Tolman (Tolman, 1932), and with

more recent fields such as dynamic programming in engineering.

Although substantial regions of prefrontal cortex may be involved in goal-

directed control, the ventromedial prefrontal cortex appears to be fairly central to

goal representation (Ariely and Norton, 2007b). Rat lesion experiments have

indicated that this region exploits connections with dorsomedial striatum. In

aversive goal-orientated control, the prefrontal cortex is likely to involved as

well, although this has yet to be clearly shown.

8.2.2 Habitual control

Habits relate strongly to cached values, learned through trial-and-error. They lack

any representation of the outcome or subsequent available actions that result

from taking action. Instead, they represent only the utility of the action itself.



149

Habits rest critically on the state (discriminative stimulus) to inform whether and

which habits are available, and thus appear to be stimulus driven.

If the environment is relatively stable (stationary), then habit-learning provides a

near optimal strategy for selecting actions. However, caching, by its very nature,

can take a long time to learn, especially in complex environments. Furthermore,

any type of rapid change in the environment cannot flexibly be accommodated.

Thus in these situations, and in the context of limited experience, goal-directed

control may be superior.

As mentioned above, dopamine projections, particularly from substantia nigra to

the dorsolateral striatum, are crucially involved in learning appetitive habits.

Dopamine neurons are thought to modulate plasticity in cortico-thalamic loops

which ultimately store habits. We have shown previously the role of striatum in

both simple instrumental appetitive and avoidance action (note, we did not

explicitly differentiate goal-directed and habit systems), and that a region of the

striatum appears to treat aversive inhibition (avoidance) indistinguishably from

appetitive excitation (reinforcement) (Pessiglione et al., 2006).

In chapter 6, we showed that integrated decision making involves separable but

convergent learning systems. Because the study forced independence of rewards

from punishments, the representation of avoidance errors was necessarily distinct

from simple reward reinforcement errors. The requirement to make one decision

at one time forced subjects to integrate these values, trading off the independent

valence magnitudes of each. We showed that a simple Direct Actor

reinforcement learning well describes both subjects’ behaviour, and their

neurophysiological (BOLD) responses. We found that the dorsal striatum (medial

head of caudate) is critically implemented in this, suggesting it is a critical site

for appetitive-aversive integration in action control.

8.2.3 Pavlovian control.

Innate values typically have a set of characteristic responses associated with

them. Often these are primitive, such as increased heart rate and sweating during

acute pain, or fighting in the midst of a contest. Such responses are evolutionarily
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appropriate actions, and appear to be hard-wired into the brain. Pavlovian

learning provides a natural extension of this, by eliciting responses to stimuli that

reliably predict innately salient events. Thus, not only does contingency between

neutral stimuli and intrinsic rewards and punishers (unconditioned stimuli)

engender the acquisition of a cached Pavlovian value, it also elicits a response

appropriate to it. However, such responses are not simply duplicates of those

produced by the conditioned responses themselves (stimulus substitution), but

typically carefully anticipate the event they predict.

Pavlovian responses fall into two behaviourally and neurobiologically distinct

types. ‘Preparatory’ responses reflect the general valence of the predicted

outcome, and elicit non-specific responses such as approach or withdrawal.

‘Consummatory’ responses reflect the specific attributes of the outcome, such as

salivating and licking for foods, and leg flexion for foot-shock. Indeed, in the

aversive domain, it appears that the repertoire of consummatory responses is both

complex and sophisticated, arguably much more so than in the appetitive

domain. Classically, defensive responses have been divided into fight, flight or

freeze, although the precise nature of the response is both varied, and depends

rather precisely on the nature of the outcome and the context in which it is

predicted. For instance in rats, anticipation of a shock causes freezing if the cue

is generalised, attempted escape if it is localised, fighting in the presence of

another male, and copulation in the presence of a female. Clearly, the specificity

of these responses has been carefully moulded by evolution, and indeed the exact

nature of the responses is often highly species specific. But most notably, they

interact with other control systems in important ways.

In the brain, Pavlovian responses have been well studied. The acquisition of

aversive Pavlovian values depends most critically on the amygdala. The central

nucleus is predominantly involved in directing non-specific preparatory

responses, including arousal and autonomic responses and approach/withdrawal,

which is achieved by projections to various brainstem nuclei, including reticular

formation and autonomic nuclei. The basolateral complex is predominantly

involved in much more specific, consummatory response, mediated downstream

through connections to regions such as the hypothalamus and periaqueductal
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grey. The latter has a sophisticated, topographically organised architecture

mediating the range of defensive to aggressive behaviours.

We explored the aversive role of the PAG in a simple, ecologically inspired

maze-task, in which subjects were chased around a maze by a computerised

predator, analogous to the ‘ghosts’ in the classic 1980’s arcade game ‘Pac-man’

(Mobbs et al., 2007;Mobbs et al., 2009). These predators, however, administered

either an electric shock if they caught the subjects before the end of the (variable

duration) trial. We found that the PAG encoded the interaction between

predatory imminence and predator magnitude, and furthermore, this predicted

subject-specific scores on threat-susceptibility behaviour on a psychological

questionnaire. In a follow up study, we sought more direct evidence of Pavlovian

actions (Mobbs et al., 2009). Using variable intensity punishment (painful

electric shocks) to signify capture, we looked at occasional panic-like responses

that occur when capture is imminent. These were correlated with PAG activity,

and suggest the intrusion of impulsive escape responses over skilled avoidance.

Future work is planned to explore the modulatory role of serotonin in this

paradigm, to test the hypothesis that 5HT inhibits panic, but increases anxiety

(Graeff, 2004)

8.3 Constructing aversive behaviour.

The evidence of multiple control systems raises the question of whether they act

independently (competitively) or together (cooperatively) in guiding aversive

behaviour. As we show below, most behaviours involve cooperative integration

of the different systems, such that the very existence of co-acting systems is often

superficially obscure. It takes instances of more direct competition, often

involving indictment of the Pavlovian system, to betray the different strategies of

the underlying control systems.

8.3.1 Pavlovian-instrumental interactions.
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The simplest illustrations of punishment can be observed by attaching aversive

contingencies to actions pre-trained with rewards. For instance, if a rat has

learned to press a lever to receive a food pellet, then replacing the food pellet

with an electric shock causes the animal to press the lever less often, and indeed

stop pressing it all together. A number of early experiments established that this

effect was sensitive to basic statistical and economic manipulations. First,

aversive outcomes of higher intensity have a greater inhibitory effect on actions.

Second, aversive outcomes that follow actions with greater certainty are more

effective in suppressing action. And third, aversive outcomes that occur more

imminently are more potent. This latter effect illustrates the basic phenomenon of

temporal discounting, which as for rewards, declines the magnitude of events as

they become less imminent.

Importantly, these basic suppressive effects reflect more than one process. At

first glance, they would appear to reflect basic habit-based or goal-orientated

action reduction. However, a number of early experiments had difficulty in

showing any instrumental component at all, with a wealth of data implicating

Pavlovian mechanisms. One of the reasons for this is the nature of aversive

Pavlovian responses causes them to be appropriate in very many situations,

which is a testament to their sophistication. However, appropriately controlled

experiments (employing for instance, yoked Pavlovian-instrumental designs)

illustrated that instrumental contingencies clearly enhance the suppressive effect

of aversive outcomes. Furthermore, the Pavlovian component operates in two

ways. First is the direct contribution of the Pavlovian action: for example

withdrawal starts to become incompatible with pressing a fixed lever. Second,

the Pavlovian value itself suppresses the action by a phenomenon called

conditioned suppression. The latter process is illustrated by the fact that merely

presenting a Pavlovian cue during instrumental responding for a reward,

suppresses responding.

Conditioned suppression is the mirror image of the appetitive phenomenon of

Pavlovian-instrumental transfer (PIT). One of the key features of appetitive PIT

is that it is composed of at least two dissociable components. The first is a non-

specific process by which appetitive Pavlovian conditioned stimuli excites
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appetitive actions non-selectively. This depends on the integrity of the central

amygdala and nucleus accumbens shell (Cardinal et al, 2002). The second

component is a specific process by which conditioned stimuli selectively

augment actions towards outcomes with which they are associated. This depends

on the integrity of the basolateral amygdala and nucleus accumbens shell.

Conditioned suppression, as the aversive equivalent of PIT, is necessarily a non-

specific appetitive-aversive interaction, and has been shown to depend on the

central amygdala.

Rationalising conditioned suppression in a theoretical framework can draw on

two aspects. First, the non-specific nature of the behavioural suppression

naturally absorbs any uncertainty as to whether there is indeed a specific

contingency between an action and an aversive outcome. In any decision

theoretic framework, this reflects a ‘safety-first’ approach that makes economic

sense. Second, particularly in the context of long-run average values, cues can be

thought of as influencing (reducing) an overall assessment of average expected

return. In the face of opportunity costs, this relative value ought to reduce the rate

of responding.

Another illustration of Pavlovian instrumental cooperation occurs in conditioned

punishment, which differs from conditioned suppression in that the separate

Pavlovian and instrumental values are integrated more in series, than in parallel.

In conditioned punishment, an individual will learn to perform an action less

often if it results in presentation of an aversive Pavlovian cue. This mirrors

conditioned reinforcement in the appetitive case, and provides an important

illustration of how Pavlovian values can be used as surrogate goals to suppress or

reinforce instrumental actions. The result reflects the integration of the cached

values of each.

8.3.2 Avoidance.

At the heart of aversive control is avoidance. Clearly, the goal of behaviour is to

learn to avoid aversive events wherever possible. However, consideration of the

problems that must be solved in avoidance hint, quite correctly, that such
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behaviour may not be straightforward. For instance, how are successful

avoidance actions reinforced, if by definition they lead to no outcome? How does

an individual ever realise that the threat is gone, if never sampled?

Understanding how the brain solves these problems is crucial, but requires a

fairly close look at the experiments that have engaged animal learning theorists

for many decades.

In a typical avoidance paradigm, an experimental animal receives a warning cue

(such as tone or light), that precedes delivery of an aversive stimulus (signalled

avoidance), such as prolonged electrification of the floor of the compartment. At

first, the animal responds only during the aversive stimulus, and successfully

escapes if it jumps into a neighbouring compartment. After several presentations,

the escape response is executed more quickly, and eventually, the animal learns

to jump when observing the warning cue, thus completely avoiding the shock.

Mowrer was the first to formally assert that learning to avoid involved two

processes (Mowrer, 1947): first was to predict the threat, and second to learn to

escape from the predictor. These processes, proposed respectively to be under

Pavlovian and instrumental control, comprise two-factor theory, which in one

form or another has survived well over the past decades. Although there are

many unanswered questions about precisely how the different action systems are

orchestrated in different avoidance situations, some key facts are well grounded.

Notably, Pavlovian mechanisms play a critical (and multifarious) role in

avoidance, and indeed Pavlovian responses to the warning cue (the

discriminative stimulus) alone are often capable of executing successful

avoidance (Dayan and Seymour, 2008). For example, jumping out of an

electrified chamber, blinking in anticipation of an eye-puff, leg flexion to an

electric foot-plate can all completely remove an aversive stimulus, without any

need for an instrumental component. That they do pays tribute to their

evolutionary provenance, and led some to question the involvement of

instrumental responses at all.
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Several experiments demonstrate the role of the Pavlovian cue. For example,

presenting a separately trained aversive cue during avoidance increases

avoidance responding (a form of Pavlovian-instrumental transfer). Furthermore,

animals will learn to avoid a cue that has been independently pre-trained with an

aversive stimulus.

The importance of the instrumental contingency is demonstrated by the fact that

some avoidance responses such as lever-pressing, key-pecking (for pigeons) are

difficult to reconcile as aversive Pavlovian responses. That they are much harder

to train than some other responses suggests that avoidance responses may be

executed over a basis set of Pavlovian actions. Furthermore adding instrumental

contingencies to yoked Pavlovian avoidance designs improves avoidance.

However, whereas this delineates a role for instrumental escape, it fails to yield

any role for the avoided state, which is typically signalled if only by the

termination of the warning cue. Indeed, avoidance is impaired if termination is

delayed, and improved by presentation of additional cues that signal successful

avoidance. Indeed, such cues have been shown to reinforce separate avoidance

responses.

These results are consistent with the notion that the value of a safety state

following successful avoidance reflects a Pavlovian aversive inhibitor.

Importantly, such values share a common representation with appetitive

excitatory values, demonstrated by their ability to block them (transreinforcer

blocking). That this state plays an important role in control is suggested by the

fact that avoidance responses continue long after the Pavlovian aversive

responses to the discriminative stimulus have extinguished (as they will of course

do if avoidance is successful). Thus it may be more than circumstantial that in

purely Pavlovian designs, conditioned inhibitory values are somewhat resistant to

extinction.

This places the role of the Pavlovian value attached to the discriminatory

stimulus in the spotlight (Bersh and Lambert, 1975;Biederman, 1968;De Villiers,

1974;Kamin et al., 1963;Mineka and Gino, 1980;Overmier et al.,
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1971a;Overmier et al., 1971b;Starr and Mineka, 1977), since on the one hand it

ought to act so as to suppress instrumental actions that lead to the aversive

outcome, and on the other hand it ought to encourage instrumental actions that

lead to the appetitive safety state. But there is more to avoidance than just the

classical contingency: animals can be trained to perform one response in the

presence of one discriminative stimulus and a different response to avoid the

same shock in the presence of a different stimulus. Avoidance warning stimuli

can suppress appetitive instrumental behaviour, in a similar fashion to

conditioned suppression by an aversive CS, but this effect is diminished with

prolonged expression of the avoidance response. This effect, as Starr and Mineka

showed in a classic experiment (Starr and Mineka, 1977), is over and above the

effect of classical extinction due to the repeated success of avoidance. What

seems clear therefore is that what is required to establish a successful avoidance

response in not necessarily the same as what is required to maintain it

The dissociation of components in avoidance is supported by neural data.

Selective lesions of central or basolateral amygdala impair conditioned

suppression, and conditioned punishment selectively (Parkinson et al, 2000).

Neuroleptics interfere with learning avoidance responses, but not acquisition of

instrumental escape responses (Cook and Catania, 1964). In human studies, in

support of the role of appetitive pathways, dorsal striatum and ventromedial

prefrontal cortex display reward-signed activities during avoidance. Furthermore,

they do so in a manner predicted by reinforcement learning models (chapter 6).

However, what is currently lacking is selective lesions that dissociate goal-

directed and habit-based components of the avoidance action. The existence of a

goal-directed component is illustrated by sensitivity to outcome in experiments

that manipulate body temperature in the context of avoidance actions that lead

hot or cold outcomes, which are differentially appetitive or aversive according to

body temperature (Henderson and Graham, 1979). Beyond that, however, it has

not been very thoroughly studied. Furthermore, few animal studies have explored

how avoidance values are integrated or dissociable from appetitive reinforcement

values.
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8.4 The role of the amygdala in motivation and learning

In human imaging neuroscience, the prevalent view has been that the amygdala

is the predominant seat of aversive learning. Indeed fMRI studies have suggested

both that aversive Pavlovian values are acquired, and prediction errors expressed,

in amygdala in a dynamic fashion consistent with prediction error based models

(Glascher and Buchel, 2005a;Yacubian et al., 2006). Temporal prediction errors,

which encode discrepancies between both predictors and outcomes (embodied in

reinforcement learning models such as temporal difference learning), have been

observed in ventral striatum (Jensen et al., 2006;Seymour et al., 2004), but not

amygdala. This raises the question as the precise role of the amygdala in aversive

(and appetitive) motivation.

In monkeys, lateral habenula neurons provide an aversive signal that inhibits

dopaminergic neurons during negative reward prediction errors (Matsumoto and

Hikosaka, 2007). In the amygdala, single neuron recording studies have

identified neurons that encode the Pavlovian value of rewards, punishments, as

well as neurons that encode salient, valence independent predictions (Paton et al.,

2006). A recent study of probabilistic appetitive and aversive conditioning has

shown that separate neuronal populations encode valence specific, probabilistic

value-related signals (ie. modulated by outcome uncertainty). Furthermore, some

neurons showed evidence pointing towards a mirrored opponent pattern of

activity, in which they coded both reward and omitted punishment, and vice

versa. This suggests that amygdala neuron learning might be driven by a

temporal prediction error signal (no cells intrinsically displayed a full prediction

error pattern themselves) arising from elsewhere.

How these values are acquired is not yet clear. In theoretical models of Pavlovian

learning, learning is often thought to be guided by a prediction error, which

updates values based on the discrepancy between predicted and actual outcomes.

For appetitive values, this is thought to be guided by dopaminergic projections

from the ventral tegmental area in the midbrain, particularly to ventral striatum

(Nakahara et al., 2004;Satoh et al., 2003;Schultz et al., 1997). However, whether

dopamine directly ‘teaches’ neurons in the amygdala, or alternatively some other
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mechanism such as transfer of values via connections from the ventral striatum,

is not clear. In the aversive case, a comparable neuromodulator to dopamine has

yet to be discovered, although as we discussed in the preceding chapter, 5HT has

been suggested (Daw et al., 2002).

The functional impact of negative prediction errors in the aversive domain has

theoretical importance, since omission of aversive stimuli guides extinction

learning. Aversive extinction is appetitive in valence, just as omission of

appetitive stimuli is aversive (and can block primary aversive stimuli (Dickinson

and Dearing MF, 1979)). This (aversive extinction) is known to be mediated by

active learning that involves inputs from medial PFC (Maren and Quirk,

2004;Milad and Quirk, 2002). Critically, extinction memories are easily

‘forgotten’ or disrupted by procedures such as reinstatement, and are sensitive to

reconsolidation (Duvarci et al., 2006). This aversively biased asymmetry endows

amygdala based Pavlovian values with the same sort of ‘safety-first’ encoding

that reflects the affective hard-wiring of unconditioned stimuli. Thus it is

possible that the temporal difference based mechanisms of Pavlovian value

learning in striatum reflect a more flexible and distinct alternative system to that

implemented in amygdala, even though both use prediction errors.

So what is the broader role of the amygdala in learning and motivation? A

number of studies illustrate the distinct roles of CE and BLA in mediating

Pavlovian-instrumental interactions. For instance, Killcross and colleagues took

rats with either CE or BLA lesions, first trained them in a Pavlovian conditioning

procedure, and subsequently tested them in an instrumental procedure in which

actions led to presentation of the CS (Killcross et al., 1997). CE lesioned animals

displayed a deficit in the non-specific suppression of instrumental responding

(conditioned suppression) produced by the CS, whereas BLA lesioned animals

exhibited a deficit in biasing instrumental choices away from an action that

produced the CS (conditioned punishment). In another key experiment, Corbit

and Balleine, using a selective satiation procedure for instrumental actions that

lead to different rewards, demonstrated that CE lesions (previously implicated in

PIT (Hall et al., 2001;Holland and Gallagher, 2003)) selectively impaired general
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forms of PIT, but that specific forms were selectively impaired with BLA lesions

(Corbit and Balleine, 2005).

The dissociable roles of the CE and BLA have been shown in many other

Pavlovian and Pavlovian-instrumental tasks. In addition to general PIT and

conditioned suppression, the BLA appears to be critical for contextual

conditioning (Selden et al., 1991), conditioned approach (Hitchcott and Phillips,

1998) and conditioned orienting (Holland et al., 2002a) . Furthermore, beyond

mediating specific PIT and conditioned punishment (as part of avoidance), the

BLA is critical for reinforcer revaluation (Balleine et al., 2003;Hatfield et al.,

1996;Malkova et al., 1997), conditioned reinforcement (Cador et al.,

1989;Hitchcott and Phillips, 1998) and second-order conditioning depend on

BLA (Burns et al., 1993;Hatfield et al., 1996).

These results suggest that the BLA encodes specific value-related outcome

information, such as that modulated by satiety. Some of anatomical connections

that subserve this are suggested by a series of elegant experiments on conditioned

potentiation of feeding. In this paradigm, Pavlovian cues paired with food when

individuals were hungry are able to motivate sated animals to eat beyond satiety.

Rats with lesions of the BLA, but not CE, do not show the characteristic

potentiation of feeding normally seen when the Pavlovian cues are presented

(Holland et al., 2001;Holland et al., 2002b). This effect depends on connectivity

with hypothalamus and OMPFC (Petrovich et al., 2002;Petrovich et al., 2005),

but not striatum or lateral OFC (McDannald et al., 2005). Indeed, a wealth of

other experiments have confirmed the importance of amygdala-OFC connections

in mediating the impact of outcome-specific value representations on choice

(Baxter et al., 2000;Baxter and Browning, 2007;Ostlund and Balleine,

2007;Paton et al., 2006;Saddoris et al., 2005;Schoenbaum et al., 2003;Stalnaker

et al., 2007)

Amygdala connectivity with nucleus accumbens mediates a number of Pavlovian

influences on action. Firstly, autoshaping (and also higher order conditioned

approach), which reflects Pavlovian actions, depends on the integrity of BLA,

accumbens, and connections between them (B.Setlow et al., 2000;Parkinson et
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al., 2000;Parkinson et al., 2002). This may be an important mediator of the

Pavlovian impulsivity seen in paradigms such as negative automaintenance

(Dayan et al., 2006;Williams and Williams, 1969). Second, lesions of the core

and shell of the accumbens disrupt specific and general forms of PIT,

respectively (Corbit et al., 2001).

Amygdala connectivity with prefrontal cortex may mediate more outcome

specific influences on action. More specifically, the medial prefrontal cortex

(prelimbic cortex in rats) is critical for learning action-outcome contingencies

(Balleine and Dickinson, 1998;Bechara et al., 2000;Hampton et al., 2006;Kim et

al., 2006). Disrupting connections between BLA and mPFC impairs avoidance

choice in conditioned punishment (Coutureau et al., 2000).

The role of amygdala in humans has been highlighted in the context of patients

with amygdala damage (Bechara et al., 1999), who like patients with

ventromedial prefrontal damage, are impaired decision making tasks involving

risk and uncertainty. However, the pattern of impairments differs in that

amygdala patients have clear deficits in Pavlovian processes. Hampton and

colleagues recently showed that patients with amygdala lesions showed (using

fMRI) impaired outcome representations of instrumental choices in ventromedial

prefrontal cortex (Hampton et al., 2007).

Indeed, many of the animal results have strong parallels with human experiments

(Delgado et al., 2006;Phelps and LeDoux, 2005). Amygdala and OFC are both

implicated in specific representations of outcome value in a similar manner to

animals (Gottfried et al., 2003). The role of this circuit in controlling decisions

may underlie many aspects of human behavioural economics. For example,

amygdala and OFC are involved in using previous experiences of regret to bias

future decisions (regret avoidance)(Coricelli et al., 2005). Amygdala activity also

reflects the interaction of emotionally framed information with risk-based option

choices, for instance motivating risk aversion in positive contexts (De Martino et

al., 2006). Furthermore, the relative aversion of humans to ambiguity, as

compared to risk, is linked to activity in the amygdala activity (Hsu et al., 2005).



161

These latter studies points to the possible importance of the amygdala in risk and

uncertainty, which has interesting, though speculative, links with experiments in

rats (Gallagher and Holland, 1994). Notably, lesions of the CE appear to impair

the increase in learning due to increases in CS-US uncertainty (Holland and

Gallagher, 1993). Associability is theoretically aligned to ambiguity by the fact

that both drive learning, in contrast to risk. The control of learning by the former

heavily implicates the neuromodulators acetylcholine and norepinephrine,

midbrain sources of which (nucleus basalis and locus coeruleus, respectively)

both receive substantial input from the CE.

To summarise, distinct regions of the amygdala appear to play a critical role in

modulating decision making. Thus the CE may play a critical role in optimising

metalearning, both through outcome non-specific modulation of approach and

rate of responding possibly via dopaminergic modulation of ventral striatum, and

rate of learning through acetylcholinergic modulation of more diffuse cortical

areas. In contrast, the BLA may have a more specific role in optimising choice,

utilizing refined outcome specific knowledge gained from connections with

hypothalamus and OFC, and via projections to goal-specific areas, in particular

the ventromedial PFC (infralimbic cortex in rats).

To conclude, we advance the viewpoint that the amygdala is not just involved in

Pavlovian conditioning with the goal of executing simple conditioned responses,

but is especially concerned with integrating Pavlovian values with habit based

and goal orientated systems, across both aversive and appetitive motivation,

mediated principally via connections with striatum, and ventral and orbitomedial

prefrontal cortex respectively.
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Chapter 9 Discussion: consequences for behavioural

economics.

9.1. Historical and methodological issues.

Traditionally, emotion has been embedded within a two-system model of human

decision-making, a conceptual framework still dominant in psychology and

behavioural economics. In its simplest form, it reduces to a deliberative,

cognitive system viewed as a ‘cold’, rational and far-sighted, operating alongside

an affective, emotional system which is ‘hot’, irrational and short-sighted

(Camerer et al., 2005;Kahneman and Frederick, ;Sloman, 1996) . Although this

structure provides a very effective descriptive tool across a diversity of

situations, the extent to which it can encompass emergent empirical

neurobiological findings in decision making is increasingly doubtful. Indeed, we

have described above the extensive evidence from both animals and humans that

illustrates the probable operation of multiple decision-systems. Furthermore, it

may be that the processes that mediate emotional influences on decisions (which

are likely to frequently be Pavlovian) are often rational, and it is just they are

often only apparent in instances when they are not.

We first mention a couple of methodological points about the relationship

between economic and psychological paradigms. In behavioural economics,

decisions are often probed in relation to options with stated parameters, that is,

the magnitudes, risks and uncertainties of various options are given directly.

These are likely to exert their effects mostly through model-based predictions

(and goal-directed control). By contrast, in experimental psychology, the

parameters of options are typically learned through trial and error. Thus,

representations of value and risk are experience-based rather than propositional,

and can have an impact through model-free as well as model-based control. Of

course, experience-based representations are imperative in animal experiments,

and have also been highly successful in deconstructing the components of

aversive (and appetitive) behaviour. However, any complete account of aversive

behaviour needs to integrate both, since humans are presented with both types of
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situation: one off decisions such as those regarding pensions and life insurance;

and repeated decisions, such as those regarding what painkiller to take or which

foods to buy.

A further difference in methodologies relates to type of aversive events used.

Whereas economists usually use monetary loss, neuroscientists have often used

more diverse, primary stimuli such as pain: for instance in the form of an electric

shock to hand or paw. The advantage of this is it is an immediately and relatively

instantaneously consumed commodity. Furthermore, it is both potent and

ecologically valid, in the sense that it is the sort of stimulus with which aversive

systems evolved to deal.

An important distinction, across the different classes of value discussed above, is

that between excitatory and inhibitory values. Inhibitory values arise from the

opponent relationship between aversive and appetitive events, and the nature of

the relationship between the two is well studied in animals. Inhibitory aversive

values arise when either appetitive events are omitted, or when tonically received

appetitive stimuli cease. Importantly, there is a natural consistency between

appetitive inhibitors and aversive excitators. For example, in terms of value

representations, omission of food is intrinsically similar to painful shocks

(demonstrable in psychological paradigms such as summation and blocking).

Likewise, there is a natural opposition between aversive excitators and aversive

inhibitors (again, demonstrable in retardation and counter-conditioning

paradigms).

The naturally opposite relationship between appetitive and aversive values is also

evident when one considers their physiological function. For example, hunger

and thirst (beyond the typical physiological range) can be aversive, and signal

lack of a reward (indeed, excessive food may even be aversive). Likewise,

financial loss is identical to a lack of financial reward. This raises an issue, with

important theoretical consequences, that echoes through both psychological and

economic accounts of loss behaviour, namely on the distinction between

homeostasis and heterostasis. Homeostasis is a feature of physiological systems,

in which motivation is directed to maintain, or restore physiological equilibrium.
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Heterostasis reflect motives that are monotonically increasing. The vast majority

of motives are homeostatic, and this important consequences for the predicted

shape of utility functions. In simple terms, aversive events move away from

homeostatic equilibrium, and rewards move towards it. However, whether this

usefully explains all motives is doubtful. Rewards such as sex may be a special

case of heterostatis because of the genetic and evolutionary consequences, and

non-perishable commodities such as money (and storable food in some species),

may buy long-term homeostatic stability, and thus be effectively heterostatic.

9.2 Pavlovian influences on economic choice.

Insight into the importance of Pavlovian mechanisms can be gained for

considering the type of information, both specific and general, that Pavlovian

values carry. In the general sense, Pavlovian states represent an estimate of the

expected value of being in a particular state, and thus cues may provide an

indication of the average amount of reinforcement available at a given time. This

turns out to be a potentially very useful signal. First, it provides a standard

against which individual actions should be judged: for example, receiving £5 is

positive in a neutral context, but negative in the context of Pavlovian cues that

inform that the average outcome is £10. Not only does this change the relative

utilities of available options for individuals with non-linear utility functions

across positive and negative outcomes, but relative judgments may influence

exploration and apparent risk attitudes if the value of outcomes has to be learned

(Denrell, 2007;March, 1996;Niv et al., 2002). This is because if the value of an

action is uncertain, then the relative value of an outcome determines the

frequency with which it is sampled: an option judged aversive will be tried less

often than one judged positive. Thus, Pavlovian values can modify the

asymmetrical sampling biases between positive and negative, or high versus low

variance outcomes.

Second, in addition to judgements of relative utility, Pavlovian values can also

usefully inform how much effort an individual should invest in a set of actions.
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This notion embodies the concepts of excitement and motivational vigour, and

can be rationalised in any system in which there is an inherent cost to performing

an action (Niv et al., 2007). If the average return is judged high by a Pavlovian

system, then it makes sense to invest more effort in instrumental actions, as seen

in general Pavlovian-instrumental transfer. In this way, emotional values

mediated by the Pavlovian system are integrated, synergistically, with other

action systems in a way that exploits the distinct information embedded therein.

Third, and more specifically, Pavlovian values can selectively alter the value of

different options presented simultaneously. Pavlovian cue value reflects a state-

based homeostatic quantity which reflects physiological need: for example the

utility of food declines as one becomes sated, or the utility of shelter is reduced

on a fine, warm day. This information can be used to judge the specific utilities

in situations in which many courses of action exist, as is demonstrated by

sensory-specific satiety. Indeed, one of the paradigms (devaluation) that has been

particularly instructive in dissociating different action systems draws on the fact

that habit-based learning systems are unable to access specific value related

information without experiencing outcomes and relearning actions (Balleine,

1992).

9.2.1 Impulsivity.

Impulsivity covers a broad range of phenomena. Classically, it features

engagement in actions whose immediate benefits are less than those of longer

term pay-offs that would accrue if the subjects could be patient (Cardinal et al.,

2004). That is, subjects exhibit temporal short-sightedness. Impulsivity is best

described in the appetitive domain, but similar notions may apply in aversive

domains too. In the appetitive case, we have argued that the effect of a Pavlovian

approach response associated with a proximally available beneficial outcome can

be to boost early, and thus impulsive, responding at the expense of what would

be favoured by goal-directed or habitual instrumental systems (Dayan et al.,

2006). Treating this form of impulsivity in Pavlovian terms amounts to a subtly

different explanation of the behaviour from accounts appealing to (or data fitting

with) hyperbolic discounting or indeed ideas about differences between (model-

based) rational and (model-free or perhaps neuromodulator-based) emotional
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cognition, which conventionally ignore the normative intent of model-free

control. In the aversive domain, impulsivity may be manifest as intrusions of

innate aggression in the face of loss. Later, we suggest that one route to altruistic

punishment is via Pavlovian aggression.

9.2.2. Framing effects.

Framing effects are a rather well-studied peculiarity of human choice in which

the decision between options is influenced by subtle features of the way in which

those options are presented. Typically, the language used to describe an option is

manipulated in a valance related manner, whilst the expected value remains

unchanged. This biases choices in a reliable manner, and violates a central tenet

of rational decision-making, namely logical consistency across decisions,

regardless of the manner in which available choices are presented. This

assumption, known as ‘extensionality’ (1) or ‘invariance’ (2), is a fundamental

axiom of Game Theory (3). However, the proposition that human decisions are

“description-invariant” is challenged by a wealth of empirical data (4,5).

Kahneman and Tversky originally described this deviation from rational

decision-making, which they termed the “framing effect”, as a key aspect of

Prospect Theory (6, 7).

In a well-known example of this, experienced physicians were asked to

recommend optimal management (surgery or radiotherapy) for a hypothetical

cancer patient. Remarkably, they advised radically different treatments

depending on whether the treatment information had been presented in terms of

either mortality or survival rates (5). Another well known example is the disease

dilemma, in which subjects are asked to choose between two options relating to

the management plan of an epidemic, one of which contains risk, and the other

not (Tversky and Kahneman, 1981b). The risky option is fixed, such as ‘Option

A has 2/3 chance of curing all 600 affected people’, but the non-risky option is

presented in either a positive or negative frame, as either ‘With Option B, 200

people will be saved ’ or ‘With Option B, 400 people will die’. Subjects are more

likely to choose the risky option when the sure option is presented in aversive

terms ie. people dying.
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A very simple Pavlovian account of this is that the option that is presented as

involving sure deaths automatically engages a Pavlovian aversive withdrawal

response that is absent for the option involving sure survival (or is maybe turned

into an appetitive approach response) that affects its propensity to be chosen.

Indeed one can look at the classic trolley moral dilemmas in a similar light

(Thomson, 1986). These predictive computations can be quite sophisticated,

likely involving model-based as well as model-free systems.

From a neuro-anatomical perspective, framing might be expected to involve

neural structures implicated in Pavlovian-instrumental interactions in avoidance

and PIT. Indeed, this appears to be the case: we conducted a study involving

loss/gain framing of non-risky, alongside risky, financial options, matched for

expected value (De Martino et al., 2006).

In the study, participants received a message indicating the amount of money that

they would initially receive and then had to choose between a “sure” or a

“gamble” option presented in the context of two different “frames”. The “sure”

option was formulated as either the amount of money retained from the initial

starting amount (e.g. keep £20 of a total of £50- “Gain” frame), or as the amount

of money lost from the initial amount (e.g. lose £30 of a total of £50- “Loss”

frame). The “gamble” option was identical in both frames and represented as a

pie-chart depicting the probability of winning or losing. Subjects were risk-

averse in the ‘Gain’ frame, tending to choose the sure option over the gamble

option and risk-seeking in the ‘Loss’ frame, preferring the gamble option (this

effect was consistently expressed across different probabilities and starting

amounts.

We found that the amygdala correlated with the behavioural influence of the

frame on the subjects decisions, being more active when subjects chose in

accordance with the frame effect, as opposed to when their decisions ran counter

to their general behavioural tendency. Broadly speaking, the data suggest a

model in which the framing bias reflects incorporation of a potentially broad

range of additional emotional information into the decision process. In
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evolutionary terms, this mechanism may confer a strong advantage, because such

contextual cues may carry useful, if not critical, information. Neglecting such

information may ignore the subtle social cues that communicate elements of

(possibly unconscious) knowledge that allow optimal decisions to be made in a

variety of environments. However, in modern society, which contains many

symbolic artefacts and where optimal decision-making often requires skills of

abstraction and decontextualization, such mechanisms may be render human

choices irrational.

9.2.3 Depressive realism.

In comparisons between healthy volunteers and patients with depression, a (not

completely uncontroversial) finding is that the volunteers are unduly optimistic

about the appetitive value of, and the degree of control they exert over, artificial,

experimentally-created environments. By contrast, the depressed subjects make

more accurate assessments, and so are more realistic. This phenomenon is called

depressive realism (Abramson et al., 1979).

It has been suggested that Pavlovian withdrawal associated with predictions of

negative outcomes is an important route to the over-optimism of the volunteers,

and that one of the underlying neural malfunctions associated with depression is

associated with a weakening of this withdrawal, thereby leading to more

accurate, but more pessimistic, evaluations (Huys and Dayan, 2008). Consider a

healthy subject entertaining chains of thought about the future. Any chain of

thought leading towards a negative outcome engenders a Pavlovian withdrawal

response, which may lead to it being terminated or (in the jargon of tree-based

search) pruned. Thus if healthy subjects contemplate the future, they will tend to

favour samples with more positive outcomes, and will therefore be more

optimistic. Given the possibility that this form of Pavlovian withdrawal is

mediated by serotonin, as the putative aversive opponent to dopamine (Daw et

al., 2002), and the pharmacological suggestion that depressed patients have low

effective serotonin levels (Graeff et al., 1996), it is tempting to conclude that this

withdrawal mechanism is impaired in the depressed subjects. This would, of

course, lead to the basic phenomenon of depressive realism. Indeed, boosting
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serotonin, which is the ultimate effect of mainline treatment for depression,

namely selective serotonin reuptake inhibitors, helps restore the original

optimism.

9.2.4. Dread.

In an aversive domain, many subjects show an additional sort of impulsivity in

the form of dread (Berns et al., 2006). They prefer a larger shock that comes

sooner to a weaker shock that comes later, reportedly because of the misery of

aversive anticipation. This is exactly the opposite of conventional discounting,

which would suggest that more postponed a shock will be, the less it is disliked

at the moment. For a more subjective version of this, consider what you would

prefer if your dentist discovers a cavity – arranging to have the filling instantly,

or booking it for a few weeks’ time?

In the study by Berns and colleagues, during the anticipation phase brain regions

commonly associated with physical pain are activated, almost as if the

anticipation was indeed actually miserable. This idea has been broadened into the

more general notion that information (in this case, about a future outcome) can

have value itself, a concept that is antithetical to normative Bayesian notions, but

is well established in a number of experimental paradigms (Loewenstein, 2006).

Subjects behave in odd ways, for instance not collecting free information if it is

likely to provide bad news.

Three Pavlovian issues may underlie these facts. First, the activation of the

primary pain system is consistent with a Pavlovian phenomenon called stimulus

substitution, in which predictors of particular outcomes are treated in many

respects like those outcomes themselves. Although the neural foundations of this

are not clear, let alone its evolutionary rationale, it is an effect that is widely

described, particularly in appetitive circumstances. For instance, the way that a

pigeon treats a key which has a Pavlovian association with an appetitive outcome

depends directly on whether it is food or water that is predicted. The pecks that

result are recognisably associated with the specific outcome itself. Perhaps a
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model-based form of stimulus substitution leads to an effective overcounting of

the temporally distant shock, making the subject prefer the immediate one.

The other two Pavlovian effects are related to those discussed in the context of

depressive realism. Not seeking information that is likely to be aversive is

exactly akin to not exploring, or actually pruning, paths of thought that are likely

to lead to negative outcomes. More subtly, and more speculatively, for the case

of dread, maybe the guaranteed prospect of a substantially delayed, future

aversive outcome that cannot be controlled has unfortunate model-based and

model-free consequences on the Pavlovian mechanism for creating optimism.

From a model-based perspective, it creates a prior expectation of environments

that are relatively unpleasant because they contain unavoidable aversive

outcomes. Such environments are associated with larger average aversive values

and so lead to Pavlovian avoidance (Huys and Dayan, 2008). From a model-free

perspective, the unavoidable negative outcome might set an adaptation point for

the pruning mechanism, and thereby create a circumstance under which

substantially more negative paths than normal are explored.

9.3 Explicit judgement and value relativity

9.3.1 Behavioural evidence.

Attaching economic value to aversive states and clinical symptoms (such as pain)

is a central issue in political and health economics, and informs issues as diverse

as the market price of analgesics, the cost-effectiveness of clinical treatments,

compensation for injury, and the response to public hazards. In most cases, the

cost of relieving the suffering must be accurately equated with the amount of

suffering relieved. Economic theories of valuation generally assume that the

prices of such commodities are derived from genuine fundamental values, and

that people have robust endogenous preferences and stable trade-offs between

goods and money (Shafir & LeBoeuf, 2002). However, the validity of this

assumption, and the applicability to health products, is becoming increasingly
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questioned, and contrasts with an emerging alternative possibility that

preferences may be more labile, and predictably so.

This latter view receives support from psychological experiments suggesting that

sensory judgments of magnitudes and probabilities are made relative to other

recently experienced events, and not bound tightly to some absolute scale.

Notably, Ariely, Loewenstein, and Prelec (2003) used annoying sounds, as well

as having subjects place their fingers inside a tightening vice, and found that

hypothetical willingness-to-pay to avoid prices were typically biased towards

price anchors. This resonates with the idea that the mere presence of an option in

a choice set may change the way another option is judged; or, more broadly, that

preferences are constructed afresh in the light of the salient options in each new

situation, rather than revealed (see Slovic, 1995).

But this conclusion might be premature, because people might not need to know

the value of something if they already know its price. Notably, none of the

existing studies have tested the preference formation process at its very root—

when people experience stimuli or events for very first time and they have to

make real monetary valuations, by paying from their own pocket, to obtain or

avoid this experience. Indeed, a design with this methodology is a very close

approximation to consumer behaviour in the real-world. The stakes are high here,

because observing relativistic effects in this context would imply that the price

consumers pay (e.g., for health) may be substantially determined by current or

recent experiences.

We designed a simple experimental market in which healthy subjects could pay

money to avoid an unpleasant (painful) electrical stimulus. In the experiment,

subjects received a single electrical stimulus and were then asked to decide how

much they were willing to pay, out of their monetary endowment for that trial, in

order to avoid fifteen further shocks. If the price offer was more than a randomly

determined market price, avoidance was bought at the market price, otherwise

the endowment was kept and all shocks had to be endured. This design was

analogous to buying pain relief in a computerised ‘second price’ (Becker

DeGroot Marshack) auction, and has the characteristic that the only rational bid
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is according to ones true preferences (all of which was well explained and

practiced by each subject).

Figure 9.1. Experimental pain-auction task to explore price relativity in an pain ‘market’,

implemented as a Becker DeGroot (second price) auction.

There were 60 such trials and we varied both the shock intensity and the

monetary endowment. Unbeknownst to the subject, only 3 pain levels were used:

low, medium and high. Furthermore, the levels were grouped into blocks (of 10),

such that the different levels co-existed in pairs (Low-Medium, Medium-High,

Low-High) (see below).
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Figure 9.2. Experimental pain-auction task: distribution of pain levels was used to create

magnitude context effects within blocks

Furthermore, in one group the endowment for each trial was £0.40p, and for

second group of subjects it was £0.80p, with subjects randomly assigned to either

group.

We observed higher price offers for medium pain relief when experienced in a

sequence of trials in which there were many low pain trials (Low-Medium

block), compared to when the same pain was experienced in a sequence in which

there were many high pain trials (Medium-High block). That is, subjects were

willing to pay more for pain relief when it was relatively high compared to the

recent average, compared to when it was relatively low, despite the fact the

actual magnitude was identical. Furthermore, we observed a striking rescaling of

valuation dependent on endowment (40p vs. 80p): higher offers were given when

high endowment was received and vice versa.

Figure 9.3. Experimental pain-auction results: this illustrates context relativity effects

induced by both pain level, and cash endowment.

The differential results from subjects with higher cash endowments suggest that

people shift (expand) the experimental budget constraint such that they spend
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roughly a constant fraction of their experimental income on pain relief. A

possible argument against the effect of wealth (cash endowment per trial) could

be that when people get richer their demand for health might increases, which

would explain why people with greater endowments spend more on pain relief.

However, this behaviour is a failure of aggregation of the experimental

conditions to the rest of the person's health and finances. And if health is special

(i.e., not a standard sort of good like chocolate bars for example), it is still

strange that the context effect works at the level of the budget for the experiment,

because people should be able to integrate the experimental income into their

total wealth, and this should not differ between subject groups.

In summary, we found that assessment of pain and demand for pain relief are

almost completely relative to a) the experience of pain in the recent past, and b)

the current cash-in-hand. Participants were willing to pay a fraction of the 'range'

given, regardless of whether the sums they are paying differ by a factor of up to

two. What makes pain stimuli especially interesting in this case is the possibility

is that people do not know their market price; and it is the knowledge of the

market price that determines our willingness to pay for, e.g., a cup of coffee.

Once the price is taken away, perhaps we are somewhat lost in our valuations. As

a result, economic theories of valuation should not assume that prices of such

commodities are derived from genuine fundamental values.

This does not necessarily mean that the brain is inherently poor at forming

affective judgements of pain, but it does suggest that our ability to explicitly

generate reliable valuations may be sub-optimal, insofar as it is strongly

susceptible to contextual effects. With reference to the different value systems

discussed above, the necessity to communicate values through an explicit system

forces the individual to use a goal-directed, cognitive representation of value.

Thus, whereas the judgement lability we see may be less important for the sort of

basic decisions we make when interacting with our environment (eg learning not

to put our hand in a fire), it may be more problematic when such explicit

valuations are the currency by which decisions are made.
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Unfortunately, explicit judgments are necessarily required in certain situations.

This is the case, firstly, when we are forced to make abstract comparisons

between experienced or imagined primary affective states and secondary

rewarding ones (such as money). Furthermore, the difficulty in equating such

diverse quantities to control purchasing behaviour is confounded by the fact that

health products are naturally inhibitory, in that one pays to avoid a certain

aversive symptom, rather than pays to receive a positive good. That the product

has the positively valenced property of relief has parallels with the nature of the

avoidance studied in animal learning theory, in which states that are associated

with omission or termination of otherwise aversive events acquire, through

inhibitory processes, rewarding valence (add.ref 2-6 )But whereas increasing

experience might mitigate this in some situations, it can do no such thing for

products which buy relief of never-experienced symptoms, which are a growing

commodity in modern preventative healthcare.

Secondly, explicit judgements are required when economists and policy makers

need to explicitly quantify adverse clinical states, to make decisions regarding

pricing strategy and cost-effectiveness of treatments. Pain is major public health

issue, by way its prevalence (around 20% of the general population suffer from

clinically significant pain (Eriksen et al., 2003; Macfarlane et al., 2005; NFO

World Group, 2007), the cost of analgesics (the global market in analgesics is

worth £40 billion), and lost revenue from work absenteeism (in Europe nearly

500 million lost working days every year, costing the economy at least €34

billion). Importantly, pain rarely occurs as an isolated symptom, and usually

occurs both in the general symptomatic and temporal context of an illness,

provided for instance by the natural course of a disease. Thus, any insights into

the structure of human value systems, and its susceptibility to relativistic

judgement biases, may have substantial economic consequences when this is

taken into account. Future research might usefully explore the stability of

valuation for other clinical symptoms, and the effect of other putative contexts

such as knowledge and observability of other peoples judgements, which may

play an important role in dynamic social markets.
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9.3.2 Neurobiological insights into value relativity

The above, and other data, leads to two related accounts of how humans generate

estimates of the value of goods in transactions. The first is largely algorithmic,

and posits that humans lack stable, long-term representation of the magnitude of

value, and judgments are made purely by pair-wise comparisons in an ordinal

dimension. This can be formalized by Relative Judgment Models(Laming,

1984;Padoa-Schioppa et al., 2006) and related theories (e.g. the stochastic

difference model, multi-alternative decision field theory, adaptation level theory,

and range frequency theory (Roe et al., 2001)),and draws support primarily from

psychophysical observations. Applying the Relative Judgment Model to value

(Stewart et al., 2006), would suggest that initial experience with goods and prices

generate the anchors against which subsequent experience is judged.

The second account is computational, and posits that value scales are intact, but

that the sensory information from an available option is often inherently

uncertain, forcing people have to make inferences (e.g. Bayesian) from all the

information presented. Informative and circumstantial cues are thereby exploited

for any clues they might harbor regarding the true underlying worth of an option.

This view is closely related to theories of perception (Friston, 2003;Kersten and

Yuille, 2003), and is well illustrated in vision.

Recent neuroscience research on judgment and decision-making in humans and

primates has the capacity to provide evidence of the implementation of these

models, and as we show below, evidence exists for both accounts.

9.3.2.1 Relative coding of value

The orbitofrontal cortex has a well-studied role in reward processing, and

neuronal activity correlates well with the motivational value of a reward, over-

and-above its sensory properties (Padoa-Schioppa and Assad, 2006). For

example, activity declines for a reward (or cues that predict a reward) when an

individual (human or monkey) is sated with that reward (Critchley and Rolls,

1996;Gottfried et al., 2003), just as it does subjectively. Initial evidence for

relative coding came from a classic experiment by Tremblay and Schultz, who
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presented monkeys with variously preferred juice rewards, and recorded from

orbitofrontal neurons while presenting each juice, presented in blocks with one

other juice (Tremblay and Schultz, 1999). Critically, neuronal activity depended

on whether or not the juice was the preferred in that block, rather than its

absolute value (Figure 1). Thus, neurons fired if juice B was presented in blocks

in which a less preferred juice (A) was also presented, but not if the alternative

was more preferable (juice C). Comparable findings have also been found in

human medial orbitofrontal cortex, using an analogous design in an fMRI

scanner (Elliott et al., 2008).

A similar pattern occurs with aversive outcomes: if a neutral outcome is

presented alongside an electric shock, orbitofrontal neurons respond to the

neutral outcome precisely as they do to juice reward presented alongside the

neutral outcome (Hosokawa et al., 2007). That is, in both studies, stimuli activate

orbitofrontal neurons only when better than their alternative.

More recent studies have shed light in the time course that prescribes the context

that provides relative scales. In the previous studies, options were presented

individually, with its paired alternative occurring during an individual block of

trials (i.e. one block will contain either juice A or B, and another might contain

juice B or C). However, if pairs are presented intermixed (i.e. a trial of juice B

and C will appear immediately after a trial of A and B), orbitofrontal neurons

code absolute value throughout (Padoa-Schioppa and Assad, 2008). In other

words, the relative coding of reward seems to exist only between, and not within,

blocks.

9.3.2.2 Adaptive scaling

Recording how much better an outcome is in the context of others is clearly

useful, and indeed a fully coded version of this is analogous to the prediction

error. But theories of relative judgment also suggest that values should scale to

match the relevant range of magnitudes. Tobler and colleagues (Tobler et al.,

2005b) found that just this property was exhibited in dopamine neurons. They

conditioned monkeys to predict varying quantities of fruit juice. When they
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presented cues that predicted two possible, equiprobable amounts, they showed

(as expected) that dopamine cell activity coded the relative value of the outcomes

(more precisely, the value prediction error), with larger volumes eliciting phasic

activations and smaller volumes resulting in deactivations, independent of

absolute magnitude. Critically, however, the difference between the activity

associated with the higher and lower magnitudes were essentially constant,

despite the fact that the volume ranges were substantially different. Thus, the

apparent gain, or sensitivity, adapts to the range of magnitudes expected. That

such scaling was not seen to the cues themselves, the order of which was

unpredictable, suggests that the cues set the scale on each occasion, on a trial-by-

trial basis. Scaling in the aversive domain has not been studied, to our

knowledge.

9.3.2.3. Expectation, inference and placebo effects on value

In relative judgment models, contexts may provide anchors to establish scales in

determining the relative positions of an option. However, in expectation and

“perceptual” models, they actually provide information that influences the

experience of it. Expectation effects are well studied in behavioral,

psychophysical and economic studies, in both the appetitive and aversive

domain. Studies on the latter, which are slightly more extensive, have shown that

placebo effects can be reliably induced by either implicit or explicit suggestions

that a painful stimulus is less intense than it actually is (or more intense, as in the

‘nocebo’ effect). Human neuroimaging studies show that brain areas associated

with the perception of unpleasantness, the anterior insula cortex and anterior

cingulate cortex, show a pattern of activity that reflects the reduced aversive

experience induced by expectation despite no change in the actual stimulus,

suggesting that the representation of aversiveness is adapted in the brain (Brown

et al., 2008a;Wager et al., 2004).

Placebo effects also exist for rewards. De Araujo and colleagues (de Araujo et

al., 2005) gave subjects isovaleric acid (which has a cheese-like odor) to subjects

in an fMRI scanner, and accompanied it with the words ‘cheddar cheese’ or

‘body odor’, exploiting the disconcerting similarity between the two. They found



179

that not only did subjects greatly prefer the scent when labelled ‘cheddar cheese’,

but that activity in medial orbitofrontal cortex and rostral anterior cingulate

cortex coded this subjective experience. Presumably had they been given the

option, they would have paid more money to receive the cheddar cheese smell

(or paid to avoid the smelly socks).

Not only can direct suggestions of quality influence subjective experience, but so

can prices. Shiv and Ariely and their colleagues studied how the efficacies of

products, either energy drinks or an over-the-counter analgesics, yield their

behavioral effects depending on their apparent price (Shiv et al., 2005;Waber et

al., 2008). They found that energy drinks helped sustain concentration, and

analgesics relieved pain more, if they were thought to be more expensive, despite

the fact that both products were in fact placebos. This is consonant with the

observation that purely sensory judgments are to some extent uncertain, and that

subjects use cues (in this case prices) to improve inference.

Recently, the neurobiological basis of this effect has been studied in people.

Plassmann and colleagues gave subjects several wines, and provided them with

information regarding the retail price of each (Plassmann et al., 2008). Subjects

tasting wine they believed to be expensive found it significantly more pleasant

than the same wine labelled as being cheap. Neural responses in medial

orbitofrontal cortex correlated with the experienced pleasantness, rather than the

identity of the wine.

Taken together, these studies show that not only does the subjective experience

of a product depend strongly on cues and contexts, be they relevant or irrelevant,

but so too does the basic representation of reward or aversive value in the brain.

9.3.2.4 Equating value in transactions

Transactions of any sort involve establishing whether the value of obtaining

something compares favorably with the value of losing something else. Since

firing rates may not be negative and decreases from baseline firing offer limited
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resolution, losses and gains may be best encoded by separate populations of

neurons. Indeed, this as has been shown in both the orbitofrontal cortex and

striatum (Berridge, 2009;O'Doherty et al., 2001;Seymour et al., 2007a).

It remains largely unknown how the brain integrates and compares gain and loss

information for explicit values. Knutson and colleagues (Knutson et al., 2007b)

have shown that when an explicit trade-off is made between a stated price and an

every-day good, there appear to be separate representations of the value of the

item to be gained (in nucleus accumbens), and lost (in insula cortex). This leaves

open the question of how the trade-off is made. Plassmann and colleagues have

shown that subjects’ willingness to pay for goods correlates with orbitofrontal

cortical activity, consistent with the equation of a common currency of value in

this area (since the amount offered will be lost) (Plassmann et al., 2007). The

fact that the brain area (i.e. the medial orbitofrontal cortex) involved in

willingness-to-pay broadly co-localizes with that involved in placebo effects on

value, and in the establishment of context-related scales, reaffirms the challenge

in understanding exactly how setting up such currency trade-offs proceeds.

The artifacts of the comparison process may be quite striking. That scaling

occurs in some form of another is not surprising, and it would be remarkable if

neurons encoded accurately the value of goods such as a lunchtime sandwich and

the price of our new house on the same scale. If they do indeed adapt suggests,

then comparisons across scales might be hazardous. This could offer insight into

a classic experiment described by Tversky and Kahneman (Tversky and

Kahneman, 1981a), who asked people whether they would spend 20mins to cross

town to save $5 on a $15 calculator, or on a $125 jacket. Subjects were far less

inclined to do so for the jacket than the calculator, which is clearly absurd, since

the absolute amount saved is identical. Clearly, the benefit of adaptive scaling

weighs heavily against the inability to integrate across transactions in separate

contexts in an individual’s daily life.

9.3.2.5 Discussion
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Neurobiological studies are beginning to provide key insights into why the

values people ascribe to goods, and the price they are prepared to pay for them, is

often so susceptible to manipulation. First, in given contexts, the brain sets

relative scales against which the ordinal position of goods is set. Second, the

brain uses available and additional information to help refine judgments of value.

Thus, object or price anchors can act in two distinct ways to influence trade

decisions. First, they can establish the boundaries and sensitivity (or gain) of a

value scale, such that a given transaction will appear relatively good or bad.

Second, they can appear to provide information about the true worth of a

product, and lead the individual to change the judgment and experience of a

product.

However, many questions are left open. First, it remains unclear whether

absolute value judgments may exist somewhere in the brain. That relative

judgements of value are found to exist is not in itself a strong argument that it

represents a fundamental characteristic of value encoding, since many related

functions, in particular choice, might reasonably be predominantly concerned by

how much better or worse one option is to another. Indeed, the striatum has an

important role in guiding choice, and hence relative coding and adaptive scaling

seen here might occur downstream of absolute value coding elsewhere.

However, that relative coding is seen in orbitofrontal cortex is more important

since this region has a well understood role in basic value coding, although it will

be important for future studies to establish whether scaling, in addition, is also a

feature of neuronal activity.

Second, evidence that hedonic perception is subject to perceptual priors does not

necessarily imply that these influence subsequent decisions (transactions). One of

the key insights from behavioral neuroscience to economics has been the

realization that there are many interacting value systems that determine behavior

[Dayan 2008]. This raises important questions, and limits the generality of

conclusions about the findings from existing experiments. Notably, dopaminergic

responses are thought to be central to cached Pavlovian and habit like actions,

but appear to be less involved in more cognitive, ‘goal-directed’ action (Daw et

al., 2005;McClure et al., 2004).
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Third, despite good evidence that point predictions provided by cues can

seemingly act as inferential priors in hedonic perception, the effect of referential

anchors on value within the same modality remains unclear. That is, if you taste a

medium quality wine, does this make a subsequently tasted wine taste better or

worse? According to a simple Bayesian account, if there is temporal correlation

between values, previous stimuli should act as relative attractors. In the absence

of this, however, they might be expected to act as repellents, as sometimes seen

in adaption effects in other modalities, for instance in colour constancy and tilt

illusions (Schwartz et al., 2009). Beyond this, priors might operate at a higher

level if, for instance, the brain actually learns distributions over values, and uses

individual events to learn the parameters of these distributions.

Independently of this, a more straightforward prediction of Bayesian accounts is

that certainty or confidence should control the magnitude of expectancy effects.

In the appetitive domain, there is some behavioral data indicating that the

strength of influence of prior knowledge depends on the amount of experience

(Robinson et al., 2007), but the neural basis of this effect has not been

established. Recent data from the aversive domain does suggest that greater

confidence in prior expectancies results in a greater impact on perception, an

effect correlated at a neural level with aversive representations in anterior insula

(Brown et al., 2008b). Whether confidence controls placebo effects in markets,

both behaviourally or neurally, remains to be tested.

In summary, the way that the brain processes value-related information leaves it

vulnerable in many modern day situations. While this is good news for marketing

consultants, inspiring various inventive marketing tricks, it is bad news for

economists schooled in traditional notion that willingness to pay for goods

reflects the inherent, known, and stable values that people ascribe to them.
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9.4. Aversive motivation in social environments.

9.4.1 Introduction

Many social interactions are self-beneficial if we behave positively and pro-

cooperatively towards others. Opportunities to benefit from cooperation are

widespread, and reflect the extrinsic fact that the natural environment is often

best harvested, insofar as rewards can be accrued and threats avoided, by

working together. But the decision to cooperate is not always straightforward, as

in some situations it leaves us vulnerable to exploitation by others.

Game theory specifies a set of potential social interactions in which outcomes of

cooperation and defection systematically differ, allowing both experimentalists

and theoreticians to probe an individual’s propensity for cooperation in different

situations (Camerer, 2003). These outcomes typically vary in the extent to which

competitive actions may seem preferable and where a short-sighted temptation to

exploit the cooperativeness of others has a capacity to subvert cooperation later.

Fortunately, the ability to look beyond the immediate returns of defection

towards longer-term cooperation allows humans to escape from otherwise

competitive equilibria, and this can be viewed as a hallmark of rational,

sophisticated behaviour.

However, humans appear to behave positively towards each other in situations in

which there is no capacity to benefit from long-term cooperation: for instance,

when they play single games in which they never meet the same opponent again,

and when their identities are kept anonymous (Berg et al., 1995;Fehr et al.,

1993;Fehr and Fischbacher, 2003). This removes the capacity for both direct

reciprocity (tit-for-tat) (Axelrod, 1984;Trivers, 1971), and the ability to earn a

cooperative and trustworthy reputation that can be communicated by a third party

(Ariely and Norton, 2007a;Bateson et al., 2006;Harbaugh, 1998). Furthermore,

they will do this even if it is costly to themselves (Henrich et al., 2006;Xiao and

Houser, 2005). From an economic perspective this appears to be genuinely

altruistic, being strictly irrational since it incurs a direct personal cost with no

conceivable long-term benefit.
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Humans also behave negatively towards each other in situations in which there is

no capacity to benefit, ie they engage in actions that punish others. How

punishment might operate in social and reciprocal interactions is illustrated by

the free-rider problem. Consider a game in which individual players invest a

certain amount of their own money into a central pot (figure 7.4, step 1,2), which

is then multiplied by a fixed amount (step 3), and the total amount subsequently

divided equally amongst all players (step 4), which they add to the money they

didn’t invest initially. This type of game, termed a public goods game, is similar

to many real-life situations, such as a business in which the earnings of each

employee depend of the overall turnover of the business. The contribution of

each person increases the public good and is beneficial for everyone. More

specifically, the overall benefit of the group is bigger than the individual cost of

contributing, but this in turn is higher than the direct benefit for the individual.

Thus, each individual has also a strong temptation not to contribute in step 2, that

is, to free-ride (defect) on the contributions of the rest of the group (see red

player) because each individual also profits from the common good, even if

he/she does not contribute. If everyone defects, however, cooperation breaks

down and the common good is no longer realised. This problem is referred to as

the first-order free-rider problem.

Figure 9.4 The Public Good game. (see below) Public goods games provide a

experimental illustration of the utility of punishment in social economic interactions. In this

example, each player receives an initial endowment of £10 (step 1), and contributes a

certain proportion toward the public good (step 2), temporarily leaving each with £5.

However, the red player - a free rider, contributes nothing, and so remains with £10. The

collective contribution is multiplied by a certain amount (4 times in this example), which

reflects the overall economic benefit of cooperation (step 3). This amount is then equally

divided amongst all players, including the free-rider, who as a result ends up with the most

money: £27.5 as opposed to £22.5 (step 4). However, another player (in blue) punishes

the free-rider, at personal cost (step 5). Even though this seems irrational in the short

term, since it removes the incentive to free-ride in the red-player, the blue player may

benefit from future interactions in which the red player cooperates. Thus, in the long run,

short term punishment results in long term gain, and reflects a selfish form of reciprocity

with repeated interactions. If the blue player does not interact again, however, then

punishment becomes altruistic.
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Punishment provides a possible solution: if contributing employees start

punishing free-riders by fining them (but at personal cost, step 5), the level of

cooperation increases again because free-riders want to avoid the cost of being

punished (Yamagishi and Sato, 1986). If the punisher knows he/she will interact

with the free-rider again, he/she will subsequently benefit from the increased

cooperation, and punishment in this case can be viewed as a (long-term) selfish

form of reciprocity. However, if the punisher knows that they will not interact

with the free-rider again, he/she pays the cost of punishing while others benefit
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from the free-riders switch to cooperation, and thus punishing becomes altruistic.

In reality, as we discuss below, humans punish both selfishly and altruistically

(Fehr and Gachter, 2002;Yamagishi, 1986).

But a new problem arises: why should individuals endure the costs of punishing

free-riders instead of simply cooperating and avoiding the costs of being

punished by others? This is the second-order free-rider problem. One solution is

to introduce higher levels of punishment, and punish those who do not punish.

Boyd and colleagues have proposed another solution, suggesting that human

societies maintain punishment by group selection and cultural acquisition and

transmission of conformity(Boyd et al., 2003;Boyd and Richerson, 1988;Gintis,

2000). Accordingly, groups with altruistic punishers are able to enforce

cooperation norms. With increasing number of punishers the number of defectors

in these societies is minimized, as is the cost of punishment. In terms of the

ultimate basis of human reciprocity and cooperation, group selection should

favour cooperative groups, allowing punishment and cooperation to evolve. This

casts the spotlight upon experimental studies which probe the existence and

nature of punishment in both animals and humans.

Arguments against altruistic interpretations of experimentally observed

behaviour include suggestions that individuals do not understand the rules of the

game, are prone to misbelieve they (or their kin) will interact with opponents

again in the future, or falsely infer they are being secretly observed and

accordingly act to preserve their reputation in the eyes of experimenters (Smith,

1976). However, the widespread observation of altruism (both rewarding and

punishing) across cultures (Henrich et al., 2001a), and within meticulously

designed experiments conducted by behavioural economists provide compelling

support for its presence as a clear behavioural disposition. Furthermore, in fMRI

experiments, altruistic actions correlate with brain activity, suggesting that they

derive from some sort of intended or motivated behaviour and are not an

expression of mere ‘effector noise’ (ie. decision error)(de Quervain et al.,

2004b).
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The very existence of altruism raises the difficult question as to why evolution

has allowed otherwise highly sophisticated brains to behave so selflessly. This

directs attention towards the decision-making systems that subserve economic

and social behaviour (Behrens et al., 2009;Lee, 2006;Lee, 2008), and questions

whether they are structured in such a way that yields altruism either

inadvertently, or necessarily. The broader consequence is that if they do, then

this reframes the question regarding the ultimate (evolutionary) causes of

altruism towards the evolution of these very decision systems, and away from the

phenomenological reality of altruism per se.

9.4.2 Experimental observations of punishment in animals and

humans.

Animals not infrequently behave negatively to one another. In many cases, this is

driven by an immediate selfish benefit to the animal (or its kin) effecting the

behaviour — for example, assertion of dominance, the establishment of mating

bonds, theft, parental–offspring conflicts and retaliation (Clutton-Brock and

Parker, 1995). In some situations, food-sharing is increased by harassment,

although whether this represents cooperation is unclear (Stevens and Hauser,

2004). For example, the sharing rate in chimpanzees and squirrel monkeys

increase with increasing acts of harassment(Stevens, 2004). However,

punishment is observed in some situations where it seems more likely to preserve

or promote cooperation. For instance, chimpanzees attack allies that do not

support them in third party conflicts (De Waal, 1998), and queen naked mole rats

will attack workers whom they judge lazy (Reeve, 1992). Cases such as these

highlight behaviour that influences future, non-immediate actions of others,

rather than conferring immediate self-benefit. These dispositions might represent

the evolutionary precursor of more complex and ultimately altruistic punitive

behaviours widely seen in humans (Stevens, 2004).

In addition to more simple (defensive and retaliative) forms of punishments,

humans also clearly use punishment to motivate others to cooperate (Shinada et

al., 2004). One of the classic experimental demonstrations was provided by

Yamagishi, who studied cooperation in a public goods game (Yamagishi, 1986).
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He showed that sanctioning by means of financial penalties increased

cooperation in subsequent rounds of the game, and in comparison to games in

which there was no opportunity for punishment.

The existence of altruistic punishment as a proximate intentional motivation in

humans is evident by demonstrations that people are willing to incur a personal

cost solely to punish others whom they consider to have behaved unfairly. The

simplest illustration occurs in the Ultimatum game, where a player decides

whether to accept a proposed split, offered by another player, of a central pot of

money. Typically, unequal (<20%) splits are rejected, which cause both proposer

and responder to leave empty handed. This institution of costly, altruistic

punishment for unfair behaviour seems to be ubiquitous across widely different

societies and cultures (Henrich et al., 2001b;Henrich, 2006).

Altruistic punishment robustly promotes cooperation (Boyd and Richerson,

1992;Fehr and Gachter, 2000;Fehr and Gachter, 2002). For example, Gürerk,

Irlenbusch and Rockenbach allowed subjects to choose between playing public

goods games in institutions (societies) which did or did not offer the opportunity

to punish and reward others (Gurerk et al., 2006). Even though subjects initially

tended towards those institutions where they couldn’t be punished, the pay-offs

in these groups declined as they became dominated by free-riders, and most

subjects switched to play in sanctioning games where the overall level of

cooperation progressively increased. Subsequent studies have indicated that

cooperation may be even more robust if altruistic punishment is combined with

altruistic reward, in which cooperativeness of others is rewarded (at personal

cost) (Andreoni et al., 2003).

The proposed importance of cultural norms in driving behaviour predict that

individuals ought to be motivated to reward and punish those who adhere to or

transgress norms towards others, even when they themselves are not involved

(Bendor and Swistak, 2001). These situations are captured by third-party

punishment games, in which an observer witnesses the interactions of two other

players. For example, Fehr and Fischbacher implemented a third-party

punishment game in the context of simultaneous prisoner’s dilemma task (Fehr
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and Fischbacher, 2004b): a subject observed the behaviour of two players during

the game, and was subsequently given the option to punish at personal cost.

Players who cooperated were almost never punished, whereas almost 50% of

subjects punished players who defected when their partner cooperated. When

both players defected, the punishment rate decreased to 21%. This asymmetry

appears to reflect the norm of conditional cooperation, which prescribes that

cooperation is assumed if the other player cooperates, whereas defection is

considered a more legitimate (less unfair) response in the face of defection by

others. Accordingly, unilateral defection is sanctioned more strongly than mutual

defection (Fehr and Fischbacher, 2004a). Once a group establishes a strong

reciprocating culture, interaction with other forms of (selfish) reciprocity may

mean that the costs of altruistically punishing become relatively small (Boyd et

al., 2003;Rockenbach and Milinski, 2006). In effect, the threat of punishment

may become effective in maintaining cooperation.

9.4.3 Neuroimaging studies in humans.

Recently, fMRI has been used to probe the neurobiological correlates of human

cooperative behaviour in game theoretic experiments. In particular, several

studies have addressed the neurobiological correlates of fairness and punishment,

establishing findings which begin to shed light onto the underlying basis of

punishing actions. Sanfey and colleagues studied the response to fair and unfair

offers in an ultimatum game (Sanfey et al., 2003). They found that activity in the

anterior insula correlated with the receipt of an unfair offer, which was greater

when playing a human as opposed to a computerised opponent, and was greater

still with increasingly unfair offers. Impressively, this activity predicted subjects

subsequent decisions to reject the offer, effectively (altruistically) punishing their

opponent. This study also identified activity in dorsolateral prefrontal cortex

(DLPFC) in relation to fair offers, but not correlated with either the degree of

unfairness, hinting that it might adopt a more modulatory role. This proposition

was supported by a study from Knoch and colleagues, who disrupted DLPFC

activity with transcranial magnetic stimulation (TMS) during the Ultimatum

game (Knoch et al., 2006). They found that TMS applied to the right, but not left,

DLPFC reduced subjects’ decisions to reject unfair offers. This behaviour was
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specific to human opponents, insensitive to the magnitude of the offer, and

independent of subjective verbal ratings of unfairness.

These findings lead to the question of how the representation of the aversive

motivational value of unfairness is linked to behavioural decisions to punish.

Ultimately, the individual must choose between two outcomes: the financial

value of accepting the offer, and the retributive value of punishing the opponent.

We designed a task aimed to identify brain areas associated with retributive

value, by looking at the response to cues that predicted that opponents would

receive painful electric shocks (Singer et al., 2006). We compared brain activity

elicited when the cues signalled that a fair, or unfair, opponent would receive

either a high or low intensity shock, where the degree of fairness was associated

with previous play in a sequential prisoners dilemma game. Medial orbitofrontal

cortex and nucleus accumbens were activated when cues indicated imminent

high intensity shock to unfair players, and this activity correlated with subjects

subjective feelings of anger and retribution. These findings, which were

accompanied by compensatory decreases in empathic neural responses, highlight

the flexible representation of retributive goals in orbitofrontal cortex, similar to

that seen for primary rewards.

While passive tasks such as this are adequate for identifying brain areas

associated with retributive motivational states, they offer little insight into the

question of control: that is, which brain areas are involved in learning and

executing actions to bring about punishment? De Quervain and colleagues gave

subjects the opportunity to punish unfair opponents, at personal cost, in an

anonymous trust game(de Quervain et al., 2004a). Using positron emission

tomography (PET), they found that activity in dorsal striatum was associated

with altruistic punishment acts, with greater activation associated with more

severe punishments (which were tied to greater personal losses).

9.4.4. A neurobiological model.
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Taken together with an understanding of the basic motivation and action

selection, these findings allow one to sketch a neurobiological model of

punishment. In the simplest case, if an aversive outcome appears to be directly

and predictively associated with another individual, it would seem likely to

invoke a Pavlovian mechanism, centred on the amygdala, that may present a

relatively pre-potent or impulsive route to punishment. This pathway may direct

retaliative responses towards that individual, mediated in part via aggression

related areas such as the periaqueductal grey. Furthermore, this amygdala-

dependent pathway may have a central role in guiding escape and avoidance

from future interactions with that individual, contributing to subsequent

ostracism.

The amygdala may exploit functional connectivity with the lateral orbitofrontal

cortex and anterior insula, which may be necessary for more sophisticated,

context dependent aversive representations, for instance those relating to

fairness. In principle, one can import fairness-related outcomes onto Dickinson

and Dearing’s ‘Konorskian’ model (Figure 1) to specify the full range of

excitatory–inhibitory fairness-related outcomes (and predictors) (Figure 4). This

would predict that the anterior insula is similarly involved in representing

retributive inhibitors – that is, outcomes and predictive cues associated with the

frustration of seeing a free-rider unpunished. However, at the current time we

know relatively little about how the brain represents observed norms of

cooperative behaviour in a way that allows judgement of the fairness of others’

behaviour (Fehr and Fischbacher, 2004a;Moll et al., 2005).

Beyond these simple aversive responses, instrumental control may be dependent

on an appropriate representation of the appetitive retributive value of outcomes

associated with successful punishment, represented in the medial orbitofrontal

cortex. This appetitive value may reinforce punishing actions (or avoidance

actions), through reciprocal connections with dorsal striatum, in a similar manner

to primary rewards. Furthermore, reinforcement may arise from complex models

of future reciprocal interactions involving more widespread areas or prefrontal

cortex: this may include theory of mind areas (anterior paracingulate cortex, the

superior temporal sulci and the temporal poles) likely to be involved in
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representing the policies of others (Brunet et al., 2000;Gallagher et al.,

2002;Gallagher and Frith, 2003), anterior cingulate cortical subregions involved

in representing agency (Tomlin et al., 2006), and more anterior prefrontal cortical

areas involved in model-building and resolution of partial observability (Yoshida

and Ishii, 2006). Ultimately, in repetitively predictable situations, such actions

may become habitual responses to unfairness.

Figure 9.5. A neurobiological tri-partite model of social punishment. Impulsive,

predominantly Pavlovian punishment may centre on an amygdala-based circuit (depicted

in yellow), in which there is associative learning between other individuals (which act as

cues) and aversive outcomes. Aversive outcomes may input directly to the amygdala (for

example, from brainstem nuclei associated with primitive aversive representations, such as

pain29), or through more complex aversive representations in the anterior insula (AI) and

lateral orbitofrontal cortex (LOFC). This pathway might also be important for avoidance

and ostracism. Instrumental punishment may involve striatal-mediated reinforcement of

actions that lead to appetitive retributive goals. This appetitive representation (depicted in

blue) may involve the medial orbitofrontal cortex (MOFC), and might result from forward-

planning of future interactions in broader areas of the prefrontal cortex (PFC) involved in

theory or mind, agency, hidden state-estimation and working memory. Goal-directed

actions may reinforce action through the dorsomedial striatum (DMS, green). Habit-based

actions might reinforce action through dorsolateral striatum (DLS, red), possibly utilizing a
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dopamine-dependent circuit via the substantia nigra and ventral tegmental area. PAG,

periaqueductal grey.

Figure 9.6 This figure extends the Dickenson and Dearing's 'Konorskian' motivational

model13 to incorporate social reinforcement made with respect to judgements of fairness.

When affective outcomes are observed in conspecifics who are fair (or who are kin), the

motivational value is congruent with the observer. If the individual is judged to be unfair,

then the pattern of value is reversed. This illustrates the full spectrum of prosocial motives

according to predicted or omitted outcomes, or their predictors.

9.4.5 Altruistic punishment.

The retributive value of punishment may arise from potentially sophisticated

forward modelling of future interactions. But this leads to the question of how

altruistic goals are acquired, if they, by definition, ultimately result in personal

cost. There are several possibilities. First, they may reflect a misassumption that

future interactions are not improbable (not unreasonable in smaller societies in

human evolutionary history). Second, they could reflect the anticipated prospect

that kin, possibly in subsequent generations, will interact with the individual

being punished. Third, if punishment from ‘selfish’ reciprocal (goal-orientated)

action reliably results in eventual long-term payoffs, more proximal states

following punishment may be reinforced both through habit based learning, and

through sequential Pavlovian learning (Vlaev and Chater, 2006). This latter

process allows the state immediately following punishment to acquire an
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appetitive value, which may then independently reinforce other actions (through

conditioned reinforcement). Both these forms of control will be insensitive to the

possibility that in some situations the outcome is altruistic. Fourth, it is possible

that learning mechanisms involved when observing others punishing, in

situations which may not necessarily be altruistic, generalise across situations in

which it is. Given that many selfish reciprocal punishing actions may stem form

a long-term view of future interactions, the eventual benefits of an action are

likely to be frequently obscure to a naive observer. In other words, the appetitive

value of retributive states and actions might be purely imitated or inferred

through observation, since the observer does not have access to the eventual

goals in the mind of the individual being observed. Thus, the motivation to

punish unfair individuals may be acquired across states in a way that assumes

eventual outcomes. Elsewhere, we detail precisely how such learning

mechanisms might yield altruism from both habitization and observation

(Seymour et al., 2009). Fifth, and in a similar manner, the value of punishment

may be taught by experts to non-experts (for example, from parents to offspring,

or from dominant to subordinate individuals). In this case, the appetitive value of

punishment may be intricately tied in with cultural concepts of morality and

justice.

Thus, the very nature of action systems, both those involved in individual and

observational learning, may have an inherent tendency to generalise non-

altruistic to altruistic actions (Seymour et al., 2009). This suggests that there is no

reason to assume that altruistic punishment should necessarily be hard-wired as

inherited intrinsic motivational goals (that is, as an unconditioned appetitive

stimulus) in the same manner as primary rewards. However, neither does it

exclude the possibility. Future research may help resolve both the role of

learning and early development in the acquisition of altruistic behaviour.

Clearly, there are many potentially complex ways in which punishing behaviour,

including altruistic punishment, might be acquired, and the nature of this

acquisition governs the types of action by which it is mediated. Although this

says nothing about why such behaviour should have evolved (that is, the ultimate

basis of different forms of punishment), it illustrates (proximately) how they
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might be based on the operation and, importantly, the interaction of different

learning systems. Furthermore, this complexity illustrates the difficulty

evolutionary models face. Since underlying learning and decision making

processes are not solely concerned with punishment behaviour, such models need

to take into account the other behaviours that these systems subserve, many of

which are not related to reciprocity and cooperation. This difficulty may be

similarly evident in other apparently irrational punishment-related behaviour,

such as self-punitive actions and reciprocal aggression. Thus, future models may

need to take a more generic approach to understanding the interaction between

evolution and learning(Ackley and Littman, 1991).

9.4.6 Conclusions

Punishment, in its various forms, is likely to have played a key role in shaping

the dynamics of social interaction in many species, and humans in particular.

Although many aspects of our neurobiological model are speculative,

punishment is likely to involve the integration of a number of distinct

representation, learning and action systems. Whatever the neural mechanism, the

affirmation that punishment, including altruistic punishment, substantially

promotes cooperation in human societies seems firm. Critical to furthering our

knowledge will be understanding the behavioural and neurobiological basis of

cultural and observational learning, sequential learning, and model-based

learning and planning in the context of other agents. This may be crucial to

gaining neurobiological insight into how apparently altruistic behaviours are

acquired, as well as shedding light onto more complex social aspects of

punishment, such as the arbitration, policing, and the role of hierarchies.
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