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1. Introduction

Polynomial equations and their solutions have long fascinated math-
ematicians. The solution to the general quadratic polynomial ax2 +
bx+ c = 0 is the well known quadratic formula:

x =
−b±

√
b2 − 4ac

2a
.

This solution was known by the ancient Greeks and solutions to gen-
eral cubic and quartic equations were discovered in the 16th century.
The important property of all these solutions is that they are solu-
tions “by radicals”; that is, x can be calculated by performing only
elementary operations and taking roots. After solutions by radicals
were discovered for cubic and quartic equations, it was assumed that
such solutions could be found polynomials of degree n for any natu-
ral number n. The next obvious step then was to find a solution by
radicals to the general fifth degree polynomial, the quintic equation.
The answer to this problem continued to elude mathematicians until,
in 1824, Niels Abel showed that there existed quintics which did not
have a solution by radicals. During the time Abel was working in Nor-
way on this problem, in the early 18th century, Evariste Galois was
also investigating solutions to polynomials in France. Galois, who died
at the age of 20 in 1832 in a duel, studied the permutations of the
roots of a polynomial, and used the structure of this group of permuta-
tions to determine when the roots could be solved in terms of radicals;
such groups are called solvable groups. In the course of his work, he
became the first mathematician to use the word “group” and defined
a normal subgroup. His work forms the foundations of what is now
known as Galois theory, a theory that bridges field theory and group
theory by giving a correspondence between certain subfields of fields
and subgroups of permutations.

We will begin by recalling some useful information about algebraic
extensions of fields, and then cover some useful definitions and results
from field theory. Galois theory will then be explored, culminating in
the Fundamental Theorem of Galois theory. Finally we will use this
result to prove Galois’s result that a polynomial is solvable by radicals
if and only if its Galois group is solvable. This will allow us to show
that the general quintic equation cannot be solved by radicals.
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2. Field Theory

We begin with some review by recalling some definitions and theo-
rems concerning field extensions. This material is covered at the un-
dergraduate level and some results will not be proved here. Rather,
the material provides the necessary basic level of knowledge required
to discuss Galois Theory.

Let F be a field. A field E is a field extension of F if F is a subfield of
E. An element α is algebraic over F if α is the root of some polynomial
f(x) ∈ F [x]. If α is algebraic over F , then the minimal polynomial of
α is the monic polynomial of minimal degree that has α as a root. A
field extension K over F is an algebraic extension if every element of
K is algebraic over F . We will use the notation E/F to denote that E
is a field extension of a field F . This notation is unrelated to quotient
groups or rings; it is simply an easy way to refer to E as an extension
of F .

The field extensions we are interested in are those created by adjoin-
ing algebraic elements to a base field. If F is a field and α is algebraic
over F , then F (α) is an algebraic extension over F . Also, F (α) is the
smallest field containing F and α. One can adjoin any finite number
of elements that are algebraic over F to F to create an algebraic ex-
tension. Any extension created this way is an algebraic field extension
over F . A proof that F (α1, · · · , αn) is an algebraic extension over F if
the αi are algebraic over F can be found on page 283 of [2].

One of the more interesting and useful aspects of field extensions is
that they can be treated as vector spaces over the base field. That is,
if E is an extension of a field F , then E is a vector space over F , with
the elements of F serving as scalars and the elements of E serving as
vectors. A vector space has finite dimension if it has a finite basis. If
V is a vector space over F and has finite dimension, then the number
of elements in a basis of V is the dimension of V over F . If E is an
extension field over F and has finite dimension n over F as a vector
space, then E is a finite extension over F and the degree of E over F
is [E : F ] = n. The following theorem allows us to easily construct a
basis of any extension of the form F (α) when α is algebraic over F . A
proof of the theorem can be found on page 280 in [2].

Theorem 2.1. If the degree of the minimal polynomial for α is n, then
a basis of F (α) as a vector space over F is {1, α, · · · , αn−1}.

The next theorem presents a very useful property concerning degrees
of field extensions. The proof closely follows the proof of Theorem 31.4
on pages 283-284 of [2].
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Theorem 2.2. If E/F and K/E are each finite extensions, then [K :
F ] = [K : E][E : F ].

Proof. Let BE = {α1 · · · , αn} be a basis for E as a vector space over
F , and let BK{β1, · · · , βm} be a basis for K as a vector space over E.
We wish to show that the set B = {αiβj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a
basis for K over F , so that [K : F ] = mn = [K : E][E : F ]. We begin
by showing that the elements of B span K over F .

Let γ ∈ K. Then since BK is a basis for K over E,

γ =
m∑
j=1

bjβj,

where bj ∈ E for each j. Since BE is a basis for E over F , for each bj

bj =
n∑
i=1

aijαi,

where aij ∈ F for each i, j. Thus we can write γ as

γ =
m∑
j=1

(
n∑
i=1

aijαi

)
βj =

m∑
j=1

n∑
i=1

aij(αiβj).

Therefore any element of K can be written as a linear combination,
with coefficients in F , of the elements in the set B, so the elements of
B span K over F .

We now show the elements of B are independent. Suppose

0 =
m∑
j=1

n∑
i=1

cij(αiβj) =
m∑
j=1

(
n∑
i=1

cijαi

)
βj

for some elements cij ∈ F . Notice that for each j,
∑n

i=1 cijαi ∈ E.
Since the elements of BK are independent over E, we must have

n∑
i=1

cijαi = 0

for each j. But the elements of BE are independent over F , so cij = 0
for each i and j. Therefore the elements of B are independent over F ,
so they form a basis for K over F , proving the theorem. �

Notice that the proof of the theorem above gives us an easy way to
find a basis for K over F if we know the bases of K over E and E over
F . If {α1, · · · , αn} is a basis for K over E and {β1, · · · , βm} is a basis
for E over F , then {αiβj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for K
over F . This is very convenient and, when paired with Theorem 2.1



4

allows us to construct a basis for any finite extension. To see this, let F
be a field and consider a finite extension E = F (α1, · · · , αn). We can
create E by first adjoining α1 to F to form F (α1), and then adjoining
α2 to form F (α1)(α2) = F (α1, α2), and repeating this process until we
reach F (α1, · · · , αn). Theorem 2.1 gives us bases for F (α1) over F and
F (α1, α2) over F (α1), and the proof of Theorem 2.2 gives us a way to
construct a basis for F (α1, α2) over F . Continuing in this fashion, we
can construct a basis for E over F which will be the set of pairwise
products of all the basis elements for the individual extensions. This
is a very useful result and will be used to construct bases of finite
extensions when necessary.

We cite the following theorem without proof, and use it and the
results cited or proved before this as our foundation for exploring Galois
Theory. The proof can be found on page 519 in [1].

Theorem 2.3. Let φ : F → F ′ be a field isomorphism. Let p(x) ∈ F [x]
be an irreducible polynomial, and let p′(x) ∈ F ′[x] be the irreducible
polynomial obtained by applying φ to the coefficients of p(x). Let α be
a root of p(x) and let β be a root of p′(x). Then there is an isomorphism
σ : F (α)→ F (β) such that σ(α) = β and σ restricted to F is φ. Thus
σ can be viewed as an extension of φ.

Suppose the minimal polynomial of α is h(x) ∈ F [x]. By definition
F (α) contains α, but it is not guaranteed to contain the other roots
of h(x). For example, suppose α = 3

√
2. Then h(x) = x3 − 2 ∈ Q[x].

Letting ω = (−1+
√
−3)/2,a primitive third root of unity, the other two

roots of h(x) are ω 3
√

2 and ω2 3
√

2, neither of which are in Q(α), since
they are complex. However, the extension Q( 3

√
2,
√
−3) does contain all

the roots of h(x), since it contains
√
−3 in addition to 3

√
2. As we will

show later, no proper subfield of Q( 3
√

2,
√
−3) contains all the roots of

h(x). Fields with this property are of great importance in Galois theory
and are called splitting fields, which we now define. An extension field
E of a field F is a splitting field of some polynomial f(x) ∈ F [x] if
f(x) factors completely into linear factors in E and does not factor
completely in any proper subfield of E. When this is the case, we say
that f(x) splits completely in E. A splitting field E of f(x) is minimal
in the sense that E is a subfield of every field containing F and all the
roots of f(x). We now show that there exists a splitting field for every
f(x) ∈ F [x].

Theorem 2.4. Let F be a field. If f(x) ∈ F [x], then there exists an
extension K of F which is a splitting field for f(x).
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Proof. We proceed by induction on the degree n of f(x) to show that
there exists an extension field E containing all the roots of f(x). If
n = 1, then clearly E = F since f(x) is a linear polynomial in this case.
Now assume that for any polynomial f(x) of degree k− 1, there exists
an extension E of F containing all the roots of f(x). Let f(x) ∈ F [x]
have degree k. If all the irreducible factors of f(x) have degree 1, then
E = F . Otherwise, at least one irreducible factor p(x) has degree at
least 2. Let α be a root of p(x). Then E1 = F (α) contains α, so f(x)
factors as (x−α)f1(x) in E1, where f1(x) is degree k− 1. Then by the
inductive hypothesis, there exists an extension E of E1 in which f1(x)
factors completely. Thus E contains all the roots of f(x).

Now let K be the intersection of all subfields of E containing F and
the roots of f(x) and note that K ≤ E. We show that K is a splitting
field of f(x) over F [x]. Clearly K contains F and all the roots of f(x),
so K is a field extension of F and f(x) factors completely in to linear
factors in K. We now show that the only subfield of K that contains
F and all the roots of f(x) is K. Let K1 ≤ K such that K1 contains
F and all the roots of F and let k ∈ K. Then by definition of K, k
is in every subfield of E that contains F and the roots of f(x). Since
K1 ≤ K ≤ E, K1 is a subfield of E that contains F and all the roots of
f(x), so k ∈ K1. Thus K ⊂ K1, so K = K1. Thus no proper subfield
of K contains F and the roots of f(x), so K is a splitting field for
f(x). �

This shows that every f(x) ∈ F [x] has a splitting field, but could
f(x) have multiple non-isomorphic splitting fields? The following result
on extending isomorphisms will help show that splitting fields of a
polynomial are unique up to isomorphism, so that we can speak of the
splitting field of f(x).

Theorem 2.5. Let φ : F → F ′ be a field isomorphism. Let f(x) ∈ F [x]
be a polynomial and let f ′(x) ∈ F ′[x] be obtained by applying φ to the
coefficients of f(x). Let E be a splitting field for f(x) over F and let E ′

be a splitting field for f ′(x) over F ′. Then φ extends to an isomorphism
σ : E → E ′, so that σ restricted to F is φ.

Proof. We again proceed by induction on the degree n of f(x). If n = 1,
then E = F and E ′ = F ′, so σ = φ. Now assume the theorem holds
for n = k− 1. Let f(x) ∈ F [x] have degree k. If f(x) splits completely
in F , then again E = F and E ′ = F ′, giving σ = φ, so assume the
contrary. Then f(x) has some irreducible factor p(x) with degree at
least 2, which φ maps to an irreducible factor p′(x) of f ′(x). Let α ∈ E
be a root of p(x) and β ∈ E ′ be a root of p′(x). Then by Theorem 2.3,
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φ extends to an isomorphism φ′ : F (α)→ F ′(β) in which φ′(α) = β. In
F (α), f(x) factors as f(x) = (x− α)f1(x), and in F ′(β), f ′(x) factors
as f ′(x) = (x− β)f ′1(x), where f1(x), f ′1(x) have degree k − 1.

We now show that E is a splitting field for f1(x) over F (α). Since E
is a splitting field for f(x) over F , E contains all the roots of f(x), so
E contains all the roots of f1(x). If any proper subfield of E contains
F (α) and the roots of f1(x), then it contains F and all the roots of f(x),
since F (α) contains F and α. But E is a splitting field for f(x) over F ,
so no proper subfield of E contains F and all the roots of f(x). Hence
no proper subfield of E contains F (α) and the roots of f1(x). Thus
E is a splitting field for f1(x) over F (α). A similar argument shows
that E ′ is a splitting field for f ′1(x) over F ′(β). We can now apply
the induction hypothesis to extend φ1 to an isomorphism σ : E → E ′.
Since φ1 itself is an extension of φ, we see that σ is an extension of φ,
as the diagram below shows.

σ : E −→ E ′

| |
φ′ : F (α) −→ F ′(β)

| |
φ : F −→ F ′

�

The uniqueness of splitting fields follows easily. Let F = F ′ and
take φ as the identity isomorphism. Then if E and E ′ are two splitting
fields for some f(x) ∈ F [x], E and E ′ are isomorphic by the theorem
just proved.

We now construct some splitting fields. We said before that the
splitting field for f(x) = x3 − 2 is Q( 3

√
2,
√
−3); we now show this is

true. Recall that ω = (−1 +
√
−3)/2 is a primitive third root of unity

and that the roots of x3−2 are 3
√

2, ω 3
√

2, and ω2 3
√

2. The splitting field
K for f(x) contains all three roots and thus contains ω, the quotient
of the first two roots. Thus K contains

√
−3. Since Q( 3

√
2,
√
−3)

is the smallest extension of Q containing 3
√

2 and
√
−3, we see that

K = Q( 3
√

2,
√
−3).

The splitting field of x2 − 2 is just Q(
√

2), since the roots of x2 − 2
are
√

2 and −
√

2. Note that by Theorem 2.2, [Q( 3
√

2,
√
−3) : Q] =

[Q( 3
√

2,
√
−3) : Q( 3

√
2)][Q( 3

√
2) : Q] = 3 · 2 = 6 and [Q(

√
2) : Q] = 2, so

in each case the degree of the splitting field for a polynomial of degree
n over Q was n!. This is in fact the maximum possible degree. If we
have f(x) ∈ F [x] with degree n, then we can adjoin one root of f(x)
at a time and obtain the splitting field after adjoining all n roots. If
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F1 is the first extension constructed this way, then [F1 : F ] ≤ n. Over
F1, f(x) now has at least one linear factor, so the next root adjoined
is from a polynomial of degree n − 1, so if F2 is this next extension,
[F2 : F1] ≤ n − 1, so that [F2 : F ] ≤ n(n − 1). Continuing in this
fashion, we see that [Fn : F ] ≤ n!.

This bound is not always achieved, however. Consider f(x) = x4 +
4 ∈ Q[x]. Then f(x) is not irreducible, as it factors to f(x) = (x2 +
2x+ 2)(x2 − 2x+ 2). These factors are irreducible, and the four roots
of f(x) are ±1± i. Hence the splitting field for f(x) is Q(i), and since
i is a root of x2 − 1, Q(i) is of degree 2 over Q, considerably less than
4! = 24.

As another example, consider f(x) = (x2−3)(x2−5) ∈ Q[x]. Clearly
f(x) has roots ±

√
3,±
√

5, so the splitting field is Q(
√

3,
√

5), which
has degree 4 over Q. We have exhibited two degree 4 polynomials over
Q which have splitting fields with different degrees over Q, each less
than 4!, so care must be taken when determining the splitting field of
a polynomial.

We now make two more definitions before moving on to Galois The-
ory. Let f(x) ∈ F [x] and let E be the splitting field of f(x). Then f(x)
is separable if it has distinct roots in E, so that viewed as an element
in E[x], f(x) can be written as a product of distinct linear factors. A
field K is separable over F if every element k ∈ K is the root of a sep-
arable polynomial over F . Since every k ∈ K is a root of its minimal
polynomial in F [x], an equivalent definition is that K is separable over
F if the minimal polynomial of every k ∈ K is separable. Note that
the base field of a polynomial f(x) is unimportant when determining
if it is separable, since it is the roots of f(x) in the splitting field E of
f(x) that determine whether or not f(x) is separable.

The polynomial x4+4 ∈ Q[x] is separable because as shown above, it
has roots ±1± i in Q(i). The polynomial x2−4x+ 4 = (x−2)2 ∈ Q[x]
is not separable because it has only one distinct root, x = 2.

Splitting fields and separable field extensions are very important in
Galois Theory. Splitting fields are nice because they allow us to work
in a field that contains all the roots of a polynomial, and if the splitting
field is separable, all these roots are distinct. As we will see in the next
section, this gives the optimal situation for permutations of roots of a
polynomial, which is of great interest in Galois Theory.
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3. Galois Theory

In this section we introduce the concepts of Galois Theory and prove
results that lead up to the Fundamental Theorem of Galois Theory,
which will be proved in the next section.

We begin with some definitions. An automorphism of a field K is an
isomorphism of K with itself. The theorem below shows that the set
of automorphisms of a field K is a group under function composition;
we call this group the “automorphism group of K” and denote it by
Aut(K). An automorphism σ fixes an element k ∈ K if σ(k) = k. If
F ⊂ K and σ(a) = a for all a ∈ F , then σ fixes F . If K is an extension
of F , then Aut(K/F ) is the set of automorphisms of K that fix F . The
theorem below shows that Aut(K/F ) is in fact a group.

Theorem 3.1. Let K be a field, let F ⊂ K, and let Aut(K) be the
set of automorphisms of K. Then Aut(K) is a group under function
composition and Aut(K/F ) is a subgroup of Aut(K).

Proof. Clearly the identity function is an automorphism, so 1 ∈ Aut(K).
If σ ∈ Aut(K), then since σ is an automorphism, σ−1 exists and is also
an automorphism, so σ−1 ∈ Aut(K). Since function composition is
associative, Aut(K) is a group.

To show Aut(K/F ) is a subgroup of Aut(K), note that since 1
fixes all of K, in particular it fixes F , so 1 ∈ Aut(K/F ). If σ, τ ∈
Aut(K/F ) then since they each fix F , the composition στ also fixes
F , so στ ∈ Aut(K/F ). Finally, if σ fixes F then σ−1 also fixes F so
σ−1 ∈ Aut(K/F ). Hence Aut(K/F ) is a subgroup of Aut(K). �

Let E be the splitting field of some f(x) ∈ F [x] and let φ : F → F
be the identity map. Then the isomorphism σ : E → E which extends
φ that is guaranteed to exist by Theorem 2.5 is an automorphism of E
which fixes F , so σ ∈ Aut(E/F ). The action of σ on E is defined by
its action on roots of irreducible factors of f(x). As we show below,
if p(x) is an irreducible factor of f(x), σ permutes the roots of p(x)
and can thus be viewed as a permutation of the roots of p(x). This is
an important property of elements of Aut(E/F ), in fact of elements of
Aut(K/F ) for any extension K/F , and we make this statement precise
in the following theorem.

Theorem 3.2. Let K be an extension of a field F , let σ ∈ Aut(K/F ),
and let α ∈ K be algebraic over F . Then any polynomial in F [x] having
α as a root also has σ(α) as a root.
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Proof. Suppose α is a root of f(x) = anx
n + · · · + a1x + a0 ∈ F [x], so

that f(α) = 0. Then since σ is a field isomorphism,

σ(f(α)) = σ(an)σ(α)n + · · ·+ σ(a1)σ(α) + σ(a0) = σ(0) = 0.

But σ fixes F , so σ(ai) = ai for 0 ≤ i ≤ n. Thus

anσ(α)n + · · · a1σ(α) + a0 = 0,

so f(σ(α)) = 0, and thus σ(α) is a root of f(x). �

By this theorem and the comments preceding it we see that any σ ∈
Aut(K/F ) can be associated with a permutation of the roots of some
polynomial in F [x]. Note that this was only possible because σ fixed
F . This is one of the key observations of Galois Theory. What we have
done is associated a group, Aut(K/F ), with the subfield F of K. Just
as the subfield F gave rise to Aut(K/F ), a subgroup of Aut(K) can
give rise to a subfield of K, as shown in the theorem below.

Theorem 3.3. Let H be a subgroup of Aut(K) and let F be the subset
of K fixed by H. Then F is a subfield of K.

Proof. Let H be a subgroup of Aut(K) and let F be the subset of K
fixed by H. Let σ ∈ H and a, b ∈ F . Then σ(a) = a and σ(b) = b, so
σ(a±b) = σ(a)±σ(b) = a±b, σ(ab) = σ(a)σ(b) = ab and σ(a−1) = a−1,
where we are using the fact that σ is a field automorphism and thus
both addition and multiplication preserving. Thus a ± b, ab, a−1 ∈ F
since they are fixed by σ, so F is closed under addition and multipli-
cation and contains multiplicative inverses. Also, every automorphism
must fix 1, so 1 ∈ F . Hence F is a subfield of K. �

Let K be a field and let H ⊂ Aut(K). By Theorem 3.3 the subset
of K fixed by H is a field. We denote this field by KH and call it the
fixed field of H.

The diagrams below illustration the relationship between subgroups
of Aut(K/F ) and the fixed fields of these subgroups.

K −→ Aut(K) K ←− Aut(K)

⊆ ≤ ⊆ ≤

F −→ Aut(K/F ) KH ←− H

This association between subgroups of Aut(K/F ) and the their fixed
fields is inclusion reversing, as the following theorem shows.

Theorem 3.4. If F1 ⊂ F2 are both subfields of K, then Aut(K/F2) ≤
Aut(K/F1). If H1 ≤ H2 ≤ Aut(K), then KH2 ⊆ KH1.
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Proof. Assume F1 ⊂ F2 and that F1, F2 are subfields of K. Let σ ∈
Aut(K/F2). Then σ fixes F2, so since F1 ⊆ F2, σ fixes F1, so σ ∈
Aut(K/F1). Hence Aut(K/F2) ≤ Aut(K/F1).

Now Assume H1 ≤ H2 ≤ Aut(K) and let a ∈ KH2 . Then a is fixed
by every element of H2, so since H1 ≤ H2, a is fixed by every element
of H1. Hence a ∈ KH1 , so KH2 ⊆ KH1 . �

The diagrams below illustrate Theorem 3.4.

F2 −→ Aut(K/F2) KH2 ←− H2

⊆ ≥ ⊇ ≤

F1 −→ Aut(K/F1) KH1 ←− H1

We now examine some examples of the interactions between sub-
groups of Aut(K) and their fixed fields F . We first give an example of
finding Aut(K/F ) given a fixed field F . Let K = Q(

√
3,
√

5), which as
we saw before is the splitting field of (x2− 3)(x2− 5) over F = Q. The
elements of Aut(K/F ) are completely determined by their actions on
the basis elements of K, which in this case are

√
3 and

√
5. Define σ

by σ(
√

3) =
√

3 and σ(
√

5) = −
√

5, and define τ by τ(
√

3) = −
√

3 and
τ(
√

5) =
√

5. Then σ, τ ∈ Aut(K/F ) and σ2 = τ 2 = 1. Also, στ = τσ,
since each maps the two basis elements to their negatives. Note that
an automorphism θ of K that mapped

√
3 to
√

5 and vice versa would
not be in Aut(K/F ) because θ(3) = θ(

√
3)2 = 5, so that θ does not fix

F . We could also have used Theorem 3.2, which would have denied θ
membership in Aut(K/F ) because it mapped

√
3 to a root of a differ-

ent minimal polynomial. Since any element of Aut(K/F ) permutes the
roots of each minimal polynomial, the elements we have found so far
comprise the whole group, so we have Aut(K/F ) = {1, σ, τ, στ}, which
is isomorphic to the Klein-4 group since the square of each element is
the identity. Note that |Aut(K/F )| = [K : F ] = 4.

As discussed above, one can also start with a subgroup H of Aut(K)
and find the fixed field KH . Suppose K = Q( 3

√
2). The minimal poly-

nomial of 3
√

2 is x3− 2. The other two roots of x3− 2 are complex and
thus not in K. Hence the only element of Aut(K) is the identity iso-
morphism. Thus Aut(K/Q) = Aut(K), so the fixed field of Aut(K/Q)
is in fact the entire field K, not Q. Note that the reason K is the fixed
field of Aut(K/Q) is that Aut(K) does not contain enough automor-
phisms. This in turn is due to the fact that K only contains one root
of x3 − 2.

Now let K = Q( 3
√

2,
√
−3), the splitting field of x3−2. Then K con-

tains all three roots of x3−2, so Aut(K) contains more than the identity
automorphism. Specifically, Aut(K) contains the automorphism σ de-
fined by σ( 3

√
2) = 3

√
2 and σ(

√
−3) = −

√
−3. Note that σ maps

√
−3
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to a root of its irreducible polynomial x2 + 3 and σ maps 3
√

2 to a root
of its irreducible polynomial x3−2. Also notice that σ2 = 1. Then H =
〈σ〉 = {1, σ} is a subgroup of Aut(K). Every element in K can be writ-
ten uniquely in the form a+b 3

√
2+c 3
√

4+d
√
−3+e 3

√
2
√
−3+f 3

√
4
√
−3,

by the comments following Theorem 2.2. Thus, elements in KH sat-
isfy σ(a + b 3

√
2 + c 3

√
4 + d

√
−3 + e 3

√
2
√
−3 + f 3

√
4
√
−3) = a + b 3

√
2 +

c 3
√

4 +d
√
−3 + e 3

√
2
√
−3 +f 3

√
4
√
−3, so that a+ b 3

√
2 + c 3
√

4 +d
√
−3 +

e 3
√

2
√
−3+f 3

√
4
√
−3 = a+b 3

√
2+c 3
√

4−d
√
−3−e 3

√
2
√
−3−f 3

√
4
√
−3.

Thus we have d = e = f = 0, so the elements of K that are fixed by
σ are exactly the elements of the form a+ b 3

√
2 + 3
√

4. This is the field
Q( 3
√

2), so KH = Q( 3
√

2).
Note that another element of Aut(K) is τ , defined by τ( 3

√
2) = ω 3

√
2

and τ(
√
−3) =

√
−3. Then H ′ = 〈1, τ, τ 2〉 is another subgroup of

Aut(K). It is clear that the fixed field of H ′ is Q(
√
−3). We can now

compute Aut(K/Q). Notice that σ(ω) = ω2 since σ(
√
−3) = −

√
−3,

so στ( 3
√

2) = σ(ω 3
√

2) = ω2 3
√

2. Also, στ(
√
−3) = σ(

√
−3) = −

√
−3.

Similar computations show that τσ( 3
√

2) = ω 3
√

2 and τσ(
√
−3) =

−
√
−3. We now have six distinct automorphisms: 1, σ, τ, τ 2, στ, τσ.

We will show shortly that because K is a splitting field of a separa-
ble polynomial in Q, |Aut(K/Q)| = [K : Q] = 6, so Aut(K/Q) =
{1, σ, τ, τ 2, στ, τσ}. We can now see that Aut(K/ Q ( 3

√
2)) = H and

Aut(K/ Q (
√
−3)) = H ′, so that in these two cases, the fixed field of

Aut(K/F ) is in fact F .
The next theorem will be used to show that splitting fields of sepa-

rable polynomials in F give the maximum number of automorphisms
that fix F .

Theorem 3.5. Let F be a field and let E be the splitting field of some
separable polynomial f(x) ∈ F [x]. Let φ : F → F ′ be a field isomor-
phism that maps f(x) to f ′(x) ∈ F ′[x] with splitting field E ′. Then φ
can be extended to an isomorphism σ : E → E ′ in exactly [E : F ] ways.

Proof. Proceed by induction on the degree n of f(x). If n = 1, then
E = F so φ = σ. Thus there is 1 = [E : F ] way to extend φ.
Now assume the theorem holds for polynomials with degree n− 1 and
assume f(x) has degree n. Clearly if f(x) splits completely in F ,
E = F and there is only one way to extend φ. So assume that f(x)
has some irreducible factor p(x) with a root α that is not in F . Then
p(x) is mapped to p′ ∈ F ′[x] which is a factor of f ′(x) and has a root
β that is not in F . By Theorem 2.5, φ extends to an isomorphism
σ : E → E ′. This isomorphism restricted to F (α) is θ : F (α)→ F ′(β),
whose action is defined by θ(α) = β. Now, α can be mapped to any
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root of p′(x) and still maintain θ as an isomorphism. Since f(x) is
separable, it has distinct roots, so p(x) has distinct roots, as does its
image p′(x). Thus there are [F ′(β) : F ′] = [F (α) : F ] choices for θ(α),
and thus [F (α) : F ] possible isomorphisms θ. Over F (α), f(x) factors
as f = (x− α)g, where g(x) has degree n− 1. Since E is the splitting
field of g(x) as well, we can apply the induction hypothesis and see
that θ can be extended to σ in [E : F (α)] ways. Therefore there are
[E : F (α)][F (α) : F ] = [E : F ] ways to extend φ to an isomorphism
σ : E → E ′. �

Letting F be a field and applying Theorem 3.5 with φ as the iden-
tity automorphism and E = E ′ as the splitting field of some sepa-
rable f(x) ∈ F [x], we see that |Aut(E/F )| = [E : F ], since every
extension of φ is an automorphism of E that fixes F . Note that we
obtain |Aut(E/F )| = [E : F ] because f(x) was separable over E; if
f(x) is not separable then |Aut(E/F )| < [E : F ]. The case where
|Aut(E/F )| = [E : F ] is of primary interest in Galois Theory, and thus
merits the following definition.

A finite extension K/F is a Galois extension and K is Galois over
F if |Aut(K/F )| = [K : F ]. Using this definition, every splitting
field of a separable polynomial in F [x] is Galois over F . When K is
Galois over F we denote Aut(K/F ) by Gal(K/F ). We can also discuss
the Galois group of a separable polynomial. The Galois group of a
separable polynomial is simply the Galois group of its splitting field,
which is guaranteed to be Galois over the base field of the polynomial
by the above comments.

There are several equivalent ways of defining Galois extensions, and
they are presented in the next theorem. The fourth property was used
as our definition, and we have already seen that splitting fields over
separable polynomials satisfy this. The other two properties help give
a nice sense as to the properties of a Galois extension.

Theorem 3.6. Let K/F be a finite extension. The following properties
are equivalent.

(1) K is the splitting field over F of a separable polynomial.

(2) The fixed field of Aut(K/F ) is F .

(3) Every irreducible polynomial in F [x] with a root in K is sepa-
rable and splits completely in K.

(4) [K : F ] = |Aut(K/F )|.
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Proof. We first prove (1) implies (4) and (2). Let K be the split-
ting field over F of some separable polynomial f(x) ∈ F [x]. Then
[K : F ] = |Aut(K/F )| by the discussion following Theorem 3.5, so we
have (1) implies (4). Let F ′ be the fixed field of Aut(K/F ). Then
K is the splitting field of f(x) over F ′ as well, since clearly F ⊆ F ′.
Thus [K : F ′] = |Aut(K/F ′)|. Note that since Aut(K/F ) fixes F ′,
Aut(K/F ) ⊆ Aut(K/F ′). Also, because F ⊆ F ′, Aut(K/F ′) ⊆
Aut(K/F ) by Theorem 3.4. Thus Aut(K/F ) = Aut(K/F ′), so [K :
F ] = [K : F ′], and since [K : F ] = [K : F ′][F ′ : F ] by Theorem 2.2,
[F ′ : F ] = 1, so F ′ = F . Thus F is the fixed field of Aut(K/F ).

To prove (2) implies (3), assume that the fixed field of Aut(K/F )
is F , so that any u ∈ K \ F is moved by some element of Aut(K/F ).
Let u ∈ K \ F and let f(x) be the minimal polynomial of u. Then
the image of u under the elements of Aut(K/F ) are also roots of f(x).
Let u1 = u, u2, · · · , um be the distinct images of u by the elements of
Aut(K/F ). Then the polynomial g(x) = (x− u1) · · · (x− um) remains
fixed under the mapping of any σ ∈ Aut(K/F ), since each σ just
permutes the ui’s. Since the fixed field of Aut(K/F ) is F , only elements
of F are fixed by every σ ∈ Aut(K/F ). Thus, since g(x) is fixed by all
σ ∈ Aut(K/F ), all the coefficients of g(x) must be in F , so g(x) ∈ F [x].
Also, since each ui is distinct, g(x) is separable. Since u is a root of
g(x), g(x) is a multiple of f(x), the minimal polynomial of u, so f(x)
is separable and splits completely in K.

We now show that (3) implies (1). Assume (3) is true. Then since
K/F is a finite extension, K = F (α1, · · · , αn) for some α1, · · · , αn ∈
K. Let fi(x) ∈ F [x] be the minimal polynomial of αi in F . By
(3), each fi(x) is separable and splits completely in K, so f(x) =
f1(x)f2(x) · · · fn(x) splits completely in K and is separable if the fi(x)’s
are distinct. If they are not, let g(x) be f(x) with any common factors
removed, so that g(x) is separable over K. Since f(x) splits completely
in K, K contains the roots of each fi(x), so K contains all the roots
of g(x), so that g(x) splits completely in K. Now suppose that some
subfield E of K contains F and all the roots of g(x). Then E contains
α1, · · · , αn, so F (α1, · · · , αn) ⊂ E. Thus K ⊂ E, so E = K. Hence no
proper subfield of K contains all the roots of g(x), so K is the splitting
field of g(x) over F . Hence K is the splitting field over F of a separable
polynomial.

We have now shown that (1), (2), and (3) are equivalent and that
(1) implies (4). All that remains to be shown is that (4) implies (1).
Assume [K : F ] = |Aut(K/F )|. Let F ′ be the fixed field of Aut(K/F ).
Then as shown in the proof that (1) implies (2), Aut(K/F ) = Aut(K/F ′)
and thus F ′ is the fixed field of Aut(K/F ′). Since (2) implies (1), K is
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the splitting field over F ′ of some separable polynomial f(x) ∈ F ′[x].
Since we have already shown that (1) implies (4), we have [K : F ′] =
|Aut(K/F ′)|. But |Aut(K/F )| = |Aut(K/F ′)|, so [K : F ′] = [K : F ].
By Theorem 2.2, [K : F ] = [K : F ′][F ′ : F ], so [F ′ : F ] = 1. Since
F ⊆ F ′, F = F ′. Hence F is the fixed field of Aut(K/F ). We have
already shown that (2) implies (1), so K is the splitting field over F of
a separable polynomial, completing the proof. �

The next theorem shows that if H is a subgroup of Aut(K), then
K/KH is always a Galois extension. This theorem will also be helpful
in proving the Fundamental Theorem in the next section.

Theorem 3.7. Let K be a field extension of F , and let H = {σ1 =
1, σ2, · · · , σn} be a subgroup of Aut(K), with |H| = n, and let F = KH .
Then [K : F ] = |H| = n.

Proof. We first show that [K : F ] ≤ n. Suppose [K : F ] > n. Then
there are n + 1 elements of K that are linearly independent over F ,
denoted α1, · · · , αn+1. Consider the system of equations

σ1(α1)x1 + σ1(α2)x2 + · · ·+ σ1(αn+1)xn+1 = 0
...

σn(α1)x1 + σn(α2)x2 + · · ·+ σn(αn+1)xn+1 = 0

This is a system of n equations in n + 1 unknowns, so some nontriv-
ial solution exists. Since σ1 is the identity automorphism, the first
equation is

α1x1 + · · ·+ αn+1xn+1 = 0,

so if (a1, · · · , an+1) ∈ F n+1 were a nontrivial solution, then

α1a1 + · · ·+ αn+1an+1 = 0,

contradicting the linear independence of α1, · · ·αn+1. Hence any non-
trivial solution (a1, · · · , an+1) contains a term ai ∈ K \ F for some i,
1 ≤ i ≤ n+ 1.

Choose a solution of the system of equations with the minimal num-
ber r of nonzero terms, and renumber the variables if necessary so that
the nonzero terms are the first r terms of the solution, so that the
solution is of the form (β′1, · · · , β′r, 0, · · · 0). Since the equations are
homogeneous, we can divide each term of the solution by β′1 and still
have a solution. Consider the solution (1, β2, · · · , βr, 0, · · · 0), which is
the solution (β′1, · · · , β′r, 0, · · · 0) with each term divided by β′1. As dis-
cussed earlier, there is some βi such that βi 6∈ F . Assume without loss
of generality that i = 2. Then since β2 6∈ F , the fixed field of H, there
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is some σj ∈ H such that σj(β2) 6= β2. Applying σj to the equations
with the solution substituted in give the following system of equations:

σj(σ1(α1))σj(1) + σj(σ1(α2))σj(β2) + · · ·+ σj(σ1(αr))σj(βr) = 0

...

σj(σn(α1))σj(1) + σj(σn(α2))σj(β2) + · · ·+ σj(σn(αr))σj(βr) = 0

Since H is a group, {σjσ1, · · · , σjσn} = H = {σ1, · · · , σn}. Hence we
can replace each σjσi with the corresponding σk, 1 ≤ i, k ≤ n and
rearrange the equations to obtain the system

σ1(α1) + σ1(α2)σj(β2) + · · ·+ σ1(αr)σj(βr) = 0

...

σn(α1) + σn(α2)σj(β2) + · · ·+ σn(αr)σj(βr) = 0

Hence (1, σj(β2), · · · , σj(βr), 0, · · · , 0) is also a solution. Since the sys-
tem of equations is homogeneous, the difference of two solutions is also
a solution, so (0, β2 − σj(β2), · · · , βr − σj(βr), 0, · · · , 0) is a solution.
But since σj(β2) 6= β2, this solution is nontrivial, and it has fewer than
r nonzero terms. Thus it contradicts the minimality of the solution we
chose at the beginning. Therefore [K : F ] does not have n+ 1 linearly
independent elements, so [K : F ] ≤ n.

We now show [K : F ] ≥ n. Notice that H ⊆ Aut(K/F ) since every
automorphism in H fixes F , so |H| ≤ |Aut(K/F )|. But every element
of K \F is mapped to a different element by some automorphism in H,
which is also in Aut(K/F ), so K/F satisfies property 2 in Theorem 3.6.
Hence n = |H| ≤ |Aut(K/F )| = [K : F ], so [K : F ] ≥ n. Therefore
[K : F ] = n. �

The following corollaries will also be useful in proving the Funda-
mental theorem in the next section. The follow almost immediately
from Theorem 3.7.

Corollary 3.8. Let K/F be a finite extension. Then |Aut(K/F )| ≤
[K : F ], with equality if F is the fixed field of Aut(K/F ).

Proof. Let F1 be the fixed field of Aut(K/F ). Then by Theorem 3.7,
|Aut(K/F )| = [K : F1]. Clearly F ⊆ F1, so [K : F ] = |Aut(K/F )|[F1 :
F ], and thus |Aut(K/F )| ≤ [K : F ]. If F is the fixed field of Aut(K/F ),
then by Theorem 3.6, |Aut(K/F )| = [K : F ]. �

Corollary 3.9. Let H be a finite subgroup of Aut(K) and let F = KH .
Then Aut(K/F ) = H.
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Proof. Since F is fixed by all the elements in G, G ⊆ Aut(K/F ), so
|G| ≤ |Aut(K/F )|. By Theorem 3.7, |G| = [K : F ], and by the
corollary above, |Aut(K/F )| ≤ [K : F ], so |G| ≤ |Aut(K/F )| ≤ [K :
F ] = |G|. Therefore |G| = |Aut(K/F )|, so G = Aut(K/F ). �

Before we proceed to the Fundamental Theorem, we make two more
definitions. If E1 and E2 are subfields of E, then the composite field of
E1 and E2, denoted E1E2, is the smallest subfield of E that contains
E1 and E2. Similarly, if H1 and H2 are subgroups of H, then 〈H1, H2〉,
the group generated by H1 and H2, is the smallest subgroup of H con-
taining H1 and H2. We are now ready to move on to the Fundamental
Theorem, which provides a connection between subfields of a field ex-
tension K/F that contain F and subgroups of Aut(K/F ) when K/F
is Galois.

4. Fundamental Theorem of Galois Theory

We are now ready to prove the Fundamental Theorem of Galois
Theory.

Theorem 4.1. (Fundamental Theorem of Galois Theory) Let K/F
be a Galois extension and let G = Gal(K/F ). Then there exists a
bijection λ between the subfields of K containing F and the subgroups
of G defined as follows. If E is a subfield of K containing F , then
λ(E) is the subgroup of G that fixes E, and if H is a subgroup of G,
then λ−1(H) is the subfield of K fixed by H. This bijection has the
following properties concerning H,H1, H2 ∈ G and subfields E,E1, E2

of K containing F :

(1) If λ(E1) = H1 and λ(E2) = H2, then E1 ⊆ E2 if and only if
H2 ≤ H1.

(2) If λ(E) = H, then [K : E] = |H| and [E : F ] = (G : H), the
index of H in G.

(3) K/E is always a Galois extension, with Galois group Gal(K/E) =
λ(E).

(4) E/F is a Galois extension if and only if λ(E) = H is a normal
subgroup of G. When this is the case, Gal(E/F ) is isomorphic
to the factor group G/H.

(5) If λ(E1) = H1 and λ(E2) = H2, then λ(E1 ∩ E2) = 〈H1, H2〉
and λ(E1E2) = H1 ∩H2. Thus the lattice of subgroups of G is
the inverse of the lattice of subfields of K that contain F .
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Proof. We begin by showing λ−1 is one to one and onto. Suppose
λ−1(H1) = λ−1(H2) = E. Then E is the fixed field of H1 and of H2, so
by Corollary 3.9, Aut(K/E) = H1 and Aut(K/E) = H2, so H1 = H2.

Now let E be a subfield of K containing F . Since K/F is a Galois
extension, by Theorem 3.6, K is the splitting field of some separable
polynomial f ∈ F [x]. We can view f(x) as an element in E[x], in
which case K is still the splitting field and f(x) is still separable, so
by Theorem 3.6, K/E is a Galois extension and E is the fixed field of
Aut(K/E). Hence λ−1 is onto.

Property (1) is simply a restatement of Theorem 3.4.
By Theorem 3.7, [K : E] = |H| and [K : F ] = |G|, since E is the

fixed field of H and F is the fixed field of G. Since [K : F ] = [K :
E][E : F ] by Theorem 2.2, we have (G : H) = |G|/|H| = [K : E][E :
F ]/[K : E] = [E : F ].

We now prove property (3). If E is a subfield of K containing F ,
then because λ is a bijection, E = λ−1(H) = KH for some H ≤ G. By
Corollary 3.9, Aut(K/E) = H, so E is the fixed field of Aut(K/E).
Hence K/E is a Galois extension with Galois group Gal(K/E) = H =
λ(E).

To prove (4), let E/F be a Galois extension and let λ(E) = H. Let
u ∈ E. Then by Theorem 3.6, the minimal polynomial p(x) ∈ F [x] of u
splits completely in E. Since σ ∈ G implies σ(u) is also a root of p(x),
σ(u) ∈ E for all σ ∈ G. Hence σ|E is an automorphism of E for all
σ ∈ G. Thus the map θ : G→ Gal(E/F ), defined by θ(σ) = σ|E, is well
defined. It is also clearly a homomorphism. The kernel of θ is the set
of elements of G that are the identity automorphism when restricted to
E. This is just the set of automorphisms of K that fix E, so the kernel
of θ is H. Thus H is a normal subgroup of G. By the Fundamental
Homomorphism Theorem, G/H ∼= θ[G]. By (2), (G : H) = [E : F ] =
|Gal(E/F )|, so |G/H| = |Gal(E/F )|. Hence |θ[G]| = |Gal(E/F )|, so
θ[G] =Gal(E/F ). Therefore G/H is isomorphic to Gal(E/F ).

Now let λ(E) = H be a normal subgroup of G. Let σ ∈ H and θ ∈ G.
Then δ = θ−1σθ ∈ H and θδ = σθ. Assume u ∈ E. Then δ(u) = u
since δ ∈ H, so σ(θ(u)) = θ(δ(u)) = θ(u). Hence θ(u) is fixed by σ, so
since σ was chosen arbitrarily, θ(u) is fixed by H. Since E is the fixed
field of H, θ(u) ∈ E for all θ ∈ G, u ∈ E, so θ|E is an automorphism of
E. Let θ, τ ∈ G. We now show that |Gal(E/F )| = (G : H) by showing
that θ|E = τ |E if and only if θτ−1 ∈ H. Assume θ|E = τ |E. Then for
all u ∈ E, θ(τ−1(u)) = θ(θ−1(u)) = u, so θτ−1 ∈ H. If θτ−1 ∈ H,
then for all u ∈ E, θ(τ−1(u)) = u, so τ−1(u) = θ−1(u), and hence
τ(u) = θ(u). Thus each distinct automorphism of E corresponds to a
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coset of H, so |Gal(E/F )| = (G : H). By (2), [E : F ] = (G : H), so
|Gal(E/F )| = [E : F ]. Therefore E/F is a Galois extension.

We now prove (5). Let λ(H1) = E1 and λ(H2) = E2. We show
λ−1(〈H1, H2〉) = E1 ∩E2. Let u ∈ λ−1(〈H1, H2〉). Then in particular u
is fixed by H1 and by H2, so u ∈ E1∩E2. Now let u ∈ E1∩E2. Then u is
fixed by H1 and H2, so it is fixed by any composition of automorphisms
in H1 and H2. Thus u ∈ λ−1(〈H1, H2〉), so λ−1(〈H1, H2〉) = E1 ∩ E2.

We now prove that λ(E1E2) = H1 ∩H2. Let σ ∈ H1 ∩H2. Then σ
fixes E1 and E2, so σ fixes any algebraic combination of elements in E1

and E2. Thus σ ∈ λ(E1E2). Now let σ ∈ λ(E1E2). Then σ must fix
E1 and E2 individually, so σ ∈ H1∩H2. Thus λ(E1E2) = H1∩H2. �

We now give an example of an application of Fundamental Theorem.
Let K = Q( 3

√
2,
√
−3). Then K is the splitting field of x3 − 2 over

Q, so K/Q is a Galois extension and |Aut(K/Q)| = [K : Q] = 6.
This justifies our claim in the example preceding Theorem 3.5 that
Aut(K/Q) = {1, σ, τ, τ 2, στ, τσ}, since we found six distinct elements of
Aut(K/Q) = Gal(K/Q). By the Fundamental Theorem, the subgroups
of Gal(K/Q) are in a 1-1 correspondence with the subfields of K that
contain Q. We now demonstrate this, as well as the property that the
subgroup diagram of Gal(K/Q) is the inversion of the subfield diagram
of K/Q.

Recall that in the example preceding Theorem 3.5 we determined
that with H1 = 〈σ〉 and H2 = 〈τ〉, the corresponding fixed fields are
KH1 = Q( 3

√
2) and KH2 = Q(−

√
−3). Note that Gal(K/Q) has two

other subgroups: H3 = 〈στ〉 and H4 = 〈τσ〉, each of order two. By
Theorem 3.2 each element of Gal(K/Q) maps roots of x2 +3 to roots of
x2+3 and roots of x3−2 to roots of x3−2. Since the action of an element
in Gal(K/Q) is completely determined by its action on these roots, to
find fixed fields we must determine which roots of these polynomials
are fixed by a subgroup of Gal(K/Q). To find KH3 , recall that we
showed στ( 3

√
2) = ω2 3

√
2 and στ(

√
−3) = −

√
−3. Hence στ(ω) = ω2,

so στ(ω 3
√

2) = ω 3
√

2 and στ(ω2 3
√

2) = 3
√

2. Therefore the only root of
x2 + 3 or x3 − 2 that is fixed by στ is ω 3

√
2, so KH3 = Q(ω 3

√
2). We

perform the same procedure to find KH4 . We have already determined
that τσ( 3

√
2) = ω 3

√
2 and τσ(

√
−3) = −

√
−3. Thus τσ(ω) = ω2, so

τσ(ω 3
√

2) = 3
√

2 and τσ(ω2 3
√

2) = ω2 3
√

2, giving KH4 = Q(ω2 3
√

2).
The Fundamental Theorem tells us that we have now found all the

subfields of K that contain Q. This is an important result, as finding
all subfields of a given field is generally difficult. We can now illustrate
the last property of the Fundamental Theorem. Below is the diagram
of subfields of K that contain Q.
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We see below the subgroup diagram of Gal(K/Q), inverted. Notice
that each subgroup corresponds to its fixed field in the diagram above.

The Fundamental Theorem also allows us to easily prove the follow-
ing results concerning Galois extensions.

Theorem 4.2. Let K/F be a Galois extension and let F ′/F be any
extension. Then KF ′/F is a Galois extension and its Galois group is
isomorphic to a subgroup of Gal(K/F ).

Proof. Since K/F is a Galois extension, by Theorem 3.6 K is the split-
ting field over F of a separable polynomial f(x) ∈ F [x]. Now consider
f(x) as a polynomial in F ′[x]. Clearly the composite field KF ′ contains
the roots of f(x) and F ′. Let E be a subfield of KF ′ that contains F ′

and the roots of f(x). Then E contains F as well, so since K is the
splitting field of f(x) over F , K ⊂ E. Since F ′ ⊂ E as well, KF ′ ⊂ E.
Hence E = KF ′, so KF ′ is the splitting field of f(x) over F ′. Thus by
Theorem 3.6 KF ′/F ′ is a Galois extension.

Consider the map φ : Gal(KF ′/F ′) → Gal(K/F ) given by φ(σ) =
σK . We showed in the proof of property (4) of the Fundamental The-
orem that this map is well defined. Since it is clear that for any
σ, τ ∈ Gal(KF ′/F ′), στ |K = σ|Kτ |K , φ is a homomorphism. The
kernel of φ is kerφ = {σ ∈ Gal(KF ′/F ′) : σ|K = 1}. Thus, kerφ
contains the automorphisms of KF ′ that fix both F ′ and K. Clearly,
this is just the identity automorphism, so kerφ = {1}, and hence φ is
1-1. Thus Gal(KF ′/F ′) is isomorphic to φ[Gal(KF ′/F ′)], a subgroup
of Gal(K/F ). �
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We now show that intersections and composites of Galois extensions
are also Galois extensions.

Theorem 4.3. Let K1 and K2 be Galois extensions of a field F . Then
K1 ∩K2 and K1K2 are both Galois over F .

Proof. Let p(x) ∈ F [x] be an irreducible polynomial with a root α ∈
K1 ∩K2. Then α ∈ K1, so since K1/F is Galois, all the roots of p(x)
are in K1, by Theorem 3.6. Similarly, all the roots of p(x) are in K2

since α ∈ K2 and K2/F is Galois. Thus all the roots of p(x) are in
K1 ∩K2, so by Theorem 3.6, K1 ∩K2 is a Galois extension of F .

Since K1 and K2 are Galois over F , by Theorem 3.6 K1 is the split-
ting field of a separable polynomial f(x) ∈ F [x] and K2 is the splitting
field of a separable polynomial g(x) ∈ F [x]. Let h(x) ∈ F [x] be fg
with duplicate factors removed, so that h(x) is separable. Then the
splitting field of h(x) is the smallest field containing all the roots of
f(x) and g(x), so it is K1K2. Thus K1K2 is the splitting field of a
separable polynomial in F [x], so by Theorem 3.6, K1K2 is Galois over
F . �

It is often desirable to work in a Galois extension, so that we can use
the Fundamental Theorem. The theorem below allows us to extend
any extension E of a field F to a minimal Galois extension of F , so
that we can work with elements of E in a Galois extension.

Corollary 4.4. Let E/F be a separable finite extension. Then E is
contained in an extension K which is Galois over F and is minimal in
the sense that any other Galois extension of F containing E contains
F .

Proof. Suppose E = F (α1 · · · , αn). For 1 ≤ i ≤ n, let Li be the
splitting field over F of the minimal polynomial of αi. Since E is a
separable extension, each of the minimal polynomials is separable, so
each Li is Galois over F . Then by Theorem 4.3 the composite L of all
the L′is is Galois over F . Clearly E ⊂ L, so E is contained in a Galois
extension of F . Let K be the intersection of all such extensions of F .
Then by Theorem 4.3 K is Galois over F , and clearly K is contained
in any other Galois extension of F containing E. �

The field K in the corollary above is called the Galois closure of E
over F .
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5. Insolvability of the Quintic

We are now ready to apply the material we have developed to show
that quintic polynomial equations are, in general, not solvable by rad-
icals. We first investigate the Galois groups of polynomials in more
detail and describe what is meant by a “general” polynomial.

Recall that if f(x) ∈ F [x] is a separable polynomial with splitting
field E, then the Galois group of f(x) is Gal(E/F ). If f(x) has roots
α1, · · · , αn, then by Theorem 3.2, each σ ∈ Gal(E/F ) acts as a per-
mutation of the roots of f(x) and thus defines a unique permutation
on {1, · · · , n}. Thus Gal(E/F ) can be identified with a subgroup of
Sn. Going back to the example of the Galois extension K/Q with
K = Q( 3

√
2,
√
−3), denote the roots of x3 − 2 by α1 = 3

√
2, α2 = ω 3

√
2,

and α3 = ω2 3
√

2. Then associating the elements of Gal(K/Q) with
their permutations of the roots, which were found in the example fol-
lowing the proof of the Fundamental Theorem, we obtain σ = (2, 3)
and τ = (1, 2, 3). Repeating this for the other elements of Gal(K/Q)
gives τ 2 = (1, 3, 2), στ = (1, 3), and τσ = (1, 2), so that Gal(K/Q) is
isomorphic to S3. As this example shows, working with the permuta-
tion equivalents of elements of a Galois group can be computationally
simpler.

Let x1, x2, · · · , xn be indeterminates. The elementary symmetric
functions s1, s2, · · · sn are defined by

s1 = x1 + x2 + · · ·xn
s2 = x1x2 + x1x+ 3 + · · ·+ x2x3 + x2x4 + · · ·+ xn−1xn

...

sn = x1x2 · · ·xn.

The general polynomial of degree n is the polynomial f(x) = (x −
x1)(x − x2) · · · (x − xn), the roots of which are the indeterminates
x1, x2, · · · , xn. Notice that (x−x1)(x−x2) · · · (x−xn) = xn−s1x

n−1 +
s2x

n−2+· · ·+(−1)nsn. Thus f(x) ∈ F (s1, · · · , sn), and clearly F (x1, · · · , xn)
is the splitting field of f(x) over F (s1, · · · , sn), so F (x1, · · · , xn) is a
Galois extension of F (s1, · · · , sn). We now show that F (s1, · · · , sn) is
in fact the fixed field of Sn.

Theorem 5.1. Let x1, · · · , xn be indeterminates, and let s1, · · · , sn be
the elementary symmetric functions. Then the fixed field of Sn acting
on K = F (x1, · · · , xn) is F (s1, · · · , sn).
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Proof. First note that any σ ∈ Sn acts on F (x1, · · · , xn) by permuting
the subscripts of the xi, so σ is an automorphism of F (x1, · · · , xn) for
all σ ∈ Sn, and thus Sn ⊂ Aut(F (x1, · · · , xn)).

Let σ ∈ Sn. Then clearly each si, 1 ≤ i ≤ n is fixed by σ since the
symmetric functions remain unchanged by permutations of the sub-
scripts of the xi. Hence F (s1, · · · , sn) ⊂ KSn . By the Fundamen-
tal Theorem, [K : KSn ] = |Sn| = n!. Since K is the splitting field
of the separable polynomial (x − x1) · · · (x − xn) over F (s1, · · · , sn),
[K : F (s1, · · · , sn)] = n! by the comments following Theorem 2.5.
Therefore F (s1, · · · , sn) = KSn , the fixed field of Sn. �

We can also begin with a polynomial f(x) = xn − s1x
n−1 + · · · +

(−1)nsn over the field F (s1, · · · , sn), where s1, · · · , sn are indetermi-
nates. If we let x1, · · · , xn be the roots of f(x), then we see that
s1, · · · , sn are the elementary symmetric functions in terms of x1, · · · , xn,
and that x1, · · · , xn are also indeterminates. Since x1, · · · , xn are inde-
terminates, f(x) is separable, so the Galois group of f(x) is
Gal(F (x1, · · · , xn)/F (s1, · · · , sn)), since F (x1, · · · , xn) is the splitting
field of f(x) over F (s1, · · · , sn), as discussed earlier. By Theorem 5.1,
this Galois group is in fact Sn. We restate this result in the form of
the following theorem.

Theorem 5.2. If s1, · · · , sn are indeterminates, the polynomial xn −
s1x

n−1 + · · ·+ (−1)nsn over F (s1, · · · , sn) is the general polynomial of
degree n and is separable with Galois group Sn.

We are now ready to discuss solving for the roots of polynomials by
radicals. First, some definitions.

LetK/F be a field extension. ThenK/F is a simple radical extension
if K = F ( n

√
a) for some a ∈ F , where n

√
a is any root of xn− a ∈ F [x].

Also, K/F is cyclic and K is a cyclic extension of F if K/F is a Galois
extension and Gal(K/F ) is a cyclic group. Note that in saying K/F is
cyclic, we are referring to the Galois group of K/F being cyclic. For the
remainder of the paper, if a ∈ F , F a field, then n

√
a refers to any root

of xn−a ∈ F [x], as in the definition of simple radical extensions. Also,
for simplicity, any base field F will be assumed to have characteristic
zero. The following theorems will also be valid if the base field does not
have characteristic dividing any of the orders of roots that are taken in
the field. The next two theorems provide a connection between simple
radical extensions and cyclic extensions when the base field F contains
the appropriate roots of unity. Specifically, they show that if F contains
the appropriate roots of unity, cyclic extensions are equivalent to simple
radical extensions. The proofs closely follow those of Propositions 36
and 37 on pages 625-626 of [1].



23

Theorem 5.3. Let F be a field which contains the nth roots of unity. If
a ∈ F , then F ( n

√
a) is a cyclic extension of F and [F ( n

√
a) : F ] divides

n.

Proof. Since F contains the nth roots of unity, K = F ( n
√
a) is the

splitting field over F for xn − a. Thus K/F is a Galois extension by
Theorem 3.6. Now, if σ ∈Gal(K/F ), then σ maps n

√
a to a root of

xn − a, so σ( n
√
a) = ζσ n

√
a for some nth root of unity ζσ. Let θ :

Gal(K/F )→ Un, where Un is the group of nth roots of unity, be defined
by θ(σ) = ζσ. Since F contains the nth roots of unity, Un ⊂ F , so Un
is fixed by Gal(K/F ). Thus, if σ, τ ∈ Gal(K/F ),

στ( n
√
a) = σ(ζτ

n
√
a)

= ζτσ( n
√
a)

= ζτζσ
n
√
a = ζσζτ

n
√
a.

Hence ζστ = ζσζτ , so θ(στ) = θ(σ)θ(τ). Thus θ is a homomorphism.
The kernel of θ is the set of σ ∈Gal(K/F ) satisfying σ( n

√
a) = 1 · n

√
a,

so the kernel is just the set containing the identity automorphism, so θ
is one-to-one. Thus Gal(K/F ) is in one-to-one correspondence with a
subgroup of Un, which is cyclic, so Gal(K/F ) is cyclic and |Gal(K/F )|
divides n. Since |Gal(K/F )| = [K : F ] by the Fundamental Theorem,
[K : F ] also divides n. �

Theorem 5.4. Let K be a cyclic extension of degree n over a field
F which contains the nth roots of unity. Then K = F ( n

√
a) for some

a ∈ F .

Proof. Since K is a cyclic extension, Gal(K/F ) has some generator σ,
with σn = 1. For α ∈ K and ζ an nth root of unity, define

(α, ζ) = α + ζσ(α) + · · ·+ ζn−1σn−1(α).

Then, since the nth roots of unity are in F and thus fixed by σ,

σ((α, ζ)) = σ(α) + ζσ2(α) + · · ·+ ζn−1σn(α).

Since ζn = 1 in Un and σn = 1 in Gal(K/F ), we can rewrite σ((α, ζ))
as

σ((α, ζ)) = σ(α) + ζσ2(α) + · · ·+ ζ−1α

= ζ−1(α + ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α))

= ζ−1(α, ζ).

Thus σ((α, ζ)n) = σ((α, ζ))n = ζ−n(α, ζ)n = (α, ζ)n, so (α, ζ)n is fixed
by σ. Since σ generates Gal(K/F ), (α, ζ)n is thus fixed by Gal(K/F ),
so (α, ζ)n = a for some a ∈ F .
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Now let ζ be a primitive nth root of unity. By the above argument,
for i ≥ 0, σi((α, ζ)) = σ((α, ζ))i = ζ−i(α, ζ). For i < n, ζ i 6= ζ since
ζ is a primitive root of unity, so σi does not fix (α, ζ) for any i < n.
Thus (α, ζ) is not fixed by any nontrivial subgroup of Gal(K/F ), so
by the Fundamental Theorem (α, ζ) is not in any proper subfield of K
that contains F . Hence [K : F ((α, ζ))] = 1 and F ((α, ζ)) ⊆ K since
(α, ζ) ∈ K, so K = F ((α, ζ)). Since (α, ζ)n = a for some a ∈ F ,
K = F ( n

√
a). �

We now make precise the notion of solving by radicals. Let α be
algebraic over F . Then α can be solved for in terms of radicals if α is
in a field K that can be obtained from F by successive simple radical
extensions, so that

F = K0 ⊂ K1 ⊂ · · · ⊂ Ks = K,

where for i = 0, 1, · · · , s − 1, Ki+1 = Ki( ni
√
ai) for some ai ∈ Ki. In

this expression, ni
√
ai is some root of the polynomial xni − ai ∈ Ki[x].

The field K is called a root extension of F . We refer to the extensions
Ki+1/Ki as the intermediate extensions of K. Finally, a polynomial
f(x) ∈ F [x] can be solved by radicals if all its roots can be solved for
in terms of radicals.

This definition makes sense because if we start with α ∈ K, we can
rewrite α in terms of elements of the field one step down in the chain
and radicals of these elements. We can repeat this process until we are
working in F and have α written in terms of elements of F and radicals,
or multiple radicals, of elements in F . As an example of constructing a

root extension K, suppose F = Q and α =
√

3 + 3
√

52. Then K0 = Q
and K1 = K0( 3

√
a0), where a0 = 52. We then let K2 = K1(

√
a1), where

a1 = 3 + 3
√

52 ∈ K1. Since α ∈ K2, we have K2 = K, so K2 is a root
extension of F which contains α.

An arbitrary root extension containing α is not necessarily useful,
but given that α is in some root extension of F , we can find a root
extension of F containing α that has very nice properties. First we
need the following lemma concerning composites of root extensions.

Lemma 5.5. If K and K ′ are both root extensions of F , then KK ′

is a root extension of F . Additionally, if K and K ′ each have cyclic
intermediate extensions, then KK ′ has cyclic intermediate extensions.

Proof. Let K and K ′ be root extensions of F . Then there are chains
of subfields

F = K0 ⊂ K1 ⊂ · · · ⊂ Ks−1 ⊂ Ks = K

F = K ′0 ⊂ K ′1 ⊂ · · · ⊂ K ′t−1 ⊂ K ′t = K ′
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with Ki+1/Ki and K ′j+1/K
′
j simple radical extensions for 0 ≤ i ≤ s−1,

0 ≤ j ≤ t− 1. Consider the chain of subfields

F = K0 ⊂ K ′1K0 ⊂ K ′1K1 ⊂ · · · ⊂ K ′1Ks = K ′1K ⊂ K ′2K ⊂ · · · ⊂ K ′tK = K ′K.

Then K ′1Ki+1/K
′
1Ki and K ′j+1K/K

′
jK are all simple radical extensions

for 0 ≤ i ≤ s− 1, 0 ≤ j ≤ t− 1. Hence K ′K is a root extension of F .
Now assume K and K ′ are both root extensions of F with the same

subfields as above, with the additional assumption that Ki+1/Ki and
K ′j+1/K

′
j are cyclic extensions for 0 ≤ i ≤ s − 1, 0 ≤ j ≤ t − 1.

Consider the root extension KK ′ with the same chain of subfields as
above. Let i ∈ N such that 0 ≤ i ≤ s − 1. Since Ki+1/Ki is Galois
and K ′1Ki is an extension of Ki, Ki+1KiK

′
1 = Ki+1K

′
1 is a Galois ex-

tension of K ′1Ki by Theorem 4.2 and Gal(Ki+1K
′
1/K

′
1Ki) is a subgroup

of Gal(Ki+1/Ki). Since Ki+1/Ki is a cyclic extension, Gal(Ki+1/Ki)
is cyclic, so Gal(Ki+1K

′
1/K

′
1Ki) is cyclic and hence Ki+1K

′
1/K

′
1Ki is

a cyclic extension. A similar argument shows that for each j with
1 ≤ j ≤ t − 1, K ′j+1K/K

′
jK is a cyclic extension. Thus all the inter-

mediate extensions of KK ′ are cyclic. �

We now show that we can extend any root extension of F to a Galois
root extension of F which has cyclic intermediate extensions. Working
in such a root extension will allow us to use the Fundamental Theorem
to maximum effect.

Lemma 5.6. If α is an element of a root extension of F , then α is in a
root extension K which is Galois over F and for which each extension
Ki+1/Ki is cyclic.

Proof. Let F be a field and suppose α is an element of a root extension
K of F . Then their exist fields Ki, 0 ≤ i ≤ s, such that

F = K0 ⊂ K1 ⊂ · · · ⊂ Ks = K

and such that Ki+1 is a simple radical extension of Ki for 1 ≤ i ≤
s − 1. Let L be the Galois closure of K over F . This closure exists
by Corollary 4.4. We first show that for any σ ∈ Gal(L/F ), σ(K) is a
root extension of F . Consider the chain of subfields

F = σ(K0) ⊂ σ(K1) ⊂ · · · ⊂ σ(Ks) = σ(K).

Let i be such that 0 ≤ i ≤ s − 1. Then Ki+1 is a simple radical
extension of Ki, so Ki+1 = Ki( ni

√
ai) for some ai ∈ Ki, ni ∈ N. Note

that σ( ni
√
ai) is a root of xni − σ(ai) ∈ σ(Ki)[x], so if we can show that

σ(Ki+1) = σ(Ki)(σ( ni
√
ai)), then we will have shown that σ(Ki+1) is
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a simple radical extension of σ(Ki). Let y ∈ σ(Ki+1) = σ(Ki( ni
√
ai)).

Then y = σ(z) for some z ∈ σ(Ki( ni
√
ai)), with

z =

ni−1∑
j=0

bj
ni

√
aji ,

where bj ∈ Ki, since {1, ni
√
ai,

ni

√
a2
i , · · · ,

ni

√
an−1
i } is a basis forKi( ni

√
ai)

over K. Then

y = σ(z) =

ni−1∑
j=0

σ(bj)σ(
ni

√
aji ),

so y ∈ σ(Ki)(σ( ni
√
ai)).

Now let y ∈ σ(Ki)(σ( ni
√
ai)). Then

y =

ni−1∑
j=0

σ(bj)σ(
ni

√
aji )

= σ(

ni−1∑
j=0

bj
ni

√
aji )

= σ(z)

for some z ∈ Ki( ni
√
ai). Thus y ∈ σ(Ki+1). Therefore σ(Ki+1) =

σ(Ki)(σ( ni
√
ai)), so σ(Ki+1) is a simple radical extension of σ(Ki).

Hence σ(K) is a root extension of F .
Since the composite of root extensions is a root extension by Lemma

5.5, the composite of all the fields σ(K) for each σ ∈ Gal(K/F ) is a
root extension of F . The argument below shows that this composite
is actually L, which is Galois over F , so that α is in a Galois root
extension of F .

Let E be the composite of all the fields σ(K) for σ ∈ Gal(L/F ).
Since σ(K) ⊂ L for each σ, E ⊂ L, since E is the smallest field
containing each σ(K). To show that L ⊂ E, we will show that E/F is
Galois. Since L is the minimal field that is Galois over F , this implies
L ⊂ E.

Let H = Aut(L/E). To show E/F is Galois, we show that H is
normal in Gal(L/F ) and apply property 4 of the Fundamental Theorem
of Galois Theory. To this end let φ ∈ Gal(L/F ) and let τ ∈ H. Let
a ∈ E. Then a can be written in the terms of sums and products of
elements of the form σi(k), where σi ∈ Gal(L/F ) and k ∈ K. Since
φ−1σi ∈ Gal(L/F ) for each σi ∈ Gal(L/F ), φ−1(a) ∈ E, so τ(φ−1(a)) =
φ−1(a), since τ fixes E. Thus φτφ−1(a) = φφ−1(a) = a, so φτφ−1 fixes
E. Therefore φτφ−1 ∈ H, so φHφ−1 = H, and thus H is normal in
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Gal(L/F ). Then by property 4 of the Fundamental Theorem, E is
a Galois extension of F . By the minimality of L, we have L ⊂ E.
Therefore L = E.

Now let K be a Galois root extension of F with subfields Ki, 0 ≤ i ≤
s, where each simple radical extension is obtained by adjoining ni

√
ai.

Let F ′ be the field obtained by adjoining the ni-th roots of unity to F
for each i. Note that F ′ is the splitting field of (xn1 − 1) · · · (xns − 1)
over F , so F ′/F is Galois. Thus, by Theorem 4.3, KF ′ is Galois over
F . Consider the chain of subfields

F ⊂ F ′ = F ′K0 ⊂ F ′K1 ⊂ · · · ⊂ F ′Ks = F ′K

in which Ki+1/Ki is a simple radical extension for 0 ≤ i ≤ s − 1
because K is a root extension of F . Thus F ′Ki+1/F

′Ki is a simple
radical extension for 0 ≤ i ≤ s−1. Since F ′Ki contains the ni-th roots
of unity, F ′Ki+1 is a cyclic extension over F ′Ki for 0 ≤ i ≤ s − 1 by
Theorem 5.3.

We now show that F ′ is a root extension of F with each intermediate
extension cyclic. Let ωni

be a primitive ni-th root of unity for 0 ≤ i ≤
s − 1. Then F ′ = F (ωn0 , · · · , ωns−1). Any σ ∈ Gal(F ′/F ) maps each
ωni

to a power of ωni
, and the action of σ is completely determined

by its action on each ωni
. For any a, b ∈ N, (ωani

)b = (ωbni
)a. Thus,

if σ, τ ∈ Gal(F ′/F ) such that σ(ωni
) = ωani

and τ(ωni
) = ωbni

, then
στ(ωni

) = τσ(ωni
). Since this is true for 0 ≤ i ≤ s − 1, στ = τσ, so

Gal(F ′/F ) is abelian.
Gal(F ′/F ) is finite, so we can write Gal(F ′/F ) = 〈σ1, · · · , σm〉 for

some σ1, · · · , σm ∈ Gal(F ′/F ). Then

{1} ⊂ 〈σ1〉 ⊂ · · · ⊂ 〈σ1, · · · , σm〉 = Gal(F ′/F ).

Letting λ(〈σ1, · · · , σi〉) = Fm−i be the fixed field of 〈σ1, · · · , σi〉, we see
by the Fundamental Theorem that

F = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F ′.

Since Gal(F ′/F ) is abelian, 〈σ1, · · · , σm−i−1〉 is normal in 〈σ1, · · · , σm−i〉
for 0 ≤ i ≤ m − 1. Then by the Fundamental Theorem, Fi+1/Fi is
Galois and Gal(Fi+1/Fi) ∼= 〈σ1, · · · , σm−i〉/〈σ1, · · · , σm−i−1〉 ∼= 〈σm−i〉,
where the second isomorphism follows from an easy application of the
Fundamental Homomorphism Theorem. Hence Gal(Fi+1/Fi) is cyclic
for 0 ≤ i ≤ m−1, so each Fi+1/Fi is a cyclic extension. Therefore F ′K
is a root extension of F which is Galois over F with cyclic intermediate
extensions. �

Before we prove the main theorem of the section, we present one
more definition.



28

A finite group G is solvable if there exists a chain of subgroups

1 = Gs ≤ Gs−1 ≤ · · · ≤ G0 = G

such that Gi/Gi+1 is cyclic, i = 0, 1, · · · , s− 1.
The reader can refer to page 196 in [1] for proofs that subgroups and

quotient groups of solvable groups are also solvable groups; we will use
these facts in the following theorem.

Theorem 5.7. The separable polynomial f(x) ∈ F [x] can be solved by
radicals if and only if its Galois group is solvable.

Proof. Assume first that f(x) ∈ F [x] is separable and can be solved by
radicals. Then every root of f(x) is contained in a root extension of
F , so by Lemma 5.6, each root of f(x) is contained in a root extension
which is Galois over F with cyclic intermediate extensions. Let K be
the composite of these root extensions. Then by Theorem 5.5, K is a
Galois root extension over F with cyclic intermediate extensions. Thus
we have

F = K0 ⊂ K1 ⊂ · · ·Ks−1 ⊂ Ks = K,

with Ki+1/Ki a cyclic extension for each i, 0 ≤ i ≤ s−1. For each i, let
Gi = λ(Ki), where λ is the the function in the Fundamental Theorem
that maps a subfield of K to the subgroup of Gal(K/F ) which fixes
it. By the Fundamental Theorem, K/Ki is a Galois extension and
Gal(Ki+1/Ki) ∼= Gi/Gi+1 if Ki+1/Ki is Galois. But Ki+1/Ki is cyclic,
so it is Galois by definition of a cyclic extension. Thus Gal(Ki+1/Ki) ∼=
Gi/Gi+1, and since Ki+1/Ki is a cyclic extension, its Galois group is
cyclic, so Gi/Gi+1 is cyclic. Because λ is inclusion reversing by the
Fundamental Theorem,

{1} = Gs ≤ Gs−1 ≤ · · · ≤ G1 ≤ G0 = G.

Therefore G is solvable.
Now let E be the splitting field of f(x) over F . Since K contains

all the roots of f(x), E is a subfield of K. Let H = λ(E). Since E
is the splitting field of a separable polynomial in F [x], E is a Galois
extension of F , so by the Fundamental Theorem Gal(E/F ) ∼= G/H.
Since H ≤ G and G is solvable, H is solvable, so the quotient group
G/H is solvable. Hence Gal(E/F ), the Galois group of f(x), is solvable.

To prove the other direction, assume that the Galois group of f(x)
is solvable. Let K be the splitting field of f(x) over F , with G =
Gal(K/F ) the Galois group of f(x). Since G is solvable, there exists a
chain of subgroups satisfying

{1} = Gs ≤ Gs−1 ≤ · · · ≤ G1 ≤ G0 = G
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with Gi/Gi+1 cyclic for 0 ≤ i ≤ s − 1. For each i, let Ki = KGi
=

λ−1(Gi) be the fixed field ofGi. Then by Property 1 of the Fundamental
Theorem,

F = K0 ⊂ K1 ⊂ · · · ⊂ Ks−1 ⊂ Ks = K.

Let i ∈ N such that 0 ≤ i ≤ s − 1. Since K/Ki is Galois by the
Fundamental Theorem, Ki+1/Ki is Galois if and only ifGi+1 is a normal
subgroup of Gi. Since Gi/Gi+1 is a group, Gi+1 is indeed normal in
Gi, so Ki+1/Ki is a Galois extension. Also, Gal(Ki+1/Ki) ∼= Gi/Gi+1,
a cyclic group, so Ki+1 is a cyclic extension of Ki.

Let ni be the degree of each extension Ki+1/Ki, and let F ′ be the
extension of F containing all the ni-th roots of unity for each i, 0 ≤
i ≤ s − 1. Then F ′ is Galois over F since F ′ is the splitting field of
(xn0 − 1) · · · (xns−1 − 1) with any duplicate factors removed. Also, F ′

can be obtained from F by adjoining a primitive ni-th root of unity
at each step, so that F ′ can be obtained from F by a chain of simple
radical extensions. Now consider the chain of extensions

F ⊂ F ′ = F ′K0 ⊂ F ′K1 ⊂ · · · ⊂ F ′Ks−1 ⊂ F ′Ks = F ′K.

Let i ∈ N such that 0 ≤ i ≤ s− 1. Since Ki+1 is a Galois extension of
Ki and F ′Ki is an extension of Ki, by Theorem 4.2, F ′KiKi+1/F

′Ki

is a Galois extension with Galois group isomorphic to a subgroup of
Gal(Ki+1/Ki). Since Ki ⊂ Ki+1, F

′KiKi+1 = F ′Ki+1, so F ′Ki+1/F
′Ki

is Galois. Also, since Gal(Ki+1/Ki) is cyclic and Gal(F ′Ki+1/F
′Ki) ≤

Gal(Ki+1/Ki), Gal(F ′Ki+1/F
′Ki) is cyclic. Thus F ′Ki+1/F

′Ki is a
cyclic extension. Letting H = Gal(F ′Ki+1/F

′Ki), we have [F ′Ki+1 :
F ′Ki] = |H| by Theorem 3.6. Since H is isomorphic to a subgroup of
Gal(Ki+1/Ki), |H| divides |Gal(Ki+1/Ki)| = [Ki+1 : Ki] = ni, using
Theorem 3.6 again. Hence F ′Ki+1/F

′Ki has degree mi dividing ni.
Since F ′ contains the ni-th roots of unity, F ′ also contains the mi-
th roots of unity. This is because any ni-th root of unity raised to the
power of ni/mi is an mi-th root of unity. Thus F ′Ki contains the mi-th
roots of unity, so by Theorem 5.4, F ′Ki+1 is a simple radical extension
of F ′Ki. Therefore F ′K is a root extension of F . Recall that K is the
splitting field of f(x), so F ′K contains all the roots of f(x). Therefore
f(x) can be solved by radicals. �

Corollary 5.8. The general polynomial equation of degree n cannot be
solved by radicals for n ≥ 5. Specifically, the general quintic polynomial
equation cannot be solved by radicals.

Proof. By Theorem 5.2, the general polynomial of degree n has Galois
group Sn. For n ≥ 5, the only nontrivial proper normal subgroup of
Sn is An, which is simple. Since An is not cyclic, or even abelian, Sn is
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not solvable. Thus by Theorem 5.7, the general polynomial of degree
n is not solvable by radicals. �

By Corollary 5.8, we have now accomplished our goal of showing that
the general quintic polynomial equation is not solvable by radicals. In
fact, we have proved a stronger result; for any n ≥ 5, the general
polynomial of degree n cannot be solved by radicals. This means that
given a degree n ≥ 5 polynomial, it is not guaranteed that we can find
its exact solutions using only the elementary operations and radicals.
This is not to say that no polynomial of degree 5 or higher cannot be
solved by radicals; for instance, clearly x5−1 has the fifth roots of unity
as its zeros, and these can all be expressed in terms of radicals. Rather,
there exists polynomials with solutions not expressible by radicals, and
given a random polynomial of degree 5 or greater, this is likely to be
the case. We now give an example of a quintic polynomial in Q[x] that
is not solvable by radicals. This example is taken from page 629 of [1].

Let f(x) = x5 − 6x+ 3 ∈ Q[x]. Using the Eisentein criteria, learned
in undergraduate abstract algebra, with p = 3, we see that f(x) is
irreducible. Thus the splitting field E of f(x) over Q is divisible by 5.
By the Fundamental Theorem, [E : Q] = |Gal(E/Q)|, so the order of
the Galois group of f(x) is divisible by 5. By Cauchy’s theorem, covered
in undergraduate abstract algebra, Gal(E/Q) has an element σ of order
5, which must be a 5-cycle since Gal(E/Q) ⊂ S5. By graphing f(x) we
observe that f(x) has three real zeroes, and thus two complex roots.
Thus the automorphism τ of E defined by complex conjugation fixes
the three real roots and interchanges the two complex roots, so τ is a
transposition in S5. We now have a 5-cycle σ and a transposition τ in
Gal(E/Q). For i = −4,−3, · · · , 3, 4, σ−iτσi is a distinct transposition,
so we see that 〈σ, τ〉 contains all the transpositions in S5. Since any
element of S5 can be written as a product of transpositions, we have
〈σ, τ, 〉 = S5. Since σ, τ ∈ Gal(E/Q), Gal(E/Q) = S5. Thus the Galois
group of f(x) is S5, which is not solvable, so f(x) is not solvable by
radicals.

As the example shows, it can be somewhat difficult to show a poly-
nomial has Sn as its Galois group. The easiest way is to confirm that
generators of Sn are in the Galois group, but this is not always easy.

As we have seen, Galois Theory allows for an elegant correspondence
between subgroups and subfields. In addition, Galois Theory lets us
view field automorphisms as permutations of roots of irreducible poly-
nomials, which is very useful. Finally, Galois Theory gave us the tools
to prove the insolvability of the general quintic equation.
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