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Abstract

Let XS denote the class of spaces homeomorphic to two closed orientable surfaces

of genus greater than one identified to each other along an essential simple closed

curve in each surface. Let CS denote the set of fundamental groups of spaces in

XS . In this dissertation, we characterize the abstract commensurability classes

in CS in terms of the ratio of the Euler characteristic of the surfaces identified

and the topological type of the curves identified. We characterize which abstract

commensurability classes in CS contain a maximal element in CS . We apply our

abstract commensurability classification to prove each group in CS is abstractly

commensurable to a right-angled Coxeter group; in particular, we show that two

subclasses of groups in CS embed as finite-index subgroups in right-angled Cox-

eter groups. We characterize which groups in CS are abstractly commensurable

to the right-angled Coxeter groups studied by Crisp–Paoluzzi in [CP08], and we

exhibit a maximal element within the class of right-angled Coxeter groups for

certain abstract commensurability classes in CS . We prove that all groups in CS

are quasi-isometric by exhibiting a bilipschitz map between the universal covers

of two spaces in XS . In particular, we prove that the universal covers of any

two such spaces may be realized as isomorphic cell complexes with finitely many

isometry types of hyperbolic polygons as cells.
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Abstract commensurability and quasi-isometry classification of

hyperbolic surface group amalgams
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Chapter 1.

Introduction

Finitely generated infinite groups carry both an algebraic and a geometric struc-

ture, and to study such groups, one may study both algebraic and geometric

classifications. Abstract commensurability defines an algebraic equivalence rela-

tion on the class of groups, where two groups are said to be abstractly commen-

surable if they contain isomorphic subgroups of finite-index. Finitely generated

groups may also be viewed as geometric objects, since a finitely generated group

has a natural word metric which is well-defined up to quasi-isometric equiva-

lence. Gromov posed the program of classifying finitely generated groups up to

quasi-isometry.

A finitely generated group is quasi-isometric to any finite-index subgroup, so,

if two finitely generated groups are abstractly commensurable, then they are

quasi-isometric. Two fundamental questions in geometric group theory are to

classify the abstract commensurability and quasi-isometry classes within a class

of finitely generated groups and to understand for which classes of groups the

characterizations coincide.

A basic and motivating example is the class of groups isomorphic to the fun-

damental group of a closed orientable surface of genus greater than one. These

groups act properly discontinuously and cocompactly by isometries on the hyper-

bolic plane, hence all such groups are quasi-isometric. In addition, every surface

of genus greater than one finitely covers the genus two surface, so all groups in

this class are abstractly commensurable. In particular, the quasi-isometry and

abstract commensurability classifications coincide in this setting. Free groups,
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which may be realized as the fundamental group of surfaces with non-empty

boundary, exhibit the same behavior; there is a unique quasi-isometry and ab-

stract commensurability class among non-abelian free groups.

In this thesis, we present a complete solution to the quasi-isometry and abstract

commensurability classification questions within the class CS of groups isomor-

phic to the fundamental group of two closed orientable surfaces of genus greater

than one identified along an essential simple closed curve in each. We prove

that there is a single quasi-isometry class within CS and infinitely many abstract

commensurability classes.

1.1 Overview of main results

In Chapter 3, we characterize the abstract commensurability classes within CS .

Our classification uses work of Lafont, who proved that spaces obtained by iden-

tifying hyperbolic surfaces with non-empty boundary along their boundary com-

ponents are topologically rigid: any isomorphism between fundamental groups of

these spaces is induced by a homeomorphism [Laf07] (see also [CP08]). As a

consequence, groups in the class CS are abstractly commensurable if and only

if the corresponding spaces built by identifying two surfaces along an essential

closed curve in each have homeomorphic finite-sheeted covering spaces. We use

this fact to obtain topological obstructions to commensurability.

Before stating the full classification theorem, we present two corollaries: the

abstract commensurability classification in the case that groups G1 and G2 are

the fundamental groups of surfaces identified along separating curves, and the

abstract commensurability classification in the case that groups G1 and G2 are

the fundamental groups of surfaces identified along non-separating curves.
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Corollary 3.3.5 If S1, S2, S3, S4 and T1, T2, T3, T4 are orientable surfaces of

genus greater than or equal to one and with one boundary component, the Si are

glued along their boundary to form X1, and the Ti are glued along their boundary

to form X2, then π1(X1) and π1(X2) are abstractly commensurable if and only

if, up to reindexing, the quadruples (χ(S1), . . . , χ(S4)) and (χ(T1), . . . , χ(T4)) are

equal up to scale.

Corollary 3.3.6 If Sgi and Sg′i are orientable surfaces of genus greater than one

identified to each other along a non-separating curve in each to form the space

Xi for i = 1, 2, then π1(X1) and π1(X2) are abstractly commensurable if and

only if, up to reindexing,
χ(Sg1)

χ(Sg′1)
=
χ(Sg2)

χ(Sg′2)
.

The additional condition in the full classification within CS given in Theorem

3.3.3 is that a separating curve that divides the surface exactly in half may

be replaced by a non-separating curve on the same surface without changing

the abstract commensurability class. We use the following notation. If γ is an

essential simple closed curve on a surface, the number t(γ) is equal to one if

γ is non-separating, and is equal to
χ(Sr,1)
χ(Ss,1)

if γ separates the surface into two

subsurfaces Sr,1 and Ss,1 and χ(Sr,1) ≤ χ(Ss,1). Our full classification theorem

is given as follows.

Theorem 3.3.3. If G1, G2 ∈ CS, then G1 and G2 are abstractly commensurable

if and only if, up to relabeling,G1
∼= π1(Sg1) ∗〈a1〉 π1(Sg′1) and G2

∼= π1(Sg2) ∗〈a2〉

π1(Sg′2), the amalgams are given by the monomorphisms ai 7→ [γi] ∈ π1(Sgi) and

ai 7→ [γ′i] ∈ π1(Sg′i), and the following conditions hold:

(a)
χ(Sg1)

χ(Sg′1)
=
χ(Sg2)

χ(Sg′2)
, (b) t(γ1) = t(γ2), (c) t(γ′1) = t(γ′2).

Let G ⊂ CS be an abstract commensurability class within CS . A maximal element

for G is a group G0 that contains every group in G as a finite-index subgroup.

In Chapter 3.4, we show that for abstract commensurability classes G ⊂ CS , the
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existence of a maximal element G0 ∈ CS depends on whether the class contains

the fundamental group of surfaces identified along non-separating curves. In

Proposition 3.4.4, we prove that a maximal element in CS exists if and only if

the abstract commensurability class does not contain the fundamental group of

two surfaces identified along a non-separating curve in either surface.

In Chapter 3.5, we show that if the abstract commensurability class G ⊂ CS

contains the fundamental group of two surfaces identified along non-separating

curves in both surfaces, then there exists a right-angled Coxeter group that is

a maximal element for the class. In the remaining case, that the class contains

the fundamental group of two surfaces identified along a non-separating curve

in exactly one of the surfaces and does not contain the fundamental group of

two surfaces identified along a non-separating curve in both, Proposition 3.4.4

shows there is no maximal element in CS , and the existence of a maximal element

outside of CS remains open.

The quasi-isometry classification within CS stands in contrast to the abstract

commensurability classification. A quasi-isometry is a map between metric

spaces that distorts distances by uniformly bounded multiplicative and addi-

tive factors. Such maps do not capture local structure, but rather large-scale,

coarse geometry. The geometry of a finitely generated group is defined up to

quasi-isometry by a word metric on the group, and this geometry may also be

studied via a geometric action of a group on a metric space. This point of view,

that the geometry of a finitely generated group may be identified with the quasi-

isometry type of a model space, is central to this thesis. Groups in the class

CS act geometrically on a piecewise hyperbolic CAT(−1) space built by iden-

tifying infinitely many copies of the hyperbolic plane along geodesic lines in a

‘tree-like’ fashion. The following theorem, proven in Chapter 4.3, states that all
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such spaces have the same large-scale geometry; the quasi-isometry classification

follows as a consequence.

Theorem 4.3.1. Let XS denote the class of spaces homeomorphic to two closed

orientable surfaces of genus greater than one identified along an essential simple

closed curve in each. If X1, X2 ∈ XS and X̃1 and X̃2 are their universal covers

equipped with a CAT(−1) metric that is hyperbolic on each surface, then there

exists a bilipschitz equivalence φ : X̃1 → X̃2.

Corollary 4.3.2. If G1, G2 ∈ CS, then G1 and G2 are quasi-isometric.

Our approach in the proof of Theorem 4.3.1 is to realize X̃1 and X̃2 as isomorphic

cell complexes with finitely many isometry types of convex hyperbolic polygons

as cells. We show there is a bilipschitz equivalence between hyperbolic n-gons

that restricts to dilation on each edge. Thus, there is a well-defined cellular

homeomorphism X̃1 → X̃2 that restricts to a bilipschitz map on each tile, and

we prove this extends to a bilipschitz map X̃1 → X̃2.

Groups in the class CS also admit a CAT(0) geometry, and an alternative ap-

proach to the quasi-isometry classification was given by Malone [Mal10], who

applied the work of Behrstock–Neumann on the bilipschitz equivalence of fat-

tened trees used in the quasi-isometric classification of graph manifold groups

[BN08].

1.2 Historical context and related results

Commensurability has early foundations in the work of Euclid: in the Elements,

two line segments are said to be commensurable if there is a third segment c

that, when copies are laid end-to-end, evenly covers both a and b. Viewing a

and b as real numbers, a and b are commensurable if and only if a
b is rational.

Research has developed to generalize commensurability in both the topological
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and algebraic setting. For example, commensurability classes of hyperbolic 3-

manifolds is an active area of study, and in this setting, two manifolds that are

commensurable have volumes that are commensurable in the sense of Euclid.

Recent surveys on notions of commensurability are given by Paoluzzi [Pao13]

and Walsh [Wal11].

In Proposition 3.4.4, we characterize the abstract commensurability classes within

CS that contain a maximal element in CS . A classic result in the setting of hyper-

bolic 3-manifolds is that of Margulis [Mar75], who proved that if H ≤ PSL(2,C)

is a discrete subgroup of finite covolume, then there exists a maximal element

in the abstract commensurability class of H if and only if H is non-arithmetic.

It follows that the commensurability class of a non-arithmetic finite-volume hy-

perbolic 3-manifold contains a minimal element: there exists an orbifold finitely

covered by every other manifold in the commensurability class.

The abstract commensurability classes within CS are finer than the quasi-isometry

classes; there is a unique quasi-isometry class in CS and there are infinitely many

abstract commensurability classes. Whyte, in [Why99], proves a similar result

for free products of hyperbolic surface groups.

Theorem 1.2.1. ([Why99], Theorem 1.6, 1.7) Let Σg be the fundamental group

of a surface of genus g ≥ 2 and let m,n ≥ 2. Let Γ1
∼= Σa1 ∗ Σa2 ∗ . . . ∗ Σan and

Γ2
∼= Σb1 ∗ Σb2 ∗ . . . ∗ Σbm. Then Γ1 and Γ2 are quasi-isometric, and Γ1 and Γ2

are abstractly commensurable if and only if

χ(Γ1)

n− 1
=
χ(Γ2)

m− 1
.

On the other hand, there are many classes of groups for which the quasi-isometry

and abstract commensurability classifications coincide. Such classes include non-

trivial free products of finitely many finitely generated abelian groups excluding
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Z/2Z∗Z/2Z [BJN09], non-uniform lattices in the isometry group of a symmetric

space of strictly negative sectional curvature other than the hyperbolic plane

[Sch95], and fundamental groups of n-dimensional (n ≥ 3) connected complete

finite-volume hyperbolic manifolds with nonempty geodesic boundary (which

must be compact in dimension three) [Fri06].

This dissertation concerns surfaces of negative Euler characteristic; Cashen in

[Cas10] provides a quasi-isometry classification of the fundamental groups of a

disjoint union of (Euclidean) tori glued together along annuli.

Hyperbolic surface groups are finite-index subgroups of right-angled Coxeter

groups. We apply our abstract commensurability classification (Theorem 3.3.3)

to prove, in Proposition 3.5.6, that each group in CS is abstractly commensurable

to a right-angled Coxeter group. In other words, each abstract commensurability

class of a group in CS contains a right-angled Coxeter group. In particular, in

Chapter 3.5, we show the fundamental group of two surfaces identified along a

separating curve in each and the fundamental group of two surfaces identified

along curves of topological type one (See definition 3.2.1) are finite-index sub-

groups of a right-angled Coxeter group. It is an open question whether each

group in CS is a finite-index subgroup of a right-angled Coxeter group in the

remaining case.

The result in Theorem 3.3.3 is related to the abstract commensurability clas-

sification of the right-angled Coxeter groups introduced by Crisp–Paoluzzi in

[CP08] and further studied by Dani–Thomas in [DT14]. Let

Wm,n = W (Γm,n),

be the right-angled Coxeter group associated to the graph Γm,n, which consists

of a circuit of length m+4 and a circuit of length n+4 which are identified along

a common subpath of edge-length 2. For all m and n, the group Wm,n is the
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orbifold fundamental group of a 2-dimensional reflection orbi-complex Om,n. We

show in Lemma 3.5.7 that for all m and n, Om,n is finitely covered by a space

consisting of two hyperbolic surfaces identified along non-separating essential

simple closed curves. Conversely, we prove all amalgams of surface groups over

non-separating essential simple closed curves are finite index subgroups of Wm,n

for some m and n, dependent on the Euler characteristic of the two surfaces.

Thus, our theorem extends their result.

Corollary 1.2.2. ([CP08] Theorem 1.1) Let 1 ≤ m ≤ n and 1 ≤ k ≤ `. Then

Wm,n and Wk,` are abstractly commensurable if and only if m
n = k

` .

Moreover, in Proposition 3.5.9, we apply our abstract commensurability classifi-

cation to prove that if G ∈ CS , then G is abstractly commensurable to Wm,n for

some m and n if and only if G is the fundamental group of two surfaces identified

to each other along curves of topological type one (see Definition 3.2.1).

1.3 Outline

In Chapter 2, we define the spaces XS and the class of groups CS examined in this

dissertation. Chapter 3 contains the abstract commensurability classification,

the characterization of maximal elements, and a description of the relation of

groups in CS to the class of right-angled Coxeter groups. In Chapter 4, we define

a piecewise hyperbolic metric on spaces in XS , construct a bilipschitz equivalence

between the universal covers of any such spaces, and conclude all groups in CS

are quasi-isometric.
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Chapter 2.

Surfaces and the class of groups CS

We use Sg,b to denote the orientable surface of genus g and b boundary com-

ponents. The Euler characteristic of a surface Sg,b is χ(Sg,b) = 2 − 2g − b.

Unless stated otherwise, we will say “surface” to mean a compact, connected,

oriented surface. We will typically be interested in surfaces of negative Euler

characteristic.

We say a surface S admits a hyperbolic metric if there exists a complete, finite-

area Riemannian metric on S of constant curvature −1 and the boundary of S

is totally geodesic: the geodesics in ∂S are geodesics in S. A surface S may be

endowed with a hyperbolic metric via a free and properly discontinuous action

by isometries of π1(S) on the hyperbolic plane H2.

Theorem 2.0.1. If S is a surface with χ(S) < 0, then S admits a hyperbolic

metric.

A closed curve in a surface S is a continuous map S1 → S, and we often identify

a closed curve with its image in S. We use [γ] to denote the homotopy class

of a curve γ. A closed curve is essential if it is not homotopic to a point or

boundary component. An essential closed curve γ is primitive if is not the case

that [γ] = [ρn] for some closed curve ρ. A closed curve is simple if it is embedded.

A homotopy class of simple closed curves is a homotopy class in which there exists

a simple closed curve representative. A multicurve in S is the union of a finite

collection of disjoint simple closed curves in S.



11

If γ is a simple closed curve on a surface S, the surface obtained by cutting S

along γ is a compact surface Sγ equipped with a homeomorphism h between

these two boundary components of Sγ so that the quotient Sγ/(x ∼ h(x)) is

homeomorphic to S and the image of these distinguished boundary components

under the quotient map is γ.

If X1 and X2 are topological spaces and A1 ⊂ X1, A2 ⊂ X2 so that A1
∼= A2, we

say X is obtained by identifying X1 and X2 along A1 and A2 if X = X1tX2/(x ∼

h(x)) for some homeomorphism h : A1 → A2 and all x ∈ A1. If A is the image

of A1 and A2 under the quotient map, we denote the space X as X = X1∪AX2.

Let X denote the class of spaces homeomorphic to two hyperbolic surfaces iden-

tified along an essential closed curve in each. Let XS ⊂ X be the subclass in

which the curves that are identified are simple. Let C be the class of groups

isomorphic to the fundamental group of a space in X , and let CS ⊂ C be the

subclass of groups isomorphic to the fundamental group of a space in XS . If

G ∈ C then G ∼= π1(Sg) ∗〈γ〉 π1(Sh), the amalgamated free product of two hyper-

bolic surface groups over Z. We suppress in our notation the monomorphisms

ig : 〈γ〉 → π1(Sg) and ih : 〈γ〉 → π1(Sh) given by ig : γ 7→ [γg], ih : γ 7→ [γh],

where γg : S1 → Sg and γh : S1 → Sh. Note that if X ∈ XS consists of two sur-

faces identified to each other along separating curves, π1(X) may be expressed

as an amalgamated free product of surface groups in up to three ways.
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Chapter 3.

Abstract commensurability classes

within CS

There are many notions of commensurability in group theory and topology. The

first step taken in our abstract commensurability classification is to translate this

algebraic question into a topological one, as described in the following section.

3.1 Finite covers and topological rigidity

A description of the subgroup structure of an amalgamated free product is given

in the following theorem of Scott and Wall.

Theorem 3.1.1. ([SW79], Theorem 3.7) If G ∼= A ∗C B and if H ≤ G, then

H is the fundamental group of a graph of groups, where the vertex groups are

subgroups of conjugates of A or B and the edge groups are subgroups of conjugates

of C.

Any finite sheeted cover of the space X = Sg ∪γ Sh, where γ is the image of

γg : S1 → Sg and γh : S1 → Sh under identification, consists of a set of surfaces

which cover Sg and a set of surfaces which cover Sh, identified along multicurves

that are the preimages of γg and γh. These covers are examples of simple,

thick, 2-dimensional hyperbolic P-manifolds (see [Laf07], Definition 2.3.) The

following topological rigidity theorem of Lafont allows us to address the abstract

commensurability classification for members in CS from a topological point of

view. Corollary 3.1.3 also follows from the proof of Proposition 3.1 in [CP08].
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Theorem 3.1.2. ([Laf07], Theorem 1.2) Let X1 and X2 be a pair of simple,

thick, 2-dimensional hyperbolic P -manifolds, and assume that φ : π1(X1) →

π1(X2) is an isomorphism. Then there exists a homeomorphism Φ : X1 → X2

that induces φ on the level of fundamental groups.

Corollary 3.1.3. Let G,G′ ∈ CS with G ∼= π1(X), G′ ∼= π1(X
′) and X,X ′ ∈ XS .

Then G and G′ are abstractly commensurable if and only if X and X ′ have

homeomorphic finite-sheeted covering spaces.

We will make repeated use of the following lemma.

Lemma 3.1.4. If X is a CW-complex and X ′ is a degree n cover of X, then

χ(X ′) = nχ(X), where χ denotes Euler characteristic.

3.2 Statement of the classification and outline of the proof

The abstract commensurability classification in the class CS is given in terms of

the ratio of the Euler characteristic of the surfaces identified and the topological

type of the curves identified, which is defined as follows. An essential simple

closed curve γ on a surface S is non-separating if S\γ is connected and is sep-

arating if S\γ consists of two connected surfaces, Sr,1 and Ss,1, of lower genus

and a single boundary component.

Definition 3.2.1. The topological type of an essential simple closed curve γ :

S1 → S, denoted t(γ), is equal to one if the curve is non-separating and equal

to
χ(Sr,1)
χ(Ss,1)

if the curve separates S into subsurfaces Sr,1 and Ss,1 and χ(Sr,1) ≤

χ(Ss,1).

Theorem 3.3.3. (Abstract commensurability classification within CS .) If

G1, G2 ∈ CS, then G1 and G2 are abstractly commensurable if and only if, up
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to relabeling, G1
∼= π1(Sg1) ∗〈a1〉 π1(Sg′1) and G2

∼= π1(Sg2) ∗〈a2〉 π1(Sg′2), the

amalgams are given by the monomorphisms ai 7→ [γi] ∈ π1(Sgi) and ai 7→ [γ′i] ∈

π1(Sg′i), and the following conditions hold.

(a)
χ(Sg1)

χ(Sg′1)
=
χ(Sg2)

χ(Sg′2)
, (b) t(γ1) = t(γ2), (c) t(γ′1) = t(γ′2).

One direction of the proof is constructive: if G1
∼= π1(X1) and G2

∼= π1(X2)

satisfy the conditions of the theorem, we construct a common (regular) cover of

the spaces X1 and X2. The other direction of the proof has three steps:

(1) Construct finite covers pi : Yi → Xi so that Yi consists of four surfaces

each with two boundary components, one colored red and one colored

blue; all red boundary components are identified and all blue boundary

components are identified to form the connected space Yi with two sin-

gular curves; and, χ(Y1) = χ(Y2). The existence of such covers is proven

in Lemma 3.3.1, and an example of these covers is given in Figure 1.

(2) Apply Proposition 3.3.2, which generalizes [Mal10, Theorem 5.3], and

proves that since G1 and G2 are abstractly commensurable, the finite

covers Y1 and Y2 are homeomorphic.

(3) Use the covering maps p1 and p2 to label the surfaces in X1 and X2 so

that G1 and G2 are expressed as in the theorem and the conditions (a),

(b), and (c) hold.

3.3 Abstract commensurability classification

In this section we prove Theorem 3.3.3, characterizing the abstract commen-

surability classes in CS . To prove the conditions in the theorem are necessary,

the first step, denoted (1) above, is to take covers of spaces X1, X2 ∈ XS with

abstractly commensurable fundamental groups so that the covers of X1 and X2

have equal Euler characteristic.
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Lemma 3.3.1. If X1, X2 ∈ XS, then there exist finite-sheeted covers pi : Yi → Xi

so that Yi consists of four surfaces each with two boundary components, one

colored red and one colored blue; all red boundary components are identified and

all blue boundary components are identified to form the connected space Yi with

two singular curves; and, χ(Y1) = χ(Y2).

Proof. Let X1, X2 ∈ XS . Let

L = −2 · `cm(|χ(X1)|, |χ(X2)|)

and

di =
L

χ(Xi)
.

Suppose X1 = Sh1 ∪c1 Sh′1 and X2 = Sh2 ∪c2 Sh′2 where ci identifies the curves

ρi : S1 → Shi and ρ′i : S1 → Sh′i . To build the covers Yi, first let S̃hi be a 2-fold

cover of Shi so that ρi has two preimages in the cover: if ρi is non-separating, cut

along ρi, take two copies of the resulting surface with boundary, and re-glue the

boundary components in pairs; if ρi is separating, cut along a non-separating

essential simple closed curve in each of the subsurfaces bounded by ρi, take

two copies of the resulting surface with boundary, and re-glue the boundary

components in pairs. An example of these degree two covers appears in Figure

1. Next, cut along a non-separating curve in the cover S̃hi that intersects each

curve in the pre-image of ρi in exactly one point. Take di
2 copies of the resulting

surface with two boundary components and reglue the boundary components in

pairs to get a surface Ŝhi which forms a di
2 -fold cyclic cover of S̃hi and so that ρi

has two preimages in Ŝhi , each of which covers ρi by degree di
2 . Construct Ŝh′i in

the same way. Identify the two components of the preimage of ρi in Ŝhi with the

two components of the preimage of ρ′i in Ŝh′i in pairs to form Yi, a di-fold cover

of Xi. An example of these covers is illustrated in Figure 1. By construction,

χ(Y1) = χ(Y2) = L. �
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Figure 1. Above is an example of the covers pi : Yi → Xi constructed

in Lemma 3.3.1. In each union, the two curves of the same color are

glued together to form singular curves. In this example, π1(X1) and

π1(X2) are abstractly commensurable; one can check that conditions

(a), (b), and (c) hold.

We will apply the following proposition (with r = 4 and n = 2). The idea to

restrict to the setting of spaces with equal Euler characteristic appears in [Mal10,

Theorem 5.3], though the proof there has a small gap in the inductive step. In

our proof, below, we complete Malone’s proof and generalize his result.

Proposition 3.3.2. Let G1
∼= π1(X1) and G2

∼= π1(X2) where

X1 =

r⋃
i=1

Si and X2 =

r⋃
i=1

Ti;

r ≥ 3; Si is a surface with n boundary components {βi1, . . . , βin}; boundary

components βij and βkj are identified for all 1 ≤ j ≤ n and 1 ≤ i ≤ k ≤ r

so there are n singular curves in X1; and X2 is similar. Suppose that χ(S1) ≤

. . . ≤ χ(Sr), χ(T1) ≤ . . . ≤ χ(Tr), and χ(X1) = χ(X2). Then G1 and G2 are

abstractly commensurable if and only if Si ∼= Ti for all 1 ≤ i ≤ r.

Proof. Suppose G1 and G2 are abstractly commensurable. Then there exist finite

covers p1 : X̂1 → X1 and p2 : X̂2 → X2 with π1(X̂1) ∼= π1(X̂2). Since χ(X1) =

χ(X2), the covering maps p1 and p2 have the same degree, d. By Theorem 3.1.2,
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there exists a homeomorphism f : X̂1 → X̂2 inducing the isomorphism between

π1(X̂1) and π1(X̂2).

Suppose

χ(S1) = . . . = χ(Ss) < χ(Ss+1) ≤ . . . ≤ χ(Sr)(1)

χ(T1) = . . . = χ(Tt) < χ(Tt+1) ≤ . . . ≤ χ(Tr)(2)

for some s, t ≤ r. Without loss of generality, χ(S1) ≤ χ(T1) and if χ(S1) = χ(T1),

then s ≥ t.

Consider the full preimage in X̂1 of the surfaces S1, . . . , Ss of least Euler char-

acteristic in X1. Let

Ai = p−11 (Si).

The surface Ai may be disconnected; suppose Ai is the disjoint union of ki

connected surfaces,

Ai =

ki⊔
j=1

Aij .

Each component f(Aij) of f(Ai) covers some surface Tij ∈ {T1, . . . , Tr} ⊂ X2

under the covering map p2. Suppose p2 : f(Aij)→ Tij is a degree dij cover. For

each i, the sum of the degrees dij is equal to d since the boundary of f(Ai) is the

full preimage of the n singular curves in X2 and no component of the preimage

of the singular curves is incident to more than one component of f(Ai). Thus,
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d · χ(S1) =

k1∑
j=1

χ(A1j)

=

k1∑
j=1

χ(f(A1j))

=

k1∑
j=1

d1j · χ(T1j)

≥ χ(T1) ·
k1∑
j=1

d1j

= d · χ(T1)

Since χ(S1) ≤ χ(T1) by assumption, χ(S1) = χ(T1). Each singular curve in

X̂2 is incident to s surfaces in f(A1) ∪ . . . ∪ f(As), so p2(f(A1) ∪ . . . ∪ f(As))

must have in its image at least s surfaces in X2, each of which must have Euler

characteristic equal to χ(S1) by the above argument. Thus, since s ≤ t, we have

χ(Si) = χ(Ti) for 1 ≤ i ≤ s = t. Moreover, p−11 (
⋃s
i=1 Si)) = p−12 (

⋃s
i=1 Ti)),

so the above argument can be repeated (at most finitely many times) with the

remaining surfaces in X1 and X2 of strictly larger Euler characteristic, proving

the claim.

The other direction of the statement is clear: if ai = bi for 1 ≤ i ≤ r, then

π1(G1) ∼= π1(G2), so G1 and G2 are abstractly commensurable. �

Remark: The condition that χ(X1) = χ(X2) can be omitted from the above

proposition, and we get the conclusion that χ(Si)
χ(Ti)

= c for some constant c and all

1 ≤ i ≤ r. This generalization appears in upcoming joint work with Pallavi Dani

and Anne Thomas on abstract commensurability classes of certain right-angled

Coxeter groups.

Theorem 3.3.3. If G1, G2 ∈ CS, then G1 and G2 are abstractly commensurable

if and only if they may be expressed as G1
∼= π1(Sg1) ∗〈a1〉 π1(Sg′1) and G2

∼=



19

π1(Sg2) ∗〈a2〉 π1(Sg′2), given by the monomorphisms ai 7→ [γi] ∈ π1(Sgi) and

ai 7→ [γ′i] ∈ π1(Sg′i), and the following conditions hold.

(a)
χ(Sg1)

χ(Sg′1)
=
χ(Sg2)

χ(Sg′2)
, (b) t(γ1) = t(γ2), (c) t(γ′1) = t(γ′2).

Proof. Let X1, X2 ∈ XS . By Lemma 3.3.1, there exist covering spaces p1 : Y1 →

X1 and p2 : Y2 → X2 so that χ(Y1) = χ(Y2),

Y1 =
4⋃
i=1

Si and Y2 =
4⋃
i=1

Ti;

the connected surfaces Si in Y1 have two boundary components, one colored red

and one colored blue; all red boundary components are identified and all blue

boundary components are identified; and likewise for Y2.

Suppose G1
∼= π1(X1) and G2

∼= π1(X2) are abstractly commensurable, so π1(Y1)

and π1(Y2) are abstractly commensurable. By Proposition 3.3.2, Si ∼= Ti for

1 ≤ i ≤ 4. The conditions of the theorem require a labeling of the surfaces and

amalgamated curves in X1 and X2. Thus, it remains to assign Sgi , Sg′i , γi, and

γ′i for i = 1, 2 that satisfy conditions (a), (b), and (c). This assignment depends

on whether the original curves ρi and ρ′i are separating or non-separating. Let

p1 : Y1 → X1 and p2 : Y2 → X2 be the covering maps constructed above.

If the curves ρi and ρ′i are separating for i = 1, 2, suppose χ(Si) ≤ χ(Sj) for

i ≤ j. Let

Sg1 = p1(S1) ∪γ1 p1(S2) and Sg′1 = p1(S3) ∪γ′1 p1(S4)

be the surfaces obtained by identifying p1(Si) along their boundary curves and

let γi and γ′i be the images of the boundary curves. Similarly, let

Sg2 = p2(T1) ∪γ2 p2(T2) and Sg′2 = p2(T3) ∪γ′2 p2(T4).
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One can easily check that the conditions of the theorem hold:

t(γ1) =
χ(p1(S1))

χ(p1(S2))

=

χ(S1)
d1

χ(S2)
d1

=

χ(S1)
d2

χ(S2)
d2

=

χ(T1)
d2

χ(T2)
d2

=
χ(p2(T1))

χ(p2(T2))

= t(γ2),

and an analogous calculation shows t(γ′1) = t(γ′2), proving claims (b) and (c).

Similarly,

χ(Sg1)

χ(Sg′1)
=

χ(p1(S1 ∪ S2))
χ(p1(S3 ∪ S4))

=

χ(S1 ∪S2)
d1

χ(S3 ∪S4)
d1

=

χ(S1 ∪S2)
d2

χ(S3 ∪S4)
d2

=

χ(T1 ∪T2)
d2

χ(T3 ∪T4)
d2

=
χ(p2(T1 ∪ T2))
χ(p2(T3 ∪ T4))

=
χ(Sg2)

χ(Sg′2)
,

establishing (a) in this case.

Otherwise, at least one amalgamating curve ρi or ρ′i is non-separating for i = 1

or i = 2. By the construction of the covers pi : Yi → Xi, this situation implies

Si ∼= Sj for some i 6= j. Let k and ` denote the other indices. There are now three
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cases: among the Si (and Ti ∼= Si) either two, three, or four of these connected

surfaces with boundary are homeomorphic.

If neither Sk nor S` is homeomorphic to Si, define

Sg1 = p1(Si) ∪γ1 p1(Sj),

Sg′1 = p1(Sk) ∪γ′1 p1(S`),

Sg2 = p2(Ti) ∪γ2 p2(Tj),

Sg′2 = p2(Tk) ∪γ′2 p2(T`).

If, without loss of generality, Sk ∼= Si and S` 6= Si, let Sg1 and Sg2 be the

surfaces covered by two of {Si, Sj , Sk}, and let Sg′1 and Sg′2 be covered by the

remaining two subsurfaces. Let γi and γ′i be the images of the boundary curves

under the covering maps. Finally, if all four surfaces Si are homeomorphic, define

(Sgi , γi) = (Shi , ρi) and (Sg′i , γ
′
i) = (Sh′i , ρ

′
i) to be the spaces given by the original

labeling. In all three cases, conditions (a), (b), and (c) are verified in a manner

similar to that above.

Suppose now that G1 and G2 are expressed as in the statement of the theorem

and that conditions (a), (b), and (c) hold. Let X1 = Sg1∪c1Sg′1 and X2 = Sg2∪c2

Sg′2 be the corresponding spaces where ci identifies the essential simple closed

curves γi : S1 → Sgi and γ′i : S1 → Sg′i . Construct finite covers p1 : Y1 → X1 of

degree d1 and p2 : Y2 → X2 of degree d2 as in Lemma 3.3.1, with Sgi , Sg′i , γi,

and γ′i replacing Shi , Sh′i , ρi, and ρ′i, respectively. We claim that Y1 and Y2 are

homeomorphic. Let

S1 ∪ S2 = p−11 (Sg1),

S3 ∪ S4 = p−11 (Sg′1),

T1 ∪ T2 = p−12 (Sg2),

T3 ∪ T4 = p−12 (Sg′2).
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Suppose χ(S1) ≤ χ(S2), χ(S3) ≤ χ(S4), χ(T1) ≤ χ(T2), and χ(T3) ≤ χ(T4); we

use the conditions of the theorem to show Si ∼= Ti for 1 ≤ i ≤ 4. Since

d1 · χ(Sg1) = χ(S1 ∪ S2),

d1 · χ(Sg′1) = χ(S3 ∪ S4),

d2 · χ(Sg2) = χ(T1 ∪ T2),

d2 · χ(Sg′2) = χ(T3 ∪ T4),

by condition (a),

χ(S1 ∪ S2)
χ(S3 ∪ S4)

=
χ(Sg1)

χ(Sg′1)

=
χ(Sg2)

χ(Sg′2)

=
χ(T1 ∪ T2)
χ(T3 ∪ T4)

.

Since χ(Y1) = χ(Y2) = L,

χ(S1 ∪ S2) + χ(S3 ∪ S4) = χ(T1 ∪ T2) + χ(T3 ∪ T4),

hence

χ(S1 ∪ S2) = χ(T1 ∪ T2),(3)

χ(S3 ∪ S4) = χ(T3 ∪ T4).

By condition (b), t(γ1) = t(γ2). If t(γi) = 1, then by construction χ(S1) =

χ(S2) = χ(T1) = χ(T2). Otherwise,

χ(S1)

χ(S2)
= t(γ1)

= t(γ2)

=
χ(T1)

χ(T2)
,
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Figure 2. Example: The groups π1(X1), π1(X2), and π1(X3) are

abstractly commensurable, but are not abstractly commensurable with

π1(X4). All four groups are quasi-isometric by Theorem 4.3.1.

so by equation (3) above (and since Euler characteristic sums over these unions),

we have χ(Si) = χ(Ti) for i = 1, 2. By condition (c) and an analogous calculation,

we conclude χ(Si) = χ(Ti) for all 1 ≤ i ≤ 4. Thus, Y1 ∼= Y2, and therefore G1

and G2 are abstractly commensurable. �

Corollary 3.3.4. If G1, G2 ∈ CS and G1 and G2 are abstractly commensurable,

then there exist normal subgroups of finite index, Ni / Gi so that N1
∼= N2.

Proof. In the proof of Theorem 3.3.3, the covers constructed are regular. �

In the case that G1 and G2 are the fundamental groups of surfaces glued along

separating curves, we have the following.

Corollary 3.3.5. If S1, S2, S3, S4 and T1, T2, T3, T4 are orientable surfaces of

genus greater than or equal to one and with one boundary component, the Si are

glued along their boundary to form X1, and the Ti are glued along their boundary

to form X2, then π1(X1) and π1(X2) are abstractly commensurable if and only
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if, up to reindexing, the quadruples (χ(S1), . . . , χ(S4)) and (χ(T1), . . . , χ(T4)) are

equal up to scale.

If G1 and G2 are the fundamental groups of surfaces glued along non-separating

curves, we have the following.

Corollary 3.3.6. If Sgi and Sg′i are orientable surfaces of genus greater than

one identified to each other along a non-separating curve in each to form the

space Xi for i = 1, 2, then π1(X1) and π1(X2) are abstractly commensurable if

and only if, up to reindexing,
χ(Sg1)

χ(Sg′1)
=
χ(Sg2)

χ(Sg′2)
.

3.4 Maximal elements in CS

Let G ⊂ CS be an abstract commensurability class. A maximal element for G is a

groupG0 that contains every group in G as a finite-index subgroup. The existence

of a maximal element that lies in CS depends on whether the class contains the

fundamental group of a surface identified along a non-separating curve. We

define the following three subclasses that partition XS , CS . By Theorem 3.3.3,

these subclasses partition the abstract commensurability classes within CS as

well.

Definition 3.4.1. • Let X0 be the set of spaces X ∈ XS for which the

complement of the singular curve in X consists of four surfaces with one

boundary component and unequal genus. Let C0 ⊂ CS be the set of

fundamental groups of spaces in X0.

• Let X1 be the set of spaces X ∈ XS for which the complement of the

singular curve in X contains either one surface with two boundary com-

ponents and two surfaces with one boundary component and unequal
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genus, or, four surfaces, exactly two of which have equal genus. Let

C1 ⊂ CS be the set of fundamental groups of spaces in X1.

• Let X2 be the set of spaces X ∈ XS that can be realized as the union of

two surfaces along curves of topological type one (see Definition 3.2.1).

Let C2 ⊂ CS be the set of fundamental groups of spaces in X2.

In this section, we prove that an abstract commensurability class G ⊂ CS contains

a maximal element within CS if and only if G ⊂ C0. In the following section, in

Corollary 3.5.10, we prove that if G ⊂ C2, then there is a maximal element for

G within the class of right-angled Coxeter groups. For G ⊂ C1, it is not known

whether there exists a maximal element for the abstract commensurability class

G.

To construct covers of surfaces glued along separating curves, we use the follow-

ing lemma, which is a converse to Lemma 3.1.4 for hyperbolic surfaces with one

boundary component.

Lemma 3.4.2. For gi ≥ 1, if χ(Sg2,1) = nχ(Sg1,1), then Sg2,1 n-fold covers

Sg1,1.

Proof. Let

π1(Sg1,1) = 〈a1, b1, . . . , ag1 , bg1 | 〉 ∼= F 2g1

be a presentation for the fundamental group of Sg1,1. The homotopy class of the

boundary element γ1 : S1 → Sg1,1 corresponds to the element [a1, b1] . . . [ag1 , bg1 ] ∈

π1(Sg1,1).

We exhibit π1(Sg2,1) as an index n subgroup of π1(Sg1,1) so that in the corre-

sponding cover, γ1 has preimage a single curve that n-fold covers γ1.

Realize π1(Sg1,1) as the fundamental group of a wedge of 2g1 oriented circles

labeled by the generating set. Construct an n-fold cover of this space as a
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Figure 3. A covering map that realizes S11,1 as a 7-fold cover of S2,1.

graph, Γ, on n vertices labeled {0, . . . , n − 1}. For every generator besides a1,

construct an oriented n-cycle on the n vertices with each edge labeled by the

generator. Since χ(Sg1,1) and χ(Sg2,1) are both odd, n must be odd as well by

Lemma 3.1.4. Let {i, i+1} and {i+1, 1} be directed edges labeled by a1 for i < n

and i odd. Construct a directed loop labeled a1 at vertex {0}, as illustrated in

Figure 3. By construction, Γ covers the wedge of circles given above.

To see that γ1 has a preimage with one component, choose a vertex v in the

graph Γ and consider the edge path p with edges labeled ([a1, b1] . . . [ag1 , bg1 ])k,

which projects to γ1 under the covering map. Then n is the smallest non-zero

k for which p terminates at v. To see this, note that it suffices to consider the

path p′ = [a1, b1]
k since every other segment [aj , bj ] returns to its initial vertex.
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Starting at vertex {0}, observe that the path [a1, b1]
k terminates at the vertex

labeled



2k − 1 if 0 < k < bn2 cmodn

2n− 2k if bn2 c ≤ k < nmodn

0 if k = 0 modn,

proving the claim. �

Lemma 3.4.2 may be restated in terms of the Hurwitz realizability problem for

branched coverings of surfaces. In this language, Lemma 3.4.2 is a special case of

[BB12, Lemma 7.1], proved first in [EKS84], [Hus62]. Lemma 3.4.2 is included

since its proof is new and of independent interest.

In the proof of the characterization of the abstract commensurability classes that

contain a maximal element, we will use the following definition.

Definition 3.4.3. If Sg and Sh are closed hyperbolic surfaces, γ is a multicurve

on Sg and ρ is a multicurve on Sh, we say (Sg, γ) covers (Sh, ρ) if there exists a

covering map p : Sg → Sh so that γ is the full preimage of ρ in Sg.

Proposition 3.4.4. Let G ⊂ CS be an abstract commensurability class. There

exists a maximal element in CS for G if and only if G ⊂ C0.

Proof. Let G ⊂ CS be an abstract commensurability class. We first exhibit a

maximal element when the conditions of the proposition hold. Suppose G ∼=

π1(Sg)∗〈γ〉 π1(Sg′) ∈ G where γg and γg′ are separating simple closed curves with

Sg = Sr,1∪γgSs,1 and Sg′ = Sr′,1∪γg′ Ss′,1 where r 6= s and r′ 6= s′. Let Xg denote

the space obtained by identifying Sg and Sg′ along γg and γg′ . We construct a

space X ∈ XS that Xg covers and prove that if H ∈ G with H ∼= π1(Xh) and
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Xh ∈ XS , then Xh covers X as well. Thus, we conclude, π1(X) is a maximal

element in G.

There exist relatively prime p and q and relatively prime p′ and q′ so that

χ(Sr,1)

χ(Ss,1)
=
p

q
and

χ(Sr′,1)

χ(Ss′,1)
=
p′

q′
.

So, χ(Sr,1) = −dp, χ(Ss,1) = −dq, χ(Sr′,1) = −d′p′, and χ(Ss′,1) = −d′q′, for

some odd integers d and d′. Let

• Su,1 be the surface with Euler characteristic − d

gcd(d, d′)
p

• Sv,1 be the surface with Euler characteristic − d

gcd(d, d′)
q

• Su′,1 be the surface with Euler characteristic − d′

gcd(d, d′)
p′

• Sv′,1 be the surface with Euler characteristic − d′

gcd(d, d′)
q′.

Let S = Su,1 ∪γ Sv,1 be the surface obtained by identifying Su,1 and Sv,1 along

their boundary curves, let S′ = Su′,1∪γ′ Sv′,1 be the surface obtained by identify-

ing Su′,1 and Sv′,1 along their boundary curves, and let X be the space obtained

by identifying S and S′ along these curves γ and γ′. Then, by Lemma 3.4.2,

(Sg, γg) covers (S, γ) by degree gcd(d, d′) and (Sg′ , γg′) covers (S′, γ′) by degree

gcd(d, d′), so, Xg covers X by degree gcd(d, d′).

To see that π1(X) is a maximal element G, let H ∼= π1(Sh) ∗〈ρ〉 π1(Sh′) ∈ G be

given by the monomorphisms ρ 7→ [γh] ∈ π1(Sh) and ρ 7→ [γh′ ] ∈ π1(Sh′). By

Theorem 3.3.3 (b) and (c), γh and γh′ are separating simple closed curves so that

Sh = Sm,1 ∪γh Sn,1 and Sh′ = Sm′,1 ∪γh′ Sn′,1, where

χ(Sm,1)

χ(Sn,1)
=
p

q
and

χ(Sm′,1)

χ(Sn′,1)
=
p′

q′
.
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Then χ(Sm,1) = −fp, χ(Sn,1) = −fq, χ(Sm′,1) = −f ′p′, and χ(Sn′,1) = −f ′q′

for some f, f ′ ∈ N. By Theorem 3.3.3 (a),
χ(Sg)
χ(Sg′ )

= χ(Sh)
χ(Sh′ )

, hence −d(p+q)
−d′(p′+q′) =

−f(p+q)
−f ′(p′+q′) , so d

d′ = f
f ′ . So,

d

gcd(d, d′)
=

f

gcd(f, f ′)
and

d′

gcd(d, d′)
=

f ′

gcd(f, f ′)
.

Therefore, by Lemma 3.4.2, (Sh, γh) covers (S, γ) by degree gcd(f, f ′) and (Sh′ , γh′)

covers (S′, γ′) by degree gcd(f, f ′); thus, Xh covers X by degree gcd(f, f ′) as de-

sired.

If G ∈ CS does not satisfy the conditions of the proposition, then there are two

groups, H1 and H2, in the abstract commensurability class of G in CS , where

H1
∼= π1(Sh1) ∗〈γ〉 π1(Sh′1) and H2

∼= π1(Sh2) ∗〈ρ〉 π1(Sh′2) and, up to relabeling,

γ 7→ [γh1 ] ∈ π1(Sh1) and ρ 7→ [γh2 ] ∈ π1(Sh2), where γh1 is an essential non-

separating simple closed curve and γh2 is a separating simple closed curve. Thus,

(Sh1 , γh1) and (Sh2 , γh2) cannot cover the same pair (S, γ), so there is no maximal

element in the abstract commensurability class of G in CS . �

3.5 Right-angled Coxeter groups and the Crisp–Paoluzzi examples

In this section, we discuss the relationship between groups in CS and the class

of right-angled Coxeter groups. We begin with the relevant background for this

section.

Definition 3.5.1. Let Γ be a finite simplicial graph. The right-angled Coxeter

group with defining graph Γ is

W (Γ) =
〈
v ∈ V (Γ) | v2 = 1 if v ∈ V (Γ), [v, w] = 1 if {v, w} ∈ E(Γ)

〉
.

For more on right-angled Coxeter groups, see [Dav08]. As shown in [Gre90], a

right-angled Coxeter group is defined up to isomorphism by its defining graph;

that is, W (Γ) ∼= W (Γ′) if and only Γ ∼= Γ′. Often, group theoretic properties of
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W (Γ) correspond to graph theoretic properties of Γ. Classic results relevant to

our setting are recorded below.

Proposition 3.5.2. Let Γ be a simplicial graph.

(1) [Gro87, Pg. 123] The group W (Γ) is word-hyperbolic if and only if every

4-cycle in Γ has a chord.

(2) [Dav08, Lemma 8.7.2] The group W (Γ) is one-ended if and only if Γ is

not a complete graph and there does not exist a complete subgraph K

of Γ such that Γ\K is disconnected.

An orbifold is a topological space O in which each point has a neighborhood

modeled on Ũ/G, where Ũ is an open ball in Rn and G is a finite subgroup

of SO(n). Associated to each point in the orbifold is the finite group G called

its isotropy group. A point is called a ramification point if its isotropy group is

non-trivial. The set of all ramification points is called the ramification locus of

the orbifold. The underlying topological space of an orbifold O is denoted |O|.

Background and a more formal definition of orbifolds can be found in [Kap09,

Chapter 6] and [Rat06, Chapter 13]; recent applications can be found in the

survey paper [Wal11].

A homeomorphism between orbifoldsO andR is a homeomorphism h : |O| → |R|

such that for each point x ∈ O, y = h(x) ∈ R, there are coordinate neighbor-

hoods Ux = Ũx/Gx and Vy = Ṽy/Gy such that h lifts to an equivariant home-

omorphism h̃xy : Ũx → Ṽy. An orbi-complex is a disjoint union of orbifolds

identified to each other along homeomorphic suborbifolds.

An orbifold covering p : O′ → O is a continuous map |O′| → |O| such that if

x ∈ O is a ramification point with neighborhood given by U = Ũ/G, then each

component Vi of f−1(U) is isomorphic to Ũ/Gi where Gi ≤ G and p|Vi : Vi → U
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Figure 4. On the left are five geodesic lines in the disk model of the

hyperbolic plane; on the right, is their orbit under the action of the

right-angled Coxeter group W5. Both figures were drawn with Curt

McMullen’s lim program [McM].

is Ũ/Gi → Ũ/G. The universal covering p : Õ → O is a covering such that for

any other covering p′ : O′ → O there exists a covering p̃ : Õ → O′ such that

p′ ◦ p̃ = p. The group of deck transformations of the orbifold covering p : O′ → O

is the group of self-diffeomorphisms h : O′ → O′ such that p◦h = p. The orbifold

fundamental group, πorb1 (O), is the group of deck transformations of its universal

covering. Then O = Õ/πorb1 (O). The orbifold O is called a reflection orbifold

if π1(O) is generated by reflections. The orbifold fundamental group can also

be defined based on homotopy classes of loops in O; this definition appears in

[Rat06, Chapter 13]. A form of the Seifert-Van Kampen theorem allows one to

compute the fundamental group of orbifolds; see Section 2 of [Sco83].

Let Wn be the right-angled Coxeter group with defining graph an n-cycle. If

n ≥ 5, Wn acts geometrically on the hyperbolic plane: Wn is isomorphic to

the group generated by reflections about the geodesic lines through the n-sides

of a right-angled hyperbolic n-gon. One such example is given in Figure 4.

Let On denote the quotient of the hyperbolic plane under the action of Wn so

πorb1 (On) ∼= Wn. Every closed orientable surface of genus greater than one finitely
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covers O5 (for example, see [Sco78]), so π1(Sg) is a finite-index subgroup of W5

for g ≥ 2.

As orbifolds, On and Om may be identified to each other along homeomorphic

suborbifolds to form an orbi-complex. If the suborbifolds each have underlying

space a geodesic segment that meets the boundary edges of the reflection orb-

ifolds at right angles, then the orbi-complex obtained has orbifold fundamental

group a right-angled Coxeter group. There are two homeomorphism types of

such suborbifolds of On: a reflection edge and the geodesic segment that con-

nects the interior of reflection edges that are separated from each other by at

least two reflection edges on either side.

The orbi-complex obtained by identifying On and Om along a reflection edge in

each is denotedOm,n. The orbifold fundamental group ofOm,n is the right-angled

Coxeter group Wm,n introduced by Crisp–Paoluzzi in [CP08], and is defined as

follows.

Definition 3.5.3. [CP08] For m,n ≥ 5, define Wm,n = W (Γm,n), where Γm,n

denotes the graph which consists of a circuit of length m and a circuit of length

n identified along a common subpath of edge-length 2.

Our notation for Wm,n varies slightly from that given in [CP08]; they define Γm,n

as the graph which consists of a circuit of length m + 4 and a circuit of length

n + 4 identified along a common subpath of edge-length 2 and m,n ≥ 1. One

can easily translate between the two notations.

On the other hand, the orbi-complex obtained by identifying On and Om along

geodesics connecting reflection edges at distance greater than or equal to two

from each other can also be viewed as the union of four right-angled reflection

orbifolds with one boundary edge identified to each other along their boundary



33

Figure 5. On the left are four geodesic lines in the disk model of

the hyperbolic plane; on the right, is their orbit under the action of the

right-angled Coxeter group with underlying graph a path of length four.

Both figures were drawn with Curt McMullen’s lim program [McM].

edges. The orbifold fundamental group of each component orbifold with bound-

ary is Pn, the right-angled Coxeter group with underlying graph a path of length

n for some n ≥ 4. More specifically, for n ≥ 4, Pn acts properly discontinuously

by isometries on the hyperbolic plane by reflecting about n geodesic lines, whose

intersection graph is a path of length n and so that the intersecting lines meet

at right angles; an example is illustrated in Figure 5. The quotient of the hyper-

bolic plane under the group Pn is an open infinite-area right-angled hyperbolic

reflection orbifold. Truncate this space along the unique geodesic in the homo-

topy class of the boundary to obtain the orbifold On,1, a compact orbifold with

boundary and πorb1 (On,1) = Pn.

For ni ≥ 4, the orbifolds On1,1, . . . ,On4,1 may be identified along their boundary

curves to form an orbi-complex we denote O(n1, . . . , n4). The orbifold fun-

damental group of the orbi-complex O(n1, . . . , n4) is the right-angled Coxeter

group with underlying graph denoted Θ(n1, . . . , n4) that consists of four paths

of length ni ≥ 4 glued to each other along their endpoints. The graphs Wm,n
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and Θ(n1, . . . , n4) are examples of generalized Θ-graphs, which were introduced

by Dani–Thomas in [DT14], and which are defined more formally below.

Definition 3.5.4. Let k ≥ 3, n1 ≥ 3 and n2, . . . , nk ≥ 4 be integers. Let Ψk be

the graph with two vertices a and b and k edges e1, . . . , ek connecting the vertices

a and b. The generalized Θ-graph Θ(n1, . . . , nk) is obtained by subdividing the

edge ei of Ψk into ni − 1 edges by inserting ni − 2 new vertices along ei for

1 ≤ i ≤ n.

Remark. Each right-angled Coxeter group with defining graph a generalized

Θ-graph is the orbifold fundamental group of a right-angled hyperbolic reflection

orbi-complex of one of two types that generalize the orbi-complexes described

above. That is, if n1 = 3, the associated orbi-complex is similar to Om,n: it

consists of k − 1 right-angled hyperbolic reflection orbifolds identified to each

other along a reflection edge in each. If n1 > 3, the associated orbi-complex

is similar to O(n1, . . . , n4): it consists of k right-angled hyperbolic reflection

orbifolds with boundary identified to each other along their boundary edges. In

upcoming joint work with Pallavi Dani and Anne Thomas, we characterize the

abstract commensurability classes in this setting.

In this section, we prove that the fundamental group of two surfaces identified

along separating curves is a finite-index subgroup of a right-angled Coxeter group

with defining graph Θ(n1, . . . , n4) for ni ≥ 4. We prove the fundamental group of

two surfaces identified along curves of topological type one (see Definition 3.2.1)

is a finite-index subgroup of the right-angled Coxeter group Wm,n with defining

graph Θ(3, n1, n2) and ni ≥ 4. It remains open whether the fundamental group

of the union of two surfaces obtained by gluing a non-separating curve to a curve

that separates the surface into two subsurfaces of unequal genus is a finite-index

subgroup of a right-angled Coxeter group.
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Figure 6. Illustrated above is a 4-fold cover of the orbifold O4,1 by

the surface with boundary S1,1.

Using the following lemma, we prove that in every abstract commensurability

class of a group in CS there is a group that is a finite-index subgroup of a right-

angled Coxeter group with underlying graph Θ(n1, . . . , n4) and ni ≥ 4.

Lemma 3.5.5. If S1, . . . , Sk are orientable hyperbolic surfaces with one boundary

component, identified to each other along their boundary components to form the

space X, then π1(X) is a finite-index subgroup of a right-angled Coxeter group.

Proof. We prove X four-fold covers the reflection orbi-complex O(n1, . . . , nk) for

some ni ≥ 4 whose orbifold fundamental group is a right-angled Coxeter group

with underlying graph the generalized Θ-graph Θ(n1, . . . , nk).

The surface with boundary Si ⊂ X four-fold covers Oni,1 for some ni ≥ 4

such that the boundary of Si four-fold covers the boundary edge of Oni,1 as

illustrated in Figure 6. To see this, skewer Si through its boundary component

so that 2gi + 1 points on the surface intersect the skewer, and rotate by π. The

quotient is homeomorphic to a disk with 2gi + 1 cone points of order two, which

may be arranged on the diameter of the disk. Reflection across the diameter

gives the desired covering map Si → Oni,1. Thus, the union of these surfaces
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Si glued along their boundary curves four-fold covers the union of the orbifolds

along their boundary lines concluding the proof. �

Corollary 3.5.6. If G ∈ CS, then G is abstractly commensurable to a right-

angled Coxeter group.

Proof. Let G ∈ CS . By the abstract commensurability classification within CS

given in Theorem 3.3.3, there exists Y ∈ XS whose fundamental group is ab-

stractly commensurable to G and so that Y has one singular curve that identifies

the boundary components of four surfaces each with one boundary component.

The group π1(Y ) is a finite-index subgroup of a right-angled Coxeter group

by Lemma 3.5.5, so, G is abstractly commensurable to a right-angled Coxeter

group. �

For the remainder of the section, we restrict attention to the relationship between

the groups in CS and the groups Wm,n studied by Crisp–Paoluzzi in [CP08].

Recall, X2 ⊂ XS is defined to be the set of spaces X ∈ XS that can be realized

as the union of two surfaces along curves of topological type one. The groups

C2 ⊂ CS are the fundamental groups of spaces in X2 (see Definition 3.4.1).

Lemma 3.5.7. If X = Sg ∪γ Sh ∈ X2, then X 8-fold covers Og+3,h+3. Con-

versely, if m,n ≥ 5, then Om,n is 8-fold covered by Sm−3 ∪γ Sn−3 ∈ X2.

Proof. We show that if γg : S1 → Sg is an essential simple closed curve of

topological type one, then there exists an 8-fold orbifold covering map Sg → Og+3

so that γg orbifold covers a reflection edge by degree 8, as illustrated in Figure

7. Thus, if X = Sg ∪γ Sh, where γ identifies two curves of topological type one,

then Sg ∪γ Sh 8-fold orbifold covers Og+3,h+3.

First suppose γg : S1 → Sg is non-separating. Skewer Sg so that 2g+2 points on

the surface intersect the skewer, and rotate by π. The quotient under this action
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Figure 7. Shown above are orbifold covering maps S2 → O5 de-

scribed in Lemma 3.5.7 and constructed so that the highlighted curves

of topological type one cover a reflection edge in the orbifold O5. In par-

ticular, the union of these surfaces over the highlighted curves finitely

covers the union of the orbifolds along the reflection edges.

is S2(2, . . . , 2), the 2-sphere with 2g + 2 cone points of order two. This map

p1 : Sg → S2(2, . . . , 2) is an orbifold covering map: each ramification point in

the sphere has a neighborhood in which the cover is given by rotation by π, and

all other points have a neighborhood with preimage two homeomorphic copies

of the neighborhood. The six cone points may be arranged along the equator of

the sphere. Reflection through the equatorial plane has a quotient O6. Finally,

O6 2-fold orbifold covers O5 by reflection, which can be seen by unfolding O5

along a reflection edge. It is clear that this covering, illustrated in Figure 7 can

be arranged so that γg 8-fold covers a reflection edge.
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Now suppose γg : S1 → Sg is separating. Reflecting Sg across the curve γg yields

a 2-fold orbifold cover of an orbifold with orbifold boundary and underlying

space S g
2
,1. Skewer this orbifold along g + 1 points and rotate by π yielding an

orbifold with underlying space a disk, g + 1 cone points or order two, and so

that the boundary consists solely of reflection points. Finally arrange the cone

points along a diameter of the disk and reflect about this line. These covering

maps are illustrated in Figure 7. As in the non-separating case, one can easily

verify each of these maps is an orbifold covering map. �

We immediately obtain the following corollary.

Corollary 3.5.8. If G ∈ C2, then G embeds as a finite-index subgroup in the

right-angled Coxeter group Wm,n for some m and n.

Remark: An alternative covering map S2 → O5 appears in [Sco78]. Under this

covering map, illustrated in Figure 8, the curves of topological type one can also

be chosen to cover a reflection edge in the pentagon orbifold.

Proposition 3.5.9. If G ∈ CS, then G is abstractly commensurable to Wm,n for

some m and n if and only if G ∈ C2.

Proof. Suppose G ∈ C2 so G ∼= π1(X) with X ∈ X2. By Lemma 3.5.7, X finitely

covers Om,n for some m,n. Hence G is abstractly commensurable to Wm,n for

some m and n. Conversely, suppose G ∈ CS and G is abstractly commensurable

to Wm,n for some m and n. By Lemma 3.5.7, Wm,n is abstractly commensurable

to G′ for some G′ ∈ C2. Since abstract commensurability is an equivalence

relation, G is abstractly commensurable to G′ so G ∈ C2 by Theorem 3.3.3. �

Finally, we may use the analysis of this section to produce a maximal element

in the class of right-angled Coxeter groups for abstract commensurability classes

within C2.
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Figure 8. Pictured above are orbifold covering maps that appear in

[Sco78]. Each map can be realized by embedding the surface in R3 and

reflecting about a plane cutting through the surface. For our purposes,

it is important to note that both curves of topological type one cover a

reflection edge by degree eight.

Corollary 3.5.10. If G ∈ C2, then there is a right-angled Coxeter group G0 so

that every group in CS in the abstract commensurability class of G is a finite-

index subgroup of G0.

Proof. Let G ∈ C2 and let G ⊂ CS denote the abstract commensurability class of

G in CS . By Lemma 3.5.7, G is a finite-index subgroup of Wm,n for some m and

n, and, if G′ ∈ G, then G′ is a finite-index subgroup of Wk,` for some k and `.

By [CP08, Theorem 1.1], Wm,n and Wk,` are abstractly commensurable if and

only if m−4
n−4 = k−4

`−4 . Furthermore, Om,n finitely covers Op,q whenever p−4
q−4 = m−4

n−4

and gcd(p− 4, q − 4) = 1. Thus, G′ is a finite-index subgroup of Wp,q, and Wp,q

is a maximal element for G within the class of right-angled Coxeter groups. �



40

Chapter 4.

Quasi-isometry classification within CS

Let G be a group in the class CS so that G ∼= π1(X), where X is a space in the

class XS . Suppose X = Sg ∪γ Sh where Sg and Sh are closed orientable surfaces

of negative Euler characteristic and γ denotes the image of the essential simple

closed curves γg : S1 → Sg identified to γh : S1 → Sh in X. There are many

metrics on X through which the geometry of the group G may be studied.

4.1 A CAT(−1) metric on X̃

Let Mn
κ denote the complete, simply connected, Riemannian n-manifold of con-

stant sectional curvature κ ∈ R. As described in [BH99, Chapter I.2], depending

on whether κ is positive, negative, or zero, Mn
κ can be obtained from one of Sn,

Hn, or En, respectively, by scaling the metric.

Definition 4.1.1 (see Chapter II.1 of [BH99]). Let ∆(p, q, r) be a geodesic

triangle in a metric space X, which consists of three vertices p, q, and r, and

three geodesic segments [p, q], [q, r], and [r, p]. A triangle ∆̄(p̄, q̄, r̄) ⊂ M2
κ is

called a comparison triangle for ∆(p, q, r) if d(p̄, q̄) = d(p, q), d(q̄, r̄) = d(q, r),

and d(r̄, p̄) = d(r, p). A point x̄ ∈ [q̄, r̄] is called a comparison point for x ∈ [q, r]

if d(q, x) = d(q̄, x̄).

Definition 4.1.2 (see Definition II.1.1 of [BH99]). Let X be a metric space

and let κ ∈ R. Let ∆ be a geodesic triangle in X with perimeter less than

twice the diameter of M2
κ . Let ∆̄ ⊂M2

κ be a comparison triangle for ∆. Then ∆

satisfies the CAT(κ) inequality if for all x, y ∈ ∆ and comparison points x̄, ȳ ∈ ∆̄,
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d(x, y) ≤ d(x̄, ȳ). If κ ≤ 0, then X is called a CAT(κ) space if X is a geodesic

space all of whose triangles satisfy the CAT(κ) inequality.

In [Mal10], Malone proves all groups in CS are quasi-isometric by examining a

CAT(0) geometry on X and applying the techniques of Behrstock–Neumann on

the bilipschitz equivalence of fattened trees [BN08]. The bilipschitz equivalence

constructed by Behrstock–Neumann relies on the Euclidean structure of fattened

trees; their map is piecewise-linear. In this thesis, we study a CAT(−1) metric

on X that is piecewise hyperbolic, and we define a bilipschitz equivalence with

respect to this hyperbolic structure. The piecewise hyperbolic metric on X ∈ XS

can be constructed as follows.

One can choose hyperbolic metrics on Sg and Sh so that the length of the geodesic

representatives of [γg] and [γh] is equal (see Chapter 10 of [FM12]). Gluing by

an isometry yields a piecewise hyperbolic complex X. We call such a metric

hyperbolic on each surface. The universal cover X̃ consists of copies of H2 that

are the lifts of the hyperbolic surfaces, identified along geodesic lines that are

the lifts of the curve γ. The following proposition implies that X̃ is a CAT(−1)

metric space.

Proposition 4.1.3. [BH99, Proposition II.11.6] Let X1 and X2 be metric spaces

of curvature ≤ κ and let A1 ⊂ X1 and A2 ⊂ X2 be closed subspaces that are

locally convex and complete. If j : A1 → A2 is a bijective local isometry, then the

quotient of the disjoint union X = X1
⊔
X2 by the equivalence relation generated

by [a1 ∼ j(a1) for all a1 ∈ A1] has curvature ≤ κ.

For details on metric gluing constructions, see the work of Bridson–Haefliger

([BH99], Section II.11).
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4.2 Bilipschitz maps and polygonal tilings

The bilipschitz equivalence between the universal covers of two spaces X1 and

X2 in XS is constructed by realizing X̃1 and X̃2 as isomorphic cell complexes

with finitely many isometry types of hyperbolic polygons as cells. We will use

the following definitions.

Definition 4.2.1. A map f : (X, dX) → (Y, dY ) is K-bilipschitz if there exists

K ≥ 1 so that for all x1, x2 ∈ X,

1

K
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2),

and f is a K-bilipschitz equivalence if, in addition, f is a homeomorphism. A

map is said to be a bilipschitz equivalence if it is a K-bilipschitz equivalence

for some K. Two spaces X and Y are bilipschitz equivalent if there exists a

bilipschitz equivalence from X to Y .

Example 4.2.2. The map f : [0, D] → [0, D′] given by x 7→ D′

D x is called

dilation, and is a bilipschitz equivalence with bilipschitz constant D′

D .

Definition 4.2.3. A convex hyperbolic polygon is the convex hull of a finite set

of points in the hyperbolic plane.

Lemma 4.2.4. Let ∆1,∆2 ⊂ H2 be hyperbolic triangles. Then there exists a

bilipschitz equivalence φ : ∆1 → ∆2 that is dilation when restricted to each edge

of ∆1.

Proof. It follows from [BB04, Lemma 5, Lemma 6] that there is a bilipschitz

equivalence between a hyperbolic triangle and its Euclidean comparison triangle

that restricts to an isometry on each of the edges. Then, composing with a linear

map between Euclidean triangles gives the desired result. �
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Corollary 4.2.5. If P and Q are convex hyperbolic n-gons, then there exists a

bilipschitz equivalence φ : P → Q that is dilation when restricted to each edge of

P .

For a more formal and general definition of polyhedral complexes and their

metric, see [BH99, Chapter 1.7].

Lemma 4.2.6. If X̃1 and X̃2 are geodesic metric spaces realized as isomorphic

cell complexes with finitely many isometry types of hyperbolic polygons as cells,

then X̃1 and X̃2 are bilipschitz equivalent.

Proof. Suppose geodesic metric spaces X̃1 and X̃2 are realized as isomorphic cell

complexes with polygonal cells {Vi}i∈I and {Wi}i∈I , respectively. Suppose the

cell complex isomorphism maps Vi to Wi for all i ∈ I. By Corollary 4.2.5 and

since there are finitely many isometry types of hyperbolic polygons in the cell

complexes, we may take this map φi : Vi →Wi to be a K-bilipschitz equivalence

for some K ∈ R that restricts to dilation on each of the edges of Vi. These maps

agree along the intersection of two polygons, thus, there is a well-defined cellular

homeomorphism Φ : X̃1 → X̃2 that restricts to the K-bilipschitz equivalence φi

on each cell.

Let x, y ∈ X̃1, and let p be the geodesic path from x to y. Since the cell complex

contains finitely many isometry types of convex hyperbolic polygons, the path p

can be decomposed into a finite union of geodesic segments {[xi, xi+1]}n−1i=0 , with

x0 = x and xn = y, and so that each subpath [xi, xi+1] is contained entirely in
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a 2-cell Vi. Since Φ(p) is a path connecting Φ(x) and Φ(y),

d(Φ(x),Φ(y)) ≤
n−1∑
i=0

d(φi(xi), φi(xi+1))

≤
n−1∑
i=0

Kd(xi, xi+1)

= Kd(x, y).

The other inequality follows similarly. Namely, suppose q is a geodesic path from

Φ(x) to Φ(y). The path q can be decomposed into a union of geodesic segments

{[wi, wi+1]
m−1
i=0 } where w0 = Φ(x), wm = Φ(y) and the interior of [wi, wi+1] is

contained entirely in a 2-cell Wi. Then, since Φ−1(q) is a path from x to y and

φi is a K-bilipschitz equivalence for all i,

d(Φ(x),Φ(y)) =
m−1∑
i=0

d(wi, wi+1)

≥
m−1∑
i=0

1

K
d(φ−1i (wi), φ

−1
i (wi+1))

≥ 1

K
d(x, y).

Thus, 1
K d(x, y) ≤ d(Φ(x),Φ(y)) ≤ Kd(x, y), so Φ is a K-bilipschitz equivalence.

�

In the construction of the bilipschitz equivalence, we find it useful to restrict to

a specific metric on a space X ∈ XS , and we will use the following lemma.

Lemma 4.2.7. If X1, X2 ∈ XS and π1(X1) and π1(X2) are abstractly commen-

surable, then X̃1 and X̃2 are bilipschitz equivalent with respect to any CAT(−1)

metric on X1 and X2 that is hyperbolic on each surface.

Proof. Let X1, X2 ∈ XS , and suppose π1(X1) and π1(X2) are abstractly com-

mensurable. By Theorem 3.1.2, there exist finite-sheeted covers Yi → Xi that

are homeomorphic. Choose a locally CAT(−1) metric on X1 and X2 that is
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hyperbolic on each surface. This piecewise hyperbolic metric on Xi lifts to a

piecewise hyperbolic metric on Yi. Since Y1 and Y2 are homeomorphic, we may

realize Y1 and Y2 as finite simplicial complexes with isomorphic 1-skeleta. After

subdividing if necessary, we may assume each triangle in Yi is isometric to a

hyperbolic triangle. So, Ỹ1 ≡ X̃1 and Ỹ2 ≡ X̃2 may be realized as simplicial

complexes with isomorphic 1-skeleta and each built from finitely many isome-

try types of hyperbolic triangles. By Lemma 4.2.6, Ỹ1 ≡ X̃1 and Ỹ2 ≡ X̃2 are

bilipschitz equivalent. �

4.3 Construction of the cellular isomorphism

Theorem 4.3.1. If X1, X2 ∈ XS and X̃1 and X̃2 are their universal covers

equipped with a CAT(−1) metric that is hyperbolic on each surface, then there

exists a bilipschitz equivalence X̃1 → X̃2.

Proof. Let X1, X2,∈ XS . If X ∈ XS , then by the abstract commensurability

classification within CS given in Theorem 3.3.3, there exists Y ∈ XS so that

Y consists of four surfaces of genus at least two and one boundary component,

identified to each other along their boundary components and so that π1(X) and

π1(Y ) are abstractly commensurable. So, by Lemma 4.2.7, it suffices to consider

the case where

X1 =

4⋃
i=1

Si,

X2 =
4⋃
i=1

Ti,

where Si is a surface of genus greater than two and one boundary component

for 1 ≤ i ≤ 4, and the union identifies the boundary components of the Si; the

space X2 is similar. Choose locally CAT(−1) metrics on X1 and X2 that are

hyperbolic on each surface, and let X̃i denote the universal cover of Xi equipped

with this metric.
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Figure 9. An illustration of the fundamental domain F for the action

of π1(X1) on X̃1. The fundamental domain is built from four convex hy-

perbolic polygons Fi. The darkened edge is referred to as the branching

edge.

Let γi denote the singular curve in Xi and let γ̃i represent the component of

the preimage of γi in X̃i stabilized by 〈[γi]〉. Let Li = {g · γ̃i | g ∈ π1(Xi)}. Let

H1, H2, H3, H4 be the four components of X̃1\L1 incident to γ̃1 so that π1(Si)

stabilizes Hi, and let J1, J2, J3, J4 be the four components of X̃2\L2 incident to

γ̃2 so that π1(Ti) stabilizes Ji.

Let F =
4⋃
i=1

Fi be a connected fundamental domain for the action of π1(X1) on

X̃1 that comes from a cell division of X1 with a single vertex and so that

• Fi ⊂ Hi is a fundamental domain for the action of π1(Si) on Hi,

• Fi is a convex hyperbolic polygon with at least nine sides so that exactly

one edge of Fi lies in γ̃1. We refer to this distinguished edge as the

branching edge of Fi. The remaining vertices of Fi lie on gγ̃1 for distinct

g ∈ π1(X1),
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• the branching edges Fi are identified via an isometry to form the con-

nected fundamental domain F .

An example is given in Figure 9. Let D =

4⋃
i=1

Di be a connected fundamental

domain for the action of π1(X2) on X̃2 constructed similarly. Note that F and D

are not strict fundamental domains (see [BH99, Definition II.12.7]); in particular,

F and D contain many vertices.

Isometry types of cells used in the cell decompositions:

Let x and y be one endpoint of the branching edges in F and D, respectively.

We will show that each polygon in the cell complexes constructed lies in the

finite set of polygons P that satisfy the following three conditions.

• The vertex sets are

V1 = {g · x | g ∈ π1(X1)} and V2 = {g · y | g ∈ π1(X2)},

respectively, the same vertices that appear in the tilings by fundamental

domains.

• Each edge is isometric to a geodesic segment connecting two vertices of

F or D.

• The number of sides of each polygon is bounded above by M ∈ N, where

M is two times the maximum number of sides in F or D times the

maximum valance x or y.

Construction of the first cell in H1 and J1:

Let V be the vertices in the fundamental domain F1 and let W be the vertices in

the fundamental domain D1. If V and W have the same size, the fundamental

domains themselves are the first cells used in the cell decomposition of H1 and
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u1
u2

u0

v1 v2

v0

F1 F1,1 F1,2
γ1~

Figure 10. In the top image are translates F1,i of the fundamental

domain F1 in H1. The dark lines are translates of γ̃1, which are bound-

ary lines of the region H1. The vertices ui and vi are selected as in the

proof of the theorem. Shaded below is the first tile in H1 in the setting

where the fundamental domain D1 has more sides than the fundamental

domain F1.

J1; continue to the definition of the map. Otherwise, without loss of generality,

|W | − |V | = k > 0. We will enlarge V until |V | = |W |.

Suppose k = 2n + m for some n ≥ 0 and m ∈ {0, 1}. By the choice of the

fundamental domain, there is a non-branching edge {u0, v0} of F1 that is disjoint

from the branching edge of F1 and its two adjacent edges. The edge {u0, v0}

lies in a second translate of the fundamental domain F1,1 ⊂ H1. There is a

non-branching edge {u1, v1} in F1,1 disjoint from {u0, v0} and its two adjacent

edges. Similarly, there are edges {ui, vi} for 1 ≤ i ≤ n + 1, where {ui, vi} and

{ui+1, vi+1} lie in the same fundamental domain F1,i+1 for 1 ≤ i ≤ n, and {ui, vi}
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is disjoint from {uj , vj} and its two adjacent edges for i 6= j, as illustrated in

Figure 10.

To construct the cycle boundary of PV , the first cell in H1, start with the cycle

boundary of F1. Remove the edge {u0, v0}. Add geodesic segments {ui, ui+1}

and {vi, vi+1} for 1 ≤ i ≤ n− 1. Up to relabeling the ui and vi, we may assume

{ui, ui+1} and {vi, vi+1} do not intersect. If k is even, add {un, vn} to complete

the cycle boundary of the polygon. If k is odd, add {un, un+1} and {vn, un+1}

to complete the cycle. Attach a 2-cell to this boundary cycle to form the first

cell PV in H1. Let PW be the fundamental domain D1, the first cell in J1.

Map PV to PW by a cellular homeomorphism φ, sending the branching edge

of PV to the branching edge of PW , and dilating along each edge of the tile.

After extending the fundamental domain F1 to the tile PV , it is possible that

PV is not convex. If this is the case, subdivide PV and PW isomorphically into

convex polygons so the configurations have isomorphic 1-skeleta. Observe that

the number of edges in any polygon is bounded above by the size of the largest

fundamental domain, and each edge connects vertices that lie in a common

translate of the fundamental domain. Thus, PV , PW ∈ P.

Constructing the remaining cells in H1 and J1:

Extend the cell decompositions to all of H1 and J1 recursively. Along each new

edge of a polygon built during the preceding stage, build one new polygon in

H1 and a corresponding new polygon in J1. Each new polygon is constructed in

a manner similar to the first polygons. Begin by constructing one new polygon

along each edge of PV and PW that lies in the interior of H1 and J1 as follows.

Let {a, a0} be an edge of PV that lies in the interior of H1 and let {b, b0} =

φ({a, a0}). By construction, the edge {a, a0} connects two vertices in a translate
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of the fundamental domain, and the interior of this geodesic segment either lies

on a non-branching edge of a translate of the fundamental domain or in the

interior of a translate of the fundamental domain. This distinction does not

affect the construction of the new cells. The vertices a and a0 lie in distinct

translates of γ̃1 that are boundary lines of H1. Let {a, a′} and {a0, a′0} be the

branching edges on these translate of γ̃1 that lie in the component of H1\{a, a0}

that does not contain PV . Let {b, b′} and {b0, b′0} be the analogous edges in J1.

We form cycles CA in H1 and CB in J1 that contain the paths {a′, a, a0, a′0}

and {b′, b, b0, b′0}, respectively, and will serve as the boundary cycles of the new

cells constructed. The branching edges of the tiling by fundamental domains are

distinguished; so, to ensure CA can be mapped to CB, we extend these paths

{a′, a, a0, a′0} and {b′, b, b0, b′0} to cycles that contain no other branching edges.

Let A1, . . . , Am be the (non-empty) set of translates of the fundamental domain

F1 in H1 that intersect a or a0 and the component of H1\{a, a0} that does not

contain PV . Note that if the edge {a, a0} lies in the interior of a fundamental

domain, then Ai may only be part of a fundamental domain for some i. Suppose

the Ai are labeled so that A1 contains {a, a′}, An contains {a0, a′0}, and Ai and

Ai+1 intersect in an edge {ε, ai} of the tiling by fundamental domains where

ε ∈ {a, a0} and 1 ≤ i ≤ m − 1, as illustrated in Figure 11. Let B1, . . . , Bn and

b1, . . . , bn−1 be similar. Form an embedded cycle

CA = {a, a′, p1, a1, p2, a2, . . . , am−1, pm, a′0, a0},

where pi is an embedded path in Ai containing the remaining vertices of ∂Ai,

but choosing only one vertex from a branching edge of Ai. Let

CB = {b, b′, q1, b1, q2, b2, . . . , bn−1, qn, b′0, b0}
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A3

A1
A2

A4 A5

a1

a2 a3
a4

a a0

a' a0'

PA

Figure 11. The figures illustrate how to extend the tiling recursively

along an edge {a, a0} of a (shaded) tile previously constructed. The Ai

are translates of the fundamental domain that intersect a or a0, and

the ai are their points of intersection. The dark lines are translates of

γ̃1 that bound H1. Below, the new tile PA is drawn; its cycle boundary

contains all of the ai as well as paths pi ⊂ Ai that include the other

vertices of Ai, except that only one vertex is chosen from a boundary

geodesic. Then, the only edges of PA that lie on the boundary geodesics

are {a, a′} and {a0, a′0}.

be similar. If |CA| = |CB|, continue to the cell and map definitions. Otherwise,

suppose without loss of generality, |CB| > |CA|. By the choice of fundamental

domains, there is a non-branching edge of a fundamental domain in the cycle CA

disjoint from {a′, a, a0, a′0} and its adjacent edges, which can be used to extend

the cycle CA as with the first cell. After extending the cycle if necessary, attach

2-cells to these boundary cycles to form polygons PA and PB.
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Map PA to PB by a cellular homeomorphism, sending {a′, a, a0, a′0} to {b′, b, b0, b′0},

and dilating along each edge of the tile. As before, if PA or PB is not convex,

subdivide PA and PB isomorphically into convex polygons so the configurations

have isomorphic 1-skeleta. The map PA → PB extends the map PV → PW and

the cellular isomorphism.

By construction, PA, PB ∈ P. Continue construction in this way along each edge

of each polygon constructed. The cell complexes built in the regions H1 and J1

are exhaustive since the tiling of these regions by the fundamental domains F1

and D1, respectively, is exhaustive. That is, in our cell decomposition of H1, the

first polygon contains the fundamental domain F1, the next round of polygons

contain all of the translates of the fundamental domain F1 that are adjacent to

F1, the following round of polygons contain all of the translates of F1 adjacent

to these fundamental domains, and so on; the cell decomposition of J1 is similar.

Extending the cell decomposition to the entire universal covers:

First, realize Hi and Ji as isomorphic cell complexes for 2 ≤ i ≤ 4 in the same

manner as with H1 and J1. Let

φi : Hi → Ji

be the cellular homeomorphism constructed, which is dilation when restricted

to each boundary geodesic of Hi. So, the maps φi : Hi → Ji and φj : Hj → Jj

agree when restricted to their intersection. We will use the action of the group

to extend these maps and hence these cell decompositions to all of X̃1 and X̃2.

Recall, Li = {g · γ̃i | g ∈ π1(Xi)} is the set of branching geodesics in X̃i. We

define a cellular homeomorphism

Φ : X̃1 → X̃2
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recursively, mapping components of C1 = X̃1\L1 to components of C2 = X̃2\L2.

Let

Φ :
4⋃
i=1

Hi →
4⋃
i=1

Ji

be defined by the maps above: Φ(Hi) = φi(Hi).

Extend the map Φ along each unmapped branching geodesic of a component

mapped during the preceding stage as follows. To begin, let gγ̃ be a branching

geodesic of H1 for some nontrivial g ∈ π1(X1). Suppose R2, R3, and R4 are

components of C1 that intersect the boundary of H1 in the branching geodesic

gγ̃1. Without loss of generality, g−1(Ri) = Hi. The isometry g : Hi → Ri

induces a cell decomposition of Ri isomorphic to the cell decomposition of Hi.

Suppose Φ(gγ̃1) = hγ̃2 ∈ J1 for some h ∈ π1(X2). Let S2, S3, and S4 be the

other components of C2 incident to hγ̃2 so that h−1(Si) = Ji. Then, h : Ji 7→ Si

induces a tiling of Si isomorphic to the cell decompositions of Ji, Hi, and Ri.

Map Ri to Si by the cellular homeomorphism h ◦ Φi ◦ g−1 for 2 ≤ i ≤ 4.

Repeat this procedure along each unmapped branching geodesic of the regions

Hi and Ji, then along each unmapped branching geodesic of the regions incident

to Hi and Ji, and so on to define Φ, an exhaustive cellular homeomorphism

X̃1 → X̃2. By Lemma 4.2.6, X̃1 and X̃2 are bilipschitz equivalent. �

Corollary 4.3.2. If G,G′ ∈ CS, then G and G′ are quasi-isometric.
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sics. Birkhäuser Boston, Inc., Boston, MA, 2009. Reprint of the 2001 edition.

[Laf07] Jean-François Lafont. Diagram rigidity for geometric amalgamations of free groups.

J. Pure Appl. Algebra, 209(3):771–780, 2007.

[Mal10] William Malone. Topics in geometric group theory. ProQuest LLC, Ann Arbor, MI,

2010. Thesis (Ph.D.)–The University of Utah.

[Mar75] G. A. Margulis. Discrete groups of motions of manifolds of nonpositive curvature.

In Proceedings of the International Congress of Mathematicians (Vancouver, B.C.,

1974), Vol. 2, pages 21–34. Canad. Math. Congress, Montreal, Que., 1975.

[McM] C.T. McMullen. Kleinian groups. http://www.math.harvard.edu/∼ctm/programs/index.html.

[Pao13] Luisa Paoluzzi. The notion of commensurability in group theory and geometry. RIMS

Kkyroku, 1836:124–137, 2013.

[Rat06] John G. Ratcliffe. Foundations of hyperbolic manifolds, volume 149 of Graduate Texts

in Mathematics. Springer, New York, second edition, 2006.

[Sch95] Richard Evan Schwartz. The quasi-isometry classification of rank one lattices. Inst.

Hautes Études Sci. Publ. Math., (82):133–168 (1996), 1995.

[Sco78] Peter Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc.

(2), 17(3):555–565, 1978.

[Sco83] Peter Scott. The geometries of 3-manifolds. Bull. London Math. Soc., 15(5):401–487,

1983.

[SW79] Peter Scott and Terry Wall. Topological methods in group theory. In Homological

group theory (Proc. Sympos., Durham, 1977), volume 36 of London Math. Soc. Lecture

Note Ser., pages 137–203. Cambridge Univ. Press, Cambridge-New York, 1979.

[Wal11] Genevieve S. Walsh. Orbifolds and commensurability. In Interactions between hyper-

bolic geometry, quantum topology and number theory, volume 541 of Contemp. Math.,

pages 221–231. Amer. Math. Soc., Providence, RI, 2011.



56

[Why99] Kevin Whyte. Amenability, bi-Lipschitz equivalence, and the von Neumann conjec-

ture. Duke Math. J., 99(1):93–112, 1999.


