
Dissertation

The limits of automated
inductive theorem provers

Ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung

von

Assoc. Prof. Dr. techn. Stefan Hetzl

eingereicht an der Fakultät für Mathematik und Geoinformation
der Technischen Universität Wien

von

Dipl.-Ing. Jannik Vierling BSc.

Acknowledgments

First and foremost, I would like to thank my advisor Stefan Hetzl for giving me the chance
to work as a researcher in the field of computational logic. I am particularly, grateful for
his guidance and his invaluable advice that let me become a better researcher. Without
Stefan’s support this thesis would never have come to an end.

Furthermore, I would like to thank Pavel Pudlák for hosting me three months in
Prague. During this stay I had the opportunity to discuss my work with Emil Jeřabek
whose suggestions helped me to prove a central result of this thesis. Moreover, I would
like to thank Lev Beklemishev for inviting me to present my work at the Steklov institute.
My thanks also go to Christoph Weidenbach who hosted me in Saarbrücken and let me
share my work with his group. I am also very grateful to Matthias Baaz and Laura
Kovács for their help with the funding of this thesis.

I would like to thank my parents for encouraging me in developing a scientific mindset,
and thus providing the foundations for my work on this thesis. Finally, special thanks go
to my wife, Petra, for her love and support during all these years, despite my frequent
absent-mindedness.

The work on this thesis was funded by WWTF VRG 12-004, FWF I 4427, and ERC
CoG ARTIST 101002685.

i

Abstract

In this thesis we formally analyze the limits of several saturation-based inductive theorem
provers. We propose an analysis technique that consists in reducing provers into first-
order theories with induction. At first sight the reduction of a prover into a first-order
theory may seem to be a very strong abstraction. Therefore, it is a priori not clear whether
such reductions retain some useful information about the original prover. In this thesis
we show that this approach permits to extract crucial logical features and provides strong
bounds on the logical strength of provers. Moreover, based on these bounds, we prove
various unprovability results, whereas previously only empirical observations could be
made based on the failure of concrete implementations. The unprovability results in this
thesis show that, despite the loss of details incurred by the reduction of a prover to a first-
order theory, there are elementary properties that are not provable by recent automated
inductive theorem provers even given any amount of time and memory. Furthermore,
the thesis links these unprovability results to a certain extent to the logical features
of the provers and thus provides some guidance for the development of more powerful
automated inductive theorem provers.

ii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1

2 Preliminaries 4
2.1 First-order logic . 4
2.2 Skolemization . 6
2.3 A sequent calculus . 9
2.4 Saturation-based proof systems . 11
2.5 Induction . 14
2.6 Arithmetic . 18

3 Induction, Saturation, and Skolemization 21
3.1 Unrestricted induction and Skolemization 22
3.2 Restricted induction and Skolemization . 30

4 Case study: Vampire 37
4.1 Single-clause induction . 37
4.2 Multi-clause induction . 46
4.3 Towards analytic unprovability results . 58
4.4 Summary . 66

5 Case study: Zipperposition 68
5.1 Cruanes’ calculus . 68
5.2 An upper bound . 75
5.3 A completeness result . 82
5.4 Unprovability . 87

6 Clause set cycles 92
6.1 Clause set cycles . 92
6.2 Induction over bounded and ∀1 formulas 97
6.3 Logical characterization . 102
6.4 Unprovability by clause set cycles . 106
6.5 Case study: N-clause calculus . 120
6.6 Summary . 123

iv

Contents

7 Cancellation in linear arithmetic 125
7.1 Preliminaries . 125
7.2 Components in N and Z . 130
7.3 A model of rule based induction . 132
7.4 A model of the induction schema . 135

8 Towards theory exploration-based AITP 140

9 Conclusion 146
9.1 Analysis of other methods . 148
9.2 Extension of results and techniques . 149
9.3 Analyticity . 150

v

1 Introduction

Automated inductive theorem proving (AITP) is a branch of automated deduction that
aims at automating the process of proving statements that involve inductively constructed
objects such as natural numbers, finite sequences, and trees. In first-order automated
theorem proving (ATP) we try to establish validity whereas in automated inductive
theorem proving (AITP) one is usually interested in proving that a formula is true in the
standard model of some inductive types. By Gödel’s incompleteness theorem this problem
is not semi-decidable. Since AITP systems are effective computational devices they only
address semi-decidable subsets of this problem. Because of this discrepancy between
semantics and effectiveness there is a lot of freedom in the choice of proof systems.
In practice we see methods that make use of typical first-order induction schemata,
Hilbert-style induction rules (for example [KP13; Ker14]), and cyclic calculi (see [Bro05;
BGP12]) that exceed the power of the first-order induction schema [BT17; BT19]. The
most prominent applications of automated inductive theorem proving are found in formal
methods for software engineering. For example, the formal verification of software relies
strongly on one or another form of induction, since any non-trivial program contains
some form of loops or recursion. Another field of application of automated inductive
theorem proving is the formalization of mathematical statements, where AITP systems
assist humans in formalizing statements by discharging lemmas automatically, suggest
inductions [Nag19], or explore the theory [JDB09; Joh+14; VJ15].

A large variety of methods for automating mathematical induction has been developed.
Methods usually differ in the type of induction formulas they generate, the calculus they
are integrated in, and other more technical features such as the degree of automation, the
encoding of the input, semantics of datatypes, and so on. There are, for example, meth-
ods based on: recursion analysis [BM79; Ste88; Bun+89], proof by consistency [Com01],
rippling [Bun+93], cyclic proofs [BGP12], extensions of saturation-based provers [Dar68;
Biu+86; KP13; Ker14; Cru15; Cru17; EP20; RV19; Haj+20; Wan17], tree grammar
provers [EH15], theory exploration based provers [Cla+13], rewriting induction [Red90],
encoding [Sch20], extensions of SMT solvers [RK15]. Many methods integrate the induc-
tion mechanism more or less tightly into a proof system that is well-suited for efficient
automation. Thus, these methods exist mainly at lower levels of abstraction, often close
to an actual implementation. Therefore, the current methodology in automated inductive
theorem proving focuses on empirical evaluations of its methods using sets of benchmark
problems such as the ones described in [Cla+15; Haj+21a]. Such an empirical evalu-
ation provides evidence about the strengths and weaknesses of a method but does not
result in a systematic understanding of the underlying principles. However, formal ex-
planations backing the observations obtained by the empirical evaluation are still rare.
Hence, it is, as of now, difficult to classify methods according to their strength and to

1

1 Introduction

give a theoretical explanation of an empirically observed failure of a given method in a
particular context.

The work in this thesis is part of a research program addressing this situation by
analyzing AITP systems using techniques and results from mathematical logic. Formal
analyses of AITP systems complement and explain the knowledge obtained by the em-
pirical analyses of these systems. Furthermore, formal analyses of AITP systems gives
insights into the limits of the systems. Exploring the limits of AITP systems is par-
ticularly important because it gives us some information about potential applications
and extensions of the systems and moreover allows us to obtain practically meaningful
unprovability results where previously only empirical observations could be made based
on the failure of a concrete system. Overall a formal analysis results in a better under-
standing of the logical composition of AITP systems and their relative strength. Thus
this research program inevitably leads to a development of the logical foundations of
automated inductive theorem proving.

This thesis develops a technique for the analysis of the limits of AITP systems and ap-
plies it to several concrete AITP systems. The analysis technique developed in this thesis
consists in simulating AITP systems in suitable first-order theories. By simulating an
AITP system in a first-order theory we obtain as a byproduct a relative soundness proof
for the system but more importantly we reduce the provability in the concrete system to
the provability in a first-order theory. Therefore, by Gödel’s completeness theorem for
first-order logic we can establish unprovability results by constructing suitable first-order
models. Furthermore, the reduction of an AITP system to a first-order theory allows
us to work on a highly abstract level that is mostly independent of details of the AITP
systems. The main insight of the thesis is that despite of the high level of abstraction it is
possible to obtain practically meaningful unprovability results for elementary properties
about natural numbers. In particular, the technique permits the isolation of the features
of an AITP system, that are limiting its overall expressive power.

The thesis mostly focuses on applying this technique to systems that extend a saturation-
based proof system by an induction mechanism. Saturation-based theorem proving is
currently the dominating paradigm in first-order theorem proving. Because of the recent
advances in this paradigm, the subject of AITP has recently increasingly focused on in-
tegrating mathematical induction into saturation-based theorem provers [KP13; Ker14;
Cru15; Cru17; Wan17; EP20; RV19; Haj+20]. Integrating induction into a saturation-
based theorem prover involves many technical challenges that are due to the interaction
of the induction mechanism with internal mechanisms of the prover such as Skolemiza-
tion, clausification, clause splitting, and so on. In this thesis we will focus on the three
systems: the system described in [RV19; Haj+20] and implemented in the Vampire theo-
rem prover [KV13]; the system described in [Cru17] which is implemented in the theorem
proving framework Zipperposition; and the system described in [KP13; Ker14] which is
implemented as an extension of Prover9 [McC10].

The thesis is structured as follows. In Chapter 2 we will introduce some basic notions
and results related to first-order logic, Skolemization, and induction that we will use
throughout the thesis. In particular, we will define the inductive semantics that define
the scope of the task of automated inductive theorem provers. In Chapter 3 we will

2

1 Introduction

consider abstractly an explicit integration of induction into saturation and the interac-
tion between induction and saturation. The main insight of this chapter is that Skolem
symbols appearing in ground terms of induction formulas play the role of the parameters
of induction axioms. This phenomenon occurs in the concrete systems we consider in
Chapters 4 and 5. Chapter 3 is based on Sections 4 and 5 of [HV23]. In Chapter 4 we
consider several variants of the induction rules described in [RV19; Haj+20; Haj+21b]
and provide various unprovability results. Chapter 4 is a considerable extension of Sec-
tion 6 of [HV23] in the sense that it also considers rules described in [Haj+21b] and
provides many new unprovability results. In Chapter 5 we consider the AITP system
described in [Cru17] which is following the architecture considered in Chapter 3 and
moreover provides a lemma rule as well as explicit clause splitting. The highlight of this
Chapter is a logical characterization of the refutational power of the considered AITP
system which shows that this system subsumes all the systems considered in Chapter 4.
Moreover, we show that this system is unable to prove the totality of certain simple
function definitions. Chapter 6 considers systems based on clause set cycles which are
an induction mechanism for saturation-based proof system based on the detection of a
cyclic dependency. This chapter is based on the articles [HV20; HV22] which introduce
clause set cycles as an abstraction of the cycles detected by the n-clause calculus [KP13;
Ker14]. The highlights of this chapter are a logical characterization of the refutational
power of clause set cycles as well the identification of several independent logical features
that are responsible for various unprovability phenomena. Chapter 7 is dedicated to the
proof of an independence result in linear arithmetic over natural numbers that under-
lies one of the unprovability results for clause set cycles given in Chapter 6. Finally,
in Chapter 8 we briefly consider an entirely different family of AITP systems that are
based on a theory-exploration approach [Cla+13]. Systems belonging to that family ex-
hibit promising empirical behavior [Cla+13]. By making use of the technique developed
in Chapters 4 to 6 we obtain a very coarse upper bound that nevertheless suffices to
provide elementary unprovability results.

3

2 Preliminaries

In this section we introduce the formalism and related notions that we use in this thesis.
In Section 2.1 we recall the basic notions of first-order logic and describe our notations.
Section 2.2 introduces our variant of Skolemization and recalls some well-known results.
We will in particular describe the naming schema for Skolem symbols adopted in this
thesis. In Section 2.3 we define a sound and complete sequent calculus for first-order
logic. In Section 2.4 we define the notions of literals, clauses and saturation systems as
used in this thesis. After that, we define in Section 2.6 some simple theories of formal
arithmetic that will be of use at various occasions. Finally, in Section 2.5 we define the
inductive semantics and consider two effective systems for induction that we will use to
provide upper bounds for the methods considered in this thesis.

2.1 First-order logic

We work in a setting of classical single-sorted first-order logic with equality. That is,
besides the usual logical symbols we have a logical binary predicate symbol = denoting
equality. A first-order language L is a set of pairs of the form S/n where S is either a
function symbol or a predicate symbol and n ∈ N denotes the arity of the symbol S. If
the arity of a symbol is clear from the context we often simply write S in places where
S/n is expected. Terms, atoms, and formulas are constructed as usual from function
symbols, a fixed countable set V of variable symbols, the logical connectives ¬, ∧, ∨,
→, ↔, and the quantifiers ∃ and ∀. The set of all L formulas is denoted by F (L). The
notions of bound variables and free variables are defined as usual. By FV(φ) we denote
the set of free variables of a formula φ. A formula that has no free variables is called a
sentence. Let t, s be terms, then by t ̸= s we abbreviate the formula ¬t = s. Let φ be a
formula, then by (∃!y)φ(x⃗, y) we abbreviate the formula

(∃y)φ(x⃗, y) ∧ (∀y1)(∀y2)(φ(x⃗, y1) ∧ φ(x⃗, y2)→ y1 = y2).

Let x1, . . . , xn be variables, t1, . . . , tn a terms, and φ a formula, then φ[x1/t1, . . . , xn/tn]
denotes the simultaneous substitution of xi by ti for i = 1, . . . , n in φ. Let φ be a
formula, then we write φ(x1, . . . , xn) to indicate that the free variables of φ are among
{x1, . . . , xn}. Let now t1, . . . , tn be terms, then we write φ(t1, . . . , tn) to denote the
formula φ[x1/t1, . . . , xn/tn]. We use analogous notations for terms.

In this thesis we will often be interested in the formulas that have a certain quantifier
complexity.

Definition 2.1.1. We say that a formula is ∃0 (or ∀0 or open) if it is quantifier-free.
We say that a formula is ∃n+1 (∀n+1) if it is of the form ∃x⃗φ(x⃗, y⃗), where φ is ∀n (∃n).

4

2 Preliminaries

Let L be a first-order language, by Open(L), ∃n(L), and ∀n(L) we denote the set of open
formulas, ∃n formulas, and ∀n formulas of the language L. We say that a theory is ∀n
(∃n) if all of its axioms are ∀n (∃n).

We will often be more interested in the axioms of a theory, rather than the deductive
closure of these axioms. Hence, we define a theory as a set axioms and manipulate the
deductive closure by means of the first-order provability relation (see Definition 2.1.3).

Definition 2.1.2 (Theories). Let L be a first-order language, then a first-order L theory
T is a set of L sentences called the axioms of T . Let T,U be theories, then T +U denotes
the theory axiomatized by T ∪ U .

Definition 2.1.3 (Provability). Let φ be a formula, then we write T ⊢ φ to denote that
φ is provable in first-order logic from the axioms of T . We usually write ⊢ φ instead of
∅ ⊢ φ. Let Φ be a set of formulas, then we write T ⊢ Φ to denote that T ⊢ φ for all
formulas φ ∈ Φ. Let T1 and T2 be theories, then we write T1 ≡ T2 if T1 ⊢ T2 and T2 ⊢ T1.
We say that the theory T2 is an extension of T1 if T2 ⊢ T1.

Let T be a theory and φ a formula, then we write T+φ to denote the theory axiomatized
by the axioms of T and the universal closure of φ. We say that two formulas φ and ψ
are logically equivalent if ⊢ φ↔ ψ.

Definition 2.1.4 (Conservativity). Let T1 and T2 be theories, and Φ a set of formulas.
We say that T1 is Φ-conservative over T2 (in symbols T1 ⊑Φ T2), if, for all φ ∈ Φ, T1 ⊢ φ
implies T2 ⊢ φ. We write T1 ≡Φ T2 if T1 ⊑Φ T2 and T1 ⊒Φ T2. If Φ = F(L) for some
first-order language L, then we may simply write T1 ⊑L T2 for T1 ⊑F(L) T2.

Theorem 2.1.5 (Herbrand’s theorem for existential formulas). Let φ(x⃗, y⃗) be a quantifier-
free formula such that ⊢ (∃y⃗)φ(x⃗, y⃗), then there is some k ∈ N and L(φ) terms ti,j(x⃗)
with 1 ≤ i ≤ n and 1 ≤ j ≤ k such that

⊢
k∨
j=1

φ(t1,j , . . . tn,j).

Proof. See for example [Sho67].

Let us now introduce two notions of completeness for theories.

Definition 2.1.6. Let T be a theory, then we say that T is complete if T ⊢ φ or T ⊢ ¬φ
for all L(T) sentences φ. Let Φ be a set of sentences, then T is complete for Φ if T ⊢ φ
for all φ ∈ Φ.

Definition 2.1.7. A set of sentences Φ is closed under modus ponens, if φ,φ→ ψ ∈ Φ
implies ψ ∈ Φ, for all formulas φ,φ→ ψ.

In the following we will recall some model theoretic concepts and notations. Let L
be a language, then an L structure is a pair M = (D, I), where D is a non-empty set

5

2 Preliminaries

and I is an interpretation function. The interpretation function I assigns to each symbol
S/n ∈ L an interpretation SI such that if S is predicate symbol, then SI ⊆ Dn and if
S is a function symbol, then SI : Dn → D. We define D (M) = D and, moreover, for a
symbol S of L we often write SM instead of SI . A variable assignment σ is a function
from the variable symbols V to D (M). We write M,σ |= φ if φ if φ is true in M under
the variable assignment σ. Let φ(x1, . . . , xn, y⃗) be a formula and d1, . . . , dn ∈ D, then
we write M, {xi 7→ di | i = 1, . . . , n} |= φ (or M |= φ(d1, . . . , dn, y⃗)) if M,σ |= φ, for
all variable assignments σ with σ(xi) = di for i = 1, . . . , n. Thus, in particular, M |= φ
if M,σ |= φ, for all variable assignments σ. In other words free variables are treated
as universally quantified. Let t(x1, . . . , xn) be a term and d1, . . . , dn a finite sequence
of elements of D (M), then we write tM (d⃗) to denote the element b ∈ D (M) such that
M, {xi 7→ di | i = 1, . . . , n} |= t = b.

Let Φ be a set of L formulas, then we write M |= Φ if M |= φ, for all φ ∈ Φ. Moreover,
let Ψ be a set of formulas, then we write Ψ |= Φ if for every model M of Ψ we have
M |= Φ.

Definition 2.1.8. Let L,L′ be languages with L′ ⊇ L. A L′ structure M is an expansion
of a L structure N if D (M) = D (N) and SM = SN for each symbol S of L. Moreover,
we define M |L = N .

Definition 2.1.9. Let L be a language and M an L structure, then we define

Th(M) := {φ |M |= φ,φ is a sentence}.

2.2 Skolemization

In this thesis we essentially use inner Skolemization with canonical names. On the one
hand this form of Skolemization is convenient from a theoretical point of view, because it
can be described as a function on formulas. In particular, the canonical naming schema
for Skolem symbols allows us to be precise about the languages generated during the
saturation processes considered in this article. On the other hand, inner Skolemization
performs comparatively well with respect to proof complexity [BL94], and furthermore
using canonical Skolem symbols does not increase proof complexity. Hence, this form of
Skolemization is also a reasonable choice from the perspective of automated deduction.
This form of Skolemization that we use in this thesis is quite similar to the ϵ-calculus
(see [MZ06]).

We start by defining an operator describing all the Skolem symbols that can be obtained
by Skolemizing a single quantifier over a given language L. This operator is then iterated
on the language L in order to produce all the Skolem symbols that are required to
Skolemize L formulas.

Definition 2.2.1. Let L be a first-order language, then we define

SQ(L) := {s(Qx)φ/n | φ is an L formula, |FV((Qx)φ)| = n},

6

2 Preliminaries

where Q ∈ {∀,∃}. We set S(L) := S∀(L) ∪S∃(L). Now we define sk(L) := L ∪S(L).
By sk i(L) we denote the i-fold iteration of the sk operation. Finally, we define skω(L) :=⋃
i<ω sk

i(L). We call the stage of a symbol the least i ∈ N such that the symbol belongs
to the language sk i(L). A first-order language L is Skolem-free if it does not contain any
of its Skolem symbols, that is, if L ∩S(skω(L)) = ∅.

Now we can define the universal and existential Skolem form of a formula.

Definition 2.2.2. We define the functions sk∀, sk∃ : F(skω(L))→ F(skω(L)) mutually
inductively as follows

skQ(P (⃗t)) := P (⃗t),

skQ(A ∧B) := skQ(A) ∧ skQ(B),

skQ(A ∨B) := skQ(A) ∨ skQ(B),

skQ(¬A) := ¬skQ(A),
skQ((Qx)A(x, y⃗)) := skQ(A(s(Qx)A(x,y⃗)(y⃗), y⃗)), (*)

skQ((Qx)A) := (Qx)skQ(A),

for Q ∈ {∀,∃}, ∀ = ∃, ∃ = ∀, and where in (*) y⃗ are exactly the free variables of (Qx)A.
Let Φ be a set of formulas, then we define skQ(Φ) := {skQ(φ) | φ ∈ Φ}.

Before we discuss some details of the sk∃ function in more detail, we will look at an
example that illustrates how the function sk∃ operates.

Example 2.2.3. Let P/3 be a predicate symbol, then the existential Skolem form of the
sentence (∃x)(∀y)(∃z)P (x, y, z) is given by

sk∃((∃x)(∀y)(∃z)P (x, y, z)) = sk∃((∀y)(∃z)P (c, y, z))
= (∀y)(sk∃((∃z)P (c, y, z))))
= (∀y)(sk∃(P (c, y, f(y)))) = (∀y)P (c, y, f(y)).

where c = s(∃x)(∀y)(∃z)P (x,y,z) and f = s(∃z)P (c,y,z) = s(∃z)P (s(∃x)(∀y)(∃z)P (x,y,z),y,z).

Observe that the symbols that are introduced by sk∃ depend on the names of the
variables. Thus, in particular, the symbols introduced for two formulas that only differ
in the names of bound variables may not be the same. For example, let P be a unary
predicate symbol, then

sk∃((∃x)P (x)) = P (s(∃x)P (x)) ̸= P (s(∃y)P (y)) = sk∃((∃y)P (y)).

Clearly, we could build the equivalence of formulas up to renaming into the Skolemization
function. However, we prefer not to draw logical reasoning into the definition of the
Skolemization function. Identification of provably equivalent formulas can be added by
means of additional axioms, such as the Skolem axioms given in Definition 2.2.7.

Let us now recall some basic properties of Skolemization.

7

2 Preliminaries

Definition 2.2.4. Let φ be a formula, then a subformula occurrence of the form (∀x)ψ
in φ is called a strong quantifier, if it occurs with positive polarity, otherwise it is called a
weak quantifier. Dually, a subformula occurrence of the form (∃x)ψ in φ is called a weak
quantifier if it occurs with positive polarity, otherwise it is called a strong quantifier.

Lemma 2.2.5. Let φ be a formula, then sk∀(φ) does not contain strong quantifiers and
sk∃(φ) does not contain weak quantifiers.

Proof. Straightforward.

The following property of Skolemization is well-known.

Proposition 2.2.6. Let L be first-order language and φ an skω(L) formula. Then ⊢
sk∃(φ)→ φ and ⊢ φ→ sk∀(φ).

In general we do not have the converse of the above implications. We will now introduce
Skolem axioms.

Definition 2.2.7. Let φ(x, y⃗) be a formula, then the Skolem axioms for φ are given by

(∃x)φ(x, y⃗)→ φ(s(∃x)φ(y⃗), y⃗), (S∃
xφ)

φ(s(∀x)φ(y⃗), y⃗)→ (∀x)φ(x, y⃗). (S∀
xφ)

Let L be a language, then we define

L-SA := {(∀y⃗)SQx φ | Q ∈ {∀, ∃}, φ(x, y⃗) is an L formula}.

The Skolem axioms allow us to also obtain the converse of Proposition 2.2.6.

Proposition 2.2.8. Let L be a first-order language, φ an skω(L) formula, and Q ∈
{∀,∃}. Then we have skω (L)-SA ⊢ φ↔ skQ(φ).

Proof. Straightforward.

As shown by the following two lemmas the Skolem axioms essentially correspond to
the existential Skolem form of the logical axioms φ→ φ.

Lemma 2.2.9. Let φ be a formula and Q ∈ {∃,∀}, then ⊢ sk∃((Qx)φ→ (Qx)φ)→ SQx φ.

Proof. We consider only the case for Q = ∀, the other case is dual. Let φ(x, y⃗) be a
formula, assume sk∃((∀x)φ(x, y⃗) → (∀x)φ(x, y⃗)) and φ(s(∀x)φ(y⃗), y⃗)). First of all, we
have sk∃((∀x)φ → (∀x)φ) = sk∀(φ(s(∀x)φ(y⃗), y⃗))) → sk∃((∀x)φ). By Proposition 2.2.6
we have ⊢ sk∃((∀x)φ) → (∀x)φ, and hence we obtain sk∀(φ(s(∀x)φ(y⃗), y⃗))) → (∀x)φ.
Again by Proposition 2.2.6 we have ⊢ φ(s(∀x)φ(y⃗), y⃗) → sk∀(φ(s(∀x)φ(y⃗), y⃗)). Thus, we
obtain (∀x)φ.

Lemma 2.2.10. Let L be a language, then

skω (L)-SA ≡ {(∀z⃗)sk∃(φ→ φ) | φ(z⃗) is an skω (L) formula.}.

8

2 Preliminaries

Proof. An immediate consequence of Proposition 2.2.8 and Lemma 2.2.9.

Skolem axioms over a Skolem-free theory have the following well-known conservation
property.

Proposition 2.2.11. Let L be a Skolem-free first-order language and T be an L theory,
then skω (L)-SA + T ≡F(L) T .

Proof Sketch. Interpret the Skolem symbols as choice functions that select elements that
satisfy their corresponding formulas.

With the property above we now immediately obtain the well-known fact that Skolem-
izing a theory results in a conservative extension of that theory.

Lemma 2.2.12. Let L be a Skolem-free language and T be an L theory, then

sk∃(T) ≡F(L) T.

Proof. The direction sk∃(T) ⊑L T is an immediate consequence of Proposition 2.2.6. For
the other direction we have T ≡Prop. 2.2.11

F(L) skω (L)-SA+T ≡Prop. 2.2.8 skω (L)-SA+sk∃(T).
Hence T ≡F(L) sk

∃(T).

This also immediately gives us the following weaker statement that is perhaps more
familiar in automated deduction.

Corollary 2.2.13. Let L be a Skolem-free language and T be theory, then T is consistent
if and only if sk∃(T) is consistent.

2.3 A sequent calculus

In this section we introduce a sound and complete sequent calculus for first-order logic.
Even though we introduce a concrete calculus for first-order logic we will whenever pos-
sible work with the more abstract provability relation given in Section 2.1. The calculus
introduced in this section will be used occasionally to carry out arguments that rely on
the structure of a proof.

Definition 2.3.1. A sequent is an expression of the form Γ ⇒ ∆, where Γ and ∆ are
finite multisets of formulas. The multiset Γ is called the antecedent and the multiset ∆
is called the succedent.

Informally, a sequent is to be interpreted as the implication of the disjunction of the
formulas in the succedent by the conjunction of the formulas in the antecedent.

We will work with the following Gentzen system, which is essentially a variant of the
calculus G1c given in [TS00] with atomic logical axioms extended by a cut rule and
axioms for equality.

9

2 Preliminaries

Definition 2.3.2. The sequent calculus G consists of the following rules
Axioms:

Ax
A⇒ A

L⊥
⊥ ⇒

R⊤
⇒ ⊤

Refl
⇒ t = t

Eq
t = r,A[x/t]⇒ A[x/r]

Rules for weakening, contraction, and cut:

Γ⇒ ∆
LW

F,Γ⇒ ∆

F, F,Γ⇒ ∆
LC

F,Γ⇒ ∆

Γ⇒ ∆
RW

Γ⇒ ∆, F

Γ⇒ ∆, F, F
RC

Γ⇒ ∆, F

Γ⇒ ∆, F F,Λ⇒ Π
Cut

Γ,Λ⇒ ∆,Π

Rules for logical connectives and quantifiers:

Fi,Γ⇒ ∆
L∧i, i = 0, 1

F0 ∧ F1,Γ⇒ ∆

Γ⇒ ∆, F Γ⇒ ∆, G
R∧

Γ⇒ ∆, F ∧G
F,Γ⇒ ∆ G,Γ⇒ ∆

L∨
F ∨G,Γ⇒ ∆

Γ⇒ ∆, Fi
R∨i, i = 0, 1

Γ⇒ ∆, F0 ∨ F1

Γ⇒ ∆, F G,Γ⇒ ∆
L→

F → G,Γ⇒ ∆

F,Γ⇒ ∆, G
R→

Γ⇒ ∆, F → G

F [x/t],Γ⇒ ∆
L∀

∀xF,Γ⇒ ∆

Γ⇒ ∆, F [x/α]
R∀

Γ⇒ ∆,∀xF
F [x/α],Γ⇒ ∆

L∃
∃xF,Γ⇒ ∆

Γ⇒ ∆, F [x/t]
R∃

Γ⇒ ∆,∃xF

where Γ,∆,Λ,Π stand for multisets of formulas, F,G stand for formulas, A stands for
atomic formulas, t, r stand for terms, and for R ∈ {L∀,R∃} the variable α is called the
eigenvariable of R and α does not occur freely in the conclusion of R.

We call the lower sequent of a rule its conclusion sequent. The proofs of G are defined
inductively as usual: The axioms of G are proofs and the application of any of the rules
of G to the conclusion sequents, of a suitable number of proofs, is a proof. For the sake
of the presentation, we refer the reader to [TS00; TZ71] for a more detailed definitions
of related proof-theoretic notions.

Let us now recall some basic properties of the sequent calculus G. We start with the
soundness and completeness for first-order logic.

Lemma 2.3.3. Let φ be a sentence, then ⊢ φ if and only if there exists a G proof of the
sequent ⇒ φ.

10

2 Preliminaries

Proof. See for example [TS00].

Furthermore, the calculus G has the following form of cut elimination.

Definition 2.3.4. In a cut inference the formula F is called the cut formula. We say
that a G proof is in atomic cut-normal form (ACNF, for short) if all of its cut formulas
are atomic.

Lemma 2.3.5. If a sequent Γ⇒ ∆ is provable in G, then it has a G proof in ACNF.

Proof. See [TS00].

We will now introduce some notions and results related to Skolemization.

Definition 2.3.6. The inference rules L∃ or R∀ are called strong quantifier inference
rules. Let π be a G proof, then by sqi(π) we denote the number of strong quantifier
inferences in π.

Lemma 2.3.7. Let π be a G proof in ACNF of the sequent Π,Σ ⇒ ∆,Λ, then there
exists a proof π′ in ACNF of Π, sk∃(Σ)⇒ sk∀(∆),Λ with sqi(π′) ≤ sqi(π).

Proof. We follow the ancestors of the formulas in Σ and ∆ in π and replace eigenvariables
of these ancestors by their respective Skolem terms.

2.4 Saturation-based proof systems

Saturation is a technique of automated theorem proving that consists of computing the
closure of a set of formulas under some inference rules. The saturation process goes on
until some termination condition, such as the derivation of the empty clause, is met or
until no more “new” formulas can be generated. Typically, saturation-based theorem
provers operate in a clausal setting because clauses have a more uniform structure than
formulas and are therefore better suited for automated proof search. In what follows
we concentrate on the clausal refutational setting, because most state-of-the art theorem
provers are refutation provers. That is, in order to determine for some theory T whether
a given sentence φ is a consequence of T , the prover saturates the clause set cnf (sk∃(T +
¬φ)) until the empty clause is derived. However, our definitions can be easily adapted to
the positive case by dualizing them, so as to cover for example connection-like methods.
Saturation proof systems are usually based on a variant of the superposition calculus. In
order not to get involved in the technical details of these saturation-based proof systems
we will abstractly think of a such a prover as a state transition system whose current
state is a set of derived clauses and whose state transitions are inference rules.

Definition 2.4.1 (Literals and clauses). Let L be a first-order language. An L literal is
an L atom or the negation thereof. An L clause is a finite set of L literals. By □ we
denote the empty clause, that is, ⊥. An L clause set is a set of clauses. Let C be a clause
set and D a clause, the we write C ∨D to denote the clause set {C ∨D | C ∈ C}.

11

2 Preliminaries

Whenever the language L is clear from the context or irrelevant, we simply speak
of clauses and clause sets instead of L clauses and L clause sets. Let P be an n-ary
predicate symbol and t1, . . . , tn terms, then we define P (t1, . . . , tn) = ¬P (t1, . . . , tn) and
¬P (t1, . . . , tn) = P (t1, . . . , tn). A literal of the form P (t1, . . . , tn) (or ¬P (t1, . . . , tn))
will be called a P -literal. If P is the equality symbol =, then we also call the literal an
equational literal.

The following definition introduces some notation for writing clauses as an implication.
This notation will be particularly useful in Chapter 5.

Definition 2.4.2. Let C be a clause and L1, . . . , Ln literals, then C ←
∧n
i=1 Li denotes

the clause C ∨
∨n
i=1 Li. Let C a clause set, then C ←

∧n
i=1 Li denotes the clause set

{C ←
∧n
i=1 Li | C ∈ C}.

For a clause of the form C ←
∧n
i=1 Li we call the formula

∧n
i=1 Li the assertion part

of the clause.

Definition 2.4.3. By cnf we denote a fixed function that assigns to every sentence φ,
that is free of weak quantifiers, clauses Cφ1 (x⃗), . . . , C

φ
n (x⃗) such that

n⋃
i=1

L(Ci) ⊆ L(φ) and ⊢ (∀x⃗)

(
n∧
i=1

Cφi

)
↔ φ.

Furthermore, let T be a ∀1 theory, then cnf (T) :=
⋃
φ∈T cnf (φ).

The function cnf fixed by the definition above could for example be the translation to
conjunctive normal form that proceeds by moving negations inwards and by distributing
disjunction over conjunction. We did not fix this particular translation because it is
irrelevant for us how a conjunctive normal form is obtained as long as the translation
preserves the language and is logically equivalent to the original sentence. In this thesis
we ignore conjunctive normal form translations that do not preserve the language. The
question how these more advanced transformations interact with induction is clearly very
important and we hope to investigate it in the future.

Definition 2.4.4. We fix a global linear order on clauses according to which we index
clause sets. Let C = {C1(x⃗), . . . , Cn(x⃗)} be a finite clause set, then we define cnf −1(C) =
(∀x⃗)(

∧n
i=1Ci).

Lemma 2.4.5. Let C be a finite set of clause sets, then there exists a clause set C′ such
that M |= C′ if and only if M |= C, for some C ∈ C.

Proof. Let C = {C1, . . . , Cn}, now let ψ :=
∨n
i=1 cnf

−1(Ci). Then ψ is logically equivalent
to a ∀1 formula ψ′. Now we define C′ := cnf (ψ′). It is clear that M |= C′ if and only if
M |= Ci for some i ∈ {1, . . . , n}.

We are now ready to introduce the notion of saturation systems that we will use in
this thesis. In the literature we usually distinguish between inference rules and reduction
rules but for our purposes this distinction is not necessary and permits us a more uniform
presentation.

12

2 Preliminaries

Definition 2.4.6. A reduction rule R is a set of instances of the form

C1 . . . Cn

D1, . . . , Dm

,

where C1, . . . , Cn and D1, . . . , Dm are clauses.

A reduction rule of the form given in the definition above has the following intuitive
meaning: If all the clauses C1, . . . , Cn are derived, then we may derive D1, . . . , Dm

and we forget C1, . . . , Cn. Inference rules are a special type of reduction rules that
reintroduce their premises. In other words inference rules are reduction rules that do not
forget any clauses. We denote inference rules analogously to reduction rules but we use
a single horizontal bar instead of a double bar in order to indicate that the premises are
not deleted. For example, we write

C1 . . . Cn

D1, . . . , Dm
,

with C1, . . . , Cn, D1, . . . , Dm clauses, for the reduction rule

C1 . . . Cn

C1, . . . , Cn, D1, . . . , Dm

,

We will mostly work with inference rules whose instances are decidable in polynomial
time.

Example 2.4.7. The resolution rule Res is given by

L1 ∨ C L2 ∨D
Res

(C ∨D)σ
,

where C,D are clauses, L1, L2 are literals and σ is a most general unifier of L1 and L2.

Definition 2.4.8 (Saturation systems). A saturation system S is a set of reduction rules.
Let S1 and S2 be two saturation-based proof systems, then by S1+S2 we denote the system
obtained by the union of the inference rules of S1 and S2.

Definition 2.4.9 (Deduction, Refutation). Let C0 be a set of clauses and S a saturation-
based proof system. A deduction from C0 in S is a finite sequence of clause sets D0, . . . ,Dn
such that C0 = D0 and for 0 ≤ i < n there is an inference C1, . . . , Cn/D1, . . . , Dm ∈ S
such that C1, . . . , Cn ∈ Di and Di+1 = Di ∪ {D1, . . . , Dm}. We say that a clause C
is derivable from C0 in S if there exists a deduction D0, . . . ,Dn such that C ∈ Dn. A
deduction D0, . . . ,Dn is called a refutation if □ ∈ Dn.

Let us finally introduce the notion of soundness for first-order logic and the notion of
refutational completeness.

13

2 Preliminaries

Definition 2.4.10. Let S be a saturation system. We say that S is sound if whenever
a clause C is derivable from a clause set C0 in S, then L(C) ⊆ L(C0) and C0 |= C. The
saturation system S is said to be refutationally complete if there is a refutation from C0
if C0 is inconsistent.

2.5 Induction

In this section we define the logical framework for induction that we will use in this
thesis. In the context of automated inductive theorem proving one is typically interested
in recursively defined datatypes such as natural numbers, lists, and trees. In this thesis
we restrict ourselves to induction for natural numbers constructed by a nullary function
symbol representing 0 and a unary function symbol s representing the successor operation
for natural numbers. First of all, this avoids the notational complexity of general recursive
datatypes and secondly, many interesting phenomena can already observed in this simpler
setting. Nevertheless, the development of results for more complicated inductive types
is certainly interesting but is left as future work (see Section 9.2).

Definition 2.5.1. The language L0 consists of the nullary function symbol 0/0 whose
intended interpretation is the natural number 0 and the unary function symbol s/1 whose
intended interpretation is the successor operation on natural numbers. Let f be a unary
function symbol, m ∈ N and t a term, then fm(t) is defined inductively by f0(t) = t and
f i+1(t) = f(f i(t)) for i ∈ N. Finally, the expression m denotes the term sm(0).

In Section 2.5.1 we define the inductive semantics that underlies the notion of induction
considered in this thesis. In Section 2.5.2 we consider the effective forms of induction
that we use in this thesis for the analysis of AITP systems.

2.5.1 Inductive semantics

In this section we will introduce the inductive semantics that underlies the notion of
induction that we consider in this thesis. The inductive semantics that we define in this
section serve only to set up a theoretical framework for induction in which we can, for
example, speak about the soundness of AITP systems. In the remainder of the thesis
we will however not work directly with these semantics. We first provide the notion
of inductive structures and inductive consequences. After that, we show that these
semantics correspond to the semantics induced by the second-order induction axiom.
Finally, we recall some results concerning the computational properties of the inductive
consequences.

In mathematical logic and in particular in arithmetic, the semantics are easily defined
in terms of a unique standard model whose domain consists of the natural numbers. For
inductive theorem proving the situation is slightly more complicated, because symbols
do not necessarily have a unique interpretation over the natural numbers. To handle
this technicality we first define the notion of inductive structures. These structures are
essentially those first-order structures whose domain is constructed inductively from 0
and the successor operation s.

14

2 Preliminaries

Example 2.5.2. Consider for example the theory T whose axioms consist of the universal
closure of the formulas (where A is a binary predicate symbol)

A(0),

A(x)→ A(s(x)).

A natural inductive consequence is (∀x)A(x), hence for a function symbol f function
symbol it is reasonable to expect that also (∀x)A(f(x)) is an inductive consequence of T
even though f does not occur in T .

We will in the following give several equivalent ways of defining inductive semantics
and show that they are equivalent in some sense. This allows us to use the semantics
that are most natural in a certain context.

We start with a definition that is based on fixed points and induces an operational
construction of the intended interpretation of the inductive datatype. The semantics we
define in this section are essentially a specialization of the ones given in [BS11]. For the
sake of precision we repeat the construction, adapted to the setting of this thesis.

Definition 2.5.3 (Inductive structures). Let L ⊇ L0 be a first-order language and M
an L structure, then M is an inductive structure L if

D (M) = {(sn(0))M | n ∈ N}.

The structure whose domain is N and that interprets 0 as the symbol 0 and s as the
function x 7→ x + 1 is an inductive structure. However, there are also other inductive
structures. For example the structure M whose domain consists is {0, 1} and interprets
0 as 0, sM (0) as 1, and sM (1) 1 is also an inductive structure. In AITP we are usually
interested only in the structures whose domain are the natural numbers and interpret
symbols in a certain way. We specify such properties by a, typically finite, background
theory that provides, for example, the injectivity of s and defining equations for other
function symbols.

We can now define the inductive consequences of a background theory.

Definition 2.5.4. Let L ⊇ L0 be a language, T an L theory, and φ a L sentence. We
say that φ is an inductive consequence of T , in symbols T |=ind φ if for every inductive
structure M , M |= T implies M |= φ. By [T]Lind we denote the set of L sentences φ such
that T |=ind φ. If we are interested in the L(T) inductive consequences of T we also write
[T]ind instead of [T]L(T)ind .

Example 2.5.5. Consider again the theory T of Example 2.5.2. Let M be an inductive
{0, s, f, A} structure satisfying T . By a straightforward induction on i we show that
(si(0))M ∈ AM for all i ∈ N. Thus, AM = D (M), and therefore M |= (∀x)A(x). Hence,
T |=ind A(f(x)).

Let us now discuss another common definition of inductive semantics in terms of the
second-order induction axiom. This definition of inductive semantics is more natural for
the logical formalism developed in this thesis.

15

2 Preliminaries

Definition 2.5.6. The second-order induction axiom IND2 is the second-order sentence

(∀X)((X(0) ∧ (∀x)(X(x)→ X(s(x))))→ (∀x)X(x)),

where the variable X/1 is a variable that ranges over sets.

Second-order semantics are defined as usual, in the sense that set variables quantify
over subsets of the domain of a structure. It is straightforward to see that the semantics
induced by the second-order induction axiom are equivalent to the fixed-point semantics
defined above.

Lemma 2.5.7. Let L ⊇ L0 be language and M an L structure, then M is an inductive
structure if and only if M |= IND2.

Proof. We first show the “only if” direction. Assume that M is an inductive structure.
Let X ⊆ D (M) such that 0M ∈ X and for every d ∈ D (M) we have d ∈ X implies
sM (d) ∈ X. It suffices to show that D (M) ⊆ X By a straightforward induction on i we
show that (si(0))M ∈ X for all i ∈ N. Thus D (M) = X. For the “if” direction it suffices
to observe X = {(sn(0))M | n ∈ N} contains 0M and is closed under the function sM .
Hence, by IND2 we have D (M) = X. Therefore M is an inductive structure.

The lemma above gives us another way of writing the inductive entailment.

Proposition 2.5.8. Let T be a theory and φ a sentence, then T |=ind φ if and only if
T + IND2 |= φ.

Proof. An immediate consequence of Lemma 2.5.7.

With these concepts we can now formulate the task addressed by inductive theorem
proving more precisely. A problem for an inductive theorem prover consists of a finite
set of axioms T—the background theory—and a sentence φ to be proved. An inductive
theorem prover attempts to determine whether T |=ind φ, that is, φ ∈ [T]

L(T)∪L(φ)
ind . It

is well-know that by Gödel’s incompleteness theorem [Göd31] this problem is in general
not semi-decidable. Moreover, by Tarski’s undefinability theorem [Tar36] the inductive
consequences of a background theory are in general not even arithmetically definable.

2.5.2 Induction schema and rules

In this section we will define the effective systems for induction that we use throughout
the thesis. We introduce only the most important variants here. Other variants will be
introduced when needed.

The most well-known form of effective induction is the first-order induction schema.
This induction schema is essentially axiomatized by first-order instances of the second-
order induction axiom. In particular, we parameterize the first-order induction schema
by a set of induction formulas. This allows us to consider various induction schemes by
varying the set of induction formulas.

16

2 Preliminaries

Definition 2.5.9. Let φ(x, z⃗) be a formula, then the formula Ixφ is given by

(φ(0, z⃗) ∧ ∀x(φ(x, z⃗)→ φ(s(x), z⃗)))→ ∀xφ(x, z⃗).

In the above definition we call φ the induction formula, x the induction variable, and z⃗ the
induction parameters. Let Φ be a set of formulas, then the theory Φ-IND is axiomatized
by the universal closure of the formulas Ixφ for φ(x, z⃗) ∈ Φ and the parameter-free
induction schema Φ-IND− is axiomatized by the sentences Ixφ for φ(x) ∈ Φ.

Depending on the choice of the set of induction formulas Φ the theories Φ-IND and
Φ-IND− are not necessarily equivalent. For example, when we are dealing with induction
formulas of restricted quantifier complexity such as ∃k(L)-IND, then its parameter-free
counterpart ∃k(L)-IND− may be a weaker theory [KPD88]. Parameter-free induction
schemata have been investigated in mathematical logic [Ada87; KPD88; Bek97b; Bek99;
CFM11].

Another flavor of induction, that we will work with in this thesis, is induction based on
a Hilbert-style inference rule. The idea of Hilbert-style inference rules and in particular
of induction rules is made explicit in the following two definitions.

Definition 2.5.10. A (Hilbert-style) inference rule R is a set of tuples of the form Γ/γ0
called the instances of R, where Γ = {γ1, . . . , γn} is a finite set of sentences and γ0 is
a sentence. Let T be a theory, then the theory of unnested applications [T,R] of the
inference rule R over the theory T is axiomatized by

T + {φ | T ⊢ Γ,Γ/φ ∈ R}.

Let [T,R]0 := T and [T,R]n+1 = [[T,R]n, R], then we define T +R :=
⋃
n≥0[T,R]n.

Let R be an inference rule and Γ/γ0 ∈ R, then the intended meaning of the rule
instance Γ/γ0 is that whenever all the sentences in Γ are derived, then we can derive γ0.
The instance Γ/γ0 will also be written as

γ1 . . . γn
γ0

Definition 2.5.11. Let Φ be a set of formulas, then the rule Φ-INDR consists of the
instances of the form

∀z⃗γ(0, z⃗) ∀z⃗∀x(γ(x, z⃗)→ γ(s(x), z⃗))

∀z⃗∀xγ(x, z⃗)
,

with γ ∈ Φ and where the variable x is called the induction variable and the variables
z⃗ are called the induction parameters. The corresponding parameter-free rule Φ-INDR−

is defined by requiring that the formula φ has no free variables besides the induction
variable.

Depending on the choice of the background theory and the set of induction formulas
Hilbert-style induction rules are in general not as strong as the corresponding induction

17

2 Preliminaries

schema, see [Par72]. Induction rules have been studied in mathematical logic, see for
example [Sho58; She63; Par72; Bek97a; Jeř20].

A notion of inductivity given in the following definition, essentially corresponds to the
applicability of an instance of the induction rule.

Definition 2.5.12. Let T be a theory. A formula φ(x, z⃗) is T -inductive in x if T ⊢
φ(0, z⃗) and T ⊢ φ(x, z⃗) → φ(s(x), z⃗). Whenever the induction variable x is clear from
the context we simply say that φ is inductive in T .

2.6 Arithmetic

In this section we introduce some notions related to theories of arithmetic that we use
throughout the thesis. We introduce the setting of linear arithmetic which will serve to
provide examples and unprovability results.

Usually we work with theories that extend the following theory which ensures that
zero does not have a successor and that distinct elements have distinct successors.

Definition 2.6.1. The theory A0 is axiomatized by the universal closure of the following
formulas

0 ̸= s(x), (A0.1)
s(x) = s(y)→ x = y. (A0.2)

Definition 2.6.2. The sentence Pred is (∀x)[x = 0 ∨ (∃y)x = s(y)] and the set ACY
consists of the sentences of the form (∀x)x ̸= sk+1(x) with k ∈ N.

An interesting result obtained by Herbrand in 1930 is the following.

Theorem 2.6.3. The theory A0 + Pred + ACY is complete.

Proof. See [Her30].

Corollary 2.6.4. A0 + Pred + ACY ≡ A0 + L(A0)-IND

Proof. An immediate consequence of Theorem 2.6.3.

Let us now introduce the slightly more complex setting of linear arithmetic which ex-
tends the above setting by a binary function symbol for addition and a unary symbol
for the predecessor operation. This setting has the advantage of being sufficiently com-
plex to provide interesting properties while still having straightforward model theoretic
properties.

Definition 2.6.5 (Language of linear arithmetic). The language LLA of linear arithmetic
is {0, s, p,+}, where p/1 is a function symbol whose intended interpretation is the prede-
cessor function on natural numbers and +/2 is an infix function symbol whose intended
interpretation is the addition of natural numbers. Let t be a term and n ∈ N, then the

18

2 Preliminaries

term n · t, representing the multiplication of t by the constant n is defined inductively by
0 · t := 0 and (i+ 1) · t := t+ (i · t).

Let us denote by NLLA
the structure whose domain is the set of natural numbers and

that interprets the symbols naturally. In particular, NLLA
interprets the symbol p as the

function x 7→ x −̇ 1, where −̇ denotes cut-off subtraction, that is,

x −̇ y =

{
0 if x ≤ y
x− y otherwise

.

When it is clear from the context that we are working with the language LLA, then we
will denote NLLA

by N.

Definition 2.6.6. An LLA theory T is sound if NLLA
|= T .

The background theory of linear arithmetic that we will use in this thesis is given by
the following definition.

Definition 2.6.7. The LLA theory B is axiomatized by the universal closure of the
formulas

s(0) ̸= 0, (A1)
p(0) = 0, (A2)

p(s(x)) = x, (A3)
x+ 0 = x, (A4)

x+ s(y) = s(x+ y). (A5)

In the following we will recall some basic properties of the theory B.

Lemma 2.6.8. The theory B is sound.

Proof. Straightforward.

Lemma 2.6.9. (i) A1 + A2 + A3 ⊢ s(x) ̸= 0.

(ii) A3 ⊢ s(x) = s(y)→ x = y.

Proof. For (i) assume that there exists x such that s(x) = 0, then by A2 and A3 we
have x = p(s(x)) = p(0) = 0. Thus, s(0) = 0 which contradicts A1. For (ii) assume
s(x) = s(y), then we have p(s(x)) = p(s(y)) and by (A3) we obtain x = y.

Lemma 2.6.10. Let t be an LLA ground term, then there exists k ∈ N such that B ⊢
t = k.

Proof. Proceed by induction on the structure of the term.

Lemma 2.6.11. The theory B is complete for Th(NLLA
) ∩ ∃1(LLA).

19

2 Preliminaries

Proof. Assume that N |= ∃x⃗φ(x⃗), where φ is quantifier-free. Then there are n1, . . . , nk
such that N |= φ(n1, . . . , nk). Hence, it suffices to show that NLLA

|= ψ implies B ⊢ ψ for
all quantifier-free sentences. We proceed by induction on the structure of the sentence
ψ. The only interesting case is the case where ψ is an atom t1 = t2. By Lemma 2.6.10
there exist k1, k2 ∈ N such that B ⊢ t1 = t2 ↔ k1 = k2. If k1 = k2 we apply reflexivity.
Otherwise, we apply Lemma 2.6.9.(ii) repeatedly and finally we use 2.6.9.(i).

20

3 Induction, Saturation, and
Skolemization

In this chapter we will study abstractly some phenomena about induction and Skolem-
ization in saturation-based theorem provers. To our knowledge the interaction between
induction and Skolemization has not been investigated in the related literature. Modern
saturation theorem provers are highly complicated mechanisms. Integrating induction
into such a prover is non-trivial, because of the many possible interactions with the in-
ternal mechanisms of such a prover, such as, for example, clause splitting, term ordering
constraints, Skolemization, and definitional transformations. The results in this section
allow us to consider some interactions in isolation of the complicated underlying mecha-
nism. Moreover, the results obtained in this section will help us in Chapters 4 and 5 to
guess upper bounds.

Induction can be integrated into a saturation proving system in different ways. One
possibility is to contain the induction mechanism in a separate module that may use a
saturation prover to discharge subgoals. Moreover, the induction module may receive
additional information from the saturation prover, for instance information about failed
proof attempts [Biu+86]. Another, currently more popular, way is to integrate the
induction mechanism more tightly into the saturation system as some form of inference
rule, that, upon some condition, selects some clauses out of the generated clauses and
constructs an induction formula based on the selected clauses. After that, the resulting
induction axiom is clausified and the clauses are added to the search space [KP13; Ker14],
[RV19; Haj+20; Haj21; Haj+21b; HKV21], [Cru15], [Wan17], [EP20]. The systems differ
in the heuristics that are used to construct the induction formula, in the shape of the
resulting induction formulas and in the conditions upon which an induction is performed.
For instance, Kersani and Peltier’s method [KP13; Ker14] carries out an induction only
once, namely when the generated clauses are sufficient to derive the empty clause. Thus
this method does, technically speaking, not even generate clauses. Kersani and Peltier’s
method has other particularities that we will consider in Chapter 6.

In Section 3.1 we consider an induction rule that uses induction formulas over the
language generated by the saturation prover and extends that language by generating
clauses corresponding to an induction axiom. In particular we will consider whether
the occurrences of Skolem symbols inside the induction formulas grant any additional
power to the system. We leave the general case open but show that in many cases the
system does not have any additional power. In Section 3.2 we consider an induction
rule that restricts occurrences of Skolem symbols in induction formulas to ground terms
but allows no induction parameters. We show that this restriction corresponds has the
power of parameterized induction. The restriction of Skolem symbols to ground terms of

21

3 Induction, Saturation, and Skolemization

induction formulas is motivated by a similar restriction encountered in practical systems.

3.1 Unrestricted induction and Skolemization

In this section we will consider an induction rule that generates new clauses from induc-
tion axioms. The rule we consider in this section imposes almost no restrictions on the
induction formulas, except that they belong to the language generated by the saturation
system. In particular, this rule may allow Skolem symbols to occur in the induction
formulas. We will characterize extensions of saturation systems by this induction rule
in terms of a logical theory. This allows us to consider the conservativity of the system
about which we give a partial but far-reaching answer.

Definition 3.1.1. The induction rule INDS for saturation systems is given by

C1 . . . Cn
INDS

cnf (sk∃(Ixφ(x, z⃗)))

where C1, . . . , Cn are clauses and φ(x, z⃗) is a L(C1, . . . , Cn) formula.

The following example illustrates how to use the above induction rule.

Example 3.1.2. Let us work in the setting of linear arithmetic and let S be a sound and
refutationally complete saturation system. We will now outline a refutation in S + INDS

of the clause set C0 given by

cnf (sk∃(B + ¬(∀x)(∀y)x+ y = y + x)).

Let sk∃(¬(∀x)(∀y)x+ y = y + x) = (c1 + c2 ̸= c2 + c1), then we have c1 ∈ L(C0) and

C0 |= c1 + c2 ̸= c2 + c1. (3.1)

Let φ1(x) := (c1 + x = x+ c1), then we may apply the induction rule INDS to obtain the
clause set C1 := C0∪cnf (sk∃(Ixφ1(x))). Let sk∃(Ixφ1(x)) = φ1(0)∧φ1(c3)→ φ1(s(c3))→
∀xφ1(x), then we have c3 ∈ L(C1) and furthermore by (3.1) we have

C1 |= ¬φ1(0) ∨ ¬(φ1(c3)→ φ1(s(c3))). (3.2)

Since C1 |= c1 = c1 + 0, we have C1 |= φ(c1, 0) ↔ c1 = 0 + c1. Let φ2(x) := x =
0 + x, the we apply the induction rule INDS in order to obtain the clause set C2 :=
C1 ∪ cnf (sk∃(Ixφ2)). Let sk∃(Ixφ2) := φ2(0) ∧ (φ2(c4) → φ2(s(c4))) → (∀x)φ2, then by
(3.2) we have

cnf (C2) |= ¬ψ(0) ∨ ¬(ψ(c4)→ ψ(s(c4))) ∨ ¬(φ1(c3)→ φ1(s(c3))). (3.3)

Now observe that B |= 0 = 0 + 0 and B |= 0 + s(c4) = s(0 + c4). Hence, B |= c4 =
0 + c4 → s(c4) = s(0 + c4), that is, B |= φ2(c4)→ φ2(c4) and B |= φ2(0). Therefore, by

22

3 Induction, Saturation, and Skolemization

(3.3) we obtain
C2 |= ¬(φ1(c3)→ φ1(s(c3))). (3.4)

Recall that φ1(x) = (c1+x = x+ c1). Since B |= c1+ s(x) = s(c3+x), we have by (3.4),
C2 |= φ1(c3)↔ s(c3 + c1) ̸= s(c3) + c1. Let φ3(x) = (s(c3 + x) = s(c3) + x), then by the
above we obtain

C2 |= ¬φ3(c3). (3.5)

Now we apply the induction rule INDS in order to obtain the clause set C3 := C2 ∪
cnf (sk∃(Ixφ3)). Let sk∃(Ixφ3) = (φ3(0) ∧ (φ3(c5) → φ3(c5))) → (∀x)φ3, then by (3.5)
we have

C3 |= ¬φ3(0) ∨ ¬(φ3(c5)→ φ3(s(c5))). (3.6)

Since cnf (B) |= s(c3 + 0) = s(c3) = s(c3) + 0, we have C3 |= φ(0). Moreover, cnf (B) |=
s(c3 + s(c5)) = s(s(c3 + c5)), hence cnf (B) |= φ3(c5) → φ3(s(c5)). Hence, by (3.6), we
have C3 |= ⊥. Hence, by the refutational completeness of S we obtain a refutation of C3.
Therefore, by combining the applications of INDS used to obtain C3 with the S refutation
of C3 we obtain a S + INDS refutation of C0.

There are two important observation that we can make about this induction rule INDS.
First of all, in a saturation system with this induction rule, Skolemization may happen
at any time and not just once before the saturation process begins as is the case in
saturation systems for pure first-order logic. Secondly, the induction rule INDS permits
Skolem symbols to appear in induction formulas. In other words, the rule INDS iteratively
extends the language of the induction formulas by Skolem symbols. Interestingly, a
similar situation has been considered in the literature on mathematical logic [Bek03]. In
saturation systems for pure first-order logic, the role of Skolemization is clear: Given a
sentence φ, Skolemization allows us to obtain an equiconsistent sentence sk∃(φ) without
existential quantifiers (see Corollary 2.2.13). In saturation systems with the induction
rule INDS the role of Skolemization is not so clear anymore. This raises the question
how the extension of the language of induction formulas by Skolem symbols affects the
power of the system. In Section 3.1.1 we will provide a characterization of refutation by
saturation systems extended by INDS in terms of a theory with induction. In Section 3.1.2
we compare the power of the rule INDS with Skolem-free induction. Also note that this
feature is not artificial but actually appears for example in [Cru17], and [RV19].

3.1.1 Logical characterization

A useful technique for analyzing AITP systems the reduction of the system to an “equiv-
alent” logical theory. Alternatively, when such a theory cannot be found it is can still
be useful to approximate the system by a logical theory as closely as possible. The con-
struction of that theory usually reveals some essential features of a method. Moreover,
we can then make use of powerful techniques from mathematical logic in order to study
the theory. In this section we will provide proof of the following logical characterization
for sound and refutationally complete saturation systems extended by the induction rule
INDS.

23

3 Induction, Saturation, and Skolemization

Theorem 3.1.3. Let S be a sound and refutationally complete saturation system, T a
theory and φ an L(T) sentence, then S + INDS refutes cnf (sk∃(T + ¬φ)) if and only if
skω (L(T) ∪ L0)-SA + T + skω (L(T) ∪ L0)-IND ⊢ φ.

We start by providing a logical theory that simulates a sound saturation systems
extended by the induction rule INDS.

Lemma 3.1.4. Let S be a sound saturation system and C0, . . . , Cn a S+INDS deduction,
then skω (L(C0) ∪ L0)-SA+C0+skω (L(C0) ∪ L0)-IND ⊢ Cn and L(Cn) ⊆ skω (L(C0) ∪ L0).

Proof. We proceed by induction on n. The base case is trivial. For the induction step we
assume the claim for n and consider Cn+1. If Cn+1 is obtained by an inference from S, then
by the soundness of S we have L(Cn+1) ⊆ L(Cn) and Cn |= Cn+1. Hence the claim follows
directly from the induction hypothesis. Otherwise, if Cn+1 is obtained by an application of
INDS, then we have Cn+1 = Cn∪cnf (sk∃(Ixφ)), where L(φ) ⊆ L(Cn) ⊆ skω (L(C0) ∪ L0).
By the induction hypothesis we clearly have L(Cn+1) ⊆ skω (L(C0) ∪ L0). By Proposi-
tion 2.2.8, we have skω (L(C0) ∪ L0)-SA+skω (L(C0) ∪ L0)-IND |= cnf (sk∃(Ixφ)). Hence,
by the induction hypothesis

skω (L(C0) ∪ L0)-SA + C0 + skω (L(C0) ∪ L0)-IND |= Cn+1.

Proposition 3.1.5. Let S be a sound saturation system and T a theory. If S + INDS

refutes cnf (sk∃(T)), then the theory skω (L(T) ∪ L0)-SA + T + skω (L(T) ∪ L0)-IND is
inconsistent.

Proof. Observe that skω
(
L(cnf (sk∃(T))) ∪ L0

)
= skω (L(T) ∪ L0) and skω (L(T) ∪ L0)-SA+

T |= cnf (sk∃(T)). Now, the claim follows immediately from Lemma 3.1.4.

The converse of the proposition above is essentially an application of the compactness
theorem followed by a construction of a refutation. However, we have to deal with some
technicalities concerning the languages and the Skolem axioms. Namely, we need to
ensure that the Skolem symbols appearing in induction formulas are introduced by the
Skolemization of a suitable formula.

Lemma 3.1.6. Let T be a theory such that sk∃(T) + sk∃(skω (L(T) ∪ L0)-IND) is in-
consistent, then there is a finite set of sentences S0 ⊆ sk∃(T) and formulas φ1(x, y⃗),
. . . , φn(x, y⃗) such that S0 ∪ {sk∃((∀y⃗)Ixφi(x, y⃗)) | 1 ≤ i ≤ n} is inconsistent, and for
i = 1, . . . , n,

L(φi) ⊆ L(S0) ∪ {sk∃((∀y⃗)Ixφj) | j < i} ⊆ skω (L(T) ∪ L0).

Proof. By the compactness theorem we obtain a finite set S0 ⊆ sk∃(T) and formulas
φ1(x, y⃗), . . . , φn(x, y⃗) over the language skω (L(T) ∪ L0) such that S0 ∪{sk∃((∀y⃗)Ixφi)}
is inconsistent. Let Si+1 = Si ∪ {sk∃((∀y⃗)Ixφi+1)} for i = 0, . . . , n − 1. Now assume
that L(φm) ̸⊆ L(Sm−1) for some m ∈ {1, . . . , n}. We proceed by induction on the
lexicographic order of pairs (k, l) where k is the maximal stage of the construction of the
Skolem language of L(T)∪L0 (see Definition 2.2.1) of a symbol σ for which there exists

24

3 Induction, Saturation, and Skolemization

m ∈ {1, . . . , n} such that σ ∈ L(φm) but σ /∈ L(Sm−1) and l ≥ 1 is the number of such
symbols. If k = 0, then there is σ ∈ L(T) ∪ L0 and such that σ ∈ φm and σ /∈ Sm for
some m ∈ {1, . . . , n}. If σ ∈ L(T), then there exists a sentence ψ ∈ T with σ ∈ ψ. Now
consider the sequence S0 ∪ {ψ}, S1, . . . , Sn. If l = 1, then it has the measure (k′, l′) with
k′ < k. Otherwise, if l > 1, then it has the measure (k, l− 1). In both case we can apply
the induction hypothesis. If σ ∈ L0, then let S′

1 := S0 ∪ {sk∃(Ixx = x)} and consider
the sequence S0, S′

1, S1, . . . , Sn. If l = 1, then the sequence is a suitable sequence has the
measure (k′, l′) for some k′ < k and l′ ≥ 1. Otherwise it has the measure (k, l − 1). In
both cases we can apply the induction hypothesis to obtain the desired sequence. Now
consider the case k ≥ 1. There exists a stage k− 1 formula ψ(x, y⃗) such that σ = s(Qx)ψ
with Q ∈ {∀,∃} and a least m0 ≥ 0 such that σ ∈ L(φm0) and σ /∈ L(Sm0−1). Now we
let

φ′
m0

:=

{
Ix(∀y⃗)(Qx)ψ, if Q = ∀
Ix(∀y⃗)¬(Qx)ψ, if Q = ∃

.

Moreover, we define S′
m0

:= Sm0−1 ∪ {sk∃(Ixφ′
m0

)}. In both cases we clearly have σ ∈
L(sk∃(φ′

m0
)). Hence, the sequence S0, S1, . . . , Sm0−1, S

′
m0
, Sm0 , Sm0+1, . . . , Sn, has the

measure (k′, l′) with either k′ < k or l′ < l. Thus we may apply the induction hypothesis
in order to obtain a suitable sequence of finite sets of sentences.

Our first observation is that induction axioms that do not bind a free variable of the
inducted upon formula allow us to introduce all the Skolem symbols. The formulas of the
form sk∃(φ → φ) are of interest because they correspond, roughly speaking, to Skolem
axioms.

Lemma 3.1.7. Let φ(y⃗) be a formula and x a variable which does not occur in φ. Then
L(sk∃(Ixφ)) = L(sk∃(φ→ φ)) and moreover ⊢ sk∃(Ixφ)↔ sk∃(φ→ φ).

Proof. Since the variable x does not occur in φ, we clearly have

sk∃(Ixφ) = sk∀(φ) ∧ sk∀(∀x(φ→ φ))→ sk∃(∀xφ)
= sk∀(φ) ∧ (sk∃(φ)→ sk∀(φ))→ ∀x(sk∃(φ)).

Since sk∃(φ → φ) = sk∀(φ) → sk∃(φ) we clearly have L(sk∃(Ixφ)) = L(sk∃(φ → φ)).
Furthermore, sk∃(Ixφ) clearly is logically equivalent to sk∃(φ→ φ).

Lemma 3.1.8. Let L be a first-order language, then sk∃(L-IND) ⊢ L-SA.

Proof. Let φ(x, y⃗) be an L formula and let Q ∈ {∃,∀}. Work in the theory sk∃(L-IND),
then we have in particular sk∃(IzQxφ), where z is a variable not occurring in φ. By
Lemma 3.1.7 we obtain sk∃(Qxφ→ Qxφ). Hence, SQx φ by Lemma 2.2.9.

Proposition 3.1.9. Let S be a refutationally complete saturation system and T a theory.
If the theory skω (L(T) ∪ L0)-SA+T+skω (L(T) ∪ L0)-IND is inconsistent, then S+INDS

refutes the clause set cnf (sk(T)).

25

3 Induction, Saturation, and Skolemization

Proof. Assume that skω (L(T) ∪ L0)-SA+T+skω (L(T) ∪ L0)-IND is inconsistent. Then,
by Lemma 3.1.8, the theory sk∃(T) + sk∃(skω (L(T) ∪ L0)-IND) is inconsistent. By
Lemma 3.1.6 we obtain finite sets of formulas S0 ⊆ · · · ⊆ Sn such that S0 ⊆ sk∃(T) and
Si+1 = Si ∪ {sk∃(Ixφi+1)} with L(Si+1) ⊆ skω (L(T) ∪ L0) and L(φi+1) ⊆ L(Si), for
i = 0, . . . , n − 1. Let C0 = cnf (S0) and Ci+1 = cnf (sk∃(Ixφi+1)) for i = 0, . . . , n − 1.
Clearly, for i ∈ {0, . . . , n − 1} we can obtain Ci+1 from Ci by an application of INDS.
Moreover, Cn |= ⊥. Hence, S refutes Cn. Thus we obtain a S + INDS refutation of
cnf (sk∃(T)).

Remark 3.1.10. In practice a system does not carry out induction on variables that do
not occur in a formula. Instead some systems (for example [Cru15; Cru17]) provide a
lemma rule that introduces the clauses of cnf (sk∃(φ→ φ)) into the search space.

As an immediate consequence of the above propositions we obtain the following charac-
terization of refutability in a sound and refutationally complete saturation based system
extended by the induction rule INDS.

Proof of Theorem 3.1.3. An immediate consequence of Proposition 3.1.5 and Proposi-
tion 3.1.9.

As a corollary we obtain the soundness of the INDS rule with respect to inductive
semantics. This result is not surprising but provides a rigorous soundness proof for a
large class of induction mechanisms. This result can then be used to obtain soundness
for concrete methods by showing that a concrete induction rule can be simulated by the
rule INDS. Typically soundness arguments rely on some form of semantics but doing
such a simulation gives us already all the upper bounds established for the simulating
rule as a side effect. The simulation can take place in any sufficiently powerful but sound
saturation system.

Corollary 3.1.11. Let S be a sound saturation system, L ⊇ L0 a language, T an L
theory, and σ an L sentence. If S + INDS refutes the clause set cnf (sk∃(T + ¬σ)), then
T |=ind σ.

Proof. Let M be an L inductive model of T , that is, M |= T+IND2. We expand M to an
skω (L) structure M ′ by assigning to the Skolem symbols suitable Skolem functions just
as in the model-theoretic proof of Proposition 2.2.11. Then M ′ |= L-SA and moreover
M ′ |= skω (L)-IND, since M has induction for all subsets of D (M). By Theorem 3.1.3
we then have M ′ |= σ. Since M ′ is an expansion of M , we have M |= σ. Thus, by
Proposition 2.5.8 we are done.

We conclude this section with a remark.

Remark 3.1.12. In the presence of the Skolem axioms every formula is equivalent to an
open formula. In particular, for a language L, we have

L-SA +Open(skω(L))-IND ⊢ skω(L)-IND.

26

3 Induction, Saturation, and Skolemization

Thus, we can formulate Theorem 3.1.3 in a slightly more canonical way, by using Open(skω(L))-IND
in place of skω(L)-IND. In other words, in the presence of Skolem axioms Skolem sym-
bols permit us to simulate quantification. Conceptually, we can thus split the unrestricted
induction rule of Definition 3.1.1 into a lemma rule and an induction rule for clause sets.

3.1.2 Conservativity

Now that we have characterized refutability in saturation systems extended by the rule
INDS we can consider whether the addition of Skolem symbols grants additional strength
to the system. In other words, we will consider the following question.

Question 3.1.13. Let L be a Skolem-free language and T an L theory, do we have

L-SA + T + skω(L)-IND ⊑L T + L-IND?

In the following we give a partial answer to the above question, that covers many cases
of practical relevance. The general case remains open. Our answer relies on the following
idea: If a Skolem function is definable in terms of an L formula then wherever the Skolem
symbol occurs we can instead use its definition and thus eliminate the symbol.

Definition 3.1.14. Let L be a language, and M an L structure. A function f :Mk →M
is called L-definable in M if there exists an L formula φ(x⃗, y) such that for all d⃗ ∈ Mk

we have f(d⃗) = b if and only if M |= φ(d⃗, b).

Definition 3.1.15. Let L be a language. We say that a structure M has definable Skolem
functions if for every L formula φ(x⃗, y) there exists a function f : Mk → M that is L-
definable in M and

M |= ∃yφ(d⃗, y)→ φ(d⃗, f(d⃗)), for all d⃗ ∈Mk.

In the following we will provide a proof for the proposition below. After that, we
briefly discuss some relevant instances of this result.

Proposition 3.1.16. Let T be a Skolem-free theory. If every model M of T +L(T)-IND
has definable Skolem functions, then

(L(T) ∪ L0)-SA + T + skω(L(T))-IND ≡L(T) T + L(T)-IND.

Let us start by showing that if a Skolem symbol is definable in a structure, then we
can eliminate the symbol in the structure by replacing the symbol by its definition.

Lemma 3.1.17. Let M be an L structure, ψ(x⃗, y) be an L formula such that M |=
∃!yψ(x⃗, y). Let furthermore f be a function symbol and φ(z⃗) an L ∪ {f} formula. Let
M ′ :=M ∪ {f 7→ fψ}, where fψ (⃗a) = b with b ∈M the only choice so that M |= ψ(⃗a, b).
Then there exists an L formula θ(z⃗) such that M ′ |= φ(z⃗)↔ θ(z⃗).

Proof. This is easily seen by first observing that M ′ |= f(x⃗) = y ↔ ψ(x⃗, y). By [Hod97,
pp. 51–52] there exists an unnested L formula φ′(z⃗) such that φ′ ↔ φ. In particular, the

27

3 Induction, Saturation, and Skolemization

symbol f occurs in φ′ only in subformulas of the form f(x⃗) = y. Let the formula θ be
obtained by replacing in φ′ the subformulas of the form f(x⃗) = y by ψ(x⃗, y). Then θ is
equivalent to φ in M ′ and does not contain f .

In order to get rid of a symbol we need a defining formula. The assumption that a
model has definable Skolem functions only provides definitions for Skolem symbols for L
formulas. The definitions for other Skolem symbols that are introduced at later stages
need to be constructed based on the definitions obtained for symbols of lower stages.

Lemma 3.1.18. Let L be a Skolem-free first-order language and M an L structure with
definable Skolem functions. Then there exists an expansion M ′ of M to skω(L) such that
M ′ |= L-SA and for each Skolem symbol f of skω(L), fM ′ is L-definable in M ′.

Proof. We show by induction on i ∈ N that there is an expansion Mi of M to the
language sk i(L) such that for each Skolem symbol f/m of sk i(L) there exists a formula
ψf (x⃗, y) such that Mi |= f(x1, . . . , xm) = y ↔ ψf (x1, . . . , xm, y). The base case with
i = 0 is trivial. For the induction step we assume the claim for i and consider the case
for i + 1. Let f := sQyφ(y,x⃗) be a Skolem symbol of sk i+1(L), that does not belong
to sk i(L). Let g1/k1, . . . , gn/kn be the Skolem symbols occurring in the formula φ.
Then clearly gj belongs to sk i(L) for all j = 1, . . . , n. By the induction hypothesis there
exist L formulas ψgj (x⃗j) such that Mi |= gj(x1, . . . , xkj) = y ↔ ψgi(x1, . . . , xkj , y), for
j = 1, . . . , n. Then by repeated application of Lemma 3.1.17 to the formula φ, there
exists an L formula ψf (x⃗, y) such that Mi |= φ(x⃗, y) ↔ ψf (x⃗, y). Since ψf is an L
formula, M has definable Skolem functions, there exists a function h :Mk →M and an
L formula δh(x⃗, y) such that h is defined in M by δh and M |= ∃yψf (x⃗, y)→ ψf (x⃗, h(x⃗)).
We set fMi+1 := h, then we have Mi+1 |= f(x⃗) = y ↔ δh(x⃗, y). It remains to show that
Mi+1 satisfies the Skolem axiom for f . Suppose we have Mi |= ∃yφ(d⃗, y), then we have
Mi |= ∃yψf (d⃗, y). Hence Mi+1 |= ψf (d⃗, h(d⃗)) and therefore Mi+1 |= φ(d⃗, f(d⃗)). Hence
Mi+1 |= ∃yφ(x⃗, y)→ φ(x⃗, f(x⃗)). Finally, we obtain M ′ by M ′ :=

⋃
i≥0Mi.

Proving Proposition 3.1.16 is now just a matter of replacing Skolem symbols in induc-
tion formulas by their definitions.

Proof of Proposition 3.1.16. Let φ be an L formula such that T+L-SA+skω(L)-IND ⊢ φ.
We proceed indirectly and assume T + L-IND ̸⊢ φ. Then there exists a model M of
T + L-IND such that M ̸|= φ. By Lemma 3.1.18 there exists an expansion M ′ of M to
skω(L) such that M ′ |= L-SA and for every Skolem symbol f there exists an L formula
δf (x⃗, y) such that M ′ |= f(x⃗) = y ↔ δf (x⃗, y). Let θ(x, z⃗) be an skω(L) formula and
consider the induction axiom Ixθ(x, z⃗). By Lemma 3.1.17 there exists an L formula
θ′(x, z⃗) such that M ′ |= θ(x, z⃗) ↔ θ′(x, z⃗). Hence we have M ′ |= Ixθ(x, z⃗) ↔ Ixθ

′(x, z⃗).
Since M |= L-IND, we have M ′ |= Ixθ(x, z⃗). Hence M ′ |= skω(L)-IND and therefore
M ′ |= T + L-SA + skω(L)-IND but M ′ ̸|= φ. Contradiction!

In order to illustrate Proposition 3.1.16 we will consider some practically relevant spe-
cial cases. An important special case of Proposition 3.1.16 is when the Skolem functions
are definable already in a theory.

28

3 Induction, Saturation, and Skolemization

Definition 3.1.19. Let T be a theory. We say that T has definable Skolem functions if
for each L(T) formula φ(x⃗, y), there exists an L(T) formula ψ(x⃗, y) such that

T ⊢ ∃yφ(x⃗, y)→ ∃!y(ψ(x⃗, y) ∧ φ(x⃗, y)).

Proposition 3.1.20. Let T be a Skolem-free theory such that T ⊢ (∃!x)θ(x) for some
L(T) formula θ. If T has definable Skolem functions, then every model of T has definable
Skolem functions.

Proof. Let φ(x⃗, y) be an L(T) formula, then there is ψ(x⃗, y) such that T ⊢ (∃y)φ(x⃗, y)→
(∃!y)(ψ(x⃗, y) ∧ φ(x⃗, y)). Now let ψ′(x⃗, y) := (¬(∃y′)φ(x⃗, y′) ∧ θ(y)) ∨ ((∃y′)φ(x⃗, y′) ∧
ψ(x⃗, y)). Let us now show that T ⊢ (∃!y)ψ′(x⃗, y). We work in T , if (∃y)φ(x⃗, y), then
there is some y such that ψ(x⃗, y) and φ(x⃗, y). Hence we have ψ′(x⃗, y). If there is no y
such that φ(x⃗, y), then we have ψ′(x⃗, y0) for some y0 with θ(y0). Assume that ψ′(x⃗, y1)
and ψ′(x⃗, y2). If (∃y)φ(x⃗, y), then we have ψ(x⃗, y1) and ψ(x⃗, y2), thus y1 = y2. Otherwise
if ¬∃yφ(x⃗, y), then we have θ(y1), θ(y2), thus y1 = y2.

In particular, a theory has definable Skolem functions if it has a definable well-order.
We simply need to define the Skolem functions in terms of the least of the candidate
values in each point.

Definition 3.1.21. Let L be a language, and θ(x, y) an L formula in two variables. For
the sake of legibility we write θ(x, y) as x ≺θ y and by ∀x ≺θ yψ(x, y) we abbreviate the
formula ∀x(x ≺θ y → ψ(x, y)). The total order axioms TOθ for θ are given by

x ̸≺θ x,
x ≺θ y ∧ y ≺θ z → x ≺θ z,
x ≺θ y ∨ y ≺θ x ∨ x = y.

The least number principle L-LNPθ for θ(x, y) consists of the axioms

∀z⃗(∃xψ(x, z⃗)→ ∃x(ψ(x, z⃗) ∧ ∀x′ ≺θ x¬ψ(x′, z⃗))),

where ψ is an L formula. We define L-WOθ := TOθ + L-LNPθ.

Proposition 3.1.22. Let T be a Skolem-free theory. If there exists an L(T) formula
θ(x, y) such that T ⊢ L(T)-WOθ, then T has definable Skolem functions.

Proof. Let φ(x⃗, y) be an L(T) formula. We set ψ(x⃗, y) = φ(x, y) ∧ ∀y′ ≺θ y¬φ(x⃗, y′).
Now work in T and assume that ∃yφ(x⃗, y), then by the least number principle there
exists y such that φ(x⃗, y) and moreover ∀y′ ≺θ y¬φ(x⃗, y′). It remains to show that this
y′ is unique. Let u be an element with φ(x⃗, y) and ∀u′ ≺θ u¬φ(u, y). If u ≺θ y, then we
obtain ¬φ(x⃗, u). Analogously we obtain ¬φ(x⃗, y) if y ≺θ u. Hence u = y.

These results are quite far-reaching. For example, let T be a theory with L(T) ⊇

29

3 Induction, Saturation, and Skolemization

L0 ∪ {+/2} such that

T ⊢ x+ 0 = x,

T ⊢ x+ s(y) = s(x+ y).

Then for θ := ∃zx+ z = y we have

T + L(T)-IND ⊢ L(T)-WOθ,

Therefore, extending the full induction principle by all the Skolem symbols based on
such a theory results in a system that proves the same L(T) formulas as the Skolem-free
system.

So far we have considered the effects of extending the full induction schema by all
Skolem symbols. We have concluded that not only is this extension always sound but it
is also conservative over the Skolem-free system in a setting where Skolem functions are
definable in all models and in particular if the theory provides a well-order. We have left
open the case where there are models in which a Skolem function is not definable.

3.2 Restricted induction and Skolemization

In the previous section we have considered some high-level questions about Skolemization
in saturation theorem proving with an unrestricted induction rule. In this section we will
consider a restriction of the rule INDS that is based on the following design choices
encountered in practical methods:

• Syntactical restriction of induction formulas: The methods presented in [RV19;
Haj+20] restrict induction formulas to literals, [KP13; Ker14] restricts induction
formulas to ∃1 formulas, and [Cru15; Cru17] restricts induction formulas to ∀1
formulas.

• Control over occurrences of Skolem symbols: The practical induction mechanisms
exert control over occurrences of the induction Skolem symbols either by avoiding
the introduction of Skolem symbols altogether [KP13; Ker14] or by introducing
nullary Skolem symbols only [RV19; Haj+20], [Cru15; Cru17]. In particular none
of these methods allows for parameters in the induction formula. As a consequence
induction Skolem symbols trivially occur as subterms of ground terms.

Restrictions on the shape of the induction formulas is a feature that is common to all
methods for automated inductive theorem proving because it is currently still difficult to
search efficiently for a syntactically unrestricted induction formula. We incorporate this
feature into the induction rule by parameterizing it by a set of formulas from which the
induction formulas are constructed. The second feature is only slightly more complicated
to generalize. If we are to allow induction formulas with quantifier alternations, then
Skolemizing the corresponding induction axioms introduces non-nullary Skolem symbols.
Hence, in subsequent inductions, variables may now occur in the scope of induction

30

3 Induction, Saturation, and Skolemization

Skolem symbols. Therefore, we generalize the second feature by explicitly requiring that
variables do not occur within the scope of a Skolem symbol. In other words we require
that Skolem symbols may appear in the induction formula only in subterms of ground
terms. Both generalized features are captured by the following restricted induction rule.

Definition 3.2.1. Let Φ be a set of formulas, then the ground induction rule Φ-GINDS

is given by
C1 . . . Cn

Φ-GINDS,
cnf (sk∃(Ixφ(x, t⃗)))

where C1, . . . , Cn are clauses, φ(x, z⃗) ∈ Φ, and t⃗ is a vector of ground L(C1, . . . , Cn)
terms.

Remark 3.2.2. This restriction on occurrences of Skolem symbols is not only motivated
by abstracting the current practice in AITP, it is also of independent theoretical interest:
As described in [Dow08], Skolemization without this restriction in simple type theory
makes the axiom of choice provable, hence this restriction has been introduced in [Mil87].
This restriction is also used as an assumption for proving elementary deskolemization of
proofs with cut in [BHW12; Kom22].

Let us start with an example that illustrates the power of the rule Φ-GINDS. The
induction rule Φ-GINDS only generates parameter-free induction axioms, but on the
other hand the generated induction axioms may contain Skolem symbols whose role
is not yet clear at this point. Thus, we begin by comparing sound and refutationally
complete saturation systems extended by the rule Φ-GINDS with the induction schema
Φ-IND−. In the setting of linear arithmetic we readily obtain an example where both
systems differ in strength.

Example 3.2.3. Let S be a refutationally complete saturation system and let Canr(x, y, z)
abbreviate the formula

y + x = z + x→ y = z.

Now let us consider in the following the instance Canr(x, x, 0) given by

x+ x = 0 + x→ x = 0.

We will show that the saturation system S + Open(L(B))-GINDS refutes the clause set
cnf (sk∃(B + ¬∀xCanr(x, x, 0))). Let C0 := cnf (sk∃(B + ¬∀xCanr(x, x, 0))) = cnf (B +
¬Canr(c0, c0, 0)). Now let

φ(x) := c0 + x = 0 + x→ c0 = 0.

Then an application of Open(L(B))-GINDS yields the clause set C1 := C0∪cnf (sk∃(Ixφ)).
Let sk∃(Ixφ) = (φ(0) ∧ (φ(c1) → φ(s(c1)))) → (∀x)φ. Since C0 |= Canr(c0, c0, 0), we
have

C1 |= ¬φ(0) ∨ ¬(φ(c1)→ φ(s(c1))).

31

3 Induction, Saturation, and Skolemization

Moreover, C1 |= c0 + 0 = c0 and C1 |= 0 + 0 = 0. Hence, C1 |= φ(0) and

C1 |= φ(c1) ∧ c0 + s(c1) = 0 + s(c1) ∧ c0 ̸= 0.

Since C1 |= s(c0 + c1) = c0 + s(c1) = 0 + s(c1) = s(0 + c1), we have

C1 |= c0 + c1 = 0 + c1.

Thus, by C1 |= φ(c1) we obtain C1 |= c0 = 0. Therefore, C1 |= ⊥ and by the refutational
completeness of S we obtain an S refutation of C1.

On the other hand we also have the following.

Lemma 3.2.4. B +Open(L(B))-IND− ̸⊢ x+ x = x+ 0→ x = 0.

Proof. An immediate consequence of the more general Theorem 6.4.8 proved in Chap-
ter 7.

Remark 3.2.5. The formula Canr(x, x, 0) is interesting in the context of AITP because
over the language L(B) (= LLA) it requires induction on a more complex formula. We
will later see in Chapter 6 that this formula is challenging for a family of AITP systems.

Example 3.2.3 together with Lemma 3.2.4 show that a saturation system extended by
the rule Open(L(T))-GINDS can be more powerful than the theory T+Open(L(T))-IND−.
This suggests that Skolem symbols appearing in ground terms of the induction formulas
have some of the power of induction parameters. In Section 3.2.1 we will confirm this
intuition (see, in particular, Theorem 3.2.13).

3.2.1 Logical characterization

In this section we will provide a logical characterization for sound and refutationally
saturation systems extended by the ground induction rule. This characterization in
particular shows that Skolem symbols appearing in ground terms of induction formulas
behave as induction parameters.

Let us again start by providing an upper bound for sound saturation systems extended
by the ground induction rule.

Lemma 3.2.6. Let S be a sound saturation-based proof system, T a theory, and Φ a set
of formulas. If S +Φ-GINDS refutes cnf (sk∃(T)), then the theory

skω (L(T) ∪ L(Φ) ∪ L0)-SA + T +Φ-IND

is inconsistent.

Proof. Let L′ := skω (L(T) ∪ L(Φ) ∪ L0), and C0, . . . , Cn an S+Φ-GINDS deduction from
cnf (sk∃(T)). We show the stronger claim that L(Cn) ⊆ L′ and L′-SA + T + Φ-IND |=
Cn. We proceed by induction on n. For the base case we have, by Proposition 2.2.8,
L-SA + T |= C0 and L(C0) ⊆ L(sk∃(T)) ⊆ L′. For the induction step we assume

32

3 Induction, Saturation, and Skolemization

the claim for Cn and consider Cn+1. If Cn+1 is obtained by S, then the claim follows
trivially from the soundness of S and the induction hypothesis. Otherwise, if Cn+1 is
obtained by an application of Φ-GINDS, then Cn+1 = Cn ∪ cnf (sk∃(Ixφ(x, t⃗))), where
φ(x, y⃗) ∈ Φ and t⃗ is a vector of ground L(Cn) terms. Since, Φ-IND ⊢ (∀y⃗)Ixφ, we
have Φ-IND ⊢ Ixφ(x, t⃗). By the induction hypothesis L(Ixφ(x, t⃗)) ⊆ L′, hence, by
Proposition 2.2.8, we obtain L′-SA+Φ-IND ⊢ sk∃(Ixφ(x, t⃗)). Therefore, by the induction
hypothesis we have L′-SA + T +Φ-IND |= Cn+1.

In the proof of Lemma 3.2.6 the role of the Skolem axioms is peculiar in the sense that
they allow us to obtain the Skolemization of an induction axiom after instantiating the
induction parameters. However, the Skolem axioms introduced by the proof above seem
to introduce more information about the Skolem symbols, than the Skolemization in the
ground induction rule. This is in particular the case for the Skolem symbols appearing
in T and Φ. Hence, it is an interesting question whether converse of the above lemma is
true A positive answer would provide a better characterization than the one developed
in this section.

Question 3.2.7. Let S be a sound saturation-based proof system, T a theory, and Φ a
set of formulas. Assume that the theory

skω (L(T) ∪ L(Φ) ∪ L0)-SA + T +Φ-IND

is inconsistent. Does this imply that S +Φ-GINDS refutes cnf (sk∃(T))? In other words
do the Skolem axioms increase the refutational power?

In a practical setting the theory T is usually Skolem-free but the set of induction
formulas Φ may contain Skolem symbols, for example those of the initial clause set.
However, in many practical cases these Skolem symbols are absorbed by the induction
schema in the sense that there is a Skolem-free set of formulas Φ′ such that Φ-IND ≡
Φ′-IND. An example of such a situation is when Φ = Open(L(sk∃(T))) and T is an ∃2
theory, then Skolemizing T only generates nullary Skolem symbols that are absorbed by
the induction parameters, that is, Open(L(sk∃(T)))-IND ≡ Open(L(T))-IND. In such a
setting we obtain the following simpler upper bound.

Lemma 3.2.8. Let S be a sound saturation system, T be a Skolem-free theory, Φ a set of
formulas, and Φ′ a Skolem-free set of formulas with Φ-IND ≡ Φ′-IND. If S +Φ-GINDS

refutes the clause set cnf (sk∃(T)), then T +Φ-IND is inconsistent.

Proof. An immediate consequence of Lemma 3.2.6 and Proposition 2.2.11.

In the following we will show, by a proof-theoretic argument, a dual form of the
Lemma 3.2.8. In other words we will show that the Skolem symbols in ground terms
behave as induction parameters. We introduce a partially prenexed form of the induction
schema in which the strong quantifier of the induction step is pulled into the quantifier
prefix. Moving this quantifier into the quantifier prefix will simplify the subsequent
arguments.

33

3 Induction, Saturation, and Skolemization

Definition 3.2.9. Let φ(x, z⃗) be a formula, then we define the formula I ′xφ by

I ′xφ := (∃x)((φ(0, z⃗) ∧ (φ(x, z⃗)→ φ(s(x), z⃗)))→ (∀y)φ(y, z⃗)︸ ︷︷ ︸
Jxφ(x,z⃗)

).

Let Φ be a set of formulas, then the theory Φ-IND′ is axiomatized by the universal closure
of the formulas I ′xφ with φ ∈ Φ.

This induction schema is clearly equivalent to the usual one given in Definition 2.5.9.

Lemma 3.2.10. Φ-IND ≡ Φ-IND′.

Proof. Straightforward.

Lemma 3.2.11. Let Γ be a finite set of formulas not containing weak quantifiers such
that Γ contains at least one nullary function symbol. Furthermore, let Φ a set of formulas
and Λ be a finite subset of Φ-IND′ such that the sequent Γ,Λ =⇒ is provable. Then there
exist formulas φ1(x, y⃗), . . . , φn(x, y⃗) ∈ Φ and finite sequences of ground terms t⃗1, . . . ,
t⃗n such that the sequent Γ, sk∃(Ixφ1(x, t⃗1)), . . . , sk

∃(Ixφn(x, t⃗n)) =⇒ is provable and
L(⃗ti) ⊆ L(Γ ∪ {sk∃(Ixφj(x, t⃗j) | 1 ≤ j < i}).

Proof. Let µ be a proof in ACNF of the sequent Γ,Λ =⇒ . We proceed by induction on
the number of strong quantifier inferences of µ. For the base case assume that µ does not
contain any strong quantifier inferences. Since Γ does not contain weak quantifiers, all
the cut inferences in µ are atomic, and the sentences in Λ have a weak quantifier in their
quantifier prefix, all the ancestors of Λ are introduced by weakening. Hence, by permuting
the weak quantifier inferences, weakening inferences, and contraction inferences whose
main formula is an ancestor of a formula in Λ toward the bottom of the proof we obtain
a proof of the form

(µ′)
Γ =⇒

LW∗

Γ,Λ′′ =⇒
L∀∗

Γ,Λ′ =⇒
LC∗

Γ,Λ =⇒

,

where in the part below µ′ the formulas in Γ only appear in the context. Hence, the
sequent Γ =⇒ is provable and we are done. Now suppose that µ contains a strong quan-
tifier inference. Since µ is in ACNF we can permute the quantifier inferences downward
in order to obtain a proof of the form

(µ′(α))

Γ, Jxφ(α, t⃗),Λ⇒
L∃

Γ,∃xJxφ(x, t⃗),Λ⇒
L∀∗

Γ, (∀z⃗)(∃x)Jxφ(x, z⃗),Λ⇒
LC

Γ,Λ⇒,

34

3 Induction, Saturation, and Skolemization

with sqi(µ′) < sqi(µ) and t⃗ a finite sequence of L(Γ ∪ Λ) ground terms. Now let c :=
s(∀x)(φ(x,⃗t)→φ(s(x),⃗t)), then let µ′′ = µ′(c) is a proof of Γ, Jxφ(c, t⃗),Λ =⇒ with sqi(µ′′) =

sqi(µ′). Since sk∃((Jxφ)[y⃗/t⃗, α/c])) = sk∃(Ixφ(x, t⃗)), we obtain by Lemma 2.3.7 a proof ν
of the sequent Γ, sk∃(Ixφ(x, t⃗)),Λ =⇒ with sqi(µ) ≤ sqi(µ′′) < sqi(µ). Now let σ1, . . . , σk
be all the symbols of L(⃗t) such that σi /∈ L(Γ) for i = 1, . . . , k. Let i ∈ {1, . . . , k},
if σi ∈ L0, then let ψi(x1, . . . , xm) ∈ Φ, otherwise let ψi(x1, . . . , xm) ∈ Φ such that
σi ∈ L(ψi). Now let the proof ν ′ be given by

(ν)

Γ, sk∃(Ixφ(x, t⃗)),Λ⇒
LW∗

Γ, sk∃(Ixψ1(d, . . . , d)), . . . , sk
∃(Ixψm(d, . . . , d)), sk

∃(Ixφ(x, t⃗)),Λ⇒,

where d is a nullary function symbol of Γ. Clearly, sqi(ν ′) < sqi(µ). Hence, we can apply
the induction hypothesis to obtain the desired formulas.

Proposition 3.2.12. Let T be a theory such that L(sk∃(T)) contains at least one con-
stant symbol, Φ a set of formulas, and S a refutationally complete saturation system. If
T +Φ-IND is inconsistent, then S +Φ-GINDS refutes cnf (sk∃(T)).

Proof. Assume T +Φ-IND is inconsistent, then sk∃(T) + Φ-IND′ is inconsistent as well.
Hence, by the compactness theorem there exist finite sets of formulas Γ′ ⊆ sk∃(T) and
Λ ⊆ Φ-IND′ such that Γ′ ∪ Λ is inconsistent. Now obtain Γ by adding to Γ′ a sentence
of sk∃(T) containing a nullary function symbol. By the completeness of G the sequent
Γ,Λ =⇒ is provable. We apply Lemma 3.2.11 in order to obtain formulas φ1(x, y⃗),
. . . , φn(x, y⃗) ∈ Φ and finite sequences of terms t⃗1, . . . , t⃗n such that for S0 = Γ and
Si+1 = Si ∪ {sk∃(Ixφi+1(x, t⃗i+1))}, we have L(⃗ti+1) ⊆ L(Si), for 0 ≤ i < n. Now we
let C0 = cnf (S0) and infer Ci from Ci−1 by an application of Φ-GINDS, for i = 1, . . . , n.
Then Cn is inconsistent. Hence, by the refutational completeness of S, we obtain an S
refutation of Cn.

Let us summarize the results so far.

Theorem 3.2.13. Let S be a sound and refutationally complete saturation system, T
a Skolem-free theory such that sk∃(T) contains a nullary function symbol, Φ a set of
formulas, and Ψ a Skolem-free set of formulas such that Φ-IND ≡ Ψ-IND, then S +
Φ-GINDS refutes cnf (sk∃(T)) if and only if T +Ψ-IND is inconsistent.

Proof. An immediate consequence of Lemma 3.2.8 and Proposition 3.2.12.

The results above show that, in a refutational setting, allowing Skolem symbols to
appear in ground terms of induction formulas corresponds exactly to induction with
parameters. This confirms our initial intuition that Skolem symbols in ground terms
behave like induction parameters.

Remark 3.2.14 (Delayed Skolemization). The Skolemization in the rule Φ-GINDS is
interesting in the sense that it generates nullary Skolem symbols only, but requires Skolem-
ization to take place after instantiation. The proof of Lemma 3.2.11 shows that this use

35

3 Induction, Saturation, and Skolemization

of Skolemization essentially corresponds to the use of eigenvariables in the sense of the
sequent calculus.

We conclude this section with a remark on a possible generalization of the results in
this section. In the context of automated inductive theorem proving we are typically
interested in results about induction with arbitrary constructors and not just natural
numbers. Furthermore, one would, especially in Section 3.2, be interested in the various
variants of induction schemata. It seems possible to generalize these results to any axiom
schema. The only place where we have used a property of the induction schema is in
Lemma 3.1.8, where the Skolemized induction schema is used to prove the Skolem axioms.
Hence, we could introduce a lemma rule as discussed in Remark 3.1.10 to achieve the
same effect.

36

4 Case study: Vampire

In the previous chapter we have studied two forms of induction rules occurring in
saturation-based induction provers. In particular, we were able to give a Skolem-free
characterization of sound and refutationally complete saturation systems extended by
the induction rule Φ-GINDS when Φ is a set of Skolem-free formulas. In this section
we will make use of this result in order to provide concrete unprovability results for
some instances of the AITP systems described in [RV19; Haj+20; Haj+21b]. All of these
methods are extensions of a saturation-based proof system by an induction rule that gen-
erates clauses corresponding to an induction axiom. These extensions are implemented
as extensions of the first-order theorem prover Vampire [KV13].

A saturation prover may use mechanisms that extend the working language of the
prover. For example, two common mechanisms are definitional translations of the input
formulas and clause splitting mechanisms. As in the previous chapter we assume a
setting where the clause normal form transformation extends the language by Skolem
symbols only, which is consistent with the presentation in [RV19; Haj+20; Haj+21b].
In particular, the unprovability results developed in this chapter are based on concrete
clause sets and therefore definitional translations do not apply. However, the setting
used in this chapter ignores possible splitting mechanisms of the underlying calculus. In
Chapter 5 we consider a similar system with a clause splitting mechanism that extends
the language of the prover. In particular, it will be shown that the splitting mechanism
does not affect overall power of the induction rule.

We start by considering in Section 4.1 the extension of sound saturation systems by
the single-clause induction rules introduced in [RV19; Haj+20]. After that, we will
consider in Section 4.2 variants of the more powerful rule introduced in [Haj+21b] that
operates on multiple clauses simultaneously. Finally, we will provide in Section 4.3 a
preliminary unprovability result for a variant of the single-clause induction rule that
takes into account the underlying calculus and improves upon the unprovability results
established in Section 4.1.

4.1 Single-clause induction

In this section we will provide two unprovability results for extensions of a saturation-
based system by the single-clause induction rule described in [RV19; Haj+20]. In Sec-
tion 4.1.1 we introduce the two variants of single-clause induction considered in this
section. We will make use of the results from Chapter 3 to obtain a logical upper bound
for saturation systems based on single-clause induction. After that, we give two unprov-
ability results for systems based on the single-clause induction rule. In Section 4.1.2 we

37

4 Case study: Vampire

give an unprovability result based on the separation of induction over literals and in-
duction over quantifier-free formulas. In Section 4.1.3 provide another independence by
making use of an independence result from the literature on mathematical logic. The sec-
ond unprovability result relies on an independence result for induction over quantifier-free
formulas and is therefore more powerful than the first one.

4.1.1 Definition and an upper bound

In [RV19] Reger and Voronkov describe an AITP system that extends a sound saturation-
based proof system by various induction rules, among others the single-clause induction
rule given below. Here we give a slightly different formulation because it better fits to
the more recent formulations of related induction rules.

Definition 4.1.1. The rigid single-clause induction rule RSCINDS is given by

L(a) ∨ C
RSCINDS

cnf (sk∃(IxL(x)))
,

where a is a constant symbol, L(x) is a literal free of a, and L(a) is ground.

We call the rule rigid because it replaces all the occurrences of a given constant by the
induction variable. In this thesis we adopt the designation “single-clause” to indicates
that the rule operates on a single clause as premise. This designation is chosen in analogy
to the designation of the induction rule rule introduced in [Haj+21b] that we will consider
in Section 4.2.

In a practical implementation the rule RSCINDS will not apply to every clause of
the form L(a) ∨ C but only when some additional conditions are satisfied (see [RV19,
Section 4]). Moreover, for the sake of efficiency the rule is usually implemented in such
a way that it immediately resolves the conclusion of the induction axiom IxL(x) against
the clause L(a) ∨ C (see [RV19, Section 3.2]), thus, effectively deriving the clauses

L(0) ∨ L(c) ∨ C,
L(0) ∨ L(s(c)) ∨ C.

Our method for providing unprovability results is too coarse to distinguish between these
variants, hence we work with the more straightforward to state variant given by Defini-
tion 4.1.1.

Remark 4.1.2. Empirical evidence suggests that generating only the clauses obtained by
resolving the induction axiom IxL with the clause L(a) ∨ C results in a weaker system.
Investigating such variants of the rule RSCINDS is out of the scope of this thesis and is
left as future work.

It is interesting to observe that the rule RSCINDS draws the literals for the induction
from the set of already derived clauses and thus does not introduce any new syntactic
material into the induction formulas. The motivation for choosing the very restricted

38

4 Case study: Vampire

induction rule RSCINDS is to solve problems that require “little” induction reasoning
and complex first-order reasoning [RV19]. In particular the induction rule is chosen
so as to not generate too many clauses, which otherwise would potentially result in
performance issues. Empirical observations [Haj+20], however, suggest that this method
is unable to deal even with very simple yet practically relevant problems such as proving
x+(x+x) = (x+x)+x from the usual defining equations for addition. In order to relax
the overly restricting analyticity inherent to the rule RSCINDS, [Haj+20] introduces the
following induction rule.

Definition 4.1.3. The single-clause induction rule SCINDS is given by

L(a) ∨ C
SCINDS

cnf
(
sk∃(IxL(x))

)
where a is a constant symbol, L(x) is a literal, and the literal L(a) is ground.

This rule reduces the degree of analyticity by allowing the constant symbol a to occur
in the induction formula, so that induction may be carried out on slight generalizations of
the currently derived literals. This results in more possibilities to add induction axioms
to the search space and thus makes search more difficult, but the degree of analyticity
of the induction is reduced sufficiently to make the method able to prove some challenge
formulas such as for example x+ (x+ x) = (x+ x) + x (see [Haj+20] for details).

Example 4.1.4. Let S be a refutationally complete saturation system and let φ(x, y) :=
x + (x + y) = (x + x) + y. Consider the clause set C0 := cnf (sk∃(T)) ∪ {¬φ(c0, c0)},
where sk∃(¬(∀x)φ(x, x)) = φ(c0, c0). Then by an application of SCINDS we obtain the
clause set C1 := C0 ∪ cnf (sk∃(Ixφ(c0, x))). Since C1 |= ¬φ(c0, c0), we have

C1 |= ¬φ(c0, 0) ∨ (φ(c0, c1) ∧ ¬φ(c0, s(c1)))

where sk∃(Ixφ(c0, x)) = φ(c0, 0)∧ (φ(c0, c1)→ φ(c0, s(c1))→ (∀x)φ(c0, x). Now observe
that C1 |= c0 + (c0 + 0) = c0 + c0 = (c0 + c0) + 0. Hence,

C1 |= φ(c0, c1) ∧ ¬φ(c0, s(c1)).

Therefore, we have C1 |= c0 + (c0 + s(c1)) = s(c0 + (c0 + c1)) = s((c0 + c0) + c1) =
(c0+c0)+s(c1). That is C1 |= ⊥. Hence, by the refutational completeness of S we obtain
a refutation of C1

Since RSCINDS is simulated by SCINDS, we will in the following concentrate on the
rule SCINDS. We will now provide an upper bound on the logical strength of a sound
saturation system extended by the rule SCINDS.

Proposition 4.1.5. Let S be a sound saturation system and T a theory. If cnf (sk∃(T))
is refuted by S + SCINDS, then skω (L(T) ∪ L0)-SA + T + Literal(L(sk∃(T)))-IND is
inconsistent.

39

4 Case study: Vampire

Proof. It suffices to observe that every application of the rule SCINDS can be replaced
by an application of Literal(L(C))-GINDS and to apply Lemma 3.2.6.

Corollary 4.1.6. Let S be a sound saturation system and T a Skolem-free ∃2 theory. If
cnf (sk∃(T)) is refuted by S + SCINDS, then T + Literal(L(T))-IND is inconsistent.

Proof. It suffices to observe that L(sk∃(T)) = L(T)∪Σ, where Σ is a set of nullary func-
tion symbols. Hence, Literal(L(T))-IND ≡ Literal(L(sk∃(T)))-IND and we can apply
Lemma 3.2.8.

4.1.2 Unprovability by literal induction

In this section we will provide a simple unprovability result for the single-clause induction
rule given in Definition 4.1.3. Roughly speaking, the result developed in this section
shows that a sound (in the sense of Definition 2.4.10) saturation system extended by the
induction rule SCINDS does not prove that every number is either even or odd. We will
obtain this result by making use of the upper bound of Corollary 4.1.6 and by providing
a suitable independence result. This result will show us that induction for literals is in
general weaker than induction for quantifier-free formulas.

We will work over the following background theory.

Definition 4.1.7. Let E/1 and O/1 be predicate symbols, then the theory A1 extends
the base theory of the natural numbers A0 by the following axioms

E(0), (A1.1)
E(x)→ O(s(x)), (A1.2)
O(x)→ E(s(x)). (A1.3)

The property that is of interest to us is E(x) ∨O(x). We will show that this formula
cannot be proved by induction on literals alone, but of course becomes provable when
we consider induction formulas that contain disjunction.

Lemma 4.1.8. A1 + Ix(E(x) ∨O(x)) ⊢ E(x) ∨O(x).

Proof. Straightforward.

By a simple model-theoretic construction we will show that induction for literals is not
enough to prove E(x) ∨O(x).

Definition 4.1.9. The structure M1 consists of pairs (b, n) with b ∈ {0, 1} and n ∈ Z
such that if b = 0, then n ∈ N. Moreover, the structure M1 interprets the symbols as
follows

0M1 = (0, 0),

sM1(b, n) = (b, n+ 1),

EM1 = {(0, n) | n ∈ N, n is even},
OM1 = {(0, n) | n ∈ N, n is odd}.

40

4 Case study: Vampire

Lemma 4.1.10. M1 |= A1 + Pred + ACY.

Proof. Routine.

Let us make a simple but crucial observation about the structure M1.

Lemma 4.1.11. Let L(x) be a non-equational L(A1) literal containing the variable x,
then either M1 ̸|= L(0) or M1 ̸|= L(x)→ L(s(x)).

Proof. We proceed indirectly and assume that M1 |= L(0) and M1 |= L(x) → L(s(x)).
Then we have M1 |= L(m), for all m ∈ N. We start with the case where L is of the
form E(sk(x)). We have M1 |= E((0, k)) and M1 |= E((0, k + 1)). However, by the
construction of M1, we either have (0, k) /∈ EM1 or (0, k + 1) /∈ EM1 . Contradiction!

Now we consider the case where L is of the form ¬E(sk(x)), for some k ∈ N. Then,
we have (0, n+k) /∈ EM1 , for all n ∈ N. In particular (0, k) /∈ EM1 and (0, k+1) /∈ EM1 .
However, this is impossible by the construction of M1. The cases where L(x) is of the
form O(sk(x)) or ¬O(sk(x)) are analogous.

Now we can show that the structure M1 satisfies literal induction.

Proposition 4.1.12. M1 |= Literal(A1)-IND.

Proof. Let L(x, z⃗) be a L(A1) literal and let d⃗ be elements of M1. Now assume that
M1 |= L(0, d⃗) and M1 |= L(x, d⃗) → L(s(x), d⃗). The case where L does not contain the
variable x is trivial. Hence, by Lemma 4.1.11, L is an equational literal. Therefore, we
are done by Corollary 2.6.4.

We now obtain the following independence result.

Proposition 4.1.13. A1 + Literal(A1)-IND ̸⊢ E(x) ∨O(x)

Proof. By Proposition 4.1.12 it suffices to observe that (1, 0) /∈ EM1 and (1, 0) /∈ OM1 .

Since the theory A1+ ∃x (¬E(x) ∧ ¬O(x)) is ∃2, we obtain an unprovability result for
sound saturation systems extended by the rule SCINDS.

Theorem 4.1.14. Let S be a sound saturation system, then the system S + SCINDS

does not refute the clause set cnf (sk∃(A1 + ∃x (¬E(x) ∧ ¬O(x)))).

Proof. Suppose that S + SCINDS refutes cnf (sk∃(A1 + (∃x)(¬E(x) ∧ ¬O(x)))), then
by Corollary 4.1.6, A1 + Literal(L(A1))-IND ⊢ (∀x)(E(x) ∨O(x)). This contradicts
Proposition 4.1.13.

This result is very simple but interesting because it tells us that the absence of disjunc-
tion from the induction formulas considered by the single-clause induction rule makes the
system unable to prove certain elementary properties involving disjunction. One way to
address this unprovability result is to extend the induction rule so as to carry out induc-
tion on clauses. Such an improvement of the single-clause induction rule is described by

41

4 Case study: Vampire

[Haj21; Haj+21b] and will be considered in Section 4.2. However, there are other possi-
ble extensions of induction for literals that could be considered. For example, [Haj+21b,
Section IV.B] considers an extension that abstracts some occurrences of terms in literals
(or clauses) by universal quantifiers. The following lemma shows that our result covers
such an improvement of the rule SCINDS.

Let Φ be a set of formulas and k ∈ N, then by ∀kΦ we denote the set of formulas of
the form (Q0y0)(Q1y1). . . (Qk−1yk−1)φ, where φ ∈ Φ and for i = 0, . . . , k − 1, Qi = ∀ if
i is even and Qi = ∃ if i is odd.

Lemma 4.1.15. A1 + Literal(L(A1))-IND ⊢
⋃
k∈N ∀kLiteral(L(A1))-IND.

Proof. Consider the induction axiom Ixψ where ψ = (Q0y0). . . (Qnyn)L(x, y⃗, z⃗), L is a
L(A1) literal and Q0, . . . , Qn ∈ {∀, ∃}. If L is an equational literal, then the claim follows
from Theorem 2.6.3. If L is of the form E(t), O(t), ¬E(t), or ¬O(t), then we consider
two cases. If t = sk(x), then ⊢ ψ ↔ L, thus, Literal(L(A1)) ⊢ Ixψ. Otherwise, L does
not contain the induction variable x and therefore ⊢ Ixψ.

We could go on and consider many other possible extensions at this point but this
would go beyond the scope of the section.

4.1.3 Unprovabililty by open induction

In the previous sections we have introduced two variants of the single-clause induction
rule as defined in [RV19] and [Haj+20]. We have derived an upper bound on the strength
of a sound saturation system extended by one of these rules. Finally, we have given an
unprovability result that exploits the restriction of the induction formulas to literals. This
unprovability result could easily be overcome by considering induction for a larger class of
quantifier-free formulas. In this section we will make use of results of [Sho58] to provide
more unprovability results for the single-clause induction rule. The results given in this
section are based on an independence result for induction over quantifier-free formulas.
Thus, the unprovability results of this section are more powerful in the sense that they
cannot be overcome in the same way as the unprovability result of Theorem 4.1.14.

The base theory of linear arithmetic together with induction for quantifier-free formulas
is sufficient to derive the following four simple facts about addition and the predecessor
function.

Lemma 4.1.16. The theory B +Open(LLA)-IND proves the following formulas

x = 0 ∨ x = s(p(x)), (B1)
x+ y = y + x, (B2)

x+ (y + z) = (x+ y) + z, (B3)
x+ y = x+ z → y = z. (B4)

Proof. Routine.

Definition 4.1.17. The theory B′ is axiomatized by (A1)–(A5) and (B1)–(B4).

42

4 Case study: Vampire

The following result of Shoenfield shows that in the setting of linear arithmetic the
above four formulas are so to speak the only consequences of the induction schema for
quantifier-free formulas.

Theorem 4.1.18 ([Sho58]). B +Open(LLA)-IND ≡ B′.

Proof. See the proof of [Sho58, Theorem 1].

This result is interesting from a practical perspective because it replaces an infinite set
of axioms by just four axioms. Moreover, this replacement of the induction schema by
four natural axioms greatly simplifies model constructions.

Definition 4.1.19. Let m,n ∈ N be natural numbers, then we define

m · x = m · y → x = y (Cm)
sn(m · x) ̸= m · y. (Dm,n)

The proof of [Sho58, Theorem 2] can be seen to give the following two independence
results. For the sake of completeness we provide the model constructions.

Lemma 4.1.20. Let n,m ∈ N with 0 < n < m, then B +Open(L(B))-IND ̸⊢ Dm,n

Proof. Let the domain of the structure Mm consist of the elements of the form (i, km),
where i ∈ N and k ∈ Z such that if i = 0, then k ∈ N. Let the structure Mm interpret
the non-logical symbols as follows

0Mm = (0, 0),

sMm((i, x)) = (i, x+ 1),

pMm((0, 0)) = (0, 0),

pMm((i, x)) = (i, x− 1), if (i, x) ̸= (0, 0),

(i1, x1) +
Mm (i2, x2) = (i1 + i2, x1 + x2).

By Theorem 4.1.18 it is straightforward to check that Mm |= B + Open(L(B))-IND.
Now observe that Mm |= sn(m · (1, 0)) = sn((1,m 0

m)) = sn((1, 0)) = (1, n) and Mm |=
m · (1, nm) = (1,m n

m) = (1, n). Thus, Mm ̸|= sn(m · x) ̸= m · y.

Lemma 4.1.21. Let m ∈ N with 1 < m, then T +Open(T)-IND ̸⊢ Cm.

Proof. Let x be a real number, then the fractional part of x is given by {x} := x− ⌊x⌋.
For real numbers x1, x2 we define x1 +̇ x2 := ⌊x1⌋ + ⌊x2⌋ + {{x1} + {x2}}. Let M ′

m

be the structure with the same domain as the structure Mm constructed in the proof of
Lemma 4.1.20, that interprets the symbols 0, s, p as Mm, and interprets + as follows

(i1, x1) +
M ′

k (i2, x2) = (i1 + i2, x1 +̇ x2).

By Theorem 4.1.18 it is routine to check that M ′
m |= B+Open(L(B))-IND. Now observe

that M ′
m |= m · (1, 1

m) =
(
1,
∑m

i=1⌊
1
m⌋+

{∑m
i=1{

1
m}
})

= (1, 0) and M ′
m |= m · (1, 0) =

(1, 0). Since (1, 0) ̸= (1, 1
m), M ′

m ̸|= m · x = m · y → x = y.

43

4 Case study: Vampire

From these independence results we immediately obtain unprovability results for sound
saturation systems extended by the ground induction rule for quantifier-free formulas over
the language of the initial clauses.

Definition 4.1.22. Let m,n ∈ N, then the clause sets Cm and Dm,n are given by

cnf (sk∃(B′ + ¬(∀x)(∀y)Cm)), (Cm)

cnf (sk∃(B′ + ¬(∀x)(∀y)Dm,n)). (Dm,n)

Theorem 4.1.23. Let S be a sound saturation system and C ∈ {Cm,Dm,n | 0 < n < m},
then S +Open(L(C))-GINDS does not refute the clause set C.

Proof. We consider the case for C = Cm with 1 < m and assume that S+Open(L(C))-GINDS

refutes C. Observe that since B′ + ¬(∀x)(∀y)Cm is ∃2, we have Open(L(C))-IND ≡
Open(L(B))-IND. Hence, by Theorem 3.2.13 we obtain B + Open(L(B))-IND ⊢ Cm.
This contradicts Lemma 4.1.21. The other case is treated analogously.

Corollary 4.1.24. Let S be a sound saturation system and C ∈ {Cm,Dm,n | 0 < n < m},
then S + SCINDS does not refute the clause set C.

Proof. An immediate consequence of Theorem 4.1.23 and Corollary 4.1.6.

The unprovability result gives rise to the question which features a system needs in
order to prove the sentences Cm and Dm,n. In the following we mention some extensions
of the open induction schema that would allow us to overcome the unprovability results
above. The extensions we suggest are theoretical in the sense that we do not take into
account whether they can be implemented efficiently in a saturation system.

A possible extension follows from a remark by Shoenfield [Sho58] that Cm andDm,n can
be proved with parameterized double induction (also known as simultaneous induction)
on quantifier-free formulas.

Definition 4.1.25. Let γ(x, y, z⃗) be a formula, then the sentence I(x,y)γ is given by

((∀x)γ(x, 0, z⃗) ∧ (∀y)γ(0, y, z⃗) ∧ (∀x)(∀y)(γ(x, y, z⃗)→ γ(s(x), s(y), z⃗)))

→ (∀x)(∀y)γ(x, y, z⃗).

Let Φ be a set of formulas, then the double induction schema Φ-DIND for Φ formulas is
given by Φ-DIND := {(∀z⃗)I(x,y)γ | γ(x, y, z⃗) ∈ Φ}.

Lemma 4.1.26. The theory B+Open(L(B))-DIND proves the formulas Cm for 0 < m
and Dm,n for 0 < n < m.

Proof. For Cm we proceed by induction on the formula Cm. We consider only one of
the base cases, since the other one is symmetric. Assume m · x = m · 0. We have to
show x = 0. Hence, m · x = 0. Now suppose that x ̸= 0, then x = s(p(x)) and we
have 0 = m · x = sm(m · p(x)). This is a contradiction! For the induction step assume
m ·x = m · y → x = y and m · s(x) = m · s(y). We have m ·x+m = m · s(x) = m · s(y) =

44

4 Case study: Vampire

m · y+m. Hence m · x = m · y, thus x = y. Therefore s(x) = s(y). For Dm,n we proceed
analogously.

We shall later encounter the extension to simultaneous induction in Section 4.2 where
we will consider the multi-clause induction rule.

Another possible extension to overcome the independence of Lemmas 4.1.20 and 4.1.21
is to extend the induction rule used by the system at least to parameter-free ∀1 induction.

Lemma 4.1.27. B + ∀1(L(B))-IND− ⊢ Open(L(B))-IND.

Proof. Straightforward via Theorem 4.1.18.

Lemma 4.1.28. The theory B+∀1(L(B))-IND− proves the formulas Cm for 0 < m and
Dm,n for 0 < n < m.

Proof. For Cm with 0 < m we work in B + ∀1(L(B))-IND− and proceed by induction
on the formula (∀y)(n · x = n · y → x = y). By Lemma 4.1.27 we have (B1)–(B4). For
the base case we have to show that n · 0 = n · y → 0 = y. By Lemma 2.6.11 we have
n · 0 = 0. By (B1) we need to distinguish two cases. If y = 0, then we are done,
otherwise we obtain a contradiction by Lemma 2.6.9.(i). For the induction step we
assume (∀y)(n · x = n · y → x = y) and n · s(x) = n · y. We want to obtain s(x) = y. By
(A5) and (B2) we obtain sn(n ·x) = n ·s(x) = n ·y. By (B1) we can distinguish two cases.
If y = 0, then sn(n · x) = 0, which contradicts Lemma 2.6.9.(i). Otherwise y = s(p(y)),
hence sn(n ·x) = n · s(x) = n · s(p(y)) = sn(n · y). Therefore by injectivity of s we obtain
n · x = n · p(y). Hence, x = p(y) by the induction hypothesis. Thus s(x) = s(p(y)) = y.
For Dm,n with 0 < n < m we proceed analogously.

These observations give rise to the question whether both extensions are equally pow-
erful.

Question 4.1.29. Let T be a theory. Do the theories T + ∀1(L(T))-IND− and T +
Open(L(T))-DIND have the same ∀1(L(T)) consequences?

Answering this question (negatively) is probably not very difficult but we leave the
question open since this would go beyond the purpose of the section. For the setting
of linear arithmetic the following theorem of Shoenfield and Lemmas 4.1.26 and 4.1.28
provide an answer.

Theorem 4.1.30 ([Sho58, Theorem 3]). B′ + {Cm | 0 < m} + {Dm,n | 0 < n < m} is
complete for ∀1(L(B)) sentences.

Hence, it follows that at least in the setting of linear arithmetic double induction
over quantifier-free formulas and parameter-free ∀1 induction are sufficient to prove all
true quantifier-free formulas. Let us mention again that the extensions of induction
mechanisms that introduce universal quantification into induction formulas are discussed
in [Haj+21b].

Let us now briefly discuss how relevant the unprovability result of Corollary 4.1.24 is
for induction on literals. The underlying independence results rely on an independence

45

4 Case study: Vampire

from induction for quantifier-free induction rather than on the much weaker induction
for literals. Hence, the result may seem quite unrelated to literal induction. However,
the following shows this result can be reformulated as a result about literal induction.

Lemma 4.1.31. The theory B + Literal(L(B))-IND proves B1–B4.

Proof. Proving B2 and B3 is straightforward. For B4 we show the contrapositive y ̸=
z → x + y ̸= x + z. We assume y ̸= z and proceed by induction on x in the formula
x+y ̸= x+ z. For the base case we have to show 0+y ̸= 0+ z. By B2 and the definition
of + the formula 0 + y ̸= 0 + z is equivalent to y ̸= z which we have assumed. For the
induction step we assume s(x)+y ̸= s(x)+z. By B2 and A5 we obtain s(x+y) ̸= s(x+z),
hence x+ y ̸= x+ z and we are done.

Proving B1 is slightly more complicated because the induction interacts even more
with the context. We assume x ̸= 0 and we have to show x = s(p(x)). We proceed
by induction on y in the formula x ̸= y. The induction base is trivial since we have
assumed x ̸= 0. For the induction step we assume x ̸= y0 and we have to show x ̸= s(y0).
Hence we assume x = s(y0). Now we have s(p(x)) = s(p(s(y0))) = s(y0) = x and we
are done. Therefore we obtain the formula (∀y)x ̸= y and in particular x ̸= x, which is
a contradiction. Hence we obtain x = s(p(x)).

In the light of Shoenfield’s theorem it is now clear that induction for literals is as
powerful as quantifier-free induction.

Proposition 4.1.32. B + Literal(B)-IND ≡ B +Open(B)-IND.

Proof. The direction from right to left is obvious. For the direction from left to right
follows from Lemma 4.1.31 and Theorem 4.1.18.

Therefore, by the above, it is, in the setting of linear arithmetic, not possible to
improve the unprovability results of this section by taking into account the restriction
of the induction to literals. In other words, we cannot find an unprovability result that
relies on a separation of B +Open(L(B))-IND and B + Literal(L(B))-IND.

In a similar way to what we did in this section we obtain many more unprovability
results by using independence results of Shepherdson [She64] and Schmerl [Sch88]. How-
ever, these results are less elementary in two ways. Firstly, they take place in a language
that besides the symbols of linear arithmetic contains the symbol −̇/2 for truncated sub-
traction and ·/2 for multiplication. Secondly, the properties that are shown independent
of the base theory with open induction express more complicated properties such as the
irrationality of the square root of two, Fermat’s last theorem for n = 3, and other Dio-
phantine equations. Hence, these independence results are currently not practically as
relevant as the independence results stated above.

4.2 Multi-clause induction

Recently a more powerful induction rule was introduced in [Haj21; Haj+21b] that op-
erates on multiple clauses. In this section we will consider some practically realistic

46

4 Case study: Vampire

instances of this rule. Section 4.2.1 defines a variant of the multi-clause induction rule
that includes some of the extensions suggested by the unprovability results of Section 4.1
and provides an upper bound. In Section 4.2.2 we make use of the upper bound to give
a simple unprovability result. Finally, we consider in Section 4.2.3 a slightly stronger
variant of the multi-clause induction which overcomes the unprovability result given in
Section 4.2.2 and we provide another unprovability result.

4.2.1 Definition and upper bound

The multi-clause induction rule introduced in [Haj21; Haj+21b] improves upon the single-
clause induction rule in that the rule performs induction on clauses by selecting literals
from multiple clauses. This improvement of the single-clause induction rule is based on
empirical observations, see [Haj+21b, Section IV]. Our results of the previous section
complement such observations and highlight the necessity to consider stronger rules.

In this section we consider an instance of the multi-clause induction rule given in
[Haj+21b] that provides induction on several variables simultaneously. This is according
to the improvement suggested by Lemma 4.1.26. This form of induction has some of the
strength of induction for formulas with universal quantification. There are several ways
to define multivariate induction. Here we consider a simple variant that corresponds
to a straightforward generalization of the induction schema of Definition 4.1.25. This
variant of simultaneous induction also appears in Cruanes’ system [Cru17], which we will
consider in Chapter 5. Hence this method seems to be of practical interest. Let us note
that [Haj+21b] considers an even stronger variant that allows for universal quantification
over clauses and Lemma 4.1.28 suggests a similar improvement. In this thesis we will
not consider these stronger variants and leave their investigation for future work.

Let us start by introducing some notation for dealing with finite sequences of terms.
Let t⃗ = (t1, . . . , tn) be a finite sequence of terms, then we write s(⃗t) for the vector of terms
(s(t1), . . . , s(tn)). Let x⃗ = (x1, . . . , xn) be a finite sequence and i ∈ N with 1 ≤ i ≤ n,
then we define x⃗<i = (x1, . . . , xi−1) and x⃗>i = (xi+1, . . . , xn).

Definition 4.2.1 (Diagonal Induction). Let φ(x⃗, z⃗) be a formula, then the formula IDiag
x⃗ φ

is given by |x⃗|∧
i=1

(∀x⃗<i)(∀x⃗>i)φ(x⃗<i, 0, x⃗>i, z⃗) ∧ (∀x⃗)(φ(x⃗, z⃗)→ φ(s(x⃗), z⃗))

→ (∀x⃗)φ.

Let m ∈ N and Φ a set of formulas, then the m-variate diagonal induction schema
Φ-DiagmIND is axiomatized by the universal closure of the formulas IDiag

x⃗ φ where x⃗
is an a sequence of m variables and φ ∈ Φ. Moreover, we define Φ-DiagωIND :=⋃
m<ω Φ-DiagmIND.

Remark 4.2.2. A stronger form of simultaneous induction can be considered by allowing
for induction hypotheses of the form φ(⃗t, z⃗), where t⃗ = (t1, . . . , tm) and ti = xi or ti =
s(xi) and t⃗ ̸= s(x⃗). This stronger form of simultaneous induction is used in the HIP

47

4 Case study: Vampire

induction prover, see [Ros12]. However, we will not deal with this induction principle in
this thesis.

Whenever considering a variant of an induction schema it is useful to justify the schema
in terms of the structural induction schema, because this provides us with inductive
soundness and an idea of the possible strength of the schema at hand.

Lemma 4.2.3. Let φ(x⃗, z⃗) be a formula, then

Pred ⊢ Ix1(∀x⃗>1)φ→ IDiag
x⃗ φ.

Proof. Let |x⃗| = n and assume

n∧
i=1

(∀x⃗<i)(∀x⃗>i)φ(x⃗<i, 0, x⃗>i, z⃗), (∗)

(∀x⃗)(φ(x⃗, z⃗)→ φ(s(x⃗), z⃗)). (⋆)

For the induction base we have (∀x⃗>1)φ(0, x⃗>1, z⃗) by (∗). For the induction step assume
(∀x⃗>1)φ(x1, x⃗>1, z⃗) and let x⃗>1 be arbitrary but fixed. If xi for some i ∈ {2, . . . , n},
then we are done by (∗). Otherwise, for i = 2, . . . , n there exists x′i such that xi =
s(x′i). By the induction hypothesis we have φ(x1, x′2, . . . , x′n, z⃗), hence by (⋆) we obtain
φ(s(x1), s(x

′
2), . . . , s(x

′
n), z⃗), that is, φ(s(x1), x⃗>1, z⃗).

Thus, diagonal induction is just a restricted form of universal quantification over the
induction formulas. We are now ready to give the definition of the multi-clause induction
rule that we will consider in the following.

Definition 4.2.4. The multi-clause induction rule MCINDS is given by

L1(⃗t) ∨ C1 . . . Ln(⃗t) ∨ Cn
MCINDS

cnf
(
sk∃

(
IDiag
x⃗

∨n
i=1 Li(x⃗)

)) ,

where L1(x⃗), . . . , Ln(x⃗) are literals, t⃗ is a finite sequence of ground terms, and C1, . . . ,
Cn are clauses.

We observe that this rule is powerful enough to overcome the unprovability results of
Theorem 4.1.14 and Corollary 4.1.24.

Example 4.2.5. Consider the clause set C := cnf (A1) ∪ {¬E(c),¬O(c)}, where

sk∃((∃x)(¬E(x) ∧ ¬O(x))) = ¬E(c) ∧ ¬O(c).

Since C contains the clauses ¬E(c) and ¬O(c), the rule MCINDS may be applied to derive
the clauses

cnf (sk∃(Ix(E(x) ∨O(x)))).

By Lemma 4.1.8 the resulting clause set is unsatisfiable.

48

4 Case study: Vampire

Example 4.2.6. Let m ∈ N with m > 1 and C0 := cnf (B′) ∪ {m · c0 = m · c1, c0 ̸= c1},
where sk∀((∀x)(∀y)Cm) = Cm(c0, c1). Then an application of the rule MCINDS gives us
the clause set C1 = C0∪cnf (sk∃(IDiag

(x1,x2)
(m · x1 ̸= m · x2 ∨ x1 = x2))). It is straightforward

to see that this clause set is unsatisfiable. Hence a refutationally complete saturation
system refutes C1.

We will now derive an upper bound on the strength for the multi-clause induction
rule given above. Since this rule uses induction axioms that are not of the form of the
induction axioms given in Definition 2.5.9, we cannot directly use the results obtained so
far in order to obtain an upper bound. However, given the definition of the rule MCINDS

and the analogous situations considered so far (see Theorem 3.2.13 and Proposition 4.1.5)
it is straightforward to obtain an upper bound.

Proposition 4.2.7. Let S be a sound saturation system and T a theory. If S+MCINDS

refutes the clause set cnf (sk∃(T)), then the theory

skω (L(T) ∪ L0)-SA + T +Clause(L(sk∃(T)))-DiagωIND

is inconsistent.

Proof. Let C0, . . . , Cn a S +MCINDS deduction, then we proceed by induction on n and
show the slightly stronger claim that there exists a set of nullary function symbols Σn
such that L(Cn) ⊆ L(C0) ∪ Σn ⊆ L′ and

L′-SA + T +Clause(L(C0))-DiagωIND |= Cn,

where L′ = skω (L(C0) ∪ L0). The base case n = 0 is trivial. For the induction step
assume that L′-SA+C0+Clause(L(C0))-DiagωIND |= Cn. If Cn+1 is obtained from Cn by
an inference from S, then by the soundness of S we are done. If Cn+1 is obtained from
Cn by an application of the MCINDS, then

Cn+1 = Cn ∪ cnf (sk∃(Ix

n∨
i=1

Li(x⃗))).

By the induction hypothesis there exist L(C0) literals L′
1(x⃗, y⃗), . . . , L

′
n(x⃗, y⃗) and a finite

sequence of nullary function symbols c⃗ = (c1, . . . , c|y⃗|) with ci ∈ L′ for i = 1, . . . , |y⃗| such
that Li = L′

i(x⃗, c⃗). Hence, we have

Clause(L(C0))-DiagωIND ⊢ I
Diag
x⃗ L(x⃗, c⃗),

and furthermore, L′-SA+Clause(L(C0))-DiagωIND ⊢ sk∃(IDiag
x⃗ L(x⃗, c⃗)). Since, IDiag

x⃗

∨n
i=1 Li

is parameter-free we have L(Cn+1) = L(Cn) ∪ {d1, . . . , d|x⃗|}, where

sk∀

(
(∀x⃗)

(
n∨
i=1

L(x⃗)→
n∨
i=1

L(s(x⃗))

))
=

n∨
i=1

L(d⃗)→
n∨
i=1

L(s(d⃗))

49

4 Case study: Vampire

Hence, L(Cn+1) ⊆ L(C0) ∪ Σn ∪ {d1, . . . , d|d⃗|} ⊆ L
′ and moreover

L′-SA + C0 +Clause(L(C0))-DiagωIND |= Cn+1.

In other words the multi-clause induction rule given in Definition 4.2.4 corresponds to
parameterized induction over clauses. In the ∃2 setting we even get a Skolem-free upper
bound.

Corollary 4.2.8. Let S be a sound saturation system and T a Skolem-free ∃2 theory.
If S + MCINDS refutes cnf (sk∃(T)), then the theory T + Clause(L(T))-DiagωIND is
inconsistent.

Proof. Assume that S + MCINDS refutes cnf (sk∃(T)), then by Proposition 4.2.7, the
theory skω (L(T) ∪ L0)-SA+ T +Clause(L(sk∃(T)))-DiagωIND is inconsistent. Observe
that for ∃2 theory we have

Clause(L(sk∃(T)))-DiagωIND ≡ Clause(L(T))-DiagωIND.

Hence, skω (L(T) ∪ L0)-SA + T + Clause(L(T))-DiagωIND is inconsistent. Since T is
Skolem-free, the theory T +L(T)-DiagωIND is Skolem-free. Hence, by Proposition 2.2.11
the theory T + L(T)-DiagωIND is inconsistent.

4.2.2 Unprovability by induction on clauses

In this section we will provide a simple independence result for simultaneous induction
over clauses. This independence result together with the upper bound of Corollary 4.2.8
then gives us an unprovability result for the variant of multi-clause induction given in
Definition 4.2.4.

We will show that induction for clauses is not powerful enough to prove some conjunc-
tive properties.

Definition 4.2.9. Let A/1 and B/1 be predicate symbols, then the theory A2 extends
the theory base theory of the natural numbers A0 by the universal closure of the following
formulas

A(0), (A2.1)
B(0), (A2.2)

A(x)→ B(s(x)), (A2.3)
B(x)→ A(s(x)). (A2.4)

The formula A(x) ∧B(x) is inductive in A2 and is therefore easily proved.

Lemma 4.2.10. A2 + Ix(A(x) ∧B(x)) ⊢ A(x) ∧B(x).

Proof. Straightforward.

50

4 Case study: Vampire

Remark 4.2.11. In the light of Theorem 2.6.3 it is easy to see that the theory A0 +
Pred + ACY + (∀x)A(x) + (∀x)B(x) is complete.

In the following we will show that induction for clauses does not allow us to prove
A(x) ∧B(x). We will as usual construct a suitable model of A2 +Clause(L(A2))-IND.

Definition 4.2.12. Let M2 be the L(A2) structure consisting of pairs of the form (i, n)
where i ∈ {1, 0} and n ∈ Z such that i = 0 implies n ∈ N. Furthermore let M2 interpret
the symbols as follows

0m = (0, 0),

sM2((i, n)) = (i, n+ 1),

AM2 = {(0, n) | n ∈ N} ∪ {(1, n) | n ∈ Z, n is even},
BM2 = {(0, n) | n ∈ N} ∪ {(1, n) | n ∈ Z, n is odd}

Lemma 4.2.13. M2 |= A2 + Pred + ACY.

Proof. Straightforward.

We will now show that M2 is also a model of diagonal induction over L(A2) clauses.

Proposition 4.2.14. M2 |= Clause(A2)-DiagωIND.

Proof. Let C(x⃗, z⃗) be an L(A2) clause and let c⃗ be a finite sequence of elements of M2

such that |⃗c| = |z⃗|. Now we assume that

M2 |=
|x⃗|∧
i=1

(∀x⃗<i)(∀x⃗>i)C(x⃗<i, 0, x⃗>i, c⃗), (∗)

M2 |= C(x⃗, c⃗)→ C(s(x⃗), c⃗). (⋆)

By Lemma 4.2.13 and Corollary 2.6.4 it suffices to consider the case where C contains
a non-equational literal containing an occurrence of an induction variable. Let d⃗ ∈
D (M2)

|x⃗| with di = (bi,mi). We will show that M2 |= C(d⃗, c⃗). Let M = {mi ∈ N | bi =
0, i = 1, . . . , |x⃗|}. Now we have to consider two cases.

If M ̸= ∅, then let m be the least element of M , then there exists i0 ∈ {1, . . . , |x⃗|}
such that di0 = (0,m). Let d′j := (bj ,mj −m) for j = 1, . . . , |x⃗|. Observe that by the
choice of m we have dj ∈ D (M2). By (∗) we have M2 |= C(d⃗′, c⃗). By a straightforward
induction and applying (⋆) we now obtain M2 |= C(d⃗, c⃗).

Now let us consider the case where M = ∅, that is, each element of d⃗ is a non-
standard element. Assume that C contains a literal of the form A(sk(xi)), where k ∈ N.
If mi + k is even, then we have (1,mi + k) ∈ AM2 , hence M2 |= A(sk(di)) and therefore
M2 |= C(d⃗, c⃗). Otherwise, if mi + k is odd, then mi − 1 + k is even, (1,mi − 1) ∈ M2,
and we have (1,mi − 1 + k) ∈ AM2 . Hence, M2 |= C((1,m1 − 1), . . . , (1,m|x⃗| − 1), c⃗)
and therefore by applying the assumption corresponding to the induction step once, we
obtain M2 |= C(d⃗, c⃗).

51

4 Case study: Vampire

Assume that C contains a literal of the form ¬A(sk(xi)), where k ∈ N. If mi+k is odd,
then we have (1,mi + k) /∈ AM2 and therefore M2 |= ¬A(sk(di)). Hence, M2 |= C(d⃗, c⃗).
If mi + k is even, then mi − 1 + k is odd and we have (1,mi − 1 + k) /∈ AM2 . Hence, we
have M2 |= ¬A(sk((1,mi − 1))) and therefore M2 |= C((1,m1 − 1), . . . , (1,m|x⃗| − 1), c⃗).
By applying the assumption (⋆) once, we obtain M2 |= C(d⃗, c⃗).

We proceed analogously if C contains a literal B(sk(x)) or ¬B(sk(x)).

As an immediate consequence of the proposition above we obtain the following inde-
pendence result.

Proposition 4.2.15. A2 +Clause(A2)-DiagωIND ̸⊢ A(x).

Proof. It suffices to observe that M2 ̸|= A((1, 1)).

This readily gives us an unprovability result for sound saturation systems extended by
the multi-clause induction rule of Definition 4.2.4.

Theorem 4.2.16. Let S be a sound saturation system, then S+MCINDS does not refute
the clause set cnf (sk∃(A2 + (∃x)¬A(x))).

Proof. Proceed indirectly by assuming that S+MCINDS refutes cnf (sk∃(A2+(∃x)¬A(x))).
Since A2 + (∃x)¬A(x) is Skolem-free and ∃2 we can apply Corollary 4.2.8 to obtain the
inconsistency of A2 + (∃x)¬A(x). This contradicts Proposition 4.2.15.

Let us now discuss this unprovability result. For the unprovability result above we
could also have used the formula A(x) ∧ B(x). The reason we have used A(x) is that
proving this formula from A2 by induction is more difficult in the sense that we cannot
proceed by induction on the formula A(x) itself. In particular, we have the following
interesting result.

Definition 4.2.17. The sequent calculus induction rule Ind is given by

Γ =⇒ ∆, F (0) Γ, F (α) =⇒ ∆, F (s(α))
Ind

Γ =⇒ ∆, F (t),

where F (x) is a formula, t a term, and the variable α does not occur freely in F (0),Γ, or
∆ (but α may appear in t). By G+ Ind we denote the proof system obtained by adding
the induction rule Ind to G.

Proposition 4.2.18. The sequent A2 ⇒ A(x) does not have G+ Ind proof all of whose
cuts are atomic.

Proof. We proceed by induction on the structure of a G + Ind proof in ACNF of the
sequent A2 =⇒ A(x) and show that all the formulas appearing in the succedent are
clauses. Hence, proceeding indirectly and assuming there is such a proof, we can extract
the induction formulas and obtain A2 + Clause(L(A2))-IND ⊢ A(x). This contradicts
Proposition 4.2.15.

52

4 Case study: Vampire

Proposition 4.2.18, thus, provides a very simple non-analyticity result. In other words
it does not suffice to reuse the formulas appearing during proof search for induction
without at least transforming them. Even though many AITP systems have different
analyticity properties and moreover include heuristics, we expect that proving A(x) from
A2 may be challenging for analytic AITP systems.

On the other hand, the unprovability of Theorem 4.2.16 can be overcome very easily
by considering induction with larger steps.

Definition 4.2.19. Let φ(x, z⃗) be a formula and m a natural number, then the weak
big-step induction axiom Iwx,mφ is given by

m∧
k=0

φ(k, z⃗) ∧ ∀x
(
φ(x, z⃗)→ φ(sm+1(x), z⃗)

)
→ ∀xφ(x, z⃗).

Let Φ be a set of formulas, then Φ-wBSIND is axiomatized by the universal closure of
the formulas Iwx,mφ, where φ ∈ Φ and m is a natural number.

Remark 4.2.20. Let φ(x, z⃗) be a formula and m ∈ N, then the formula (∀z⃗)Iwx,mφ is
called I

(m+1)
x φ in [HW18].

The justification of big-step induction as defined above is later carried out as part of
the justification of a slightly more complicated induction schema (see Lemma 4.2.27).

Lemma 4.2.21. A2 + Iwx,1A(x) + Iwx,1B(x) ⊢ A(x) ∧B(x).

Proof. By (A2.2) and (A2.4) we obtain A(1). Moreover, by (A2.3) and (A2.4) we obtain
A(x)→ A(s2(x)). Hence, we by Iwx,1A(x) obtain A(x). Analogously, we obtain B(x).

The above result shows that big-step induction has some of the power of induction over
formulas containing conjunction. However, in the following section we will provide an
unprovability result that shows that extending the multi-clause induction rule by big-step
induction still is not as powerful as induction for formulas with conjunction.

In the light of Lemma 4.2.3 it is natural to ask whether the independence of Proposi-
tion 4.2.15 can be overcome by using induction over quantified clauses instead of diagonal
induction for clauses.

Question 4.2.22. Is there a k ∈ N such that A2 + ∀k(Clause(L(A2)))-IND ⊢ A(x) ∧
B(x)?

Providing a negative answer to the question would also yield an unprovability result
for the extension discussed in [Haj+21b, Section IV.B].

4.2.3 Unprovability by big-step induction over clauses

In this section we consider a straightforward extension of the multi-clause induction rule
by big-step induction and we provide a simple unprovability result that exploits the
absence of conjunction from the induction formulas. The usage of big-step induction

53

4 Case study: Vampire

is in particular considered in [Haj+21b] and also appears in the methods considered in
Chapters 5 and 6.

Let us start by introducing the big-step induction schema that we will consider in this
section. Let m⃗ = (m1, . . . ,mn) be a sequence of natural numbers and let t⃗ = (t1, . . . , tn)
be a sequence of terms, then sm⃗(⃗t) denotes the sequence of terms (sm1(t1), . . . , s

mn(tn)).

Definition 4.2.23. Let φ(x⃗, z⃗) be a formula and m⃗ a vector of natural numbers with
|m⃗| = |x⃗|, then the formula IDiag

x⃗,m⃗ φ is given by |x|∧
i=1

mj∧
j=0

(∀x⃗<i)(∀x⃗>i)φ(x⃗<i, j, x⃗>i, z⃗) ∧ (∀x⃗)
(
φ(x⃗, z⃗)→ φ(s(sm⃗(x⃗)), z⃗)

)→ (∀x⃗)φ.

Let Φ be a set of formulas, then the theory Φ-BShetDiagωIND is axiomatized by the
universal closure of the formulas IDiag

x⃗,m⃗ φ where m⃗ is a vector of natural numbers |m⃗| = |x⃗|
and φ(x⃗, z⃗) ∈ Φ.

The induction schema introduced above includes the weak big-step induction schema
and the diagonal induction schema considered in the previous sections. Let, for example,
φ(x, z⃗) be a formula and m a natural number, then ⊢ IDiag

(x),(m)φ ↔ Iwx,mφ. Furthermore,

let ψ(x1, . . . , xn, z⃗) be a formula, then ⊢ IDiag
(xi)i=1,...,n

ψ ↔ IDiag
(xi)i=1,...,n,(0)i=1,...,n

ψ.
Now we will define the variant of the multi-clause induction rule for which we will

provide an unprovability result.

Definition 4.2.24. The big-step multi-clause induction rule BSMCIND is given by

L1(⃗t) ∨ C1 . . . Ln(⃗t) ∨ Cn
MCINDS

cnf
(
sk∃

(
IDiag
x⃗,m⃗

∨n
i=1 Li(x⃗)

)) ,

where L1(x⃗), . . . , Ln(x⃗) are literals, t⃗ is a vector of ground terms, C1, . . . , Cn are
clauses, and m⃗ is a vector of natural numbers.

It is trivial to give an upper bound for this rule in terms of the heterogeneous big-step
diagonal induction schema given above. However, we will show that we can simplify this
induction schema to obtain an upper bound that is more convenient to work with. More
precisely, we will show that the induction schema that allows different step sizes for each
variable is just as strong as the restriction of that schema that uses the same step size
for all variables.

Definition 4.2.25. Let m ∈ N and φ(x1, . . . , xn, z⃗), then IDiag
x⃗;m φ := IDiag

x⃗,m⃗ φ, where m⃗ =
(m)i=1,...,n. Let Φ be a set of formulas, then the theory Φ-BSDiagωIND is axiomatized
by the universal closure of the formulas IDiag

x⃗;m φ with φ(x⃗, z⃗) ∈ Φ and m ∈ N.

Lemma 4.2.26. Let φ(x1, . . . , xn, z⃗) be a formula with n ≥ 1, m⃗ = (m1, . . . ,mn) a finite
sequence of natural numbers, and k = min{m1, . . . ,mn}, then

Pred ⊢ IDiag
x⃗;k φ(sm1−k(x1), . . . , s

mn−k(xn), z⃗)→ IDiag
x⃗,m⃗ φ.

54

4 Case study: Vampire

Proof. We start by assuming

(∀x⃗<i)(∀x⃗>i)φ(x⃗<i, j, x⃗>i, z⃗), for i = 1, . . . , n and j = 1, . . . ,mi, (∗)

(∀x⃗)
(
φ(x⃗, z⃗)→ φ(s(sm⃗(x⃗)), z⃗)

)
. (⋆)

From IDiag
x⃗;k φ, (∗), and (⋆) we readily obtain

(∀x⃗)φ(sm1−k(x1), . . . , s
mn−k(xn), z⃗). (†)

Let x1, . . . , xn be arbitrary but fixed. We proceed by case analysis on x1, . . . , xn. If xi = i
for some i ∈ {0, . . . ,mi − k − 1}, then we are done by the (∗). Otherwise, xi = smi−kx′i
for some x′i for i = 1, . . . , n. Hence, we obtain φ(x⃗) by (†).

Thanks to the lemma above, we can now easily justify the induction schema of Defi-
nition 4.2.23 in terms of diagonal induction without big-steps (see Definition 4.2.1).

Lemma 4.2.27. Let φ(x⃗, z⃗) be a formula and k ∈ N, then ⊢ IDiag
x⃗

∧k
i=0 φ(s

i(x⃗)) →
IDiag
x⃗;k φ.

Proof. Straightforward.

Remark 4.2.28. The reduction of big-steps to conjunction is seemingly not possible on
more complicated inductive datatypes such as lists. Proving this claim is not difficult but
would go beyond the scope of this section.

We are now ready to give the upper bound for the rule BSMCIND.

Proposition 4.2.29. Let S be a sound saturation system and T a Skolem-free ∃2 theory.
If S +BSMCIND refutes the clause set cnf (sk∃(T)), then the theory

T +Clause(L(T))-BSDiagωIND

is inconsistent.

Proof. Proceed analogously to the proofs of Corollary 4.2.8 and Proposition 4.2.7 in order
to obtain an upper bound in terms of the induction schema of Definition 4.2.23 and apply
Lemma 4.2.26.

Our method of upper bounds is in particular not able to distinguish between a method
based on the induction rule BSMCIND and an analogous rule based the induction axioms
IDiag
x;k

∨n
i=1 Li where Li(x⃗) is a literal and i = 1, . . . , n. However, we expect that such rules

may behave differently due to their analyticity. We leave a more detailed analysis of the
variants of these rules as future work. Nevertheless, Lemma 4.2.26 simplifies some of the
following considerations.

We will now develop a simple unprovability result for sound saturation systems ex-
tended by the rule BSMCIND.

55

4 Case study: Vampire

Definition 4.2.30. Let A and B be unary predicate symbols, then the theory A3 extends
the theory A0 by the universal closure of the following formulas

A(0), (A3.1)
B(0), (A3.2)

A(x) ∧B(x)→ A(s(x)) ∧B(s(x)). (A3.3)

We now construct a suitable model of A3 + L(A3)-BSDiagωIND.

Definition 4.2.31. Let n ∈ N, then the n-th triangular number is given by

△n =

n∑
i=1

i =
n(n+ 1)

2
.

Definition 4.2.32. Let M3 be the L(A3) structure consisting of pairs of the form (i, n)
where i ∈ {0, 1} and n ∈ Z such that i = 0 implies n ∈ N. Furthermore, let M3 interpret
the non-logical symbols as follows

0M3 = (0, 0),

sM3((i, n)) = (i, n+ 1),

AM3 = ({0} × N) ∪

{1} × ⋃
n∈N

n is even

{−△n+1 + 1, . . . ,−△n}

 ,

BM3 = ({0} × N) ∪

{1} × ⋃
n∈N

n is odd

{−△n+1 + 1, . . . ,−△n}

 .

Lemma 4.2.33. M3 |= A3 + Pred + ACY.

Proof. Observe that M3|L0 =M2|L0, hence M3 |= A0+Pred+ACY. Furthermore, it is
clear that M3 |= A(0) ∧ B(0). For axiom (A3.3) let (i, n) be an element of M3. For the
case where i = 0, it suffices to observe that (i, n + 1) ∈ AM3 ∩ BM3 . For the case i = 1
observe that either (i, n) /∈ AM3 or (i, n) /∈ BM3 .

We are now ready to show that M3 is a model of big-step diagonal induction over
clauses.

Proposition 4.2.34. M3 |= Clause(L(A3))-BSDiagωIND.

Proof. Let m ∈ N, C(x⃗, z⃗) a L(A3) clause, and c⃗ a finite sequence of elements of M3 such

56

4 Case study: Vampire

that |z⃗| = |⃗c|. Now assume that

M3 |=
|x⃗|∧
i=1

m∧
j=0

C(x⃗<i, j, x⃗>i, c⃗), (∗)

M3 |= C(x⃗, c⃗)→ C(sm+1(x⃗), c⃗). (⋆)

By Lemma 4.2.33, M3 |= A0 + Pred + ACY. Thus by Corollary 2.6.4, we have M3 |=
L0-IND. Hence, by Lemmas 4.2.3 and 4.2.27, we have M3 |= Clause(L0)-BSDiagωIND.
Therefore, we can assume without loss of generality that C contains a non-equational
literal containing an occurrence of an induction variable. Let d⃗ = (d1, . . . , d|x⃗|) be a vector
of elements of D (M3) with di = (bi, ni) for i = 1, . . . , |x⃗| and I := {i ∈ {1, . . . , |x⃗|} |
bi = 0}. Let us start by considering the case where I ̸= ∅. For each i ∈ I let ki := ni
mod (m + 1). Let i0 ∈ I be such that ki0 is least among the ki with i ∈ I. Therefore,
we have d′i = (bi, ni − ki0(m+ 1)) ∈ D (M3) for i = 1, . . . , |x⃗|. Moreover, by (∗) we have
M3 |= C(d⃗′, c⃗). By ki0-fold application of (⋆) we obtain M3 |= C(d⃗, c⃗).

Now we consider the case where I = ∅. We will only consider the case where C
contains a literal of the form A(sk(xi)). The cases where C contains a literal of the form
¬A(sk(xi)), B(sk(xi)), or ¬B(sk(xi)) are analogous. By the construction of M3 there
exists a natural number l such that −△l ≤ ni+ k and |△l− (△l+1− 1)| ≥ m+1. Hence
there exists △l ≤ p < △l+1 and q ∈ N such that −p + q(m + 1) = ni + k. By the
construction of M3 we have (1,−p) ∈ AM3 . Hence, M3 |= A(sk((1,−p− k))), that is,

M3 |= C(d′1, . . . , d
′
i−1, (1,−p), d′i+1, . . . , d

′
|x⃗|, c⃗),

where d′i = (bi, ni − q(m + 1)) for i = 1, . . . , i − 1, i + 1, . . . , |x⃗|. Hence, by a q-fold
application of (⋆) we now obtain M3 |= C(d⃗, c⃗).

Proposition 4.2.35. A3 +Clause(L(A3))-BSDiagωIND ̸⊢ A(x).

Proof. By Proposition 4.2.34 it suffices to observe that (1, 1) /∈ AM3 .

This gives us an unprovability result for the big-step multi-clause induction rule.

Theorem 4.2.36. Let S be a sound and saturation system, then S + BSMCIND does
not refute the clause set cnf (sk∃(A3 + ∃x¬A(x))).

Proof. Proceed indirectly and assume that S+BSMCIND refutes cnf (sk∃(A3+∃x¬A(x))),
then by Proposition 4.2.29 the theory A3 + ∃x¬A(x) + Clause(L(A3))-BSDiagωIND is
inconsistent. This contradicts Proposition 4.2.35.

In order to overcome this unprovability a system has to implement an induction mech-
anism that provides “more conjunction” than provided by big-step induction. The follow-
ing is an example of a natural extension of the multi-clause induction rule that overcomes

57

4 Case study: Vampire

the unprovability of Proposition 4.2.35:

D1(⃗t) ∨ C1 . . . Dn(⃗t) ∨ Cn
cnf (sk∃(Ix⃗

∨n
i=1Dn))

where D1(x⃗), . . . , Dn(x⃗) are clauses and t⃗ is a finite sequence of terms of terms with
|x⃗| = |⃗t|. Of course, implementing such a rule efficiently is difficult because of the many
possible ways in which the rule can be applied and each application generates even more
clauses.

We could go on and investigate stronger variants of big-step induction, however, this
would digress to far from the purpose of this section. Instead we conclude this section
with a conjecture that covers many of the variants relevant in practice.

Definition 4.2.37. Let φ(x, z⃗) be a formula and m a natural number, then the strong
big-step induction axiom ISx,mφ is given by

m∧
k=0

φ(k, z⃗) ∧ (∀x)

 m∧
j=0

φ(sj(x), z⃗)→ φ(sm+1(x), z⃗)

→ (∀x)φ(x, z⃗).

Let Φ be a set of formulas, then Φ-BSSIND is axiomatized by the universal closure of the
formulas ISx,mφ, where φ ∈ Φ and m ≥ 1 is a natural number.

Conjecture 4.2.38. A3 +
⋃
k∈N ∀kClause(L(A3))-BSSIND ̸⊢ A(x).

4.3 Towards analytic unprovability results

In the previous sections we have provided a variety of unprovability results for sound
saturation systems extended by variants of the single-clause or the multi-clause induction
rules. We have established these results by providing upper bounds on the strength of
the systems in terms of logical theories. This essentially abstracts all the details of the
underlying calculi of the systems and allows us to work model-theoretically. On the
other hand, this technique is not sensitive to the analytic nature of certain induction
mechanisms. That is, our technique can not provide examples where a system fails
because the underlying calculus does not generate enough syntactic material. By taking
into account analyticity restrictions we may be able to find much more elementary and
thus more practically relevant unprovability results.

In this section we demonstrate a simple preliminary unprovability result for a variant
of the single-clause induction rule considered in Section 4.1. The result that we provide
improves upon the results of Section 4.1 in the sense that it shows that the rigid single-
clause induction can not deal with some properties that can be proven by a simple
argument by induction with induction parameters. In particular this complements the
empirical observations of [Haj+20] that justify the necessity of considering more powerful
rules such as the single-clause induction rule described in [Haj+20].

58

4 Case study: Vampire

We will consider the extension of a variant of the paramodulation calculus by a rigid
single-clause induction rule. We start by recalling the rules of the paramodulation cal-
culus, which is a calculus that underlies many of the modern saturation provers and is
thus a suitable abstraction.

Definition 4.3.1. The resolution rule, factoring rule, exchange rule, paramodulation
rule, and the reflexivity rule are given by

C ∨ L1 D ∨ L2
Res,

(C ∨D)σ

C ∨ L1 ∨ L2
Fac,

Cσ

C ∨ u ̸= v
Refl

Cσ
,

C ∨ L1 ∨ L2 ∨D
Ex

C ∨ L2 ∨ L1 ∨D
C ∨ u = v D ∨ L(v′, z⃗)

Para
(C ∨D ∨ L(u, z⃗))σ

,

where for the rule Res, σ is the most general unifier of L1 and L2, for the rule Fac, σ is
the most general unifier of L1 and L2, for the rule Refl, σ is the most general unifier of
u and v, and for the rule Para, σ is the most general unifier of v and v′. The resolution
calculus is denoted by R and is the saturation system consisting of the rules Res, Fac,
and Ex. The paramodulation calculus P is the system consisting of the rules of R and
the rules Refl and Para.

Remark 4.3.2 (Exchange rule). Since we treat clauses as formulas the rules above are
sensitive to the position of the literals. We have added the exchange rule to overcome this
limitation.

In the following we will provide an unprovability result for an extension of the resolution
calculus by a variant of the rigid single-clause induction rule considered in Section 4.1,
whose instances are of the form

L(a) ∨ C
RSCIND′

S,¬L(0) ∨ L(c) ∨ L(x),¬L(0) ∨ ¬L(s(c)) ∨ L(x)

where a is nullary function symbol, L(x) is a literal free of a, and

sk∀((∀x)(L(x)→ L(s(x)))) = L(c)→ L(s(c)).

The clause set that we show unprovable in the resolution calculus extended by RSCIND′
S

is very similar to the one of Definition 6.4.14 and the unprovability relies on a lack of
induction parameters. We will denote by I the set consisting of the sentences

IxA(s
k1(x), sk2(x)) and Ix¬A(sk1(x), sk2(x))

with k1, k2 ∈ N.

Proposition 4.3.3. Let A/2 be a predicate symbol, then the system R+RSCIND′
S does

59

4 Case study: Vampire

not refute the clause set consisting of the clauses

A(0, y), (C1)
¬A(x, y) ∨A(s(x), y), (C2)

¬A(c, c), (C3)

where sk∀((∀x)A(x, x)) = A(c, c).

Proof. Let A′
5 := A5 + C3, L = {0, s, A, c}, and C0, . . . , Cn a R + RSCIND′

S deduction
with C0 = {C1,C2,C3}. We proceed by induction on n to show

L(Cn) ⊆ {c} ∪ L(sk∃(I))),
A′

5 + sk∃(I) ⊢ Cn,

and that moreover Cn can be partitioned into clause sets C(1)n , C(2)n , C(3)n , and C(4)n such
that

C(1)n = {¬A(c, c)},
C(2)n ⊆ {A(k, y) | k ∈ N},

C(3)n ⊆ {¬A(x, y) ∨A(skx, y), A(skx, y) ∨ ¬A(x, y) | k ∈ N, k ≥ 1},

and C(4)n is a set of clauses such that c /∈ L(C(4)n) whose literals are pairwise variable
disjoint and whose atoms are of the form

A(sk1(ν), sk2(ν)),

where k1, k2 ∈ N and ν is either a nullary function symbol or a variable. For the base
case n = 0 we have L(C0) = {0, s, A, c} and A′

5 ⊢ C0. Furthermore, we let C(1)0 = {C3},
C(2)0 = {C1}, C(3)0 = {C2}, and C(4)0 = ∅. For the induction step we consider the clause
set Cn+1. We proceed by case distinction on the inference by which Cn+1 was obtained.

Assume that Cn+1 is obtained by a resolution inference, then there are clauses C,D ∈
Cn such that Cn+1 = Cn ∪ {R}, where R is the resolvent of C and D. Then, clearly
A′

0 + sk∃(I) ⊢ Cn+1 and the language is not extended. Hence it remains to analyze the
shape of the resulting clause:

• Assume that C ∈ C(1)n , then C = ¬A(c, c) and cannot resolve with any clause in
C(1)n , C(2)n , or C(3)n . Hence D ∈ C(4)n and D is of the form D′(y⃗) ∨ A(x, x). Thus,
R = D′ we let C(4)n+1 = C

(4)
n ∪ {D′}. Clearly C(4)n+1 satisfies the invariant.

• Assume that C ∈ C(2)n , then C = A(k, y) for some k ∈ N and C can resolve with
clauses from C(3)n or C(4)n . If D ∈ C(3)n , then D is of the form A(sk

′
x, y) ∨ ¬A(x, y)

for some k′ ≥ 1 and we have R = A(k + k′, y). Thus C(2)n+1 = C
(2)
n ∪ {R} and we are

done. If D ∈ C(4)n , then D = D′(y⃗)∨¬A(sk1(ν), sk2(ν)), where ν is either a nullary

60

4 Case study: Vampire

function symbol or a variable. Since the literals of D are pairwise variable disjoint,
we have in both cases R = D′. Thus we let C(4)n+1 = C

(4)
n ∪ {R} and we are done.

• Assume that C ∈ C(3)n and that C is of the form ¬A(x, y)∨A(sk(x), y) with k ≥ 1.
Then C can neither resolve with the clause ¬A(c, c) nor with the clauses in C(2)n .
If D ∈ C(3)n , then D is of the form A(sk

′
(x), y) ∨ ¬A(x, y). Hence, R is of the form

¬A(x, y) ∨ A(sk+k′(x), y), that is, we let C(3)n+1 ∪ {R}. If D is in C(4)n , then D is of
the form D′(y⃗)∨¬A(sk1(ν), sk2(ν)). If ν is a nullary function symbol, then k1 ≥ k
and R = ¬A(sk1−k(ν), sk2(ν) ∨D′. Hence, we let C(4)n+1 = C(4)n ∪ {R}. Now let us
consider the case ν is a variable. If k ≤ k1, then R = ¬A(sk1−k(ν), sk2(ν)) ∨ D′

and we let C(4)n+1 = C(4)n ∪ {R}. If k > k1, then R = ¬A(ν, sk2+(k−k1)(ν)) ∨D′ and
we let again C(4)n+1 = C

(4)
n ∪ {R}.

Now assume that C is of the form A(sk(x), y)∨¬A(x, y). If D ∈ C(2)n , then D is of
the form A(k′, y) with k′ ∈ N. Then R = A(k + k′, y) and we let C(2)n+1 = C

(2)
n ∪{R}.

The cases where D ∈ C(3)n or D ∈ C(4)n are analogous to the cases above.

• Assume that C ∈ C(4)n . The cases where D ∈ C(i)n for i ∈ {1, 2, 3} are symmetric
to the cases considered above. Hence, we only need to consider the case with
D ∈ C(4)n . Assume that C = C ′(z⃗1) ∨ L, D = D′(z⃗2) ∨M , and R = C ′σ ∨ D′σ,
where L = A(sk1(ν1), s

k2(ν1)), M = ¬A(sm1(ν2), s
m2(ν2)), νi is either a constant

or a variable not in z⃗i for i = 1, 2, and σ is a most general unifier of L and M .
The variables appearing in the domain of the unifier σ are a subset of {ν1, ν2},
hence we have R = C ′∨D′. The case where the polarities of L and M are inverted
is symmetric, hence C(4)n+1 = C(4)n ∪ {R}. The case where C = C ′(z⃗1) ∨ M and
D = D′(z⃗2) ∨ L is analogous.

Now assume that Cn+1 is obtained by an application of the factor rule. Then Cn+1 =
Cn ∪ {F}, where F is a factor of C and C ∈ Cn. Clearly, L(Cn+1) ⊆ L(Cn) and we
have A′

5 + I ⊢ Cn+1. Hence it remains to analyze the shape of the clause F . Clearly,
C /∈ C(1)n , C(2)n , C(3)n , that is, C ∈ C(4)n . We have C = C ′(z⃗)∨L∨M and F = C ′∨Lσ where
L = P (sk1(ν1), s

k2(ν1)), M = P (sm1(ν2), s
m2(ν2)), P ∈ {A,A}, σ is a most general

unifier of L and M , and νi is either a constant symbol or a variable not in z⃗ for i = 1, 2.
Clearly, Lσ = Mσ = P (sn1(ν ′), sn2(ν ′)) for some n1, n2 ∈ N and some ν ′ ∈ {ν1, ν2}.
Hence, we let C(4)n+1 = C

(4)
n ∪ {F}.

Assume that Cn+1 is obtained by an application of the exchange rule. Then there is a
clause C = C1∨L1∨L2∨C2 ∈ Cn such that Cn+1 = Cn∪{E} where E = C1∨L2∨L1∨C2.
Hence, either C ∈ C(3)n or C ∈ C(4)n . If C ∈ C(3)n , then we let C(3)n+1 = C

(3)
n ∪{E}. Otherwise,

we let C(4)n+1 = C
(4)
n ∪ {E}.

Assume that Cn+1 is obtained from Cn by an application of the rule RSCIND′
S, then

there is C ∨P (sk1d, sk2d) ∈ Cn, where d is a constant symbol and P ∈ {A,A}. Moreover,

61

4 Case study: Vampire

Cn+1 consists of the clauses of Cn and the following clauses

P (sk10, sk20) ∨ P (sk1d′, sk2d′) ∨ P (sk1x, sk2x), (D1)

P (sk10, sk20) ∨ P (sk1+1d′, sk2+1d′) ∨ P (sk1x, sk2x), (D2)

where d′ = s(∀x)(P (sk1 (x),sk2 (x))→P (sk1 (x),sk2 (x))). We let C(4)n+1 = Cn ∪ {D1, D2}. Moreover,
we clearly have sk∃(IxP (s

k1x, sk2x)) |= {D1, D2} and therefore A′
5 + sk∃(I) |= Cn+1.

Furthermore, L(Cn+1) ⊆ {c} ∪ L(sk∃(I)) and the choice of C(4)n+1 satisfies the invariant.
Now assume that Cn contains the empty clause. Then by the above the theory
A′

5 + sk∃(I) is inconsistent. Thus also the theory A5 + I is inconsistent. However,
this contradicts Corollary 6.4.15.

On the other hand, if in the clause set of Proposition 4.3.3 one of the occurrences of
c is replaced by another constant symbol, then the system R + RSCIND′

S refutes the
resulting clause set.

Remark 4.3.4. Proposition 4.3.3 also holds if Clause C3 is replaced by the clause
¬A(c, c) where c/0 is a function symbol such that c /∈ L(I).

Interestingly, as we will later show in Chapter 6, the clause set of Proposition 4.3.3 is
essentially also not refuted by induction systems based on clause set cycles. However, in
the case of clause set cycles we will not even exploit the underlying calculus.

The result above suggests that the rigid single-clause induction rule may have prob-
lems to deal with induction parameters. However, the following lemma together with
Lemma 3.2.4 shows that the ability of the system P + RSCIND′

S to handle induction
parameters depends on the language of the input clause set.

Lemma 4.3.5. Let c/0 be a function symbol, then the system P +RSCIND′
S refutes the

clause set consisting of the following clauses

x+ 0 = x,

x+ s(y) = s(x+ y),

c+ c = c,

c ̸= 0.

Proof. We start by applying single-clause induction to the clause c ̸= 0 on the constant
to obtain in particular the clause

0 ̸= 0 ∨ c1 = 0 ∨ x = 0. (4.1)

We apply paramodulation from x+ 0 = x into c ̸= 0 in order to obtain the clause

c+ 0 ̸= 0 + 0. (4.2)

62

4 Case study: Vampire

Now we apply paramodulation from (4.1) into (4.2) in order to obtain the clause

0 ̸= 0 ∨ x = 0 ∨ c+ c1 ̸= 0 + c1. (4.3)

Thus, we can apply the induction rule RSCIND′
S to the literal c+c1 ̸= 0+c1 on constant

c1 in order to obtain the clause

c+ 0 ̸= 0 + 0 ∨ c+ c2 = 0 + c2 ∨ c+ x = 0 + x. (4.4)

Now we apply the induction rule RSCIND′
S to the literal c+ c2 = 0+ c2 on the constant

c2 in order to obtain the clauses

c+ 0 = 0 + 0 ∨ c+ c3 ̸= 0 + c3 ∨ c+ x ̸= 0 + x, (4.5)
c+ 0 = 0 + 0 ∨ c+ s(c3) = 0 + s(c3) ∨ c+ x ̸= 0 + x. (4.6)

First we use paramodulation from x + 0 to (4.5) and (4.6), x + s(y) = s(x + y), and
resolve with c ̸= 0 to obtain the clauses

c+ c3 ̸= 0 + c3 ∨ c+ x ̸= 0 + x, (4.7)
s(c+ c3) = s(0 + c3) ∨ c+ x ̸= 0 + x. (4.8)

Now we use paramodulation from (4.7) into (4.8) followed an application of the reflexivity
and the factor rule in to obtain the clause

c+ x ̸= 0 + x. (4.9)

We apply paramodulation from the clause c+ c = c into (4.9) to obtain

c ̸= 0 + c. (4.10)

Hence, we can apply the induction rule RSCIND′
S in order to obtain the clauses

0 ̸= 0 + 0 ∨ c4 = 0 + c4 ∨ x = 0 + x, (4.11)
0 ̸= 0 + 0 ∨ s(c4) = 0 + s(c4) ∨ x = 0 + x. (4.12)

We apply paramodulation from x + 0 and x + s(y) = s(x + y) to (4.13) and (4.14) in
order to obtain the clauses

c4 = 0 + c4 ∨ x = 0 + x, (4.13)
s(c4) = s(0 + c4) ∨ x = 0 + x. (4.14)

Now we use paramodulation from (4.13) into (4.14) followed by an application of reflex-
ivity and factoring to obtain the clause

x = 0 + x.

63

4 Case study: Vampire

Finally, use paramodulation from x = 0 + x into (4.10) to obtain c ̸= c and apply the
reflexivity rule to obtain the empty clause.

Furthermore, the rule RSCIND′
S is also powerful enough to prove the univariate in-

stance of associativity of the addition on natural numbers from the usual primitive re-
cursive defining equations of addition.

Lemma 4.3.6. Let c/0 be a function symbol, then the system P +RSCIND′
S refutes the

clause set consisting of the following clauses

x+ 0 = x, (4.15)
x+ s(y) = s(x+ y), (4.16)

c+ (c+ c) ̸= (c+ c) + c. (4.17)

Proof. Let us define A(x, y, z) := x+(y+ z) = (x+ y)+ z. In the initial clauses we have
the clause A(c, c, c). Hence, the rule RSCIND′

S applied to A(c, c, c) on the term c gives
the clauses

0 + (0 + 0) ̸= (0 + 0) + 0 ∨A(c1, c1, c1) ∨A(x, x, x) (4.18)

0 + (0 + 0) ̸= (0 + 0) + 0 ∨A(s(c1), s(c1), s(c1)) ∨A(x, x, x). (4.19)

Apply paramodulation from (4.15) to (4.18) in order to obtain the clause

0 + 0 ̸= 0︸ ︷︷ ︸
:=B(0)

∨A(c1, c1, c1) ∨A(x, x, x), (4.20)

where B(x) ≡ x+ x = x. Now we use RSCIND′
S on the literal B(0) and the constant 0

in order to obtain among others the clause

B(0) ∨B(c2) ∨B(x). (4.21)

We apply paramodulation from (4.21) into A(c, c, c) followed by factorization in order to
obtain

B(0) ∨B(c2) ∨ c+ c ̸= c+ c. (4.22)

Now apply paramodulation from (4.15) into (4.23) in order to obtain the clause

B(0) ∨B(c2) ∨ c+ (c+ 0) ̸= (c+ c) + 0︸ ︷︷ ︸
=A(c,c,0)

. (4.23)

We can apply RSCIND′
S on the literal A(c, c, 0) and the constant 0 in order to obtain

the clauses

A(c, c, 0) ∨A(c, c, c3) ∨A(c, c, x), (4.24)

A(c, c, 0) ∨A(c, c, s(c3)) ∨A(c, c, x). (4.25)

64

4 Case study: Vampire

After that, we use paramodulation from (4.15) into (4.24) and (4.25) followed by reflex-
ivity to obtain the clauses

A(c, c, c3) ∨A(c, c, x), (4.26)

A(c, c, s(c3)) ∨A(c, c, x). (4.27)

Since A(c, c, s(c3)) ≡ c + (c + s(c3)) = (c + c) + s(c3) we can by paramodulation from
(4.16) into (4.27) obtain the clause

s(c+ (c+ c3)) ̸= s((c+ c) + c3) ∨A(c, c, x). (4.28)

Now use paramodulation from (4.26) into (4.28) followed by factorization and reflexivity
to obtain

A(c, c, x). (4.29)

Finally, resolve (4.29) with A(c, c, c) to obtain the empty clause.

In the proofs above it is interesting to observe that we have used the induction rule
RSCIND′

S not only for arguments by induction but also in order to introduce new syntac-
tic material that allows us to obtain literals that are suitable for induction. In particular
in the proof of Lemma 4.3.6 we have used induction on the formula x = x + x which
together with x + 0 = x allows us to rewrite the literal c + (c + c) ̸= (c + c) + c into
c + (c + 0) ̸= (c + c) + 0 and only the last application of the induction rule carries out
an actual argument by induction. It would be interesting to clarify to which extend this
phenomenon occurs in practice because the use of induction for the introduction of new
material is conflicting with the usual practice of implementations of resolution-like calculi
to prune the search space. The single-clause induction rule introduced in [Haj+20] (see
also Definition 4.1.3) improves this situation in two ways: Not only is the rule stronger
but the rule is now also able to attempt a suitable induction more directly and may thus
possibly result in a better practical performance.

Remark 4.3.7. The proofs of Lemmas 4.3.5 and 4.3.6 strongly rely on the variant of
the paramodulation calculus that is used. For example, it is not obvious whether we could
obtain a clause like Clause (4.3) if paramodulation is applied to all occurrences of a term,
as is customary in implementations (see [Wei01]).

In [Haj+20] it is empirically observed that the practical system considered in [RV19]
based on the following variant of the rigid single-clause induction rule fails to refute the
clause set in the statement of Proposition 4.3.3.

Definition 4.3.8. The resolving rigid single-clause induction rule ResRSCIND consists
of the instances of the form

L(a) ∨ C
ResRSCIND,

¬L(0) ∨ L(c) ∨ C,¬L(0) ∨ ¬L(s(c)) ∨ C

65

4 Case study: Vampire

where a/0 is a function symbol, L(x) is a literal free of a, and

sk∀((∀x)(L(x)→ L(s(x)))) = L(c)→ L(s(c)).

The lemma above suggests that either the resolving variant of the rigid single-clause
induction rule is weaker than RSCINDS or other details of the concrete system such as
the search strategy or redundancy mechanisms interfere with the induction rule. It would
be interesting to investigate the situation in more detail and in particular it is certainly
interesting to consider the following question.

Question 4.3.9. Does the system P + ResRSCIND refute the clause set consisting of
the clauses (4.15), (4.16), and (4.17)?

4.4 Summary

In this chapter we have considered instances of the single-clause induction rule described
in [RV19; Haj+20] and the multi-clause induction rule described in [Haj21; Haj+21b].
By establishing upper bounds for sound saturation systems extended by these rules we
were able to give several elementary unprovability results, see Theorem 4.1.14, Corol-
lary 4.1.24, Theorem 4.2.16, Theorem 4.2.36.

Our method of providing a logical theory that acts as an upper bound on the strength
of a system under consideration has the advantage that once the formal machinery is set
up, it becomes straightforward to provide unprovability results. This is partly due to
the fact that we can work with semantic arguments as opposed to syntactical arguments
that exploit features of the underlying calculi. Therefore, our results are challenging
for AITP systems in the sense that they correspond to separations between theories
and therefore require substantial extensions to an induction mechanism in order to be
overcome. Furthermore, our unprovability results express basic properties such as for
example that every number is even or odd, or the cancellation of a multiplicative constant.
This is in contrast to other unprovability results following from Gödel’s incompleteness
theorems that usually express much more complicated properties such as the consistency
of IΣn. In this sense we consider our unprovability results to be of practical relevance.

On the other hand our method is too coarse to differentiate between some variants of
induction rules. For example the induction rules considered in this chapter are imple-
mented in such a way that they immediately resolve the clauses corresponding to the
induction axiom with the clauses to which the induction rules are applied. We suspect
a sound saturation system extended by such a variant is strictly weaker, than the same
system extended by the rule that does not resolve the clauses immediately. Our method
produces the same upper bound for both variants and is therefore too weak to separate
both systems. In Section 4.3 we have provided a preliminary unprovability that takes into
account the underlying proof system and improves significantly on the results obtained
in Section 4.1. However, providing results that exploit more fine grained analyticity
properties may be very laborious and especially so in the case of statements involving
equality.

66

4 Case study: Vampire

Another shortcoming of the unprovability results in this section is that they do not
account for mechanisms that extend the working language of a saturation system by
predicate symbols. For instance, the results above do not deal with clause splitting
mechanisms such as AVATAR [Vor14] that introduce predicate symbols. This particular
issue will be addressed in the next chapter where a method involving such a clause
splitting mechanism is considered. The results show that clause splitting does not affect
the power of the induction mechanism. Another issue that we did not address in this
section are the introduction of definitions by definitional translations. In this case the
situation is different because such definitions may allow us to draw complex formulas into
an induction rule that otherwise handles a simpler class of formulas only. However, we
expect that such translations play only a small role for the simple clause sets considered
in this chapter. This issue will not be addressed in this thesis and is left as future work.

67

5 Case study: Zipperposition

In this chapter we consider the AITP method described by Cruanes in [Cru17]. The
method is similar to the methods considered in Chapter 4 in that it essentially extends
an saturation system by an induction rule. However, it differs from these methods in that
the induction is slightly more complex, the method provides a lemma rule, and moreover
the method integrates the induction more explicitly with the splitting mechanism. Im-
plementations of the systems considered in Chapter 4 also make use of clause splitting
but this mechanism is provided transparently by the underlying saturation system.

In Section 5.1 we introduce the calculus that we will analyze in this chapter. In
Section 5.2 we then provide an upper bound for this calculus in terms of a logical theory
with induction and Skolem axioms. After that, we provide in Section 5.3 a completeness
result in the ∃2 setting. In particular this completeness result shows that the calculus
considered in this chapter is at least as strong as the systems considered in Chapter 4.
Finally, in Section 5.4 we make use of the upper bound of Section 5.2 to provide a simple
unprovability result for the variant of Cruanes’ system considered in this chapter.

5.1 Cruanes’ calculus

In this section we describe the variant of the system introduced by Cruanes in [Cru17]
that we consider in this chapter. We will work with a slightly more abstract presentation
of this system in order to make our results more robust against minor variations. A
particularity of Cruanes’ calculus is the explicit integration of clause splitting in the
induction mechanism.

Remark 5.1.1. The inductive theorem proving system described in [Cru17] is based on
the extension of superposition by induction described in [Cru15]. However, [Cru15] uses
a different induction mechanism based on smallest counterexamples.

In Section 5.1.1 we briefly outline the idea underlying clause splitting and describe how
we handle clause splitting. In Section 5.1.2 we recall the rules given in [Cru17] to handle
the constructor symbols 0/0 and s/1. Section 5.1.3 we describe the induction rule used
by the system described in [Cru17]. Finally, in Section 5.1.4 we recall the cut-like rule
that is described in [Cru17] and the variant that we use in the system considered in this
chapter.

In this chapter we often work with induction formulas on several variables and with
variable step width. For the sake of readability we introduce the notion of induction
context defined below which binds together the information required to construct such
induction formulas.

68

5 Case study: Zipperposition

Definition 5.1.2. Let L be a language, then an L induction context I is a triple of the
form (G, x⃗, m⃗), where G(x⃗, y⃗) is an L formula, x⃗ a vector of variables, and m⃗ ∈ N|x⃗|.

5.1.1 Clause Splitting

Clause splitting is a technique used in saturation theorem proving to organize the search
that relies on the observation that a theory T + φ ∨ ψ where φ and ψ are sentences is
inconsistent if and only if T + φ is inconsistent and T + ψ is inconsistent. Thus in order
to refute a set of clauses C ∪ {C ∨ D} where C and D are variable disjoint clauses, it
suffices to refute the clause sets C ∪ {C} and C ∪ {D}. Clause splitting allows to reduce
the size of the clauses that a prover has to consider at the cost of introducing additional
branching into the search space. There are two major ways to implement clause splitting:
explicit and implicit clause splitting. Methods using explicit clause splitting keep a store
of clause sets that need to be refuted. The implicit variant of clause splitting operates
with a single clause set and splits the clause C∨D by introducing fresh predicate symbols
A/0 and B/0 and replaces the clause C ∨D with the clauses

C ← A, D ← B, A ∨B,

where C ← A denotes the clause C ∨ ¬A, see Definition 2.4.2. The theorem proving
systems can now make use of the new predicates A and B to organize the search for a
refutation. This type of splitting is most prominently used by the AVATAR architecture
[Vor14] which uses a SAT solver to steer the search for a refutation. In practice the
AVATAR method performs very well [Vor14]. We refer the reader to [Wei01] for a more
detailed discussion of the variants of clause splitting.

Cruanes’ calculus uses essentially the AVATAR clause splitting architecture and ex-
tends the splitting mechanism by integrating splitting directly into the induction rule.
In this chapter we will also deal with a splitting mechanism that introduces new nullary
predicate symbols but we handle the splitting very abstractly in the sense that we do
not deal with how the splitting symbols are actually used by the underlying saturation
system (that is we treat the splitting mechanism mostly as a black-box except for the
introduction of split symbols.)

Let us start by introducing the split symbols that we will use throughout the chapter.
There are mainly three sources of split symbols in the system that we will consider:
the clause splitting rule, the lemma rule and the induction rule. We treat the symbols
introduced by each of these rules separately because they are handled slightly differently.
This is in particular the case for the split symbols that are introduced by the induction
rule.

Definition 5.1.3 (Split symbols). Let φ be a sentence, then Dφ is a nullary predicate
symbol, called a definition split symbol and Lφ is a nullary predicate symbol called a lemma
split symbol. Let x be a variable, u a term, and I an induction context, then Ix,uI is a
nullary predicate symbol, called an induction split symbol.

We also introduce some notation to manipulate the split symbols of a given language.

69

5 Case study: Zipperposition

Definition 5.1.4. Let L be a language, then by LD, LL, and LI we denote the subsets of L
sets consisting of the definition split symbols, the lemma split symbols, and the induction
split symbols of L, respectively. By LS we denote the set LD∪LL∪LI. Let s ∈ {D, L, I, S},
then Ls := L \ Ls. We say that a language L is free of split symbols if LS = ∅.

We are now ready to define the rule that abstracts clause splitting mechanisms based
on the introduction of new nullary predicate symbols.

Definition 5.1.5. The clause splitting rule CSPS is given by

C
CSPS

C ′ ∨ D∀y⃗D D ← D∀y⃗D
,

where C(z⃗), C ′(x⃗), and D(y⃗) are clauses such that L(C ′),L(D) ⊆ L(C), D is free of
induction split symbols, and (∀z⃗)C is logically equivalent to (∀x⃗)C ′(x⃗) ∨ (∀y⃗)D(y⃗).

The clause splitting rule given in the definition above is an abstraction of clause split-
ting rules used in practical systems such as [Vor14] in the sense that the rule CSPS

simulates the practical rules. Practical clause splitting rules usually differ from the rule
CSPS in that they impose much stronger side conditions. For example, the separation of
variable disjoint parts of a clause is usually done modulo commutativity of disjunction,
renaming of variables, and symmetry of equality instead of full first-order equivalence.
Moreover, practical clause splitting rules usually split only on maximal variable disjoint
subclauses and variable-free literals are typically not abstracted by split symbols. For our
purposes the more uniform and general formulation of the rule CSPS is more convenient
and emphasizes the special behavior of induction split symbols.

We assume that the underlying saturation system makes use of the split symbols
introduced, in particular, by the rule CSPS and therefore we will not explicitly introduce
special inference rules for managing these symbols. In practice the splitting mechanism
is of course coupled much more tightly with the rest of the system.

5.1.2 Injectivity, disjointness, and acyclicity

The method described in [Cru17] provides rules for dealing with the injectivity, disjoint-
ness, and acyclicity of inductive constructions. The idea underlying these rules is that
they are more efficient to manage than the corresponding axioms. Similar rules as the
ones given below are considered in [KRV17] and [Rob18]. Compared to the induction
rule given in Section 5.1.3, the rules given in this section are not particularly interesting
for our considerations. Nevertheless, we include these rules for the sake of completeness
of the presentation.

Definition 5.1.6. The disjointness rules DIS−S , DIS+S and the injectivity rule INJS are

70

5 Case study: Zipperposition

given by

0 = s(t) ∨ C
DIS+S

C
,

0 ̸= s(t) ∨ C
DIS−S ,

s(t) = s(t′) ∨ C
INJS

t = t′ ∨ C
,

where t and t′ are terms and C is a clause.

The acyclicity rules assert that an object (in our case a natural number) does not
appear in its own construction. These rules are more manageable than the infinitely
many instances of the corresponding axiom schema and thus help to improve the practical
performance of an induction prover.

Definition 5.1.7. The acyclicity rules ACY+
S and ACY−

S are given by

t = sk+1(u) ∨ C
ACY+

SCσ
,

t ̸= sk+1(t) ∨ C
ACY−

S
,

where t, u are terms, k ∈ N, and σ is a unifier of t and u with L(tσ) = L(t) ∪ L(u).

Remark 5.1.8. In the formulation of the positive acyclicity rule in [Cru17] the constraint
on the language of tσ is not present. We have included this constraint so that the unifier
does not extend the language.

5.1.3 The induction rule

In this section we will define the induction rule as described in [Cru17]. As already men-
tioned before, the rule is similar to the induction rules discussed in Chapter 4. However,
it is slightly more difficult to state because it makes use of a slightly more complicated
induction schema and uses a custom splitting definitions. Hence, we start by stating
the underlying induction schema and some related notions. Cruanes’ method essentially
uses an induction mechanism that is a variant of the diagonal big-step heterogeneous
induction schema stated in Definition 4.2.23 for ∀1 formulas.

The following definition introduces a notation for cover sets of natural numbers.

Definition 5.1.9. Let m ∈ N and x a variable, then the set κm (x) is given by

{0, 1, . . . ,m, sm+1(x)}.

Let m⃗ = (m1, . . . ,mn) ∈ Nn and x⃗ = (x1, . . . , xn) a finite sequence of variables, then
κm⃗ (x⃗) =×n

i=1 κmi (xi) .

We can now define the induction schema that underlies Cruanes’ method. Since Cru-
anes’ induction rule is rather complex, we introduce the required definitions and notations
gradually. For the sake of legibility we introduce a separate definition for the premises
of the induction axioms.

71

5 Case study: Zipperposition

Definition 5.1.10. Let I = (φ(x⃗, y⃗), x⃗, m⃗) be an induction context with x⃗ = (x1, . . . , xn)
and u⃗ ∈ κm⃗ (x⃗), then the induction premise IP u⃗

I(x⃗, y⃗) is given by

IP u⃗
I(x⃗, y⃗) =

{
(∀y⃗′)φ(x⃗, y⃗′)→ φ(sm⃗+1(x⃗), y⃗) if u⃗ = sm⃗+1(x⃗),

φ(u⃗, y⃗) otherwise.

Furthermore, the induction premise IPI(x⃗, y⃗) is given by
∧
u⃗∈κm⃗(x⃗) IP

u⃗
I and the sentence

II is given by (∀x⃗)(∀y⃗)IPI → (∀x⃗)(∀y⃗)φ

We will now give an example in order to illustrate the above definition.

Example 5.1.11. Let I = (φ(x1, x2, y⃗), (x1, x2), (0, 1)), then the formula II is given by

(∀x⃗)(∀y⃗)

(φ(0, 0, y⃗) ∧ (φ(0, 1, y⃗) ∧ φ(0, s2(x2), y⃗)
∧ φ(s(x1), 0, y⃗) ∧ φ(s(x1), 1, y⃗)
∧ ((∀y⃗)φ(x1, x2, y⃗)→ φ(s(x1), s

2(x2), y⃗)))

→ (∀x⃗)(∀y⃗)φ.

We will now gradually introduce some more notation that we will use to formulate
Cruanes’ induction rule. Cruanes’ induction rule applies the induction schema given in
Definition 5.1.10 only to quantifier-free formulas. In this case it is straightforward to
Skolemize the induction axioms by Skolemizing the induction premises. We introduce
some notation to refer to the Skolem constants corresponding to an induction axiom.

Definition 5.1.12. Let I = (φ(x⃗, y⃗), x⃗, m⃗) be an induction context with φ quantifier-
free, then we denote by µI and νI the finite sequences of nullary Skolem constants such
that

sk∀((∀x⃗)(∀y⃗)IPI) = IPI [x⃗/µI , y⃗/νI].

Cruanes’ induction rule, just as the rules considered in Chapter 4, uses already derived
clauses to construct an induction axiom. After that, the rule resolves the conclusion of
the induction axiom with the clauses that were used to construct the induction formula.
By resolving the Skolemized induction axiom sk∃(II) with I = (φ(x⃗, y⃗), x⃗, m⃗) against
¬φ(⃗t, r⃗) where t⃗ and r⃗ are finite sequences of terms, and by moving negations inwards
over the conjunction, we obtain the following disjunction∨

u⃗∈κm⃗(x⃗)

¬IP u⃗
I(µI , νI). (5.1)

Now Cruanes’ induction rule splits the above disjunction before clausification by intro-
ducing a split definition for each disjunct ¬IP u⃗

I(µI , νI) with u⃗ ∈ κm⃗ (x⃗).

Definition 5.1.13. Let I = (φ, x⃗, m⃗) be an induction context, then the induction premise
definition IPDI is given by

∧
u⃗∈κm⃗(x⃗)

 |x⃗|∧
i=1

Ixi,uiI → ¬IP u⃗
I(µI , νI)

 .

72

5 Case study: Zipperposition

Moreover, the induction premise split sentence IPSI is given by

|x⃗|∧
i=1

⊕
u∈κmi (xi)

Ixi,uI .

Each conjunct of IPDI corresponds to a definition for a disjunct IP u⃗
I with u⃗ ∈ κm⃗ (x⃗)

and the sentence IPSI corresponds to the disjunction (5.1).

Example 5.1.14. Let C(x, y, z) := x + (y + z) = (x + y) + z and I = (C, z, 0) be
an induction context, then IPSI = Iz,0I ⊕ I

z,s(z)
I and the sentence IPDI consists of the

conjuncts

Iz,0I → (νI)0 + ((νI)1 + 0) ̸= ((νI)0 + (νI)1) + 0,

I
z,s(z)
I → ¬

(
(∀x)(∀y)(x+ (y + (µI)0) = (x+ y) + (µI)0)→
(νI)0 + ((νI)1 + s((µI)0)) = ((νI)0 + (νI)1) + s((µI)0)

)
.

We can now define the variant of the induction schema given in Definition 5.1.10 that
includes Skolemization and splitting.

Definition 5.1.15. Let L be a first-order language, then the theory L-CSIND is axiom-
atized by the sentences ICSI given by

IPSI ∧ (¬IPDI → ∀x⃗y⃗φ) ,

where I = (φ, x⃗, m⃗) is an induction context and φ(x⃗, y⃗) is a quantifier-free L formula.

With this induction schema in mind it is easy to state the induction rule of the system
described in [Cru17].

Definition 5.1.16. The induction rule CINDS is given by

C1(c⃗, d⃗, z⃗) ∨A1 . . . Cn(c⃗, d⃗, z⃗) ∨An
CINDS

cnf (IPSI) ∪
(
cnf (IPDI) ∨

∨
i=1,...,nAi

) ,

where I = (¬
∧n
i=1Ci(x⃗, y⃗, z⃗), x⃗, m⃗) is an induction context, C1, . . . , Cn are clauses free

of induction split symbols, and c⃗, d⃗ are finite sequences of nullary function symbols with
|⃗c| = |x⃗| and |d⃗| = |y⃗|.

Similarly to the rules discussed in Chapter 4 the induction rule used in Cruanes’
induction rule is “analytic” in the sense that it only carries out induction using clauses
that have been previously derived.

Remark 5.1.17. A particularity of the induction rule given in Definition 5.1.16 is that
in order to refute the clauses C1(c⃗, d⃗, z⃗), . . . , Cn(c⃗, d⃗, z⃗) the calculus will not try to infer
(∀x⃗)(∀y⃗)(∃z⃗)(¬

∧n
i=1Ci), but instead it tries to infer the stronger (∀x⃗)(∀y⃗)(∀z⃗)(¬

∧n
i=1Ci).

73

5 Case study: Zipperposition

The following example demonstrates an application of the induction rule CINDS.

Example 5.1.18. Let C(x, y, z) := x + (y + z) = (x + y) + z and C0 = cnf (B) ∪
{¬C(c0, c1, c2)}, where sk∀((∀x)(∀y)(∀z)C) = C(c0, c1, c2). Then by an application of
the rule CINDS with I = (C, z, 0) to the clause ¬C(c0, c1, c2) ∈ C0 we obtain the clause
set C1 = C0 ∪ cnf (IPSI) ∪ cnf (IPDI). Hence, C1 |= Iz,0I ⊕ I

z,s(z)
I . If C1 |= Iz,0I , then

C1 |= (νI)0 + ((νI)1 + 0) ̸= ((νI)0 + (νI)1) + 0. Since C1 |= x + 0 = x, we obtain
C1 |= (νI)0 + (νI)1 ̸= (νI)0 + (νI)1, that is, C1 |= ⊥. Hence, C1 |= I

z,s(z)
I and therefore

C1 |= x+ (y + (µI)0) = (x+ y) + (µI)0, (∗)
C1 |= (νI)0 + ((νI)1 + s((µI)0)) ̸= ((νI)0 + (νI)1) + s((µI)0). (⋆)

Thus, by (⋆) we have C1 |= s((νI)0+((νI)1+(µI)0)) ̸= s((νI)0+(νI)1+(µI)0). Hence,
by (∗) we obtain C1 |= s((νI)0 + ((νI)1 + (µI)0)) ̸= s((νI)0 + ((νI)1 + (µI)0). Thus
C1 |= ⊥.

5.1.4 The lemma rule

In order to compensate for the analyticity inherent to the induction rule CINDS the
calculus given in [Cru17] provides a cut-like rule that allows to introduce new syntactic
material into the search space. In practice this rule is used as a uniform interface for
the integration of heuristics that guess induction formulas, see [Cru17]. We start by
considering a general formulation of the lemma rule as given in [Cru15; Cru17].

Definition 5.1.19. The lemma rule LEM is given by

C1 . . . Cn
LEM(

cnf (sk∃(φ))← Lφ
)
∪
(
cnf (sk∃(¬φ))← ¬Lφ

)
where φ is an L(C1, . . . , Cn) sentence free of induction split symbols.

In this thesis we concentrate on a family of methods described in [Cru17, Section 6]
that apply LEM to ∀1 formulas only.

Definition 5.1.20. The lemma rule for ∀1 sentences LEM∀1
S is given by

C1 . . . Cn
LEM∀1

S
(cnf (φ)← Lφ) ∪

(
cnf (sk∃(¬φ))← ¬Lφ

) ,

where φ is a ∀1(L(C1, . . . , Cn)) sentence free of induction split symbols.

We have now introduced all the inference and simplification rules that we need to
formulate Cruanes’ system as described in [Cru17]. In the following section we will
provide an upper bound on the logical strength of a sound saturation system extended
by the rules introduced in this section.

74

5 Case study: Zipperposition

5.2 An upper bound

In this section we will provide a theory that serves as an upper bound on the logical
strength of a sound saturation system extended by the rules introduced in the previous
section. As in Chapters 3 and 4, the upper bound is Skolem-free in the ∃2 setting
and is thus particularly useful for the development of simple unprovability results. In
Section 5.3 we will show that the upper bound derived in this section even gives rise to a
a completeness result in the ∃2 setting. Finally, in Section 5.4 we make use of the upper
bound to provide a simple unprovability result.

The derivation of the upper bound proceeds essentially in the same way as the upper
bounds derived in Chapters 3 and 4, except that we need some additional steps to deal
with the split symbols. Let us start by introducing some notation for the extension of
saturation systems by the rules introduced above.

Definition 5.2.1. Let S be a saturation system then by CS we denote the saturation
system S extended by the rules CSPS, CINDS, LEM∀1

S , DIS−S ,DIS+S , INJS, ACY−
S , and

ACY+
S .

We obtain the upper bound in several steps. Dealing directly with the deductions of
the system CS , where S is a sound saturation system, is tedious because of the many
rules that are involved. Hence, we start by simulating the system CS in an iterative
construction similar to the ones used in [HV23]. This also provides us with a more
convenient formulation of the languages that are generated by the deductions of the
system CS . In the next step we eliminate the induction split symbols and simplify the
induction schema. After that we unfold the definitions introduced by the rules CSPS and
LEM∀1

S .

Definition 5.2.2. Let Φ be a set of formulas, then the theory Φ-LDEF is axiomatized by
the sentences L(∀x⃗)φ ↔ (∀x⃗)φ for φ(x⃗) ∈ Φ. Similarly, the theory Φ-DDEF is axiomatized
by the sentences D(∀x⃗)φ ↔ (∀x⃗)φ for φ(x⃗) ∈ Φ.

The operator given below is similar to the ones used in [HV23]. It allows us primarily to
abstract the saturation system CS and to express the language generated by deductions
of this system.

Definition 5.2.3. Let T be a theory, then we define

TC(T) := T +Clause(L(T)I)-DDEF

+ sk∃(∀1(L(T)I)-LDEF)

+ L(T)I-CSIND.

By T iC(T) we denote the i-th iteration of the operator TC on T . Furthermore, we define

TωC (T) :=
⋃
i<ω

T iC(T).

75

5 Case study: Zipperposition

It is straightforward but tedious to simulate deductions in Cruanes system with the
operator introduced above.

Lemma 5.2.4. Let S be a sound saturation system and C0, . . . , Cn be a CS deduction,
then A0 +ACY + TωC (C0) ⊢ Cn and L(Cn) ⊆ L(TωC (C0)).

Proof. We proceed by induction on n. The base case n = 0 is trivial, since TωC (C0) ⊢ C0.
For the induction step we assume that L(Cn) ⊆ L(TωC (C0)) and

A0 +ACY + TωC (C0) ⊢ Cn.

Now we distinguish several cases depending on how the clause set Cn+1 was obtained.
If Cn+1 is derived by an application of LEM∀1

S , then

Cn+1 = Cn ∪
(
cnf (sk∃(φ))← Lφ

)
∪
(
cnf (¬sk∃(φ))← ¬Lφ

)
,

where φ is a ∀1(L(Cn)I) formula. By the induction hypothesis φ is a L(TωC (C0))I formula,
thus, TωC (C0) ⊢ sk∃(Lφ ↔ φ). Therefore, L(Cn+1) ⊆ L(TωC (T)) and A0+ACY+TωC (T) ⊢
Cn+1.

If Cn+1 is obtained by an application of the rule CINDS, then

Cn+1 = Cn ∪ cnf (IPSI) ∪

(
cnf (IPDI) ∨

m∨
i=1

Ai

)

where I = (¬φ, x⃗, m⃗) is an induction context with φ =
∧m
i=1Ci(x⃗, y⃗, z⃗), Ci is a clause

free of induction split symbols, Ai(z⃗) is a clause, Ci(c⃗, d⃗, z⃗) ∨ Ai ∈ Cn for i = 1, . . . ,m
and c⃗, d⃗ are finite sequences of nullary function symbols. By the induction hypothesis we
have in particular, L(Ci(c⃗, d⃗, z⃗) ∨ Ai) ⊆ L(TωC (C0)). Hence, ICSI ∈ TωC (C0) and therefore
L(Cn+1) ⊆ L(TωC (T)). Moreover, we have A0 + ACY + TωC (C0) ⊢ Ci(c⃗, d⃗, z⃗) ∨ Ai for
i = 1, . . . ,m. Now work in A0 + ACY + TωC (C0). By the above we already have IPSI
and it remains to show IPDI ∨

∨m
i=1Ai. Let z⃗ be arbitrary but fixed. If Ai for some

i ∈ {1, . . . ,m}, then we are done. Otherwise, assume not Ai for i = 1, . . . ,m. We have∧m
i=1Ci(c⃗, d⃗, z⃗). Hence, not (∀x⃗)(∀y⃗)(∀z⃗)¬

∧m
i=1Ci. Therefore, we have IPDI . Thus

A0 +ACY + TωC (C0) |= Cn+1.
If Cn+1 is obtained by an application of the rule CSPS, then

Cn+1 = Cn ∪ {C ′ ∨ D(∀y⃗)D, D ← D(∀y⃗)D},

where C(z⃗) ∈ Cn and ⊢ (∀z⃗)C ↔ (∀x⃗)C ′ ∨ (∀y⃗)D with C ′(x⃗), D(y⃗) clauses such that
L(C ′),L(D) ⊆ L(C). Since in particular L(D) ⊆ L(TωC (C0))I, we have D(∀y⃗)D ↔ (∀y⃗)D ∈
TωC (C0). Thus L(Cn+1) ⊆ L(TωC (C0)). By the induction hypothesis, we have, in particular,
A0 +ACY+TωC (C0) ⊢ C. Hence, A0 +ACY+ TωC (C0) ⊢ C ′ ∨ (∀y⃗)D. Therefore, since C ′

and D are variable disjoint we have A0 +ACY + TωC (C0) ⊢ C ′ ∨ D(∀y⃗)D.
If Cn+1 is obtained by an application of INJS, then there is a clause s(t) = s(t′)∨C ∈ Cn

such that Cn+1 = (Cn \ {s(t) = s(t′) ∨ C})∪ {t = t′ ∨C}. By the induction hypothesis it

76

5 Case study: Zipperposition

is obvious that L(Cn+1) ⊆ L(TωC (C0)). Moreover, we have A0 + ACY + TωC (C0) ⊢ s(t) =
s(t′) ∨ C. Since A0 ⊢ s(x) = s(y)→ x = y, we obtain A0 +ACY + TωC (C0) ⊢ t = t′ ∨ C.

If Cn+1 is obtained by an application of DIS+S , then there exists a clause 0 = s(t)∨C ∈
Cn and Cn+1 = (Cn \ {0 = s(t) ∨ C}) ∪ {C}. By the induction hypothesis we readily
have L(Cn+1) ⊆ L(TωC (C0)). Moreover A0 + ACY + TωC (C0) ⊢ 0 = s(t) ∨ C. Since,
A0 |= 0 ̸= s(x), we thus have A0 +ACY + TωC (C0) |= C.

If Cn+1 is obtained by an application of ACY+
S , then there exists a clause t = sk+1(u)∨

C ∈ Cn with k ∈ N such that Cn+1 =
(
Cn \ {t = sk+1(u)}

)
∪ Cσ, where σ is a unifier

of t and u and L(σ(t)) ⊆ L(t) ∪ L(u). Hence, L(Cn+1) ⊆ L(TωC (C0)). By the induction
hypothesis we have in particular A0 + ACY + TωC (C0) ⊢ tσ = sk+1(uσ) ∨ Cσ. Since
A0 +ACY + TωC (C0) ⊢ x ̸= sk+1(x), we have A0 +ACY + TωC (C0) ⊢ Cσ.

If Cn+1 is obtained by an application of DIS−S , ACY−
S , or S, then Cn+1 ⊢ Cn and

L(Cn+1) ⊆ L(Cn). Hence, we are done by the induction hypothesis.

The iterative construction of TωC (·) is mostly useful to build up the languages that can
be generated by CS where S is a sound saturation system.

Definition 5.2.5. Let T be a theory, then we let LTC = L(TωC (T))I.

Lemma 5.2.6. Let T be a theory, then

T + skω
(
LTC
)
-SA + Clause(LTC)-DDEF + ∀1(LTC)-LDEF + LTC-CSIND ⊢ TωC (T).

Proof. We proceed by induction on i and show that T+skω
(
LTC
)
-SA+Clause(LTC)-DDEF+

∀1(LTC)-LDEF+LTC-CSIND ⊢ T iC(T). The base case is trivial, since T 0
C(T) = T . For the

induction step we have T i+1
C (T) = TC(T

i
C(T)). By the induction hypothesis we already

have

T + skω
(
LTC
)
-SA + Clause(LTC)-DDEF + ∀1(LTC)-LDEF + LTC-CSIND ⊢ T iC(T).

Since L(T iC(T))I ⊆ L
T
C , it is obvious that

∀1(LTC)-LDEF + skω
(
LTC
)
-SA ⊢ sk∃(∀1(LTC)-LDEF),

Clause(LTC)-DDEF ⊢ Clause(L(T iC(T))I)-DDEF,

LTC-CSIND ⊢ L(T iC(T))I-CSIND.

Hence, the claim follows immediately from the induction hypothesis.

The next step of the derivation of the upper bound for Cruanes’ system is the sim-
plification of the induction schema. In a first step we will eliminate the induction split
symbols. After that we deskolemize the induction axioms and reformulate the induction
axiom. Finally, we introduce induction parameters in order to eliminate Skolem symbols
introduced during the saturation process.

Lemma 5.2.7 (Elimination of induction split symbols). Let T be a theory free of in-
duction split symbols, L ⊇ LTC a language, and M an L structure such that M |=

77

5 Case study: Zipperposition

sk∃(LTC-CIND), then there exists a structure M ′ of M such that M |LI = M ′|LI and
M ′ |= LTC-CSIND

Proof. Let M |LI = (D, I), then we will expand the interpretation I to I ′ as follows. Let
I = (ψ(x⃗, y⃗), x⃗, m⃗) be a LTC induction context where ψ is quantifier-free. We have to
provide an interpretation for the symbols Ixi,uI for i = 1, . . . , |x⃗| and u ∈ κmi (xi).

We start with the case M |= (∀x⃗)(∀y⃗)ψ. For i = 1, . . . , |x⃗| and u ∈ κmi (xi) we let

I ′
(
Ixi,uI

)
=

{
1 if u = 0,

0 otherwise
.

Since M |= (∀x⃗)(∀y⃗)ψ and ψ is a LTC formula, we have (D, I ′) |= ¬IPDI → (∀x⃗)(∀y⃗)ψ.
Moreover, by the definition of I ′ we also have (D, I ′) |= IPSI . Hence we are done.

Otherwise, if M ̸|= (∀x⃗)(∀y⃗)ψ there exists u⃗ ∈ κm⃗ (x⃗) such that M ̸|= IP u⃗
I(µI , νI). For

i = 1, . . . , |x⃗| and vi ∈ κmi (xi) we now define

(
Ixi,viI

)M ′
:=

{
1 if vi = ui

0 otherwise
.

Clearly, we then have M ′ |= IPSI . Hence it remains to show that (D, I ′) |= IPDI . Now
let v⃗ ∈ κm⃗ (x⃗). We need to consider two cases. If v⃗ = u⃗, then (D, I ′) ̸|= IP v⃗

I(µI , νI).
Therefore, (D, I ′) |=

∧|x⃗|
i=1 I

xi,vi
I → ¬IP v⃗

I(µI , νI). If v⃗ ̸= u⃗, then let vi0 ̸= ui0 . Then
we have (D, I ′) ̸|= Ixi,viI . Thus (D, I ′) |=

∧|x⃗|
i=1 I

xi,vi
I → ¬IP v⃗

I(µI , νI). Hence, (D, I ′) |=
IPSI ∧ (¬IPDI → (∀x⃗)(∀y⃗)ψ).

The following two lemmas allow us to reformulate Cruanes’ induction schema essen-
tially as parameter-free induction on ∀1 formulas.

Lemma 5.2.8. Let φ(x⃗, z⃗) be a formula and m⃗ ∈ N with |m⃗| = |x⃗|, then Pred ⊢
∀x⃗φ(x⃗, z⃗)↔ ∀x⃗

∧
u⃗∈κm⃗(x⃗) φ(u⃗, z⃗).

Proof. A straightforward induction on |x⃗|.

Lemma 5.2.9. Let L be a language, then Pred + ∀1(L)-IND− ⊢ L-CIND.

Proof. In the light of Lemmas 4.2.3, 4.2.26, and 4.2.27 it suffices to show

Pred + ∀1(L)-BShetDiagωIND
− ⊢ L-CIND.

Let I = (φ(x⃗, y⃗), x⃗, m⃗) be an induction context where φ is a quantifier-free formula.
Assume IP u⃗

I for all u⃗ ∈ κm⃗ (x⃗). We proceed with IDiag
x⃗,m⃗ (∀y⃗)φ. Let i ∈ {1, . . . , |x⃗|}

and ui ∈ κmi (xi) with ui ̸= smi(xi). By the assumption we have φ(v⃗<i, ui, v⃗>i) for all
v⃗<i ∈ κm⃗<i

(x⃗<i) and v⃗>i ∈ κm⃗>i
(x⃗>i). Hence, by Lemma 5.2.8 we obtain φ(x⃗<i, ui, x⃗>i).

Now assume (∀y⃗)φ(x⃗, y⃗) and let y⃗ be arbitrary, then by the assumption IP
x⃗i,s

m⃗i (x⃗i)
I we

obtain φ(sm⃗i(x⃗i), y⃗). Hence, we obtain (∀x⃗)(∀y⃗)φ(x⃗, y⃗).

78

5 Case study: Zipperposition

Let us now show that we can decompose the language generated by Cruanes’ system so
as to separate in particular the Skolem symbols that may be introduced during saturation.

Lemma 5.2.10. Let T be a theory, then

L(TωC (T)) =
(
LTC
)
I
∪
(
LTC
)
D
∪
(
LTC
)
L
∪ L(T) ∪ L0 ∪ ΣTC ,

where ΣTC is a set of nullary function symbols.

Proof. We proceed by induction on i and show that there exists a set of nullary function
symbols Σi such that

L(T iC(T)) ⊆ L(T iC(T))I ∪ L(T
i
C(T))D ∪ L(T

i
C(T))L ∪ L(T) ∪ L0 ∪ Σi.

The base case n = 0 is obvious since T 0
C(T) = T . For the induction step consider the

theory T i+1
C (T) = TC(T

i
C(T)). The axioms of Clause(L(T iC(T))I)-DDEF consist of sym-

bols of L(T iC(T))I and definition split symbols. The axioms of sk∃(∀1(L(T iC(T))I)-LDEF)
consist of L(T iC(T))I symbols, lemma split symbols, and nullary Skolem symbols arising
from the ∀ Skolemization of ∀1 formulas. Finally, the axioms of L(T iC(T))I-CSIND con-
sist of L(T iC(T))I symbols, induction split symbols, the symbols 0/0 and s/1, and the
nullary Skolem symbols in µI and in νI for induction contexts I = (φ(x, y⃗), x⃗, m⃗) with
φ a quantifier-free L(T iC(T))I. Thus, we are done by the induction hypothesis.

We can now absorb the Skolem symbols that are generated during the saturation
process in Cruanes’ system by induction parameters. Moreover, the split symbols that
may occur in the induction are also easily seen to be absorbed by the induction axioms.

Lemma 5.2.11. ∀1(L(T) ∪ L0)-IND ⊢ LTC-CIND.

Proof. By Lemma 5.2.9 we have Pred+∀1(LTC)-IND
− ⊢ LTC-CIND. By Lemma 5.2.10 we

have
LTC = L(T) ∪ L0 ∪

(
LTC
)
D
∪
(
LTC
)
L
∪ ΣTC ,

where ΣTC is a set of nullary function Symbols. Hence, it is obvious that

∀1 (L(T) ∪ L0)-IND ⊢ LTC-CIND.

This completes the first step of the derivation of the upper bound. We summarize the
results so far in the following proposition.

Proposition 5.2.12. Let S be a sound saturation system, and T a theory free of induc-
tion split symbols. If CS refutes the clause set cnf (sk∃(T)), then the theory

A0 + sk∃(T) + skω
(
Lsk

∃(T)
C

)
-SA + Clause(Lsk

∃(T)
C)-DDEF

+ ∀1
(
Lsk

∃(T)
C

)
-LDEF + ∀1(L(sk∃(T) ∪ L0))-IND

is inconsistent.

79

5 Case study: Zipperposition

Proof. Assume that S refutes cnf (sk∃(T)), then by Lemma 5.2.4 the theory A0+ACY+
TωC (sk

∃(T)) is inconsistent. Hence, by Lemma 5.2.6 the following theory is inconsistent
as well

A0 +ACY + sk∃(T) + skω
(
Lsk

∃(T)
C

)
-SA + Clause(Lsk

∃(T)
C)-DDEF

+ ∀1(Lsk
∃(T)

C)-LDEF + Lsk
∃(T)

C -CSIND.

By Lemma 5.2.7 we can eliminate induction split symbols. After that, we use Propo-
sition 2.2.8 to deskolemize the induction schema. Therefore, the following theory is
inconsistent

A0 +ACY + sk∃(T) + skω
(
Lsk

∃(T)
C

)
-SA + Clause(Lsk

∃(T)
C)-DDEF

+ ∀1(Lsk
∃(T)

C)-LDEF + Lsk
∃(T)

C -CIND.

By Lemma 5.2.9 we can reformulate Lsk
∃(T)

C -CIND as parameter-free structural induction
on ∀1 formulas. Furthermore, Lemma 5.2.11 allows us to eliminate split symbols from the
induction and to absorb nullary Skolem symbols into parameterized structural induction.
Hence, the following theory is inconsistent

A0 + sk∃(T) + skω
(
Lsk

∃(T)
C

)
-SA + Clause(Lsk

∃(T)
C)-DDEF

+ ∀1(Lsk
∃(T)

C)-LDEF + ∀1(L(sk∃(T)) ∪ L0)-IND.

In the following we will eliminate the remaining split symbols. The idea is to “unfold”
the definitions by replacing the split symbols by their defining formulas. If the starting
theory T is free of split symbols, then by the construction of the language LTC , the
unfolding process terminates and results in formulas that are free of split symbols. In
particular, since the induction is already free of split symbols this process does not affect
the induction.

Lemma 5.2.13 (Definition unfolding). Let T be a theory free of split symbols, then for
every formula φ, there is a

(
L(φ) \

((
LTC
)
D
∪
(
LTC
)
L

))
∪L(TωC (T))S formula φ′ such that

Clause(LTC)-DDEF + ∀1(LTC)-LDEF ⊢ φ↔ φ′.

Proof. We have LTC = L(TωC (T))I =
⋃
i<ω L(T iC(T))I. We proceed by induction on i ∈ N

and show that for every L(T iC(T))I formula φ(x⃗) there exists a L(T iC(T))S formula φ′(x⃗)
such that

Clause(LTC)-DDEF + ∀1(LTC)-LDEF ⊢ φ↔ φ′.

The base case i = 0 is trivial since T is free of split symbols and T 0
C = T . For the

induction step we assume the claim for i and we consider the language L(T i+1
C (T)). Let

φ be a L(T i+1
C (T)) formula and let Dφ1 , . . . , Dφn , Lψ1 , . . . , Lψm be all the definition and

lemma split symbols occurring in φ. Then φ1, . . . , φn and ψ1, . . . , ψm are L(T iC(T))I

80

5 Case study: Zipperposition

sentences. Hence, by the induction hypothesis there are L(T iC(T))S sentences φ′
1, . . . ,

φ′
n, ψ′

1, . . . , ψ′
m such that

Clause(LTC)-DDEF + ∀1(LTC)-LDEF ⊢
n∧
i=1

(
φi ↔ φ′

i

)
∧

m∧
i=1

(
ψi ↔ ψ′

i

)
.

Hence, the formula φ[Dφ1/φ
′
1, . . . ,Dφn/φ

′
n, Lψ1/ψ

′
1, . . . , Lψn/ψ

′
m] is an L(T iC(T))S for-

mula. Therefore, we have

Clause(LTC)-DDEF + ∀1(LTC)-LDEF ⊢
φ↔φ[Dφ1/φ

′
1, . . . ,Dφn/φ

′
n, Lψ1/ψ

′
1, . . . , Lψn/ψ

′
m].

Now let γ be a formula, then we expand all the occurrences of a split symbols Dφ and
Lψ with LTC sentences φ,ψ, by their split symbol free counterparts φ′ and ψ′ in order to
obtain a formula γ′. It is clear that Clause(LTC)-DDEF + ∀1(LTC)-LDEF ⊢ γ ↔ γ′ and
moreover L(γ) ⊆

(
L(γ) \

((
LTC
)
D
∪
(
LTC
)
L

))
∪ L(TωC (T))S.

There is a slight complication when unfolding definitions in the presence of Skolem
axioms, because Skolem axioms are not closed under substitution of nullary predicate
symbols by formulas. That is, we need to provide a suitable interpretation for Skolem
symbols of formulas with split symbols. There is a trivial way to do this by making use
of the axiom of choice as in the traditional model-theoretic proof of Proposition 2.2.11.
However, in the proof of the following lemma we avoid using the axiom of choice.

Lemma 5.2.14. Let T be a theory free of definition and lemma split symbols and M an
skω

(
L(TωC (T))S

)
structure such that M |= skω

(
L(TωC (T))S

)
)-SA, then there exists an

expansion M ′ of M such that

M ′ |= skω
(
LTC
)
-SA + Clause(LTC)-DDEF + ∀1(LTC)-LDEF.

Proof. Let M = (D, I), then we define the interpretation I ′ ⊇ I as follows. Let Dφ, Lψ ∈
LTC , then we let I ′(Dφ) = (φ′)M and I ′(Lψ) = (ψ′)M , where φ′ and ψ′ are the sentences
obtained by Lemma 5.2.13. It follows immediately that

(D, I ′) |= Clause(LTC)-DDEF + ∀1(LTC)-LDEF. (∗)

Furthermore, we proceed by induction on i and extend I ′ to an interpretation I ′′ by defin-
ing I ′′(s(Qx)φ) for s(Qx)φ ∈ sk i(LTC) \ sk

ω
(
L(TωC (T))S

)
such that I ′(s(Qx)φ) = I(s(Qx)φ∗)

for some skω
(
L(TωC (T))S

)
formula φ∗. For the base case there is nothing to be done, since

sk0(LTC) = LTC . For the induction step, let s(Qx)φ ∈ sk i+1(LTC) \ sk
ω
(
L(TωC (T))S

)
. Then

by the induction hypothesis there exists a skω
(
L(TωC (T))S

)
∪
(
LTC
)
D
∪
(
LTC
)
L

formula ψ
such that M ′ |= ψ ↔ φ. By Lemma 5.2.13 and by (∗) there exists a skω

(
L(TωC (T))S

)
formula ψ′ such that M ′′ |= ψ ↔ ψ′. Hence, we let I ′′(s(Qx)φ) = I(s(Qx)ψ′). It is now
obvious that (D, I ′′) |= skω

(
LTC
)
-SA.

We are now ready to formulate the upper bound for Cruanes’ method.

81

5 Case study: Zipperposition

Proposition 5.2.15. Let S be a sound saturation system, and T a theory free of split
symbols. If CS refutes the clause set cnf (sk∃(T)), then the theory

A0 + T + skω (L(T) ∪ L0)-SA + ∀1(L(sk∃(T) ∪ L0))-IND

is inconsistent.

Proof. Assume that CS refutes cnf (sk∃(T)), then by Proposition 5.2.12 the following
theory is inconsistent:

A0 + sk∃(T) + skω
(
Lsk

∃(T)
C

)
-SA + Clause(Lsk

∃(T)
C)-DDEF

+ ∀1
(
Lsk

∃(T)
C

)
-LDEF + ∀1(L(sk∃(T)) ∪ L0)-IND

Hence, by using Lemma 5.2.14 to expand the split symbols by their defining sentences,
the following theory is also inconsistent:

A0 + sk∃(T) + skω
(
L(TωC (sk∃(T)))S

)
-SA + ∀1(L(sk∃(T)) ∪ L0)-IND.

Since skω
(
L(TωC (sk

∃(T)))S
)
= skω

(
L(sk∃(T)) ∪ L0

)
= skω (L(T) ∪ L0) and by Proposi-

tion 2.2.8, the claim follows.

This upper bound can likely be improved by being more precise about the Skolem
axioms that are actually needed. The situation is reminiscent of the one discussed in
Question 3.2.7. In the case where the theory T in the proposition above is an ∃2 theory
we can even eliminate the Skolem axioms.

Corollary 5.2.16. Let S be a sound saturation system, and T a Skolem-free, ∃2 theory
that is free of split symbols. If CS refutes the clause set cnf (sk∃(T)), then the theory

A0 + T + ∀1(L(T) ∪ L0)-IND

is inconsistent.

Proof. If T is ∃2, then sk∃(T) extends the language of T by nullary Skolem symbols
only. Hence, occurrences of these additional Skolem symbols in the induction formulas
are absorbed by induction parameters. Now it suffices to apply Proposition 2.2.11.

In Section 5.3 we will show that in the ∃2 setting the upper bound of Corollary 5.2.16
can not be improved. As usual the upper bound of Corollary 5.2.16 gives us access to
semantical arguments. In particular, this allows us to provide in Section 5.4 an unprov-
ability result for the variant of Cruanes’ calculus considered in this chapter.

5.3 A completeness result

In the previous section we have provided an upper bound for Cruanes’ calculus. Moreover,
we have observed that in the ∃2 setting this upper bound is even Skolem-free. This upper

82

5 Case study: Zipperposition

bound shows us that Cruanes’ calculus is not stronger than induction for ∀1 formulas.
In this section we will show that in the ∃2 setting the upper bound can not be improved.

The argument is essentially the same as the one given in Section 3.2.1. The crucial point
of the argument is to provide a form of the compactness theorem that allows us to obtain
induction formulas whose languages are compatible with the language generated by a
sound saturation system extended by the rules given in Section 5.1. As in Section 3.2.1
we will provide a construction that makes use of proofs in the sequent calculus G in order
to Skolemize induction formulas as needed. Thus, we reformulate the induction axioms
so that the relevant strong quantifiers are prenexed and thus become easier to deal with.

Definition 5.3.1. Let φ(x, y⃗, z⃗) be a formula, then the formula JCx,y⃗φ is given by

(φ(0, y⃗, z⃗) ∧ ((∀y⃗)φ(x, y⃗, z⃗)→ φ(s(x), y⃗, z⃗)))→ (∀x)(∀y⃗)φ(x, y⃗, z⃗).

Lemma 5.3.2. Let φ(x, y⃗) be a formula, then ⊢ (∃x)(∃y⃗)JCx φ↔ Ix(∀y⃗)φ.

Proof. Straightforward.

In order to simplify the notation we introduce some abbreviation for the relevant
induction contexts.

Definition 5.3.3. Let φ(x, y⃗) be a quantifier-free formula, then the induction context
Jxφ is given by ¬ n∧

j=1

Cj(x, y⃗), x, 0

 ,

where C1(x, y⃗), . . . , Cn(x, y⃗) are L(φ) clauses such that

cnf (sk∃(¬(∀x)(∀y⃗)φ(x, y⃗))) = cnf (¬φ(c, d⃗)) = {C1(c, d⃗), . . . , Cn(c, d⃗)}.

We can now formulate the adapted compactness that we will use in the completeness
proof below.

Proposition 5.3.4 (Adapted compactness). Let T be a theory. If the theory

A0 + T + ∀1(L(T) ∪ L0)-IND

is inconsistent, then there is a finite set of formulas S0 ⊆ A0∪ sk∃(T) and quantifier-free
formulas φ1(x, y⃗), . . . , φn(x, y⃗) such that for i = 1, . . . , n with

Si := S0 ∪
{
(JCx,y⃗φj)[x/µJxφj , y⃗/νJxφj] | 1 ≤ j < i

}
,

φi−1 is an L(Si) formula and Sn is inconsistent.

Before we prove Proposition 5.3.4 we prove the following helper lemma.

Lemma 5.3.5. Let S be a finite set formulas not containing weak quantifiers such that
L0 ⊆ L(S). Furthermore, let I be a finite set of formulas of the form (∀z⃗)(∃x)(∃y⃗)JCx,y⃗φ

83

5 Case study: Zipperposition

with φ(x, y⃗, z⃗) a quantifier-free L(S) formula. If S, I =⇒ has a G proof, then there are
quantifier-free formulas ψ1(x, y⃗), . . . , ψn(x, y⃗) such that for i = 1, . . . , n,

L(ψi) ⊆ L(S) ∪
⋃

1≤j<i
L(ψj [x/µJxψj

, y⃗/νJxψj
])

and S + {JCx,y⃗ψi[x/µJxψi
, y⃗/νJxψi

] | 1 ≤ i ≤ n} is inconsistent.

Proof. If S, I =⇒ has a G proof, then it also has a G proof π in atomic cut normal
form. We prove the claim by induction on the number of strong quantifier inferences
of π. If π does not contain a strong quantifier inference, then by permuting quantifier
inferences on ancestors of I downward we obtain a proof ρ of the sequent S =⇒ . On the
other hand, if π contains a strong quantifier inference, then since π is free of non-atomic
cuts and S does not contain weak quantifiers, the principal formulas of strong quantifier
inferences are ancestors of I. Hence, by permuting quantifier inferences downward we
obtain a proof ρ of the form

(ρ′(x, y⃗))

S, JCx,y⃗φ[z⃗/t⃗], I =⇒
L∃

S, (∃y⃗)JCx,y⃗φ[z⃗/t⃗], I =⇒
L∃

S, (∃x)(∃y⃗)JCx,y⃗φ[z⃗/t⃗], I =⇒
L∀∗

S, (∀z⃗)(∃x)(∃y⃗)JCx,y⃗φ, I =⇒
LC

S, I =⇒ ,

where sqi(ρ′) < sqi(ρ) ≤ sqi(π), φ(x, y⃗, z⃗) is a quantifier-free L(S) formula, t⃗ is a vector
of ground L(S) terms. Now let ψ := φ[z⃗/t⃗], then sqi(ρ′(µJx,y⃗ψ, νJx,y⃗ψ)) = sqi(ρ′) <
sqi(µ)). Hence, we can apply the induction hypothesis to ρ′(µI , νI) to obtain the desired
formulas.

Proof of Proposition 5.3.4. IfA0+T+∀1(L(T) ∪ L0)-IND is inconsistent, then by Skolem-
izing T , applying Lemma 5.3.2 and the compactness theorem, there are finite sets of
formulas S′

0 ⊆ A0 + sk∃(T) and

I ⊆ {(∀z⃗)(∃x)(∃y⃗)Jx,y⃗φ | φ(x, y⃗, z⃗) is a quantifier-free L(T) ∪ L0 formula},

such that S′
0 + I is inconsistent. If L(I) ̸⊆ L(S′

0), then we obtain S0 ⊇ S′
0 from S0 by

adding finitely many axioms of A0 + sk∃(T) such that L(I) ⊆ L(S0). Now it suffices to
apply Lemma 5.3.5 to S0 and I in order to obtain the desired formulas.

The proof of the completeness result given below makes use of the formulas obtained
from Proposition 5.3.4 to construct a refutation consisting of two parts. In the first part
we make use of the rules LEM∀1

S and CINDS to derive the clauses corresponding to the
induction axioms. In particular, the lemma rule will be used before each application of
the rule CINDS in order to ensure that there are suitable clauses on which we can carry

84

5 Case study: Zipperposition

out induction. After that, the given refutationally complete saturation system system
will be invoked to obtain a refutation of the clause set derived by the first part.

Theorem 5.3.6. Let T be a theory and S a refutationally complete saturation system.
If A0 + T + ∀1(L(T) ∪ L0)-IND is inconsistent, then the saturation system CS refutes
cnf (sk∃(T) ∪ A0).

Proof. Assume that A0 + T + ∀1-IND is inconsistent, then obtain the sets S0, S1, . . . , Sn
from Proposition 5.3.4. Now we proceed inductively and derive clause sets C0, . . . , Cn such
that L(Si) ⊆ L(Ci) and Ci |= Si. We let C0 = cnf (S0), then the condition above is met.
Now assume that we have obtained Ci, then we construct the clause set Ci+1 as follows.
Let Si+1 = Si∪{Jx,y⃗φi+1[x/µJxφi+1 , y⃗/νJxφi+1]}. Since L(φi+1) ⊆ L(Si) ⊆ L(Ci), we can
now derive the clause set C′i+1 by an application of LEM∀1

S to the sentence (∀x)(∀y⃗)φi+1.
Let cnf (sk∃(¬(∀x)(∀y⃗)φi+1)) = cnf (φi+1(c, d⃗)) = {C1(c, d⃗), . . . , Cn(c, d⃗)}, where C1(x, y⃗), . . . , Cn(x, y⃗)
are L(φi+1). Then,

{C1(c, d⃗) ∨ L(∀x)(∀y⃗)φi+1
, . . . , Cn(c, d⃗) ∨ L(∀x)(∀y⃗)φi+1

} ⊆ C′i+1.

Now we may apply the induction rule CINDS to C′i+1 with the induction context

I := Jx,y⃗φi+1 =

(
¬

n∧
i=1

Ci(x, y⃗), x, 0

)

in order to obtain the clause set Ci+1 given by

C′i+1 ∪ cnf (IPSI) ∪ cnf (IPDI ∨ L(∀x)(∀y⃗)φi+1
). (∗)

The symbol (µJxφi+1)0 and the symbols in νJxφi+1 occur in Ci+1 if and only if they occur
in Si+1. Hence L(Si) ⊆ L(Ci+1). It remains to show that

Ci+1 |= JCx,y⃗φi+1[x/µJxφi+1 , y⃗/νJxφi+1].

First of all observe that
∧n
i=1Ci(c, d⃗) is logically equivalent to ¬φi+1(c, d⃗). Because

c and d⃗ are Skolem constants of prenex quantifiers, these symbols do not occur in
φi+1(x, y⃗) and therefore also do not occur in C1(x, y⃗), . . . , Cn(x, y⃗). Hence, ¬φi+1(x, y⃗)
and

∧n
i=1Ci(x, y⃗) are logically equivalent. Thus ¬

∧n
i=1Ci(x, y⃗) is logically equivalent to

φi+1(x, y⃗).
Now let M be a structure such that M |= Ci+1 and assume that

M |= φi+1(0, νI(y⃗)),

M |= (∀y⃗)φi+1(µI , y⃗)→ φi+1(s(µI), νI).

If M |= L(∀x)(∀y⃗)φi+1
, then since cnf ((∀x)(∀y⃗)φi+1) ← L(∀x)(∀y⃗)φi+1

⊆ Ci+1, we have
M |= (∀x)(∀y⃗)φi+1 and we are done. Otherwise, by (∗) we have M |= IPDI and
M |= IPSI . Hence,M |= Ix,0I ∨I

x,s(x)
I . IfM |= Ix,0I , then we haveM |= ¬IPx,0

I [x/µI , y⃗/νI].

85

5 Case study: Zipperposition

Since, ⊢ IPx,0
I ↔ φi+1(0, y⃗), this case is impossible. On the other hand, if M |= I

x,s(x)
I ,

then we have
M |= ¬IPx,s(x)

I [x/µI , y⃗/νI].

Hence, since ⊢ IP
x,s(x)
I ↔ ((∀y⃗)φi+1(x, y⃗)→ φi+1(x, y⃗)), this contradicts the assumption.

Thus M |= JCx,y⃗[x/µI , y⃗/νI].
Since Sn is inconsistent, also Cn is inconsistent and by the refutational completeness of
S we obtain a refutation of Cn. Hence we have obtained a CS refutation of cnf (sk∃(T)∪
A0).

In the ∃2 setting we have the following characterization of refutation by Cruanes’
system.

Corollary 5.3.7. Let S be a sound and refutationally complete saturation system and
T a Skolem-free, ∃2 theory that is free of split symbols, then the saturation system CS
refutes cnf (A0 + sk∃(T)) if and only if A0 + T + ∀1(L(T) ∪ L0)-IND is inconsistent.

Proof. An immediate consequence of Corollary 5.2.16 and Theorem 5.3.6.

This shows that Cruanes’ system is in the ∃2 setting in principle at least as strong as
the systems based on the various rules considered in Chapter 4. However, the result relies
crucially on applications of the lemma rule LEM∀1

S in order to introduce the necessary
syntactic material. A practical implementations typically uses the lemma rule heuristi-
cally and therefore does not guarantee completeness in the sense of Corollary 5.3.7.

However, what this result and its proof tell us is that we could replace the induction
rule CINDS by a simpler rule that operates on ground subclauses and relies on the
induction axioms Ixφ, where φ is a ∀1 formula. In particular, simultaneous induction
and big-step induction can be simulated by this simplified induction rule together with
the lemma rule LEM∀1

S . Similarly, other improvements that do not strengthen the system
beyond induction for ∀1 induction can be reduced to the simplified induction rule. This
architectural remark is to a certain extent of practical value as the induction rule has to be
implemented only once and heuristics can be included afterwards by suitable applications
of LEM∀1

S . This has the advantage of reducing the soundness of the implementation of a
heuristic to the soundness of the implementation of the induction rule. This observation
gives rise to the interesting question whether such a simplification is possible in a setting
with more complicated datatypes.

Remark 5.3.8. The discussion of the paragraph above is reminiscent of Remark 3.1.12
where we have seen that in presence of sufficiently many Skolem axioms it even suffices
to use induction over quantifier-free formulas. For the calculus considered in this chapter
such a simplification of the induction rule is not possible, despite the Skolem axioms
introduced by the rule LEM∀1

S . This is because the lemma rule LEM∀1
S introduces Skolem

axioms for sentences only.

86

5 Case study: Zipperposition

5.4 Unprovability

In Section 5.2 we have derived an upper bound on the strength of the variant for Cruanes’
calculus given in Section 5.1. In this section we will make use of this upper bound
derived to provide a simple unprovability result for this calculus. In particular, the
unprovability result that we provide here separates ∃1 induction and ∀1 induction. Such
an unprovability result will be become particularly interesting in Chapter 6 where we
consider systems that are based on induction over ∃1 formulas.

Over the base theory of linear arithmetic B induction for ∃1 formulas coincides with
induction over ∀1 formulas. Hence, we need to work in a different setting in order
to find such a sentence that separates induction for ∀1 formulas and induction for ∃1
formulas. Moreover, B + ∃1(L(T))-IND is even a complete theory, thus we will not find
any unprovability results in this setting. As in we did in Chapter 4 we will work in a very
simple setting that provides besides the symbols 0/0 and s/1 a binary predicate symbol
whose intended interpretation is the graph of the function n 7→ 2n.

Definition 5.4.1. Let D2/2 be a predicate symbol. The theory A7 extends the theory A0

by the universal closure of the formulas

D2(0, 0), (A7.1)
D2(x, y)→ D2(s(x), s(s(y))), (A7.2)

D2(x, y1) ∧D2(x, y2)→ y1 = y2. (A7.3)

We proceed as usual by constructing a suitable L(A7) structure in which the predicate
D2(x, y) is not total in y.

Definition 5.4.2. Let the domain of the L(A7) structure M consist of pairs (i, n) ∈
{0, 1} × Z such that i = 0 implies n ∈ N and let M interpret the symbols of L(A7) as
follows

0M = (0, 0),

sM ((i, n)) = (i, n+ 1),

DM
2 = {((0, n), (0, 2n)) | n ∈ N}.

Lemma 5.4.3. M |= A7 + (∀x)(∃y)[x = 0 ∨ x = s(y)].

Proof. It is obvious that M |= 0 ̸= s(x) and M |= s(x) = s(y) → x = y. Furthermore,
it is obvious that M |= (∃y)(x = 0 ∨ x = s(y)). Clearly ((0, 0), (0, 0)) ∈ DM

2 , hence
M |= (A7.1). Let ((i1, n1), (i2, n2)) ∈ DM

2 , then i1 = i2 = 0 and n2 = 2n1. Hence,
n2+2 = 2(n1+1), thus ((0, n1+1), (0, n2+2)) ∈ DM

2 . Therefore, M |= (A7.2). Finally,
by the definition of M it is obvious that M |= (A7.3).

In the following we will show that M satisfies the induction schema for quantifier-free
L(A7) formulas. In order to simplify the considerations, we will mainly work with ∀1
formulas whose quantifier-free matrix is in conjunctive normal form. Formulas in this
representation can easily be simplified by eliminating certain literals.

87

5 Case study: Zipperposition

Lemma 5.4.4. Let C(x⃗, y⃗, z⃗) be a clause, then there exists N ∈ N such that over A0

the formula (∀y⃗)C(sN (x⃗), y⃗, z⃗) is equivalent to (∀y⃗)C ′(x⃗, y⃗, z⃗) where C ′ is a clause not
containing literals of the form sk1(xi) ̸= sk2(yj).

Proof. We proceed by induction on the number of variables of y⃗ occurring in C. If
C contains a literal of the form sk1(xi) ̸= sk2(yj), then (∀y⃗)C is equivalent over ∅
to (∀y⃗)

(
sk1(xi) = sk2(yj)→ C

)
. Then by letting N = k2, (∀y⃗)C(sN (x⃗), y⃗, z⃗) is equiv-

alent over A0 to (∀y⃗)
(
sk1(xi) = yj → C(sN (x⃗), y⃗, z⃗)

)
. Let C ′ := C(sN (x⃗), y⃗, z⃗), then

(∀y⃗)C(sN (x⃗), y⃗, z⃗) is equivalent overA0 to the formula (∀y⃗)C ′[yj/s
ki(xi)]. Since C ′[yj/s

ki(xi)]
does not contain the variable yj we may apply the induction hypothesis to (∀y⃗)C ′[yj/s

ki(xi)]
in order to obtainN ′ and a disjunction of literals C ′′ such that (∀y⃗)C ′[yj/s

ki(xi)][x⃗/s
N ′
(x⃗)]

is equivalent over A0 to (∀y⃗)C ′′. Hence, (∀y⃗)C[x⃗/sN+N ′
(x⃗)] is equivalent over A0 to

(∀y⃗)C ′ and C ′ does not contain a negative literal of the form sk1(xi) ̸= sk2(yj).

The following lemma shows that atoms of L(A7) behave in M very similar to equations
between linear polynomials.

Lemma 5.4.5. Let θ(x, y⃗) be a an L(A7) atom and b⃗ a finite sequence of elements of
M . If M ̸|= θ(x, b⃗), then there exists N ∈ N such that for n ≥ N

M ̸|= θ((1,−n), b⃗) and M ̸|= θ(n, b⃗).

Proof. If θ does not contain x, then we are done by letting N = 0. Now assume that
θ is an equational atom. Then θ is without loss of generality of the form sk1(x) = t2.
If t2 contains x, then t2 = sk2(x) with k1 ̸= k2. Then we are done by letting N = 0.
If t2 does not contain x, then let M |= t2(⃗b) = (i,m). Let n ≥ m + 1 + k1, then
n + k1 ≥ m + 1 + 2k1 > m. Similarly, −n + k1 ≤ −(m + 1) < m. Now assume that θ
is an atom of the form D2(t1(x, y⃗), t2(x, y⃗)). By the definition of DM

2 we already have
M ̸|= D2(t1((1, n), b⃗), t2((1, n), b⃗)) for all n ∈ Z. Suppose that x occurs in t1, then t1 is
of the form sk1(x) If x occurs in t2, then t2 is of the form sk2(x). Let n ≥ k2 + 1, then
2n+ 2k1 ≥ n+ k2 + 1 > n+ k2. If x does not occur in t2, then let M |= t2(⃗b) = (i,m).
If i = 1, then we are done by letting N = 0. Otherwise, let n ≥ m + 1, then we have
2n + 2k1 ≥ n +m + 1 > m. If x does not occur in t1, but occurs in t2 then t2 is of the
form sk(x) and let M |= t1(⃗b) = (i,m). If i = 1, then we are done by letting N = 0.
Otherwise, let n ≥ 2m+ 1, then 2m < 2m+ 1 + k.

The following lemma extends the observation of the previous lemma to quantifier-free
L(A7) formulas.

Lemma 5.4.6. Let φ(x, y⃗) be a quantifier-free formula and b⃗ a finite sequence of elements
of M , then there exists N ∈ N such that either M |= φ((1,−n), b⃗) and M |= φ(n, b⃗) for
all n ≥ N or M ̸|= φ((1,−n), b⃗) and M ̸|= φ(n, b⃗) for all n ≥ N .

Proof. Let θ1(x, y⃗), . . . , θm(x, y⃗) be all the atoms of φ such that M ̸|= θi(x, b⃗) for
i = 1, . . . ,m. Then by Lemma 5.4.5 there exists N ∈ N such that for all n ≥ N , M ̸|=
θi((1,−n), b⃗) and M ̸|= θi(n, b⃗) for i = 1, . . . ,m. Thus we clearly have M |= φ((1,−n), b⃗)
and M |= φ(n, b⃗) for all n ≥ N or M ̸|= φ((1,−n), b⃗) and M ̸|= φ(n, b⃗).

88

5 Case study: Zipperposition

By using the previous results it is now straightforward to show that M satisfies induc-
tion for ∀1(L(A7)) formulas.

Proposition 5.4.7. M |= ∀1(L(A7))-IND.

Proof. Let φ(x, z⃗) be a ∀1(L(A7)) formula and c⃗ a finite sequence of elements of M . Now
assume

M |= φ(0, c⃗), (∗)
M |= φ(x, c⃗)→ φ(s(x), c⃗). (⋆)

By obtaining a logically equivalent conjunctive normal form for φ, moving quantifiers
inwards, applying Lemma 5.4.4 to the conjuncts and rearranging the disjuncts, we obtain
an N ∈ N such that

A0 ⊢ φ(sN (x), z⃗)↔
m∧
i=1

(
Di ∨ (∀y⃗)(C+

i ∨ C
−
i)
)
,

where, for i = 1, . . . ,m, Di(x, z⃗), C−
i (x, y⃗, z⃗), C

+
i (x, y⃗, z⃗) are disjunctions of literals such

that C−
i contains negative literals only and no literals of the form sk1(x) ̸= sk2(yi), C+

i

contains positive literals only, and every literal in C−
i ∨C

+
i contains a variable of y⃗. For

the sake of legibility we let Ci := C−
i ∨ C

+
i .

We have to show M |= φ(x, c⃗). By a straightforward induction and making use of
(∗) and (⋆) we obtain M |= φ(n, c⃗) for all n ∈ N. Since M |= (∃y)[x = 0 ∨ x = s(y)], it
suffices to show M |= (∀x)φ(sN (x), c⃗). Let a ∈ D (M) , if a = (0, n), then M |= a = n
and we are done. Let us now consider the case where a = (1, n) with n ∈ Z. By the
above it thus suffices to show

M |=
m∧
i=1

(Di(a, c⃗) ∧ (∀y⃗)Ci(a, y⃗, c⃗)) . (†)

By Lemma 5.4.6 there exists R ∈ N with R ≥ |n| such that for i ∈ {1, . . . ,m}, either
M |= Di((1,−r), c⃗) and M |= Di(r, c⃗) for r ≥ R or M ̸|= Di((1,−r), c⃗) and M ̸|= Di(r, c⃗)
for r ≥ R. Now suppose that

M |=
m∧
i=1

(Di((1,−R), c⃗) ∨ (∀y⃗)Ci((1,−R), y⃗, c⃗)) , (‡)

then, since −R ≤ n, a straightforward induction making use of (⋆) gives (†). Hence, it
suffices to show (‡). We proceed indirectly and assume that there is i0 ∈ {1, . . . ,m} and
a finite sequence b⃗ of elements of M such that

M ̸|= Di0((1,−R), c⃗) ∨ Ci0((1,−R), b⃗, c⃗). (⋄)

Let us now first show that C−
i0

does not contain the variable x. Suppose that the
variable x occurs in an equational literal of C−

i0
. Then this literal is of the form sk1(x) ̸=

89

5 Case study: Zipperposition

sk2(yi), but such literals do not occur in C−
i0

. Now suppose that x occurs in a literal of
the form ¬D2(t1, t2). There are two cases to consider. If x occurs in t1, then t1 = sk(x)
and by the definition of DM

2 we have M |= ¬D2((1,−R + k), t2(⃗b)), which contradicts
(⋄). If x occurs in t2, then we proceed analogously.

Since in particular M ̸|= C+
i0
(x, b⃗, c⃗), we can apply Lemma 5.4.5 to the atoms in C+

i0

in order to obtain R′ ≥ R such that M ̸|= C+
i0
((1,−R′), b⃗, c⃗) and M ̸|= C+

i0
(R′, b⃗, c⃗).

Moreover, since R′ ≥ R and M ̸|= Di0((1,−R), c⃗), we have M ̸|= Di0((1, R
′), c⃗) and

M ̸|= Di0(R
′, c⃗). Since C−

i0
does not contain x we furthermore have M ̸|= C−

i0
((1, R′), b⃗, c⃗)

andM ̸|= C−
i0
(R′, b⃗, c⃗). Thus, M ̸|= Di0(R

′, c⃗)∨(∀y⃗)Ci0(R′, c⃗). Hence, M ̸|= φ(N +R′, c⃗).
Contradiction!

Since D2(x, y) is not total in M in its second argument we now obtain the desired
independence result.

Theorem 5.4.8. A7 + ∀1(L(A7))-IND ̸⊢ (∀x)(∃y)D2(x, y).

Proof. Observe that M ̸|= D2((1, 0), d) for all d ∈ D (M) .

This readily gives us an unprovability result for Cruanes’ system.

Corollary 5.4.9. Let S be a sound saturation system, then CS does not refute the clause
set cnf (sk∃(A7 + (∃x)(∀y)¬D2(x, y)))

Proof. Assume that the clause set is refuted by CS , then by the upper bound for Cruanes
system (Corollary 5.2.16) the sentence (∀x)(∃y)D2(x, y) is provable in the theory A7 +
∀1(L(A7))-IND. This contradicts Theorem 5.4.8.

The independence result of Theorem 5.4.8 is slightly more involved than the ones
considered in Chapter 4 because the sentence (∀x)(∃y)D2(x, y) contains a quantifier
alternation. Totality statements such as the one above are interesting for automated
inductive provers because the totality and well-definedness of a predicate justifies a func-
tional extension. Especially in theory exploration systems and proof assistants, carrying
out such an extension could be useful because it may be more convenient to work with a
function symbol rather than a defining formula. However, in current practice, automated
inductive theorem provers are mostly used to prove quantifier-free statements.

By the upper bounds given by Chapter 4 it is straightforward to see that the unprov-
ability result given above also applies to the variants of the single-clause and multi-clause
induction rules discussed in Chapter 4. In the next chapter we consider an induction
mechanism in which the clause set of Corollary 5.4.9 has a natural refutation. Moreover,
we will see that an unprovability results such as the one above, that can be overcome
by induction on existentially quantified formulas, are only possible over very simple
background theories that do not prove some simple facts about cut-off subtraction, see
Lemma 5.4.10. In a slightly richer setting the induction schema for ∀1 formulas is already
as powerful as the induction schema for ∃1 formulas

90

5 Case study: Zipperposition

Lemma 5.4.10. Let T be a theory and let “x −̇ y = z” denote an ∃0(L(T)) formula with
free variables x, y, and z such that T proves

“x −̇ 0 = z”↔ z = x,

“x −̇ s(y) = z”↔ (∃v)
(
“x −̇ y = v” ∧ ((v = 0 ∧ z = 0) ∨ v = s(z))

)
,

“x −̇x = 0”.

Then T + ∀n(L(T))-IND ≡ T + ∃n(L(T))-IND, for all n ∈ N.

Proof. We show the direction from right to left. The other direction is analogous. Let
ψ(x, z⃗) be an ∃n(L(T)) formula and assume ψ(0, z⃗) and (∀x)(ψ(x, z⃗)→ ψ(s(x), z⃗)). We
proceed indirectly and assume that ¬ψ(x0, z⃗) for some x0. We proceed by induction x in
the formula (∀y)

(
“x0 −̇x = y”→ ¬ψ(y, z⃗)

)
. Clearly, this formula is logically equivalent

to a ∀n(L) formula. For the induction base, assume “x0 −̇ 0 = y”. Then we have y = x0,
thus, by the assumption we have ¬ψ(x0, z⃗).

For the induction step assume (∀y)
(
“x0 −̇x = y”→ ¬ψ(y, z⃗)

)
and “x0 −̇ s(x) = y0”.

Hence, there exists v such that “x0 −̇x = v and (v = 0 ∧ y0 = 0) ∨ y0 = s(v). If
v = 0 and x = 0, then by the induction hypothesis ¬ψ(v, z⃗), that is ¬ψ(0, z⃗) which
contradicts the assumptions. If v = s(y0), then by the induction hypothesis we first
obtain ¬ψ(v, z⃗), that is, ¬ψ(s(y0), z⃗), hence by the assumption we obtain ¬ψ(y0, z⃗).
Thus we have (∀x)(∀y)(“x0 −̇x = y”→ ¬ψ(y, z⃗)). Hence, “x0 −̇x0 = 0” → ¬ψ(0, z⃗).
Since “x0 −̇x0 = 0”, we obtain ¬ψ(0, z⃗). Contradiction!

By Herbrand’s theorem (see Theorem 2.1.5) one can show that an analogous property
does not hold in general for the induction rules. The proof above relies on the introduction
of an additional induction parameter. In general parameter-free induction over ∃1 and
∀1 formulas are also not the same.

In the same way as we have shown the independence result of Theorem 5.4.8 we could
obtain similar results for predicates that describe the graphs of polynomials and other
functions. It could be interesting to investigate whether this idea can be systematized
based on the growth rate of the function under consideration. For example, a posi-
tive answer to the following question would by Herbrand’s theorem (see Theorem 2.1.5)
immediately yield an alternative proof of Theorem 5.4.8.

Question 5.4.11. Do we have A7 + ∀1(L(A7))-IND ≡∃1(L(A7)) A7 + ∀1(L(A7))-INDR?

91

6 Clause set cycles

In this chapter we will consider another integration of induction into saturation-based
theorem provers. This extension of saturation provers is based on the detection of cyclic
dependencies between the clause sets that are derived by the prover. This extension
differs from the methods considered in Chapters 3 and 4 in that the mechanism does not
derive additional clauses and instead terminates the refutation once a cyclic dependency
is detected. The cyclic dependencies that we consider in this chapter are an abstraction
of the cycles detected by Kersani and Peltier’s n-clause calculus [KP13; Ker14]—an
extension of the superposition calculus by a cycle detection mechanism.

The content of this chapter is mostly based on the articles [HV20] and [HV22]. How-
ever, this chapter also provides some new complementary results. In Section 6.1 we
introduce the notion of clause set cycle and discuss how we consider that this formalism
relates to saturation-based provers. Moreover, we show that some practically motivated
extensions of clause set cycles do not result in a stronger formalism. In Section 6.2 we
compare clause set cycles to other induction systems. In particular, we will see that refu-
tation by a clause set cycle naturally overcomes the unprovability example for the variant
of Cruanes’ calculus considered in Chapter 5. After that, we give in Section 6.3 a char-
acterization of refutation by a clause set cycle in terms of a logical theory by discerning
the logical features of clause set cycles. Finally, in Section 6.4 we provide several unprov-
ability results for refutation by a clause set cycle. These unprovability results exploit
different logical features of clause set cycles and therefore motivate various extensions of
AITP systems. Some of these extension are not straightforward to formulate as exten-
sions of clause set cycles and therefore make the logical characterization of Section 6.3
particularly useful.

6.1 Clause set cycles

Refutation by a clause set cycle is a formalism introduced in [HV20] by the authors
of this article to describe abstractly the inductive arguments that take place in the n-
clause calculus [KP13; Ker14]. The n-clause calculus is an extension of the superposition
calculus by a mechanism that detects cyclic dependencies between the derived clauses.
These cyclic dependencies correspond to arguments by infinite descent and thus establish
the inductive unsatisfiability of a set of clauses. The notion of refutation by a clause set
cycle abstracts the underlying superposition calculus and the detection of the cycle in
that proof system and therefore extracts the essence of the arguments by infinite descent
that may appear in refutations by the n-clause calculus.

Since all the variables occurring in clauses are implicitly universally quantified, a clause
set does not have a free variable on which we can carry out an argument by induction.

92

6 Clause set cycles

Instead we will rely on a special constant symbol η, on which arguments by infinite
descent will take place. This is in analogy to the special constant n that is used by the
n-clause calculus for the same purpose, see [KP13]. The constant η can be thought of
as a Skolem constant, that is selected before a refutation is attempted. In particular,
clauses may of course contain other Skolem symbols besides η.

Carrying out arguments by infinite descent (or induction) only on positions of constants
is unsurprisingly very restricting (see Corollary 3.1.11). Since clause set cycles are used
as an abstraction of the inductive cycles of the n-clause calculus, we did not extend
the formalism to allow arguments to take place in more varied positions. The logical
characterization that we give in Section 6.3 makes considering such extensions easier. In
particular, of the unprovability result given in this chapter, only Corollary 6.4.4, does
not rely on this restriction. A method that lifts this restriction has been proposed in
[EP20].

Remark 6.1.1. In the literature [KP13; Ker14; HV20] a constant such as η is usually
called a parameter. In order to avoid confusion with induction parameters in the sense
of Definition 2.5.9 we will not use this designation.

Let C be a clause set possibly containing η, then we write C(η) to indicate all the
occurrences of η in C. Let furthermore t be a term, then C(t) denotes the clause set
obtained by replacing all the occurrences of η in C by t.

Definition 6.1.2 (Refutation by a clause set cycle). Let L be a first-order language not
containing η. A finite L∪{η} clause set C(η) is called an L clause set cycle if it satisfies
the following conditions

C(s(η)) |= C(η), (C1)
C(0) |= ⊥. (C2)

Let D(η) be an L ∪ {η} clause set, then D(η) is refuted by an L clause set cycle C(η) if

D(η) |= C(η). (C3)

A clause set cycle represents an argument by infinite descent in the following sense.
Suppose there is an L∪{η} structure M with D(M) = N such that M |= C(η). By (C2)
we have ηM > 0. Now let m ∈ N, then we denote by M [η 7→ m] the L ∪ {η} structure
with the same domain as M , that interprets all non-logical symbols except η as M does,
and interprets η as m. Then we have M [η 7→ ηM − 1] |= C(s(η)) and by (C1) we now
obtain M [η 7→ ηM −1] |= C(η). Hence, we obtain an infinite strictly descending sequence
of natural numbers m such that M [η 7→ m] |= C(η). This is impossible, hence M ̸|= C(η).

Definition 6.1.3. By C(η) we denote the LLA ∪ {η} clause set

cnf (B +B2) ∪ {{η ̸= x+ x}, {η ̸= s(x+ x)}}.

Example 6.1.4. Intuitively, the clause set C(η) asserts the existence of an element η,
which is neither even nor odd. We will now show that C(η) is a clause set cycle.

93

6 Clause set cycles

We start by showing that C(η) satisfies Condition (C2). Suppose that C(0) has a model
M , then we have in particular M |= 0 ̸= 0+0 = 0. This is a contradiction, and therefore
C(0) |= ⊥.

For Condition (C1), let M be a model of C(s(η)). Clearly, we have M |= cnf (B+B2),
hence we only have to show that M |= η ̸= x + x and M |= η ̸= s(x + x). Suppose that
M |= η = d+d for some d ∈M , then we have M |= s(η) = s(d+d). Since M |= C(s(η)),
we also have M |= s(η) ̸= s(d+ d), a contradiction. Now suppose that M |= η = s(d+ d)
for some d ∈M . Since M |= C(s(η)), we also have M |= s(η) = s(s(d+d)) = s(d)+s(d).
Thus M |= C(η), that is, C(s(η)) |= C(η).

Hence, C(η) is a clause set cycle and therefore refutes itself.

The induction argument contained in a refutation by a clause set cycle is peculiar
in the sense that it does not take place in an explicit background theory. Instead of a
background theory clause set cycles may contain clauses free of η that act as a background
theory. In the example above the clause set cycle contains the clauses cnf (B+B2), that
correspond to the background theory. This phenomenon will be considered in more detail
in Lemma 6.3.9.

Now let us briefly discuss how the notion of refutation by a clause set cycle may be
integrated into a saturation-based theorem prover. This will be important to understand
the scope of the unprovability results given in Section 6.4.

Definition 6.1.5. The clause set cycle rule for saturation systems is given by

C1(η) . . . Cn(η)
CSCS

□

where C1, . . . , Cn are clauses such that {C1, . . . , Cn} is a clause set cycle.

Lemma 6.1.6. Let S be a sound saturation system and let C(η) be a clause set. If C is
refuted by S +CSCS, then C is refuted by a L(C) \ {η} clause set cycle.

Proof. Let C0, . . . , Cn be a S+CSCS refutation. Without loss of generality we can assume
that the CSCS is applied only once and is used to derive the clause set Cn. Hence, n ≥ 1
and C0, . . . , Cn−1 is a S deduction. By the soundness of S we have L(Ci) ⊆ L(C0) for
i = 1, . . . , n. Moreover, C0 |= Cn−1 and there is a finite subset D of Cn−1 such that D is
a clause set cycle. Since D ⊆ Cn−1, we have Cn−1 |= C. Hence, D is an L(C0) clause set
cycle and C0 |= D.

Let S be a saturation system and consider the system S + CSCS. In this system the
rule CSCS relies on the saturation system S to generate the clauses for which a clause
set cycle may be detected. This situation is similar to the way that the rules considered
in Chapters 4 and 5 rely on the underlying saturation system. Thus, we will qualify
informally the rule CSCS as analytic. Because of the analyticity of the clause set cycle
detection rule, the converse of the lemma above does likely not hold.

By Lemma 6.1.6 we can approximate sound saturation systems extended by the rule
CSCS simply by the notion of refutation by a clause set cycle of Definition 6.1.2. Of

94

6 Clause set cycles

course, many practical systems extend the language of the prover for example by predicate
symbols introduced for clause splitting. We do not consider such language extending
mechanisms in this chapter and leave this as future work. Also observe that the clause
set cycle rule given above is different from the induction rules for saturation systems that
we have considered so far in that it is applied only once to terminate the refutation and
does, in particular, not extend the working language of the prover by Skolem symbols.
Furthermore, observe that the clause set cycle rule given above is also analytic in the
sense that it detects only clause set cycles among derived clauses. As for the other
methods considered so far we do not take into account this feature. Nevertheless we will
obtain sufficiently simple unprovability results.

Since it is now clear how we intend that clause set cycles are used by saturation systems,
we introduce some additional terminology in order to speak about formulas.

Definition 6.1.7. Let φ be a sentence possibly containing the constant η, then we say
that φ is proved by a clause set cycle (in symbols ⊢CSC φ) if cnf (sk∃(¬φ)) is refuted by
a L(sk∃(¬φ)) \ {η} clause set cycle.

The cycles detected by practical methods such as the n-clause calculus differ from
clause set cycles in that they can be controlled by three parameters: An external offset,
an internal offset, and the step size of the descent. Just as for the induction mechanisms
considered in Chapter 4, these additional parameters allow the system to overcome some
difficulties due to the inherent analyticity of rules like the clause set cycle rule given
above. In the following we will show that when disregarding analyticity in the sense
of Lemma 6.1.6, these parameters do not increase the overall strength of the system.
In particular, a more detailed analysis taking into account the analyticity of a cycle
detection rule may result in even more elementary unprovability results than those given
in this thesis.

Definition 6.1.8. Let L be a first-order language not containing η and j, k ∈ N with
j ≥ 1. A finite L ∪ {η} clause set C(η) is called an L (j, k)-clause set cycle if

C(sj+k(η)) |= C(sk(η)), (C1’)

C(m+ k) |= ⊥, for m = 0, . . . , j − 1. (C2’)

We call the parameter j the internal offset and k the descent step size. Let i ∈ N and
D(η) an L ∪ {η} clause set, then D(η) is refuted by the (j, k)-clause set cycle C(η) with
external offset i, if

D(si(η)) |= C(sk(η)), (C3’)
D(m) |= ⊥, for m = 0, . . . , i− 1. (C3”)

Clearly, clause set cycles in the sense of Definition 6.1.2 are exactly the (1, 0)-clause set
cycles. A refutation by a clause set cycle in the sense of Definition 6.1.2 is a refutation
by a (1, 0)-clause set cycle with external offset 0.

We start by showing that (j, k)-clause set cycles with j, k ∈ N and j ≥ 1 can be
simulated by clause set cycles.

95

6 Clause set cycles

Lemma 6.1.9. Let L be a first-order language not containing η, j, k ∈ N with j ≥ 1,
and C(η) an L (j, k)-clause set cycle. Then there exists a clause set cycle C′(η) such that
C(sk(η)) |= C′(η).

Proof. We start by eliminating the internal offset of the (j, k)-clause set cycle, by letting
C′(η) := C(sk(η)). It is clear that C′ is a (j, 0)-clause set cycle. Moreover by the definition
of C′ we have C(sk(η)) |= C′(η). Let C′′(η) be the clause set obtained by applying
Lemma 2.4.5 to the set C := {C′(sm(η)) | m = 0, . . . , j − 1}. We will now show that
C′′(η) is a clause set cycle. Suppose that M |= C′′(0), then M |= C′(m) for some m ∈
{0, . . . , j − 1}, which is impossible and therefore C′′(0) |= ⊥. Now suppose that M |=
C′′(s(η)). Then we have M |= C′(sm+1(η)) for some m ∈ {0, . . . , j− 1}. If m+1 ≤ j− 1,
then C(sm+1(η)) ∈ C and therefore M |= C′′(η). Otherwise we have m + 1 = j and
therefore by C1’ we obtain M |= C′(η) and therefore M |= C′′(η). Since C′(η) ∈ C, we
have C′(η) |= C′′(η).

Now we can show that a refutation by a (j, k)-clause set cycle with internal offset i,
where i, j, k ∈ N with j ≥ 1 can be reduced to a refutation by a clause set cycle.

Proposition 6.1.10. Let L be a first-order language not containing η, D(η) an L∪ {η}
clause set, and i, j, k ∈ N with j ≥ 1. If D is refuted by an L (j, k)-clause set cycle with
external offset i, then D(η) is refuted by a clause set cycle.

Proof. Let C(η) be an L (j, k)-clause set cycle such that D(η) is refuted by C with external
offset i. By Lemma 6.1.9 there exists a clause set cycle C′(η) such that C(sk(η)) |= C′(η).
Hence D is refuted by a (1, 0)-clause set cycle with external offset i. In the next step we
will eliminate the external offset. Let C := {D(sm(η)) | m = 0, . . . , i − 1} ∪ {C′(η)} and
apply Lemma 2.4.5 in order to obtain a clause set C′′(η) corresponding to the disjunction
of the clause sets in C. We will now show that C′′(η) is a clause set cycle. Suppose that
M |= C′′(0), then either M |= D(sm(η)) for some m ∈ {0, . . . , i − 1} or M |= C′(0).
The first case is impossible because of Condition C3” and the second case is impossible
because C′(η) is a clause set cycle and therefore C′(0) |= ⊥. Hence we have C′′(0) |= ⊥.
Now suppose that M |= C′′(s(η)). If M |= C′(s(η)), then we have M |= C′(η) because
C′ is a clause set cycle and therefore M |= C′′(η). If M |= D(sm+1(η)) for some m ∈
{0, . . . , i− 1}, we need to consider two cases. If m+1 < i, then we have D(sm+1(η)) ∈ C
and therefore M |= C′′(η). Otherwise we have m + 1 = i, and therefore we obtain
M |= C′(η) by Condition C3’. Again we obtain M |= C′′(η). Hence C′′(η) is a clause set
cycle. We complete the proof by observing that D(η) |= C′′(η), since D(η) ∈ C. Hence,
D(η) is refuted by the clause set cycle C′′(η).

Remark 6.1.11. [HV20] uses a slightly different notation. A refutation by a clause set
cycle in [HV20] corresponds to a refutation by a (1, 0)-clause set cycle with external offset
i ∈ N. Hence, by Proposition 6.1.10 the notion of refutation by clause set cycle used in
[HV20] is exactly as powerful as the more elegant notion of refutation by a clause set
cycle used in this article.

96

6 Clause set cycles

As already mentioned earlier, the notion of refutation by a clause set cycle is a useful
intermediary abstraction of the induction mechanism of a family of AITP systems in-
cluding in particular the n-clause calculus [KP13; Ker14]. Since our goal is to develop a
uniform logical representation of methods for AITP, we thus use the notion of refutation
by a clause set cycle as a starting point to provide logical abstractions of AITP systems
such as the n-clause calculus. In particular, we want, for a fixed language L not con-
taining η, to provide a logical theory T that simulates refutation by a clause set cycle in
the following sense: Let D(η) be an L∪ {η} clause set that is refuted by an L clause set
cycle, then T +D(η) is inconsistent.

In the next section we will consider some examples of what we can prove (refute) with
clause set cycles. In particular this will show us that clause set cycles can prove sentences
that are not provable by any the systems discussed in Chapters 4 and 5.

6.2 Induction over bounded and ∀1 formulas

In this section we mention some examples that can be proved with clause set cycles but
that can not be proved with some of the systems considered previously or with some
related variants of induction. This will give us some idea of the power inherent to clause
set cycles. In the first part of this section we give a concrete example based on the
unprovability result given in Section 5.4. After that, in the second part we provide a
variant of Parikh’s theorem which provides us with a technique for obtaining examples
that can be handled by clause set cycles but not by systems that infer only bounded
formulas. This will in particular allow us to obtain Proposition 4.4 of [HV20] as a
corollary.

We start by considering a variant of the clause set provided in Section 5.4 which is not
refuted by the variant of Cruanes’ calculus considered in Chapter 5 nor by the systems
considered in Chapter 4.

Lemma 6.2.1. The clause set cnf (A7 + (∀y)¬D2(η, y)) is a clause set cycle.

Proof. Let C(η) := cnf (A7 + (∀y)¬D2(η, y)). Suppose that M |= C(0), then by (A7.1)
we have M |= D2(0, 0) and M ̸|= D2(0, 0) because M ̸|= D2(0, y). Now assume that
M |= C(s(η)) and let d ∈ D (M). In particular, we thus have M ̸|= D2(s(η), s(s(d))).
Hence by (A7.2) we obtain M |= ¬D2(η, d). Therefore, M |= C(η).

The lemma above not only shows us that clause set cycles overcome the unprovability
of Section 5.4 but also that the clause set which is not refuted by Cruanes’ calculus is
itself a clause set cycle and should thus be simple to detect for methods based on clause
set cycles. However, we will show in Section 6.4 that clause set cycles are not in general
stronger than Cruanes’ calculus. We will even show that clause set cycles are not even
as strong as induction over quantifier-free formulas.

The discrepancy between clause set cycles and Cruanes’ system is essentially due to
the incompatibility of induction for ∃1 formulas and induction for ∀1 formulas. However,
as shown by Lemma 5.4.10 such examples do already not exist when the background

97

6 Clause set cycles

theory proves some basic facts about cut-off subtraction. In this case it makes sense
to compare clause set cycles and weaker systems based on induction for quantifier-free
formulas. By Shoenfield’s theorem we readily obtain, for example, the following result.

Lemma 6.2.2. B +Open(LLA)-IND ̸⊢ ∃y(x = y + y ∨ x = s(y + y))

Proof. By Theorem 4.1.18 it suffices to show that B′ ̸⊢ ∃y(x = y + y ∨ x = s(y + y)).
Consider the LLA structure M whose domain consists of the pairs of the form (m,n) ∈
N × Z such that m = 0 implies n ∈ N and that interprets the non-logical symbols as
follows:

0M = (0, 0),

sM ((m,n)) = (m,n+ 1),

pM ((m,n)) =

{
(m,n −̇ 1) if m = 0,

(m,n− 1) otherwise
,

(m1, n1) +
M (m2, n2) = (m1 +m2, n1 + n2).

It is routine to verify that M |= B′. Consider the element (1, 0), then clearly there
is no element (m,n) of M such that (1, 0) = (m,n) +M (m,n) = (2m, 2n) or (1, 0) =
sM ((m,n) +M (m,n)) = (2m, 2n+ 1).

By Example 6.1.4 we thus have an example where refutation by clause set cycles is
stronger than induction for quantifier-free formulas.

By generalizing the argument used in [HV20] for the independence of the triangular
number predicate by adapting Parikh’s theorem ([Par71]) to our setting, we will now
obtain a class of independence results for induction over bounded formulas (see Defi-
nition 6.2.5). For the sake of the completeness of the presentation we recall the basic
model theoretic concepts and the proof of Parikh’s theorem. The argument developed
in the following provides quite a systematic way of showing that clause set cycles prove
sentences that cannot be proved by systems that extend a Π1 axiomatized base theory
by true Π1 formulas. In particular this allows us to show that clause set cycles are also
stronger than induction over bounded formulas and anticipates unprovability results for
the family of methods discussed in Chapter 8.

We work in a setting with a binary infix predicate symbol ≤, whose intended interpre-
tation is the natural linear order of N. The following definition describes the notion of
substructure, that is, a structure that is included in some larger structure.

Definition 6.2.3. Let L be a language and M,N L structures, then we call M a sub-
structure of N , in symbols M ⊆ N if D (M) ⊆ D (N), PM = PN ∩ D (M)k for each
predicate symbol P/k ∈ L, and fM = fN |D(M)k for each function symbol f/k of L.

We will be particularly interested in substructures in which ≤ is downward-closed.

Definition 6.2.4. The symbol ≤ is a binary predicate symbol. Let L be a language
containing the symbol ≤ and M,N L structures. We say that M is an initial segment of

98

6 Clause set cycles

N (or N is an end-extension of M , or M is a cut of N), in symbols M ⊆e N , if M is a
substructure of N and for all a ∈ D (M) and b ∈ D (N), N |= b ≤ a implies y ∈ D (M).

These initial segments have the interesting property that the interpretation of bounded
formulas does not change relative to end-extensions.

Definition 6.2.5. Let φ be a formula, x a variable, and t a term not containing the vari-
able x, then (∃x ≤ t)φ is an abbreviation for (∃x)(x ≤ t ∧ φ) and, similarly, (∀x ≤ t)φ
is an abbreviation for (∀x)(x ≤ t→ φ). We call the quantifiers (∃x ≤ t) and (∀x ≤ t)
bounded quantifiers. A formula is bounded if it only contains bounded quantifiers. Let
L be a language containing the symbol ≤, then Σ0(L) = Π0(L) = ∆0(L) is the set of
bounded L formulas. Furthermore, Σn+1(L) (Πn+1(L)) is the set of formulas of the form
(∃x⃗)φ(x⃗, y⃗) ((∀x⃗)φ(x⃗, y⃗)) where φ is a Πn(L) (Σn(L)) formula and x⃗ is a possibly empty
vector of variables.

Note that the terms at the bounds of the quantifiers are L terms. For more precise
statements one usually also distinguishes between the language of the formula and the
language of the terms at bounds of quantifiers. However, for the purposes of this section
such a distinction is not necessary.

Definition 6.2.6. Let L be a language containing ≤, Γ a set of L formulas, and M ⊆ N
L structures, then M is a Γ-elementary substructure of N (in symbols M ≺Γ N) if for
all γ(x⃗) ∈ Γ and d⃗ ∈ D (M)|x⃗|, M |= γ(d⃗) if and only if N |= γ(d⃗).

Lemma 6.2.7. Let L be a language containing ≤, and M,N L structures such that
M ⊆e N , then M ≺∆0(L) N .

Proof. Let φ(x⃗) be a ∆0(L) formula. We proceed by induction on the structure of φ and
show that for all d⃗ ∈M |x⃗|, M |= φ(d⃗) if and only if N |= φ(d⃗). If φ is an atom, then we
clearly have M |= φ(d⃗) if and only if N |= φ(d⃗). If φ is of the form φ1 ∧ φ2, then by the
induction hypothesis we have M |= φi(d⃗) if and only if N |= φi(d⃗) for i = 1, 2. Hence,
we have M |= φ1(d⃗)∧ φ2(d⃗) if and only if N |= φ1(d⃗)∧ φ2(d⃗). We proceed similarly if φ
is of the form φ1 ∨ φ2 or of the form ¬φ′. If φ is of the form (∃y ≤ t(z⃗))φ′(x⃗, y, z⃗), then
by the induction hypothesis we have M |= φ′(d⃗, a, b⃗), for all d⃗ ∈ D (M)|x⃗|, a ∈ D (M),
b ∈ D (M)|z⃗|. Let d⃗ ∈ D (M)|x⃗| and b ∈ D (M). Assume that M |= (∃y ≤ t(⃗b))φ(d⃗, y, b⃗),
then there exits a ∈ D (M) such that M |= a ≤ t(⃗b)∧φ(d⃗, a, b⃗). Since M is a substructure
of N , we have N |= a ≤ t(⃗b) and by the induction hypothesis N |= φ(d⃗, a, b⃗), thus,
N |= (∃y ≤ t(⃗b))φ(d⃗, y, b⃗). Now assume that N |= (∃y ≤ t(⃗b))φ(d⃗, y, b⃗), then there exists
a ∈ D (N) such that N |= a ≤ t(⃗b) ∧ φ(d⃗, a, b⃗). Since M ⊆e N , we have a ∈ D (M)
and therefore M |= a ≤ t(⃗b). Furthermore, by the induction hypothesis we have M |=
φ(d⃗, a, b⃗). We proceed analogously when φ is of the form (∀x ≤ t(z⃗))φ′.

Lemma 6.2.8. Let L be a language containing ≤, and let M ⊆e N be L structures,
φ(x⃗) ∈ Σ1(L), ψ(x⃗) ∈ Π1(L), and a⃗ ∈ D (M)|x⃗|, then

(i) M |= φ(⃗a) implies N |= φ(⃗a),

99

6 Clause set cycles

(ii) N |= ψ(⃗a) implies M |= ψ(⃗a).

Proof. An immediate consequence of Lemma 6.2.7.

We are now ready to show the variant of Parikh’s theorem that we will use for the
separation of refutation by a clause set cycle from induction over bounded formulas. Let
t⃗, r⃗ be finite sequences of terms of the same length, then we write t⃗ ≤ r⃗ as an abbreviation
for
∧|⃗t|
i=1 ti ≤ ri. Similarly, if t′ is a term, then t⃗ ≤ t′ is an abbreviation for

∧|⃗t|
i=1 ti ≤ t′.

Theorem 6.2.9 (Variant of Parikh’s theorem). Let L be a language containing the pred-
icate symbol ≤, T be a set of Π1(L) sentences such that for all L terms t1, . . . , tn there
exists a L term t′ such that T ⊢ t1, . . . , tn ≤ t′, T ⊢ x ≤ y ∧ y ≤ z → x ≤ z, and for all
function symbols f of L there is a L term tf (y⃗) such that T ⊢ x⃗ ≤ y⃗ → f(x⃗) ≤ tf (y⃗).
Let ψ(x, y) be a ∆0(L) formula. If T ⊢ (∀x)(∃y)ψ(x, y), then there exists a L term t(x)
such that T ⊢ (∀x)(∃y ≤ t(x))ψ(x, y).

Proof. We proceed indirectly and assume that for all terms t, T+(∃x)(∀y ≤ t(x))¬ψ(x, y)
is consistent. Now let t1, t2, . . . , be an enumeration of the L terms and let c/0 be
a function symbol not occurring in L. We will show that the following theory T ′ is
consistent

T + {(∀y ≤ ti(c))¬ψ(c, y) | i ∈ N}.

Suppose that T ′ is inconsistent, then by the compactness theorem there is m ∈ N such
that T + {(∀y ≤ ti(c))¬ψ(c, y) | 1 ≤ i ≤ m} is inconsistent. By the properties of T
there exists a term t(x) such that T ⊢ t1, . . . , tm ≤ t. Hence, T + (∀y ≤ t(c))¬ψ(c, y)
is inconsistent as well. But this means that T ⊢ (∀x)(∀y ≤ t(x))ψ(x, y), contradiction!
Now let N be a model of T ′ and

M := {a ∈ D (N) | N |= a ≤ ti(c) for some i ∈ N}.

We will now show thatM induces an initial segmentM ofN . For a predicate symbol P/k
of L, we define PM = PN∩Mk. Now consider a function symbols f/k of L and let fM :=
fN |M. We will show that the function fM is closed on M. Let d⃗ ∈ Mk, then there are
terms t⃗ = (ti1(c), . . . , tik(c)) such that N |= di ≤ ti1(c). By the monotonicity condition of
f we thus have N |= f(d⃗) ≤ tf (⃗t). Since tf (⃗t) = ti(c) for some i ∈ N we have f(d⃗) ∈M.
Hence, M is a substructure of N . Now let a ∈ D (M) and b ∈ D (N) and assume that
N |= b ≤ a. Then there is an i ∈ N such that N |= a ≤ ti(c), thus by transitivity of ≤
we also have N |= b ≤ ti(c). Hence, M ⊆e N . By Lemma 6.2.8.(ii), M is a model of T ,
and moreover M |= (∀y)¬ψ(c, y), thus M ̸|= (∀x)(∃y)ψ(x, y). Contradiction!

Thanks to Theorem 6.2.9 we can now obtain many examples that allow us to separate
refutation by a clause set cycle from other systems with induction. These examples are
based on the idea that functions that grow fast enough are not provably total in T .
Consider for example the following theory that extends the base theory of arithmetic
with addition and a predicate symbol representing the graph function that assigns to n
the n-th triangular number.

100

6 Clause set cycles

Definition 6.2.10. Let D▷ be a binary predicate symbol. The theory T▷ extends the base
theory of linear arithmetic B by the universal closure of the formulas

D▷(0, 0).

D▷(x, y)→ D▷(s(x), s(x) + y).

The theory U▷ extends the theory B by the universal closure of the formulas

D▷(0, y)↔ y = 0,

D▷(s(x), y)↔ (∃v ≤ y)[D▷(x, v) ∧ y = s(x) + v],

x ≤ y → (∃z ≤ y)(z + x = y),

(∃z)(z + x = y)→ x ≤ y.

Let L be a language containing ≤ and let M be a L structure, then we denote by
Πn(M) the set of Πn(L) sentences that are true in M .

Proposition 6.2.11. U▷ +Π1(NL(U▷)) ̸⊢ (∀x)(∃y)x ▷ y

Proof. Let us abbreviate by T the theory U▷+Π1(NL(U▷)). Clearly, T proves that 0, s, +
are monotonic and x ≤ y → p(x) ≤ y. Now proceed indirectly and assume that T proves
(∃y)x ▷ y. Since T is Π1(L(T)) axiomatized, there exists by Theorem 6.2.9 a term t(x)
consisting of the symbols 0, s,+ and p such that T proves (∃y ≤ t(x))x ▷ y. However,
in the standard model t is bounded by a linear function and the triangular number grow
strictly faster than a linear function. Contradiction!

As a corollary we can also bound the growth rate of some provably total functions of
U▷ +∆0(L(U▷))-IND by terms of the language of U▷.

Corollary 6.2.12. U▷ +∆0(L(U▷))-IND ̸⊢ (∀x)(∃y)x ▷ y

Proof. It is straightforward to see that T has a Π1(L(U▷)) axiomatization, hence the
claim follows immediately from Proposition 6.2.11.

Definition 6.2.13. We denote by S▷(η) the clause set cnf (T▷ + (∀y)¬η ▷ y).

The clause set S▷ expresses that the triangle function is not total.

Lemma 6.2.14. The clause set S▷(η) is a L(T▷) clause set cycle.

Proof. We have S▷(0) |= D▷(0, 0) and S▷(0) |= ¬D▷(0, y). Hence S▷(0) |= ⊥. Now
assume S▷(s(η)). Since the clauses of S▷ that are free of η occur in S▷(s(η)), we only
need to show that S▷(s(η)) |= ¬D▷(η, y). Let y be arbitrary, then obtain S▷(s(η)) |=
¬D▷(s(η), s(η) + y). Since S(s(η)) |= D▷(x, y)→ D▷(s(x), s(x) + y), we have ¬D▷(η, y).
Therefore the clause set S▷ is a clause set cycle.

Again since S▷ is a clause set cycle, this clause set is expected to be easy to detect
by AITP systems that rely on clause set cycles, since there is no need to guess an
intermediary clause set cycle. It is straightforward to see that U▷+∆0(L(T▷))-IND ⊢ T▷.
Hence, by Corollary 6.2.12, S▷ +∆0(L(T▷))-IND is consistent.

101

6 Clause set cycles

Remark 6.2.15. In Chapter 8 Parikh’s theorem also immediately yields unprovability
results for a family of theory exploration-based AITP systems.

Thus clause set cycles are powerful enough to prove many interesting properties that
cannot be proved with other systems. However, in Section 6.4 we will see that there
are simple properties that can be proved even with quantifier-free induction but that
cannot be proved with clause set cycles. In the next section we give a characterization
of refutation by a clause set cycle in terms of a logical theory.

6.3 Logical characterization

In the previous sections we have introduced the notion of refutation by a clause set cycle
and discussed how refutation by clause set cycles can be integrated into saturation-based
provers. Furthermore, we have seen that clause set cycles are powerful enough to prove
properties that cannot be proved with the systems described in Chapters 4 and 5. In
this section we will give a characterization of refutation by a clause set cycle in terms of
a logical theory. This characterization will be useful to provide unprovability results for
clause set cycles and to consider possible extensions of the system that are perhaps not
so easy to consider in terms of clause set cycles. The characterization that we develop
in this section works over sets of clauses and does therefore not address the issue of
the Skolem symbols introduced via clausification. However, the unprovability results of
Section 6.4 are developed in a setting similar to the ∃2 setting where clausification does
not introduce additional Skolem symbols.

We start by converting clause set cycles into formulas. After that, we will discuss
several remarkable properties of clause set cycles that will allow us to give a logical
characterization of refutation by a clause set cycle.

Lemma 6.3.1. Let C(η) be an L clause set cycle, then the formula ¬cnf −1(C)[η/x] is
∅-inductive. Let D(η) be an L ∪ {η} clause set that is refuted by the clause set cycle
C(η), then ¬cnf −1(C) +D(η) is inconsistent.

Proof. Clearly, we have M |= ¬cnf −1(C) if and only if M ̸|= C. Hence, |= ¬cnf −1(C(0))
and ¬cnf −1(C(η)) |= ¬cnf −1(C(s(η))). Therefore, by the completeness theorem and the
deduction theorem for first-order logic we have

⊢ ¬cnf −1(C(0)),
⊢ ¬cnf −1(C(η))→ ¬cnf −1(C(s(η))).

Thus, ⊢ ¬cnf −1(C)[η/0] and ⊢ ¬cnf −1(C)[η/x] → ¬cnf −1(C)[η/s(x)]. The second part
of the lemma is obvious.

Let C be a clause set cycle, then by the lemma above the formula ¬cnf −1(C)[η/x] is
the formula that corresponds to the induction argument contained in a refutation by a
clause set cycle. In the following we will discern four important features of a refutation
by a clause set cycle:

102

6 Clause set cycles

1. The formula ¬cnf −1(C)[η/x] is logically equivalent to an ∃1 formula;

2. The only free variable of ¬cnf −1(C)[η/x] is the variable on which the argument
by induction takes places. Hence the induction captured by clause set cycles is
essentially parameter-free induction;

3. The formula ¬cnf −1(C)[η/x] is ∅-inductive. In a refutation by a clause set cycle,
there is no explicit induction axiom. Instead, whenever a clause set C(η) is shown
to be a clause set cycle, it can be used in a refutation. This is reminiscent of an
unnested application of a Hilbert-style induction rule (see Definition 2.5.10) that
allows us to deduce ¬cnf −1(C)[η/x] if ¬cnf −1(C)[η/x] is ∅-inductive;

4. Unlike an induction rule, a refutation by a clause set cycle makes use of the formula
¬cnf −1(C) instead of (∀x)(¬cnf −1(C)[η/x]). In other words, refutations by a clause
set cycle instantiate the conclusion of the induction rule only by η.

The first three points are unproblematic to express in the formalisms for induction that
we have introduced so far. The restriction on the instances of conclusion of the induction
rule are addressed by the following restricted induction rule.

Definition 6.3.2. Let Γ be a set of formulas, then the rule Γ-INDR
η consists of the

instances of the form

∀zγ(0, z⃗) ∀z(γ(x, z⃗)→ γ(s(x), z⃗))

∀z⃗γ(η, z⃗)
, with γ ∈ Γ.

We denote by Γ-INDR−
η the parameter-free counterpart of the rule Γ-INDR

η .

By combining the above observations we obtain the following proposition, that allows
us to simulate clause set cycles in a logical theory.

Proposition 6.3.3. Let D(η) be an L∪{η} clause set. If D(η) is refuted by an L clause
set cycle, then [∅, ∃1(L)-INDR−

η] ∪ D(η) is inconsistent.

Proof. Since D is refuted by a clause set cycle, there exists an L clause set cycle C(η)
such that

D(η) |= C(η). (*)

Let φ(x) := cnf −1(D)[η/x] then φ(η) is clearly logically equivalent to D(η). By the
soundness of first-order logic it thus suffices to show that

[∅, ∃1(L)-INDR−] ⊢ ¬φ(η).

Let ψ(x) be an ∃1 formula that is logically equivalent to ¬cnf −1(C)[η/x]. Then, by
applying the completeness theorem and the deduction theorem to (*), we obtain

⊢ φ(η)→ ¬ψ(η). (†)

103

6 Clause set cycles

By Lemma 6.3.1 we know that ψ(x) is ∅-inductive, and therefore we have [∅,∃1(L)-INDR−
η] ⊢

ψ(η). Hence, by considering the contrapositive of (†) we clearly obtain [∅,∃1(L)-INDR−
η] ⊢

¬φ(η).

We will now show that we even have the converse and thus obtain a characterization
of refutation by a clause set cycle by a logical theory. We start by observing that finitely
many inductive formulas can be fused into a single inductive formula.

Lemma 6.3.4. Let T be a theory and let φ1(x, z⃗), . . . , φn(x, z⃗) be formulas. If φi is
T -inductive in x for i = 1, . . . , n, then ψ :=

∧
i=1,...n φi is T -inductive in x.

Proof. We start by showing that T ⊢ ψ. Let j ∈ {1, . . . , n}, then since φj is T -inductive in
x, we have T ⊢ φj(0, z⃗) and we are done. Now let us show that T ⊢ ψ(x, z⃗)→ ψ(s(x), z⃗).
Work in T , assume

∧n
i=1 φi(x, z⃗), and let j ∈ {1, . . . , n}. Since φj is T -inductive in x,

we have φj(x, z⃗)→ φj(s(x), z⃗). Hence we obtain φj(x, z⃗) and therefore ψ is T -inductive
in x.

This simple result is particularly interesting because fusing inductive formulas neither
introduces more induction parameters and when fusing ∃k induction formulas, the fused
induction formula is also logically equivalent to an ∃k formula. Similar techniques exist
for fusing a finite number of induction axioms into a single induction axiom [HW18;
Gen54]. However, these either introduce a new induction parameter or increase the
quantifier complexity of the resulting induction formula.

Proposition 6.3.5. Let D(η) be an L ∪ {η} clause set. If [∅, ∃1(L)-INDR−
η] + D(η) is

inconsistent, then D(η) is refuted by an L clause set cycle.

Proof. Let φ(x) := cnf −1(D)[η/x], then by the completeness theorem and the deduction
theorem we obtain [∅,∃1(L)-INDR−

η] ⊢ ¬φ(η). By the compactness theorem there exist
∃1 L formulas ψ1(x), . . . , ψk(x) such that ψi is ∅-inductive for i = 1, . . . , k and

ψ1(η) + · · ·+ ψk(η) ⊢ ¬φ(η).

By Lemma 6.3.4, the formula Ψ(x) :=
∧k
i=1 ψi is ∅-inductive. Moreover, we have Ψ(η) ⊢

¬φ(η). Clearly, Ψ is logically equivalent to an ∃1 formula, hence there exists a ∀1 formula
Θ that is logically equivalent to ¬Ψ. Since ⊢ Ψ(0) and ⊢ Ψ(x) → Ψ(s(x)), we have
Θ(0) |= ⊥ and Θ(s(x)) |= Θ(x). Therefore, C := cnf (Θ(η)) is a clause set cycle. Finally,
since Ψ(η) ⊢ ¬φ(η), we obtain φ(η) |= ¬Ψ(η), that is, D(η) |= C(η). In other words, D
is refuted by the clause set cycle C.

We thus obtain a characterization of refutation by a clause set cycle in terms of induc-
tion rules.

Theorem 6.3.6. Let L be language not containing η and D an L∪ {η} clause set, then
D is refuted by an L clause set cycle if and only if [∅, ∃1(L)-INDR−

η]+D is inconsistent.

Proof. An immediate consequence of Propositions 6.3.3 and 6.3.5.

104

6 Clause set cycles

Remark 6.3.7. In a refutation by a clause set cycle the constant η plays essentially two
roles: On the one hand, it can be thought of as a Skolem symbol and, on the other hand,
it plays the role of an induction variable. The characterization of Theorem 6.3.6 clarifies
this situation by allowing us to distinguish between induction variables and the Skolem
symbol η.

The characterization of Theorem 6.3.6 allows us to straightforwardly consider various
extensions of refutation by a clause set cycle that are perhaps not so straightforward
to consider in terms of clause set cycles. For example, it becomes now easy to consider
a system that lifts the restriction on the instances of the induction rule, or to consider
systems that allow nested applications of the induction rule. As a corollary we obtain
Theorem 2.10 of [HV20].

Corollary 6.3.8 ([HV20, Theorem 2.10]). Let L be a first-order language not containing
η and D an L∪{η} clause set. If D is refuted by an L clause set cycle, then ∃1(L)-IND+D
is consistent.

Proof. Obvious, since ∃1(L)-IND ⊢ [∅,∃1(L)-INDR−
η].

In the following we slightly reformulate Theorem 6.3.6 so as to facilitate the handling
of formulas and theories. In Section 6.1 we have informally observed that arguments by
clause set cycles do not take place in some explicit background theory and that instead
a clause set cycle contains the clauses corresponding to the background theory. In the
following we will make this informal observation more precise by working with induction
rules.

Lemma 6.3.9. Let L be a first-order language, T a ∀1 L theory, U an L theory, then

T + [U,∃1(L)-INDR−
η] ≡ [T + U,∃1(L)-INDR−

η].

Furthermore, T + [U,∃1(L)-INDR−] ≡ [T + U,∃1(L)-INDR−].

Proof. The direction [T + U,∃1(L)-INDR−
η] ⊢ T + [U,∃1(L)-INDR−

η] is immediate. For
the other direction let γ(x) be an ∃1 L formula and assume that T + U ⊢ γ(0) and
T +U ⊢ γ(x)→ γ(s(x)). By the compactness theorem and the deduction theorem there
exist τ, τ1, . . . , τn ∈ T such that τ =

∧n
i=1 τi and U ⊢ τ → γ(0) and U ⊢ τ → γ(x) →

γ(s(x)). By straightforward propositional equivalences we obtain

U ⊢ (τ → γ(x))→ (τ → γ(s(x))) .

Clearly, τ is logically equivalent to a ∀1 sentence, hence τ → γ(x) is logically equivalent to
an ∃1 formula γ′(x). Hence, [U,∃1(L)-INDR−

η] ⊢ γ′(η) and therefore [U,∃1(L)-INDR−] ⊢
τ → γ(η). Thus, T + [U,∃1(L)-INDR−

η] ⊢ γ(η). We show T + [U,∃1(L)-INDR−] ≡
[T+U,∃1(L)-INDR−] analogously, with the exception that in the last part of the argument
we have to shift the universal quantifier in ∀x(τ → γ(x)) inwards.

105

6 Clause set cycles

Lemma 6.3.9 allows us to move ∀1 axioms in and out of the induction rule. This allows
us to consider the η-free clauses of a clause set cycle as the background theory. As an
immediate consequence Lemma 6.3.9 and Theorem 6.3.6 we now obtain a general pattern
to reduce unrefutability problems for clause set cycles to independence problems. Note
that we focus on a setting that is reminiscent of the ∃2 setting that we have considered
in Chapters 3 to 5.

Corollary 6.3.10. Let L be a first-order language not containing η, T a ∀1 L theory,
and φ(x, y⃗) a quantifier-free L formula, then [T, ∃1(L)-INDR−

η] ⊢ (∃y⃗)φ(η, y⃗) if and only
if cnf (T + (∀y⃗)¬φ(η, y⃗)) is refuted by an L clause set cycle.

Proof. Clearly, T + [∅,∃1(L)-INDR−
η] ⊢ ∃y⃗φ(η, y⃗) if and only if [∅, ∃1(L)-INDR−

η] +

cnf (T + ∀y⃗¬φ(η, y⃗)) is inconsistent. By Theorem 6.3.6, [∅,∃1(L)-INDR−
η] + cnf (T +

∀y⃗¬φ(η, y⃗)) is inconsistent if and only if cnf (T + ∀y⃗¬φ(η, y⃗)) is refuted by an L clause
set cycle. Since T is a ∀1 L theory, the theory T + [∅, ∃1(L)-INDR−

η] is Lemma 6.3.9
equivalent to [T, ∃1(L)-INDR−

η]

We conclude this section with the observation that parameter-free induction rule for
∃1 formulas contains the parameter-free induction schema for quantifier-free formulas.

Lemma 6.3.11. Let L be a language, then [∅,∃1(L)-INDR−] ⊢ Open(L)-IND−.

Proof. Let φ(x) be a quantifier-free formula, then it suffices to observe that the formula
φ(0)∧ (∀x)(φ(x)→ φ(s(x)))→ (∀x)φ(x) is ∅-inductive and is logically equivalent to an
∃1 formula.

In the following section we will make use of the characterization of Theorem 6.3.6 to
construct clause sets that are refutable by open induction but which are not refutable by
clause set cycles. In particular the unrefutability results that we provide exploit different
logical features of clause set cycles.

6.4 Unprovability by clause set cycles

In the previous sections we have introduced the notion of refutation by a clause set
cycle and we have seen that refutation by a clause set cycle naturally overcomes some
of the unprovability phenomena that affect the methods considered in Chapters 4 and 5.
Moreover, we have provided a characterization of refutation by a clause set cycle in terms
of a logical theory. We have shown this characterization by discerning four main logical
features of refutation by a clause set cycle: the quantifier-complexity of the argument by
infinite descent, the absence of induction parameters, the similarity with induction rules,
and the restriction on instances of derived formulas. In this section we will make use of
this characterization in order to provide several clause sets that are not refutable by clause
set cycles but that are refutable in related systems. These unprovability suggest various
extensions of systems based on the detection of clause set cycles. The unrefutability
results in this section will exploit different logical features of clause set cycles.

106

6 Clause set cycles

In Section 6.4.1 we will provide an unprovability result that shows that restricting the
instances of the conclusion of the induction rule can be very drastic. In Section 6.4.2
we will provide an unprovability result that essentially relies on the absence of induction
parameters from clause set cycles. Furthermore, in Section 6.4.3 we will consider a hier-
archy of systems that allow for increasingly deeply nested applications of the induction
rule and we show that allowing for more deeply nested applications of the induction rule
may result in increasingly strong systems. Finally, in Section 6.4.4 we provide an un-
provability result that separates systems based on the induction rule and systems based
on the induction axiom.

6.4.1 Instance restriction

In Section 6.3 we have observed that a refutation by a clause set cycle only permits a
single instance of a clause set cycle to appear in a refutation. In this section we will
formulate an unprovability result for clause set cycles that exploits this restriction. In
particular, we will base this unprovability result on a stronger independence result that
shows how drastic the instance restriction is.

Definition 6.4.1. The theory P is axiomatized by the universal closure of the following
formulas

0 ̸= s(x),

s(x) = s(y)→ x = y,

P (0),

P (x)→ P (s(x)).

Definition 6.4.2. Let φ(x, z⃗) be a formula, then Iηxφ denotes the formula

φ(0, z⃗) ∧ ∀x(φ(x, z⃗)→ φ(s(x), z⃗))→ φ(η, z⃗).

Let Γ be a set of formulas, then the theory Γ-INDη is axiomatized by the universal closure
of the formulas Iηxγ with γ ∈ Γ.

We have the following independence.

Proposition 6.4.3. Let f/1 be a function symbol with f ̸= 0 and f ̸= s, then P +
F({0, s, P, f})-INDη ̸⊢ P (f(η)).
Proof. Let M be the {0, s, P, f} structure with domain consisting of pairs (m,n) ∈
{0, 1} × Z such that if m = 0, then n ∈ N. Let M interpret the non-logical symbols as
follows

0M = ηM = (0, 0),

sM ((m,n)) = (m,n+ 1),

fM ((m,n)) = (1, n),

PM = {(0, n) | n ∈ N}.

107

6 Clause set cycles

It is clear that M is a {0, s, P, f} structure and moreover it is straightforward to verify
that M is a model of P. Now let us show that M |= F({0, s, P, f})-INDη. Let ψ(x, z⃗) be
a {0, s, P, f} formula, c⃗ a vector of elements of M . Assume that M |= ψ(0, c⃗) and M |=
ψ(x, c⃗)→ ψ(s(x), c⃗). Since ηM = 0M , we already have M |= ψ(η, c⃗) and therefore M |=
Iηxψ(x, z⃗). Finally, observe that fM (ηM) = (1, 0) /∈ PM , hence P+F({0, s, P, f})-INDη ̸⊢
P (f(η)).

The above independence result is remarkable in the sense that it imposes no restriction
whatsoever on the induction formulas, only the conclusion of the induction axioms is
restricted. Hence the result shows that this restriction is extremely strong. As a corollary
we obtain the following unrefutability result for clause set cycles.

Corollary 6.4.4. The {0, s, P, f, η} clause set cnf (P + ¬P (f(η))) is not refuted by a
{0, s, P, f} clause set cycle.

Proof. Suppose that cnf (P + ¬P (f(η))) is refuted by a {0, s, P, f} clause set cycle.
Then, by Corollary 6.3.10 we have [P, ∃1({0, s, P, f})-INDR−

η] ⊢ P (f(η)). However, since
P+F({0, s, P, f})-INDη ⊢ [P,∃1({0, s, P, f})-INDR−

η], this contradicts Proposition 6.4.3.

Lemma 6.4.5. [P,Open({0, s, P, f})-INDR−] ⊢ P (f(η)).

Proof. The formula P (x) is inductive in P.

Proposition 6.4.3, Corollary 6.4.4, and Lemma 6.4.5 together show that the η-restriction
as encountered in the n-clause calculus is drastic and can result in pathological un-
refutability phenomena. On the one hand, without the η-restriction a very simple argu-
ment by induction suffices to prove P (f(η)) and on the other hand in presence of the
η-restriction even induction for all {0, s, P, f} formulas does not allow us to prove the
formula P (f(η)). However, because of this the unrefutability result of Corollary 6.4.4
does not tell us anything about the other restrictions of the induction principle contained
in refutations by a clause set cycle.

Hence, it would be interesting to have a similar result for linear arithmetic. In partic-
ular we conjecture the following.

Conjecture 6.4.6. [B, ∃1(LLA)-INDR−
η] ̸⊢ 0 + (η + η) = (η + η).

6.4.2 Absence of induction parameters

In the following we will consider another unprovability result for clause set cycles that
does not make use of the instance restriction, but instead exploits the lack of induction
parameters in clause set cycles. This time we work in the setting of linear arithmetic
described in Section 2.6. The unprovability result developed in this section is based on
the following weak cancellation property of the addition of natural numbers.

Definition 6.4.7. Let k, n,m ∈ N with 0 < n < m, then we define

n · x+ (m− n)k = m · x→ x = k. (Ek,n,m)

108

6 Clause set cycles

The formula Ek,n,m is a generalization of

x+ 0 = x+ x→ x = 0. (E0,1,2)

Most of the upcoming Chapter 7 is devoted to the proof of the following independence
result.

Theorem 6.4.8. Let n,m, k ∈ N with 0 < n < m, then

B +B2 + B3 + ∃1(LLA)-IND− ̸⊢ Ek,n,m.

By making use of the above independence result and the characterization of refutation
by a clause set cycle in Corollary 6.3.10, we straightforwardly obtain an unrefutability
result.

Definition 6.4.9. Let k, n,m ∈ N with 0 < n < m, then we define the clause set
Ek,n,m(η) by cnf (B +B2 + B3 + ¬Ek,n,m(η)).

Corollary 6.4.10. Let k, n,m ∈ N with 0 < n < m, then the clause set Ek,n,m(η) is not
refuted by an LLA clause set cycle.

Proof. Assume that cnf (B + B2 + B3 + ¬Ek,n,m(η)) is refuted by a clause set cycle.
By Corollary 6.3.10 we have [B + B2 + B3,∃1(LLA)-INDR−

η] ⊢ Ek,n,m(η). Clearly, this
contradicts Theorem 6.4.8.

Furthermore, the clause sets Ek,n,m(η) with k, n,m ∈ N and 0 < n < m are refuted by
open induction.

Proposition 6.4.11. Open(LLA)-IND ∪ Ek,n,m(η) is inconsistent.

Proof. Clearly, it suffices to show that B + Open(LLA)-IND ⊢ Ek,n,m(x). Work in B +

Open(LLA)-IND and assume n ·x+(m− n)k = m ·x. Then by (B2), (B3), and (B4) we
obtain (m− n)k = (m − n) · x. Now we use (B1) to proceed by case analysis on x. If
x = k′ with k′ < k, then we have (m− n)(k − k′) = 0. Since m− n > 0 and k − k′ > 0
this contradicts Lemma 2.6.9.(i). If x = k, then we are done. If x = sk+1(pk+1(x)), then
0 = (m− n) + pk+1(x), which contradicts Lemma 2.6.9.(i).

Hence, Corollary 6.4.10 together with Proposition 6.4.11 give a positive answer to
Conjecture 4.7 of [HV20]. We conclude this section with some remarks on this result and
possible improvements.

The formula E0,1,2(x) is particularly interesting, because it can be proven by a com-
paratively straightforward induction.

Lemma 6.4.12. [B,Open(LLA)-INDR] ⊢ E0,1,2.

Proof. Clearly it suffices to show that the formula φ(x, y) := x + 0 = y + x → y = 0 is
B-inductive in x. It is obvious that B ⊢ φ(0, y). Now work in B and assume φ(x, y) and
s(x)+0 = y+s(x). By (A4) and (A5) we obtain s(x+0) = s(x) = s(x)+0 = y+s(x) =
s(y + x). By Lemma 2.2.5 we obtain x+ 0 = y + x, hence by the assumption we obtain
y = 0.

109

6 Clause set cycles

This demonstrates that clause set cycles are a very weak induction mechanism in the
sense that they are unable to deal even with simple generalizations and therefore fail
to refute relatively simple clause sets. The unprovability results in Corollaries 6.4.4
and 6.4.10 were constructed so that only one Skolem constant η appears in the language
of the considered clause sets. Consider now the clause set C given by

cnf (B) ∪ {{η + 0 = ν + η}} ∪ {{ν ̸= 0}},

where ν is a Skolem constant distinct from η. It is straightforward to check that C(η) is
an LLA ∪ {ν} clause set cycle. Hence, if clause set cycles are detected on the languages
obtained by Skolemization of the given property and its background theory, then clause
set cycles allow us to prove the property x+0 = y+ x→ y = 0 from B but fail to prove
the weaker property x+0 = x+x→ x = 0 from B. Thus, clause set cycles are sensitive
to the syntactic material present in a given set of clauses. Moreover, provability by a
clause set cycle is thus not deductively closed in the sense in the sense that ⊢CSC is not
closed under modus ponens. Let φ(x, y) be the formula

x+ 0 = y + x→ y = 0,

then by the above we have ⊢CSC (∀y)φ(η, y). Moreover, since ⊢ (∀y)φ(η, y) → φ(η, η)
we have ⊢CSC (∀y)φ(η, y) → φ(η, η), but ̸⊢CSC φ(η, η) by Corollary 6.4.10. Hence,
provability by clause set cycles is not deductively closed.

The independence result of Theorem 6.4.8 also shows that the unrefutability result
of Corollary 6.4.10 does neither rely on the η-restriction nor on the induction rule like
nature of clause set cycles. Thus the unprovability may not be overcome by extensions
of clause set cycles that only address these points.

Furthermore, we believe that an independence similar to the one in Theorem 6.4.8 also
holds for the atomic formula x+(x+x) = (x+x)+x, which is a well-known challenging
formula for inductive theorem provers [BIS92; Bee06; Haj+20].

Conjecture 6.4.13. B + ∃1(LLA)-IND− ̸⊢ x+ (x+ x) = (x+ x) + x.

Below we provide an abstraction of the unprovability result given in Corollary 6.4.10.
This abstraction shows the structure of the problem more clearly and allows us to focus on
the features that are responsible for the unprovability. In particular the abstract formu-
lation allows us to relate unprovability results for clause set cycles with the unprovability
result for the single-clause induction rule considered in Section 4.3.

Definition 6.4.14. Let A/2 be a predicate symbol, then the theory A5 is axiomatized by
the universal closure of the following formulas

A(0, y), (A5.1)
A(x, y)→ A(s(x), y). (A5.2)

Corollary 6.4.15. A5 + ∃1(L(A5))-IND− ̸⊢ A(x, x).

110

6 Clause set cycles

Proof. Let φ(x, y) be the formula given by x + 0 = y + x → y = 0. Let M be an LLA
structure that witnesses the independence Theorem 6.4.8. Now let N be the structure
that expands M by the following interpretation of the predicate A:

AN = {(a, b) | a, b ∈ D (M) ,M |= φ(a, b)}.

Since φ(x, y) is (B +B2+B3)-inductive in x, we have N |= A(0, y) and N |= A(x, y)→
A(s(x), y). Thus, N |= A5, Furthermore, every quantifier-free L(A5) is equivalent in
N to a quantifier-free LLA formula. Hence, N |= ∃1(L(A5))-IND−, but of course N ̸|=
A(x, x).

In Section 4.3 we will again briefly consider this abstract formulation when discussing
some possible improvements of our results by taking into account the analyticity of
realistic AITP systems.

6.4.3 Nesting depth of the induction rule

In this section we briefly consider the role of the depth of the nesting of applications
of the induction rule. We will show that a formalism that extends clause set cycles to
achieve at most a fixed finite number of nestings of the corresponding induction rule will
have an unprovable clause set, that becomes provable when the nesting depth is increased
by one. Moreover, the result remains valid in extensions of clause set cycles that allow
for induction parameters. However, the unprovability results in this section are more
abstract than in the previous sections in the sense that we work with a much stronger
background theory. We expect that providing more elementary unprovability results is
not difficult but this is left as future work.

In the remainder of the section we will show the following result.

Theorem 6.4.16. Let k ∈ N, then there is a language L not containing η and an L∪{η}
clause set C(η) such that C is consistent with [∅, ∃1(L)-INDR−]k but inconsistent with
[∅,∃1(L)-INDR−]k+1.

The language of Peano arithmetic LPA consists of the function symbols 0/0, s/1, the
infix function symbols +/2, ∗/2, and the infix predicate symbol ≤ /2.

Definition 6.4.17. We let Σn = Σn(LPA), Πn = Πn(LPA), and ∆0 = ∆0(LPA).

Definition 6.4.18. Let T be a theory, φ(x1, . . . , xk, y) a formula, and f : Nk → N a
function. We say that f has definition φ(x1, . . . , xk, y) in T if for all n1, . . . , nk,m ∈ N,
T ⊢ φ(n1, . . . , nk,m) if and only if f(n1, . . . , nk) = m. Furthermore, we say that a
formula ψ(x⃗, y) defines a total function in T if T ⊢ (∀x⃗)(∃!y)φ(x⃗, y). Finally, the function
f is provably total recursive in T if f has Σ1 definition ψ(x⃗, y) in T that defines a total
function in T .

We will prove the theorem above by providing a sequence of theories T0, T1, . . . with
L(Ti) ⊇ LPA, Ti+1 = [Ti, ∃1(L(T0))-INDR−] such that the provably total recursive func-
tions of Ti are exactly those of the level 3 + i of the Grzegorczyk hierarchy, for i ∈ N,

111

6 Clause set cycles

and over T0 the Σ0 formulas are exactly the ∃1(L(T0)) formulas. Since, the Grzegorczyk
hierarchy is a strict hierarchy (see for example [Ros84]), we obtain for each level i ∈ N
a quantifier-free L(T0) formula φ(x, y), such that (∃y)φ(x, y) is provable in Ti+1 but not
in Ti. For a definition of the Grzegorczyk hiearchy we refer the reader to [Ros84].

Definition 6.4.19. Let n ∈ N, then we denote by En the n-th level of the Grzegorczyk
hiearchy.

The background theory is Robinson arithmetic.

Definition 6.4.20 (Robinson arithmetic). The theory Q is axiomatized by the universal
closure of the following axioms

s(x) ̸= 0, (Q1)
s(x) = s(y)→ x = y, (Q2)

x ̸= 0→ (∃y)(x = s(y)), (Q3)
x+ 0 = x, (Q4)

x+ s(y) = s(x+ y), (Q5)
x ∗ 0 = 0, (Q6)

x ∗ s(y) = (x ∗ y) + x, (Q7)
x ≤ y ↔ (∃z)(z + x = y). (Q8)

Definition 6.4.21. Let n ∈ N, then the theory Q + Σn-IND is called IΣn. The theory
IΣ0 is also called I∆0.

There is a ∆0 definition of the exponential function such that the theory I∆0 proves
the inductive properties of the definition of the exponential function, but by Parikh’s
theorem (see Theorem 6.2.9) it is clear that I∆0 does not prove the totality of such a
definition of the exponential function.

Lemma 6.4.22. There is a ∆0 formula Exp(x, y, z) such that I∆0 proves

Exp(x, 0, z)↔ z = 1, (E1)
Exp(x, s(y), z)↔ (∃v)(Exp(x, y, v) ∧ z = v ∗ x). (E2)

In particular I∆0 proves Exp(x, y, z1) ∧ Exp(x, y, z2)→ z1 = z2.

Proof. See [HP93, Section V.3]

In the following we will mainly work a theory that extends I∆0 extended by the totality
of the exponential function.

Definition 6.4.23. By I∆0 +EXP we denote the theory that extends I∆0 by the axiom
(∀x)(∀y)(∃z)Exp(x, y, z).

112

6 Clause set cycles

The theory I∆0+EXP is also called elementary arithmetic and has various equivalent
formulations, see [Bek05, Section 1.1]. In the following we will develop a particular
formulation with a ∀1 axiomatization and in which the ∃1 formulas of the extended
language are exactly the Σ1 formulas.

Lemma 6.4.24. I∆0 has a Π1 axiomatization.

Proof. Drop axiom Q3, replace axiom Q8 by the universal closure of the formulas x ≤
y → (∃z ≤ y)z + x = y and z + x = y → x ≤ y, and replace the induction axioms Ixφ,
where φ(x, z⃗) is ∆0 by

(φ(0, z⃗) ∧ (∀y < x)(φ(y, z⃗)→ φ(s(y), z⃗)))→ φ(x, z⃗).

It is routine to check that the resulting theory is equivalent to I∆0.

Now we will show that I∆0 has ∆0 definitions of Skolem functions of all ∆0 formulas.
Later on we will introduce the corresponding Skolem functions in order to get rid of
bounded quantifiers.

Lemma 6.4.25. I∆0 proves the least number principle for ∆0 formulas.

Proof. See [HP93, Theorem 1.22].

By using the least number principle for ∆0 formulas, we can provide in I∆0 definitions
for Skolem functions of ∆0 predicates of the form (∃z ≤ y)φ(x⃗, y, z). The Skolem function
is defined by selecting for fixed x⃗ and y the least element z such that z ≤ y and φ(x⃗, y, z)
or by letting z = 0 if no such element exists.

Definition 6.4.26. Let φ(x⃗, y, z) be a ∆0 formula, then the formula D(∃z≤y)φ(x⃗, y, z) is
given by(

z ≤ y ∧ φ(x⃗, y, z) ∧ (∀z′ < z)¬φ(x⃗, y, z′)
)
∨
(
(∀z′ ≤ y)¬φ(x⃗, y, z′) ∧ z = 0

)
.

Lemma 6.4.27. Let φ(x⃗, y, z) be a ∆0 formula, then I∆0 proves

(i) (∃z ≤ y)φ(x⃗, y, z)→ (∃z ≤ y)(D(∃z≤y)φ(x⃗, y, z) ∧ φ(x⃗, y, z))

(ii) (∀z ≤ y)¬φ(x⃗, y, z)→ D(∃z≤y)φ(x⃗, y, 0)

(iii) (∃!z)D(∃z≤y)φ(x⃗, y, z),

(iv) D(∃z≤y)φ(x⃗, y, z)→ z ≤ y.

Proof. The formula 6.4.27.(i) follows easily from Lemma 6.4.25. The formulas 6.4.27.(ii)–
6.4.27.(iv) are straightforward.

We will now define the way in which we Skolemize ∆0 formulas. We Skolemize ∆0

functions from inside out in order to avoid having to introduce Skolem symbols for
formulas that contain Skolem symbols.

113

6 Clause set cycles

Definition 6.4.28. Let φ(x⃗, y, z) be a ∆0 formula, then F(∃z≤y)φ is a function symbol
of arity |x⃗|+ 1.

Definition 6.4.29. The formula translations (·)∃ and (·)∀ are defined mutually recur-
sively by

(θ)Q = θ, if θ is quantifier-free,

(φ1 ∧ φ2)
Q = φQ1 ∧ φ

Q
2 ,

(φ1 ∨ φ2)
Q = φQ1 ∨ φ

Q
2 ,

(¬φ)Q = ¬φQ,
((Qy ≤ x)φ)Q = (Qy ≤ x)φQ

((∃y ≤ x)φ(x, y, z⃗))∃ =
(
y ≤ x ∧ φ∃

)
[y/F(∃y≤x)φ(x, z⃗)], (∗1)

((∀y ≤ x)φ(x, y, z⃗))∀ =
(
y ≤ x→ φ∀

)
[y/F(∃y≤x)¬φ(x, z⃗)], (∗2)

where Q ∈ {∀, ∃}, ∀ = ∃, ∃ = ∀, and in Eqs. (∗1) and (∗2) the variables z⃗ all appear
freely in the formula φ.

We can now obtain a suitable formulation of I∆0 + EXP.

Lemma 6.4.30. There exists a ∀1 axiomatized conservative extension T of I∆0 +EXP
such that every ∃1(L(T)) formula is equivalent over T to a Σ1 formula and every Σ1

formula is equivalent over T to an ∃1(L(T)) formula.

Proof. We consider a Π1 formulation U of I∆0. For each axiom (∀x⃗)φ of U where φ is ∆0,
T contains the axiom (∀x⃗)φ∃. Furthermore, T contains the axiom Exp∃[z/e(x, y)]. Fi-
nally, for each ∆0 formula φ(x⃗, y, z), T contains the axiom (D(∃z≤y)φ)

∃[z/F(∃z≤y)φ(x⃗, y)].
Now obtain a ∀1 axiomatization by moving the remaining quantifiers outwards. By a
model-theoretic argument it is straightforward to see that the resulting theory is conser-
vative over I∆0 + EXP.

It is straightforward to check that every ∆0 formula φ is equivalent in T to a quantifier-
free L(T) formula. Let ψ be a Σ1 formula, then ψ = (∃x⃗)φ where φ is ∆0. Hence, ψ
is equivalent over T to the formula (∃x⃗)φ′ where φ′ is a quantifier-free formula that is
equivalent over T to φ. Now let ψ be an ∃1(L(T)) formula, then by [Hod97, pp. 51–
52] there exists an equivalent unnested ∃1(L(T)) formula of the form (∃x⃗)φ where φ is
quantifier-free. Now we simply replace atoms of the form f(u⃗) = y where f is either a
Skolem symbol of a ∆0 formula or e by the corresponding defining ∆0 formula. Hence,
the resulting formula is a Σ0 formula.

In the following we fix one such extension of I∆0 + EXP and call it EA.

Definition 6.4.31. Let k ∈ N, then EAk denotes the theory [EA,Π2-INDR]k.

Theorem 6.4.32 ([Sie91]). The provably total recursive functions of the theory EAk are
precisely those of the class E3+k of the Grzegorczyk hierarchy.

114

6 Clause set cycles

Proof. See also the proof Corollary 7.5 of [Bek97a].

We can reformulate the theories EAk as follows.

Lemma 6.4.33. Let k ∈ N, then EAk ≡ [EA,∃1(L(EA))-INDR−]k.

Proof. We proceed by induction on k and show

EAk ≡ [EA,∃1(L(EA))-INDR−]k.

If k = 0, then the claim follows trivially. Now assume the claim for k, then EAk is Π2

axiomatized, hence by [Bek97a, Corollary 7.4]

EAk+1 ≡ [EAk,Π2-INDR] ≡ [EAk,Σ1-INDR].

Furthermore, by [Bek05, Lemma 4.6] we have

[EAk,Σ1-INDR] ≡ [EAk,Σ1-INDR−].

Since over EA the Σ1 formulas are exactly the ∃1(L(EA)) formulas, we obtain

[EAk,Σ1-INDR−] ≡ [EAk,∃1(L(EA))-INDR−].

By the induction hypothesis we readily obtain

[EA,Π2-INDR]k+1 ≡ [EA, ∃1(L(EA))-INDR−]k+1.

Since Ek ⊊ Ek+1 for all k ∈ N, we can now provide a proof of Theorem 6.4.16.

Proof of Theorem 6.4.16. Let k ∈ N, then there exists a function f : N → N such that
f ∈ Ek+4 \Ek+3. Hence, there exists a Σ1 formula φ(x, y) such that f(n) = m if and only
if N |= φ(n,m) and

[EA, ∃1(L(EA))-INDR−]k+1 ⊢ (∃y)φ(x, y),
[EA,∃1(L(EA))-INDR−]k ̸⊢ (∃y)φ(x, y).

Thus, by the construction of EA, there exists a quantifier-free L(EA) formula φ′(x, y, z⃗)
such that EA ⊢ φ ↔ (∃z⃗)φ′. Since EA is ∀1 axiomatized we furthermore have EA +
[∅, ∃1(L(EA))-INDR−] ≡ [EA,∃1(L(EA))-INDR−]. Hence, the clause set

cnf (EA + (∀y)(∀z⃗)¬φ′(η, y, z⃗))

has the desired properties. This completes the proof.

This result tells us that a mechanism that extends refutation by a clause set cycle so as
to allow at most k-fold nested ∃1 parameter-free induction rule is strictly weaker than a
mechanism that allows (k+1)-fold nested applications of the ∃1 parameter-free induction
rule. This naturally gives rise to the question whether we can separate a system that

115

6 Clause set cycles

provides arbitrary nestings of the parameter-free ∃1 induction rule from a system that
provides the parameter-free ∃1 induction schema. The following lemma shows that we
need a different approach to resolve this question.

Lemma 6.4.34 ([Par72]). IΣ1 is Π2 conservative over EA+ Σ1-INDR.

Hence the theory EA+∃1(L(EA))-IND is also Π2 conservative over EA+L(EA)-INDR−.
Thus the technique used above does not provide us with a clause set that separates both
systems. In Section 6.4.4 we provide a simple clause set that is consistent with nested
applications of the parameter-free ∃1 induction rule but not with the corresponding in-
duction schema.

The results in this section are less elementary than the results of Sections 6.4.1 and
6.4.2 in the sense that we work over the comparatively strong EA. Moreover, we work
with an infinite axiomatization of EA over an infinite language. The last point can
be improved by selecting the Skolem symbol more carefully. We leave finding more
elementary examples that separate the systems formed by successive applications of the
parameter-free induction rule for ∃1 formulas as future work. Nevertheless, the results
are interesting because of the connection with the Grzegorczyk hiearchy, which tells us
that successive applications of the induction rule allow us to deal with more primitive
recursive functions.

6.4.4 Induction rule

In this section we will show that even an extension of clause set cycles by a mechanism
that allows for an unrestricted nesting depth of applications of the parameter-free ∃1
induction rule will have some simple unprovability examples that are overcome when
working with the corresponding induction schema. The result that we provide in this
section is slightly different from the results of the previous sections in the sense that the
result relies on the consistency of a theory rather than an independence result. However,
the result is interesting because it shows us that clause set cycles interact less with
the context in which the argument takes place than the induction schema. This is an
advantage of the systems considered in Chapters 3 to 5.

Definition 6.4.35. Let P/2 be a predicate symbol. Let LP be the language L0 ∪ {P/2}.
The theory A8 extends the theory A0 by the following axioms

P (0, η), (C1)
(∀x)(∀y)(P (x, y)→ P (s(x), y)), (C2)

(∀y)¬P (η, y). (C3)

In this section we will show the following result.

Theorem 6.4.36. A8 +
⋃
i<ω[∅, ∃1(LP)-IND

R−]i is consistent.

As an immediate consequence we obtain an unprovability result for clause set cycles.

116

6 Clause set cycles

Corollary 6.4.37. The clause set cnf (A8) is not refuted by a LP clause set cycle.

Proof. Proceed indirectly and assume that cnf (A8) is refuted by an LP clause set cycle.
Hence, by Theorem 6.3.6 the theory A8 + [∅,∃1(LP)-INDR−] is inconsistent. However,
this contradicts Theorem 6.4.36.

On the other hand we have the following.

Lemma 6.4.38. A8 + ∃1(LP)-IND− is inconsistent.

Proof. Work in A8+∃1(LP)-IND−. We proceed by induction on the formula (∃y)P (x, y).
For the base case we have P (0, η) from A8 and therefore (∃y)P (0, y). For the induction
step assume that there is some y such that P (x, y). By (C2) we thus obtain P (s(x), y),
that is, (∃y)P (s(x), y). Hence, we obtain (∀x)(∃y)P (x, y), which contradicts (C3).

Roughly speaking, the additional power of the induction schema comes the interaction
of the induction axioms with the background theory. Even though all the axioms of A8

are ∀1 axioms, the induction rule ∃1(LP)-INDR− does not have access to these axioms
because they contain the constant η. This corresponds to how clause set cycles handle
the special Skolem constant η. Interestingly, as we show in the following, even the variant
of the induction rule rigid single-clause induction rule (see Definition 4.1.1) given below
is sufficient to refute the theory A8. Let the rule RSCIND′

S consist of the instances of
the form

L(a) ∨ C
RSCIND′

S{¬L(0) ∨ L(c) ∨ L(x),¬L(0) ∨ ¬L(s(c)) ∨ L(x)},

where sk∀((∀x)(L(x)→ L(s(x)))) = L(c)→ L(s(c)), L(x) is a literal free of the constant
a. Consider now the clause set C0 = {P (0, y),¬P (x, y) ∨ P (s(x), y),¬P (η, y)}, then the
induction rule RSCIND′

S can be applied to the clause P (0, y) to derive in particular the
clause

P (0, η) ∨ ¬P (c1, η) ∨ ¬P (x, η),

where sk∀((∀x)(¬P (x, η)→ ¬P (s(x), η))) = ¬P (c1, η) → ¬P (s(c1), η). Now we may
apply the induction rule RSCIND′

S to the literal ¬P (c, η) on the constant c in the clause
above in order to obtain the clauses

¬P (0, η) ∨ P (c2, η) ∨ P (x, η),
¬P (0, η) ∨ ¬P (s(c2), η) ∨ P (x, η).

where sk∀((∀x)(P (x, η)→ P (s(x), η)) = P (c2, η) → P (s(c2), η)). Now resolve these
clauses with the initial clauses in C0 in order to derive the empty clause.

In the remainder of this section we will provide a proof of Theorem 6.4.36. The proof
essentially consist of the the simplification of ∃1(L(A8)) formulas and the construction
of a suitable first-order structure.

Let us start by introducing the notion of co-clauses and components. Moreover, com-
ponents will also be of use for the arguments in Section 7.2.

117

6 Clause set cycles

Definition 6.4.39 (Co-clauses and Components). A co-clause is a conjunction of liter-
als. A component χ(x) is a formula of the form ∃y⃗Cχ(x, y⃗), where Cχ is a co-clause.

Lemma 6.4.40. Let φ(x) be a LP formula of the form
∨n
i=1 χi(x) where χ1, . . . , χn are

components. If φ is inductive in the theory

[A0 +ACY, ∃1(LP)-INDR−]k,

then either ⊢ φ(x) or φ has a disjunct χi with i ∈ {1, . . . , n} that neither contains a
positive P literal nor ⊥.

Proof. Let M be the LP structure with domain N that interprets the symbols of LP
as follows: 0M = 0, sM (n) = n + 1, and PM = ∅. By the choice of the domain it
is obvious that M |= [A0 + ACY,∃1(LP)-INDR−]k. Assume that φ(x) is inductive in
[A0 +ACY, ∃1(LP)-INDR−]k. Then, in particular M |= φ(0). If n = 0, then ⊢ φ(x) and
we are done. Otherwise, if there is a positive P literal or ⊥ in every χi with i = 1, . . . , n,
then by the definition of M we have M |= (∀x)(∀y)¬P (x, y), hence M ̸|= φ(0).

Lemma 6.4.41. Let C(x, y⃗) be a L(A8) co-clause, then there exists N and a co-clause
C ′(x, y⃗) free of positive equational literals involving the variables y⃗ such that over A0 +
ACY, (∃y⃗)C(sN (x), y⃗) is equivalent to (∃y⃗)C ′(x, y⃗).

Proof. Proceed by lexicographic induction on the pair (p, q) where p is the number of
variables of y⃗ that occur in C and q is the number of positive literals of C. If C contains
a literal of the form sk1(yi) = sk2(yj) with k1 ≤ k2, then there are two cases. If i = j,
then we decide the literal over A0 + ACY. If k1 = k2, then we obtain C ′ by removing
the literal from C and applying the induction hypothesis. Otherwise, we let N = 0
and C ′ = ⊥ and we are done. If i ̸= j, then over A0 the above literal is equivalent to
yi = sk2−k1(yj) and C is equivalent to yi = sk2−k1(yj) ∧ C. Hence, over A8, (∃y⃗)C is
equivalent to (∃y⃗)C[yi/sk2−k1]. The co-clause C[yi/sk2−k1] does not contain yi, hence we
can apply the induction hypothesis. If C contains a literal of the form sk1(x) = sk2(yi),
then let N be large enough such that N+k1 ≥ k2. Then over A0+ACY, (∃y⃗)C[x/sN (x)]
is equivalent to

(∃y⃗)C[x/sN (x), yi/sN+k1−k2(x)].

Hence, we can apply the induction hypothesis.

Lemma 6.4.42. Let φ(x) be an ∃1 L(A8) formula, then there is N ∈ N and a disjunction
of components ψ(x) such that ψ(x) is equivalent over A0+ACY to φ(sN (x)) and ψ does
neither contain ground literals, positive equational literals, nor negative equational literals
in one variable.

Proof. By Lemma 6.4.41 there is N ∈ N and ψ(x) =
∨n
i=1(∃y⃗)Ci(x, y⃗) where C1, . . . , Cn

are co-clauses and y⃗ = (y1, . . . , ym) such that the positive literals of ψ are free of the
variables y1, . . . , ym. Hence, only the variable x may occur in the positive literals of ψ.
Since A0 + ACY is complete for L0 literals in one variable, we simply remove from ψ
co-clauses containing a literal l in one variable such that A0 +ACY proves the dual and
we remove those literals in one variable that are proved by A0 +ACY.

118

6 Clause set cycles

We are now ready to carry out the model-theoretic construction.

Definition 6.4.43. Let M0 be the LP∪{η} structure whose domain consists of pairs of the
form (i, n) ∈ {0, 1} × Z such that i = 0 implies n ∈ N and that interprets the non-logical
symbols as follows: 0M0 = (0, 0), sM0(i, n) = (i, n+ 1), PM0 = {((0, n), (1, 0)) | n ∈ N},
and ηM0 = (1, 0).

Lemma 6.4.44. M0 |= A8.

Proof. Straightforward.

Lemma 6.4.45. Let C(x⃗, y⃗) =
∧n
i=1 li(x⃗, y⃗) be a co-clause with x⃗ = (x1, . . . , xm) such

that C is free of positive literals and does not contain negative equational literals in one
variable. Let, furthermore, a⃗ be a finite sequence of elements of M0 such that for all
i ∈ {1, . . . , n}, Var(li) ⊆ {x1, . . . , xm} implies M0 |= li(⃗a), then for B ∈ Z there are
integers b|y| ≤ · · · ≤ b2 ≤ b1 ≤ B such that

M0 |= C (⃗a, (1, b1), . . . , (1, b|y|)).

Proof. Let y⃗ = (y1, . . . , yl), then we proceed by induction on l. If l = 0, then we are
done. For the induction step we start by considering the equational literals whose free
variables are among the variables {x1, . . . , xm, y1} and contain an occurrence of y1. Up
to symmetry of equality these are of the forms t(x⃗) ̸= sk(y1). Let M0, [x⃗/a⃗] |= t = (i, p),
then it is not difficult to see that there is a C such that for c ≤ C we have M0 |= (i, p) ̸=
sk

′
((1, c)). Take for example C = p− k′ − 1. Hence, there is an integer C ≤ B such that

for all c ≤ C, M0 |= l(⃗a, (1, c)), where l(x⃗, y1) is an equational literal of C.
Now consider the P literals of C whose free variables are among the variables {x1, . . . , xm, y1}

and that contain an occurrence of y1. These literals are of the form ¬P (t(x⃗, y1), sk(y1))
and ¬P (sk(y1), t(x⃗, y1)), where t is an L0 term. For the literals of the form ¬P (t, sk(y1))
we have M0 |= ¬P (t(⃗a, (1, d)), sk((1, d))), whenever d < k. For the literals of the form
¬P (sk(y1), t) we have M0 |= ¬P (sk((1, d)), t(⃗a, (1, d))) for all d ∈ Z. Hence, there is an
integer D ≤ B such that for all d ∈ Z with d ≤ D, we have M0 |= l(⃗a, (1, d)), where l
is a P literal of C. Now we apply the induction hypothesis in order to obtain suitable
valuations for the variables y2, . . . , yl+1.

Lemma 6.4.46. M0 |= (A0 +ACY) + ∃1(LP)-INDR−.

Proof. We proceed by induction on k and to show

M0 |= [A0 +ACY,∃1(LP)-INDR−]k.

The base case k = 0 is trivial. For the induction step we assume that

M0 |= [A0 +ACY,∃1(LP)-INDR−]k.

Now let φ(x) be an ∃1(LP) formula, such that φ is inductive in [A0+ACY, ∃1(LP)-INDR−]k.
In particular, we have M0 |= φ(0) and M0 |= φ(x) → φ(s(x)). By Lemma 6.4.42 there

119

6 Clause set cycles

exists N ∈ N such that φ(sN (x)) has over A0+ACY an equivalent EDNF ψ(x) such that
ψ is free of positive equality literals, ground equality literals, and equational literals in
one variable. Moreover, φ(sN (x)) is also [A0 + ACY,∃1(LP)-INDR−]k-inductive. Since
M0 |= x = 0∨(∃y)x = s(y), it suffices to show M0 |= φ(sN (x)). Now let (i, n) ∈ D (M0) .
The case where i = 0 is trivial, since ψ is inductive in M0 and M0 |= (0, n) = n. Now
let us consider the case where i = 1. By Lemma 6.4.40 we either have ⊢ ψ(x), in which
case we are done or ψ has a disjunct (∃y1). . . (∃ym)C(x, y⃗) where C is a co-clause that is
free of positive P literals and ⊥. Since C does not contain ground literals we may apply
Lemma 6.4.45. Hence, there are integers b0, b1, . . . , bm with n ≥ b0 ≥ b1 ≥ · · · ≥ bm such
that

M0 |= C((1, b0), (1, b1), . . . , (1, bm)).

Hence, M0 |= ψ((1, b0)) and by a straightforward induction making use of M0 |= ψ(x)→
ψ(s(x)) we obtain M0 |= ψ((1, n)). Thus M0 |= [A0 +ACY,∃1(LP)-INDR−]k+1.

We are now ready to give a proof the main result of this section.

Proof of Theorem 6.4.36. We have M0 |= A8 + (∅+ ∃1(LP)-INDR−).

This solves Conjecture 59 of [HV22]. In particular this result anticipates improvements
of clause set cycles by a parameter-free rule like induction mechanism with unrestricted
nesting for clause sets.

6.5 Case study: N-clause calculus

The n-clause calculus is a formalism for AITP that was introduced by Kersani and Peltier
in [KP13]. The calculus extends a saturation calculus by a mechanism that detects cyclic
dependencies between the clauses derived during the saturation process. Such a cyclic
dependency represents an argument by infinite descent and, therefore, represents an
inductively unsatisfiable subset of the derived clauses. Once such a cycle is detected the
refutation is terminated.

In this section we describe a variant of the n-clause calculus [KP13] and show that
clause set cycles are a suitable abstraction of the cycles detected by the n-clause calculus.
In particular we show that clause set cycles essentially abstract the detection of the cycle
but otherwise preserve the argument captured by a cycle.

Definition 6.5.1. By an n-clause we understand a clause of the form C(x⃗) ← N(η, x⃗)
where N(η, x⃗) is a conjunction of literals of the form η = t(x⃗) with t free of η and C is a
η-free clause. The formula N is called the constraint part of the n-clause and the clause
C is called the clausal part of the n-clause. An n-clause set is a set of n-clauses.

The original formulation of the n-clause calculus [KP13; Ker14] takes place in a setting
that is on the one hand multi-sorted and on the other hand purely equational. As always
we work in a one-sorted setting but extending the formalism to a many sorted setting
is straightforward. The restriction to a purely equational setting is not necessary for
the formulation of the notion of cycles in [KP13] but was adopted in [KP13] because

120

6 Clause set cycles

the underlying superposition calculus operates in a purely equational setting. In [KP13]
some other syntactical restrictions are imposed and we omit these in the presentation
below because they are not necessary for the formulation of inductive cycles.

The notion of cycles of the n-clause calculus makes use of the descent operator given
below to encode the descent step.

Definition 6.5.2. Let C = C ′ ← N(η) be an n-clause with N =
∧
j=1,...,k η = tj. For

i ∈ N we define C↓i := C(x⃗) ← N(η, x⃗)↓i where N↓i :=
∧
j=1,...,k η = si(tj). For an

n-clause set C we define C↓i := {C↓i | C ∈ C}.

Intuitively, the ↓j operation allows us to express that η is replaced by its j-th prede-
cessor. The following lemma states a crucial property of the ↓j operator.

Lemma 6.5.3. Let S(η) be clause set and j ≥ 0, then we have S↓j(sjη) |= S(η).

Proof. Straightforward.

The converse of the above entailment holds when the injectivity of the successor func-
tion is provided.

Lemma 6.5.4. Let S(η) be a clause set and j ≥ 0, then

(∀x)(∀y)(s(x) = s(y)→ x = y) + S(η) |= S↓j(sjη).

Proof. Let C ← N ∈ S with N =
∧k
i=1 η = ti and assume N↓j(sj(η)), that is,∧k

i=1 s
j(η) = sj(ti). By injectivity of s we obtain

∧
i=1 η = ti. Thus we obtain C.

We can now introduce the notions of cycle and of refutability by a cycle.

Definition 6.5.5. Let D(η) be an n-clause set. A triple (i, j, C(η)) with i, j ∈ N, j > 0
and C ⊆ D is a cycle for D if C |= η ̸= k for k = i, . . . , i + j − 1 and C |= C↓j. We
say that D is refuted by a cycle if there exists a cycle (i, j, C) for D and D |= η ̸= k, for
k = 0, . . . , i− 1.

As already mentioned above we consider a simplified variant of the n-clause calculus
defined in [KP13]. Only one of the simplifications imposed by us restricts the power
of the formalism. In [KP13] the entailments rely on semantics that interpret the sort
of natural numbers as the natural numbers. Instead our definition above works with
the usual first-order semantics and thus gives us access to the completeness theorem for
first-order logic. Clearly, this restricts the overall power of the formalism but for our
purposes this is inessential, since we are interested in effective systems. In particular, the
practical variants of inductive cycles given in [KP13] use a decidable entailment checks
such as the entailment relation generated by the superposition calculus, subsumption
or syntactical equality up to renaming of variables that imply first-order entailment.
Hence our restriction does not rule out any practically relevant instances of the n-clause
calculus.

A cycle (i, j, C(η)) for a clause set D(η) is similar to an argument by induction with
an external offset i and a descent step size j. Accordingly, the conditions C ⊢ n ̸= k

121

6 Clause set cycles

for k = i, . . . , i + j − 1 correspond to the j base cases, whereas the condition C ⊢ C↓j
corresponds to the step case.

Proposition 6.5.6. Let D be an n-clause set refuted by a cycle, then D is refuted by a
L(D) \ {η} clause set cycle.

Proof. Let (i, j,S(η)) be a cycle refuting D. Moreover, let C(η) be the clause set S(si(η)).
We will show that C(η) is a (0, j)-clause set cycle and that D is refuted by C with external
offset i. First of all, observe that since S |= η ̸= k for k = i, i+ 1, . . . , i+ j − 1, we have
C(k) |= ⊥ for k = 0, . . . , j − 1. Furthermore, since S |= S↓j , we have S(si+j(η)) |=
S↓j(si+j(η)). Hence, by the definition of C and by Lemma 6.5.3, we obtain C(sj(η)) |=
C(η). Thus C is a (0, j)-clause set cycle. Now observe that since S ⊆ D, we have
D(η) |= S(η) and therefore D(siη) |= C(η). Finally, D |= η ̸= k, hence D(l) |= ⊥ for
l = 0, . . . , i − 1. Thus D is refuted by the (0, j)-clause set cycle with external offset i.
Hence, by Proposition 6.1.10 D is refuted by a clause set cycle.

Thus, this shows us that refutation by a clause set cycles are an abstraction of refutation
by a cycle of the n-clause calculus. Therefore, all the unprovability results developed in
Section 6.4 apply to the n-clause calculus.

In Definition 6.5.5, the condition that the n-clause set C(η) is a subset of D(η) is an an-
alyticity condition that is analogous to the detection of clause set cycles by the rule CSCS

in the set of clauses derived by the underlying saturation system (see Definition 6.1.5
and the proof of Lemma 6.1.6). Because of this condition systems based cycles of the
n-clause calculus may behave differently than systems based on the rule CSCS. However,
by weakening this condition to D |= C it can be seen that a refutation by a clause set
cycle can be turned into a refutation by a cycle of the n-clause calculus.

Lemma 6.5.7. Let L be a language not containing η. Let D be an L ∪ {η} clause set
such that D is refuted by a clause set cycle. Then there exists an n-clause set C(η) over
the language L ∪ {η} such that C |= η ̸= 0, C |= C↓1 and D |= C.

Proof. Let C′ be a clause set cycle that refutes D. Now let C the n-clause set

C′[η/x]← η = x.

It is obvious that C is logically equivalent to C′. Hence, since C′[η/0] |= ⊥, we have
in particular C |= η ̸= 0. Now let us show that C |= C↓1. Let M be a structure
such that M |= C and let d ∈ D (M) such that M |= η = s(d). We have to show
M, {x 7→ d} |= C′[η/x]. By the assumption M |= C, we have M, {x 7→ s(d)} |= C′[η/x].
Now let N = M [η 7→ d], then N |= C′[η/s(η)]. Since C′ is a clause set cycle, we have
N |= C′. Therefore, by the construction of N we also have M, {x 7→ d} |= C′[η/x].
Finally, observe that D |= C.

This shows that refutation by a clause set cycle is a simpler reformulation of the cycles
detected by the n-clause calculus that abstracts the analyticity of the cycle detection. In
other words, by lifting the analyticity inherent to the cycles of the n-clause calculus we
obtain a formalism that is exactly as strong as clause set cycles.

122

6 Clause set cycles

6.6 Summary

In this chapter we have considered refutation by clause set cycles. Clause set cycles are
a form of inductive dependency between clause sets that are an abstraction of the cycles
detected by the n-clause calculus [KP13; Ker14]. We have shown that refutation by a
clause set cycle corresponds essentially to unnested applications of the parameter-free
induction rule over ∃1 formulas (Theorem 6.3.6). This observation has allowed us to
provide various simple properties that cannot be refuted with clause set cycles but that
can be refuted by relatively straightforward arguments by induction. On the other hand
we have also seen that clause set cycles permit us to prove properties that are not even
provable by comparatively powerful calculi such as the calculus considered in Chapter 5.

The results presented in this thesis allow us to locate with respect to other systems
with induction. These situation is summarized in Fig. 6.1. The figure quantifies over
all languages not containing the symbol η and shows the relative refutational strength
for various systems with induction. A system is represented by an arc and the name
of the system is near the top of the arc. The system _ + CSCS is particular in that
it stands for the analytic family of sound saturation systems extended the clause set
cycle detection rule (see Definition 6.1.5) that are guaranteed to detect clause set cycles
present in the initial clause sets. Since these systems may vary in strength depending
on the underlying sound saturation system this family is delimited by a dashed arc.
The points {•i | i = 1, . . . , 6} correspond to clause sets whose position is confirmed by
the results in this thesis and [HV20; HV22]. In particular, the point •1 is witnessed
for instance by the clause set considered in Lemma 6.2.1. The point •2 corresponds to
the clause set considered in Section 6.4.1. The point •3 corresponds to the clause set
considered in Section 6.4.2. Furthermore, the points •4 and •5 correspond to some of the
clause sets considered in Section 6.4.3. Finally, the point •6 corresponds to the clause set
constructed in Section 6.4.4. The inclusion of the system Open(L)-IND− in the system
[∅,∃1(L)-INDR−] is shown by Lemma 6.3.11.

Despite the many limitations of clause set cycles shown in this thesis, refutation by
a clause set cycle is an interesting way of integrating induction into saturation-based
provers, in particular because the detection of clause set cycles does not generate any
additional clauses, except perhaps an empty clause, and therefore neither swamps the
prover with clauses nor extends the working language. This suggests that methods that
integrate induction in terms of Hilbert style induction rules could be more efficient, albeit
slightly weaker, alternatives for the methods discussed in Chapters 4 and 5. It may be
possible to detect inductive dependencies corresponding to the premises of the Hilbert-
style induction rule between clauses sets using similar techniques as used in [KP13].
Finally, let us mention a possible extension of the formalism of refutation by a clause set
cycle. The detection of clause set cycles might be combined with a case split rule that
allows us to split a clause set C(c) where c is a constant into two new clause sets C(0) and
C(s(c)) that are to be refuted. Now cyclic dependencies could be detected between the
generated clause sets resulting in a refutational variant of the cyclic systems described in
[BS11] and implemented in [BGP12]. Possibly such a calculus could make use of existing
clause splitting architectures.

123

6 Clause set cycles

_ +CSCS

∃1-IND

Open-IND

CSC
=Thm. 6.3.6

[∅, ∃1-INDR−
η] Open-IND−

INDη
[∅,∃1-INDR−]1

∅+ ∃1-INDR−

...

[∅,∃1-INDR−]2

•1
•2

•3

∃1-IND−

•6•5•4

Figure 6.1: Overview of the clausal refutational strength of various induction systems.

124

7 Cancellation in linear arithmetic

In this chapter we will provide a proof for Theorem 6.4.8 which states that over the
base theory of linear arithmetic the parameter-free induction schema for ∃1 formulas is
not strong enough to prove some univariate cancellation properties of addition. This
independence result is interesting for AITP because it shows that certain properties
cannot be proved without introducing additional variables. This result has been used
in particular in Section 6.4.2 to provide simple unprovability results for refutation by
a clause set cycle. In Section 7.1 we introduce some preliminary notions and we carry
out some syntactic simplifications on ∃1 formulas. In Section 7.2 we consider some
properties of ∃1 formulas over natural numbers and integers. After that, in Section 7.3
we construct models for the parameter-free ∃1 induction rule. These models allow us to
show that over the base theory of linear arithmetic the parameter-free ∃1 induction rule
is strictly weaker than the corresponding induction schema. This shows us in particular
that Theorem 6.4.8 is strictly stronger than [HV22, Theorem 53]. Furthermore, this
gives rise to the interesting question whether the system based on the induction schema
is conservative for ∀2 sentences over the system based on the induction rule. Finally, in
Section 7.4 we construct a model for the parameter-free ∃1 induction schema and give a
proof of Theorem 6.4.8.

7.1 Preliminaries

In this section we mainly carry out some syntactic transformations that allow us to
eliminate the function symbols p and 0 from ∃1 formulas. The absence of these symbols
allows us to carry out certain embeddings of structures in Sections 7.2 and 7.3. We work
in the setting of linear arithmetic, hence, unless stated otherwise, whenever we speak of
a formula (sentence) we mean an LLA formula (sentence).

Definition 7.1.1. The theory V is axiomatized by the universal closure of the formulas

k + x = x+ k, (Vk)

where k ∈ N.

Lemma 7.1.2. [B,Open({0, s,+})-INDR−] ⊢ V.

Proof. The formula k + x = x+ k is B-inductive.

We will carry out these transformations in the very weak theory B + B1 + V. In a
first step we will show that we can eliminate the symbol p from ∃1 formulas without

125

7 Cancellation in linear arithmetic

increasing the quantifier complexity of ∃1 formulas. After that, we show that we can
moreover eliminate to a certain extent the symbol 0 from ∃1 formulas, again without
increasing the quantifier complexity.

In order to eliminate the symbol p from ∃1 formulas we proceed by replacing all the
occurrences of the symbol p by the following definition of the predecessor function.

Definition 7.1.3. We define the formula D(x, y) by

(x = 0 ∧ y = 0) ∨ s(y) = x.

Lemma 7.1.4. B +B1 ⊢ p(x) = y ↔ D(x, y).

Proof. We work in B+B1. Assume p(x) = y. If x = 0, then we have y = p(x) = p(0) = 0,
hence D(x, y). Otherwise, x = s(p(x)) and therefore x = s(p(x)) = s(y). Now assume
D(x, y). If x = 0 ∧ y = 0, then we have p(x) = p(0) = 0 = y. If s(y) = x, then
y = p(s(y)) = p(x).

We can now factor the symbol p into the axiom B1 by replacing all the occurrences of
p by the definition of the predecessor function.

Lemma 7.1.5. Let φ(x⃗) be an ∃1 LLA formula, then there exists a p-free ∃1 formula
φ′(x⃗) such that

B +B1 ⊢ φ↔ φ′.

Proof. Let φ be an ∃1(LLA) formula, then there exists an unnested ∃1(LLA) formula ψ
such that ⊢ φ ↔ ψ, see for example [Hod97, pp. 51–52]. In particular, the symbol p
occurs in ψ only in atoms of the form p(x) = y. Hence, we obtain the desired formula
by replacing in ψ the atomic formulas of the form p(x) = y by D(x, y).

In the following we will eliminate the symbol 0 to a certain extent from ∃1 formulas
in one variable. In order to simplify the arguments we will introduce some additional
assumptions. Since we work in the context of the theory B we can by Lemma 2.6.10
assume without loss of generality that ground terms are numerals. Moreover, since
equality is symmetric we will assume without loss of generality that atoms are oriented
in such a way that whenever the atom contains a variable, then the left hand side of the
atom contains a variable.

Lemma 7.1.6. Let φ(x) be an ∃1 formula, then there exist p-free components1 χ1, . . . , χn
such that B +B1 ⊢ φ↔

∨n
i=1 χi.

Proof. Apply Lemma 7.1.5 to obtain a p-free ∃1 formula φ′ such that B +B1 ⊢ φ↔ φ′.
Now obtain the desired components by replacing formulas of the form φ→ ψ and φ↔ ψ
respectively by ¬φ ∨ ψ and (¬φ ∨ ψ) ∧ (¬ψ ∨ φ), moving negations inward, eliminating
double negations, distributing conjunctions over disjunctions, and moving existential
quantifiers inwards over disjunctions.

1See Definition 6.4.39

126

7 Cancellation in linear arithmetic

We will distinguish between three types of literals: Those where both sides contain
variables, those where only one side of the equation contains a variable and those where
none of the sides contain a variable.

Definition 7.1.7. Let l be a literal of the form u ▷◁ v with ▷◁ ∈ {=, ̸=}, then l is: ↑↑ if
both u and v contain a variable, ↑↓ if u contains a variable and v is ground, and ↓↓ if
both u and v are ground. We will combine this notation with superscript + to indicate
that the literal is positive and a superscript − to indicate that the literal is negative. We
say that a ↑↓ literal is simple if it is of the form z ▷◁ k where ▷◁ ∈ {=, ̸=}, z is a variable
and k ∈ N. An ↑↓ literal is complex if it is not simple.

Lemma 7.1.8. Let t be a term with Var(t) ̸= ∅, then there exists a 0-free term t′ such
that B + V ⊢ t = t′.

Proof. We proceed by induction on the structure of the term t. If t is a variable, then
we are done by letting t′ = t. If t is of the form s(u), then Var(u) ̸= ∅. Hence, we
can apply the induction hypothesis to u in order to obtain a 0-free term u′ such that
B + V ⊢ u = u′. Thus, B + V ⊢ t = s(u′) and we let t′ = s(u′). If t is of the form
p(u), then we proceed analogously. If t is of the form u + v, then we need to consider
several cases. If Var(u) = ∅, then Var(v) ̸= ∅ and we have B ⊢ u = k for some k ∈ N
and therefore B + V ⊢ t = k + v = v + k = v′ + k = sk(v′). If Var(v) = ∅, then
Var(u) ̸= ∅. Hence, we can apply the induction hypothesis to u in order to obtain a
0-free term u′ such that B + V ⊢ u = u′. Since Var(v) = ∅, there exists k ∈ N such
that B ⊢ v = k. By multiple applications of (A5) followed by an application of (A5) we
obtain B + V ⊢ t = u + k = sk(u) + 0 = sk(u). Hence, t′ := sk(u) is the desired 0-free
term. If u and v contain variables, then by the induction hypothesis we obtain 0-free
terms u′ and v′ such that B + V ⊢ u = u′ and B + V ⊢ v = v′. Hence, t = u′ + v′ is the
desired 0-free term.

By Lemma 2.6.11 and Lemma 7.1.8, it is straightforward to eliminate the symbol 0
from ↑↑ and ↓↓ literals. However, eliminating the symbol 0 from ↑↓ literals needs some
more work. Let us start by observing that complex ↑↓ atoms can be split into several
simple ones.

Lemma 7.1.9. Let u(z⃗) be a p-free term with z⃗ = (z1, . . . , zl) and k ∈ N, then

B +B1 ⊢ u(z⃗) = k ↔
∨

0≤m1,...,ml≤k
uN(m1,...,ml)=k

l∧
j=1

zj = mj .

Proof. Work in B +B1. The “if” direction is obvious. For the “only if” direction assume
u(z⃗) = k and proceed by k-fold case analysis on the variables z⃗. If zi = mi with
0 ≤ mi ≤ k for i = 1, . . . , l, then we have two cases. If u(m1, . . . ,ml) ̸= k, then the
claim follows trivially. Otherwise if u(m1, . . . ,ml) = k, then we are done as well since
z1 = m1 ∧ · · · ∧ zl = ml is a conjunct of the right side. Otherwise, there exists an
i ∈ {1, . . . , l} and z′i such that zi = sk+1z′i. Then let j be the index of the variable

127

7 Cancellation in linear arithmetic

zj with the rightmost occurrence such that zj = sk+1(z′j) for some z′j . Then we have
u(z⃗) = sk+1(u′(z1, . . . , zj−1, z

′
j , zj+1, . . . , zl)) and a term u′. Hence, by Lemma 2.6.9.(i)

we have u(z⃗) ̸= k.

Furthermore, we can eliminate simple ↑↓− literals at the expense of introducing several
positive literals and an existential quantifier.

Lemma 7.1.10. Let k ∈ N, then

B +B1 ⊢ z ̸= k ↔

(
∃z′z = sk+1z′ ∨

k−1∨
i=0

z = i

)
.

Proof. The “if” direction is obvious. For the “only if” direction assume z ̸= k and proceed
by k-fold case analysis on z. If z = i with i < k, then we are done. The case where z = k
contradicts the assumption and therefore we are done. If z = sk+1z′ for some z′, then
we are done as well.

The elimination of the ↑↓ literals from a component χ(x) consists of two majors steps.
In a first step we deal with all the ↑↓ literals except the simple ↑↓ literals containing the
variable x. In the second step we will deal with the remaining ↑↓ literals by making use
of the observation that the truth value of these literals becomes fixed when x is large
enough.

Let us start by defining some measures that will be used to control the first step of
the elimination procedure.

Definition 7.1.11. Let χ(x⃗) = (∃y1). . . (∃yl)Cχ be a component, then #−(χ) is the
number of occurrences of negative literals in χ, #∃(χ) = l, #+

complex(χ) is the number of
occurrences of complex ↑↓+ literals in χ, and #FV(χ) is the number of free variables of
the component χ.

We will now provide some intermediate lemmas that allow us to eliminate a single
literal.

Lemma 7.1.12 (Elimination of ↑↓− literals). Let χ(x) be a p-free component containing a
↑↓− literal, then there exist p-free components χ′

1, . . . , χ′
n such that B+B1 ⊢ χ↔

∨n
i=1 χ

′
i

and #−(χ′
i) < #−(χ) for i = 1, . . . , n.

Proof. We first apply Lemma 7.1.9 in order to split the atom of the ↑↓− literal. After
that, we move the negations inwards and apply Lemma 7.1.10 to all the newly intro-
duced literals of the form z ̸= k with k ∈ N. Now we move the newly introduced
existential quantifiers outwards and possibly rename some bound variables. Finally, we
distribute conjunctions over disjunctions exhaustively. Let χ1, . . . , χk be the resulting
components. Since we have introduced only existential quantifiers and positive literals,
we have #−(χi) < #−(χ).

128

7 Cancellation in linear arithmetic

Lemma 7.1.13 (Elimination of complex ↑↓+ literals). Let χ(x) be a p-free component
containing a complex ↑↓+ literal, then there exist p-free components χ′

1, . . . , χ′
n with

B+B1 ⊢ χ↔
∨n
i=1 χ

′
i such that #−(χ′

i) = #−(χ), #∃(χ
′
i) = #∃(χ), and #+

complex(χ
′
i) <

#+
complex(χ) for i = 1, . . . , n.

Proof. We apply Lemma 7.1.9 to split a complex ↑↓+ literal. Now obtain components
χ′
1, . . . , χ

′
n by distributing conjunctions over disjunctions exhaustively and moving the ex-

istential quantifiers inwards over the disjunctions. Clearly we have B+B1 ⊢ χ↔
∨n
i=1 χ

′
i.

Observe that this operation does not introduce any negative literals or quantifiers. Hence
we have #−(χ′

i) = #(χ) and #∃(χ
′
i) = #∃(χ) for i = 1, . . . , n. Moreover, only simple ↑↓+

literals are introduced, hence we have #+
complex(χ

′
i) < #+

complex(χ) for i = 1, . . . , n.

Lemma 7.1.14 (Elimination of simple ↑↓+ literals). Let χ(x) = ∃y1, . . . , ylC be a p-free
component containing a literal of the form yi = k, then there exists a p-free component
χ′(x) such that ⊢ χ↔ χ′, #−(χ′) = #−(χ), and #∃(χ

′) < #∃(χ).

Proof. Let us assume without loss of generality that C = yi = k ∧ C ′(y1, . . . , yl), where
C ′ is a conjunction of literals. Then, it suffices to apply the first-order equivalence

⊢ ∃yi
(
yi = k ∧ C ′(x, y1, . . . , yi−1, yi, yi+1, . . . , yl)

)
↔ C ′(y1, . . . , yi−1, k, yi+1, . . . , yl).

Clearly we have #−(χ′) = #−(χ) and #∃(χ
′) < #∃(χ).

The following lemma combines the previous lemmas in order to accomplish the first
step of the elimination of the ↑↓ literals.

Lemma 7.1.15. Over B+B1+V every ∃1(LLA) formula φ(x1, . . . , xn) is equivalent to a
disjunction of formulas of the form

∧
i∈I xi = ki∧(∃y⃗)C(x⃗, y⃗), where I ⊆ [n] = {1, . . . , n}

and C is a p-free 0-free conjunction of literals that contains only those variables xi such
that i /∈ I.

Proof. Let χ(x⃗) be a p-free component, then we proceed by induction on the lexicographic
order ≺ on N4 induced by ≤ and show that over B + B1 the component χ is equivalent
to disjunction of formulas of the form

∧
i∈I xi = ki ∧ (∃y⃗)C(x⃗, y⃗), where I ⊆ [n] and C is

a p-free disjunction of ↑↑ and ↓↓ literals that contains only those variables xi such that
i /∈ I. Let #(χ) = (#−(χ),#∃(χ),#

+
complex(χ),#FV(χ)). If χ contains a ↑↓− literal,

then we apply Lemma 7.1.12 in order to obtain p-free components χ′
1, . . . , χ′

n such that
B + B1 ⊢ χ ↔

∨n
i=1 χ

′
i and #−(χ′

i) < #−(χ). Hence #(χ′
i) ≺ #(χ) and therefore

we can apply the induction hypothesis to each of χ′
1, . . . , χ′

n in order to obtain the
desired components. If χ contains a complex ↑↓+ literal, then we apply Lemma 7.1.13
in order to obtain p-free components χ′

1, . . . , χ′
n with B + B1 ⊢ χ ↔

∨n
i=1 χ

′
i such that

#−(χ′
i) = #−(χ), #∃(χ

′
i) = #∃(χ) and #+

complex(χ
′
i) < #+

complex(χ), for i = 1, . . . , n.
Hence #(χ′

i) ≺ #(χ) for i = 1, . . . , n and therefore we can apply the induction hypothesis
to χ′

1, . . . , χ′
n in order to obtain the desired components. Let χ(x) = (∃y1). . . (∃yl)Cχ. If

129

7 Cancellation in linear arithmetic

χ contains a ↑↓ literal of the form xi = ki with i ∈ {1, . . . , n}, then let χ = (∃y⃗)Cχ(x⃗, y⃗)
and χ′ = (∃y⃗)Cχ[xi/ki]. We have ⊢ χ ↔ xi = ki ∧ χ′. Clearly, #−(χ′) = #−(χ),
#∃(χ

′) = #∃(χ), and #+
complex(χ

′) ≤ #+
complex(χ) but #FV(χ

′) = #FV(χ) − 1. Hence,
we may apply the induction hypothesis to the component χ′. If χ contains a simple ↑↓+
literal yi = k, then we apply Lemma 7.1.14 in order to obtain a p-free component χ′(x)
such that B + B1 ⊢ χ ↔ χ′, #−(χ′) = #−(χ), and #∃(χ

′) < #∃(χ). Hence we have
#(χ′) ≺ #(χ) and therefore we can apply the induction hypothesis in order to obtain
the desired components.

Now let φ(x1, . . . , xn) be an ∃1(LLA) formula. By Lemma 7.1.6 the formula φ is
equivalent over B+B1 to a disjunction of p-free components. Therefore, by the procedure
above the formula φ is equivalent over B + B1 to a disjunction of formulas of the form∧
i∈I xi = ki ∧ (∃y⃗)C(x⃗, y⃗), where I ⊆ [n] and C is a p-free disjunction of ↑↑ and ↓↓

literals containing only those variables xi such that i /∈ I. Now we apply Lemma 2.6.11
to eliminate the ↓↓ literals from C and Lemma 7.1.8 to eliminate 0 from the ↑↑ literals
of C.

In the next step we eliminate the remaining literals of the form x = k. This step relies
on the observation that the truth value of these literals is fixed when x is large enough.

Proposition 7.1.16. Let φ(x1, . . . , xn) be an ∃1 formula, then there exists N ∈ N such
that φ(sN (x1), . . . , sN (xn)) is equivalent over B+B1+V to a 0-free, p-free, ∃1 formula.

Proof. By Lemma 7.1.15 the formula φ is equivalent over B+B1+V to a disjunction of
the form

m∨
j=1

∧
i∈Ij

xi = kj,i ∧ (∃y⃗)Cj(x⃗, y⃗)

 ,

where for j = 1, . . . ,m, Ij ⊆ [n] and Cj is a p-free 0-free disjunction of literals containing
only those variables xi such that i /∈ Ij . Let N = 1 + max{ki,j | j = 1, . . . ,m, i ∈ Ij},
then φ(sN (x1), . . . , sN (xn)) is equivalent over B +B1 + V to the formula∨

j=1,...,m
Ij=∅

(∃y⃗)Cj(x⃗, y⃗).

Finally, we obtain the desired formula by moving the ∃ quantifiers outwards over the
disjunction.

7.2 Components in N and Z

In this section we will investigate some basic model-theoretic properties of ∃1 formulas
over natural numbers and integers.

We denote by Z the set of integers as well as the LLA structure whose domain is the
set of integers and that interprets all symbols naturally. In particular, Z interprets the
symbol p as the function x 7→ x − 1. Clearly, we have Z |= A1 + A3 + A4 + A5, but
Z ̸|= A2, since Z |= p(0) = −1.

130

7 Cancellation in linear arithmetic

Definition 7.2.1. Let M be an LLA structure and φ(x⃗) a formula. We say that d⃗ ∈
D (M)|x⃗| is a solution of φ in M if M |= φ(d⃗).

We will show that every p-free ∃1 formula with enough solutions in N|{0,s,+} has an
infinite strictly descending sequence of solutions in Z|{0,s,+}. Let φ(x) be an ∃1 for-
mula, then since the structure N|{0,s,+} can be embedded into Z|{0,s,+}, it is clear that
N|{0,s,+} |= φ(n) implies Z|{0,s,+} |= φ(n), for all n ∈ N.

Let θ(x1, . . . , xk) be an atom, then it is obvious that θ is equivalent in Z to a linear
equation of the form

∑k
i=1 aixi = b with integers a1, . . . , ak, b. Hence a conjunction of

atoms θ1(x1, . . . , xk), . . . , θn(x1, . . . , xk) is equivalent over Z to an inhomogeneous system
of linear equations of the form

Ax⃗ = b, (I)

where A ∈ Zm×k and b ∈ Zm×1. Now consider the corresponding homogeneous system

Ax⃗ = 0. (H)

The solutions of the system (H) form a submonoid H of Zk with pointwise addition.
Furthermore, assume that (I) has a particular solution i(p), then the set of solutions of
(I) is given by

I = {h+ i(p) | h ∈ H}.

Lemma 7.2.2. Let C(x⃗) be a conjunction of LLA atoms and let m⃗, n⃗ be solutions in Z
of C, then Z |= C(k(m⃗− n⃗) + m⃗) for all k ∈ Z.

Proof. As mentioned above the conjunction of atoms C(x⃗) with |x⃗| = p is equivalent in
Z to an inhomogeneous linear system

Ax⃗T = b, (I)

with A ∈ Zl×p and b ∈ Zl×1, where l is the number of conjuncts of C. Let us denote by
I the set of solutions of (I) and by H the set of solutions of the homogeneous system.
Then m⃗T , n⃗T ∈ I and therefore h0 := m⃗− n⃗ ∈ H. Hence k ·h0+ m⃗ ∈ I for all k ∈ N.

Lemma 7.2.3. Let C(x⃗) be a conjunction of negative LLA literals and let m⃗, n⃗ be solu-
tions in Z of C, then there is K ∈ N such that Z |= C(k(m⃗− n⃗) + m⃗) for all k ∈ Z with
|k| ≥ K.

Proof. Let x⃗ = (x1, . . . , xl) and consider a negative literal p(x1, . . . , xl) ̸= 0 of C, where
p is a linear polynomial in the variables x1, . . . , xl with coefficients in Z. Let h0 := m⃗− n⃗
and q(k) := p(k·h0+m⃗), then q is a linear polynomial in one variable. By the assumptions
we have q(0) = p(m⃗) ̸= 0. Hence, there is at most one k ∈ Z such that q(k) = 0.

Let p1(x1, . . . , xl) ̸= 0, . . . , pr(x1, . . . , xl) ̸= 0 be all the negative literals of C, then we
let

K =

∣∣∣∣∣max

(
{0} ∪

r⋃
i=1

{k + 1 | m ∈ Z, qi(k) = 0}

)∣∣∣∣∣ .

131

7 Cancellation in linear arithmetic

Clearly, the natural number K exists and we have Z |= C(k ·h0+ m⃗)) for all m ∈ N with
k ≥ k0.

Proposition 7.2.4. Let C(x⃗) be an LLA clause and let m⃗, n⃗ be solutions in Z of C, then
there is K ∈ N such that Z |= C(k(m⃗− n⃗) + m⃗) for all k ∈ Z with |k| ≥ K.

Proof. An immediate consequence of Lemmas 7.2.2 and 7.2.3.

We summarize the results of this section in the following proposition.

Corollary 7.2.5. Let φ(x) be a p-free ∃1 formula. There exists an n ∈ N such that if φ
has n solutions in N, then there exists an infinite strictly descending sequence of integers
(ki)i∈N with Z |= φ(ki) for all i ∈ N.

Proof. Let χ1, . . . , χk be p-free components such that ⊢ φ ↔
∨k
i=1 χi. Let n = k + 1

and assume that φ has n solutions in N. Then by the pigeonhole principle there is a
component χi0 = (∃y⃗)Ci0(x, y⃗) with two solutions in n1, n2 ∈ N such that n1 < n2. Thus,
Z |= Ci0(ni, m⃗i) for i = 1, 2 where m⃗1, m⃗2 are suitable sequences of natural numbers.
Finally, since n1 − n2 < 0, we are done by applying Proposition 7.2.4 to Ci0 .

7.3 A model of rule based induction

In this section we construct a family of non-standard structures for the language LLA
and we make use of the results from Sections 7.1 and 7.2 in order to show that these
structures are models of the theory

(B +B2 + B3) + ∃1(LLA)-INDR−.

Let us start by introducing some terminology about the models of this theory. Since
already the theory [B,Open(LLA)-INDR−] proves B1 and V, the models of (B + B2 +
B3) + ∃1(LLA)-INDR− are composed of a copy of the natural numbers—the standard
elements—and copies of the integers, which we call the non-standard elements. The
elements of the models we construct below are pairs of the form n[m] = (m,n) ∈ N × Z
such that m = 0 implies n ∈ N. If m = 0, then the element is a standard element,
otherwise it is non-standard and belongs to the m-th copy of the integers. We call m the
type of the element and n the value of the element. We start by defining an operation
that will allow us to relate the types of the elements.

Definition 7.3.1. The function ↿: N× N→ N is given by

n ↿ m :=

{
n if n ̸= 0

m if n = 0
.

Definition 7.3.2. Let I ∈ N, then the LLA structure MI consist of pairs of the form
n[m] with n ∈ Z, m ∈ N and m ≤ I such that if m = 0 then n ∈ N. Furthermore, we let

132

7 Cancellation in linear arithmetic

MI interpret the non-logical symbols as follows

0MI = 0[0],

sMI (n[m]) = (n+ 1)[m], for n[m] ∈M,

pMI (n[m]) =

{
(n −̇ 1)[0] if m = 0,
(n− 1)[m] otherwise.

n
[m1]
1 +MI n

[m2]
2 = (n1 + n2)

[m1↿m2].

The structure M0 is isomorphic to the standard model N. Since we are interested in
constructing non-standard structures, we will consider mainly the structures MI with
I ≥ 1.

Lemma 7.3.3. Let I ∈ N, then MI |= B +B1 + B3 + V.

Proof. Routine.

The structures MI with I ∈ N and I > 0 have the crucial property that Z|{s,p,+} can be
embedded into the non-standard parts of MI . Hence the solutions of 0-free ∃1 formulas
in Z can be transferred into the non-standard chains of MI .

Lemma 7.3.4. Let m, I ∈ N with 1 ≤ m ≤ I, then the function ιm : Z→MI , n 7→ n[m]

is an embedding of Z|{s,p,+} into MI |{s,p,+}. In particular, if φ(x) is a 0-free ∃1 formula,
then Z |= φ(n) implies MI |= φ(n[m]).

Proof. It is routine to verify that ιm is an embedding of Z|{s,p,+} into MI |{s,p,+}. The
second part of the claim follows from the well-known fact that embeddings preserve ∃1
formulas (see for example [Hod97, Theorem 2.4.1])

We can now show that the structures MI satisfy unnested applications of the induction
rule ∃1(LLA)-INDR−.

Theorem 7.3.5. Let I ≥ 1 and T be a sound LLA theory. If MI |= T , then MI |=
[T, ∃1(LLA)-INDR−].

Proof. Let φ(x) be an ∃1 formula and assume that φ is T -inductive. Since T is sound,
we have N |= φ(x). Now consider an element n[m] ∈ M . If m = 0, then n ∈ N and by
the observation above N |= φ(n). By the ∃1-completeness of B we have B ⊢ φ(n) and
therefore MI |= φ(n). Since MI |= n = n[0] we obtain MI |= φ(n[m]).

Now assume that m > 0. By Proposition 7.1.16 there exists a 0-free p-free formula φ′

and an N ∈ N such that B + B1 + V ⊢ φ(sN (x)) ↔ φ′(x). Hence we have N |= φ′ and
therefore by Proposition 7.2.5 there is an infinite strictly descending sequence of integers
(ki)i∈N such that Z |= φ′(ki) for i ∈ N. By Lemma 7.3.4 we obtain MI |= φ′(k

[m]
i) for

i ∈ N. Hence there exists i0 ∈ N such that ki0 + N ≤ n and MI |= φ′(k
[m]
i0

), thus,
MI |= φ((ki0 +N)[m]). Since MI |= φ(x)→ φ(s(x)), we obtain MI |= φ(ki0 +N + k)[m]

for all k ∈ N. In particular, we have MI |= φ(n[m]).

133

7 Cancellation in linear arithmetic

By iterating the argument above we can show that the structures MI even satisfy
nested applications of ∃1(LLA)-INDR−.

Corollary 7.3.6. Let I ≥ 1 and T be a sound LLA theory such that MI |= T , then
MI |= T + ∃1(LLA)-INDR−.

Proof. We proceed by induction on j to show [T, ∃1(LLA)-INDR−]j . For the base case
we have [T, ∃1(LLA)-INDR−]0 = T , hence we are done. For the induction step assume
that MI |= [T, ∃1(LLA)-INDR−]j and observe that [T, ∃1(LLA)-INDR−]j is sound. Now
obtain MI |= [T, ∃1(LLA)-INDR−]j+1 by Theorem 7.3.5.

Lemma 7.3.7. M1 |= B2.

Proof. Clearly it suffices to show that b1 ↿ b2 = b2 ↿ b1 for b1, b2 ∈ {0, 1}. The only
interesting case is b1 ̸= b2, that is, 0 ↿ 1 = 1 = 1 ↿ 0.

Corollary 7.3.8. M1 |= (B +B2 + B3) + ∃1(LLA)-INDR−.

Proof. An immediate consequence of Lemma 7.3.7 and Corollary 7.3.6.

Lemma 7.3.9. Let I ≥ 1, then MI ̸|= Ek,n,m for k, n,m ∈ N with 0 < n < m.

Proof. Now observe that n·k[1]+(m− n)k = (nk)[1]+((m−n)k)[0] = (nk+(m−n)k)[1] =
(mk)[1] = m · k[1], but k[1] ̸= k[0].

The structures developed in this section allow us to show that the system (B + B2 +
B3) + ∃1(LLA)-INDR− is strictly weaker than B +B2 + B3 + ∃1(LLA)-IND−.

Lemma 7.3.10. Let I ≥ 1, then MI ̸|= ∃1(LLA)-IND−.

Proof. Let χ(x) = ∃y1, y2, y3θ(x, y1, y2, y3) with

θ(x, y1, y2, y3) := x+ y1 ̸= x+ y2 ∧ x+ (y3 + y1) = x+ (y3 + y2).

We will show that MI ̸|= Ixχ(x). We first show that MI |= χ(n[0]) for all n ∈ N. For
this it suffices to observe n[0] + 0[0] = n[0], n[0] + 0[1] = n[1] and n[0] + (0[1] + 0[0]) =
n[0]+0[1] = n[1] = n[0]+(0[1]+0[1]). Hence MI |= θ(n[0], 0[0], 0[1], 0[1]). Now we will show
that MI ̸|= χ(n[m]) for n ∈ Z and m > 0. Let k[m1]

1 , k[m2]
2 , l[h] ∈MI and assume that

n[m] + km1
1 ̸= n[m] + k

[m2]
2 , (*)

n[m] + (l[h] + k
[m1]
1) = n[m] + (l[h] + k

[m2]
2). (†)

Since m > 0, we have m ↿ u = m for all u ∈ Z. Hence by (*) we obtain n+ k1 ̸= n+ k2.
By (†) we obtain n + l + k1 = n + l + k2, thus k1 = k2. Therefore n + k1 = n + k2.
Contradiction!

By the above we thus have MI |= χ(0). Now let n[m] ∈ MI . If m = 0, then we
have MI |= χ((n + 1)[0]) hence MI |= χ(n[0]) → χ((n + 1)[0]). If m > 0, then we have
MI ̸|= χ(n[m]) hence MI |= χ(n[m])→ χ((n+ 1)[m]). Thus MI ̸|= Ixχ(x).

134

7 Cancellation in linear arithmetic

An interesting question is whether the theory B + B2 + B3 + ∃1(LLA)-IND− is con-
servative for sentences of the form (∀x)(∃y⃗)φ(x, y⃗) with φ quantifier-free over the theory
(B + B2 + B3) + ∃1(LLA)-INDR−. A negative answer to that question would provide
us with an unprovability result for clause set cycles that is similar to the one given in
Section 6.4.4.

Furthermore, the structuresMI with I ≥ 1 show us that the axiom B2 is not redundant
in (B +B2 + B3) + ∃1(LLA)-INDR−.

Lemma 7.3.11. (B +B3) + ∃1(LLA)-INDR− ̸⊢ B2.

Proof. By Lemma 7.3.3 we have M2 |= B + B3. Since 0[1] + 0[2] = 0[1↿2] = 0[1] ̸= 0[2] =
0[2↿1] = 0[2] + 0[1], we obtain M2 |= (B +B3) + ∃1(LLA)-INDR− ̸⊢ B2 by Corollary 7.3.6.

Similarly, we conjecture that the axiom B3 is also not redundant in the theory (B +
B2 + B3) + ∃1(LLA)-INDR−.

Conjecture 7.3.12. (B +B2) + ∃1(LLA)-INDR− ̸⊢ B3.

7.4 A model of the induction schema

In the previous section we have constructed models that show that (B + B2 + B3) +
∃1(LLA)-INDR− is a strictly weaker system than B + B2 + B3 + ∃1(LLA)−-IND. Thus,
the following independence result of Theorem 6.4.8, which is proved in the remainder of
this section, subsumes Theorem 53 of [HV22]:

B +B2 + B3 + ∃1(LLA)−-IND ̸⊢ Ek,n,m,

where k, n,m ∈ N and 0 < n < m. A proof of this result is in particular interesting for
the studies of clause set cycles, since this independence induces an unprovability result,
see Section 6.4.2. We proceed as usual by constructing a suitable non-standard model of
the language LLA.

Definition 7.4.1. Let M be the structure consisting of elements of the form (m,n) ∈
N× Z with m = 0 implies n ∈ N and interpreting the language LLA as follows

0M = (0, 0),

sM ((m,n)) = (m,n+ 1),

pM ((0, n)) = (0, n −̇ 1),

pM ((m,n)) = (m,n− 1),

(m1, n1) +
M (m2, n2) = (max(m1,m2), n1 + n2).

Lemma 7.4.2. M |= B +B1 + B2 + B3.

135

7 Cancellation in linear arithmetic

Proof. Since (0, 0) ̸= (0, 1), it is obvious thatM |= (A1). We have pM (0M) = pM ((0, 0)) =
(0, 0) = 0M , hence M |= (A2). Let (m,n) ∈ D (M) , then pM (sM ((m,n))) = pM ((m,n+
1)). If m = 0, then we have n ∈ N, hence n+1 > 0 and therefore (m, (n+1)−̇1) = (m,n).
If m > 0, then we have (m,n+ 1− 1) = (m,n). Hence M |= (A3). Let (m,n) ∈ D (M) ,
then we have (m,n) +M 0M = (m,n) +M (0, 0) = (max(m, 0), n + 0) = (m,n). Hence
M |= (A4). Let (m1, n1), (m2, n2) ∈ D (M) , then we have (m1, n1) +

M sM ((m2, n2)) =
(m1, n1)+

M (m2, n2+1) = (max(m1,m2), n1+n2+1) = sM ((max(m1,m2), n1+n2)) =
sM ((m1, n1) +

M (m2, n2)). Hence M |= (A5). Let (m,n) ∈ D (M) . If m = 0, then
there are two cases to consider if n = 0, then we are done otherwise n > 0 and we
have (m,n − 1) = pM (m,n) and sM (m,n − 1) = (m,n). If m > 0, then we have
sM (pM ((m,n))) = sM ((m,n − 1)) = (m,n). Hence M |= B1. Since max and + are
associative, clearly +M is also associative (construction by product). Similarly, +M is
commutative.

The following structure will be used to work with the left component of the elements
of M .

Definition 7.4.3. Let M be the LLA structure with domain N and interpreting the non-
logical symbols as follows: 0M = 0, sM(n) = n, pM(n) = n, and n1 +M n2 = max(n1, n2).

Definition 7.4.4. Let n⃗ = (n1, . . . , nk), m⃗ = (m1, . . . ,mk) be finite sequences of natural
numbers, then we denote by n⃗ ↑ m⃗ the finite sequence

((n1,m1), . . . , (nk,mk)).

Evaluating a p-free term in M can be reduced to evaluating the term over M and Z.

Lemma 7.4.5. Let t(x1, . . . , xl) be a p-free term, m⃗ = (m1, . . . ,ml) a sequence of natural
numbers, and n⃗ = (n1, . . . , nl) a sequence of integers such that (mi, ni) ∈ D (M) for
i = 1, . . . , l, then tM (m⃗ ↑ n⃗) = (tM(m⃗), tZ(n⃗)).

Proof. We proceed by induction on the structure of the term t. If t is 0, then we have
tM = (0, 0) = (0M, 0Z) = (tM, tZ). If t is a variable xi, then tM (m⃗ ↑ n⃗) = (mi, ni) =
(tM(m⃗), tZ(n⃗)). If t is of the form s(u), then u is p-free and therefore we can apply the
induction hypothesis to u. We have

tM (m⃗ ↑ n⃗) = sM (uM (m⃗ ↑ n⃗)) = sM ((uM(m⃗), uZ(n⃗))) = (uM(m⃗), uZ(n⃗) + 1)

= (sM(uM(m⃗)), sZ(uZ(n⃗))) = (tM(m⃗), tZ(n⃗)).

If t is u+ v, then u and v are p-free. Hence we have

tM (m⃗ ↑ n⃗) = uM (m⃗ ↑ n⃗) +M vM (m⃗ ↑ n⃗) = (uM(m⃗), uZ(n⃗)) +M (vM(m⃗), vZ(n⃗))

= (max(uM(m⃗), vM(m⃗)), uZ(n⃗) + vZ(n⃗)) = (tM(m⃗), tZ(n⃗)).

Lemma 7.4.6. Let π(x⃗) be a p-free atom and m⃗ ↑ n⃗ a finite sequence of elements of M ,
then M |= π(m⃗ ↑ n⃗) if and only if M |= π(m⃗) and Z |= π(n⃗).

136

7 Cancellation in linear arithmetic

Proof. Let π be of the form u = v, then we have M |= π(m⃗ ↑ n⃗) if and only if uM (m⃗ ↑
n⃗) = vM (m⃗ ↑ n⃗). By Lemma 7.4.5 this is the case if and only if (uM(m⃗), uZ(n⃗)) =
(vM(m⃗), vZ(n⃗)), which is the case if and only if uM(m⃗) = vM(m⃗) and uZ(n⃗) = vZ(n⃗).
Hence M |= π(m⃗ ↑ n⃗) if and only if M |= π(m⃗) and Z |= π(n⃗).

Lemma 7.4.7. Let t(x1, . . . , xl) be a term and m1, . . . ,ml ∈ N, then

tM(m1, . . . ,ml) = max ({0} ∪ {mi | i ∈ {1, . . . , l}, xi ∈ Var(t)})

Proof. We proceed by induction on the structure of the term t. Let m⃗ = (m1, . . . ,ml)
If t = 0, then we have tM(m⃗) = 0 = max{0}. If t = xi with i ∈ {1, . . . , l}, then
tM(m⃗) = mi = max{0,mi}. If t = s(t′), then Var(t) = Var(t′) and tM(m⃗) = (t′)M(m⃗).
Thus by the induction hypothesis tM(m⃗) = max ({0} ∪ {mi | i ∈ {1, . . . , l}, xi ∈ Var(t)}).
The case where t is of the form p(t′) is analogous. If t is of the form t1 + t2, then
Var(t) = Var(t1) ∪Var(t2) and by the induction hypothesis

tM(m⃗) = max {max ({0} ∪ {mi | i ∈ {1, . . . , l}, xi ∈ Var(tj)}) | j = 1, 2}
= max ({0} ∪ {mi | i ∈ {1, . . . , l}, xi ∈ Var(t)}) .

We will now also write n[m] to denote the element (m,n). Let m⃗ = (m1, . . . ,mn) be a
sequence of integers, then m⃗∔ k denotes the sequence (m1 + k, . . . ,mn + k).

Lemma 7.4.8. Let t(x1, . . . , xl) be a term with Var(t) ̸= ∅, then

tM(m⃗∔ k) = tM(m⃗) + k.

Proof. An immediate consequence of Lemma 7.4.7 and the properties of max.

Lemma 7.4.9. Let π(x⃗) := u = v be an ↑↑ atom, m⃗ a vector of natural numbers, and
k ∈ N. Then

M |= π(m⃗∔ k) if and only if M |= π(m⃗),

Proof. For the “only if” direction assume that M |= π(m⃗∔ k). Then by Lemma 7.4.8 we
obtain uM(m⃗)+ k = uM(m⃗∔ k) = vM(m⃗∔ k) = vM(m⃗)+ k. Therefore uM(m⃗) = vM(m⃗),
that is, M |= π(m⃗). For the “if” direction assume that M |= π(m⃗), then we have
uM(m⃗) = vM(m⃗) and therefore uM(m⃗) + k = vM(m⃗) + k. By Lemma 7.4.8 we obtain
uM(m⃗∔ k) = vM(m⃗∔ k). Hence M |= π(m⃗∔ k).

Lemma 7.4.10. Let ν(x⃗) be a negative literal, m⃗ a vector of natural numbers, and k ∈ N.
If M |= ν(m⃗), then M |= ν(m⃗∔ k).

Proof. Let ν be u ̸= v. We consider several cases. If Var(u) = ∅ and Var(v) ̸= ∅,
then we have uM = 0 and by Lemma 7.4.8 we have vM(m⃗ ∔ k) = vM(m⃗) + k. Since
0 = uM ̸= vM(m⃗), we have vM(m⃗) > 0. Hence uM < vM(m⃗) + k = vM(m⃗ ∔ k), thus,
M |= ν(m⃗ ∔ k). The case where Var(u) ̸= ∅ and Var(v) = ∅ is symmetric. Now
assume that Var(u),Var(v) ̸= ∅. Then we are done by Lemma 7.4.9. The case where
Var(u) = Var(v) = ∅ is not possible, since otherwise uM(m⃗) = 0 = vM(m⃗).

137

7 Cancellation in linear arithmetic

Proposition 7.4.11. Let χ(x) be a p-free component whose positive literals are ↑↑. If
χ has two solutions n[0]1 and n

[0]
2 in M with n1 < n2, then there is n0 ∈ N such that

M |= χ((m,n(n2 − n1) + n1)), for all n ∈ Z with |n| ≥ n0 and m ≥ 1.

Proof. Let χ(x) = ∃y1, . . . , ylCχ(x, y⃗). Let M |= Cχ((0, ni),mi ↑ ki) with mi ↑ ki a
vector of elements of M and i ∈ {1, 2}. We define

q(n) := n(n2 − n1) + n1,

q′(n) := (m, q(n)),

p⃗(n) := n · (k⃗2 − k⃗1) + k⃗1),

p⃗′(n) := (m⃗1 ∔m) ↑ p⃗(n).

Observe that since m > 0, q′(n) ∈ D (M) and p⃗′(n) is a vector of elements of M for all
n ∈ Z.

We start by showing that M |= C+
χ (q

′(n), p⃗′(n)) for all n ∈ Z. Let π(x, y⃗) be a
positive literal of Cχ. Since M |= Cχ((0, ni),mi ↑ ki) for i = 1, 2, we obtain by
Lemma 7.4.6 M |= π(0, m⃗1) and Z |= π(ni, k⃗i) for i = 1, 2. Furthermore, by Lemma 7.4.6
and by the definitions of q′(n) and p⃗′(n), it suffices to show M |= π(m, m⃗1 ∔ m) and
Z |= π(q(n), p⃗(n)). Since the positive literals of χ are ↑↑, π is of the form u = v
with Var(u),Var(v) ̸= ∅. Hence by Lemma 7.4.9 we obtain M |= π(m, m⃗1 ∔ m). By
Lemma 7.2.2 we obtain Z |= π(q(n), p⃗(n)).

Now let us consider a negative literal ν of the form u ̸= v. Since M |= ν((0, n1), m⃗1 ↑
k⃗1), we have by Lemma 7.4.6 either M |= ν(0, m⃗1) or Z |= ν(n1, k⃗1).

• If M |= ν(0, m⃗1), then by Lemma 7.4.10 we have M |= ν(m, m⃗1 ∔m). Hence, by
Lemma 7.4.6 we obtain M |= ν(q′(n), p⃗′(n)) for all n ∈ Z.

• For the other case, let λ(x, y⃗) be the linear function with coefficients in Z such
that Z |= u = v ↔ λ(x, y⃗) = 0. Now let λ′(n) := λ(q(n), p⃗(n)), then λ′ is a
linear function. Since Z |= ν(n1, k⃗1), we have λ′(0) ̸= 0. Hence there exists at
most one nν ∈ Z such that λ′(nν) = 0. Therefore, Z |= ν(q(n), p⃗(n)), that is,
M |= ν(q′(n), q⃗′(n)) if n ̸= nν .

Let ν1, . . . , νr be all the negative literals of χ with M ̸|= ν(0, m⃗1). Now we define n0 =
max{|nνi | + 1 | i = 1, . . . , r}. Then by the above arguments we clearly have M |=
Cχ(q

′(n), p⃗′(n)), thus, M |= χ(q′(n)) for all n ∈ Z with |n| ≥ n0.

Corollary 7.4.12. Let χ(x) be a p-free component whose positive literals are ↑↑ and let
n1, n2 ∈ N such that M |= χ((0, ni)) for i = 1, 2. Then there exists (ki)i∈N with ki ∈ Z
such that ki > ki+1 and M |= χ(k

[m]
i) for all i ∈ N and m ≥ 1.

Proof. An immediate consequence of Proposition 7.4.11.

Corollary 7.4.13. Let φ(x) be an ∃1 formula, then there is N ∈ N such that φ(sN (x))
is equivalent over B +B1 + V to a 0-free, p-free disjunction of components ψ(x).

138

7 Cancellation in linear arithmetic

Proof. An immediate consequence of Proposition 7.1.16 and the fact that we can obtain
a logically equivalent disjunction of components over the same language.

Theorem 7.4.14. M |= B +B2 + B3 + ∃1(LLA)−-IND.

Proof. By Lemma 7.4.2 we have M |= B + B2 + B3. Hence, it remains to show that
M |= ∃1(LLA)−-IND. Let φ(x) be an ∃1 formula. By Corollary 7.4.13 there is N ∈ N and
a 0-free, p-free disjunction of components ψ(x) :=

∨l
i=1 χi(x) such thatM |= φ(sN (x))↔

ψ(x), where the χi are components. Now assume that M |= φ(0) and

M |= φ(x)→ φ(s(x)). (†)

Then we have M |= φ(n) for all n ∈ N. Let (m,n) ∈ D (M) , we will show that
M |= φ((m,n)). Since M |= x = 0 ∨ (∃y)x = s(y), it suffices to show M |= φ(sN (x)). If
m = 0, then n ∈ N and M |= (0, n) = n. Hence we have M |= φ((0, n)).

Now let us consider the case where m > 0. By the pigeonhole principle, there is
I ∈ {1, . . . , l} and (ni)i∈N with ni ∈ N and ni < ni+1 such that M |= χI(ni), for i ∈ N.
Since χI is 0-free, the positive literals of χI are ↑↑. Hence, we can apply Corollary 7.4.12
in order to obtain an infinite strictly descending sequence of integers (ki)i∈N such that
M |= χI((m, ki)) for all i ∈ N. Thus, there is J ∈ N such that kJ ≤ n. We have
M |= χI((m, kJ)) and therefore M |= φ((m, kJ)). By a straightforward induction and
making use of (†) we obtain M |= φ((m, kJ + k)) for all k ∈ N. Therefore, we have in
particular M |= φ((m,n)).

Proof of Theorem 6.4.8. By Theorem 7.4.14 we can work in structure M . We have n ·
(1, k)+M (m− n)k = (1, nk)+M (0, (m−n)k) = (1, nk+(m−n)k) = (1,mk) = m·(1, k),
but (1, k) ̸= (0, k).

We conjecture that removing B2 and B3 from Theorem 7.4.14 weakens the result.

Conjecture 7.4.15. • B +B2 + ∃1(LLA)−-IND ̸⊢ B3.

• B +B3 + ∃1(LLA)−-IND ̸⊢ B2.

One possibility to prove the second point is to take a model where the type compo-
nent consists of finite sequences of at least two distinct elements. This model would be
associative but not commutative and seems to have similar properties as M .

139

8 Towards theory exploration-based
AITP

In this section we will briefly discuss a family of AITP systems that make use of techniques
from the subject of theory exploration. Theory exploration is a subject of automated rea-
soning that focuses on mechanically discovering new concepts, forming conjectures, and
proving theorems from a background theory. The theory exploration paradigm is closer
to the way human mathematicians work toward a proof by proving intermediary results
and introducing new concepts. Theory exploration systems are typically not primarily
used to prove theorems but are used to find interesting results. Hence theorem proving
technology and theory exploration technology are not rival paradigms but complement
each other. For more details we refer the reader to literature on theory exploration
[MBS17; Col02; Len76; Buc+06].

Let us now discuss how theory exploration techniques can be put to use to prove
inductive theorems. It is well-known and it has been shown at various occasions in this
thesis that proving a given formula by induction often does not work by carrying out
induction on the formula itself, but often requires induction on a different and sometimes
even more complicated formula. Theory exploration techniques may be used to discover
intermediary results from which a formula can be proved by pure first-order reasoning.
Typically, formulas are found by generating and proving conjectures of using information
from failed proof attempts.

Inductive theorem provers usually integrate into their induction mechanism various
heuristics that guess lemmas or induction formulas. These differ from theory exploration-
based AITP systems in that they proceed in a top-down way and generate new material
from the query, whereas theory exploration-based methods proceed bottom up and do not
primarily rely on the query φ to produce new lemmas, see [Joh19]. The AITP system
described in [Cla+13] may even be used in theory exploration mode in which it runs
without a query and outputs formulas that it proved based on the background theory.
This may be useful in a proof assistant where the theory exploration system can provide
the user with interesting lemmas.

In the following we will briefly discuss the methods described in [Cla+13; VJ15; SI21]
and discuss some possible unprovability results based on a coarse abstraction of these
methods. There are of course other theory exploration-based systems that have in-
duction capabilities such as IsaCoSy [JDB09] (the predecessor of Hipster, see [MBS17,
Section 5.3.1]), MATHsAiD [MBS17], and Theorema [Buc+06] that we do not address
explicitly in this section. In [Cla+13] it is observed that this approach works well in
practice. The methods described in [Cla+13; VJ15; SI21] proceed by first generating a
set of conjectures, equations in [Cla+13; SI21] or Horn clauses [VJ15], and secondly by

140

8 Towards theory exploration-based AITP

attempting to prove these conjectures incrementally by some analytic induction mech-
anism over the background theory. In particular proved conjectures are added to the
background theory and may thus be used to prove other conjectures. These systems
generate the conjectures as follows. First, the system fixes a set of terms T over a finite
set of variables V . Usually this is the set of terms that do not exceed some fixed size.
After that, the system considers a finite number of substitutions σ1, . . . , σn that take the
variables V to ground terms. Two terms t1 and t2 are considered equivalent if for all
i ∈ {1, . . . , n}, t1σi is equal to t2σi over the background theory. Each such equivalence
between terms t1 and t2 gives rise to a conjecture (∀V)t1 = t2. The method described in
[VJ15] uses a slightly modified form of this process to produce Horn clause conjectures.
The analytic induction prover used by the systems considered in this section are rem-
iniscent of a Hilbert-style induction rule. Since proved conjectures become part of the
background theory, the provers thus behaves akin to nested applications of a Hilbert-style
induction rule. In particular [Cla+13] relies on the analytic induction prover described in
[Ros12]. The systems typically do not extend the language of the input problem so that
we can work over the language of the problem or input theory. The setting assumes that
terms and more generally ground formulas can be decided over the background theory.

We can abstract the theory exploration systems described above very coarsely based
on the structure of the conjectures and by considering the system that extends the
background language by all the true formulas of that structure. In the following we
will consider abstractions based on universally closed equations, universally closed Horn
clauses, and Π1 formulas. For each type of system we obtain a simple unprovability
result for a formula that does not belong to the class of the conjectures considered by
the system. These results are relevant for applications where the system is run in theory
exploration mode and show some limits on the use of the lemmas discovered by the
system. We start with systems that prove equational lemmas. Let L be language and
M a language structure, then we define

Eq(M) = {(∀x⃗)(t1 = t2) | t1(x⃗), t2(x⃗) are L terms and M |= t1 = t2}.

Lemma 8.0.1. B + Eq(NLLA
) ̸⊢ x ̸= sk+1(x), for all k ∈ N.

Proof. Let M be the structure whose domain is N ∪ {∞} and that interprets the non-
logical symbols as follows: 0M = 0, sM (n) = n, sM (∞) =∞, pM (n) = pN(n), pM (∞) =
∞, n +M m = n + m, and n +M ∞ = ∞ +M n = ∞ +M ∞ = ∞, where n,m ∈ N.
It is routine to check that M |= B. Now let θ(x⃗) := u = v be an equation where
x⃗ = (x1, . . . , xk) are exactly the free variables of θ and N |= θ. Furthermore, let d⃗ =
(d1, . . . , dk) with d1, . . . , dk ∈ D (M). Since N |= θ, the variable xi with i ∈ {1, . . . , k}
occurs in u if and only if it occurs in v. If di =∞ for some i ∈ {1, . . . , k} and t(x⃗) is a term
containing xi, then we have M |= t(d1, . . . , dk) = ∞. Hence, we have M |= u(d⃗) = ∞
and M |= v(d⃗) =∞, hence M |= θ(d⃗). Otherwise, d⃗ ∈ Nk, thus, M |= θ(d⃗).

Hence, proving only equational statements over a comparatively simple background
theory is not sufficient to deal with negative literals. Similar empirical observations are
made in [Cla+13] and [VJ15]. This situation can be overcome for example by proving

141

8 Towards theory exploration-based AITP

Horn clauses instead of equational atoms. As shown in the following, this type of system
also has very simple unprovability results. In particular, such systems, when working
over a theory that is also axiomatized by Horn clauses, cannot deal with disjunctive
properties.

Theorem 8.0.2. Let T be a theory axiomatized by Horn clauses and θ1, . . . , θk atoms
with k ≥ 1 such that T ⊢

∨k
i=1 θi, then T ⊢ θi for some i ∈ {1, . . . , k}.

Before we provide a proof of the theorem above we prove the following lemma.

Lemma 8.0.3. Let Γ =⇒ ∆ be a sequent with Γ containing possibly universally quantified
Horn formulas and ∆ a finite set of atoms. If the sequent Γ =⇒ ∆ is provable, then there
exists δ ⊆ ∆ with |δ| ≤ 1 such that Γ =⇒ δ is provable.

Proof. Let π be a G proof of Γ =⇒ ∆ that is free of non-atomic cuts. Moreover, we can
assume without loss of generality that L→ inferences are part of a subproof of the form

µ1
Π⇒ θ1,Λ · · ·

µn
Π⇒ θn,Λ

R∧
Π⇒

∧n
i=1 θi,Λ

(γ)
Π, ψ ⇒ Λ

L→
Π,
∧n
i=1 θi → ψ ⇒ Λ.

We proceed by induction on the number of inferences of the proof π and consider the last
inference of π. If π consists only of one inference, then π is either Ax, ⊥, Refl, Eq and we
are trivially done. Now let us assume that π consists of more than one inference. If the
last inference of π is L∀, LW, RW, LC or RC we are done by the induction hypothesis.
If the last inference of π is Cut, then π is of the form

π1
Γ1 =⇒ ∆1, A

π2
A,Γ2 =⇒ ∆2

Cut
Γ1,Γ2 =⇒ ∆1,∆2,

where A is an atom, Γ = Γ1∪Γ2, and ∆ = ∆1∪∆2. By applying the induction hypothesis
to π1 we either obtain a proof µ1 of Γ1 =⇒ δ, where |δ| ≤ 1 and δ ⊆ ∆1 or Γ1 =⇒ A. In
the first case we obtain the desired proof by applying left weakening rules so as to obtain
the end-sequent Γ =⇒ δ. For the second case we apply the induction hypothesis to π2
in order to obtain a proof µ2 of A,Γ2 =⇒ δ for some δ ⊆ ∆2 with |δ| ≤ 1. Hence, the
following is the desired proof:

µ1
Γ1 =⇒ A

µ2
A,Γ1 =⇒ δ

Cut
Γ1,Γ2 =⇒ δ.

Finally, we need to consider the case where the last inference of π is an L→ rule. By the

142

8 Towards theory exploration-based AITP

assumption above the proof is of the form

π1
Γ⇒ θ1,∆ · · ·

πn
Γ⇒ θn,∆

R∧
Γ⇒

∧n
i=1 θi,∆

(γ)
Γ, ψ ⇒ ∆

L→
Γ,
∧n
i=1 θi → ψ ⇒ ∆.

We apply the induction hypothesis to the proofs in π1, . . . , πn in order to obtain proofs µi
of Γ =⇒ δi such that δi ⊆ {θi}∪∆ and |δi| ≤ 1 for i = 1, . . . , n. If there is i ∈ {1, . . . , n}
such that θi /∈ δi, then µi is the desired proof. Otherwise, by applying the induction
hypothesis to γ we obtain a proof γ′ of Γ, ψ =⇒ δ with δ ⊆ ∆ and |δ| ≤ 1. Then the
following is the desired proof

π′1
Γ =⇒ θ1 · · ·

π′n
Γ =⇒ θn

R∧
Γ =⇒

∧n
i=1 θi

γ′

Γ, ψ =⇒ δ
L→

Γ,
∧n
i=1 θi → ψ =⇒ δ.

Proof of Theorem 8.0.2. Suppose that T ⊢
∨k
i=1 θi, then by the completeness theorem

there exists a finite set Γ of universally quantified Horn clauses that are axioms of T such
that Γ =⇒ ∆ with ∆ = {θ1, . . . , θk} is provable. By Lemma 8.0.3 we obtain a proof of
Γ =⇒ θi for some i ∈ {1, . . . , k}. By the soundness of G we thus have T ⊢ θi.

This gives us a simple unprovability result for theory exploration-based AITP methods
that infer true universally closed Horn clauses. Let L be a language and M a language
structure, then we define

HCl(M) = {(∀x⃗)C | C(x⃗) is an L Horn clause and M |= C}.

Corollary 8.0.4. Let ⌊x2 ⌋ be a unary function symbol whose intended interpretation is
integer division by 2. Let the theory B⌊x

2
⌋ extend the base theory of additive arithmetic

B by the universal closure of the following formulas⌊
0

2

⌋
= 0,

⌊
1

2

⌋
= 0,

⌊
s(s(x))

2

⌋
= s

(⌊x
2

⌋)
.

Then B⌊x
2
⌋ +HCl(NL(B⌊x

2 ⌋)
) ̸⊢ x = 2 ·

⌊
x
2

⌋
∨ x = 2 ·

⌊
x
2

⌋
+ 1.

Proof. An immediate consequence of Theorem 8.0.2 and the fact that NL(B⌊x
2 ⌋

) |= B⌊x2 ⌋.

This result shows us that when working with a Horn theory, theory exploration-based
AITP methods that work over Horn clauses may only prove clauses of which already one
literal can be proven. It would also be interesting to relate this result with the induction

143

8 Towards theory exploration-based AITP

schema for literals so as to possibly obtain a connection between theory exploration
methods and the systems based on the single-clause induction rules introduced in [RV19;
Haj+20]. An interesting related result of Shoenfield that can be mentioned in this context
is the following.

Theorem 8.0.5 ([She63, Theorem 2.2]). Let T be a ∀1 theory, then

T +Open(L(T))-IND ≡Open(L(T)) T +Open(L(T))-INDR.

This shows us that at least when restricted to quantifier-free queries a theory exploration-
based method based that uses the induction rule over quantifier-free formulas is not
weaker than the corresponding system with the induction axiom for quantifier-free for-
mulas. We conjecture that a similar conservativity result holds for the literal induction
schema over the Horn clause induction rule.

Conjecture 8.0.6. Let T be Horn theory, then

T + Literal(L(T))-IND ≡Open(L(T)) T +HCl(L(T))-INDR.

Finally, let us briefly consider the more powerful class of theory exploration based
systems that detect true ∀1(L) (or even true Π1(L)) sentences where L is the language
of the background theory. When the background theory T is Π1(L) axiomatized, then
by Parikh’s theorem (see Theorem 6.2.9) the system T +ΠN

1 (L) is not able to prove the
totality of functions that have a ∆0(L) definition and that grow asymptotically faster
than any L term. Thus a theory exploration system that proves Π1(L) lemmas would
not be able to prove (∀x)(∃y)x ▷ y over the background theory T▷ where ▷ represents the
graph of the function that enumerates the triangular numbers (see Definition 4.2.31). In
particular, Proposition 6.2.11 readily applies to this setting and yields an unprovability
result.

The results mentioned in this section are very coarse and not very specific to a partic-
ular method. It would in the future be interesting to inspect the methods described in
[Cla+13; VJ15; SI21] more closely to extract the induction rules that are used by these
systems. This will allow us to provide results that are more specific to a given method
and to consider practically relevant variants of these induction rules. The observations
that we gave in this section show that even if a method is able to recognize all the true
formulas of a certain structure, for example equations, Horn clauses, or Π1 formulas,
then there are some basic unprovability phenomena. This may of course be unproblem-
atic if these methods are applied only in a sufficiently restricted setting. However, this
becomes a problem if a method has more varied applications such as for example in a
proof assistant.

The practical methods described in [Cla+13; VJ15; SI21] limit the shape of the con-
jectures that are proved by the system because testing more complex formulas is time
consuming. Generating equational conjectures is comparatively efficient, because eval-
uating instances of terms naturally induces an equivalence relation that can be used to
generate many equational conjectures. In general it would be interesting to explore tech-
niques for testing more complex formulas, possibly even with quantifiers. Moreover, it

144

8 Towards theory exploration-based AITP

would be interesting to investigate how to extract more information from the instances
and their proofs. Let us mention here the method described in [EH15] which is able to
construct a proof by induction from proofs of instances given that the instance proofs
are suitably structured [Ebn21].

Furthermore, it could be interesting to consider the integration of the theory explo-
ration paradigm with saturation-based proving. In particular, we have mentioned in
Section 6.6 the possibility to extend saturation systems with a case split rule and to
detect inductive dependencies between the branches. This case split rule could also be
used to produce ground material that could be fed into a conjecturing mechanism.

145

9 Conclusion

In this thesis we have developed a technique for the analysis of the limits of AITP
systems. We have applied this technique to the saturation-based automated inductive
theorem provers described in [RV19; Haj+20] (see Chapter 4), [Cru17] (see Chapter 5),
and [KP13; Ker14] (see Chapter 6). Furthermore, we have applied this analysis technique
to a simple theory exploration-based AITP systems inspired by the prover described in
[Cla+13] (see Chapter 8). The analysis technique developed in this thesis is the simu-
lation of AITP systems in first-order theories with induction. Although simulating an
AITP by a first-order theory abstracts many details of the system, the results in this
thesis show that such a simulation often permits to isolate crucial logical features that
are responsible for the overall expressivity of the system. The most important features
isolated by the simulations carried out in this thesis are the presence or absence of in-
duction parameters, rule-like applications of induction and the propositional structure
of the induction formulas as well as their quantifier complexity. Furthermore, the sim-
ulation of an AITP system in a first-order theory gives access to first-order semantics
via Gödel’s completeness theorem for first-order logic. In this thesis semantic arguments
have proved to be highly valuable in establishing the unprovability of certain elementary
properties by various AITP systems. Almost all of the unprovability results developed in
this thesis rely on the construction of some first-order structure. The only exceptions are
Corollary 8.0.4 which relies on a purely proof-theoretic argument and Proposition 4.3.3
which mostly relies on a proof-theoretic argument.

The unprovability results developed in this thesis show that even relatively recent sys-
tems fail to prove some practically meaningful properties even given any amount of time
and memory. For example, we have shown that some systems fail to prove: simple forms
of cancellation of addition, cancellation of a multiplicative constants, that every natural
number is either even or odd, or the totality of simple function definitions. This situation
is explained by the observation that firstly AITP systems impose more or less restrictions
on the syntactic composition of induction formulas and that secondly such restrictions
are severely limiting the logical strength of the possible arguments. Typically restric-
tions are imposed on the number of induction parameters, the propositional structure of
induction formulas, or the quantifier complexity. In saturation-based AITP systems this
situation is especially opaque because preprocessing steps and the induction mechanism
itself modify the working language. In particular, we have seen two situations in which
this behavior results in the paradoxical situation where an AITP system solves a prob-
lem but fails to solve an instance of that problem (see Sections 4.3 and 6.4.2). Overall,
our results show that AITP systems tend not to adapt well to more general settings,
which is in contrast to possible applications such as in proof assistants that require more
flexibility.

146

9 Conclusion

The observation that the reduction of AITP systems to first-order theories results in
elementary unprovability results is interesting, because this technique ignores many de-
tails about the underlying calculus. On the one hand, this situation suggests that even
much more elementary unprovability results may be obtained by taking into account
more details of the AITP system such as the analyticity of the induction mechanism.
Indeed Proposition 4.3.3 shows that is the case for a variant of the system considered
in [RV19]. This issue is further discussed in Section 9.3. On the other hand, the un-
provability results give rise to the question how they can be overcome. The abstraction
realized by the simulation shows that the unprovability results obtained in this thesis
rely primarily on the weakness of the respective induction mechanisms and not on the
integration of that mechanism into the concrete system. Hence, our unprovability results
require a substantial improvement of an induction mechanism in order to be overcome.
Fortunately, the upper bounds developed in this thesis make it simple to consider various
natural extensions of a system by relaxing certain restrictions. These extensions in turn
usually give rise to new unprovability results. Thus we obtain increasingly difficult to
overcome unprovability results that are challenging for future AITP systems. An interest-
ing question, that we left open, is whether the extensions suggested by our unprovability
results can be implemented efficiently. Besides developing stronger unprovability results
by considering extensions of systems, it is also useful to transfer unprovability results to
stronger systems. Doing so permits to rule out, in advance, certain extension depend-
ing on whether they are sufficient to overcome an unprovability. For example, we have
shown the unprovability result of Section 6.4.2 for clause set cycles can be overcome by
induction parameters, but also that induction parameters cannot be compensated, for
example, by allowing nested applications of the induction rule or even the usage of the
induction schema. This knowledge will be valuable for designing more powerful inductive
theorem provers that avoid certain unprovability results.

The work in this thesis thus contributes to the development of the logical foundations
of inductive theorem proving by identifying logical features that impact the power of
arguments by induction. Furthermore, the results in this thesis complement existing em-
pirical observations about AITP and, most notably, provide formal unprovability results
where previously only the failure of a concrete implementation could be observed. In par-
ticular, the unprovability results shown in this thesis back similar empirically observed
failures of implementations to prove certain properties and moreover show the necessity
to consider certain extensions such as, for example, those described in [Haj+20] and
[Haj+21b]. Moreover, our results provide some guidance for the development of more
powerful AITP systems by identifying logical features that are responsible for unprov-
ability results. Furthermore, the results in this thesis are definite in the sense that they
are independent of platforms, applications, and implementations. In particular, they do
not suffer from the reproducibility problems that may be encountered in an empirical
setting where AITP systems often become inaccessible or unmaintained over time.

In the following sections we discuss some directions for future work. In Section 9.1 we
consider some AITP systems for which an analysis similar to the ones carried out in this
thesis would be interesting. After that, we consider in Section 9.2 possible improvements
of the techniques used in this thesis. Finally, in Section 9.3 we briefly discuss future work

147

9 Conclusion

on the analyticity of AITP systems.

9.1 Analysis of other methods

The results in this thesis have shown that the analysis method developed in this thesis is
able to obtain valuable information about AITP systems. As already mentioned in the
introduction there is a wealth of methods and approaches for inductive theorem proving.
In principle every one can and should be subjected to an analysis such as the one carried
out in this thesis in order to develop a high-level overview of the state of the art of the
subject of automated inductive theorem proving. In the following we will mention some
particular systems and explain why they are interesting targets for analysis.

The methods described in [Dar68], [Biu+86], [Wan17], [EP20] integrate induction into a
saturation-based proof system and thus similar to the methods considered in Chapters 4
to 6. Because of this similarity, analyzing these methods can probably make use of
some of the techniques used in this thesis. Moreover, saturation-based theorem proving
is currently the dominating theorem proving paradigm. Therefore, these methods are
especially interesting to analyze. In particular it would be interesting to compare [EP20]
with the systems based on clause set cycles considered in Chapter 6, since this system
uses some of the concepts seen in the n-clause calculus. Moreover, the method described
in [Wan17] seems to be rather similar to Cruanes’s calculus considered in Chapter 5.

In Chapter 8 we have briefly considered some preliminary results for systems based
on theory exploration. Empirical evidence [Cla+13; SI21] shows that this is a promising
paradigm for automated inductive theorem proving. This may be partly due to these
system being inherently less analytic and thus also behave more consistently with respect
to deductive closure. Thus it may be interesting to analyze these systems in more detail.

Another interesting family of systems to consider are the AITP systems that implement
cyclic calculi such as the one described in [BS11]. The theorem prover Cyclist described
in [BGP12] implements an analytic variant of the cyclic calculus and [JOR21] implements
cyclic equational reasoning. For cyclic provers it may be necessary to develop different
techniques because cyclic calculi are in general stronger than structural induction [BT17].

Term rewriting systems play an important role in computer science and in software
engineering. Thus it is particularly interesting to analyze AITP methods that integrate
induction into term rewriting systems. A prominent method in this area is the term
rewriting induction method described [Red90]. This method has been adapted to more
varied settings including for example inequalities, see [NN18].

Some software verification tools such as Zeno [SDE12], RAPID [Gle20], Dafny [Lei10;
Jia+21] include induction mechanisms in order to prove properties about programs that
involve loops or recursion. Analyzing these systems as in this thesis may help to un-
derstand their limits and may suggest improvements such as, for example, combinations
with other techniques that are well-suited for a certain class of problems specific to the
verification of software.

148

9 Conclusion

9.2 Extension of results and techniques

In the following we outline some possible directions for future work that focus on the ex-
tension and improvement of results and techniques developed in this thesis. Essentially,
these are the strengthening of existing results and the development of proof theoretic
techniques, the exploration of various forms of induction, and the development of un-
provability results based on other inductive datatypes than natural numbers.

In this thesis we have provided a number of unprovability results for AITP systems.
First of all, many of these results may be strengthened considerably, see for example
Conjecture 6.4.13 and Conjecture 4.2.38. Moreover, our technique for providing unprov-
ability results relies mostly on the use of semantic arguments. In particular, for most of
our unprovability results we have manually constructed a structure and shown that it is
indeed a model of a certain theory. It could be interesting to investigate up to which point
we can make such developments more systematic. Parikh’s theorem (see Theorem 6.2.9)
is a good example of a result that allows us to obtain a certain type of unprovability re-
sult systematically. Furthermore, our semantic approach ignores entirely the structure of
proofs produced by AITP systems. This is also related to the analysis of the analyticity
of methods that we will discuss in more detail in Section 4.3. Even though the seman-
tic approach we use here is convenient, developing proof theoretic techniques could be
valuable in the future. Proof theoretic techniques could allow us to exploit the structure
of proofs produced by AITP systems in order to provide unprovability results. More-
over, some general results may be obtained more easily with proof theoretic techniques
than with model theoretic techniques. The rather simple result Lemma 8.0.3 together
with Corollary 8.0.4 supports this idea especially if combined with possible analogues of
conservativity results such as the ones of Shepherdson (see Theorem 8.0.5).

Another direction in which to continue the work in this thesis is to explore in more
details the different variants of induction, such as big-step induction, Hilbert-style induc-
tion rules, simultaneous induction, restrictions of the propositional structure, quantifier
complexity, parameter-free induction and variants that we have not considered in this
thesis such as Hilbert-style rules with contexts, occurrences of the induction variable,
various instances of parameter-substitution induction [She63], and so on. In this thesis
we have considered only a few combinations of these features that were relevant for the
methods that we have considered and for some natural extensions thereof. Exploring the
separations between systems that combine these features could anticipate unprovability
results that become relevant once a suitable upper bound has been provided for a given
method. Furthermore, separation results would induce benchmark problems that are
specific to a combination of features. Such a benchmark suite would have the advantage
that the difficulty of the problems is known to some extent and thus offers more structure
to discriminate methods. Moreover, the suite obtained in this way is not dependent on
any system or application and would thus complement suites such as [Cla+15] that are
more oriented towards properties of functional programs.

Finally, let us recall that all the unprovability results in this thesis are about properties
of natural numbers. Such results are practically less interesting than results about more
complicated inductive datatypes because properties about natural numbers are often

149

9 Conclusion

handled via decision procedures and SMT solving. However, many of the properties we
have considered in this thesis have analogues for more complicated types, for which we
immediately obtain similar unprovability results. Consider for example the property

x+ x = x+ 0→ x = 0,

which we have considered in the context of clause set cycles (see Section 6.4.2). Now
we work over a language of finite lists constructed by a nullary function symbol nil
representing the empty list and the binary function symbol cons that adds an element
to the front of a list and let ⌢ be an binary infix function symbol that denotes the
concatenation of two lists. Then one can show by a theory interpretation that the
property

x ⌢ x = nil ⌢ x→ x = nil ,

is independent of the basic axioms for the list constructors and the append operations
together with parameter-free induction for lists over existentially quantified formulas.
Considering unprovability on natural numbers gives results that are more elementary in
the sense that they do not rely on the more complicated structure of, say, lists. Moreover,
methods that behave uniformly across different inductive datatypes, will not perform bet-
ter on a more complicated type than on simpler types. This observation suggests that
already improving natural number induction will result in overall substantial improve-
ments in AITP. However, it may be interesting to consider the more complicated types
such as lists and trees. For such types we may find properties that rely on the structure of
the type and would thus be even more complicated to prove than their analogous on nat-
ural numbers. Let us mention just two examples of properties on lists where this seems
to be the case. Recall that big-step induction over natural numbers can be eliminated via
conjunction (see Lemma 4.2.27). However, over lists big-step induction for quantifier-free
formulas does not seem to be simulated by quantifier-free induction. Moreover, the can-
cellation property of the concatenation of lists seems to be more complicated, than the
cancellation property of addition. The left cancellation property x ⌢ y = x ⌢ z → y = z
can easily be proved with quantifier-free induction. However, the right cancellation prop-
erty y ⌢ x = z ⌢ x → y = z, does not seem to be a consequence of induction over
quantifier-free formulas.

9.3 Analyticity

For efficiency reasons practical AITP system often do not try all possible induction for-
mulas, but instead attempt induction only on formulas generated during proof search.
We informally refer to this behavior as analyticity. The method developed in this the-
sis only takes into account the analyticity restrictions to a certain extent, namely the
restrictions imposed on the shape of the induction formulas such as, for example, their
propositional structure or the quantifier-complexity. However, the restriction of using
only those formulas that are generated during proof search may cause incompleteness
results with respect to the upper bounds that we have derived in this thesis. In this

150

9 Conclusion

thesis we have provided only one simple result (see Proposition 4.3.3) that takes into
account such an analyticity restriction. This result shows that concrete systems are in
some cases quite far away from the upper bounds that we have developed. Hence, an
interesting direction for future research is the refinement of the results of this thesis by
an analysis of the trade-off between efficiency and analyticity. Such an analysis may also
be carried out at different levels of abstraction depending on how many details about the
AITP method are assumed. Furthermore, we have mentioned in this thesis that several
induction mechanisms and their variants cannot be distinguished by the abstractions
that we have provided (see Section 4.2.3). It could be insightful to investigate the possi-
ble discrepancies between these rules and to design mechanisms that subsume a certain
number of their variants so as to possibly facilitate the implementation and soundness
considerations.

In some AITP systems the analyticity restrictions manifest themselves in the shape
of the proofs. Such systems are particularly interesting because these may be analyzed
with proof theoretic techniques. Examples of such systems are the systems considered
in Chapters 4 to 6. Furthermore, this is also the case of the prover Cyclist [BGP12]
which is based on the cyclic sequent calculus introduced in [BS11]. This prover proceeds
by a bottom-up proof search and essentially produces cut-free proofs. Recently Das
[Das20] has shown that in the context of arithmetic that the logical consequences of
cyclic proofs containing only Σn formulas are contained in the theory IΣn+1. In the
setting of arithmetic this result already gives us an upper bound for provers such as
Cyclist, however this bound may be improved by taking into account the cut-freeness of
the proofs output by Cyclist.

151

Bibliography

[Ada87] Zofia Adamowicz. “Parameter-Free Induction, The Matiyasevič Theorem
and BΣ1”. In: Logic Colloquium ’86. Ed. by F.R. Drake and J.K. Truss.
Vol. 124. Studies in Logic and the Foundations of Mathematics. Elsevier,
1987, pp. 1–8.

[Bee06] Michael Beeson. “Mathematical Induction in Otter-Lambda”. In: Journal of
Automated Reasoning 36.4 (2006), pp. 311–344.

[Bek03] Lev D. Beklemishev. “Quantifier-free induction schema and the least element
principle”. In: Proceedings of the Steklov Institute of Mathematics 242 (2003),
pp. 50–67.

[Bek05] Lev D. Beklemishev. “Reflection principles and provability algebras in formal
arithmetic”. In: Russian Mathematical Surveys 60.2 (Apr. 2005), pp. 197–
268.

[Bek97a] Lev D. Beklemishev. “Induction rules, reflection principles, and provably re-
cursive functions”. In: Annals of Pure and Applied Logic 85.3 (1997), pp. 193–
242.

[Bek97b] Lev D. Beklemishev. “Parameter free induction and reflection”. In: Computa-
tional Logic and Proof Theory. 5th Kurt Gödel Colloquim, KGC’97 Vienna,
Austria, August 25-29, 1997 Proceedings (Vienna, Austria). Ed. by Georg
Gottlob, Alexander Leitsch, and Daniele Mundici. Vol. 1289. Lecture Notes
in Computer Science. Springer, 1997, pp. 103–113.

[Bek99] Lev D. Beklemishev. “Parameter free induction and provably total com-
putable functions”. In: Theoretical Computer Science 224.1 (1999), pp. 13–
33.

[BGP12] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. “A
Generic Cyclic Theorem Prover”. In: Programming Languages and Systems.
10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13, 2012.
Proceedings. Ed. by Ranjit Jhala and Atsushi Igarashi. Vol. 7705. Lecture
Notes in Computer Science. Springer, 2012, pp. 350–367.

[BHW12] Matthias Baaz, Stefan Hetzl, and Daniel Weller. “On the complexity of proof
deskolemization”. In: Journal of Symbolic Logic 77.2 (2012), pp. 669–686.

[BIS92] Siani Baker, Andrew Ireland, and Alan Smaill. “On the Use of the Construc-
tive Omega-Rule within Automated Deduction”. In: Logic Programming and
Automated Reasoning. International Conference LPAR’92, St. Petersburg,
Russia, July 15-20, 1992, Proceedings. Ed. by Andrei Voronkov. Vol. 624.
Lecture Notes in Computer Science. Springer, 1992, pp. 214–225.

152

Bibliography

[Biu+86] Susanne Biundo, Birgit Hummel, Dieter Hutter, and Christoph Walther.
“The Karlsruhe Induction Theorem Proving System”. In: 8th International
Conference on Automated Deduction. Oxford, England, July 27 - August 1,
1986, Proceedings. Ed. by Jörg H. Siekmann. Vol. 230. Lecture Notes in
Computer Science. Springer, 1986, pp. 672–674.

[BL94] Matthias Baaz and Alexander Leitsch. “On Skolemization and Proof Com-
plexity”. In: Fundamenta Informaticae 20.4 (1994), pp. 353–379.

[BM79] Robert S. Boyer and J Strother Moore. A Computational Logic. ACM Mono-
graph Series. Edited by Thomas A. Standish. Academic Press, New York,
1979.

[Bro05] James Brotherston. “Cyclic Proofs for First-Order Logic with Inductive Defi-
nitions”. In: Automated Reasoning with Analytic Tableaux and Related Meth-
ods. 14th International Conference, TABLEAUX 2005, Koblenz, Germany,
September 14-17, 2005. Proceedings. Ed. by Bernhard Beckert. Vol. 3702.
Lecture Notes in Computer Science. Springer, 2005, pp. 78–92.

[BS11] James Brotherston and Alex Simpson. “Sequent Calculi for Induction and
Infinite Descent”. In: Journal of Logic and Computation 21.6 (Dec. 2011),
pp. 1177–1216.

[BT17] Stefano Berardi and Makoto Tatsuta. “Classical System of Martin-Löf’s In-
ductive Definitions Is Not Equivalent to Cyclic Proof System”. In: Founda-
tions of Software Science and Computation Structures. 20th International
Conference, FOSSACS 2017, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-
den, April 22-29, 2017, Proceedings. Ed. by Javier Esparza and Andrzej S.
Murawski. Vol. 10203. Lecture Notes in Computer Science. Springer, 2017,
pp. 301–317.

[BT19] Stefano Berardi and Makoto Tatsuta. “Classical System of Martin-Löf’s In-
ductive Definitions is not Equivalent to Cyclic Proofs”. In: Logical Methods
in Computer Science 15.3 (Aug. 2019), 10:1–10:25.

[Buc+06] Bruno Buchberger, Adrian Crǎciun, Tudor Jebelean, Laura Kovács, Temur
Kutsia, Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus
Rosenkranz, and Wolfgang Windsteiger. “Theorema: Towards computer-
aided mathematical theory exploration”. In: Journal of Applied Logic 4.4
(2006), pp. 470–504.

[Bun+89] Alan Bundy, Frank van Harmelen, Jane Hesketh, Alan Smaill, and Andrew
Stevens. “A Rational Reconstruction and Extension of Recursion Analysis”.
In: Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence. Detroit, MI, USA, August 1989. Ed. by N. S. Sridharan. Vol. 1.
Morgan Kaufmann, 1989, pp. 359–365.

153

Bibliography

[Bun+93] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and
Alan Smaill. “Rippling: A heuristic for guiding inductive proofs”. In: Artifi-
cial Intelligence 62.2 (1993), pp. 185–253.

[CFM11] Andrés Cordón-Franco, Alejandro Fernández-Margarit, and Francisco Félix
Lara Martín. “A note on parameter free Π1-induction and restricted expo-
nentiation”. In: Mathematical Logic Quarterly 57.5 (2011), pp. 444–455.

[Cla+13] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. “Au-
tomating Inductive Proofs Using Theory Exploration”. In: Automated De-
duction - CADE-24. 24th International Conference on Automated Deduc-
tion, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Ed. by Maria
Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer,
2013, pp. 392–406.

[Cla+15] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. “TIP:
Tons of Inductive Problems”. In: Intelligent Computer Mathematics. Inter-
national Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015,
Proceedings. Ed. by Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Flo-
rian Rabe, and Volker Sorge. Vol. 9150. Lecture Notes in Computer Science.
Springer, 2015, pp. 333–337.

[Col02] Simon Colton. Automated Theory Formation in Pure Mathematics. Distin-
guished dissertations. Springer, 2002.

[Com01] Hubert Comon. “Inductionless Induction”. In: Handbook of Automated Rea-
soning. Ed. by Alan Robinson and Andrei Voronkov. Vol. 1. 2 vols. Amster-
dam: North-Holland, 2001. Chap. 14, pp. 913–962.

[Cru15] Simon Cruanes. “Extending Superposition with Integer Arithmetic, Struc-
tural Induction, and Beyond.” PhD thesis. École Polytechnique, Palaiseau,
France, Sept. 2015.

[Cru17] Simon Cruanes. “Superposition with Structural Induction”. In: Frontiers of
Combining Systems. 11th International Symposium, FroCoS 2017, Brasília,
Brazil, September 27-29, 2017, Proceedings. Ed. by Clare Dixon and Marcelo
Finger. Vol. 10483. Lecture Notes in Computer Science. Springer, 2017,
pp. 172–188.

[Dar68] Jared L. Darlington. “Automatic theorem proving with equality substitu-
tions and mathematical induction”. In: Machine Intelligence 3. Ed. by Don-
ald Michie. Vol. 3. Machine Intelligence. Edinburgh University Press, 1968.

[Das20] Anupam Das. “On the logical complexity of cyclic arithmetic”. In: Logical
Methods in Computer Science 16.1 (Jan. 2020), 1:1–1:39.

[Dow08] Gilles Dowek. “Skolemization in Simple Type Theory: the Logical and the
Theoretical Points of View”. In: Reasoning in Simple Type Theory. Festschrift
in Honor of Peter B. Andrews on His 70th Birthday. Ed. by Christoph
Benzmüller, Chad Brown, Jörg Siekmann, and Richard Statman. Studies
in Logic, Mathematical Logic and Foundations. College Publications, 2008.

154

Bibliography

[Ebn21] Gabriel Ebner. “Inductive theorem proving based on tree grammars”. eng.
PhD thesis. Wien: Technische Universität Wien, 2021.

[EH15] Sebastian Eberhard and Stefan Hetzl. “Inductive theorem proving based on
tree grammars”. In: Annals of Pure and Applied Logic 166.6 (2015), pp. 665–
700.

[EP20] Mnacho Echenim and Nicolas Peltier. “Combining Induction and Saturation-
Based Theorem Proving”. In: Journal of Automated Reasoning 64.2 (2020),
pp. 253–294.

[Gen54] Gerhard Gentzen. “Zusammenfassung von mehreren vollständigen Induktio-
nen zu einer einzigen”. In: Archiv für mathematische Logik und Grundlagen-
forschung 2.1 (1954), pp. 1–3.

[Gle20] Bernhard Gleiss. “Automated Software Verification using Superposition-
based Theorem Proving”. PhD thesis. Wien, 2020.

[Göd31] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I”. In: Monatshefte für Mathematik und Physik 38.1
(Dec. 1931), pp. 173–198.

[Haj+20] Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. “Induction with Generalization in Superposition Rea-
soning”. In: Intelligent Computer Mathematics. 13th International Confer-
ence, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings. Ed. by
Christoph Benzmüller and Bruce R. Miller. Vol. 12236. Lecture Notes in
Computer Science. Springer, 2020, pp. 123–137.

[Haj+21a] Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. “Inductive Benchmarks for Automated Reasoning”. In:
Intelligent Computer Mathematics. 14th International Conference, CICM
2021, Timisoara, Romania, July 26-31, 2021, Proceedings. Ed. by Fairouz
Kamareddine and Claudio Sacerdoti Coen. Vol. 12833. Lecture Notes in
Computer Science. Springer, 2021, pp. 124–129.

[Haj+21b] Márton Hajdu, Petra Hozzová, Laura Kovács, and Andrei Voronkov. “In-
duction with Recursive Definitions in Superposition”. In: Proceedings of the
21st Conference on Formal Methods in Computer-Aided Design – FMCAD
2021. Ed. by Ruzica Piskac and Michael W. Whalen. Vol. 2. Conference Se-
ries: Formal Methods in Computer-Aided Design. TU Wien Academic Press,
2021, pp. 246–255.

[Haj21] Márton Hajdu. “Automating inductive reasoning with recursive functions”.
eng. MA thesis. Technische Universität Wien, 2021.

[Her30] Jacques Herbrand. “Recherches sur la théorie de la démonstration”. fr. Doc-
torat d’État. Université de Paris, 1930.

155

Bibliography

[HKV21] Petra Hozzová, Laura Kovács, and Andrei Voronkov. “Integer Induction in
Saturation”. In: Automated Deduction - CADE 28. 28th International Con-
ference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceed-
ings. Ed. by André Platzer and Geoff Sutcliffe. Vol. 12699. Lecture Notes in
Computer Science. Springer, 2021, pp. 361–377.

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[HP93] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic.
Perspectives in mathematical logic. Springer, 1993.

[HV20] Stefan Hetzl and Jannik Vierling. “Clause Set Cycles and Induction”. In:
Logical Methods in Computer Science 16.4 (Nov. 2020), 11:1–11:17.

[HV22] Stefan Hetzl and Jannik Vierling. “Unprovability results for clause set cy-
cles”. In: Theoretical Computer Science (2022).

[HV23] Stefan Hetzl and Jannik Vierling. “Induction and Skolemization in satura-
tion theorem proving”. In: Annals of Pure and Applied Logic 174.1 (2023).

[HW18] Stefan Hetzl and Tin Lok Wong. “Some observations on the logical founda-
tions of inductive theorem proving”. In: Logical Methods in Computer Science
13.4 (Apr. 2018), 10:1–10:26.

[JDB09] Moa Johansson, Lucas Dixon, and Alan Bundy. “IsaCoSy: Synthesis of In-
ductive Theorems”. In: Workshop on Automated Mathematical Theory Ex-
ploration (Automatheo). Hagenberg, Austria, 2009.

[Jeř20] Emil Jeřábek. “Induction rules in bounded arithmetic”. In: Archive for Math-
ematical Logic 59.3 (May 2020), pp. 461–501.

[Jia+21] Hongjian Jiang, Yongjian Li, Sijun Tan, and Yongxin Zhao. “Encoding In-
duction Proof in Dafny”. In: International Symposium on Theoretical Aspects
of Software Engineering. TASE 2021, Shanghai, China, August 25-27, 2021.
IEEE, 2021, pp. 95–102.

[Joh+14] Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. “Hip-
ster: Integrating Theory Exploration in a Proof Assistant”. In: Intelligent
Computer Mathematics. International Conference, CICM 2014, Coimbra,
Portugal, July 7-11, 2014. Proceedings. Ed. by Stephen M. Watt, James H.
Davenport, Alan P. Sexton, Petr Sojka, and Josef Urban. Vol. 8543. Lecture
Notes in Computer Science. Springer, 2014, pp. 108–122.

[Joh19] Moa Johansson. “Lemma Discovery for Induction - A Survey”. In: Intel-
ligent Computer Mathematics. 12th International Conference, CICM 2019,
Prague, Czech Republic, July 8-12, 2019, Proceedings. Ed. by Cezary Kaliszyk,
Edwin C. Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen. Vol. 11617.
Lecture Notes in Computer Science. Springer, 2019, pp. 125–139.

[JOR21] Eddie Jones, C.-H. Luke Ong, and Steven J. Ramsay. “CycleQ: An Efficient
Basis for Cyclic Equational Reasoning”. In: CoRR abs/2111.12553 (2021).

156

Bibliography

[Ker14] Abdelkader Kersani. “Preuves par induction dans le calcul de superposition.”
PhD thesis. Université de Grenoble, Oct. 2014.

[Kom22] Ján Komara. “Efficient elimination of Skolem functions in LKh”. In: Archive
for Mathematical Logic 61.3-4 (2022), pp. 503–534.

[KP13] Abdelkader Kersani and Nicolas Peltier. “Combining Superposition and In-
duction: A Practical Realization”. In: Frontiers of Combining Systems. 9th
International Symposium, FroCoS 2013, Nancy, France, September 18-20,
2013. Proceedings. Ed. by Pascal Fontaine, Christophe Ringeissen, and Re-
nate A. Schmidt. Vol. 8152. Lecture Notes in Computer Science. Springer,
2013, pp. 7–22.

[KPD88] Richard Kaye, Jeff Paris, and Costas Dimitracopoulos. “On parameter free
induction schemas”. In: Journal of Symbolic Logic 53.4 (1988), pp. 1082–
1097.

[KRV17] Laura Kovács, Simon Robillard, and Andrei Voronkov. “Coming to Terms
with Quantified Reasoning”. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. POPL 2017. Paris,
France: Association for Computing Machinery, 2017, pp. 260–270.

[KV13] Laura Kovács and Andrei Voronkov. “First-order theorem proving and Vam-
pire”. In: International Conference on Computer Aided Verification. Springer.
2013, pp. 1–35.

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional
Correctness”. In: Logic for Programming, Artificial Intelligence, and Reason-
ing. Ed. by Edmund M. Clarke and Andrei Voronkov. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 348–370.

[Len76] Douglas Lenat. “AM: An artificial intelligence approach to discovery in
mathematics as heuristic search”. PhD thesis. Stanford University, 1976.

[MBS17] Roy L. McCasland, Alan Bundy, and Patrick F. Smith. “MATHsAiD: Au-
tomated mathematical theory exploration”. In: Applied Intelligence 47.3
(2017), pp. 585–606.

[McC10] W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/
prover9/. 2005–2010.

[Mil87] Dale Miller. “A Compact Representation of Proofs”. In: Studia Logica 46.4
(1987), pp. 347–370.

[MZ06] Georg Moser and Richard Zach. “The Epsilon Calculus and Herbrand Com-
plexity”. In: Stud Logica 82.1 (2006), pp. 133–155.

[Nag19] Yutaka Nagashima. “LiFtEr: Language to Encode Induction Heuristics for
Isabelle/HOL”. In: Programming Languages and Systems. 17th Asian Sym-
posium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Pro-
ceedings. Ed. by Anthony Widjaja Lin. Vol. 11893. Lecture Notes in Com-
puter Science. Springer, 2019, pp. 266–287.

157

http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

Bibliography

[NN18] Takahiro Nagao and Naoki Nishida. “Rewriting induction for constrained
inequalities”. In: Science of Computer Programming 155 (2018). Selected
and Extended papers from the International Symposium on Principles and
Practice of Declarative Programming 2016, pp. 76–102.

[Par71] Rohit Parikh. “Existence and Feasibility in Arithmetic”. In: The Journal of
Symbolic Logic 36.3 (1971), pp. 494–508.

[Par72] Charles Parsons. “On n-Quantifier Induction”. In: The Journal of Symbolic
Logic 37.3 (1972), pp. 466–482.

[Red90] Uday S. Reddy. “Term Rewriting Induction”. In: 10th International Con-
ference on Automated Deduction. Kaiserslautern, FRG, July 24-27, 1990,
Proceedings. Ed. by Mark E. Stickel. Vol. 449. Lecture Notes in Computer
Science. Springer, 1990, pp. 162–177.

[RK15] Andrew Reynolds and Viktor Kuncak. “Induction for SMT Solvers”. In: Ver-
ification, Model Checking, and Abstract Interpretation. 16th International
Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceed-
ings. Ed. by Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen.
Vol. 8931. Lecture Notes in Computer Science. Springer, 2015, pp. 80–98.

[Rob18] Simon Robillard. “An Inference Rule for the Acyclicity Property of Term
Algebras”. In: Vampire 2017. Proceedings of the 4th Vampire Workshop. Ed.
by Laura Kovács and Andrei Voronkov. Vol. 53. EPiC Series in Computing.
EasyChair, 2018, pp. 20–32.

[Ros12] Dan Rosén. “Proving equational Haskell properties using automated theorem
provers”. MA thesis. Master’s thesis, University of Gothenburg, 2012.

[Ros84] H. E. Rose. Subrecursion: Functions and Hierarchies. Oxford University
Press, 1984.

[RV19] Giles Reger and Andrei Voronkov. “Induction in Saturation-Based Proof
Search”. In: Automated Deduction - CADE 27. 27th International Conference
on Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings.
Ed. by Pascal Fontaine. Vol. 11716. Lecture Notes in Computer Science.
Springer, 2019, pp. 477–494.

[Sch20] Johannes Schoisswohl. “Automated Induction by Reflection”. eng. MA the-
sis. Technische Universität Wien, 2020.

[Sch88] Ulf R. Schmerl. “Diophantine equations in fragments of arithmetic”. In: An-
nals of pure and applied logic 38.2 (1988), pp. 135–170.

[SDE12] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. “Zeno: An Au-
tomated Prover for Properties of Recursive Data Structures”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Cormac
Flanagan and Barbara König. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 407–421.

158

Bibliography

[She63] John Cedric Shepherdson. “Non-standard models for fragments of num-
ber theory”. In: The Theory of Models. Proceedings of the 1963 interna-
tional symposium at Berkeley. Ed. by J.W. Addison, Leon Henkin, and Al-
fred Tarski. Studies in Logic and the Foundations of Mathematics. North-
Holland, 1963, pp. 342–358.

[She64] John Cedric Shepherdson. “A Non-standard Model for a Free Variable Frag-
ment of Number Theory”. In: Bulletin de l’académie polonaise des sciences
XII.2 (1964), pp. 79–86.

[Sho58] Joseph Robert Shoenfield. “Open sentences and the induction axiom”. In:
Journal of Symbolic Logic 23.1 (1958), pp. 7–12.

[Sho67] Joseph Robert Shoenfield. Mathematical logic. CRC Press, 1967.

[SI21] Eytan Singher and Shachar Itzhaky. “Theory Exploration Powered by De-
ductive Synthesis”. In: Computer Aided Verification. 33rd International Con-
ference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II.
Ed. by Alexandra Silva and K. Rustan M. Leino. Vol. 12760. Lecture Notes
in Computer Science. Springer, 2021, pp. 125–148.

[Sie91] Wilfried Sieg. “Herbrand analyses”. In: Archive for Mathematical Logic 30.5-
6 (1991), pp. 409–441.

[Ste88] Andrew Stevens. “A Rational Reconstruction of Boyer and Moore’s Tech-
nique for Constructing Induction Formulas”. In: 8th European Conference
on Artificial Intelligence. ECAI 1988, Munich, Germany, August 1-5, 1988,
Proceedings. Ed. by Yves Kodratoff. ECAI’88. Pitmann Publishing, 1988,
pp. 565–570.

[Tar36] Alfred Tarski. “Der Wahrheitsbegriff in den formalisierten Sprachen”. In:
Studia Philosophica 1 (1936), pp. 261–405.

[TS00] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory. Second
edition. 2nd ed. Vol. 43. Cambridge tracts in theoretical computer science.
Cambridge University Press, 2000.

[TZ71] Gaisi Takeuti and Wilson M. Zaring. Axiomatic set theory. Graduate texts
in mathematics. Springer, 1971.

[VJ15] Irene Lobo Valbuena and Moa Johansson. “Conditional Lemma Discovery
and Recursion Induction in Hipster”. In: Electronic Communications of the
EASST 72 (2015): Proceedings of the 15th International Workshop on Au-
tomated Verification of Critical Systems (AVoCS 2015). Ed. by Gudmund
Grov and Andrew Ireland.

[Vor14] Andrei Voronkov. “AVATAR: The Architecture for First-Order Theorem
Provers”. In: Computer Aided Verification. 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vi-
enna, Austria, July 18-22, 2014. Proceedings. Ed. by Armin Biere and Rod-
erick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014,
pp. 696–710.

159

Bibliography

[Wan17] Daniel Wand. “Superposition: Types and Induction.” PhD thesis. Saarland
University, Saarbrücken, Germany, 2017.

[Wei01] Christoph Weidenbach. “Combining Superposition, Sorts and Splitting”. In:
Handbook of Automated Reasoning. Ed. by Alan Robinson and Andrei Voronkov.
Vol. 2. Amsterdam: North-Holland, 2001. Chap. 27, pp. 1965–2013.

160

	Acknowledgments
	Abstract
	Introduction
	Preliminaries
	First-order logic
	Skolemization
	A sequent calculus
	Saturation-based proof systems
	Induction
	Arithmetic

	Induction, Saturation, and Skolemization
	Unrestricted induction and Skolemization
	Restricted induction and Skolemization

	Case study: Vampire
	Single-clause induction
	Multi-clause induction
	Towards analytic unprovability results
	Summary

	Case study: Zipperposition
	Cruanes' calculus
	An upper bound
	A completeness result
	Unprovability

	Clause set cycles
	Clause set cycles
	Induction over bounded and 1 formulas
	Logical characterization
	Unprovability by clause set cycles
	Case study: N-clause calculus
	Summary

	Cancellation in linear arithmetic
	Preliminaries
	Components in N and Z
	A model of rule based induction
	A model of the induction schema

	Towards theory exploration-based AITP
	Conclusion
	Analysis of other methods
	Extension of results and techniques
	Analyticity

