INDUSTRY AND ENERGY DEPARTMENT WORKING PAPER ENERGY SERIES PAPER No. 18

Review and Evaluation of Historic Electricity Forecasting Experience (1960–1985)

June 1989

Review and Evaluation of Historic Electricity Forecasting Experience (1960-1985)

by

Arun Sanghvi and Robert Vernstrom

with

John Besant-Jones

•

June 1989

Copyright (c) 1989 The World Bank 1818 H Street, N.W. Washington, D.C. 20433 U.S.A.

This report is one of a series issued by the Industry and Energy Department for the information and guidance of Bank staff. The report may not be published or quoted as representing the views of the Bank Group, nor does the Bank Group accept responsibility for its accuracy or completeness.

ABSTRACT

Power system expansion planning is subject to a considerable degree of uncertainty with respect to load forecast, time and cost-to-completion of new plant, fuel costs and technological innovation. Many power system planners continue to use forecasts of these planning parameters as certainty-equivalent characterizations of the future, despite the generally poor concurrence between these ex-ante forecasts and actual ex-post situations. Such disregard of uncertainty greatly enhances the prospects of future imbalances between the demand for power and the system supply capability, as well as erroneously biasing the selection of plant types to meet demand at least cost.

This study focuses on load forecasts as a source of planning uncertainty by identifying the rature and extent of forecast inaccuracy per se rather than by analysis of the causes of uncertainty. It evaluates the historic performance record of electricity sales forecasts in World Bank member countries, based on over 200 separate forecasts (1,600 annual forecasts) from 45 countries over the period 1960-1985. A comparative evaluation of U.S. forecasting experience is also included.

K

The study identifies a strong historic bias toward overestimation which cuts across sales forecasts for all regions, vintages, system sizes and economic circumstances. Forecast accuracy deteriorated consistently with longer forecast horizons. More recent forecasts have not tended to become more accurate, despite the general increase in effort and sophistication of forecasting techniques. This appears to suggest that the scope for reducing uncertainty in load forecasting appears to be insufficient to support the deterministic approach to power system planning. The study concludes that planning approaches should explicitly take account of this apparently unavoidable uncertainty, and it presents some recommendations for research into such approaches.

The study also investigated the relationship between forecast accuracy and external conditions, to identify indicators for further research into the structural causes of forecast inaccuracy. The best forecast performance was found among countries that had

good and stable economic growth. Conversely, the poorest forecast performance was found among the countries with the worst economic performance. The performance of short term forecasts tended to improve with increasing system size and per capita national income, but this trend did not appear to persist into the medium and long term. In general, forecasts in developing countries were as accurate as those for U.S. utilities in the medium term (4 to 6 years), although poorer in the short term (2 years).

ACRONYMS

CV	Coefficient of Variation
EEI	Edison Electric Institute
EMENA	Europe, Middle East and North Africa
GWH	Gigawatt hours
GNP	Gross National Product
LAC	Latin America and Caribbean
MPD	Mean Percent Deviation
MAPD	Mean Absolute Percent Deviation
PCR	Project Completion Report
PPAR	Project Performance Audit Report
SAR	Staff Appraisal Report

E1

ACKNOWLEDGEMENT

This Study has been a collaborative effort between staff of the Energy Development Division in the World Bank's Industry and Energy Department and RCG/Hagler, Bailly, Inc. of Washington, D.C. The Energy Development Division contributed project design and supervision for which John Besant-Jones was responsible, and Jamshid Heidarian (consultant) abstracted the Gata from Bank records. Witold Teplitz-Sembitzky advised on analytical techniques. Arun Sanghvi (Senior Vice-President) and Robert Vernstrom (consultant) of RCG/Hagler, Bailly, Inc. undertook the analysis and report preparation. The report also takes account of comments on an earlier draft from other World Bank staff, particularly Michael Webb and Trevor Byer. TITLE

.

.

CHAPTER

1	INTRODUCTION 1.1
	Study Background and Objectives:What Can We Learn FromOur Past Forecasting Experience?1.1
	Organization of Report 1.4
2	METHODOLOGY 2.1
	Criteria For Evaluating Forecast Accuracy
	Database
3	ANALYSIS OF FORECAST ACCURACY 3.1
	Global Forecast Accuracy 3.1
	Forecast Accuracy by Region
	Forecast Accuracy By Vintage
	Forecast Accuracy By System Size
	Forecast Accuracy and Country Income
	Forecast Accuracy and Economic Conditions
	Forecast Accuracy By Country
	Error Distribution
	Analysis of System Loss Forecasts
4	THE U.S. EXPERIENCE 4.1
	Forecasts of National Utility Sales by EEI 4.1
	U.S. Utility Forecast Survey 4.7

5	CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH	5.1
	Study Conclusions and Directions for Future Research	5.1
	Planning for an Uncertain Future	5.5

SUPPORTING ANNEXES

- Annex 1:
- Annex 2:
- Listing of IBRD Power Project Reports by Region IBRD Commitments to the Power Sector Economic Growth Rates During Different Time Periods Annex 3:
- Annex 4:
- Annex 5:
- Forecast Accuracy by Methodology Planning Future Electrical Generation Capacity Ex-Post Analysis of Economic and Electric Sector Correlation Annex 6:

LIST OF TABLES AND FIGURES

-

۲-

2

.

5

.

Table 2-1:	Comparison Forecast Deviation as Measured With Longitudinal and Cross-Sectional Data 2.5
Table 2-2:	Database
Table 3-1:	Global Forecast Deviation 3.2
Table 3-2:	Forecast Deviation by Region 3.4
Table 3-3:	Forecast Deviation by Vintage of Forecast
Table 3-4:	Forecast Deviation by System Size
Table 3-5:	Forecast Deviation by Income Level 3.10
Table 3-6:	Forecast Deviation by National Economic Growth Rate 3.11
Table 3-7:	Forecast Deviation by Country 3.13
Table 3-8:	Forecast Deviation by Country Characteristics
Table 3-9:	Learning Curve of Utility Electricity Forecasting Performance 3.18
Table 3-10:	Frequency Distribution of Forecast Mean Deviations 3.19
Table 3-11:	Loss Forecast Deviation by Region 3.26
Table 3-12:	Loss Forecast Deviation by System Size
Table 3-13:	Loss Forecast Deviation by Income Level
Figure 3-1:	Mean Deviation Distribution 3.21
Table 4-1:	U.S.A. Forecasts of Total Electric Utility Sales 4.2
Table 4-2:	Comparison of U.S. and LDC Forecast Deviation 4.3
Table 4-3:	Comparison of U.S. and LDC Longitudinal Forecast Deviation 4.5
Table 4-4:	Forecast Percent Deviation in Selected Target Years 4.6
Table 4-5:	Frequency Distribution of U.S.A. Forecast Mean Deviations 4.8
Table 4-6:	Forecast Performances of U.S. Utilities 4.9

1 INTRODUCTION

1.1 STUDY BACKGROUND, AND OBJECTIVES: WHAT CAN WE LEARN FROM OUR PAST FORECASTING EXPERIENCE?

Power sector system expansion planning is presently characterized by a considerable degree of uncertainty with respect to many factors, including time and cost-to-completion of a new plant, fuel costs, technological innovation, and the load forecast. The presence of such uncertainty greatly enhances the prospects for imbalances in future supply and demand. Power supplying entities can ill-afford to find themselves in a position of being significantly "under-built" or "over-built" vis-a-vis the short- to medium-term load resource balances at any point in time.

Getting caught short can have serious adverse economic consequences for consumers and the economy at large. On the other hand excess resources can impose undue financial ardships on a utility and its consumers. In addition, this situation results in unnecessary and high economic opportunity costs associated with resource misallocation.

In short, there is a high cost to being wrong. The thrust of a good planning strategy should be to enable the utility to securely and cost-effectively navigate this economic and financial tightrope. Any methodological framework for effectively addressing this problem of planning under uncertainty will require information about the nature and extent of uncertainty associated with the key exogenous planning variables.

This study focuses on the load forecast as a source of planning uncertainty. While planners frequently acknowledge that they have been victims of a "bad" forecast, the majority of utility financial and systems planners continue to use forecasts as certain characterizations of the future. However, in evaluating power projects and sector loans, it is essential that uncertainty related to future loads be explicitly incorporated in the analysis. Analysis in this report underscores the point that one cannot realistically expect that the problem of load forecast uncertainty can be simply dealt with by improvements in the state-of-art in load forecasting. Forecast error is an inescapable reality and apriori there is no load forecast that is the correct forecast or the best forecast. Simply put, the issue in power project evaluation, and in sector expansion planning is not whether demand will grow at X percent or Y percent annually. Kather, the issue is what is the best resource development strategy given that loads are likely to grow between X and Y percent, or equivalently at a rate $(X \pm e)$ percent, where e denotes forecast error (deviation).

Our objective is to identify the nature and extent of forecast inaccuracy per se rather than the causes of this error. When and where and how frequently have forecasting errors occurred? Is error in forecasting a gradually disappearing phenomenon as we expand the "state of the art", or is there an unavoidable level of inaccuracy? If we must accept some forecasting error, is it at least restricted to identifiable circumstances? In general, do "point" forecasts provide an acceptable level of accuracy for planning?

Unfortunately, despite decades of electricity load forecasting experience, there has been very little analysis and synthesis of this nistorical experience in order to increase our knowledge of this source of uncertainty. A retrospective analysis of forecast performance can help provide useful insights concerning questions of the following type:

- What is the nature and extent of forecast deviation from actual performance associated with this historical experience?
- Is there any pattern to forecast deviation vis-a-vis external conditions such as:
 - Electric system size?
 - National rate of economic growth?
 - National income per capita?
 - Scale of World Bank power sector lending?
- Has forecast performance improved over time?
- How often is it necessary to update forecasts?
- Does year-to-year forecast deviation follow a recognizable trend, or is it purely random?

Against this background, the objectives of this study are to assemble, review, and analyze the historic record of electric load forecasting experience in the World Bank's member countries with a view toward evaluating the accuracy and performance record of previous load forecasts and estimating the extent of forecast deviation. The study also presents some recommendations regarding strategies for incorporating uncertainty into generation capacity planning decisions. It is hoped that these procedures will contribute to enhancing the usefulness and effectiveness of the load forecast input in power sector planning and evaluation activities in support of the Bank's lending programs.

While we believe this study to be the most extensive analysis of forecast experience to date,¹ it would be inappropriate to use this data to draw conclusions about the causes of forecast deviation. The latter task requires data that were not available to us. This aspect is discussed later in the report under the section on Directions for Future Research.

A Note on Terminology

Up to this point we have frequently used the term "load forecast". This phrase is subject to some ambiguity. More than one type of forecast is generally used in utility planning. Forecasts of system requirements ("demand") are needed for medium-to-long term system capacity expansion planning. On the other hand, "sales" forecasts are necessary for short-to-medium term financial planning. The difference between these two forecasts are system losses (both, technical losses, and unbilled consumption).

To address the issue of planning uncertainty, we are interested in both of these forecasts. For very practical reasons, however, our database for this study is largely made up of sales forecasts. We found longer and more consistent forecast series for sales than for generation. To see if our conclusions would be different for an analysis of generation forecasts, we also compiled and analyzed a smaller data set of system loss forecasts.

- 3 -

ĩ.

¹ An earlier Bank study conducted an evaluation of forecast experience during the period 1950-1965: "Ex-Post Evaluation of Electricity D: nand Forecasts", IBRD Economics Department Working Paper No. 79, June 1970. However, the era of the 1950s in many ways was quite different than the more recent time period which is the focus of this effort. In addition, that study had substantially fewer data points; approximately 275 to 1,600 in our study.

Although we continue to use the term load forecast throughout the text, the reader should remember that most of our analysis is based on sales forecasts.

1.2 ORGANIZATION OF REPORT

This report is organized as follows. Chapter 2 describes the methodological approach and data inputs employed to analyze the performance record of load forecasts in a sample of the Bank's member countries. Chapter 3 presents the findings of our retrospective analysis of load forecasts for the period 1960 - 1985. Chapter 4 contains a review of the U.S. experience with forecast performance. Chapter 5 presents our conclusions and recommendations. Finally, several Annexes contain supporting information.

2 METHODOLOGY

This chapter describes the analytical approach used to evaluate the performance record of prior load forecasts. The criteria selected for forecast evaluation are described in Section 2.1. In order to conduct an analysis employing these criteria, we assembled a database of actual and forecasted loads for the period 1960 through 1985. This database is described in Section 2.2.

2.1 CRITERIA FOR EVALUATING FORECAST ACCURACY

The primary purpose in studying the historic performance of load forecasts is to characterize the uncertainty associated with these projections by quantifying their errors. To do so, we need to use evaluation criteria which establish both the magnitude and the direction of forecast deviation. We have established several measures of forecast "accuracy" which are used to compare forecasts. These measures have been applied to the forecast database both longitudinally (that is, by forecast or by a specified horizon within a forecast), and cross-sectionally (that is, for individual years from different forecasts, categorized by years-out from the date of forecast).

The fundamental random variable of interest in this study is the forecast deviation, which is sometimes also referred to as forecast error. This variable in any year is defined as:

$$D_{t} = \frac{F_{t} - A_{t}}{At}, \text{ where}$$

$$F^{t} = \text{Forecast sales in year t (GWh)}$$

$$A_{t} = \text{Actual sales in year t(GWh)}$$

There are several statistical measures of forecast accuracy as defined by forecast deviation. These are:

- o mean percent deviation (MPD)
- o standard deviation

- mean absolute percent deviation (MAPD)
- error distribution

Mean percent deviation (MPD) is defined as:

MPD =
$$\frac{100}{T}$$
 x $\sum_{t=1}^{T} D_{t}$, where

T = the number of forecast years (forecast horizon)

- 6 -

Mean percent deviation is calculated as the error in each year, averaged over the forecast horizon or some specified interval within the horizon. It is primarily a measure of forecast bias. In particular, its sign indicates the direction of any systematic error. However, MPD is not a measure of error magnitude, because for example, the deviation equals zero if the errors cancel each other out.

To address this problem, we separately calculate the mean percent deviation for "overestimates", i.e., the MPD in forecast years in which percent deviation is greater than zero, and "under-estimates", i.e., the MPD in forecast years in which percent deviation is less than zero.

Mean absolute percent deviation (MAPD) is a measure of the magnitude of forecast error.

MAPD =
$$\frac{100}{T}$$
 x $\sum_{t=1}^{T} |D_t|$, where

T =forecast horizon

While this measure is a useful means of averaging "over" and "under" estimates, information about the direction of the error (bias) is lost.

The four statistics together, MPD, "over, "under", and MAPD allows us to examine both the direction and magnitude of error. However, neither MPD, nor MAPD measure forecast risk uncertainty. They quantify the dimensions of error bias and error

2-2

magnitude. In contrast, forecast risk relates to the "spread" of error. This is estimated in the report by the standard deviation.¹ However, where significant reference is also made to the coefficient of variation.

We have also estimated the error distribution to provide insights about other facets of forecast risk that cannot be conveyed by first and higher order moments of the random variable, the forecast deviation.

Finally, in selected instances in the analysis described in Chapter 3, we test for statistical difference between mean forecast deviations for two different samples. In such cases we have employed a hypothesis test for the difference between the two means. The following statistic is used to test the null hypothesis:

$$t = \underbrace{\frac{\overline{X}_{1} - \overline{X}_{2}}{[(s_{1}^{2}/n_{1}) + (s_{2}^{2}/n_{2})]}}$$

with degrees of freedom given by

d.f. =
$$\frac{[(s_1^2/n_1) + (s_2^2/n_2)]^2}{[(s_1^2/n_1)^2[1/(n_1-1)] + (s_2^2/n_2^2/n_2)^2[1/(n_2-1)]}$$

rounded to the nearest interger. Here, x, s, and n denote the mean, standard deviation, and sample size for a given group

It should be emphasized that these formulae are appropriate to test the difference between two means when (1) the samples are independent, (2) both populations are normally distributed, and (3) the population variances are unequal and unknown.

¹ This study calculates the standard deviation of the "percent deviations" (MPD, MAPD) discussed above. The standard deviation is therefore expressed as a percentage rather than as an absolute value as more typically reported.

Assumption 2 is not critical for sample sizes of 25 or larger. This point is relevant in the context of our data. In particular, results in Chapter 3 show that the error distribution is skewed heavily to the right, i.e., it is not normal. Fortunately, forecast horizons up to seven years generally satisfy the minimum sample size requirement noted above. However, this is generally not the case for the years beyond. Thus less confidence can be attached to conclusions made about comparison of forecast performance in year 10 and beyond.

Cross-Sectional v[®] Longitudinal Analysis

The statistical criteria identified in the preceding can be estimated from longitudinal data (as in the formulae indicated), or from cross-sectional data. Longitudinal analysis measures the average performance of each forecast over specified time intervals, such as, "near term", "mid-term", "long-term". For example, in our context these intervals could be defined as years 1 through 3, years 4 through 7, and years 8 and beyond, respectively.^{2,3}

Cross-sectional analysis focuses on measuring accuracy at specific points in time. To illustrate in our context, system planners are less concerned with the average accuracy of forecasts over given time intervals. Rather, their primary concern is with accuracy in certain critical years, that correspond to lead times for typical power projects. Thus accuracy is most vital for selected future years when generation projects are committed into service, e.g., 3 years out, 7 years out, 10 years out. Cross-sectional analysis is better suited for this purpose. A longitudinal analysis will typically understate forecast accuracy because it averages-out the accuracy achieved over multiple years.

Table 2-1 illustrates the effect of using longitudinal versus cross-sectional data. The table reports summary statistics for each of years 1 through 3 of the global sample (i.e.,

8

2.4

- .-

² Our database there are very few forecasts with horizons beyond 10 years.

³ Longitudinal performance can also be evaluated for the entire horizon of a forecast. However, such a comparative analysis is not very meaningful when comparing forecasts with different forecast horizons.

Table 2-1

COMPARISON OF FORECAST DEVIATION AS MEASURED WITH LONGITUDINAL AND CROSS-SECTIONAL DATA

		SHORT-TERM (YEARS 1 THRU 3)						
		Sample Mean Annual Std. Dev. Size Deviation (%)						
LONGITUDINAL DATA	"Over" "Under" MPD MAFD	163 28 221 221	9.0 -3.8 5.6 8.3	(8.9) (7.2)				

			YEAR 1			YEAR 2			YEAR 3	
		Sample Me Size De		Std. Dev. (%)		ean Annual eviation	Std. Dev. (%)		Mean Annual Deviation	Std. Dev. (%)
CROSS-SECTIONAL DATA	"Over" "Under" MPD MAPD	149 101 250 250	6.1 -2.9 2.5 4.8	(8.1) (7.0)	155 76 231 231	10.7 -4.5 5.7 8.7	(11.3) (9.3)	1?2 56 228 228	13.9 -5.8 9.1 11.9	(14.8) (12.6)

.

"Over" = Over-estimates "Under" = Under-estimates NPD = Mean Percent Deviation (annual) MAPD = Mean Absolute Percent Deviation (annual)

cross-section da), and the average of the first three years of forecasts with a horizon of 3 or more years (i.e., the longitudinal data). The changes reflected in the mean, mean absolute deviation, and standard deviations tend to be averaged, and therefore less pronounced. Furthermore, the sample size decreases in the longitudinal analysis since it requires data for three forecast years rather than one. The increased data complicates statistical analysis of longitudinal data, since errors in the three forecast years are serially correlated.

To illustrate this point further, consider the decision to install a combustion turbine which has a 3-year lead time. Clearly, information about forecast accuracy in year 3 is more useful than about years 1 or 2, or information about the forecast accuracy averaged over years 1 thru 3.

2.2 DATABASE

To calculate the statistics described in Section 2-1, we first compiled a database on actual and forecasted sales for the period 1960-1985. These data were derived from the following published Bank sources:

- Staff Appraisal Reports (SAR)
- Project Completion Reports (PCR)
- Project Performance Audit Reports (PPAR)
- Energy Sector Assessment Reports

The specific documents used are cited in Annex 1. In addition to reports from the study period (1960-85), we reviewed documents from prior to 1960 and after 1985 to identify forecasts overlapping our study period. Further, in several cases we were able to supplement these sources with actual electricity sales data from the files of Bank economists.

Data were compiled on power sector projects financed by the Bank in 45 member countries. We included in our database forecasts of total sales in gigawatt hours (GWh) which had been prepared for any clearly defined power sector "entity" or area. For example, a forecast might cover an entire country, a region, an interconnected system, or a specific utility.

Although we reviewed all of the sources noted above, we did not include every forecast contained therein. In general, we limited ourselves to multi-year forecasts of interconnected (vs. . .)ated) grid systems, e.g., we excluded dozens of one-year forecasts prepared for individual states in India, and many more forecasts of small isolated regions removed from national power systems. We attempted to eliminate overlapping regions for forecasts made in the same year. For example, if for a given country there was both a "national forecast" and a " central region" forecast which accounted for 80 percent of the national total, we selected only the national forecast for our database.

For purposes of this analysis, we define each forecast as a set of "forecast years". To be included in the study, a "forecast year" must include three data e'ements.

- Forecast sales (in GWh) for a specific year
- Actual sales (in GWh) for the same year
- The initial year of the forecast.

In excess of 300 separate forecasts in over 100 separate systems were identified. Of these forecasts, we successfully matched the above-noted data elements for over 200 forecasts with horizons of up to 12 years, representing over 1600 forecast years. The actual number of forecasts in our sample depends on whether we are taking a longitudinal or a cross-sectional sample, and on the horizon we select. For example, there are 221 longitudinal forecasts of at least 3 years, and 104 of at least 7 years. Cross-sectionally, there are 250 forecasts of horizon year 1, 228 of horizon year 3, and 116 of horizon year 7. Table 2-2 summarizes the forecasts represented in the database.

To facilitate the forecast analysis outlined in the following sections, raw sales data on each forecast was supplemented with the following macroeconomic indicators.

• Pre-forecast national GNP growth rate as defined by the average rate for the three years prior to the first forecast year, derived from GNP figures (expressed in constant 1980 dollars), from the World Bank Tables.

	T	eb	le	2-	2
--	---	----	----	----	---

DATABASE

		FORECASTS											
COLNTRY	AREA/UTILITY	1	2	3	4	5	6	7	8	9	10	11	12
LATIN AMERI	CA/CARIBBEAN												
ARGENTINA	SEGBA	1967-1970	1969-1974	1976-1981									
BOLIVIA	EOFIAIV	1980-1980											
BOLIVIA	ENDE	1969-1974	1973-1977	1975-1980									
BRAZIL	NORTHEAST	1973-1982											
BRAZIL	SOUTH	1976-1983	1980-1985										
BRAZIL	SOUTHEAST	1972-1982	1976-1985	4005 4005									
BRAZIL	CHESF	1974-1982	1979-1985	1985-1985									
BRAZIL BRAZIL	ELECTROSUL FURMAS	1970-1977 1968-1975	1970-1978	1973-1982	1985-1985								
BRAZIL	CBEE	1966-1975	1310-1319	1412-1405	1202-1202								
BRAZIL	CFEE	1978-1983	1979-1983										
BRAZIL	CELPE	1976-1979	1777-1705										
BRAZIL	CELESC	1979-1982											
BRAZIL	CENIG	1965-1974	1968-1976	1972-1980	1978-1982								
BRAZIL	COPE!	1975-1980	1979-1985										
BRAZIL	ESCELSA	1978-1982											
BRAZIL	FLDP	1966-1970											
BRAZIL	FLAG	1966-1970											
BRAZIL	LIGHT	1972-1976											
BRAZIL	PFL	1966-1970											
CHILE	CIS	1968-1974											1
CHILE	ENDESA	1966-1972											
COLOMBIA	EEEB	1960-1968	1962-1970	1968-1974	1969-1978	1978-1984	1979-1985	1981-1985	1985-1985				12
COLORBIA	EPM	1963-1970	1969-1978	1972-1979	1979-1985	1980-1985	1983-1985						1
COSTA RICA COSTA RICA	NIS	1969-1975 1960-1969	1971-1985	1975-1981	1979-1982 1978-1983	1979-1983						•	•
ECUADOR	ICE EEQ	1972-1976	1969-1973	1971-1977	19/0-1903	1818-1802							
ECUADOR	ECUADOR	1979-1985											
EL SALVADOR		1960-1969	1963-1972	1970-1974	1972-1978	1975-1985							
CUATEMALA	EEG	1976-1982	1978-1983	1710 1714									
GUATEMALA	INDE	1976-1982	1978-1983										
GUA) EMALA	GUATEMALA	1966-1971	1976-1982	1978-1983									
NAITI	PORT AU PR	1975-1985	1978-1983	1981-1985	1984 - 1985								
HAITI	EdH	1978-1983	1981-1985	1984-1985									
HOMDURAS	ENEE	1960-1971	1967-1977	1970-1975	1975-1980	1976-1979	1979-1985						
KONDURAS	ICS	1967-1977	1970-1980	1974 - 1985	1977-1985	1279-1985							
HOMDURAS	CENTRAL	1967-1971	1976-1979										
KONDURAS	NORTHERN	1967-1971	1976-1979										
JAMAICA	JPS	1966-1975	1977-1985	1983-1985									
MEXICO	TOTAL	1968-1971	1969-1973	1971 - 1976	40/0 407/	4030 4000	4074 4005						
NI CARAGUA	ENALUF/INE	1960-1963	1960-1969	1966-1972	1968-1974	1972-1985	1976-1985	4005 4005					
Panama	IRHE	1962-1971	1969-1977	1972-1982	1977-1983	1979-1985	1982-1985	1985-1985					
Peru Peru	ELECTROLIMA EEA	1960-1969 1968-1971	1963-1967	1975-1980	1982-1985								
URUGUAY	UTE	1960-1963	197u-1974	1979-1983	1982-1985	1985-1985							
VENEZUELA	EDELCA	1963-1979	1965-1975	1969-1980	1706-1703	1703-1703							
VENEZUELA	CADAFE	1964-1968	1702-1713	1707 1700									
* *********													

.

Table 2-2 (continued)

DATABASE

		FORECASTS											
COUNTRY	AREA/UTILITY	1	2	3	4	5	6	7	8	9	10	11	12
AFRICA	**************												
ETHIOPIA	EELPA	1964-1971	1969-1974	1985-1985									
GNAMA	VRA	1968-1976	1984-1985										
GHANA	ECG	1967-1972	1970-1978	1976-1981	1984-1985								
GHANA	GHANA	1976-1981											
KENYA	KPLC	1971-1976	1972-1980	1975-1980	1979-1985	1982-1985	1983-1985						
LIBERIA	LEC	1 969 -1974	1971-1975	1977-1982									
MALAWI	ESCOM	1 969 - 1974	1973-1980	1976-1984	1977-1982								
NIGERIA	ECN	1964-1969											
NIGERIA	PUS. SERVICE	1980-1985											
HIGERIA	KDA	1970-1978	1970-1974										
NIGERIA	KEPA	1972-1981											
S. LECHE	SLEC	1966-1969	1968-1972	1978-1982									
SLEDAN	CEWC	1968-1973											
SLIDAM	BNG	1968-1975	1974-1981	1983-1985	1979-1985								
TANZANIA	COASTAL	1970-1985	1975-1982										
TANZANIA		1975-1983	4075-4004	1001-1005	4003.4005	100/-1005	1985-1985						
tamzania Zambia	TAMESCO ZAKBIA	1970-1976	1975-1981 1970-1980	1981-1985	1982-1985	1984-1985	1902-1902						
ZAMBIA	CAPC-ZA	1970-1980 1970-1980	1910-1900										
ZIMBANE	CAPC-ZIM	1970-1980	1982-1985										
A. A PROPERTY.	GAL.C. 214	1970-1900	1906-1900										
ASIA													•
BAMGLADESH	BPD8	1979-1985											13
iedia	INDIA	1978-1978	1979-1979	1980-1980									
India	TEC	1960-1965	1984-1985										, 1
INDIA	Eastern	1982-1982											-
INDIA	ORISSA	1979-1979	19/32-1982										
INDIA	BINAR	1979-1982											
IRDIA	MANARASHTRA	1978-1980											
INDIA	NTPC	1982-1985	1982-1985										
INDIA	A.PRADESH	1962-1971	1966-1971										
INDONESIA	DJAKARTA	1975-1980	1975-1980	1078 1070	409/ 400/	4077 4005	4077 4007	4004 4005	4000 4000	4004 4005			
INDONESIA	PLN	1972-1979	1972-1977	1975-1979	1976-1984	1977-1985	1977-1985	1981-1985	1982-1985	1984-1985			
INDONESIA INDONESIA	JAVA Vest Java	1976-1985 1974-1985	1978-1985	1982-1985									
MALAYSIA	NEB	1960-1967	1963-1972	1966-1972	1968-1976	1968-1976	1970-1978	1974-1983	1975-1981	1977-1983	1980-1985		
		1974-1980	1976-1985	1700-1716	1700-1770	1700-1770	1310-1710	177-9" 1703	1913-1901	1211-1203	1700-1703		
PHILIPPINES		1961-1972	1962-1972										
PHILIPPINES		1967-1974	1972-1976	1974-1 9 80									
SRI LAMKA	CEB	1960-1965	1961-1967	1969-1974	1972-1977	1973-1976	1980-1985						
THAILAND	YEA	1963-1970	1964-1970	1967-1975									
THAILAND	EGAT	1969-1974	1971-1977	1973-1982	1977-1985	1979-1985	1979-1985						

•

•

7

COUNTRY	AREA/UTILITY	FORECASTS	63		~\$	ŝ	v	2	Ø	0	0	11	5
ELROPE, N-E	, A-EAST, N.AFRICA-	40K4_40K0	1200							5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		•
HV0001	JEPCO	0861-1641	0261-5261	1978-1985	1961-1985	1980-1985	CRAL-22041						
JCCDAN	IDECO	1973-1960	1978-1985		1983-1985								
anona Adroada	JEA	1975-1980 1975-1980	1978-1985		1980-1965	1981-1985	1985-1985						
MOROCCO	No.	1973-1977	1975-1980	1982-1985									
PAKISTAN	LENPDA	5791-0791	1976-1933	1965-1985									
PAKISTAN	KESC	1966-1970	1971-1980										
PAKISTAN	403	1975-1985	1982-1985										
PORTUGAL	PORTUGAL	0261-5461											
	STEG	1971-0791	1991-1995	1983-1985									
TURKEY	IETT	1972-1976	CPAL-0/AL	6861-6761									
TURKEY	TEX	1970-1977	1973-1982		1976-1985	1979-1985	1982-1985	1026-1085					
TURKEY	CEAS	1962-1970	1966-1970	1969-1973	7261-1261								
TURKEY	KEBAN	1261-0261											
VENEN AR	YGEC	1977-1985	1981-1985	1982-1985	1985-1985								
AUGOSLAVIA	a puccelavia	1962-1965	1976-1985										

Teble 2-2 (continued)

DATABASE

.

- Post-forecast national GNP growth rate. From the same source, we calculated the average growth rate for the life of the forecast.
- National GNP per capita. We used 1985 data, as published in the World Development Report for 1987. We relied on recent data because there does not appear to be significant changes in real GNP per capita of the countries included in the sample relative to each other during the period of study.
- System size. Total GWh sales projected in the initial forecast year was selected as a proxy for system size at the time the forecast was made.

3 ANALYSIS OF FORECAST ACCURACY

This chapter presents the findings of a retrospective analysis of load forecasts over the period 1960-1985. Statistics defined in Chapter 2 were computed and used to compare the historical accuracy of load forecasts from a variety of perspectives, including region, vintage, horizon, system size, real income per capita, and economic growth rate. In addition, we have examined the performance of forecasts for individual countries, and in particular those countries which have been large Bank borrowers.

The results summarized in this Chapter are based upon a cross-sectional analysis of forecast accuracy in years 3, 7, and 10 of the forecast horizon. These years are selected as being representative of the lead times associated with generation projects requiring "short-lead times" (e.g., a combustion turbine), "medium- lead time" (e.g., a coal plant), and "long-lead time" (e.g., a large hydro project).¹

One caveat should proceed this statistical analysis of forecast accuracy. Statistics do not explain deviations between actual and forecast sales, they only report them. A further point to be noted is that the analysis in this Chapter is based upon comparisons of actual system sales and forecasted sales. Embedded in most sales forecasts is some assumption about the extent of unbilled consumption. In reality, this component may turn out higher than projected. This will result in positive forecast error, i.e., forecast sales being greater than actual sales. Similarly, unanticipated supply constraints (i.e., generation deficiencies) will also result in positive forecast error. The potential presence of these effects should be borne in mind in interpreting the results presented in this Chapter.²

3.1 GLOBAL FORECAST ACCURACY

Table 3-1 summarizes the global forecast accuracy for each of the three forecast horizons. Reported in the table are the means of all "over-estimates" and all "under-estimates", and the sample size of these groupings. Also presented in the table are the

¹ As noted earlier, very few forecasts in our database have horizons beyond 10 years. Therefore, we are forced to restrict the definition of "long-lead time" to 10 years.

² This aspect is investigated in section 3.8.

TABLE 3-1

GLOBAL FORECAST DEVIATION

		YEAR 3		1	YEAR 7		I	YEAR 10	
	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)
"Over" "Under" MPD MAPD	172 56 228 228	13.9 -5.8 9.1 11.9	(14.8) (12.6)	89 27 116 116	21.2 -15.4 12.7 19.9	(22 <i>.</i> 8) (16.8)	30 7 37 37 37	27.3 -36.6 15.2 29.1	(34.2) (23.6)

.

mean percent deviation (MPD) and the mean absolute percent deviation (MAPD), along with their respective standard deviations.

- 18 -

On a worldwide basis, there has been a definite bias toward over-estimation in load forecasts. The MPD is always positive and increases from 9.1 percent in year 3, to 12.7 percent in year 7, to 15.2 percent by year 10.

By an overwhelming ratio of over 3-to-1, forecast deviations have tended to be positive rather than negative. The average magnitude of forecast overestimates increases from 13.9 percent in year 3 of the forecast horizon, to 21.2 percent in year 7, to 27.3 percent by year 10. The corresponding magnitudes of forecast underestimates are - 5.8 percent, -15.4 percent, and - 36.6 percent.³

The mean absolute percent deviation averages the "over" and "under" estimates. Thus the average magnitude of forecast deviation worldwide (MAPD), increases from 11.9 percent in year 3, to 19.9 percent in year 7, to 29.1 percent in year 10.

Forecast spread as measured by standard deviation of forecast error is substantial even in the near-term and grows substantially over time. In year 3, forecast spread is 14.8 percent, increasing to 22.8 percent by year 7, and 34.2 percent by year 10.

The coefficients of variation (CV), defined as the ratio of the standard deviation and the mean on an all regions basis are 1.63 (year 3), 1.80 (year 7), and 2.25 (year 10). These values are extremely high, highlighting the degree of uncertainty even for short forecast horizons.

3.2 FORECAST ACCURACY BY REGION

When forecasts are studied on a regional basis (Table 3-2), each region displays characteristics similar to the worldwide trend. Forecast overestimates exceed underestimates in every year, small sample sizes excepted. All regions show increasing magnitude of forecast deviation (MAPD) from year 3 to year 7; uncertainty (standard

³ A general comment regarding this table as well as all other tables in this chapter relates to the small sample sizes observed in year 10. In such instances less confidence can be attached to any conclusions regarding year 10.

Table 3-2

FORECAST	DEVIATION	BY	REG10h	

		YEAR 3			•	YEAR 7		YEAR 10			
		Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size		Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	
LAC	"Over" "Under" MPD MAPD	71 30 101 101	11.3 -5.4 6.3 9.5	(10.7) (8.0)	40 14 54 54	22.5 -14.9 12.8 20.5	(25.1) (19.4)	16 6 22 22	24.4 -37.7 7.4 28.0	(36. 9) (25.2)	
AFRICA	"Over" "Under" MPD MAPD	34 6 40 40	15.7 -3.8 12.8 13.9	(13.0) (11.8)	16 2 18 18	22.5 -8.1 19.1 20.9	(17.4) (15.1)	6 0 6 6	17.0 17.0 17.0	(11.2) (11.2)	
ASIA	"Over" "Under" MPD MAPD	34 9 43 43	15.1 -8.2 10.2 13.7	(19.8) (17.6)	21 6 27 27	15.7 -16.6 8.6 15.9	(18.5) (12.7)	4 1 5 5	28.0 -29.9 16.4 28.4	(26.8) (13.5)	
EMENA	"Over" "Under" MPD MAPD	33 11 44 44	16.4 -5.9 10.8 13.8	(17.2) (15.0)	12 5 17 17	25.1 -18.5 12.3 23.2	(24.4) (14.4)	4 0 4 4	54.0 54.0 54.0	(20.5) (20.5)	
ALL REGIONS	"Over" "Under" MPD MAPD	172 56 228 228	13.9 -5.8 9.1 11.9	(14.8) (12.6)	89 27 116 116	21.2 -15.4 12.7 19.9	(22.8) (16.8)	30 7 37 37	27.3 -36.6 15.2 29.1	(34.2) (23.6)	

...

- 19 -

deviation of forecast error) rises over the same period in all regions except Asia, where it declines very slightly from 19.8 to 18.5. The small sample size in year 10 makes regional comparison/unreliable.

The "best" forecast performance in year 3 was achieved by the LAC region. Results of the t-tests confirm statistical significance at a level exceeding 90 percent. In contrast, the best year 7 performance was achieved in the Asia region. However, the t-test indicates a statistically significant difference at the 90 percent level only in relation to EMENA.⁴

3.3 FORECAST ACCURACY BY VINTAGE

There has been an increasing emphasis on load forecasting since the beginning of our study period. Methods have become more sophisticated, and greater time and money has been invested in load projections. While our data does not include the information needed to categorize each forecast by methodology, we observed in Bank reports a definite progression from simple trend approaches in the early years to more frequent references in recent documents to more complex econometric techniques, reliance on end-use information, and use of power market and consumer surveys.

Despite this investment in additional complexity, there is no evidence that load forecast performance has improved over time. Indeed the evidence suggests the contrary. Table 3-3 shows forecast performance categorized by vintage. The bias toward over estimation can be observed in most horizon years.⁵ Interestingly, the most accurate forecasts for year 3 were prepared in 1960-65 and the bias grows with the more recent forecasts. Differences in MAPD are significant at the .90 level over all periods except 1971-75. A possible explanation for the improved accuracy of the 1971-75 vintage is that forecasts--influenced by economic pessimism resulting from the world oil crisis--

⁴ We urge caution in utilizing the data in Table 3-2 to establish confidence intervals for forecast deviation on the basis of the MPD and standard deviation values. In particular, results subsequently presented in this Chapter clearly indicate that the error distribution is heavily skewed and therefore non-normal. Additionally, even if the sample sizes are not small -- as in year 3 and year 7 -- the individual sample observations are not necessarily independent in all instances.

⁵ The exception is year 10 for forecasts prepared in 1960-65. The observed under-estimation <u>might</u> be the result of small sample size, or perhaps an outcome of the trend-extrapolation methodologies in use at the time.

Table 3-3

FORECST DEVIATION BY VINTAGE OF FORECAST (1960-85)

,

		I	YEAR 3			YEAR 7			YEAR 10	
First Year of Forecast		Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size		Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)
1960 - 1965	"Over" "Under" MPD MAPD	14 6 20 20	7.2 -11.1 1.7 8.4	(10.6) (6.7)	13 7 20 20	20.5 -25.1 4.5 22.1	(27.0) (16.1)	7 5 12 12	14.3 -50.0 -12.5 29.2	(35.8) 24.2
1966 - 1970	"Over" "Under" MPD MAPD	42 21 63 63	14.1 -5.8 7.5 11.3	(16.7) (14.3)	23 11 34 34	16.7 -8.5 8.5 14.0	(15.7) (11.0)	10 1 11 11	18.9 -5.0 16.7 17.6	(16.3) (15.4)
1971 - 1975	"Over" "Under" MPD MAPD	45 14 59 59	10.5 -5.2 6.8 9.2	(11.0) (9.1)	26 9 35 35	15.6 -16.3 7.4 15.8	(20.9) (15.6)	11 1 12 12	42.3 -1.4 38.7 38.9	(25.9) (25.5)
1976 - 1980	"Over" "Under" MPD MAPD	53 13 66 66	16.8 -3.6 12.8 14.2	(15.3) (14.0)	27 0 27 27	30.9 30.9 30.9	(19.2) (19.2)	2 0 2 2	32.4 32.4 32.4	(17.8) (17.8)
1981 - 1985	"Over" "Under" MPD MAPD	18 2 20 20	18.4 -8.2 15.7 17.4	(14.0) (11.9)	-	-	:	-	-	:
ALL YEARS	"Over" "Under" MPD MAPD	172 56 228 228	13.9 -5.8 9.1 11.9	(14.8) (12.6)	89 27 116 116	21.2 -15.4 12.7 19.9	(22.8) (16.8)	30 7 37 37 37	27.3 -36.6 15.2 29.1	(34.2) (23.6)

,

i.

•

may not have been as hopeful about future economic conditions as during other periods.⁶

- 4 - -

In both year 3 and year 7, pre-1975 forecasts are more accurate than their successors. These differences are significant at the .90 level. Year 10 data is less conclusive due to the small sample size. Unfortunately, it is not possible to measure the long-term performance of more recent vintages and their generally more sophisticated methodologies. Forecasts prepared after 1976 do not have a 10-year performance record in our database. Furthermore our database does not permit us to analyze the cause of these differences. Interesting hypotheses in this regard, that can be examined in future research on this topic include (1) the types of methodologies used, and (2) the economic growth and energy price volatility in different time periods.⁷

3.4 FORECAST ACCURACY BY SYSTEM SIZE

Table 3-4 presents summary statistics for electricity systems categorized by size. The first year forecast in GWh is used as a proxy for system size. These groupings reaffirm the same trends over time with regard to forecast bias already noted.

Small systems seem to have performed more poorly than larger ones. This trend is most noticeable in the short-term (horizon year 3). The mean absolute deviation for small systems was 14 3 percent, compared to 11.5 percent or better for all other groups. This difference is significant at the 90 percent level of confidence. Differences are less apparent (and statistically less significant) for longer horizons. Again, the problem of small sample size makes it difficult to analyze longer horizons. We have only 5 cases of very large systems (> 12,500 GWh) in year 7, and only 2 in year 10.

⁶ We are not arguing that most forecasts have taken explicit account of future economic growth. Rather, we are suggesting that an underlying optimism regarding "increased prosperity" may have frequently led to optimistic conclusions about future electricity requirements across all customer classes.

Annex 3 provides some data about economic growth rates in different time periods of our study horizon.

Table 3-4

FORECAST DEVIATION BY SYSTEM SIZE

		YEAR 3				YEAR 7		YEAR 10		
System Size		Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)
< 500 GWh	"Under" MPD MAPD	13 65 65	-6.4 11.8 14.3	(16.5) (14.3)	8 34 34	-20.8 11.7 21.5	(23.8) (15.6)	12 12 12	-52.8 1.5 27.9	(37.1) (24.5)
500 - 2500 GWh	"Over" "Under" MPD MAPD	61 27 88 88	13.8 -6.4 7.6 11.5	(16.1) (13.6)	31 12 43 43	23.1 -16.3 12.1 21.2	(26.1) (19.4)	8 4 12 12	38.8 -24.4 17.7 34.0	(39.5) (26.8)
2501 - 12500 GWh	"Over" "Under" MPD MAPD	47 14 61 61	11.8 -4.6 8.1 10.2	(11.0) (9.0)	26 6 32 32	18.1 -7.3 13.3 16.1	(17.4) (14.9)	0 9 9	21.9 21.9 21.9	(14.5) (14.5)
> 12500 GWh	"Over" "Under" MPD MAPD	11 2 13 13	12.6 -1.8 10.4 10.9	(9.4) (8.8)	4 1 5 5	28.2 -10.8 20.4 24.7	(17.0) (9.7)	2 0 2 2	56.5 - 56.5 56.5	(1.9) (1.9)
ALL SYSTEMS	"Over" "Under" MPD MAPD	172 56 228 228	13.9 -5.8 9.1 11.9	(14.8) (12.6)	89 27 116 116	21.2 -15.4 12.7 19.9	(22.8) (16.8)	30 7 37 37 37	27.3 -36.6 15.2 29.1	(34.2) (23.6)

- 5 -

3.5 FORECAST ACCURACY AND COUNTRY INCOME

Table 3-5 summarizes forecast performance by countries grouped according to real national GNP per capita in 1985. Our general conclusions regarding increasing bias over longer horizons are reconfirmed (small samples excepted). However, there seems to be less pattern to forecast uncertainty.

- . . -

Accuracy is noticeably better for wealthier economies. In year 3, MAPD of systems in countries with real GNP per capita over 1,000 is lower than for poorer economies. The t-test is significant at over .90. This trend is less clear in year 7, although the richest countries (GNP per capita > 1,600) outperform the poorest (GNP per capita < 400), with MAPD of 17.7 versus 24.0. This difference is again significant at the .90 level. This conclusion is not true in year 10, although our confidence in the data is again reduced due to small sample size.

3.6 FORECAST ACCURACY AND ECONOMIC CONDITIONS

To test the hypothesis that forecast performance is related to national economic growth rate, the database was segmented into three groups, based upon actual growth in the three years prior to the first forecast year. The categories are countries with average annual growth above 6 percent, with growth between 2 and 6 percent, and those with growth rates below 2 percent. We then evaluated the performance of these forecasts in light of achieved economic growth during the forecast horizon. To assure an adequate sample, forecasts of all durations were included in this comparison.

The matrix in Table 3-6 summarizes the findings. The bias in favor of over-estimates is again apparent. Not surprisingly, under-estimates are extremely rare in economies which experienced low (below 2 percent) real growth.

The best accuracy was achieved by forecasts in countries which experienced rapid growth (above 6 percent) both prior to and during the forecast period. These forecasts have an MAPD of 8.6 percent (standard deviation 7.7) compared to 14.7 percent (standard deviation 9.9) when the growth during the forecast years was only 2-6 percent, and to 23.2 percent (standard deviation 20.0) when the growth fell below 2 percent. These differences are significant at the .90 level.

Table 3-5

۰.

. .

FORECAST DEVIATION BY INCOME LEVEL

		YEAR 3			t	YEAR 7		YEAR 10			
1985 GNP/Capita		Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size		Std. Dev. (%)	
< \$400	"Over" "Under" MPD MAPD	47 6 53 53	15.3 -5.0 13.0 14.1	(12.6) (11.3)	22 1 23 23	24.9 -4.4 23.6 24.0	(18.3) (17.8)	5 0 5 5	35.6 35.6 35.6	(26.0) (26.0)	
\$400 - \$1000	"Over" "Under" MPD MAPD	47 12 59 59	16.4 -8.7 11.3 14.8	(20.2) (17.8)	28 5 33 33	15.1 -26.4 8.8 16.8	(20.3) (14.4)	13 2 15 15	22.3 -35.0 14.6 24.0	(27.5) (19.9)	
\$1001 - \$1500	"Over" "Under" MPD MAPD	41 19 60 60	13.6 -4.8 7.8 10.8	(13.1) (10.7)	23 9 32 32	25.4 -13.4 14.5 22.0	(24.2) (17.7)	5 2 7 7	20.5 -3.2 13.7 15.5	(15.9) (14.1)	
> \$1600	"Over" "Under" MPD MAPD	37 19 56 56	9.2 -5.2 4.4 7.9	(9.1) (0.3)	16 12 28 28	20.9 -13.3 6.3 17.7	(23.5) (16.7)	7 3 10 10	35.7 -59.9 7.0 43.0	(49.1) (24.9)	
ALL INCOMES	"Over" "Under" MPD MAPD	172 56 228 228	13.9 -5.8 9.1 11.9	(14.8) (12.6)	89 27 116 116	21.2 -15.4 12.7 19.9	(22.8) (16.8)	30 7 37 37	27.3 -36.6 15.2 29.1	(34.2) (23.6)	

14

.

- 25 -

Table 3-6

FORECAST DEVIATION BY NATIONAL ECONOMIC GROWTH RATE

AVERAGE ANNUAL GROWTH RATE DURING THE PERIOD OF THE FORECAST

			> 6%				2 - 6%		< 2%			
			Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	
ANNUAL	> 6%	"Over" "Under" MPD MAPD	27 10 37 37	8.3 -3.7 5.1 8.6	(7.1) (7.7)	31 7 38 38	15.1 -5.9 11.2 14.7	(13.0) (9.9)	4 2 6 6	32.5 -1.8 21.1 23.2	(22.1) (20.0)	
GROWTH RATE BEFORE FORECAST (3-year	2 - 6%	"Over" "Under" MPD MAPD	15 6 21 21	10.2 -7.7 5.1 11.3	(10.8) (7.2)	37 7 44 44	14.2 -4.8 11.2 13.6	(12.1) (10.6)	15 2 17 17	11.6 -0.4 10.2 11.2	(11.5) (11.0)	
average)	< 2%	"Over" "Under" MPD MAPD	6 4 10 10	14.7 -5.5 6.6 12.9	(15.5) (11.8)	10 1 11 11	10.1 -9.7 8.3 10.4	(9.5) (7.4)	6 2 8 8	16.4 -7.2 10.5 14.3	(15.6) (12.6)	
	ALL	"Over" "Under" MPD MAPD	62 19 81 81	13.3 -4.3 9.1 12.5	(13.1) (11.0)	67 15 82 82	12.7 -5.4 9.4 12.5	(11.9) (10.0)	23 7 30 30	12.5 -6.6 8.0 12.1	(13.5) (10.6)	

· .

· I F

It appears that the highest forecast accuracy and lowest uncertainty occurred when the economic growth rate during the forecast period exceeded the growth rate for the immediately preceding years. When the prior rate was 2 to 6 percent and this rose to 6 percent during the forecast period, the MAPD was 11.3 percent (standard deviation 7.2). Similarly, when the prior rate was below 2 percent and then rose to the 2 to 6 percent range during the forecast, MAPD was only 10.4 percent (standard deviation 7.4). The significance of these differences is not high.

These findings are consistent with the hypothesis that forecasters tended to base their planning on anticipation of overall improvement in economic conditions where such conditions were poor at the time of the forecast, or continuation of "good" economic conditions in other situations. If this optimism was realized, good forecasts resulted. In contrast, generally poorer accuracy and higher uncertainty occurred when economic growth slowed during the forecast period. This argument is not intended to suggest that forecasters necessarily made explicit predictions of GNP growth, or even that they were cognizant of the relationship. Rather, we suggest that growth of electricity consumption was forecast as part and parcel of a long-term optimism about economic performance.^{8,9}

3.7 FORECAST ACCURACY BY COUNTRY

Table 3-7 presents summary statistics for each country in the database for which we have at least four forecasts reported. Twenty-five countries are included, ranked by MAPD in year 3.¹⁰

The "+" or "-" sign to the right of the standard deviation indicates that the t-test of significance has shown the result to be significantly different from the world MAPD at a level of .90 or better.¹¹

⁸ The analysis in Annex 6 further indicates that countries with higher and stable economic growth rates exhibited higher correlations between GNP and electricity generation.

⁹ An underlying strategic consideration that may have also contributed to overestimation stems from the belief that the economic implications of being caught short are substantially more serious than having to carry excess generating resources.

¹⁰ There is some danger in attempting to reach conclusions about individual country experience. For most countries the sample size is small, since our database is drawn from 45 different countries.

¹¹ Strictly speaking, this is not a correct measure of significance, since the samples are not truly independent. Since any one country accounts for only a small fraction (never more than 10 percent, and usually much less) of the forecasts represented in the "World" sample, we have assumed that the

Table 3-7

FORECAST	DEVIATI	ON BY	COUNTRY
----------	---------	-------	---------

	1	YEAR 3		I	YEAR 7		IBRD COMMITMENT TO POWER SECTOR THROUGH 1985 1/				
Country	Sample Size	MAPD %	Std Dev* %	Sample Size	MAPD %	Std Dev*	(Rank)	Current \$ Million	\$/Cap	GNP \$/Capita	
** WORLD **	228	11.9	(12.6)	116	19.9	(16.8)					
1 EL SALVADOR 2 MALAWI 3 COSTA RICA 4 KENYA 5 PERU 6 MALAYSIA 7 BRAZIL 8 GUATEMALA 9 CYPRUS 10 TURKEY 11 NICARAGUA 12 HONDURAS 13 PANAMA 14 COLOMBIA 15 THAILAND 16 SRI LANKA 17 INDIA 18 PAKISTAN 19 JORDAN 20 INDONESIA 21 TANZANIA 22 GHANA 23 HAITI 24 PHILIPPINES 25 SUDAN	5 4 8 6 4 10 2 7 6 13 4 12 5 8 4 4 5 11 10 6 5 5 5 6 4	5.0 5.3 5.4 67.4 9.3 9.1 10.4 12.7 13.5 14.1 16.4 17.4 19.6 7 22 5.5	(2.9) + (2.9) + (2.9) + (1.8) + (2.7) + (3.3) + (5.3) + (5.3) + (7.0) + (8.1) + (2.7) + (2.7) + (8.2) + (8.7) + (2.7) + (8.2) + (8.7) + (9.6) + (9.6) + (9.6) + (9.6) + (7.7) + (14.1) + (6.8) + (18.3) + (13.5) + (9.3) + (13.5) + (9.3) + (37.3) + (37.3) + (15.1) - (13.8) - (37.3) + (15.1) - (13.8) + (37.3) +	3242199318575952 - 34632143	6.7 23.5 11.8 15.1 11.2 20.2 312.0 20.2 312.0 22.5 11.0 22.7 20.2 21.0 22.7 19.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	$\begin{array}{c} (6.3) + \\ (22.8) \\ (3.3) + \\ (2.3) + \\ (2.3) + \\ (15.4) - \\ (4.8) \\ (19.9) \\ (11.2) + \\ (17.3) - \\ (21.6) \\ (23.6) \\ (2.6) \\ (2.6) \\ (2.6) \\ (2.6) \\ (10.4) \\ (8.8) \\ (2.9) \\ (36.8) \\ (12.5) \end{array}$	(10) (2) (5) (4) (7) (1) (11) (3)	\$84 38 124 242 209 464 3,062 3,062 3,064 355 457 75 236 255 1,737 642 167 5,099 438 58 1,305 105 127 74 282 112	\$18 5 48 12 11 323 24 5 9 23 24 16 12 11 7 5 7 8 5 10 3 5 5	\$820 170 1,300 290 1,010 2,000 1,640 1,250 3,790 1,080 770 720 2,100 1,320 800 380 270 380 1,560 530 290 380 310 580 300	

1 N - 1

* The "+" or "-" to the right of the standard deviation indicates that the MAPD is significantly different (higher or lower) than the "World" MAPD at the .90 confidence level.

,

1/ Source: Annex 2

Table 3-7 also identifies some additional statistics for each country: (1) the total Bank committed investment to the country's power sector through fiscal year 1985 in current dollars,¹² (2) the per capita value of this investment based on mid-year 1985 population, and (3) the GNP per capita in 1985.

- 22 -

Table 3-8 ranks the "highest" and "lowest" among these twenty-five countries for each of the above categories. It is interesting to see the pattern of results, although we hasten to emphasize that we are not seeking to identify causality with these comparisons. We have run bi-variate and multi-variate regressions on these factors, and found no significant correlation.

Of the seven countries in our sample with "highest" forecast accuracy based on MAPD in year 3, four are in Latin America. This sounds more impressive than it is: 40 percent of our 25 countries are in Latin America. Only two of the countries which have received the highest absolute amount of Bank power funds -- Brazil and Malaysia -- had notably accurate forecasts. One of the poorer performers (Indonesia) was also in this group.

When we look at this funding on a per capita basis, again only two countries with high funding are in the group of most accurate forecasts -- Costa Rica and Malaysia. Three of the countries with highest per capita income were among the most accurate forecast group -- Malaysia, Brazil, and Costa Rica. Jordan, with high per capita income, is among the lowest group of countries in terms of forecast accuracy.

Three of the seven countries in our sample with the "lowest" forecast accuracy are in Africa -- Tanzania, Ghana, and Sudan. Three of these seven relatively poor performers were in the group which received the lowest (again, relatively) absolute Bank power sector commitment -- Jordan, Haiti, and Tanzania. When these commitments are expressed on a per capita basis, four countries in the lowest recipient group are in the lowest accuracy group, notably Tanzania, Sudan, the Philippines, and Indonesia. It should be noted that Malawi, which received relatively low commitments per capita (and in absolute terms) was among the "highest" accuracy group. Finally, four of the

¹² The "rank" shown in the table reflects the ranking in terms of total dollars committed to the 11 countries which receive two-thirds of all IBRD power sector commitments through 1985.

Table 3-8

FORECAST DEVIATION BY COUNTRY CHARACTERISTICS

1 [--

	YEAR 3 YEAR 7						IBRD COMMITMENT TO POWER SECTOR THROUGH 1985 1/			
Country	Sample Size	MAPD %	(Std Dev) %	Sample Size	MAPD %	(Std Dev) %	(Rank)	Current \$ Million	\$/Cap	GNP \$/Capita
** WORLD **	228	11.9	(12.6)	116	19.9	(16.8)				
HIGH ACCURACY 1 EL SALVADOR 2 MALAWI 3 COSTA RICA 4 KENYA 5 PERU 6 MALAYSIA 7 BRAZIL	5 4 8 6 4 10 22	5.0 5.1 5.3 5.4 5.4 6.0 7.4	(2.9) + (2.9) + (1.8) + (2.7) + (2.7) + (3.3) + (5.3) +	3 2 4 2 1 9 9	6.7 23.4 3.5 11.8 15.1 10.3 :1.4	(6.3) + (22.8) (3.3) + (2.3) + (8.8) + (9.2) +	(10) (2)	\$84 38 124 242 209 464 3,062	\$18 5 48 12 11 30 23	\$820 170 1,300 290 1,010 2,000 1,640
HIGH IBRD COMMITMEN 17 INDIA 7 BRAZIL 14 COLOMBIA 20 INDONESIA 15 THAILAND 6 MALAYSIA 10 TURKEY	4 22 12 10 8 10 13	14.2 7.4 13.2 17.4 13.5 6.0 9.7	(14.1) (5.3) + (9.6) (13.5) (9.4) (3.3) + (5.1) +	- 996598	11.4 22.5 19.6 11.0 10.3 20.2	(9.2) + (21.6) (10.4) (9.3) (8.8) + (4.8)	(1) (2) (4) (3) (7) (10) (5)	5,099 3,062 1,737 1,305 642 464 457	7 23 61 8 12 30 9	270 1,640 1,320 530 800 2,000 1,080
HIGH IBRD COMMITMEN 13 PANAMA 14 COLOMBIA 12 HONDURAS 9 CYPRUS 3 COSTA RICA 6 MALAYSIA 8 GUATEMALA	T/CAPITA 5 12 12 6 8 10 7	12.7 13.2 10.4 \$.3 5.3 6.0 8.5	(8.7) (9.6) (8.2) (8.1) (1.8) + (3.3) + (7.0)	5 9 7 1 4 9 3	24.3 22.5 12.0 9.4 3.5 10.3 52.2	(17.3) _ (21.6) + (11.2) + (3.3) + (8.8) + (15.4) -	(4) (10)	255 1,737 236 35 124 464 194	116 61 24 53 48 30 24	2,100 1,320 720 3,790 1,300 2,000 1,250
HIGH GNP/CAPITA 9 CYPRUS 13 PANAMA 6 MALAYSIA 7 BRAZIL 19 JORDAN 14 COLOMBIA 3 COSTA RICA	6 5 22 11 12 8	9.3 12.7 6.0 7.4 16.4 13.2 5.3	(8.1) (8.7) (3.3) + (5.3) + (18.3) (9.6) (1.8) +	1 5 9 4 9 4	9.4 24.3 10.3 11.4 22.7 22.5 3.5	(17.3) (8.8) + (9.2) + (7.4) (21.6) (3.3) +	(10) (2) (4)	35 255 464 3,062 58 1,737 124	53 116 30 23 17 61 48	3,790 2,100 2,000 1,640 1,560 1,320 1,300

* The "+" or "-" to the right of the standard deviation indicates that the MAPD is significantly different (higher or lower) than the "World" MAPD at the .90 confidence level.

4

1/ Source: Annex 2

Table 3-8 (continued)

FORECAST DEVIATION BY COUNTRY CHARACTERISTICS

	YEAR 3				YEAR 7		IBRD COMMITMENT TO YOU'R SECTOR THROUGH 1985			
Country	Sample Size	MAPD X	(Std Dev) %	Sample Size	MAPD %	(Std Dev) %	(Rank)	Current \$ Million	\$/Cap	GNP \$/Capita
** WORLD **	228	11.9	(12.6)	116	19.9	(16.8)				
LOW ACCURACY 25 SUDAN 24 PHILIPPINES 23 HAITI 22 GHANA 21 TANZANIA 20 INDONESIA 19 JORDAN	4 6 5 5 5 6 10	26.5 21.9 20.7 19.6 17.4 17.4 16.4	(15.1) - (37.3) (13.8) - (8.1) - (9.3) (13.5) (18.3)	3 4 1 2 3 6 4	32.6 40.0 24.0 19.5 27.9 19.6 22.7	(12.5) (36.8) (2.9) (8.8) (10.4) (7.4)	(3)	112 282 74 127 105 1,305 58	5 13 10 5 8 17	300 580 310 380 290 530 1,560
LOW (RELATIVE) IBRD 9 CYPRUS 2 MALAWI 19 JORDAN 23 HAITI 11 NICARAGUA 1 EL SALVADOR 21 TANZANIA	COMM I TMI 6 4 10 5 4 5 5 5	9.3 5.1 16.4 20.7 10.1 5.0 17.4	(8.1) (2.9) + (18.3) (13.8) - (2.7) (2.9) + (9.3)	1 2 4 1 5 3 3	9.4 23.4 22.7 24.0 31.6 6.7 27.9	(22.8) (7.4) (19.9) (6.3) + (8.8)		35 38 58 74 75 \$84 105	53 5 17 13 23 \$18 5	3,790 170 1,560 310 770 \$820 290
LOW (RELATIVE) IBRD 17 INDIA 18 PAKISTAN 21 TANZANIA 25 SUDAN 24 PHILIPPINES 2 MALAWI 20 INDONESIA	COMMITM 5 11 5 4 6 4 6	ENT/CAPIT/ 14.2 15.1 17.4 26.5 21.9 5.1 17.4	(14.1) (6.8) (9.3) (15.1) - (37.3) (2.9) + (13.5)	- 333426	21.0 27.9 32.6 40.0 23.4 19.6	(28.4) (8.8) (12.5) (36.8) (22.8) (10.4)	(1) (11) (3)	5,099 438 105 112 282 38 1,305	7 5 5 5 5 5 5 8	270 380 290 300 580 170 530
LOW GNP/CAPITA 2 MALAWI 17 INDIA 21 TANZANIA 4 KENYA 25 SUDAN 23 HAITI 22 G ^H ANA	4 5 5 6 4 5 5	5.1 14.2 17.4 5.4 26.5 20.7 19.6	(2.9) + (14.1) (9.3) (2.7) + (15.1) - (13.8) - (8.1) -	2 - 3 2 7 1 2	23.4 27.9 11.8 32.6 24.0 19.5	(22.8) (8.8) (2.3) + (12.5) (2.9)	(1)	38 5,099 105 242 112 74 127	5 7 5 12 5 13 10	170 270 290 290 300 310 380

* The "+" or "-" to the right of the standard deviation indicates that the MAPD is significantly different (higher or lower) than the "World" MAPD at the .90 confidence level.

80 K.

· •

.

countries with the lowest GNP power capita -- Tanzania, Sudan, Haiti, and Ghana -fall into the "lowest" accuracy forecast group. We should note, however, that at least the three African countries in this group were experiencing virtual total economic collapse, and it is unlikely that any meaningful forecasting was possible in this economic environment.

Five of the countries which recorded the highest accuracy in year 3 were among the top seven of our sample in year 7 -- Costa Rica, El Salvador, Malaysia, Brazil, and Kenya. Similarly, three of the seven countries which recorded relatively low forecast accuracy in year 3 remained near the bottom of our sample in year 7 -- Tanzania, Sudan, and the Philippines. This frequency suggests that forecast results in any given year are not random, and that deviation trends observed in early years are not likely (on average) to be reversed in subsequent years.

Forecast Learning Curves

To test the hypothesis that frequent forecasting might enhance accuracy, we studied performances over time for two utilities in each region which had prepared at least 5 forecasts during our study period (1960-85). Table 3-9 summarizes the results.

There appears to be no discernible pattern indicating that forecasts tended to improve over time. In many cases, the opposite trend can be observed, supporting our observation that forecast deviations appear to have increased in recent years (see Section 3.2).

3.8 ERROR DISTRIBUTION

Table 3-10 shows the frequency distribution of mean percent deviation recorded by all of the forecasts in our study at different horizons. The block of numbers at the top of the page is derived from longitudinal data. The first column ("All Forecasts") shows the distribution of mean deviations for all complete forecasts, regardless of horizon. The columns identified as "Short", "Medium", and "Long" capture performance over different time horizons within forecasts, i.e., "Short" covers years 1 through 3, "Medium" includes years 4 through 7, and "Long" incorporates all subsequent years. The block of numbers

£.

TABLE 3-9

×

-

LEARNING CURVE OF UTILITY ELECTRICITY FORECASTING PERFORMANCE

COUNTRY	UTILITY		INITIAL YEAR H	IORIZON	MEAN PERCENT YEAR 3	DEVIATION YEAR 7
COLOMBIA	EEEB	Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 5 Fcast 6 Fcast 7	1959 1962 1968 1969 1978 1979 1981	10 9 7 10 7 5	3.8 21.1 10.1 22.5 12.9 26.1 31.8	10.9 16.5 8.0 14.3 62.5 61.1
Panama	JRHE	Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 5 Fcast 6	1962 1969 1972 1977 1979 1982	10 8 11 7 4	28.5 8.2 15.6 4.8 6.2	21.1 4.2 53.3 32.3 10.7
		Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 5 Fcast 6			-6.5 4.3 3.5 6.2 10.1 1.7	9.5 14.1
TANZANIA	TANESCO	Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 5	1970 1975 1981 1981 1984	7 7 5 2	11.9 19.8 24.3 30.6	-
INDONESIA		Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 5 Fcast 6 Fcast 7 Fcast 7 Fcast 8 Fcast 9	1972 1972 1975 1975 1977 1977 1981 1982 1984	865999542	9.7 10.8 4.9 7.6 24.1 6.3 16.2	12.6 - 7.1 11.8 27.8 -
MALAYSIA	NEB	Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 6 Fcast 6 Fcast 7 Fcast 7 Fcast 8 Fcast 9 Fcast 1	1960 1963 1966 1968 1968 1970 1974 1975 1977 1980	8 10 7 9 9 9 9 10 7 7 6	-2.8 -6.8 -2.3 4.5 -2.1 3.8 9.5 6.9 8.7 12.3	-27.4 -17.5 -1.7 1.1 -6.7 0.0 6.8 13.7 17.8
JORDAN	JEA	Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 5	1975 1978	6 8 5	3.2	23.5
TURKEY	TEK	Fcast 1 Fcast 2 Fcast 3 Fcast 4 Fcast 5 Fcast 6 Fcast 7	1970 1973 1975 1976 1979 1982 1984	8 10 10 7 4 2	14.7 11.4 -1.3 6.5 15.0 -	20.2 24.9 20.2 29.7 -

-

•

Table 3-10

FREQUENCY DISTRIBUTION OF FORECAST MEAN DEVIATIONS (percent)

LONGITUDINAL DATA BY FORECAST HORIZON

	All Forecasts	Short (1-3 yrs)	Medium (4-7 yrs)	Long (8yrs +)
< -50%	0.0	0.0	0.0	0.0
-50% to -20%	0.0	0.0	0.0	0.0
-20% to -10%	4.1	1.4	5.8	4.2
-10% to -5%	5.6	5.0	3.8	4.2
-5% to 0%	12.2	19.9	11.5	12.5
0% to 5%	21.9	28.1	16.3	8.3
5% to 10%	20.4	23.1	21.2	29.2
10% to 20%	15.8	14.5	20.2	12.5
20% to 50%	19.4	8.1	20.2	29.2
50% to 100%	0.5	0.0	1.0	0.0
> 100%	0.0	0.0	0.0	0.0
Total	100.0	100.0	100.0	100.0
Sample Size	196	221	104	24

CROSS-SECTIONAL DATA BY FORECAST YEAR

	YEAR	YEAR	YEAR	YEAR	YEAR	YEAR	YEAR	YEAR	YEAR	YEAR	YEAR	YEAR
	1	2	3	4	5	6	7	8	9	10	11	12
<pre>< -50% -50% to -20% -20% to -10% -10% to -5% -5% to 0% 0% to 5% 5% to 10% 10% to 20% 20% to 50% 50% to 100% > 100% Total Sample Size</pre>	0.0 0.0 0.8 5.6 34.0 33.6 16.0 7.6 2.0 0.4 0.0 100.0 250	0.0 0.4 1.7 9.1 21.6 21.6 22.1 13.0 10.0 0.4 0.0 100.0 231	0.0 0.9 2.6 7.0 18.4 18.9 21.5 15.4 0.9 0.4 100.0 228	0.0 0.9 4.0 7.2 8.5 16.1 18.4 20.6 20.2 3.6 0.4 100.0 223	0.0 3.9 4.5 6.6 8.1 11.6 11.6 11.1 23.7 26.3 4.5 0.5 100.0 198	0.6 3.7 5.6 8.6 4.3 5.6 16.7 22.2 25.3 6.8 0.6 100.0 162	0.9 5.2 6.9 4.3 6.0 12.1 9.5 24.1 25.0 6.0 0.0 100.0 116	2.4 7.3 4.9 6.1 7.3 8.5 12.2 20.7 24.4 6.1 0.0 100.0 82	3.6 5.5 9.1 1.8 7.3 9.1 5.5 16.4 30.9 10.9 0.0 100.0 55	5.4 8.1 0.0 2.7 2.7 10.8 8.1 21.6 21.6 21.6 18.9 0.0 100.0 37	0.0 7.7 0.0 7.7 23.1 0.0 0.0 15.4 30.8 15.4 0.0 100.0 13	0.0 20.0 0.0 0.0 20.0 20.0 20.0 40.0 100.0 5

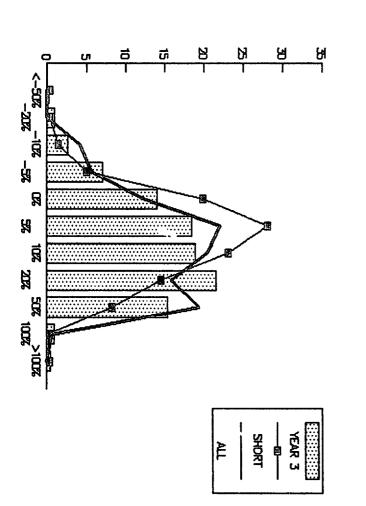
- 34 -

. .

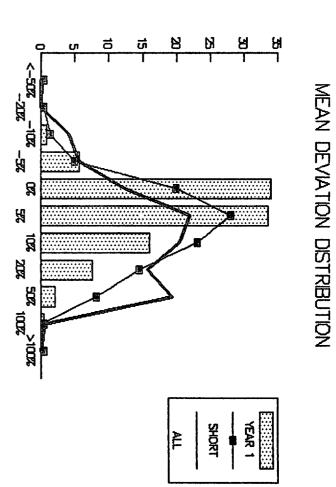
.

3.20

at the bottom of the page is derived from cross-sectional data. It reflects the frequency distribution of mean deviations at horizons from 1 to 12 years after forecasts were made.

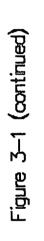

In both blocks, we observe that forecast risk (spread) increases with forecast horizon. The graphical presentation in Figure 3-1 helps visualize these trends. There are separate bar-graphs for each of five horizon years (years 1, 3, 5, 7, and 10). The y-axis of each graph is the frequency (in percent). The x-axis represents the ranges for each frequency bar. Each range is defined by the value at the bottom of a column and the number immediately to its left, e.g., the label "-20%" is equivalent to the range from "-50% to -20%". In addition to the frequency bars for specific horizon years, each graph also includes a line showing the frequency distribution for the relevant longitudinal horizon group (e.g., "Short" for the year 1 graph) and another line corresponding to the average frequency distribution of all forecasts in all years.

The following trends can be seen. The average MPD gradually shifts away from the "low error" ranges as the horizon increases. Nearly 70 percent of all forecasts fall in the "-5% to 5%" band in year 1, but only about 15 percent of forecasts do so by year 10. The mean shifts to the right, although there is also a clear and gradual increase in under-estimates. As the horizon lengthens, the distribution becomes increasingly skewed to the right.¹³ The frequency distributions for longitudinal horizon groups smooth out some of the volatility in the year-to-year bars, but the same general trend is apparent.

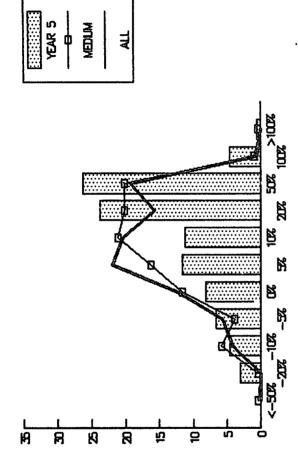

3.9 ANALYSIS OF SYSTEM LOSS FORECASTS

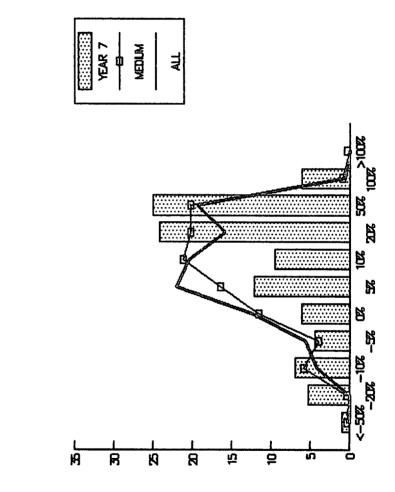
Both sales and generation forecasts are critical for electricity system planning. Short to medium-term sales forecasts are important for utility financial planning. Medium to long-term forecasts of total generating requirements are the foundation for system expansion planning.

¹³ This can also be inferred from the fact that CV values in this report are in the range 0.08 to 0.15 times MAPD. In contrast, for the normal distribution which has a symmetric density function, the CV can be analytically shown to be about 1.25 times MAPD.

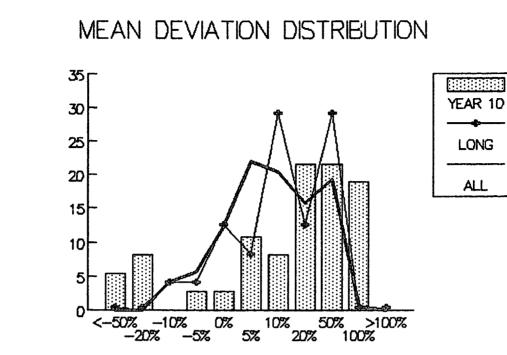

-

PERCENT (%)


PERCENT (%)


Figure 3–1

1


MEAN DEVIATION DISTRIBUTION

į.

PERCENT (%)

.

ł

Figure 3-1 (continued)

As noted in the Introduction and elsewhere, this study focuses on measuring the accuracy of electricity sales forecasts (either billed or total consumption). We chose sales rather than net or gross generation because we were able to identify a larger pool of historical data. The analysis might be repeated with forecasts of system generation to see if similar patterns emerge.

In most cases, generation forecasts are derived from the sales forecast by projecting system losses. For this reason, we have investigated system loss forecasts to see if the same general conclusions about sales forecast deviations also apply to losses and thus to the total load forecast.

Data on over 100 forecasts of system losses were accumulated for this purpose. These forecasts come from the same primary sources identified in Chapter 2. Following the pattern of this Chapter, statistics were computed and used to compare the historical accuracy of system loss forecasts.¹⁴

Loss forecast deviations should be interpreted in r lation to the level of system losses. For example, a 20 percent loss forecast deviation n a system with 20 percent technical and non-technical losses would introduce a planning error equivalent to 4 percent of total sales. Similarly, a 30 percent loss forecast deviation in a system with 30 percent system losses would introduce a planning error of 9 percent of total sales. If the sales forecast is over-estimated while the loss forecast is under-estimated, the offsetting effects would result in a forecast of total generation requirements that is more accurate

- F_t = Forecast losses in year t in percent
 - = (Generation Forecast Sales Forecast)/Sales Forecast
- A_t = Actual losses in year t in percent (Actual Generation - Actual Sales)/Actual Sales

Thus, a positive deviation indicates that the percentage of losses to total sales was over-estimated in the forecast; a negative deviation indicates that percentage losses were under-estimated.

¹⁴ The definition of forecast deviation has been modified here to account for the fact that losses are the difference between generation and sales. Specifically, forecast deviation in any year t is defined as:

 $D_t = (F_t - A_t)/A_t$

than the sales forecast. If the errors are of a like direction, the generation forecast will be less accurate.

In the following pages, results on the accuracy of loss forecasts have been disaggregated by region, system size, and real per capita income.

Loss Forecast Accuracy by Region

Table 3-11 summarizes loss forecast accuracy by region for each of the three forecast horizons. In sharp contrast with the sales forecasts, worldwide ("all regions") there appears to be no clear bias toward over or under-estimation. The MPD is slightly negative in years 3 and 7, becoming positive in year 10.

The number of forecast over-estimates and under-estimates are approximately equal in all three horizon years. The magnitude of over-estimates is 21.2 percent in year 3 and 37.1 percent in year 7. The corresponding magnitude of under-estimates are -20.8 in year 3 and -32.7 in year 7.¹⁵ Reflecting this balance between over and underestimates, the MAPD is 21 percent in year 3 and 34.5 percent in year 7.

Forecast variance, as measured by the standard deviation of forecast error, is large. In year 3 this spread is 28 percent, and in year 7 it is 45.6 percent.

Regional forecast deviation is notably similar to worldwide averages. The Asia region performed slightly better in each horizon year, with an MAPD of 15.7 in year 3 and 19.5 in year 7. These differences from other regions were not highly significant.

In summary, while there has been a pattern to the magnitude of forecast error, about 20 percent in year 3 and 35 percent in year 7 across all regions, the direction of these errors has been fairly evenly dispersed between over-estimates and under-estimates in every region.

¹⁵ The very small sample size noted for year 10 allows us to place much less confidence in any observed trends.

Table 3-11

LOSS FORECAST DEVIATION BY REGION

		YEAR 3			YEAR 7				YEAR 10		
		Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size		Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	
LAC	"Over" "Under" MPD MAPD	21 24 45 45	22.8 -21.7 -4.6 22.2	(27.9) (16.8)	6 9 15 15	54.1 -30.1 3.6 39.7	(45.3) (22.0)	2 2 4 4	47.1 -29.6 8.7 38.4	(45.5) (25.9)	
AFRICA	"Over" "Under" MPD MAPD	7 8 15 15	16.0 -21.3 -4.1 19.0	(24.3) (15.6)	5 5 10 10	43.6 -43.4 0.1 43.5	(61.4) (43.4)	0 D 0 0	-	:	
ASIA	"Over" "Under" MPD MAPD	6 11 17 17	21.8 -12.4 -0.4 15.7	(21.4) (14.5)	3 5 8 8	14.3 -22.7 -8.8 19.5	(25.1) (18.1)	1 1 2 2	30.0 -19.1 5.5 24.5	(24.5) (5.5)	
EMENA	"Over" "Under" MPD MAPD	16 19 35 35	21.1 -24.2 -3.5 22.8	(32.1) (23.0)	7 6 13 13	27.6 -35.9 -1.7 31.4	(40.3) 25.3	2 4 6 6	41.8 -20.2 0.5 27.4	(36.4) (23.9)	
ALL REGIONS	"Over" "Under" MPD MAPD	50 62 112 112	21.2 -20.8 -2.1 21.0	(28.0) (18.7)	21 25 46 46	37.1 -32.7 -0.8 34.7	(45.6) (29.5)	5 7 12 12	41.6 -22.7 4.1 30.6	(38.3) (23.4)	

۹

Loss Forecast Accuracy by System Size

Table 3-12 presents summary statistics for electricity systems categorized by size. Due to smaller sample size, the categories differ somewhat from those used in Section 3.3; four groups have been condensed into three.

- 42 -

There seems to be a bias toward under-estimation among small systems which disappears among larger ones. The MPD for small systems is -9.1 in horizon year 3, while it is -2.1 for medium systems and 3.1 for larger systems. The difference between the small and large groups is significant at the 90 percent level. This trend continues in years 7 and 10, but conclusions for these years can be made with less confidence due to the very small sample size.

Paralleling sales forecast deviations, small system loss forecasts have been less accurate than larger systems in the short-term. The mean absolute deviation for small systems was 25.5 percent in horizon year 3, compared with 15.7 percent for medium systems and 21.6 percent for larger systems. The difference between the first two groups is significant at the 90 percent level. Again, small sample size limits our ability to draw conclusions about longer forecast horizons.

Loss Forecast Accuracy and Country Income

Table 3-13 summarizes forecast performance for country groups categorized by real GNP per capita in 1985. In the short term (horizon year 3), loss forecast deviations are notably similar across income groups. The mean absolute deviation falls within the range of 20.5 and 21.9 percent for all groups. Variance, as measured by the standard deviation of mean percent deviation, ranges from 25.6 for the poorest countries (GNP per capita < \$400), to 29.9 for the wealthiest (GNP per capita > \$1600). These differences are not significant for our samples. There is greater variation in years 7 and 10, but the sample is small.

Impact of Loss Forecasts on Generation Forecast Accuracy

Logically, if loss forecasts are biased in the same direction as sales forecasts, the result on average is generation forecasts of even less accuracy. For the most part, our analysis

Table 3-12

LOSS FORECAST DEVIATION BY SYSTEM SIZE

	YEAR 3			YEAR 7		YEAR 10			
	Sample Mean Annual Size Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	Sample Size	Mean Annual Deviation (%)	Std. Dev. (%)	
"Over" 2000 GWh "Under" MPD MAPD	12 22.6 21 -27.2 33 -9.1 33 25.5	(28.6) (15.8)	5 12 17 17	30.9 -37.1 -17.1 35.3	(36.8) (20.1)	0 2 2 2 2	- -29.6 -29.6 29.6	(22.0) (22.0)	
"Over" 2001 - 10000 GWh "Under" MPD MAPD	16 14.4 18 -16.9 34 -2.1 34 15.7	(20.9) (13.9)	7 2 9 9	45.1 -26.6 29.1 41.0	(53.9) (45.5)	1 0 1 1	20.5 20.5 20.5	-	
"Over" < 10000 GWh "Under" MPD MAPD	22 25.3 23 -18.1 45 3.1 45 21.6	(31.0) (22.5)	9 11 20 20	34.3 -28.9 9.4 31.3	(41.1) (26.5)	4: - 9 9	46.8 -20.0 9.7 31.9	(39.2) (24.7)	
"Over" ALL SYSTEMS "Under" MPD MAPD	50 21.2 62 -20.8 112 -2.1 112 21.0	(28.0) (18.7)	21 25 46 46	37.1 -32.7 -0.8 34.7	(45.6) (29.5)	5 7 12 12	41.6 -22.7 4.1 30.6	(38.3) (23.4)	

.

Table 3-13

		YEAR 3			YEAR 7			YEAR 10		
1985 GNP/Capita		Sample Size	Mean Perce Deviation		Sample Size	Mean Perc Deviation	ent (Std Dev)	Sample Size	Mean Perc Deviation	ent (Std Dev)
< \$400	"Over" "Under" MPD MAPD	12 15 27 27	18.6 -22.0 -4.0 20.5	(25.6) (15.9)	5 6 11 11	43.6 -36.3 0.0 39.7	(57.8) (42.0)	0 2 2 2	-33.3 -33.3 33.3	(18.3) (18.3)
\$400 - \$1000	"Over" "Under" MPD MAPD	10 18 28 28	23.4 -19.2 -4.7 21.4	(26.5) (16.3)	6 11 17 17	33.6 -28.8 -6.8 30.5	(37.1) (22.2)	1 2 3 3	30.0 -13.4 1.1 18.9	(21.0) (9.1)
\$1001 - \$1600	"Over" "Under" MPD MAPD	15 23 38 38	21.3 -20.0 -3.7 20.5	(28.7) (20.4)	8 7 15 15	31.9 -29.6 3.2 30.8	(38.3) (23.0)	3 3 6 6	57.5 -21.9 17.8 39.7	(44.1) (26.1)
> \$1600	"Over" "Under" MPD MAPD	13 6 19 19	21.6 -22.4 7.8 21.9	(29.9) (21.8)	2 1 3 3	52.1 -75.1 9.7 59.8	(63.7) (24.1)	1 0 1 1	5.4 5.4 5.4	:
ALL INCOMES	"Over" "Under" MPD MAPD	50 62 112 112	21.2 -20.8 -2.1 21.0	(28.0) (18.7)	21 25 46 46	37.1 -32.7 -0.8 34.7	(45.6) (29.5)	5 7 12 12	41.6 -22.7 4.1 30.6	(38.3) (23.4)

LOSS FORECAST DEVIATION BY INCOME LEVEL

- -

.

uncovers no directional bias in loss forecast deviations. Thus, loss forecast deviations neither enhance or reduce sales forecast error. This conclusion holds for the global sample, for groupings by region and by national per capita income level, and for large system sizes. Small system loss forecasts appear to provide an exception to this rule; a significant bias toward underestimates was found in this case. These errors, on average, should make generation forecasts for small systems more accurate than sales forecasts.

Although losses generally account for only a fraction of total generation, in percentage terms both the magnitude (MAPD) and spread of loss forecast deviations worldwide have been almost twice the levels observed in sales forecasts of short to medium horizon (years 3 and 7).

4 THE U.S. EXPERIENCE

It is instructive to compare the record of U.S. utilities in load forecasting with the Bank's experience in developing countries. In their continual search for the load forecasting equivalent of a "better mouse trap", U.S. utilities and their consultants have spent millions of dollars in an effort to develop more sophisticated and more accurate forecasts over the years.

The U.S. experience provides useful points of reference for our analysis. More data related to U.S. experience is available, since most utilities update their forecasts annually, and often using more than one technique. Furthermore, these analyses are reported in their annual load forecast reports that generally document the approach, input data, and assumptions about key exogenous variables that influence future loads. Therefore, analysis of forecast accuracy in the U.S. provides valuable insights about whether "throwing more money" and using more complex forecasting techniques results in better accuracy and if so by how much.

In this chapter we study two independent sources of U.S. electricity sales forecasts in order to assess long-term performance. The first source is a nationwide forecast which has been compiled annually by the Edison Electric Institute (EEI) since 1945 and reported in the magazine <u>Electrical World</u> each September since 1964. The second source is a survey of 100 large and small U.S. utilities conducted and reported by Battelle Laboratories in 1985.

I.

4.1 FORECASTS OF NATIONAL UTILITY SALES BY EEI

Table 4-1 presents the EEI forecasts and actual U.S. electricity sales for the years 1964 through 1987. A total of 188 separate annual forecasts are reported, far more than available for any single LDC system or region.

Table 4-2 summarizes forecast accuracy for three horizon years (Years 3, 7, and 10) for the United States and the countries studied in Chapter 3. Over the years studied, the bias toward overestimation of load forecasts is just as apparent for the U.S. as for the other countries. Mean percent deviation (MPD) is always positive in the U.S., increasing from 2.8 percent in year 3, to 16.9 percent in year 7 and 25.8 percent in year

				TEAR	- -	47 - 85666	6858	28588	14885	1885)	:3333	8
				ACTUAL SALES TE	8382284					****		₹
			-								25-3/3	
			2									5 318.
			f 24	1987								2022
			53	1986					22X			7255
			2	1985					202	1992 1992	3052	3439
			F 21	1986					8563	17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	3068	3452
			8	1923				1112		222 222	3041	87. 14
			F 19	1982				2122	25328	2222	3156	3345
			F 18	1981				2133	5282 XXXX	12 R	358	7792
			414	1980				1000 1000 1000 1000 1000 1000 1000 100	2222		3346	4141
		SALES	F 16	67.61					22990		m	
		FOR TOTAL ELECTRIC UTILITY SALES	r 15 - r	1 82.61			2002	8999572 899577	1222285	38	5	
		LECTRIC	±	1077						2213	1348	
		TOTAL	:*	1 9Lo				286287		95.65	7 9667	
table 4-1			OF FORECAST 12 F 13					~~~~~ ?!??&??		£012 3	5206	
10		S OF 1964-1988 (TUR)	TEAR	5.91 4				3788758 3788758		-		
	1	FORECAST'S OF	11	1974						8	5695	
		aco4 Mi	F 10	197			E TAR		9295	5068		
		TREEDS	6 1	2464			2912 2912 2022		3961	9555		
			F 8	1201		32553	8272 8272 8272	5982 7982	1285	5375		
			5 7	97 0 1		8355 285 285 285 285 285 285 285 285 285 2		2901	4067			
			4 4	1969			2102	2800	4030			
			5	1968	1186		64 91	2942	366			
			F &	1967	86.90 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>15</u>	1823	1152	1321			
	ą		ň	1966	2001 2001 2001 2001 2001 2001 2001 2001	<u>ŝ</u>	6081	2463	3252			
ALES	CAL KORI		~	1965	38 8558		à	216	3348			
FILE MARE : USASALES	SOLROE: "ELECTRICAL LORLD"	ECAST		1964	83528			3005	·			
FILE MA	SOURCE:	f = fodecast	-	TEAS	200 200 200 200 200 200 200 200 200 200	66666	5858	68558 88588 88588	1965 1965 1965 1965 1965 1965 1965 1965		588:	2000

5 ·

Table 4-2

COMPARISON OF U.S. AND LDC FORECAST DEVIATION

			YEAR 3		,	YEAR 7	1	YEAR 10		
		Sample Size	Mean Annu Deviation	al Percent (Std Dev)	Sample Size		al Percent (Std Dev)	Sample Size		al Percent (Std Dev)
U.S. Experience (EEI)	"Over" "Under" MPD MAPD	15 7 22 22	5.1 -2.1 2.8 4.1	(4.7) (3.5)	13 0 13 13	16.9 16.9 16.9	(5.6) (5.6)	7 0 7 7	25.8 25.8 25.8	(10.4) (10.4)
LDC Experience (from Chapter 3)	"Over" "Under" MPD MAPD	172 56 228 228	13.9 -5.8 9.1 11.9	(14.8) (12.6)	89 27 116 116	21.2 -15.4 12.7 19.9	(22.8) (16.8)	30 7 37 37	27.3 -36.6 15.2 29.1	(34.2) (23.6)

ø

10. Indeed, years 7 and 10 have <u>no</u> reported underestimates, although the sample size is very small. Mean percent deviation of the United States forecasts is approximately a third of the LDC level in year 3, but the LDC average accuracy is better than that of the U.S. forecasts in both years 7 and 10. The year 3 differences are significant at the 99 percent level, but the differences are not significant for the longer horizons.

The average magnitude of forecast deviation (MAPD) in the United States is only 4.1 percent in year 3, but rises to 16.9 percent in year 7, and to 25.8 percent by year 10. Again, the magnitude of U.S.forecast deviations is about a third of that reported for the LDC's in year 3, but the U.S. forecast MAPD out performed the other countries only slightly over longer horizons. MAPD differences in year 3 are highly significant.

Forecast uncertainty as measured by standard deviation of forecast error is much lower for the United States forecasts. It is approximately a third of the level reported for the other forecasts studied in each horizon year.

Table 4-3 compares U.S. and LDC longitudinal forecast experience. As noted in Chapter 2, performance in spot horizon years may be more appropriate for system planning purposes, but the longitudinal data is useful for comparison of the two data sets. As might be expected, observed longitudinal deviations are lower than the crosssectional ones, but the same trends are apparent. U.S. forecast accuracy and magnitude of deviation are much better in the short-term, but quite similar over medium and longterm forecasts. Forecast uncertainty (spread) is much lower for forecasts of all lengths.

Forecast Learning Curves

The results in Tables 4-2 and 4-3 indicate that forecast error increases as the horizon lengthens. An important corollary to this trend is also clear: The accuracy of forecasts for a given target year increases as the year of the forecast approaches the target.

Table 4-4 also illustrates this point with the EEI data series. Each column represents forecast deviations for selected target years (1965 through 1985 at five year intervals). With few exceptions, reading down the columns one observes increasing accuracy as the forecast year approaches the target year.

Table 4-3

SHORT-TERM (YEARS 1 THRU 3) MEDIUM-TERM (YEARS 4 THRU 7) LONG-TERM (8 YEARS AND OVER) Sample Mean Annual Percent Sample Mean Annual Percent Sample Mean Annual Percent Size Deviation (Std Dev) Size Deviation (Std Dev) Size | Deviation (Std Dev) ---15 7 1.9 12 0 "Over" 8.4 6 13.4 **U.S. Experience** "Under" -1.7 Õ -. 22 22 (3.2) 12 (2.7) (2.7) 13.4 (1.8) (1.8) (EEI) MPD 1.4 8.4 6 MAPD 1.4 12 8.4 6 13.4 ----.... ... ----82 22 104 104 9.0 -3.8 5.6 7.6 "Over" 163 13.8 19 17.5 5 24 24 -5.6 12.7 15.0 LDC Experience "Under" 58 -6.2 221 221 (from Chapter 3) (14.8) 9.6 (14.7) MPD (12.8) MAPD 12.2

COMPARISON OF U.S. AND LDC LONGITUDINAL FORECAST DEVIATION

1 1 1

Table	4-4
-------	-----

Forecast Percent Deviation In Selected Target Years

Year of Forecast	Target Year						
	1965	1970	1975	1980	1985		
1964	10.3	6.7	22.5	41.5	••		
1965	-0.8	-5.2	5.4	18.5	45.2		
1966		-3.3	4.4	15.8	41.0		
1967		-2.7	5.5	18.1	44.0		
1968		-3.3	9.6	24.3	58.1		
1969		0.3	16.1	35.5	74.8		
1970		-0.4	16.2	36.5	76.4		
1971			14.1	31.9	65.7		
1972			16.1	34.2	71.8		
1973			15.3	31.5	65.9		
1974			7.6	17.8	40.6		
1975			-0.8	11.6	36.5		
1976				9.9	35.0		
1977				5.2	22.8		
1978				2.0	16.1		
1979				0.2	14.9		
1980				-2.0	10.3		
1981					8.5		
1982					2.7		
1983					-0.9		
1984					0.3		
1985					0.3		

Ł

-

•

Reading across rows, the data indicates the level of inaccuracy in the forecasts, that were analyzed. Forecast deviation increases with horizon length, and forecast accuracy for a given target year <u>increases</u> as we approach that year. While our extensive data set makes it easier to demonstrate this conclusion for United States forecasts, it is reasonable to postulate a similar trend in other countries as well. Simply thinking of the deviation statistics in Chapter 3 slightly differently -- as forecasts 10 years, 7 years and 3 years before a given target year -- provides support for this conclusion.

Error Distribution

Table 4-5 summarizes the frequency distribution of mean percent deviation for the EEI forecast data. The table includes both longitudinal and cross-sectional data.

The average MPD increases with forecast horizon. Over 95 percent of forecasts have a deviation in the range "-5% to 5%" in year 1, but only 15 percent do by year 10. While the move toward overestimates may not be as extreme as that reported for LDC's in Chapter 3, there are in fact no underestimates in years 7 and 10 in the U.S. data in Table 4-5. Longitudinal data tend to smooth out the volatility inherent in the cross-sectional data, but the gradual shift toward overestimates is still clear from the longitudnal data.

4.2 U.S. UTILITY FORECAST SURVEY

Table 4-6 presents key statistics on forecast accuracy by size of U.S. utility, and forecast horizon. These results are based upon a survey of the 75 largest U.S. utilities, and 25 smaller utilities.^{1,2,3} Additional data, from the same survey, regarding comparative performance of different forecasting techniques, is reported in Annex 4.

Results of the U.S. experience indicate that historically there has been an overwhelming bias towards overestimation by large as well as small utilities. As shown in Table 4-6,

William Huss, "Can Electric Utilities Improve Their Forecast Accuracy? The Historical Perspective," <u>Public Utilities Fortnightly</u>, Dec. 26, 1985, p. 37.

² Small utilities are defined as having 1982 sales between700 and 5,000 GWh.

³ Of the 25 small utilities, ten chose to participate.

Table 4-5 FREQUENCY DISTRIBUTION OF U.S.A. FORECAST MEAN DEVIATIONS (percent)

.

LONGITUDINAL DATA BY FORECAST HORIZON

	All Forecasts	Short (1-3 yrs)	Medium (4-7 yrs)	Long (7yrs +)
< -50%	0.0	0.0	0.0	0.0
-50% to -20%	0.0	0.0	0.0	0.0
-20% to -10%	0.0	0.0	0.0	0.0
-10% to -5%	0.0	0.0	0.0	0.0
-5% to 0%	28.6	31.8	0.0	0.0
0% to 5%	14.3	54.5	8.3	0.0
5% to 10%	21.4	13.6	75.0	16.7
10% to 20%	35.7	0.0	16.7	83.3
20% to 50%	0.0	0.0	0.0	0.0
50% to 100%	0.0	0.0	0.0	0.0
> 100%	0.0	0.0	0.0	0.0
Total	100.0	100.0	100.0	100.0
Sample Size	14	22	12	6

CROSS-SECTIONAL DATA BY FORECAST YEAR

	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	YEAR 10	YEAR 11	YEAR 12
< -50% -50% to -20% -20% to -10% -10% to -5% -5% to 0% 0% to 5% 5% to 10% 10% to 20% 20% to 50% 50% to 100% > 100% Total	0.0 0.0 0.0 62.5 33.3 0.0 4.2 0.0 0.0 0.0 100.0	0.0 0.0 4.3 30.4 52.2 8.7 4.3 0.0 0.0 0.0 100.0	0.0 0.0 0.0 31.8 40.9 22.7 4.5 0.0 0.0 0.0 100.0	0.0 0.0 0.0 23.8 23.8 38.1 14.3 0.0 0.0 0.0 100.0	0.0 0.0 5.0 20.0 10.0 35.0 30.0 0.0 0.0 100.0	0.0 0.0 6.7 6.7 73.3 6.7 73.3 6.7 0.0 0.0 100.0	0.0 0.0 0.0 0.0 15.4 53.8 30.8 0.0 0.0 100.0	0.0 0.0 0.0 0.0 9.1 36.4 54.5 0.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0 11.1 22.2 66.7 0.0 0.0 100.0	0.0 0.0 0.0 14.3 71.4 0.0 14.3 71.4 0.0 0.0	0.0 0.0 0.0 0.0 16.7 0.0 83.3 0.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0
Sample Size	24	23	22	21	20	15	13	11	9	7	6	3

			Horizon	
		Two Years	Four Years	Six Years
Large Utilities	Mean	4.50	11.16	20.86
	Std. Dev.	5.57	8.03	16.99
	Avg. Med.	3.30	9.74	19.18
	No. of Resps.	203	156	107
Small Utilities	Mean	5.18	12.96	21.79
	Std. Dev.	4.41	14.56	19.29
	Avg. Med.	3.64	8.86	17.40
	No. of Resps.	41	32	22

Table 4-6 Forecast Performances of U.S. Utilities¹

- -

 Mean: Mean Absolute Percentage Error Std. Dev.: Standard Deviation Avg. Med.: Median Absolute Percentage Error

Source: "Can Electric Utilities Improve Their Forecast Accuracy? The Historical Perspective", Public Utilities Fortnightly, Dec. 26, 1985.

the average magnitude of this error across small and large utilities (as defined as the mean absolute percentage error,⁴ and labeled "Mean"), was approximately 5 percent in year 2, 12 percent in year 4, and 21 percent six years out. Further, forecast error approximately doubles from year 2 to year 4, and increased four-fold by year 6. Forecast uncertainty/spread as measured by standard deviation also increases over time. Larger utilities had a better record than smaller utilities, four and six years out.

⁴ This statistic is comparable to the MAPD statistic in our study.

5.1 STUDY CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

An ex-post evaluation of forecasts in 45 member counties of the World Bank was undertaken. The analysis of forecast accuracy is based upon comparing actual sales (GWh) versus forecasted sales (GWh), as identified in over 200 separate forecasts in over 100 separate power systems/regions. This resulted in a database with 1,600 data points.¹ The results of our analysis support a number of conclusions:

- (1) Forecasters have been optimistic about electricity sales. Globally, there have been on average, three forecast "over-estimates" for every under-estimate. This strong historic bias toward over-estimation cuts across forecasts in all regions, for different time periods and horizons, and economic environments.
- (2) Not surprisingly, forecast deviation and uncertainty increase with the forecast horizon. On a global basis, the mean absolute percent deviations were 11.9 percent for a forecast horizon of 3 years, 19.9 percent 7 years out, and 29.1 percent 10 years out. The corresponding standard deviations were 12.6 percent, 16.8 percent, and 23.6 percent respectively.
- (3) There has been no trend toward improved accuracy of forecasts over time. Pre-1975 forecasts (especially the 1960-65 group) outperformed their successors. Perhaps this is due to the higher economic growth rates generally experienced during that period. Obviously, the long-term performance of more recent forecasts is still unknown. In the same breath we hasten to add that forecasts for a given target year do improve as the initial year of the forecast approaches the target year.
- (4) Countries in the Latin America and Caribbean region (LAC) as a group outperformed the rest of the world, especially in the near-term. African countries lagged somewhat behind in average performance. Based on our data, we are not able to conclude whether these differences are related to the stage of

¹ A data point is defined by 3 numbers; actual sales, forecast sales, and year.

development of power systems, or relative economic prosperity, or some other causal factors.

- (5) The record of large utility systems seems to be better than smaller ones. This trend is especially clear over short horizons.²
- (6) Wealthier economies -- as measured by GNP per capita -- have achieved better accuracy in forecasting than poorer ones. Forecasts in countries with higher per capita income generally had higher accuracy and lower variance than poor ones, although there are notable exceptions to this generalization. Causality is <u>not</u> inferred by this observation.³
- (7) Greater forecast accuracy can be observed when national economic growth rate improves or remains high during the period of the forecast. In contrast, generally poorer accuracy and higher variance occurs when economic growth slows during the forecast period.
- (8) Poorest forecast performance tends to occur in countries which received relatively low World Bank funding in their power sector. High Bank funding, however, does not appear to assure forecast accuracy.
- (9) Year-to-year forecast performance is not entirely random. While there is considerable oscillation in annual mean deviation, high deviations observed in early years are seldom reversed.
- (10) Forecast accuracy for utilities in the Bank's members countries was close to that of smaller U.S. utilities in years 4 and 6 of the forecast horizon, but markedly poorer in year 2. Interestingly, the mid-term (year 6) performance of large U.S. utilities that spend large sums of money in forecasting, was comparable to those of the Bank's member countries.

² One reason for the lower error magnitudes may be inherent in the definition of the error variable which is expressed as a percentage of actual sales. Larger utility systems by definition will have higher sales.

³ Again, to the extent that wealthier economies are "collinear" with larger utility systems, lower error magnitudes may be partly explained by the manner in which the error variable is defined.

(11) In contrast to sales forecasts, loss forecast deviations do <u>not</u> offset sales forecast deviations to produce more accurate generation forecasts. Loss forecasts do not reveal any clear bias toward over- or under-estimation either in terms of frequency or magnitude, so generation forecasts on average reflect the same deviations (MPD) found in sales forecasts. This result was observed in global data and in country groups classified by region and income. On a global basis, the magnitude (MAPD) of loss forecast deviations have been almost double the level observed in sales forecasts of short to medium horizon.

Recommendations and Directions for Future Research

Based on the above findings, we offer the following recommendations and directions for future research:

(1) New methods need to be employed for explicitly incorporating load forecast uncertainty in the evaluation of electric power projects. There is a substantial and growing literature on the subject of project appraisal and decision making under uncertainty. A comprehensive and incisive review of this body of knowledge can provide the basis for defining specific evaluation procedures for explicitly addressing load forecast uncertainty in power project evaluation.

A decision analysis framework for evaluating the impacts of load growth uncertainty is sketched and illustrated in the following section and in Annex 5 of this report.

- (2) There appears to be considerable scope for improving the accuracy of near-term (years 2, 3, and 4) forecasts. An examination of the trendingjudgement methodologies used by large U.S. utilities may prove to be useful in this regard.
- (3) Greater emphasis should be placed in improving load forecasts for small power systems and in poorer countries. In absolute terms, loans to these countries are often not large. However, in relation to the country's national budget, these amounts can be significant. Thus, serious

imbalances between power demand and supply in such countries can result in substantial efficiency losses to the nation as well as gross misallocation of resources.

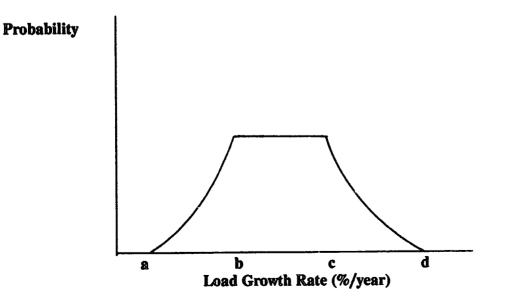
- (4) The power market survey method should be emphasized for all systems-particularly in the industrial sector--as a means to quickly and costeffectively improve overall forecasting accuracy in the near-to mediumterm.
- (5) The database problems in completing this study were immense. Some of the most desirable data for analysis was not available, including details of forecast methods, and assumptions about the key "driving variables". Guidelines should be established for documenting key aspects of the forecast on a consistent and uniform basis. In addition, Project Completion Reports should provide more detailed and complete data in a standardized format on actual sales by customer segment, and other select variables such as number of connections, tariff changes, sectoral growth rates, etc. This will enable compilation of a more complete data set. Such a data set is necessary in order to analyze the sources and causes of forecast deviation.
- (6) Further research is needed to reveal the structural causes of forecast error. This task will require specific and detailed knowledge of each forecast -e.g., level of effort (cost, manpower), data availability, level of sophistication of the methodology, experience of the forecaster, forecast assumptions and actual movement of economic variables including sectoral value added and energy prices. It will be necessary to study the determinants of forecast deviation by customer category in order to meaningfully identify causality. Additional data will be required on actual and forecasted losses due to unbilled consumption, extent of supply constraints, and their impacts on different customer segments. Such a data collection effort will require a detailed review of consultant reports on load forecasts as well as the support of the power authorities involved in providing key data elements.

Once such disaggregated data and information is assembled, analyses can proceed to determine key explanatory variables, and to assess the relative contribution of each variable to the overall forecast error.

5.2 PLANNING FOR AN UNCERTAIN FUTURE

Forecasting electricity demand requires making assumption about the values of key exogenous variables which include economic growth rates and emerging sectoral patterns, demographic and socioeconomic characteristics, prices and availability of alternate fuels, national and regional development policies, technological innovation, consumer lifestyles and attitudes, extent of energy conservation potential realized, and political and regulatory factors. These variables are essentially beyond the realm of utility control, and are subject to substantial uncertainty.

Further, informed individuals and even "experts" who have carefully studied the situation can and do arrive at different assumptions as regards the values that these variables will assume in the future. Thus, differences in load forecasts may arise due to differences in the estimates of one or more of the exogenous variables listed above. Differences may also arise due to the forecasting technique used.


In short, uncertainties and the state-of-the-art in load forecasting preclude a definitive point load projection. The results in this report underscore this point. Forecast uncertainty is an inevitable reality and a priori there is no load forecast that is the correct forecast or the best forecast. In fact we would go so far as to say that even if a forecast turns out to be correct, ex-post, it is due to fortuitous circumstances and not because the method used to generate it was the correct method.

Therefore, the issue in generation resource planning and power project evaluation is not whether demand will grow at X percent or Y percent annually. Rather, the issue is what is the best resource development strategy given that loads are likely to grow at a rate between X percent and Y percent in the future?

In other words, the planning problem is not simply one of first identifying the correct load growth rate and then determining the least cost expansion plan for the forecast, and which provides adequate reliability. Such a perspective merely sidetracks the real issue and engenders the unresolvable nitpicking debate among "experts" that "my forecasting model is better than your model". This is not to imply that nothing can be gained by a critical comparison and review of alternate load forecasting models and their assumptions and that no attempts should be made to reconcile divergent load forecasts; or that load forecasting is not a useful exercise.

On the contrary, load forecasting is exceedingly important. However, the more important and immediate task in power system planning -- measured in terms of return on investment in effort -- is not in further refining the tools for forecasting what the future looks like precisely. Instead, the need is to devise a planning process for dealing with the inherent uncertainties in the future. In the future, load forecasting must strive to establish as accurately as possible, the range of uncertainty associated with future load growth.

This recognition has increasingly emerged among many utilities in the U.S. Indeed since around 1982, the Pacific Northwest Power Planning Council -- a public power planning agency with oversight responsibility over the Bonneville Power Administration (BPA) -- has officially adopted the position that point load forecasts are in themselves meaningless. The position adopted by the Council is typified by the trapezoidal type of probabilistic load forecast as depicted in the figure below:

The distribution above defines a band of growth rates between b and c percent per year over which the analyst has little means for discriminating the probability assessments for various outcomes. Outside this band the probabilities taper off though not necessarily in a symmetric fashion. The planning strategy adopted by the Council and BPA is to develop a resource development strategy which can be adjusted to any outcome in the range b to c. Several other leading utilities in the U.S. and Canada have recently begun to come around to this view.

For example, this view typifies the position of Southern California Edison Company, one of the five largest investor owned utilities in the U.S. A recent planning document released by the system department notes:

> "An examination of Edison's ten-year forecasts and their associated plans since 1965 indicated that, in each case, unforeseen events radically changed the business environment, rending the forecasts invalid. In retrospect, we concluded that no one could have predicted with anv degree of accuracy the nature or timing of these phenomena. Even if we had anticipated these events, we could not have foreseen their full impact on our business environment.

> The implication of this lesson is that it is futile to try to predict the future with any precision, and unwise to tie future plans too rigidly to any single projection or forecast. As a result of this review, we have concluded that the best way to plan for future uncertainties is to postulate a series of plausible scenarios and prepare response strategies for each. These two premises form the cornerstone of Edison's new planning philosophy."⁴

Risk Management Using Flexible Resources

The preceding discussion underscores the fact that the generation resource planning problem is one of risk management. It cannot be simply solved through a good point load forecast. Rather the problem is one of managing resource: that provide sufficient flexibility in scheduling so that potential surplus and deficit situations can be continually corrected on an ongoing basis and in a cost effective manner.

⁴ "Strategies for an Uncertain Future," System Planning and Research Department, Southern California Edison Company, Rosemead, California, March 1988.

Effective planning under such circumstances will require the development of a portfolio of resources that can match any reasonable eventuality within the specified range of planning uncertainty. This in turn means that the individual components of the resource strategy will consist of a menu of resource choices. Ideally, some options in this array can be readied for service quickly, whereas other choices can be "turned off" at short notice. Further, such resources should be available in varying sizes. Together therefore, these characteristics would ensure an approximate matching of loads and resources at all times.

Examples of such resources that have traditionally been considered in generation planning include building combustion turbines (CTs), negotiating firm contracts for purchases/sales, and short term purchases/sales. In recent years conservation, and load/demand management are increasingly being viewed and used as a flexible resource. This is because, once a program has been designed and tested thoroughly it can be scaled up or down relatively quickly, i.e., with a short lead time of (six months to-a-year). Further it can be acquired in small increments or on a larger scale and with energy/capacity savings being realized immediately.

A Decision Framework for Planning Under Uncertainty

۱

In light of the preceding discussion we suggest the following decision analysis framework as a basis for evaluating alternate generation expansion strategies and selecting a prudent course of action, given the uncertain future.

The essence of our suggested approach is captured by the "decision matrix" depicted below. The rows represent different resource development strategies or simply the load growth rates one should plan to today. This simple framework can be easily made more elaborate by incorporating other futures beyond those represented by the three load growth outcomes 1, 2, and 3. However, our purpose is to simply highlight the basic interplays at work, and how alternate decisions can be evaluated under such conditions.

Plan For	Actual Outcome				
<u>Outcome</u>	1	2	3		
1	X ₁₁	X ₁₂	X ₁₃		
2	X_{21}^{11}	X22	X23		
3	x ₃₁	x ₃₂	X ₃₃		

The starting point for this analysis could be the three least cost expansion plans, corresponding to each of the three projected load growth rates 1, 2, and 3. These sequences represent the best strategy <u>if</u> the future unfolds in accordance with the corresponding load growth rate. Next, each of these sequences is evaluated to simulate how it will "stand up" to alternate outcomes. Different economic and financial measures can be developed and estimated for this purpose. In this manner the nine entries in the decision matrix can be estimated.

For purposes of illustration, X_{12} represents the "cost" associated with planning for "outcome 1", but the future eventually evolves in accordance with outcome 2, and so on. Clearly, the diagonal cost elements -- X_{11} , X_{22} , and X_{33} -- are the lowest entries in each row.⁵ This merely reflects the fact that each plan is a least cost sequence under the corresponding future. It is information about the off-diagonal cost elements in the above matrix which provides valuable insights about the robustness and flexibility of each plan to cope with different futures. This information can be effectively utilized to arrive at the final resource expansion strategy.

This procedure can be used for evaluating individual power projects as well. At a minimum, the "robustness" of the project should be evaluated by undertaking a scenario analysis. To establish the specific load growth scenarios, information in Table 3-1 can prove to be useful. For example, the record indicates that the average overestimate in year 7 was about 21 percent (on a "all region" basis), and the average underestimate was about 15 percent. This value can be used to create two scenarios around a load forecast. A probabilistic decision analysis can be carried out by defining different load outcomes and their corresponding probabilities of occurrence. In developing such a

⁵ In a more complex analysis, the X_{ij}'s can represent multi-dimensional "vectors" whose components define key attributes of each outcome, such as electricity prices, fuel costs, unserved energy, environmental effects.

characterization for different forecast horizons, data on forecast error distribution as reported in Table 3-8 can be useful.

The paper in Annex 5 illustrates an actual application of this decision analysis framework in the context of an electric utility in the U.S.

.

ANNEX 1

- 69 -

POHER PROJECTS APRICA BEGIOD

Page 1

Country Loan/Credi			SAR	PPAR/PC8	
	Loas/Credit Susbors	Project Title	Date Eo. (yyan)	Ho.	Date (yynn)
ETEIOPIA	0375 87	BTBIOPIAN BLECTRIC LIGHT & POWER AUTHOBITY	0413 6404		
BIBIVE18	0596 8 T	FINCHAA HYDROBLECTBIC (POWEB II)	0009 6904	1102	7603
	1704BT	RUERGY PROJECT	5555 8605	1140	1044
GBABA	011868	POWER DISTRIBUTION	0629 6805	1568	7704
	0256GE	SECOND POWER DISTRIBUTION	0052 7010	1568	7704
	0310GE	VOLTA RIVED ADBOBLECTRIC	0281 6108		
	061861	VOLTA BIVBE HYDROBLECTRIC EXPANSION	0008 6905	1363	7611
	138068	KPOBG HYDROBLECYBIC	1299 7703	5731	8506
	1381GHL/0689GHC	THIRD POWER PROJECT	1196 7703		8506
	1628GH	POWER SYSTEM REHABILITATION	4932 8508		
	1759GE	HORYHERH GRID BITENSION PROJECT	6301 8701		
Kenya	0745 <u>8</u> B	KANBURU NYDROBLECYBIC	0070 7105	1230	7607
	1147BB	GITARU HYDROBLECTRIC	0627 7505	3505	8106
	1799EB	OLKARIA GEOYAERUAL POUEB	2533 7912		
	2237KB	OLKABIA GEOYHERBAL POURE EXPANSION	3974 8301		
	2359KB	KIANBERE BYDROBLECTRIC POWER	4336 8311		
LIBBRIA	0684LBR	POWER EXPANSION PROJECT	0038 7005	1551	7703
	0778LBR	SECOND POWER PROJECT	0072 7106	1551	7703
	1600LBR	FOURTH POURA PROJECT	1746 7806 [.]	4614	8306
HALAHI	0178HAI	POWER PROJECT	0024 7001	0645	7502
	0426HAI	SECOND POUBR PROJECT	0174 7308	2116	7806
	1387HAIL/1388HAIL/0691HAIC		1149 7703	4859COH	8312
TIGEBIA		PONER SYSTEM IMPROVEMENT PROJECT	6923 8710		
	03720UI	TRANSMISSION PROJECT	0380 6401		
	038308I	KAINJI HULYIPORPOSE	0398 6406		
	05720BI	RAINJI BULYIPORPOSE (SOPPLEMENYARY)	0679 6810		
	08470HI	FOURTH POWER PROJECT	0098 7206	5936	8511
	17660BI	LAGOS POWER DISYRIBUTION	2502 7910		
	20850HI	SIXYE POWER PROJECT (TRANS & DIST)	3041 8109		
SIBBBA LEOUB	0388SL	PONER SYSTEM REMABILITATION PROJECT	5462 8503		
	0553SL	RIGG TOM POUER STATION & DIST. PROGRAM Second Pouer Project	0423 6407	1816	99.46
	0734SL	TEIRD POURR PROJECT	0626 6806 1183 7705	1610 4525COH	1705
SUDAD	019498	POURTH POURA PROJECT	4879 8402	4973M8	0943
94848	052250	POURT POURT PROPERT	0608 6712	1160	9686
	056450	SECOLD POHER PROJECT	0516 7504	5388COH	7605 R419
	1006SU	POHER III - PUBLIC ELEC?. & SUPPLY CORP.	2399 6003	~~~~~	0716
	162450	POWER REMABILITATION PROJECT	5333 8506		
	178850	POORTE POURE PROJECT	6676 8704		
TAUZAHIA	051874	POURE DEVELOPHENY PROGRAM	0594 6710		
.avuu 44	071574	RIDATO EYDROELECTRIC		2765	7912
	13067A	SECOND KIDATU HYDROELECTRIC POHER	0927 7606	4622COH	
	140574	PONEB IV (HYBRA HYDROBLECYBIC)	4050 8306	TAADOAA	****
		saure si fregge reggangargest	IAAA AAAA	-	

PPAB/PCB Bo. Legend: \$888APP = APPRAISAL'REPORT \$8884COH = COMPLETION REPORT

PONEB PROJECTS AFBICA REGIOE

Page 2

			8	AB	PPAB/	PCB
Coantry Loan/C	Loan/Credit Hunbars	Project fitle	No.	Date (yynn)	Eo.	Date (yynn)
yauxania Xanbia	16077A 01458B	PONER REBABILITATION PROJECT KARIBA HYDROELECTRIC	0116	8604 5606		
ZAHBIA/ZIHBABNE	07012A 09192A 03922BB5	KARIBA HORTH HYDROBLECTRIC RAFUE HYDROBLECTRIC CENTRAL AFRICAN POWER CORP. PROJECT	0086	7006 7305 6409	4661 5566C08	8308 8503
3 IHBABNB	005858 2212810 2900210	POWER EXPANSION PROJECT POWER PROJECT SECOND POWER PROJECT	3884	5202 8211 8712		

.

No. of Selected Projects in Region = 51

PPAB/PCB Do. Legend: \$\$\$\$APP = APPRAISAL BEPORY \$\$\$\$CON = COMPLEYION REPORT

Page 3

			SAR	PPAB/	PCB
Country	Loan/Credit Humbers	Project Title ASUGGADI TUBURIAL POWER STATION EXTENSION TA FOR EAST PAKISTAN HAPDA GRATER ENULAA POWER DISTRIBUTION ASUGGADI TURENHAL POWER POWER TRANSHISSION A DISTRIBUTION HAPARASHYEA STATE FOUTA HYDRO DEVELOPMENT SECOND KARHATAKA POWER POURTH DANDAR VALLEY CORP. EXPANSION BOKARO-KONAR POWER SECOND KONTA HYDROBLECYBIC LOTHAGUDEN POWER SECOND KONTA HYDROBLECYBIC EOTHAGUDEN THERMAL POWER SECOND KONTA HYDROBLECYBIC EOTHAGUDEN POWER SECOND KONTA HYDROBLECYBIC EOTHAGUDEN POWER SECOND KONTA HYDROBLECYBIC EOTHAGUDEN POWER SECOND KONTA HYDROBLECYBIC EOTHAGUDEN THERMAL POWER FUED DANDAR VALLEY POHER EXPANSION FOURT POWER TRANSHISSION POWER TRANSHISSION SECOND KONTAGUDEN POWER FOORTH POWER TRANSHISSION SECOND KONTAGUDEN POWER SECOND SINGRAULI THERMAL POWER SECOND SINGRAULI THERMAL POWER FARAKA THERMAL POWER SECOND KORBA THERMAL POWER FARAKA THERMAL POWER FORE HIDDAVATI HYDRO HITTP POWER TRANSHISSION FITTP POWER THERMAL POWER SECOND KORBACHANT HYDRO FITTP POWER THERMAL POWER BECOND HARAGUDENA HERMAL POWER FORTH HERMAL POWER BECOND HARAKA THERMAL POWER HERMAL ATHER DEV GUJARAT: SARDAR SAROVAR DAM A POW HARMAL ATHER DEV GUJARAT: SARDAR SAROVAR DAM A POWER HERMAL ATHER POWER HERMAL FOWER TRANSHISTON PROJECT KERMAL SARYE POWER HERMAL POWER TRANSHISTON PROJECT	Date No. (yyaa)	Bo.	Date (yynn)
BANGLADESH		ASUGGAUI TURBUAL POURD STATION EXTENSION	5872 8508		
	0136PAK	7a pob basy pakisyad hapda	0691 6812		
	0934BD	GREATER REULEA POWER DISTRIBUTION	2476 7905		
	1254BD	ASHUGAHI THERMAL POWER	3719 8205		
	1648BD	POUGH TRANSHISSION & DISTRIBUTION	5510 8512		
INDIA		UARABASUYDA SYAYE EOUYA HYDRO DEVELOPUEBY	0496 6508		
	44447	SECOLD KARHAYAKA PONER	6988 8710		
		FOURTE DANOUAR VALLEY CORP. EXPANSION	0310 6202		
	992310 889418	BULANU-AUUAN IVAKA GRAAND RANKA HYDDODI RADDIA	0083 2003		
	409718 AA9718	DECUED RUBIE HIDEVELECTEIC Robergeden Boerd	VJZJ 62VI		
	993118 AA9318	EVIDEGUDEE FUNEE Crante Randred Ralizy carrages	VJDZ 0JVJ 0000 6901		
	A107218 A1072	obuury yhruphi taluri uururaiiur Trurky yhruphi taluri uururaiiur	0006 JJCI 0150 KYOK		
	A164TB	PROHRAY CHURCHAL DOWDA SIAIIVH BACHBOIVH	0120 5705 0027 5411		
	020318	PRIER NAMODAR VALLEY POHER RYPANSION	0176 5807		
	022319	ROBYA HYDRORLRCYPIC	0187 5903		
	024210	SRCORD POURE TRANSMISSION	0047 7104	3006	8006
	037718	TRIRD POWER TRANSMISSION	0035 7302		
	041610	POURR TRANSHISSION	0462 6505		
	041710	SECOND KOTHAGUDEN POWER	0435 6505		
	060410	POURTH POURD TRAUSHISSION	0913 7512		
	068518	SIUGBAULI PHERUAL POWER	1159 7702	6784	8705
	079310	Borba Thermal Power	1783 7803	6855COU	8706
	102718	SBCOUD SINGBAOLI YUBBHAL POWBB	2745 8004		
	117210	SBCOND KORBA THERMAL POHER	3397 8106		
	154910	THIRD TROUBAY TUBRNAL POWER	1768 7803	6253COH	8606
	1648IUL/0874IUC	RAHAGUNDAH YHERUAL POHER	2175 7812		
	1887IBL/1053IBC	PARARKA THERMAL POWER	2976 8005		
	207610	SECOLD RABAGULDAH YHERUAL POZER	3608 8111		
	227010L/135618C	UPPKE IHDEAVAATI UYDEO	4289 8304		
	ZZUJIU AANETRI (BADATRA (1619180	PIPTH PURKE THANSHISSION DODDARA (THANSHISSION	4293 8304		
	2410186/PUZU186/1013186	BUUNGHAT (INDIKA SAKUVAN) HIDKUKLEUTKIU CDOORD RADARRA BURDHAR DOURD	4903 9404 4903 9404		
	U13693	Devud Fasana ibbeust funda Bandar obandar gedonal danre	4596 0465 4596 0465		
	647618 9707181/1669180	YVVIII ISVEDAI ISBEBE VUNSA Nadnada Dibrd Dry - Chiaday.Caddad Cadovad Dan & Don	6040 0669 6149 0649		
	2931100/1332100 95/410	CRAUDAVA ALTER VAT. * OVCAGAL-JAGVAR JAGVTAR VAG G EVM CRAUDAVA ALTER VAT. ANTRA	5101 030L		
	255518	RIBADD POWER TRAUSHISSION PROJECT	5410 8505		
	258210	REBALA STATE POWER	5484 8505		
	267418	COUBINED CYCLE POWER	5831 8602		
	282718	KARDAYAKA POHBR	6695 8705		
	284410	HATIOBAL CAPITAL POWER SUPPLY (PHASE I)	6270 8705		
	284510	PALCHER PERHAL POWER	6402 8705		
INDONESIA		POWER SECTOR REPEICIBLEY	7122 8803		

PPAR/PCE Bo. Legend: 8888APP = APPRAISAL REPORT 8888COH = COHPLETION REPORT

POHER PROJECTS -ASIA REGION

.

- 14 -

Page 4

			SAR	PPAR/PCR
			Date	Date
Country	Loan/Credit Bunbers	Project Title	Ho. (7783)	Bo. (778)
INDONESIA	0165 110			
	0334 IBD	BLECTRICITY DISTRIBUTION SECOND BLECTRICITY DISTRIBUTION	0095 7206	
	03991ND	UEST JAVA TEKKEAL PUBKK	0081 1305	5104 840
	1127IBD	FOURTH POWER PROJECT	0766 7505	
	1259IND	FOURTE POWER PROJECT BIFTE POWER PROJECT SIXTE POWER PROJECT SEVERTE POWER PROJECT		5300CON 8410
	1365IND	SIXTE POWER PROJECT		6238COH 8600
	1513IHD	Sevente Power Project		6762COH 870
	1708IND	BIGHTE POWER PROJECT	2375 7905	
	1872IUD	HINTH POWER PROJECT	2694 8003	
	1950IUD	TENTH POWER PROJECT	3185 8101	
	20561BD	BLEVENTH POHER PROJECT	3468 8109	
	2214IUD	THELFTH POWER PROJECT	4046 8211	
	2300IBD	YHIRYKRYH POHKE PROJECY	4356 8305	
	2443IUD	HINTE PONER PROJECT TENTE PONER PROJECT BLEVERTH PONER PROJECT THELFTE PONER PROJECT FRIETERETH PONER PROJECT FOURTERETH PONER PROJECT KRINEL ONEO HILLTIPURPOSE DAN & TREICATION	4949 8405	
	04.1410A	CERADA ANDA MADITIANT AND AND O TENTAGITAD		
	2778IUD	POUBR TRANSMISSION & DISTRIBUTION	5491 8612	
HALAYSIA	0210UA	FIRST POWER PROJECT	0173 5809	
	0350 <u>HA</u>	SECOND POWER PROJECT	0371 6307	
	0458118	BAYIOHAL ELECTRICITY BOARD POURTH POWER PROJECT FIFTH POWER PROJECT	0546 6607	A994 9604
	0579HA	FUURTH FUNER FRUJECT	1697 6812	
			0043 7006 0347 7406	
	10318A	SIRVE PONER PROJECT		6001COH 8512
	11788A 144984	SR7BETE POWER PROJECT BIGETE POWER PROJECT	1690 99AC	6241COH 8606
	1443UA 1808NA	BIGGIE FUNBL FRUGBUI BIGGIE FUNBL FRUGBUI	2036 8002	0241009 0000
	27728 <u>4</u>	BEDRA BESTUTORUS V DIVRA BEDRD BIDIH LAMBD LEAGEOI (DEBDIH A PERETRA HIARA)	6373 8611	
PHILIPPINES	811648	BIGHTH FORSH FROJECT (BERSIA & KEUERING HYDRO) BINTH POWER PROJECT (BERSIA & KEUERING HYDRO) BUERGY EFFICIENCY & PLANT REEAB. BACON HANIYO GEOTHERNAL POWER BINGA HYDRORLECTRIC ANGAY HYDRORLECTRIC	6999 8711	
raibirr 1860	0163PB	Dievy Rabdvii Svadiu Drama Rubilla Apaiddungt Landr	0156 5711	
	9297PE	argaq bibrodructelo	0298 8110	
	0325PE	MARIA CHRISSINA RALLS HVRDADANRR RYDANSIAN	0335 6210	
	0491PE	AHGAY HYDROBLECTRIC MARIA CHRISTIMA FALLS HYDROPONER BXPAUSION FOGBYH PONER PROJECY	0512 6703	0980 7601
	0809PHL/0296PEC	BIERE POWER PROJECT	0079 7202	
	103428	SIXYA POWER PROJECY	0421 7406	
	1460PE	SEVENTE POHER PROJECT	1552 7705	
SRI LANKA	0101CB	ABBRDBBU-LAKSAPANA BYDROBLECTBIC	0043 5406	
000 00000	0209CB	GRAMPASS THERMAL PONER	0174 5806	
	0283CE	HORTON BRIDGE HYDRO & GRANPASS II THERMAL	0268 6104	
	0372CB	FIFTH POWER PROJECT	0021 7303	3711 8112
	0636CB	POURTE POWER PROJECT	0017 6907	
	0653CBL/0174CBC	HARAHBLI GANGA DEVELOPHENY		
	1048CB	SIXTH POWER PROJECT	2905 8006	
	1210CB	SBVEHTU POUBB (HARAWELI YRAHSUISSIOD)	3599 8201	
	1736CB	PONER IX - DIST, TRANS & REMABILITATION	6032 8609	

PPAR/PCB Bo. Legend: 8888APP = APPRAISAL BEPORY 8888COH = COMPLEYIOU BEPORY

Page 5

•

Country Loan/C			SAR	PPAB/PCB
	Loan/Credit Runbers	Project Title	Date Bo. (yyna)	Date Bo. (yyun)
SRI LAPRA THAILAND	2187CB 0036TH 0175TH 0333TH 0406TH 0489TE 0514TH 0655TH 0790TE 0977TH 1485TH 1689TH 1690TH 1770TH 2000TH 2915TH	BIGETE (DIESEL) POWER PROJECT WAN CHON (OPPER QUAI YAI) HYDROELECTEIC CHAO PETA IBRIGATION & COMMUNICATIONS YANNEE MULTIPORPOSE SECOND YANNEE PROJECT THIED YANNEE PROJECT POURTH YANNEE POWER PHASON DAN FIRST REAT POWER SOUTH BANKOK THERMAL POWER - UNIY IV BAN CHAO HEN HYDROELECTRIC PATTANI HYDROELECTRIC BANG PARONG THERMAL POWER KHAO LARM HYDROELECTRIC POWER SUBSECTOR PROJECT POWER TRANSHISSION PROJECT	3891 8205 3891 8203 0090 5096 0187 5700 0349 6302 0458 6503 0574 6702 0563 6706 0020 6912 0075 7109 0291 7403 1447 7707 2271 7904 2568 7910 3158 8104 6773 8801	2850 8002 1142 7604 1966 7803 3999 8206 5607C0H 8504 6660C0H 8702 6157C0H 8604

Ho. of Selected Projects in Region = 102

PPAB/PCB Bo. Legend: ****APP = APPRAISAL REPORT ****COH = COHPLETION REPORT

Page 6

CYPBUS C C Jobdan C)335CY)494CY)649CY)831CY 1873CY)386JO)570JO	Project Title POWER PROJECT SECORD POWER PROJECT THIED POWER PROJECT POWER DISTRIBUTION & TRANSWISSION HOSSEIN THERMAL POWER SECOND HUSSEIN THERMAL POWER THIED POWER PROJECT	034 056 002 009 293 009	6304 6704 6912 7205 8005		7507
CYPBUS C C Jordan)335CY)494CY)649CY)831CY 1873CY)386JO)570JO 1688JO	POWER PROJECT SECOND POWER PROJECT THIRD POWER PROJECT POUETH POWER PROJECT POWER DISTRIBUTION & TRANSWISSION HOSSEIN THERMAL POWER SECOND HUSSEIN THERMAL POWER	034 056 002 009 293 009	6304 6704 6912 7205 8005	0819 2259	7507
C C Jordan C)494CY)649CY)831CY 873CY)386J0)570J0 688J0	SECORD POWER PROJECT THIED POWER PROJECT FOURTH POWER PROJECT POWER DISTRIBUTION & TRAUSHISSION HUSSEIN THERMAL POWER SECORD HUSSEIN THERMAL POWER	056; 002; 009; 293; 009;	6704 6912 7205 8005	2259	
C I Jordan)649CY)831CY 1873CY)386J0)570J0 688J0	THIED POWER PROJECY POUETH POWER PROJECY POWER DISTRIBUTION & TRANSHISSION HOSSEIH THERMAL POWER SECOND HUSSEIN THERMAL POWER	002: 009: 293: 009:	6912 7205 8005	2259	
JORDAN O)831CY 1873CY)386J0)570J0 1688J0	THIED POWER PROJECY POUETH POWER PROJECY POWER DISTRIBUTION & TRANSHISSION HOSSEIH THERMAL POWER SECOND HUSSEIN THERMAL POWER	0093 2932 0095	7205 8005	2259	
JORDAN O	1873CY 1886JO 1570JO 1688JO	POWER DISTRIBUTION & TRANSMISSION HOSSBIN THERNAL POWER SECOND HUSSBIN THERNAL POWER	293) 009:	8005		
JOBDAU 0)386JO)570JO 688JO	HOSSBIH THRRMAL POUBR Second Hussbih Thermal Pourr	009		6009008	7811
)570JO 1688JO	HOSSBIH THRRMAL POUBR Second Hussbih Thermal Pourr		2007	3992000	8512
	1688JO		0735	1 1999	3875	8203
(GRIDE DANDE DEATORS	4141	7505	3875	8203
1	1986JO	IFIER LAAPE LEAGUI	236	7903	5172CON	8406
1		YHIED POWER PROJECY POORTH POWER PROJECY BUERGY DEVELOPHENT PROJECY CLIEBE DOWER DROJECY	332	8104		
2	8162JO	PIPTE POUER PROJECT	368	8204		
2	2371JO	BURBGY DRARFOLHERL BROYRCL	462(8311		
2	2710JO	STATE PILIKE PHILIKI.T	607	8605		
2	2835JO	SEVENTE POURE PROJECT DCEAR EL QUED HULTIPURPOSE		8705		
HOBOCCO		DCHAR BL QURD HULTIPURPOSE		8304		
0)936HOB	POURR PROJECT		7308	4028	8206
	299HOB	POHER PROJECY SIDI CEBEO-AL HASSIRA HYDRO Poher Distribution project		7606		
2	2910BOB	POHER DISTRIBUTION PROJECT		8801		
PARISTAD		TRAUS & DIST - KARACHI BLECT. SUPP. COBP.	0062	7102		
)120PAK	RAPACEI POURB	0061	5506		
		SECOND KARACHI POWER		5804		
		HAPDA POHER PROJECT		7007	3410	8104
				5908	••••	
	488PAK	POURTE KARACUI POURR		6702		
	968PAK	THIRD KARACHI POUBB Poubte karachi poube Third Wapda Poube Project		7911		
	208PAK	SECOND UAPDA POWER PROJECY		7601	6004	8512
	499PAK	FOURT WAFEA POUR PROJECT		8502	••••	***4
	1556PAK	PIPTE HAPDA POWER PROJECT		8505		
	1698PAK	KOY ADDU COUBILIED CYCLE POWER		8604		
	1792PAK			8703		
	362P0	POHER PLANY BEFICIENCY INPROVEMENT HIDRO BLECTRICA DO DOURO MYDROPONEB		6310		
	1363PO	EUPRESA TERNOBLECTRICA PORTOGUESA THERNAL		6310		
	1412P0	CARREGADO TEERBAL POHER		6504		
	1452P0	CARRAPAYELLO HYDROBLECTRIC POHEB		6605		
	1453P0	SECOND CABERGADO TERREAL POMEE		6605		
	301PO	SIXYII POHRB PROJECY		7606	4294COH	9101
	240PO	SEVERTE POHER PROJECT		8301	9699000	0401
YUHISIA	A 141 A	SIDI SALEH HOLYIPORPOSE		7705		
	355700	SECOND POUR PROJECT			4456COB	0904
	10037DE	THIRD POHER PROJECT		8104	4330VVII	9999
YURKEY		BOYABAY HYDROPOUBE		8712		
	103490	CURUROVA BLECTRIC CO. PROJECY				
	105990			6301		
	06310	SECOND CURUROVA ELECYRIC CO. PROJECY Sevhan River Hulyipurpose		6702 5204		

PPAB/PCB Do. Legend: 8838APP = APPRAISAL BEPORY 8888COD = COMPLEYIOD REPORY

.

.

.

			SAR	PPAR/PCR	
Country	Loan/Credit Hunbers	Project Title	Date Bo. (уувв)		Date /yan)

JOBKEY	056070	REBAN TRANSMISSION LINK	0686 6810	3695	8112
	062390	REBAN TRANSMISSION LINE THIRD CORGROVA POWRE PROJECY	0013 6906		7611
	076370	TAIND CURDENA FORM FROJECT POWER TRANSMISSION PROJECT POURTE CURDENA POWER PROJECT CETHAN ASLANTAS HULTIPORPOSE	0069 7105		8112
	077590	PODRYR CUKUROVA POWER PROJECY	0074 7106		7611
	08837UL/03607UC	CETEAN ASLANTAS HOLTIPORPOSE	0016 7301		8705
	089270	ISTANBOL POWER DISTRIBUTION	0020 7304	4264	8212
	102390	ELBISTAN CIGNITE NIBE & POWER	0342 7406		
	119470	SECOED POWER TRANSMISSION PROJECT	0679 7511	5304C0H	8410
	184470	BABAKAYA HYDROPONER	2848 8004		
	232270	TEIRD TEK TRANSMISSION	4407 8305		
	258690	FOURTH TER TRANSMISSION	5571 8505		
		POWER SYSTEM OPERATIONS ASSY. PROJECT	5572 8505		
		BLBISTAD OPBR. & MAINY. ASSISTANCE	5774 8512		
	265570L/80147JL/801570C	KABYAKTEPE HYDROPOWER	5820 8601		
	275090	SIB HYDROPONER	5619 8608		
YBUBD ARAB RBPU	0837YAR	POHER DISTRIBUTION PROJECT	2006 7805	7064	8712
	1361YAB	THIRD PONER PROJECT	4321 8304		
	1701YAB	FOURTE POWER PROJECT	5802 8604		
YUGOSLAVIA		RABYARYEPE HYDBOPOWEB SIE HYDBOPOWER POUER DISYRIBUYIOH PROJECY YHIRD POWER PROJECY FOURYH POWER PROJECY ROSOVO "A" THERMAL PLAET REBAB.	5562 6503		
		PREVICICA NYDRO STATION KEMAB. & EXPANSION	5509 8503		
	027770	HYDROELECTRIC POURE PROJECT	0267 6102		
	031870	BAJIDA BASYA HYBRO PLANY & YRADS. LIDES	0321 6207		
	083670	PONER TRANSMISSION PROJECT	0087 7205	5113	8406
	113670	BUE BIJELA EYDOPONER	0650 7504		
	146970	SECOND POWER TRAUSHISSION PROJECT	1472 7706	5390COH	8412
	156190	HIDDPR ARARIAV HADRO1962	TRR2 1804		
	233870	PONER TRANSMISSION III (BUERGY NGT. SYSTEN)	4193 8304		
	252790	VISEGRAD ^{av} droblecyric	5369 8504		

-

.

No. of Selected Projects in Begion = 71

PPAB/PCB Bo. Legend: \$888APP = APPRAISAL BEPORY \$888COB = COMPLEYION BEPORY

Page 8

--

POHEE	PROJECTS
LAC	REGIOR

Country Loss/Credit Sushers Project Title Date ABRENTINA 038642 50. (7788) 60. (7788) ABRENTINA 038642 SECORD DURING ALIES FOWER PROJECT 0036 6201 055548 SECORD DURING FROJECT 0016 052 1253 7611 055548 SECORD DURING FROJECT 0016 052 1253 7611 056448 THEN DURING ALIES FOWER PROJECT 0016 0561 055 7621 13648 TATERS EDURING ALIES FOWER PROJECT 3242 7960 8636 051748 EL CICCOLD FORDE PROJECT 3242 7960 8636 05180 EURING BALES FOWER PROJECT 3242 7960 8644 17174 EURING FROJECT 3161 5169 864 7763 05200 EUP FOWER PROJECT 016 7366 7760 963 684 1646 012200 EUP FOWER PROJECT 016 7366 1763 7763 012300 SECORD BUDICT 016 7366 4663 6464 012400 SECORD FROJECT 016 7368 4663 6434 0118 POWER PROJECT 016 7368 4663 64434 012400					SAR		PCR
Country Loss/Credit Busbers Project Yitle Bo. (yyms) Bo. (yyms) AREBYTIGA 63064P BORDOS ALBOS FOMEP PADARCY 6006 6201 65248 6524B SCOUDD BUBCOS ALBOS FOMEP PADARCY 6006 6601 1353 T611 6544B THIDD DUBBOS ALBOS FOMEP PADARCY 6001 6602 1353 T611 6644B THIDD DUBBOS ALBOS FOMEP PADARCY 6001 6602 1353 T611 6644B THIDD DUBBOS ALBOS FOMEP PADARCY 6001 6602 1353 T611 6644B THIDD DUBBOS ALBOS FOMEP PADARCY 6001 6605 T6602 7151B TACTRERY HTDOBSLOCTUC FODARCY 6254 606 6061BO EBBO FOMEP PADARCY 6025 606 6061BO EBBO FOMEP PADARCY 6026 6465 6061BO EBBO FOMEP PADARCY 6026 6465 6041BO SCAM JACITOR UNCYTPORPOSE 2564 7806 6148BO FOMEP PADARCY 6036 716 7103 713 1511 1238BO TOTHER BEBABLITATION 6031 5463 713 17511 1238BO FOMEP PADARCY 6036 6403 715 6112 1616DO FOMER PADARCY 6036 6403 715 6112 <th></th> <th></th> <th></th> <th>****</th> <th>Date</th> <th>*******</th> <th>Date</th>				****	Date	*******	Date
0551AB SECODE DURCOS ATRES POURE PROJECY 0606 6601 0577AB EL CENCOR POURE PROJECY 001 6512 1353 7611 0564AB TILBA DURCOS ATRES POURE PROJECY 001 6512 1353 7611 130AB POURT BURIOS ATRES POURE PROJECY 065 7660 609000 8603 2654AB ELTYL SIGBA PROJECY 655 8706 2654AB ELTYL SIGBA PROJECY 655 8706 2654AB ELTYL SIGBA PROJECY 655 8706 2654AB ELTYL SIGBA PROJECY 656 700 0061BO EBDE POURP POJECY 625 6465 0061BO EBDE POURP PROJECY 062 6404 0062BO BECY ONER PROJECY 062 6404 0062BO EBCY ONER PROJECY 063 6403 0052BO POURP PROJECY 063 6403 0052BO POURP PROJECY 063 5460 0043BD TUTILB END FOURP PROJECY 064 5403 0052BB POURP PROJECY 064 5403 0052BB POURP PROJECY 064 5403 0052BB PAILO ALFONSO FYDROELECYRIC 064 5403 0052BB PAILO ALFONSO FYDROELECYRIC	Country	Loan/Credit Hunbers	Project ?itle	Bo.		Bo.	
057788 EL COCCO POUER PEDJECT 0001 6012 1353 7611 06448 TEIED BUENGS AIRES POURCY 0015 609 1055 7602 17518 TACTERTA UTBORGECTIC PEDJECY 0015 609 1055 7602 28548 PICTES BORE PEDJECY 2321 7999 2342 7999 28548 PICTES BORE PEDJECY 3515 6109 105 7606 105 80LIVIA PICTES BORE PEDJECY 3515 6109 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 105 7600 703 711 13300 70011 13300 700110 1010 106 2500 703 711 13301 112 110 112 1105 1105 1105 1105	ARGBUTIUA	0308AD					
66448 TELD DEGOS ATRES FORE PROJECT 0015 6009 1055 7602 13304E FOURTH DEGIOS ATRES FORE PROJECT 0615 7609 6099000 6039 28544R FIFTS SEGA PROJECT 0615 7609 609900 603 28544R FIFTS SEGA PROJECT 0615 7609 6766 7766 28544R FIFTS SEGA PROJECT 0425 6466 5 0061D0 EBDE PORE PROJECT 0425 6466 7703 0041B0 SECOND RUBE PROJECT 0425 6466 7703 0140B0 SECOND RUBE PROJECT 0403 6904 1496 7703 1315 6112 123800 POURT PROJECT 0403 6904 1496 7703 1315 6112 14080 SECOND RUBE PROJECT 0100 7340 2733 715 6112 1212 181080 POURT PROJECT 0036 4603 1496 7703 181080 POURT PROJECT 0036 4603 1496 7703 00182 FOURT PROJECT 0100 7340 273 737 5112 1317 6112 001978 POURT PROJECT 0100 7340 273 737 5112 1317 6112 18080 POURT PROJECT 0035 612 4603 745 <t< td=""><td></td><td></td><td>SECOND BUBBOS AIBES POUBE PROJECY</td><td></td><td></td><td></td><td></td></t<>			SECOND BUBBOS AIBES POUBE PROJECY				
1304.BE FORTH BURIOS ALRES FORE PROJECT 0475 7699 6096C08 6603 2854.AE FITTE SEDE FORE PROJECT 351 6109 556 7703 556 7703 BOLIVIA FITTE SEDE FORE PROJECT 351 6109 556 7703 556 7703 BOLIVIA FITTE SEDE FORE PROJECT 0425 6405 556 7703 556 7703 BOLIVIA BEDE FORE PROJECT 0425 6405 5703 7711 BOLIVIA BEDE FORE PROJECT 0425 6405 1703 7711 BOLIVIA BEDE FORE PROJECT 0425 6405 1703 7711 BOLIVIA BEDE FORE PROJECT 0425 6405 1703 7711 BOLIVIA FORE PROJECT 0425 6405 1703 7711 BASID FORE PROJECT 0451 7603 7710 0112 1710 1710 1710 1711 <td></td> <td></td> <td>BL CHOCON POUBR PROJECT</td> <td></td> <td></td> <td></td> <td></td>			BL CHOCON POUBR PROJECT				
2854RE PITTS SGGA POJACT 6758 0766 BOLIVIA FITTS SGGA POJACT 3517 1019 SAM JACIBTO HULTIPOROSE 2564 7906			THIRD BUBBOS AIRES POHER PROJECT				
2854RE PITTS SGGA POJACT 6758 0766 BOLIVIA FITTS SGGA POJACT 3517 1019 SAM JACIBTO HULTIPOROSE 2564 7906			FOURTH BUBBOS AIRES POWER PROJECT			6098COH	8603
BOLIVIA FIFYE RUDE POORE PROJECT 5617 8189 0061B0 EEDE PORE PROJECT 6426 6466 0062B0 BCC PORE PROJECT 6426 6466 0168D SECORD EEDE PORE PROJECT 6626 6465 0468D0 SECORD EEDE PROJECT 663 6451 043B0 TILED EDE PORE PROJECT 663 6461 043B0 FORTR PORT PORT 663 6765 1238D0 POERTR PORT 603 6765 1018D0 POERTR PORT 603 6765 0438D0 FORTR PORT PORT 603 6765 0438D0 POERTR PORT PORT 603 6765 0438D1 OUTR PORT PORT PORT 603 6765 04035D2 POERT PORT PORT 603 6765 04035D2 POERT PORT PORT 603 6765 04035D2 POERT PORT PORT 616 5266 04035D2 POERT PROJECT 604 403 04035D2 POERT PROJECT 604 506 04035D2 POERT PROJECT 616 526 04035D2 POERT PROJECT 616 526 04045D2 POERT PROJECT 616			YACYERYA HYDROBLECYRIC PROJECY				
Jake Jake Biol Pool Hourrows John Jake Biol Ends Jake Biol John Jake Biol Ends Jake Biol 0061BO EUDS POORE PROJECT 0428 6405 0428 6405 0148BO SCOUDD EUDS POORE PROJECT 0102 6904 1406 703 0443BO WILED BUDR POORE PROJECT 0102 6904 1406 713 7191 1238BO POORTH POURE PROJECT 0101 7006 2733 7191 1238BO POORTH POURE PROJECT 0018 6403 7115 8112 1238BO POURE RELABLITATION 6638 6705 0043 877 0018 7115 8112 1018BC POURE RELABLITATION 0663 6403 043 877 5507 0054 6403 0025BE PANLO ALFONDE LECTRIC COMER 0011 5307 043 877 5507 0076BE ITOROMINETRIC COMER 0425 5312 043 877 5507 0076BE ITOROMINETRIC COMER 0425 5312 043 877 5507 0076BE ITOROMINETRIC COMER 0415 5401 5401 5401 0076BE ITOROMINETRIC COMER 0418 5400 5406 522 3770	8A1 7874	28944H	PIPER SEGRA PRUJECT				
Jake Jake Biol Pool Hourrows John Jake Biol Ends Jake Biol John Jake Biol Ends Jake Biol 0061BO EUDS POORE PROJECT 0428 6405 0428 6405 0148BO SCOUDD EUDS POORE PROJECT 0102 6904 1406 703 0443BO WILED BUDR POORE PROJECT 0102 6904 1406 713 7191 1238BO POORTH POURE PROJECT 0101 7006 2733 7191 1238BO POORTH POURE PROJECT 0018 6403 7115 8112 1238BO POURE RELABLITATION 6638 6705 0043 877 0018 7115 8112 1018BC POURE RELABLITATION 0663 6403 043 877 5507 0054 6403 0025BE PANLO ALFONDE LECTRIC COMER 0011 5307 043 877 5507 0076BE ITOROMINETRIC COMER 0425 5312 043 877 5507 0076BE ITOROMINETRIC COMER 0425 5312 043 877 5507 0076BE ITOROMINETRIC COMER 0415 5401 5401 5401 0076BE ITOROMINETRIC COMER 0418 5400 5406 522 3770	BULIVIA		FIFTA BUNE FURBE FAVJECT CLE TLATEGA MALOTARACE				
6433B0 YILED EDDE POCHE PROJECY 6190 7366 2733 7911 1238B0 POORTU POCHE PROJECY 6981 7603 3715 6112 1818B0 POORTU POCHE PROJECY 6386 6705 6386 7705 BRASIL 0011BR POURT PROJECY 6036 6805 6605 0025BE PAUGA ALFORSO BYDDOLLGCYRIC 0066 5005 60438P 5507 0076BE ITOTIGGA BYDDOLLGCYRIC POWER 0011 5397 5507 0076BE ITOTIGGA BYDDOLLGCYRIC POWER 0011 5307 5602 0075BE PICA YEBRAIL POWER 0015 5402		4061 PO	SHE SUCCEDENTION POLITION COP				
6433B0 YILED EDDE POCHE PROJECY 6190 7366 2733 7911 1238B0 POORTU POCHE PROJECY 6981 7603 3715 6112 1818B0 POORTU POCHE PROJECY 6386 6705 6386 7705 BRASIL 0011BR POURT PROJECY 6036 6805 6605 0025BE PAUGA ALFORSO BYDDOLLGCYRIC 0066 5005 60438P 5507 0076BE ITOTIGGA BYDDOLLGCYRIC POWER 0011 5397 5507 0076BE ITOTIGGA BYDDOLLGCYRIC POWER 0011 5307 5602 0075BE PICA YEBRAIL POWER 0015 5402			BON BANDA BBATERY Buye Ivare Invari				
6433B0 YILED EDDE POCHE PROJECY 6190 7366 2733 7911 1238B0 POORTU POCHE PROJECY 6981 7603 3715 6112 1818B0 POORTU POCHE PROJECY 6386 6705 6386 7705 BRASIL 0011BR POURT PROJECY 6036 6805 6605 0025BE PAUGA ALFORSO BYDDOLLGCYRIC 0066 5005 60438P 5507 0076BE ITOTIGGA BYDDOLLGCYRIC POWER 0011 5397 5507 0076BE ITOTIGGA BYDDOLLGCYRIC POWER 0011 5307 5602 0075BE PICA YEBRAIL POWER 0015 5402			DEV EVABA ERVADUE SRCAMA RUBR DANER PRAJECO			1498	9963
1238B0 FOGRTE POJECY 991 7603 9715 0112 1818B0 POTHER BELABLILTATION 663 8705 9336 4803 0011BR POTHER BELABLILTATION 6036 4803 9356 4803 0025BR PAULO ALFONSO HYDRORLECTRIC 0000 5005 90436 4803 0076BR ITOTIGGA HYDRORLECTRIC POWER 011 5307 931 5402 0035BR SALVO GALDER HYDRORLECTRIC POWER 0431 5402 942 5312 0035BR FILA YBERMAL POWER 0431 5402 942 5312 0137BR JURWIITIL HYDRORLECTRIC 0186 5801 942 5312 0137BR JURWIITIL HYDRORLECTRIC 0186 5806 942 5312 0137BR JURWIITIL HYDRORLECTRIC 0186 5806 942 5312 0137BR FORBA FROJECT 0166 5906 940 5956 0211BR FORBAR FROJECT 0166 5906 940 5956 04039BR ESTRETYO BYDRORLECTRIC 0466 552 2370 1902 04043BR ESTRETYO BYDRORLECTRIC 0461 6502 1652 1769 1902 04044BR LAVAFYES HYDRORLECTRIC (STAGE II) 0535 6612 0357 6612 0557			Sucond Bass Long Project				
1818B0 POWER REMABILITATION 6636 6705 BRAXIL 0011BR POWER PROJECT 0036 4403 00250R PAGUA LAFONSO MYDROBLECTRIC 0066 5065 0464BR EIO GRADDE DO SUL ELECTRIPICATION 0168 5206 043APP 5507 0076BR 17071HGA HYDROBLECTRIC POWER 0011 5307 0011 5307 0093DR SALYO GRADDE BYDROBLECTRIC POWER 0042 5312 0031 5402 0093DR PIRA YHERMAL POWER 0042 5312 0031 5402 0187BR JURGHILH UYDROBLECTRIC 0185 5601			BOURDU POSIKE PROJECT				
OUGGER RIO GEADDE DO SUL ELECYRIT.CYTON 0166 5266 0043AP2 5507 0076BR IYOYIGGA HYDROBLECYRIC POWER 0011 5307 0011 5307 0033BR SALYO GEADDE BYDROBLECYRIC POWER 0042 5512 0031 5402 0036BR PIRA YBERHAL POWEP 0031 5402 0167 5801 0187BR JURGUIRIN HYDROBLECYRIC 0168 5800 0168 5800 0229BR POWEA BYDROBLECYRIC 0168 5806 0160 5906 0403BR BSTBRIYO BYDROBLECYRIC 0461 6502 2370 7902 0466 6502 1652 7066 0403BR BSTBRIYO BYDROBLECYRIC 0461 6502 1652 7061 0442 6512 1652 7061 04042BR JAGUARA BYDROBLECYRIC (STAGE II) 0539 6612 2170 7902 047488 0474BR BSTBRIYO BYDROBLECYRIC (STAGE II) 0539 6612 0556 7509 047588 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 047688 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 047688 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 0566 6512 0656 7509 0476BR <td< td=""><td></td><td></td><td>POURR REDABILIYAYIOU</td><td></td><td></td><td></td><td>V - • •</td></td<>			POURR REDABILIYAYIOU				V - • •
OUGGER RIO GEADDE DO SUL ELECYRIT.CYTON 0166 5266 0043AP2 5507 0076BR IYOYIGGA HYDROBLECYRIC POWER 0011 5307 0011 5307 0033BR SALYO GEADDE BYDROBLECYRIC POWER 0042 5512 0031 5402 0036BR PIRA YBERHAL POWEP 0031 5402 0167 5801 0187BR JURGUIRIN HYDROBLECYRIC 0168 5800 0168 5800 0229BR POWEA BYDROBLECYRIC 0168 5806 0160 5906 0403BR BSTBRIYO BYDROBLECYRIC 0461 6502 2370 7902 0466 6502 1652 7066 0403BR BSTBRIYO BYDROBLECYRIC 0461 6502 1652 7061 0442 6512 1652 7061 04042BR JAGUARA BYDROBLECYRIC (STAGE II) 0539 6612 2170 7902 047488 0474BR BSTBRIYO BYDROBLECYRIC (STAGE II) 0539 6612 0556 7509 047588 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 047688 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 047688 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 0566 6512 0656 7509 0476BR <td< td=""><td>BRAZIL</td><td></td><td>POURR PROJECY</td><td></td><td></td><td></td><td></td></td<>	BRAZIL		POURR PROJECY				
OUGGER RIO GEADDE DO SUL ELECYRIT.CYTON 0166 5266 0043AP2 5507 0076BR IYOYIGGA HYDROBLECYRIC POWER 0011 5307 0011 5307 0033BR SALYO GEADDE BYDROBLECYRIC POWER 0042 5512 0031 5402 0036BR PIRA YBERHAL POWEP 0031 5402 0167 5801 0187BR JURGUIRIN HYDROBLECYRIC 0168 5800 0168 5800 0229BR POWEA BYDROBLECYRIC 0168 5806 0160 5906 0403BR BSTBRIYO BYDROBLECYRIC 0461 6502 2370 7902 0466 6502 1652 7066 0403BR BSTBRIYO BYDROBLECYRIC 0461 6502 1652 7061 0442 6512 1652 7061 04042BR JAGUARA BYDROBLECYRIC (STAGE II) 0539 6612 2170 7902 047488 0474BR BSTBRIYO BYDROBLECYRIC (STAGE II) 0539 6612 0556 7509 047588 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 047688 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 047688 0476BR COMPAMUIA BRASILEIRA DE BUBRGIA ELECYRICA TAD 0536 6612 0656 7509 0566 6512 0656 7509 0476BR <td< td=""><td></td><td></td><td>PAULO ALPOUSO HYDROBLECTRIC</td><td></td><td></td><td></td><td></td></td<>			PAULO ALPOUSO HYDROBLECTRIC				
00768E IY0710GA HYDROBLECYRIC POWER 0011 5307 00933F SALYO GRADDE BYDROBLECYRIC POWER 0022 5312 00935F PIEA YEBRUAL POWER 0031 5402 01975F DUBWILEN HYDROBLECYRIC 0156 5601 0211BE FURBAL POWER 0166 5906 02238E FURBA EYDROBLECYRIC 0166 5906 02238E FONER PROJECT 0166 5906 0403BE ESTREIYO HYDROBLECYRIC 0461 6502 1652 7706 0404BE LAVAHYES HYDROBLECYRIC 0461 6502 1652 7706 0404BE JAGVARA HYDROBLECYRIC 0461 6502 1652 7706 0404BE JAGVARA HYDROBLECYRIC 0461 6502 1652 7706 0444BE SYBERIYO HYDROBLECYRIC 0461 6502 1652 7706 0475BE COMPAMUIA BASILETRA DE RUBRGIA BLECYRICA YAD 0535 6612 0656 7509 0475BE COMPAMUIA PARAUABUSE DE RUBRGIA BLECYRICA YAD 0538 6612 0658 7509 0476BE COMPAMUIA PARAUABUSE DE RUBRGIA BLECYRICA YAD 0538 6612 0658 7509 0476BE COMPAMUIA PARAUABUSE DE RUBRGIA BLECYRICA YAD 0538 6612 0658 7509 0476BE COMPAMUIA PARAUABUSE DE RUBRCIAS YAD 0538 612 0658 75			BIO GRAUDE DO SUL BLECTRIFICATION			0043APP	5507
6095BE PIEA YUEBUAL POYUP 6031 5402 0107BE JUBRUIETU HYDROKLECYRIC 0158 5601 0211BE FURHAS HYDROKLECYRIC 0168 5006 0229BE POWER PROJECT 0168 5006 0403BE ESTREIYO HYDROKLECYRIC 0465 6502 2370 7902 0404BE LAVAHYES HYDROKLECYRIC 0461 6502 1652 1706 0404BE LAVAHYES HYDROKLECYRIC 0514 6602 1852 7001 0474BE ESTREIYO HYDROKLECYRIC (SYAGE II) 0539 6612 2370 7902 0475BE COMPANEIA BRASILEIRA DE BUBRGIA ELECYRICA 78D 0535 6612 0858 7509 0475BE COMPANEIA PABLARESE DE BUBRGIA ELECYRICA 78D 0536 6612 0858 7509 0476BE COMPANEIA PABLARESE DE BUBRGIA ELECYRICA 78D 0536 6612 0858 7509 0476BE COMPANEIA PABLARESE DE BUBRGIA ELECYRICA 78D 0536 6612 0858 7509 0476BE COMPANEIA PABLARESE DE BUBRGIA ELECYRICA 78D 0536 6612 0858 7509 0476BE COMPANEIA PABLARESE DE HILAS GERAIS 74D 0536 6612 0858 7509 0476BE COMPANEIA PAOLISTA DE PORCA E LOZ 78D 0536 6612 0858 7509 0476BE COMPANEIA PAOLISTA DE PORCA E LOZ 78D 0536 6612 0858 7509 0476BE CBATRAIS ELECTRICAS DE HILAS GERAIS 74D <td< td=""><td></td><td>0076BB</td><td>IYOYINGA NYDROBLECYRIC PONER</td><td>0011</td><td>5307</td><td></td><td></td></td<>		0076BB	IYOYINGA NYDROBLECYRIC PONER	0011	5307		
0167BR JURGUIBIU HYDROBLECTRIC 0156 5801 0211BR FURBAS HYDROBLECTRIC 0164 5009 0229BR POWER PROJECT 0166 5905 0403BR ESTREIYO HYDROBLECTRIC 0459 6502 2370 7902 0404BR LAVAHYES HYDROBLECTRIC 0461 6502 1652 7661 0442BR JAGGARA HYDROBLECTRIC 0514 6602 1652 7601 0474BR BSYRKIYO HYDROBLECTRIC 0514 6602 1652 7601 0474BR BSYRKIYO HYDROBLECTRIC 0514 6602 1652 7509 0474BR COMPANIIA BRASILEIRA DE RUEGIA ELECTRICA TAD 0535 6612 0658 7509 0476BR COMPANIIA PABLISTA DE FORCA E LOZ YAD 0536 6612 0658 7509 0476BR COMPANIIA PAULISTA DE FORCE CRICC 0662 6609 2570 7902 0566BR PORYO COLOUBIA HYDROBLECTRIC 0663 6609 1552 7661 0677BR HARIUBOUDO HYDROBLECTRIC		0093BR	SALYO GRAUDE HYDROBLECTRIC PONEB				
0211BB FURBAS EVDROBLECTRIC 0164 5609 0229BR POMER PROJECT 0168 5906 0403BR ESTREIYO HYDROBLECTRIC 0459 6502 2370 7902 0404BR LAVATYES HYDROBLECTRIC 0461 6502 1652 1706 0442BR JAGUARA HYDROBLECTRIC 0461 6602 1652 1901 0474BR ESTREIYO HYDROBLECTRIC 0514 6602 1652 1901 0474BR ESTREIYO HYDROBLECTRIC (SYAGE II) 0535 6612 0458 7509 0475BR COMPANEIA BRASILEIRA DR BUERGIA BLECTRICA YAD 0535 6612 0458 7509 0475BR COMPANEIA PABLISTA DR FORCA E LOZ YAD 0536 6612 0458 7509 0476BR COMPANEIA PABLISTA DR FORCA E LOZ YAD 0536 6612 0458 7509 0476BR CENTRAIS ELECTRICAS DR HUBAS GERAIS YAD 0536 6612 0458 7509 0476BR CENTRAIS ELECTRICAS DR HUBAS GERAIS YAD 0536 6612 05505 7509							
0229BR POHER PROJECT 0166 5906 0403BR ESTREIYO EYDROELECYRIC 0459 6502 2370 7902 0404BR LAVANYES HYDROELECYRIC 0461 6502 1652 1706 0442BR JAGDARA HYDROELECYRIC 0416 6502 1852 1901 0474BR ESTREIYO HYDROELECYRIC 0514 6602 1852 1901 0474BR ESTREIYO HYDROELECYRIC (SYAGE II) 0539 6612 2370 7902 0474BR COMPAGUIA BRASILEIRA DE BUERGIA ELECYRICA TAD 0535 6612 0658 7509 0475BR COMPAGUIA PRAULISTA DE FORCA E LOZ TAD 0535 6612 0658 7509 0475BR COMPAGUIA PRAULISTA DE HURA GRAIS TAD 0536 6612 0658 7509 0476BR CBSTRAIS ELECYRICAS DE HIHAS GRAIS TAD 0536 6612 0658 7509 0476BR CBSTRAIS ELECYRICAS DE HIHAS GRAIS TAD 0536 6612 0658 7509 0476BR CBSTRAIS ELECYRICAS DE HIHAS GRAIS TAD 0536 <							
0403BR ESTREIYO EYDRORLECTRIC 0459 6502 2370 7902 0404BR IAVAHYES HYDRORLECTRIC 0461 6502 1652 1706 0442BR JAGUARA HYDRORLECTRIC 0514 6602 1852 7801 0474BR BSYREIYO HYDRORLECTRIC (SYAGE 11) 6539 6612 2376 7902 0475BR COHPANEIA BRASILEIRA DE BERGIA ELECTRICA YAD 0535 6612 0658 7509 0475BR COHPANEIA PARDABES DE BERGIA ELECTRICA YAD 0537 6612 0658 7509 0476BR COHPANEIA PARDABES DE BERGIA ELECTRICA YAD 0538 6612 0568 7509 0476BR CEBTRAIS ELECTRICAS DE HIHAS GERAIS YAD 0538 6612 0568 7509 0476BR CEBTRAIS ELECTRICAS DE HIHAS GERAIS YAD 0538 6612 0568 7509							
0404BR XAVAFTES HYDRORLECTRIC 0461 6502 1652 7706 0442BR JAGUARA HYDRORLECTRIC 0514 6602 1852 7801 0474BR BSTREIYO HYDRORLECTRIC (SYAGE II) 0539 6612 2370 7902 0475BR COMPANDIA BRASILEIRA DE BUERGIA ELECTRICA 74D 0535 6612 0858 7509 0476BR COMPANDIA PARAJARBUSE DE BUERGIA ELECTRICA 74D 0537 6612 0858 7509 0476BR COMPANDIA PARAJABUSE DE BUERGIA ELECTRICA 74D 0538 6612 0858 7509 0476BR COMPANDIA PARAJABUSE DE BUERGIA ELECTRICA 74D 0538 6612 0858 7509 0476BR COMPANDIA PARAJABUSE DE HUBAS GERAIS 74D 0536 6612 0858 7509 0476BR COMPANDIA PARAJABUSE DE HUBAS GERAIS 74D 0536 6612 0856 7509 0476BR CEBTRAIS ELECTRICAS DE HIBAS GERAIS 74D 0536 6612 0856 7509 0565BR PORYO COLOUBIA HYDRORLECTRIC 0662 6809 2370 7902 0566BB SECOED VOLYA GRAUDE HYDRORLECTRIC 0683 6809 1852 7801 0677BR HARIHBOHDO HYDRORLECTRIC PLANY 041 7055 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 041 7055 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 041 7055 2768 7912 0923BR IYDHBIARA RYDRORLECTRIC PLANY 0451 7303 2703 7910 <			POWBR PROJECT				
0442BRJAGUARA HYDROBLECTRIC05146602185278010474BRBSTREITO HYDROBLECTRIC (SYAGE II)65396612237079020475BRCOMPANDIA BRASILEIRA DE BUERGIA ELECTRICA TAD05356612085875090476BRCOMPANDIA PABUARUSE DE BUERGIA ELECTRICA TAD05376612085875090476BRCOMPANDIA PABUARUSE DE BUERGIA ELECTRICA TAD05366612085875090476BRCOMPANDIA PAULISTA DE FORCA E LOZ TAD05366612085875090476BRCENTRAIS ELECTRICAS DE HIUAS GERAIS TAD05366612085675090566BRPORYO COLOUBIA HYDROBLECTRIC06626609237079020566BRSECOND VOLYA GRAUDE UYDROBLECTRIC06836809185276010677BRHARIUBONDO HYDROBLECTRIC PLANT00417005276879120726BRSALYO OSORIO HYDROBLECTRIC PLANT00417005276879100837BRPONER DISTRIBUTION8UBTRANSHISSION00407303270879100923BRIYOUBIARA HYDROBLECTRIC PONER01507305609966031006BRFOURTH PAULO ALFONSO HYDROBLECTRIC03967405657666121257BRCOPEL PONER DISTRIBUTION102876045165CON84061300BRHORTHWEST PONER DISTRIBUTION108876065993CON8512							
0565BR POBYO COLOUBIA HYDRORLECTRIC 0662 6809 2370 7902 0566BR SRCOHD VOLYA GRAUDE HYDRORLECTRIC 0683 6809 1852 7801 0677BR HARIHBOUDO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECTRIC 0066 7204 3560 8106 0867BR PONER DISTRIBUTION & SUBTRAUSHISSION 0940 7303 2708 7910 0923BB IYONBIARA HYDROBLECTRIC PONER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFORSO HYDROBLECTRIC 0396 7405 6576 8612 1257BB COPEL POWER DISTRIBUTION 1028 7604 5165COB 8406 8406 1300BR HORTENEST POWER DISTRIBUTION 1068 7606 5993COM 8512							
0565BR POBYO COLOUBIA HYDRORLECTRIC 0662 6809 2370 7902 0566BR SRCOHD VOLYA GRAUDE HYDRORLECTRIC 0683 6809 1852 7801 0677BR HARIHBOUDO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECTRIC 0066 7204 3560 8106 0867BR PONER DISTRIBUTION & SUBTRAUSHISSION 0940 7303 2708 7910 0923BB IYONBIARA HYDROBLECTRIC PONER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFORSO HYDROBLECTRIC 0396 7405 6576 8612 1257BB COPEL POWER DISTRIBUTION 1028 7604 5165COB 8406 8406 1300BR HORTENEST POWER DISTRIBUTION 1068 7606 5993COM 8512			JAGUANA HYDROKLECYRIC	0514			
0565BR POBYO COLOUBIA HYDRORLECTRIC 0662 6809 2370 7902 0566BR SRCOHD VOLYA GRAUDE HYDRORLECTRIC 0683 6809 1852 7801 0677BR HARIHBOUDO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECTRIC 0066 7204 3560 8106 0867BR PONER DISTRIBUTION & SUBTRAUSHISSION 0940 7303 2708 7910 0923BB IYONBIARA HYDROBLECTRIC PONER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFORSO HYDROBLECTRIC 0396 7405 6576 8612 1257BB COPEL POWER DISTRIBUTION 1028 7604 5165COB 8406 8406 1300BR HORTENEST POWER DISTRIBUTION 1068 7606 5993COM 8512			BOYHEIYU HIDHUBLEUTHIC (DYAGE II) Gandamita ddachirid dd bregota Riboota Gad	0238			
0565BR POBYO COLOUBIA HYDRORLECTRIC 0662 6809 2370 7902 0566BR SRCOHD VOLYA GRAUDE HYDRORLECTRIC 0683 6809 1852 7801 0677BR HARIHBOUDO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECTRIC 0066 7204 3560 8106 0867BR PONER DISTRIBUTION & SUBTRAUSHISSION 0940 7303 2708 7910 0923BB IYONBIARA HYDROBLECTRIC PONER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFORSO HYDROBLECTRIC 0396 7405 6576 8612 1257BB COPEL POWER DISTRIBUTION 1028 7604 5165COB 8406 8406 1300BR HORTENEST POWER DISTRIBUTION 1068 7606 5993COM 8512			COMPANYIA BUADIOBINA DE BUBNGIA BUBNITA INP Companyia dadiúdico de Entroita di Doddica Ged	0593			
0565BR POBYO COLOUBIA HYDRORLECTRIC 0662 6809 2370 7902 0566BR SRCOHD VOLYA GRAUDE HYDRORLECTRIC 0683 6809 1852 7801 0677BR HARIHBOUDO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECTRIC 0066 7204 3560 8106 0867BR PONER DISTRIBUTION & SUBTRAUSHISSION 0940 7303 2708 7910 0923BB IYONBIARA HYDROBLECTRIC PONER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFORSO HYDROBLECTRIC 0396 7405 6576 8612 1257BB COPEL POWER DISTRIBUTION 1028 7604 5165COB 8406 8406 1300BR HORTENEST POWER DISTRIBUTION 1068 7606 5993COM 8512			Condardia terenedidi de rescie enclina igu Condardia dabitega re rodra e 189 gan	1660 Dega			
0565BR POBYO COLOUBIA HYDRORLECTRIC 0662 6809 2370 7902 0566BR SRCOHD VOLYA GRAUDE HYDRORLECTRIC 0683 6809 1852 7801 0677BR HARIHBOUDO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0041 7005 2768 7912 0720BR SALYO OSORIO HYDRORLECTRIC PLANY 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECTRIC 0066 7204 3560 8106 0867BR PONER DISTRIBUTION & SUBTRAUSHISSION 0940 7303 2708 7910 0923BB IYONBIARA HYDROBLECTRIC PONER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFORSO HYDROBLECTRIC 0396 7405 6576 8612 1257BB COPEL POWER DISTRIBUTION 1028 7604 5165COB 8406 8406 1300BR HORTENEST POWER DISTRIBUTION 1068 7606 5993COM 8512			CONTRACTA FRANCISTA DE PUNCA E LUG TRY Contracto reporta de putras de los try	966U 1620			
0566BB SECOND VOLYA GRAUDE HYDROBLECYBIC 0683 6809 1852 7601 0677BR HARIHBOUDO HYDROBLECYBIC PLAUY 0041 7005 2768 7912 0726BB SALYO OSORIO HYDROBLECYBIC PLAUY 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECYBIC PLAUY 0059 7103 2709 7910 0837BB SAO SIHAO HYDROBLECYBIC PLAUY 0066 7204 3500 8106 0837BB PONER DISTRIBUTION & SUBTRAUSHISSION 0040 7303 2708 7910 0923BB IYOUBIARA HYDROBLECYRIC PONER 0150 7305 6099 8603 1006BB 1006BB FOURTH PAULO ALFORSO HYDROBLECYRIC 0396 7405 6576 8612 1257BB COPEL POUER DISTRIBUTION 1028 7604 5165COB 8406 1300BB HORTEMEST POUER DISTRIBUTION 1068 7606 5993COB 8512							
0677BR HARIHBOUDO EYDRORLECTRIC PLAUY 0041 7005 2768 7912 0728BR SALYO OSORIO HYDRORLECTRIC PLAUY 0059 7103 2709 7910 0829BR SAO SIHAO HYDRORLECTRIC PLAUY 0056 7204 3500 8106 0837BR POWER DISTRIBUTIOU & SUBTRAUSHISSION 0040 7303 2708 7910 0923BR IYOUBIARA HYDRORLECTRIC POWER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFONSO HYDRORLECTRIC 0396 7405 6576 8612 1257BE COPEL POURE DISTRIBUTION 1028 7604 5165CON 8406 1300BR HORTEMEST POURE DISTRIBUTION 1068 7606 5993CON 8512							
0728BR SALTO OSORIO HYDROBLECTRIC PLAUT 0059 7103 2709 7910 0829BR SAO SIHAO HYDROBLECTRIC 0066 7204 3500 8106 0837BR POWER DISTRIBUTIOU & SUBTRAUSHISSIOU 0040 7303 2706 7910 0923BR IYOUBIARA HYDROBLECTRIC POHER 0150 7305 6099 8603 1006BR FOURTH PAULO ALFORSO HYDROBLECTRIC 0396 7405 6576 8612 1257BE COPEL POURE DISTRIBUTIOU 1028 7604 5165COB 8406 1300BR HORTEMEST POURE DISTRIBUTIOU 1068 7606 5993COB 8512							
0829BR SAO SIHAO HYDROBLECYRIC 0066 7204 3500 8106 0837BR PONER DISYRIBUYIOU & SUBYRAUSHISSIOU 0040 7303 2708 7910 0923BB IYOUBIARA HYDROBLECYRIC POMER 0150 7305 6099 8603 1008BR POURTH PAULO ALFONSO HYDROBLECYRIC 0396 7405 6576 8612 1257BB COPEL POURE DISYRIBUYIOU 1028 7604 5165COU 8496 1300BR HORTEMEST POWER DISYRIBUYIOU 1068 7606 5993COU 8512							
OBSTBR PONER DISTRIBUTION & SUBTRAUSHISSION 0040 7303 2708 7910 0923BB IYOUBIABA HYDROBLECYBIC POHER 0150 7305 6099 8603 1008BR FOURTH PAULO ALFONSO HYDROBLECYBIC 0396 7405 6576 8612 1257BB COPEL POURR DISYRIBUTION 1028 7604 5165CON 8406 1300BB HORTEMEST POURR DISYRIBUTION 1068 7606 5993CON 8512							
0923BB IYOUBIABA HYDROBLECYRIC POHER 0150 7305 6099 8603 1008BR FOURTH PAULO ALFONSO HYDROBLECYRIC 0396 7405 6576 8612 1257BB COPRL POHER DISYRIBUTION 1028 7604 5165CON 8406 1300BB HORTEMEST POHER DISYRIBUTION 1088 7606 5993CON 8512							
1008BRFOURTH PAULO ALFONSO HYDROBLECTRIC0396 7405 657686121257BRCOPEL POUER DISTRIBUTION1028 7604 5165CON 84061300BRHOBTEMEST POUER DISTRIBUTION1088 7606 5993CON 8512							
1257BE COPEL POUER DISTRIBUTION 1028 7604 5165CON 8496 1300BE HOBTENEST POUER DISTRIBUTION 1088 7606 5993CON 8512							
1300BE HORTENEST POUER DISTRIBUTION 1088 7606 5993COU 8512							
1343BR BLBYROSUL POWER YRAUSHISSION 1265 7611 5695 8506							8512
		1343BB	ELETROSOL POWER TRAUSHISSION	1265	7611	5695	8506

•

- 17 -

Page 9

Country Loan/Credit Bunber				82B		PCR
	Loan/Credit Bunbers	Project Title	80.	Date (yynn)	 Eo.	Date (yyna)

BRAZIL	1538 BB	SOUTH-SOUTHEEST POWER DISTRIBUTION COPEL SECOND POWER DISTRIBUTION CERE POWER DISTRIBUTION SECOND POWER TRANSMISSION (RLECTROSUL) ELECTRIC POWER SYSTEM COORDINATION ELETROBRAS POWER DISTRIBUTION SECOND ELETROBRAS POWER DISTRIBUTION CHESP-FURNAS POWER TRANSMISSION SOUTHEAST POWER DISTRIBUTION ELECTRIC POWER SECTOR CIPRESES HYDROBLECTRIC ENDESA POWER EXPANSION	184	6 7803		
	1721BB	COPEL SECOND POWER DISTRIBUTION	241	1 7905		
	1824BB	CEEE POWER DISTRIBUTION	273	2 8003		
	1895BB	SECOND POWER TRANSMISSION (RLECTROSUL)	287	8006		
	1939BB	ELECTRIC POWER SYSTEM COORDINATION	291	1 8012		
	2138BR	ELETROBEAS POWER DISTRIBUTION	333	8 8204		
	2364BR	SECOND ELETROBERAS POWER STATERIBUTION	466	0 8311		
	2564BB	CHESP-FURNAS POWER TRANSMISSION	558	8505		
	2565BB	SOUTEEAST POWER DISTRIBUTION	557	8 8505		
	2720BR	ELECTRIC POWER SECTOR	615	8865		
CHILB	0005CH	ELECTRIC POWER SECTOR CIPRESES HTDROELECTRIC EMDESA POWER EXPANSION BAPEL & EDASCO POWER	613	4 5108		
	0153CH	BADASA POHRE EXPANSION	012	8 5610		
	0244CE	RAPEL & HUASCO POWER	022	D 5912		
	0492CH	BLECTBIC POWER EXPANSION	864	5 6501		
		PIPTH PONER PROJECT		4 6612	1603	1105
	1951CB	SIRTE POUBR PROJECT		8 7612	5547COB	8503
	2832CH	PRHIRRCHR HYDRO A ALTO JAHIRIPOLPATCO TRAUS	668	7 8705		
COLOUBIA	0038C0	AUCHICAYA MYDROBLECTBIC	010	° 5010		
	003900	ABCHICATA HIDHOLDECTRIC LA INSULA HYDROBLECTRIC LEGRIJA HYDROBLECTRIC HYDROBLECTRIC & THERMAL POMER YOMBO STRAM PLANY EXTENSION DEMONICAL DA DAMER	011	8 5012		
	0054CO	LEGRIJA HYDROBLECTRIC	014	5 5110		
	011 3CO	EVDROELECTRIC & THERHAL POHER	007	2 5508		
	0816-0	YOMBO SYRAH PLANY RIYRUSIOD	019	5 5812		
	621TCO	ESERALDA POUR	019	4 5901		
	0225C0	ESTERALDA POUBR GUADALOPE ETDROELECTRIC POCIDA DAUBR	020	3 (905		
	0246CO	Bogoya Poher	021	9 6001		
	0255C0	YOUBO III YUBRNAL PONER & CALIUA I HYDROPONER	023	B 6604		
	0282C0	SECOED GUADALOPE BYDROELECYRIC	027	8 6104		
	031300	SECOND GUADALUPE HYDROBLECTRIC SECOND BOGOTA POWER EXTENSION	030	7 6205		
	0339C0	CVC-CEIDRAL POHER EXPANSION PROGRAM	035	8 6305		
	0347C0	COSPIQUE THEREAL POWER	035	6307		
	0369C0	FARE EYDBORLECYPIC	039	1 6401	0450	7405
	0537C0	THIRD POWER BIPARSION	063	7 6805	1654	7706
	057 5C 0	POHER INTRACONNECTION	068	8 6810	2720	7910
	0681CO	CUIVOR HYDROBLECTBIC	003	1 7005	2720	7910
	0874CO	SECOND GUATAPE HYDROBLECTRIC	010	\$ 7212	3718	8112
	1582C0	SAU CARLOS HYDROPOWER		D 7805		
	1583C0	SOORY INTERCOMMECTICE PROJECT	185	0 7805		
	1628C0	NESITAS EYDBOBLECTBIC PONBE	207	8 7811	6638	8702
	172500	SECOND SAN CARLOS NYDEO POWER		4 7905		
	1807CO	BOGOTA POWER DISTRIBUTION	264	8002		
	1868CO	POURTE GUADALUPE HYDRO PONER		B 8005		
	1953CO	PLAYAS HYDROPOWER		0 8102		
	2008C0	GUAVIO HYDROPOHBR		B 8105		

PPAB/PCB Bo. Legend: 8888APP = APPRAISAL REPORT 8888COH = COMPLETION REPORT

.

Page 10

Country Loan/Credit Hunders			SAB	SAR		PPAB/PCB	
	Loan/Credit Hanbers	Project Title	D. Bo. (y;	ate yan)	Ho.	Date (yyan)	
COLOHBIA	2449C0	BIO GRADDE HULTIPURPOSE PROJECT	5018 8	406			
	2634C0	SECOED BOGOYA DISTRIBUTION	5506 8				
COSTA BICA	0276CB	BIO MACHO HYDROBLECTBIC	0238 6		0007	7210	
	0346CB	POHER & TELECOMMUNICATIONS	0365 5		0007	7210	
	0631CR	THIED POHER PROJECT	0014 6		0760	7505	
	0800CR	POURTE POURE PROJECT	0077 7	201	2969	8005	
	1126CR	FIFTI POUBE PROJECT	0719 7	505	4991COH	8403	
	171SCB	SIR79 POUBR PROJECT	2433 7	905	7070COH	8712	
BCUADOR		COUDAYA POUBB EXPANSION DEVELOPMENT	0291 6				
	0137BC	QUIYO POURR EXPANSION	0102 5	709			
	0286BC	THIRD POWER PROJECT	0073 7		3003	8005	
	2045BC	IURCEL PONER YRAUSUISSION	3340 8		6359COH	8607	
BL SALVADOR	0221ES	SECOLD BIO LEUPA HYDROBLECYBIC	0196 5				
	0227BS	PIPTH POJER PROJECT	0055 7		0862	7509	
	0263ES	GUAJOYO HYDROBLECTRIC	0248 6				
	0342BS	PODRYII POUBR PROJECT	0360 6				
	0889BS	SIXTE POUR PROJECT	0069 7		3053	8006	
	126685	ANDACHAPAN BXPAUSION PROJECT	1025 7		5399COU	8412	
guatbuala		YHIRD POURA PROJECY	0102 7				
	048760	JURUU-HABIUALA ATDROBLECYRIC	0527 61		0625	7502	
	0545GD	GUACALAYE POUBR	0625 6		0625	7502	
	142660	AGUACAPA POHBR	1361 7				
	1605GD	CHINON POJEB	1709 70				
TAIYI	272460	POUR DISTRIBUTION					
BAIII	064504	fipta poura project Poura project	6888 81				
	0895BA	SUCOHD POURR PROJECT	1052 7(2296 7)		e # 5 68011	0010	
	1281BA	SECOND FOURE FROME FILLER	3592 8		6459COB	0010	
	152704	FOORTH POUR PROJECT	4869 84				
HOUDURAS	022680	IUYEDIH POUER PROJECT	0206 51				
nananan nan	0261[]0	CAUAVERAL HYDROBLECYBIC	0246 60				
	0541H0L/0116H0C	BIO LIEDO EVERCENTIC	0623 6		0763	7505	
	069200L/020180C	PODRY POUR PROJECT	0042 7		2077	7806	
	084180	PIPTH PONER PROJECT	0090 7		5060C08		
	108180	SIXTE POUR PROJECT	0528 74		5060COH		
	162980	DISPERO POWER	2074 7		5420COM		
	180_HOL/0989HOC	BL CAJOU POUSE	2388 8			~~~	
JAHAICA	0454JH	POUR PROJECT	0518 60				
	1516JH	SECOUD POMBE PROJECT	1493 71		6637COM	8702	
	2108JB	YUIND POURE PROJECY	3892 82				
	286934	FOURTH POWER PROJECT	5900 81				
UBXICO	0012HEL/0013HEL	POUR PROJECTS	0059 40				
	005688	BLBCYBIC POUBB PROJECY	0149 51				

PPAB/PCB Ho. Legend: \$\$\$\$APP = APPBAISAL'BEPORY \$\$\$\$COH = CONFLEYION BEPORY

Page 11

			}	SAB	PPAR/	PCB
Constant	for /Credit Husbors	Bradand Bidla		Date	n.	Date
Country	Loan/Credit Runbers	Project Title	EQ.	(yy m)	Bo .	(7780)
MEXICO	0186MB	second hexican light & power	014	0 5707		
	0194 NB	THIRD CRE PONER PROJECT	016	5 5804		
	0316 UB	FOURTH CFR POWER PROJECT	032	7 6206		
	0436BE	PONER SECTOR PROJECT	049	7 6511		
	0544NB	SECOND POWER SECTOR PROJECT	066	6806		
	0659NE	TEIRD POWER SECTOR PROJECT	002	7002	0859	7509
	0834HE	FOURTH POWER SECTOR PROGRAM	009	1 7205	1775	7710
HICARAGUA	0082BI	DIESEL POWER PROJECT	001	8 5308		
	01218I	THERMAL POWER PROJECT	005	5506		
	0122 81	PONES DISTRIBUTION PROJECT	005	5506		
	0259 B I	RIO TUNA ETDROBLECTRIC	020	6006		
	0389HI	BARTEQUAKE RECOUSTRUCTION PROJECT		1 7304	6193	8605
	0470BI	SIXTE POWER PROJECT	053	6605		
	054381	SEVENTE POWER PROJECT		6804		
	G840HI	RIGHTH POWER PROJECT			5144	8406
	1402BI	UIBTE POWER PROJECT		1 7703	6322008	
PAHAHA	0322PA0	CEUTRAL PROVINCES BLECTRIFICATION		6209		
	0661PAN	SECOND POWER PROJECT		3 7802	2508	7905
	0948PAB	THIRD POWER PROJECT			4246COH	
	1470PAB	FOURTH POWER PROJECT		1 7706		
	1770PAU	FIFTE POWER PROJECT			6512CON	8611
	2313PA0	SIXTE POWER PROJECT		5 8305		
	2506PAB	SEVENTE POHER PROJECT		8502		
PBRO	34044.00	ABEQUIPA PONBR		3 5410		
		YUECAB HYDROBLECTRIC		8308		
	0260PB	EUIECO EVERENCIALE		6006		
	0365PB	SECOED HOINCO HYDROBLECYRIC		6311		
	0464PB	PONER DISTRIBUTION PROJECT		6607		
	0511PB	HATUCANA POWER		6708	9868	7509
	1215PB	PIFTE POWER PROJECT		1 7602	6125COB	
	2179PE	SIXTE POUR PROJECT		8205	A194AA6	~~~
OBOGOAY	941473	SIRTH POWER PROJECT		8212		
4044461	003008	POWER & TELEPHONE BEPANSION PROJECT		5007		
	01320R	THERMAL POWER PROJECT		5508		
	01520B	BAYGORBIA EYDROELRCTRIC POWER		5610		
	07130B	FOURTH POWER PROJECT		7011	2280	7811
	1779UR	FISTE POUR PROJECT		7911	220A	1011
	26220RL/80170RL	POWER SECTOR REMABILITATION PROJECT		8509		
VENEZOELA	0466AUR\ AAT I ABB	CADAFE PROJECT		i 7601		
199599999		BVALUACION DEL PROTECTO URIBANTE - CADAFE		7810		
	A\$5988	GOBI POWER STATION EXPANSION C.V.G. EDELCA		7507		
	03537 <u>B</u> A10188	GOBI BYDROBLECYBIC		6309		
	03917B	POWER TRANSMISSION PROJECT	U44(6408		

PPAR/PCE No. Legend: 8888APP = APPRAISAL REPORY 8888COH = COMPLEYION REPORT

Ņ

.

.

13	
Page	

.

POHER PROJECTS LAC REGION 7

- 80 -

	Date Date Bo. (7788) Ro. (7788)	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1572 6612	0006 6906 1192 7606
!	Bo.		051	000
	Project Title		EATEA BIGE VOLIAGE YEARS. PROJECT	goisessignates systematics and the second se
	Loan/Credit Humbers		048272	8A8290
	Country		VBUBSOBLA	

No. of Selected Projects in Region = 174

•

•

PPAR/PCB Uo. Legend: searary = APPRAISAL ARPORT serector = COUPLETION REPORT

Ċ.

ANNEX 2

•

TOTAL IBR) C(OMM I TMEN'	IS TO	THE	POWER	SECTOR
(Millions	of	current	dolla	ars)		

Есополу	Total	(%)	Cumulativ	/e (%)
India	5098.7	21.1%	5098.7	21.1%
Brazil	3062.2	12.7%	8160.9	33.8%
Indonesia	2144.0	8.9%	10304.9	42.6%
Colombia	1736.9	7.2%	12041.8	49.8%
Turkey	761.4	3.1%	12803.2	53.0%
Mexico	714.8	3.0%	13518.0	55.9%
Thailand	672.7	2.8%	14190.7	58.7%
Yugoslavia	664.0	2.7%	14854.7	61.4%
Argentina	617.0	2.6%	15471.7	64.0%
Malaysia	464.3	1.9%	15936.0	65.9%
Pakistan	437.7	1.8%	16373.7	67.7%
Nigeria	402.5	1.7%	16776.2	69.4%
Egypt	373.0	1.5%	17149.2	70.9%
Romania	305.0	1.3%	17454.2	72.2%
Philippines	281.7	1.2%	17735.9	73.4%
China	262.4	1.1%	17998.3	74.5%
Panama	255.4	1.1%	18253.7	75.5%
Kenya	242.0	1.0%	18495.7	76.5%
Honduras	235.6	1.0%	18731.3	77.5%
Zimbabwe	220.7	0.9%	18952.0	78.4%
Iran	211.0	0.9%	19163.0	79.3%
Peru	208.7	0.9%	19371.7	80.1%
Zambia	197.1	0.8%	19568.8	80.9%
Guatemala	193.6	0.8%	19762.4	81.7%
Japan	178.2	0.7%	19940.6	82.5%
Chile	167.1	0.7%	20107.7	83.2%
Sri Lanka	166.7	0.7%	20274.4	83.9%
Bangladesh	160.0	0.7%	20434.4	84.5%
Taiwan	149.5	0.6%	20583.9	85.1%
Syria	145.6	0.6%	20729.5	85.8%
Venezuela	145.0	0.6%	20874.5	86.4%
Ghana	127.1	0.5%	21001.6	86.9%
Portugal	126.4	0.5%	21128.0	87.4%
Costa Rica	124.3	0.5%	21252.3	87.9%
Nepal	118.0	0.5%	21370.3	88.4%
Morocco	116.0	0.5%	21486.3	88.9%
Korea	115.0	0.5%	21601.3	89.4%
Sudan	112.0	0.5%	21713.3	89.8%
Uruguay	110.0	0.5%	21823.3	90.3%
Algeria	106.0	0.4%	21929.3	90.7%
Australia	100.0	0.4%	22029.3	91.1%
All Other Countries	2144.9	8.9%	24174.2	100.0%
Total	24174.2			

- . .

Source: Collier, H. Developing Electric Power. IBRD, 1984. Escay, J. FY78-92 World Bank Group Lending for Energy. IBRD/IENED, 1988.

•

ANNEX 3

ANNEX 3: ECONOMIC GROWTH RATES DURING DIFFERENT TIME PERIODS

Economic growth rates were calculated for each of the 45 countries incorporated in this study for five-year intervals from 1960 through 1985. We then took unweighted averages of these country growth rates to approximate mean regional growth rates. Standard deviation and coefficient of variation of these region-wide means was estimated to provide some crude measure of volatility.

As shown in Table A3-1, the results confirm that there was a dramatic change in average growth rates and in volatility beginning in the early 1970's. The 1960's were characterized by high economic growth rates; the world average was over 5 percent average annual growth, and "slow growth" rates experienced in Africa averaged over 4 percent. Volatility of growth was low; no region had a coefficient of variation higher than 0.5 prior to 1970. After 1975, especially in the current decade, growth rates fell while volatility increased dramatically in some areas, notably LAC and Africa.

ANNEX 3-1

	GROSS			AT MARKET		A	VERAGE AN	NUAL GNP	GROWTH RA	TES	
	1960	1965	1970	1980 dolla 1975	ars) 1980	1985	1960-65	(percent) 1965-70	1970-75	1975-80	1980-85
LAC Region	*********										
Argentina	76797.7	95626.8	118886.6	136771.6	152444.3	132581.4	4.5	4.5	2.8	2.2	-2.8
Bolivia	2138.7	2699.9	3266.6	4369.5	4722.1	4009.0	4.8	3.9	6.0	1.6	-3.2
Brazil	••	70047.1			232119.4			8.1	10.2	6.7	1.3
Chile	13916.7	16724.4	21019.4	18445.3	26641.1	24888.6	3.7	4.7	-2.6	7.6	-1.4
Colombia	11336.1	14193.4	19019.4	25269.6	33188.5	35834.4	4.6	6.0	5.8	5.6	1.5
Costa Rica	1565.0	1975.3	2772.6	3656.1	4599.5	4668.1	4.8	7.0	5.7	4.7	0.3
Ecuador	••	3782.3	4732.9	8332.6	11152.0	11931.7		4.6	12.0	6.0	1.4
El Salvador	1512.1	2028.7	2581.7	3336.2	3515.6	3100.2	6.6	4.4	5.3	1.1	-2.5
Guatemala	2639.4	3405.1	4467.7	5879.0	7808.2	7297.2	5.2	5.6	5.6	5.8	-1.3
Haiti	923.0	933.2	944.9	1098.1	1445.9	1392.0	D.2	0.2	3.1	5.7	-0.8
Honduras	1006.9	1213.1	1510.4	1714.0	2334.5	2450.4	3.8	4.5	2.6	6.4	. 1
Jamaica	1858.8	2266.1	2820.6	3221.5	2487.9	2242.6	4.0	4.5	2.7	-5.0	-2.1
Mexico Nicaragua	46457.2 1015.4	65683.5 1591.8	96932.8 1928.5	132669.7	180318.6	191688.5	7.2	8.1 3.9	6.5 5.7	6.3 -4.3	1.2 -0.3
Panama	927.4	1391.8	2011.8	2545.7	3331.5	3754.2	9.4 8.5	7.6	5.2	5.2	-0.5
Peru	8303.9	11306.3	14018.8	17987.8	19845.2	18891.7	6.4	4.4	5.1	2.0	-1
Uruguay	6048.7	5989.1	7407.9	7996.6	10032.9	8248.6	0.2	4.3	1.5	4.6	-3.8
Venezuela	20269.3	28088.0	37769.3	50439.9	59500.1	52968.1	6.7	6.1	6.0	3.4	-2.3
Total LAC Reg	nion		*******	Sample S	ize		16	18	18	18	18
••••••				Mean Anni							
				Growth			5.0	5.1	5.0	3.6	-0.7
				Standard	Deviation	ר	2.5	1.8	1.8	3.5	1.8
Africa Region	ı										
Ethiopia	1996.9	2560.7	3092.4	3535.8	4129.2	4022.7	5.1	3.8	2.7	3.2	-0.5
Ghana	••	12888.2	14761.5	14549.4	15516.4	15395.2		2.8	-0.3	1.3	-0.2
Kenya	••	2497.3	3252.3	5154.1	6869.0	7757.9		5.4	9.6	5.9	2.5
Liberia	••	654.1	898.7	985.8	1092.9						-2.2
						979.4		6.6	1.9	2.1	
Malawi	70354 0	474.7	656.2	993.3	1149.6	1247.7		6.7	8.6	3.0	1.7
Nigeria	39251.9	474.7 47632.8	656.2 60160.4	993.3 83019.7	1149.6 98153.3	1247.7 87774.3	3.9	6.7 4.8	8.6 6.7	3.0 3.4	1.7
Nigeria Sierra Leone	39251.9	474.7 47632.8 709.4	656.2 60160.4 898.7	993.3 83019.7 1006.6	1149.6 98153.3 1058.3	1247.7 87774.3 1074.6	3.9	6.7 4.8 4.8	8.6 6.7 2.3	3.0 3.4 1.0	1.7 -2.2 0.3
Nigeria Sierra Leone Sudan	39251.9	474.7 47632.8 709.4 5400.0	656.2 60160.4 898.7 5470.4	993.3 83019.7 1006.6 6474.6	1149.6 98153.3 1058.3 7861.8	1247.7 87774.3 1074.6 7013.1	3.9	6.7 4.8 4.8 0.3	8.6 6.7 2.3 3.4	3.0 3.4 1.0 4.0	1.7 -2.2 0.3 -2.3
Nigeria Sierra Leone Sudan Tanzani	39251.9	474.7 47632.8 709.4 5400.0 2680.4	656.2 60160.4 898.7 5470.4 3676.5	993.3 83019.7 1006.6 6474.6 4544.1	1149.6 98153.3 1058.3 7861.8 5124.6	1247.7 87774.3 1074.6 7013.1 5249.3		6.7 4.8 4.8 0.3 6.5	8.6 6.7 2.3 3.4 4.3	3.0 3.4 1.0 4.0 2.4	1.7 -2.2 0.3 -2.3 0.5
Nigeria Sierra Leone Sudan	39251.9	474.7 47632.8 709.4 5400.0	656.2 60160.4 898.7 5470.4	993.3 83019.7 1006.6 6474.6	1149.6 98153.3 1058.3 7861.8	1247.7 87774.3 1074.6 7013.1	3.9 7.4	6.7 4.8 4.8 0.3	8.6 6.7 2.3 3.4	3.0 3.4 1.0 4.0	1.7 -2.2 0.3 -2.3
Nigeria Sierra Leone Sudan Tanzani Zambia	39251.9 2031.7	474.7 47632.8 709.4 5400.0 2680.4 2908.6	656.2 60160.4 898.7 5470.4 3676.5 3255.7	993.3 83019.7 1006.6 6474.6 4544.1 3510.3 5018.7	1149.6 98153.3 1058.3 7861.8 5124.6 3595.3 5281.7	1247.7 87774.3 1074.6 7013.1 5249.3 3643.4		6.7 4.8 4.8 0.3 6.5 2.3	8.6 6.7 2.3 3.4 4.3 1.5	3.0 3.4 1.0 4.0 2.4 0.5	1.7 -2.2 0.3 -2.3 0.5 0.3
Nigeria Sierra Leone Sudan Tanzani Zambia Zimbabwe	39251.9 2031.7	474.7 47632.8 709.4 5400.0 2680.4 2908.6	656.2 60160.4 898.7 5470.4 3676.5 3255.7	993.3 83019.7 1006.6 6474.6 4544.1 3510.3	1149.6 98153.3 1058.3 7861.8 5124.6 3595.3 5281.7	1247.7 87774.3 1074.6 7013.1 5249.3 3643.4	7.4	6.7 4.8 4.8 0.3 6.5 2.3 4.4	8.6 6.7 2.3 3.4 4.3 1.5 8.5 11	3.0 3.4 1.0 4.0 2.4 0.5 1.0	1.7 -2.2 0.3 -2.3 0.5 0.3 4.9 11
Nigeria Sierra Leone Sudan Tanzani Zambia Zimbabwe	39251.9 2031.7	474.7 47632.8 709.4 5400.0 2680.4 2908.6	656.2 60160.4 898.7 5470.4 3676.5 3255.7	993.3 83019.7 1006.6 6474.6 4544.1 3510.3 5018.7 Sample S Mean Anni Growth	1149.6 98153.3 1058.3 7861.8 5124.6 3595.3 5281.7 ize	1247.7 87774.3 1074.6 7013.1 5249.3 3643.4 6705.6	7.4	6.7 4.8 4.8 0.3 6.5 2.3 4.4	8.6 6.7 2.3 3.4 4.3 1.5 8.5	3.0 3.4 1.0 4.0 2.4 0.5 1.0	1.7 -2.2 0.3 -2.3 0.5 0.3 4.9

-

ANNEX 3-1 (continued)

	GROSS			AT MARKET 1980 dolle		A	VERAGE AN	NUAL GNP (percent)	GROWTH RA	TES	
	1960	1965	1970	1975	1980	1985	1960-65	1965-70	1970-75	1975-80	1980-85
Asia Region Bangladesh India Indonesia Malaysia	6942.6 84112.5 23733.1	8724.6 98847.1 26075.5 8099.6	10340.2 124705.5 36817.6 11094.8	9983.8 145344.0 52036.1 15702.7	12806.0 172697.3 74806.4 23607.0	15305.3 224600.1 93751.4 28985.9	4.7 3.3 1.9	3.5 4.8 7.1 6.5	-0.7 3.1 7.2 7.2	5.1 3.5 7.5 8.5	3.6 5.4 4.6 4.2
Mataysta Philippines Sri Lanka Thailand	11148.9 1670.4 7849.5	14866.7 1969.8 11126.9	18636.3 2611.4 17231.2	25961.2 3087.7 23302.5	35213.1 3997.5 32838.5	20905.9 32569.6 4949.4 41407.9	5.9 3.4 7.2	6.5 4.6 5.8 9.1	6.9 3.4 6.2	6.3 5.3 7.1	-1.5 4.4 4.7
Total Asia Re	gion			Sample Si Mean Anna			6	7	7	7	7
				Growth		I	4.4 1.5	5.9 1.9	4.8 3.2	6.2 1.5	3.6 2.1
EMENA Region Cyprus Jordan Morocco Pakistan Portugal Tunisia Turkey Yemen AR Yogoslavia	 7149.4 7412.3 19394.9 22911.3	8489.1 10600.2 11236.6 3300.7 24821.7 30312.2	1545.1 10868.7 14985.2 15035.5 4184.9 34043.9 1145.1 41196.3	1225.5 1761.3 13359.5 17348.7 21344.0 6257.8 48958.9 1990.9 54264.5	2134.8 3351.5 17225.0 23409.9 24018.2 8511.4 55801.1 3036.9 72281.8	2803.4 4134.3 18911.9 32324.4 24564.1 10287.9 69924.4 3565.8 73430.7	3.5 7.4 5.1 5.8	5.1 7.2 6.0 4.9 6.5 6.3	2.7 4.2 3.0 7.3 8.4 7.5 11.7 5.7	11.7 13.7 5.2 6.2 2.4 6.3 2.7 8.8 5.9	5.6 4.3 1.9 6.7 0.5 3.9 4.6 3.3 0.3
Total Asia Re	gion			Sample Si Mean Annu Growth Standard	al	1	4 5.4 1.4	6 6.0 0.8	8 6.3 2.9	9 7.0 3.6	9 3.4 2.1
World Total				Sample Si Mean Annu Growth Standard	al)	29 5.0 2.2	42 5.2 1.8	44 5.0 3.1	45 4.4 3.4	50 0.9 2.6

and the second

ANNEX 4

ANNEX 4: FORECASTS ACCURACY BY METHODOLOGY

A number of methodologies are applied to load forecasting, ranging from the simple and low-cost to the sophisticated and expensive. These methods can broadly be classified into five groups.

- trending-judgement techniques
- simple econometric models
- complex (i.e., multiple equation) econometric models
- end-use models
- customer survey (power market surveys)

We would like to compare the accuracy of LDC forecasts using these different techniques. Unfortunately, historical data is not available on the methods applied to develop the forecasts analyzed in Chapter 3. The survey of U.S. utility forecasting experience discussed in Chapter 4,¹ however, does evaluate forecasts by methodology. Although the survey's findings reflect only U.S. experience, we believe that they provide useful insights for LDC planners.

Table A4-1 presents key statistics on forecast accuracy by methodology. These results are based on a survey of the 75 largest U.S. utilities.² In summary, the U.S. experience indicates that:

- end-use models outperformed econometric techniques for all horizons, at a minimum of 90 percent confidence level.
- end-use models outperformed trending techniques in all years though the differences in mean error is statistically insignificant in the near-term (i.e., 2 years out).
- complex econometric models outperformed simple econometric models in the short-term (i.e., year 2) with 90 to 95 percent significance, but were only marginally better in year 4. On the other hand, simpler econometric models did better in year 6.

¹ William Huss, "Can Electric Utilities Improve Their Forecast Accuracy? The Historical Perspective," <u>Public Utilities Fortnightly</u>, December 26, 1985, p. 37.

² Large utilities are defined as those with 1982 sales over 5,000 GWh.

• trending techniques outperformed econometric techniques in year 2 and year 4, but their records were comparable in year 6.

Tables A4-2 through A4-4 display the performance record of large utilities by customer segment. The U.S. experience as analyzed in the paper cited above generally support the following conclusions:

- 94 -

- Forecast accuracy does not appear to have improved over time. Further, larger utilities that tend to use more complex models and spend substantial resources, did not outperform smaller utilities significantly.
- In all sectors, econometric techniques -- simple or complex -- failed to outperform trend extrapolation judgmental techniques.
- In the industrial sector, customer surveys (power market surveys) seem to be by far the best technique for near term (i.e., two-to-four year horizon) forecasts. However, in the mid-term (six years out) the performance of trending methods, econometric methods, and customer surveys was indistinguishable. This suggests that if cost and time are a factor then trending methods can be employed for mid-term forecasts. These observations further indicate that utilities can significantly improve the accuracy of industrial sector forecasts in the short to medium term through regular customer surveys. Since a relatively few industrial customers often account for 40-50 percent of total system load, these benefits can be realized at minimal investment cost.
- In the residential sector, end-use models provided superior accuracy over the near and mid-term (i.e., thru year 6). Further, the performance of trending techniques and econometric methods were statistically indistinguishable. Since the end-use method is very data intensive, a key question that needs to be answered is whether the increased accuracy justifies the extra effort.
- In the commercial sector, trending techniques were somewhat superior to econometric methods in years 2 and 6, and only marginally inferior in year 4.

In summary, the record buttresses the views of those who believe that simple trending judgmental techniques are no worse than econometric models. Indeed, in the shortterm the U.S. experience shows that the record of trending techniques is superior to econometric methods. This is perhaps attributable to their reliance on judgement gained from an understanding of the environment and the ongoing dynamics. In contrast, pure econometric techniques rely on a mechanistic application of rigid formula. Put simply, this record supports the belief that less complex models coupled Ξ

with a better understanding of the power market and the ongoing dynamics can produce a superior near-term forecast than more complex ones.

As far as mid-term accuracy is concerned, end-use methods appear to be superior in the residential sector.³ However, this evidence is based upon a small sample size. As indicated in Table 4-3, there are 12 data points in year 6. Another important consideration is that these models are extremely data intensive. The decision to use such a model should be based upon weighing the cost of utilizing such an approach versus the benefits of improved accuracy.

As far as long-term accuracy is concerned, the record is inconclusive, largely because of few data points. The accuracy of all methods is statistically indistinguishable.

³ End use techniques are generally not employed in the industrial sector because it is prohibitively expensive due to the many different types of processes involved, and because proprietary data is often not supplied by customers.

		Horizon			
		Two Years	Four Years	Six Years	
Trending	Mean	3.91	10.71	21.14	
	Std. Dev.	6.45	6.31	19.17	
	Avg. Med.	2.70	10.21	19.73	
	No. of Resps.	79	76	68	
Econometric	Mean	5.43	12.79	20.94	
	Std. Dev.	5.39	10.05	11.54	
	Avg. Med.	4.75	10.31	20.15	
	No. of Resps.	89	61	31	
End Use	Mean	3.76	6.69	13.54	
	Std. Dev.	3.95	5.49	11.34	
	Avg Med.	2.19	5.25	12.62	
	No. of Resps	29	16	5	
Simple Econ	Mean	6.78	13.23	18.39	
	Std. Dev.	7.22	11.01	8.01	
	Avg. Med.	4.08	10.94	19.15	
	No. of Resps.	28	23	14	
Complex Econ	Mean	4.82	12,53	23.05	
	Std. Dev.	4.09	9,61	13.81	
	Avg. Med.	4.23	9,40	20.17	
	No. of Resps.	61	38	17	

Table A4-1Forecast Performance by MethodologyLarge U.S. Utilities1

 Mean: Mean Absolute Percentage Error Std. Dev.: Standard Deviation Avg. Med.: Median Absolute Percentage Error

Source: "Can Electric Utilities Improve Their Forecast Accuracy? The Historical Perspective", Public Utilities Fortnightly, Dec. 26, 1985.

Table A4-2

2

		Horizon					
		Two	Four	Six	Eleven		
		Years	Years	Years	Years		
Trending	Mean	6.43	12.51	18.92	59.63		
-	Std. Dev.	5.34	7.65	10.20	21.68		
	Avg. Med.	5.09	11.68	18.60	63.18		
	No. of Resps.	50	46	39	9		
Econometric	Mean	5.81	11.58	21.55	69.74		
	Std. Dev.	4.09	7.25	14.31			
	Avg. Med.	5.13	10.98	21.39	69.74		
	No. of Resps.	61	44	24	1		
Customer	Mean	5.38	11.56	19.21	58.47		
Survey	Std. Dev.	6.12	9.32	13.24	29.87		
	Avg. Med.	3.36	8.27	18.51	53.06		
	No. of Resps.	66	52	39	7		
Overall	Mean	5.85	11.62	19.59	59.75		
	Std. Dev.	5.20	8.13	12.27	24.01		
	Avg. Med.	4.43	10.27	17.85	63.18		
	No. of Resps.	189	148	103	17		

Industrial Forecast Performance: Large U.S. Utilities

.

Source: "Can Electric Utilities Improve Their Forecast Accuracy? The Historical Perspective", Public Utilities Fortaightly, Dec. 26, 1985.

- 98 -

Table A4-3

Residential Forecast Performance: Large U.S. Utilities

		Horizon						
		Two Years	Four Years	Six Years	Eleven Years			
Trending	Mean	3.84	11.74	18.31	62.72			
	Std. Dev.	2.32	6.19	11.10	11.14			
	Avg. Med.	3.53	9.87	16.61	58.37			
	Nuniber	27	24	23	4			
Econometric	Mean	4.22	10.87	20.72	47.23			
	Std. Dev.	3.43	7.71	11.10				
	Avg. Med.	3.68	10.64	19.35	47.23			
	Number	37	27	17	1			
End Use	Mean	3.11	6.45	16.80	62.42			
	Std. Dev.	2.47	4.91	8.86				
	Avg. Med.	2.36	4.48	15.54	62.42			
	Number	44	27	12	1			
Overall	Mean	3.75	9.81	18.75	62.64			
	Std. Dev.	2.85	6.52	10.40	11.85			
	Avg. Med.	3.21	8.95	18.34	61.38			
	Number	111	80	52	7			

r.

Table A4-4

Commercial Forecast Performance: Large U.S. Utilities

		Horizon					
		Two Years	Four Years	Six Years	Eleven Years		
Trending	Mean Std. Dev.	3.16 2.37	9.60 5.29	17.12 9.45	61.29 20.04		
	Avg. Med. No. of Resps.	3.13 35	9.77 31	14.52 26	53.34 5		
Econometric	Mean	3.31	8.62	18.45	81.58		
	Std. Dev.	2.71	6.01	11.30			
	Avg. Med.	2.93	7.54	18.05	81.58		
	No. of Resps.	57	39	21	1		
Overail	Mean	3.34	8.83	17.64	66.56		
	Std. Dev.	2.67	6.11	10.42	18.71		
	Avg. Med.	3.04	8.43	17.13	68.24		
	No. of Resps.	103	73	48	7		

Source: "Can Electric Utilities Improve Their Forecast Accuracy? The Historical Perspective", Public Utilities Fortnightly, Dec. 26, 1985.

ANNEX 5

,

Planning future electrical generation capacity

A decision analysis of the costs of over- and under-building in the US Pacific Northwest

Arun P. Sanghvi and Dilip R. Limaye

- 1· . -

Agencies with the mandate to consider a utility's request for additional generating capacity are increasingly in the cross-fire between various special interest groups and are confronted by divergent forecasts of future load growth. The regulatory agency's decision is difficult, to say the least. The social costs of both over- and under-building can be high. It is therefore imperative that the tradeoff between the costs of over- and under-capacity be evaluated. This study develops a decision analysis framework to study the need for additional electrical generating capacity in the presence of divergent load growth forecasts. A method for determining the costs of over- and under-building capacity is developed and applied to the Pacific Northwest region of the USA. Our results support the conclusion that in the Pacific Northwest the social costs of over-building are lower than the costs of under-building.

Arun Sanghvi is with ICF Incorporated, 1850 K Street, Northwest, Suite 950, Washington, DC 20006, USA. Dilip Limaye is with Synergic Resources Corp, One Bala-Cynwoyd Plaza, Suite 434, Bala-Cynwoyd, PA 19004, USA. The continued on p 103 The high standard of living that the USA enjoys is based upon the vitality of its economy and its potential for growth. Historically, this growth has been supported, in part, by the availability of an inexpensive, abundant, and reliable supply of electrical energy, as evidenced by a consistent increase in electricity intensiveness since 1950. Electricity generation now accounts for about 25% of US energy requirements. This reliance is projected to increase, often at the expense of other energy sources.

There is, however, increased concern about the adequacy of future availability of electricity. Fears of major power shortages in the 1980s are growing in the light of concerns about the availability of fuel for thermal plants, longer regulatory and construction lead times for new generating facilities, financing difficulties, and marked uncertainty of future demand. The impacts of such shortages, if they materialize, can range from inconvenience and discomfort to social deprivation and severe economic loss. Experience gained from the 1965 blackout in the Northeast of the USA and the recent 1977 New York City blackout only serves to heighten, in people's minds, the consequences of potential electricity shortages. On the other side of the coin, excess capacity will impose unnecessarily high fixed costs of generation on consumers. This cost stems from the capital intensive nature of the electric utility industry - estimates of the investment required in the next decade, for providing additional generating capacity range from \$215 billion (10°) to \$323 billion.¹

One must consider the impassioned concerns of environmentalists. They charge that the market price of electricity does not adequately reflect the social costs of electricity generation. This leads to overexpansion of generating capacity and consequently, to overconsumption, and unnecessary depletion and degradation of society's resources. Other special interest groups, out of concern for the needs of future generations, are committed to a change in life style that will bring about reduced energy consumption levels.

All these concerns not only add to the degree of uncertainty in future demand, but have also led to a measurable increase, in the

recent past, in the possibility of procedural delays and extended litigation in the licensing of new power plants. There is at present a growing adversary climate between the utilities and the 'intervenors'. This polarization is likely to get worse as the various special interest groups become more vocal and take their cases 'to the people'. A consequence of this division is that regulatory bodies such as the Energy Facilities Siting Council (EFSC) in the US Pacific Northwest (PNW).² that have the mandate to approve or disapprove a utility's request for additional generating capacity, increasingly find themselves in the middle of a heated debate.

One facet of this confrontation, reduced to its bare essentials, stems from divergent load growth forecasts – typically a 'low' forecast by the environmentalists, and a 'high' forecast by the utility to support its application for additional generating capacity.³ Sometimes these forecasts are probabilistic in nature. Specifically, the low forecast is characterized by a probability distribution D^L , whose mass is concentrated on low load growth outcomes, and the high forecast, characterized by a distribution D^H with most of its mass concentrated on high load growth outcomes. One problem facing the siting council is: what is the appropriate generating capacity expansion rate, given distributions D^L and D^H ? The decision is difficult. Even under the most rationally designed capacity expansion plan, it is virtually certain that projections of electricity demand and generating capacity, will exceed or fall short of actual demand and capacity. Society will have to bear the costs of such deviations. The choice⁴ is between:

- paying the higher fixed generation costs incurred due to excess capacity;
- paying the costs of economic and other losses due to power shortfalls and/or brownouts, or the higher costs of short lead time generating capacity (such as combustion turbines) that is installed if a shortage is imminent.

Even a saving of 1 mill/kWh⁵ in the price of electricity will result in a reduction that is conservatively estimated to be almost \$150 million in PNW consumer's electric bills in 1988 alone. With so much at stake, it is critical that the capacity expansion decision be made following a thorough analysis of the economic and other impacts of each expansion alternative.

Previous studies

There are two published studies to date, that examine the problem of capacity planning under uncertainty. The Stanford Research Institute⁶ study for the California Energy Resources Conservation and Development Commission (CERCDC) addressed the problem of capacity expansion under uncertain demand. This study was static in nature in that it did not allow adjustments in capacity as a function of perceived changes in load growth rates. Another study by Gordian Associates,⁷ for the US Federal Energy Administration (now the Department of Energy), estimated the cost impacts of differences between planned and actual growth rates. For a hypothetical Eastern utility the change in revenue requirements to the utilities, and the change in oil consumption were estimated. Whereas, this study allowed for upward revisions in plant capacity, ie, capacity additions, it did not allow downward revision in capacity, by slowing down

continued from p 102

present study was carried out while the authors were with Mathematica Inc, Princeton, NJ, USA.

We owe a special debt of gratitude to Mike Coberley and George Fegan for their boundless effort in helping formulate the model and determining the assumptions made in this study. The study is richer because of their contribution.

¹ US Federal Energy Administration, *National Energy Outlook*. US Government Printing Office, Washington, 1976.

² The states of Idaho, Oregon, and Washington

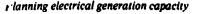
³ This study is concerned with the *need* for additional generating capacity and not with other relevant issues such as the appropriateness of a site or a generating technology.

⁴As exercised by the siting council on behalf of society

⁵ A mill is one-tenth of one cent.

⁶ Stanford Research Institute, *Decision Analysis of California Electrical Capacity Expansion*. Report submitted to California Energy Resources Conservation and Development Commission, February. 1977.

⁹ Gordian Associates, Optimal Capacity Planning Under Uncertainty in Demand, Report submitted to the US Federal Energy Administration, November, 1976. construction in progress. Adjusting capacity, by 'slipping' plant construction, or by plant additions is used very effectively by utilities to reduce potential mismatches between capacity and load. Any meaningful comparison of the costs of over- and under-building must, therefore, take this adjustment process into account. Finally, neither of the two studies addressed a decision problem facing regulatory agencies – the need for additional generating capacity in the presence of divergent load forecasts.


A decision analysis approach

This paper develops a decision analysis framework to study the problem of expanding electrical generating capacity in the PNW. It explicitly considers the possibility that even under the most carefully thought out expansion plan, projections of electricity demand and generating capacity will exceed or fall short of actual demand and capacity. Specifically, it determines the economic impact of planning for one load growth rate when another rate is realized. The model incorporates the issues that are central to the capacity expansion decision in the PNW. For example, uncertainty in the availability of hydroelectricity, a critical variable in the PNW, is considered in the model. Furthermore, the model incorporates the dynamic nature of the capacity planning process, as a function of demand growth. Specifically, it permits adjustments in the availability of future capacity by slowing down existing construction or adding plants as a function of perceived need. The impacts of alternate expansion plans and load growth outcome, are measured by the social cost of electricity in the selected target year of 1988. These costs are determined by the interaction of the corresponding market demand and supply curves, that represent the fixed and variable cost of the generating capacity, and the social cost of power shortfalls, if any. The costs of any slowdown in the given expansion plan are also reflected in the installed cost of the generating plant. The methodology developed in this paper is valuable in helping choose the best capacity expansion rate given a probabilistic load growth rate forecast. Information on the trade-offs between over- and underbuilding, that is provided by our analysis, is also valuable to members of a regulatory body such as the EFSC, in selecting a socially desirable capacity expansion rate when confronted by divergent load growth forecasts.

Key issues in the capacity expansion decision

Key issues that influence the capacity expansion decision in the PNW are:

- O divergence and uncertainty of load growth forecasts:
- availability of hydroelectricity:
- O capacity and demand for exports:
- O capacity for and availability of imports:
- price of exports and imports:
- O costs of power shortages;
- O plant construction time;
- O ability to accelerate/delay plants:
- O nuclear v coal v combustion turbine plants;

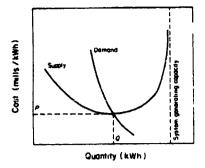
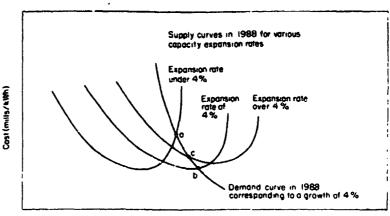
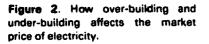


Figure 1. Relationship between electricity supply and demand and generating capacity.

- ^e Edison Electric Institute, low growth scenario.
- ⁹ US Federal Energy Administration, electrification scenario.
- ¹⁰ PNUCC West Group Forecast of Power Loads and Resources, July 1978-June, 1989, March, 1978.
- "Northwest Energy Policy Project, Northwest Energy Policy Project, Supply Module, 1977.

- environmental considerations;
- financial constraints:
- regulatory requirements; and
- political and social climate.


The decision model that is developed in this paper incorporates, to varying degrees, all but the last two of these issues. We now discuss some of these uncertainties, and how their impacts can be measured.


Uncertainty in loud growth

The 'need for power' in the USA has increased at an average rate of 7% per year in the past twenty years. For the most part, the actual growth rate was stable, seldom deviating significantly from the average. In contrast, the utility planning environment is now characterized by increased uncertainty about the future demand for electricity. For the USA as a whole, load growth forecasts to 1995 range from 2.83%⁸ to 6.38%.⁹ Within this range there are over two dozen different forecasts. In the PNW the degree of uncertainty about the future is no less. The West Group Forecast¹⁰ expects firm load to grow at 4% to 1990. In contrast, the Northwest Energy Policy Project (NEPP)¹¹ forecasts for low, medium and high growth scenarios are 1.4%, 2.98%, and 4.4%, respectively. Finally, the Pacific Northwest Utilities Conference Committee (PNUCC) has forecast load growth to 1989 to be in the range 3.5-5.2%, with an expected growth of 4.4%. Differences in load forecasts may be due to the forecasting model/technique used and/or due to differences in the estimates of judgmental variable, such as the prices of competing fuels and the degree of mandatory or voluntary energy conservation.

Uncertainty in the forecast of future demand for electricity can significantly affect the ability of utilities to meet the electricity demand of consumers. The economic impact of over- or underestimating load growth is illustrated in Figures 1 and 2. Figure 1 depicts the interaction of the supply and demand curves for electricity in a given year in the future. The demand curve represents the quantity of electrical energy demanded for a given price. The supply curve represents the average cost of supplying a given quantity of electrical energy. The supply curve is U-shaped because at low levels of system utilization the fixed costs have to be allocated over fewer units of electricity. At very high levels of system utilization, on the other hand, the variable costs rise since in a fixed capacity system higher demand levels must be met by bringing higher cost plants on stream. The intersection of the two curves gives the quantity, Q, of electrical energy that will be supplied and consumed, at the prevailing market price of P.

The market equilibrium point defined by P and Q is a key element in quantifying the impact of alternate capacity expansion decisions as shown in Figure 2. This Figure contrasts the impact of over-building and under-building on electricity prices in the illustrative target year of 1988. Supply curves corresponding to three different capacity expansion rates are shown. Point b represents the market equilibrium if the utility was lucky enough to predict the true load growth outcome of 4%. Points c and a show the effects of over- and underbuilding. In this illustration, over-building results in underutilization of system capacity as evidenced by the fact that point c is located on the 'left' side of the corresponding supply curve. Analogously, underbuilding results in over-utilization of system capacity as evidenced by

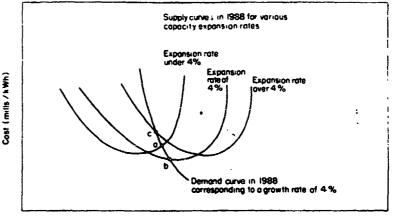


Figure 3. Case where under-building is better than over-building.

12 The validity of using a demand curve based on the assumption of pricing at average cost may be questioned by some individuals. For example, welfare economists argue that price should be based upon (long-run) marginal costs, if welfare is to be maximized. In practice, utilities tend to base their tariff structure upon marginal cost considerations while trying to balance the total revenue requirements against total costs. Public utilities in particular generally end up by charging an average price that equals average cost. Therefore, it may be justifiable to use a demand curve based on the assumption that demand responds to changes in average cost.

Quantity (kWh)

the point a lying on the right hand side of the corresponding supply curve. In Figure 2 point a lies above point c, ie, over-building happens to be better than under-building. In other cases the opposite may be true (see Figure 3).

The economic impact of over- and under-building can thus be measured by studying the interactions of the corresponding supply and demand curves.¹² It is true that the electricity market is regulated and therefore not likely to behave as a perfect market. However, we assume that a one year period is sufficient for the demand-supply interaction to achieve equilibrium, even with the Public Utilities Commission's rate setting procedure.

Availability of hydroelectricity

The Pacific Northwest has a relative abundance of hydroelectric power. Approximately 84% of the name plate generating capacity is hydro. Actual energy capability of the hydro system, however, also depends upon the amount of runoff in spring and early summer. This runoff can vary considerably over the years. Consequently, the energy capability of the hydro system typically ranges from around 12 000 MW in a critical water year (which determines the hydro system's firm load carrying capability (HFLCC)) to about 18 000 MW in the best water years. The abundance of hydro determines the

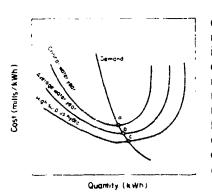


Figure 4 Effect of availability of hydro on electricity supply curve.

¹⁴ Mitre Corporation, Need for Power Study An Assessment of the Adequacy of Future Electric Generating Capacity, Report MTR-7549, 1977. Plenning electrical generation caracity

costs of meeting a given load. Annual fluctuation in runoff thus results in a different supply curve for each water year. This is shown in Figure 4 for three different water years. As the amount of hydro energy available increases, the cost curve shifts downwards and to the right. This reflects increased generating capability and the fact that the variable costs of hydro generation are the lowest of all generating technologies. Figure 4 also reveals that the market equilibrium is a function of the water year outcome. If the three water years in question are equally likely, then the expected market orice can be determined by averaging the prices corresponding to points a, b, and C.

Costs of power outages

- 1

The cost of an electrical outage to a consumer is a function of the time of day and duration of outrage, the nature of activities affected, the degree to which the activities affected depend upon electricity, the availability of a backup power source, the ability to resume the affected activity normally after power is restored, the frequency of the outages, and a host of other determinants. Consequently, the cost of an outage is different for each consumer. To some it may be the mere inconvenience of being stranded in an elevator. To another it may involve loss due to fire, burglary or vandalism. To yet another, it may be the loss of production, spoilage of in-process inventory and of equipment. Information about the costs of outages is vital for several reasons. Determination of the optimal amount of generating capacity of a utility, should be based upon a careful balancing of the associated costs and benefits of each investment alternative. As system capacity is decreased, the associated direct costs decrease, but at the expense of increasing costs of energy denied, due to the more frequent generation failures.

Assessing the cost of potential electricity shortages is also important from the standpoint of a utility's decision to over-build or under-build. Consider a case where a utility faces under-capacity, say in three years time. It has the option of adding combustion turbines and restoring the proper reserve margin, or relaxing the reliability requirement.¹³ If it decides to relax the requirement, to what extent should it do so? These issues beg the question: what is the social cost of an outage? Currenly, capacity planning decisions are primarily based upon value judgments which assign an implicit cost to outages. Such value judgments invariably lead to inconsistent decisions over time. We believe that the cost of outages is a key exogenous variable that should be explicitly used in the capacity expansion planning process. Only then can a consistent evaluation of alternative expansion plans be achieved. Such an approach affords an analysis of the sensitivity of the optimal capacity expansion rate to the costs of outages. This flexibility is especially important, since current estimates of the costs of outages vary widely in the range 0.16\$ to 16\$ per kWh denied.14

Outline of methodology

Our model assesses the economic impact of being over- or under-built and of alternative over-build and catch-up strategies to meet load in the selected target year of 1988. Figure 5 is a schematic view of the model and the linkages between the various modules. la

¹³ Most major utilities strive to achieve a loss of load probability (LOLP) of almost one in ten years. This typically translates to a reserve margin of 20%. The use of a LOLP of one in ten is, unfortunately, arbitrary, and most likely not optimal in a social cost-benefit sense. In fact, some recent studies argue convincingly that substantial economic gains can be achieved, with virtually no perceptible social cost, by reducing current reserve margins by only a small amount. See, for example M L Telson, The Economics of Alternative Levels of Reliability for Electric Power Generation Systems. Bell Journal of Economics and Management Science, Vol 16, No 2, Autumn, 1976.

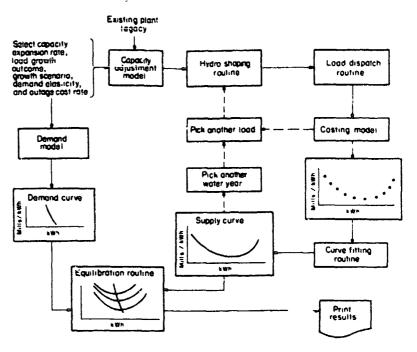


Figure 5. Overview of the model.

Fundamentally, the model attempts to compute the market price of electricity in the target year of 1988, given different capacity expansion rates, load growth outcomes, and growth scenarios. The capacity expansion rate determines the plant expansion programme to be undertaken, starting in 1977, so that sufficient generating capacity is available, under current planning procedures, in 1988.¹⁵ The growth scenario specifies the year in which the eventual load growth outcome is discovered. This determines the exact nature and extent of any capacity adjustments made between 1977 and 1988. If discovery of the actual load growth rate is made prior to 1988, then capacity adjustments, either additions or delays, are made to ensure that there is adequate generating capacity available in 1988. If the true load growth rate is only discovered in 1988, then the capacity expansion plan initiated in 1977, with no interim adjustments, will generally lead to over- or under-capacity.

On the supply side, the model determines the average cost (to consumers) curve of electricity for a specified load growth rate and growth scenario. This is achieved by estimating the cost of meeting a number of different load levels, and then using a curve fitting routine to determine a continuous supply curve. Such cost curves are determined for each of eight representative water years. On the demand side, the load growth rate outcome and a specified demand elasticity are used to determine the demand curve for electricity in the PNW in 1988. Finally, an equilibrium routine determines the market equilibrium price and consumption quantity that will prevail under each of the eight water year conditions. The expected price and quantity under the specified load growth rate and growth scenario are then computed as simple averages of the corresponding eight values that are determined by the equilibrium routine. These and other results are then printed by the report generator.

In this study, we examine the costs of adjustments in energy capabilities rather than in the capacity of the generating system. A

¹⁶ Under the present planning process, the capacity required in any year is determined by the projected load, and a reserve requirement that is equal to half of the increase in 'utility type' loads from that year to the next. In this report, whenever we speak of a capacity expansion rate of 3%, for example, we mean that capacity is expanded at a rate sufficient to meet the load and reserve requirements. as defined above, corresponding to a load growth rate of 3%

1

hydro-dominated generation system, such as the PNW, typically offers large capacity and therefore flexibility in meeting peak loads. This is not to say that a capacity shortfall or excess will never accompany an energy shortfall or excess. Our model implicitly assumes that any adjustments made to resolve an energy shortfall or excess will automatically adjust capacity.

Capacity adjustment model

The ultimate load growth outcome may be greater than the load growth rate used to plan capacity expansion. This outcome may be known as early as 1982, at which time construction of additional coal plants can be initiated to bring on additional generating capacity online by 1988; or in 1985, at which time additional combustion turbines can be added, if necessary; or as late as 1988, in which case, there will be under-capacity. On the other hand, knowledge of the true load growth outcome in 1982, or in 1985, may require a slowing down of existing construction to delay bringing one or more plants on-line by 1988. Such a discovery made in 1988 will result in overbuilding. Additions and/or delays of the type just described, are performed by the capacity adjustment model.

Hydro shaping routine

Most of the hydro and thermal generating facilities in the PNW are located on or along the four major interconnected rivers: the Columbia, the Snake, the Willamette and the Pend Oreille. Generally, these generation sites cannot be operated in isolation. Downstream effects of up-stream generation, hydro as well as thermal, must be considered. In other instances, a spill-off may be necessary just to provide sufficient cooling water for a downstream thermal plant. A grand plan is necessary to effectively operate the hydro-thermal system, and to prevent the myopic optimization policies that are likely to be pursued by managers of individual generating facilities. Such a plan exists in the PNW and goes by the name of 'Agreement for Coordination of Operations Among the Power Systems of the Pacific Northwest' or, in short, the coordination agreement. This agreement is a legal document that spells out in detail the operating procedures, obligations and entitlements that are binding on the major utility transmission companies, the Corps of Engineers and the Bonneville Power Administration. The coordination agreement not only specifies rules for the determination of the hydro system Firm Energy Load Carrying Capability (HFLCC) for maximum advantage, but permits the shaping of this firm capability from month to month within a water year and from one water year to the next. This shaping is governed by the specification of the Energy Content Curve that determines the maximum amount of stored energy that can be drafted at any point in time. An exception is made to the extent that some provisional energy can be borrowed from the future.

The hydro shaping routine is a model of the operating rules that govern the use of hydro energy in the PNW. For a given load level and thermal generating capacity, this model shapes, within the constraints of the coordination agreement, the HFLCC into three seasons in a manner that offers the best odds of meeting the load. These seasons are:

Early drawdown season, September-December; reservoirs are drawn down, and no forecasts of runoff are available.

Refill-hold season, May-August: the spring runoff allows filling, and most thermal scheduled maintenance is performed in this season

Next, for the pre-selected water year being simulated, the program determines the natural streamflow capability from historical data of actual runoffs and flows in the PNW. The surplus hydro (ie energy in excess of HFLCC) is then computed and dispatched to meet load, by regulating the system within the specified policies.¹⁶

In short, the output of the hydro shaping routine specifies for any given load, the availability of hydro energy, as a function of the water year being simulated, and by the season within the water year.¹⁷

Load dispatch routine

- 1

The variable costs of supplying a specified load is primarily a function of the generating mix dispatched to meet the load. The load dispatch routine attempts to achieve this dispatch in the most inexpensive manner. For a given load, the following dispatch merit order is used: hydro. nuclear, coal, existing small thermal plants, and new combustion turbines. The only exception to this merit order ensures that under no circumstances is the utilization factor of nuclear plants lower than 0.70. The maximum utilization factor of nuclear plants is 0.75.

The constraint of not underutilizing nuclear capacity stems from the concern of utility planners that disturbing the nuclear fuel cycle has ripple effects on future fuel cycles. The resultant cost increases in all future cycles, it is generally believed, will exceed any savings in the current cycle. The decision to underutilize nuclear plants in a good water year should be a function of the amount of surplus hydro available, and the prospects of surplus hydro in the next year or two. If the current surplus is high and prospects for the future also look good, then benefits are likely to outweigh the cumulative cost increases of future fuel cycles. The development of such a model was beyond the scope of this study. Moreover, it is extremely unlikely that information about future hydro surplus will ever be available.

A typical load dispatch proceeds as follows. For the given load, output from the hydro shaping routine specifies the amount of hydro energy available. First, 70% of the nuclear nameplate capacity is dispatched. Following this, as much of the hydro energy is dispatched as is necessary or available. Any unfulfilled load is then met by dispatching energy from mine-mouth coal plants, followed by energy from unit train coal plants and so on, down the merit order. This process culminates with specification of the amount of the load met by various generating sources. A feature not included in this study is the consideration of the load duration curve in dispatching the generating plant. A load duration curve analysis is particularly critical for predominantly thermal systems that are peak-constrained. In contrast the PNW is energy-constrained for the most part, because of the abundance of hydro energy. Incorporation of the standard mathematical programming approach to load dispatching would, however, be straightforward, given the modular component nature of

¹⁷ From historical records of stream flow data for 40 years, eight ersatz water years were constructed. Each water year is characterized by the amount of surplus hydro energy that is available in that year. Furthermore, each such water year was constructed so as to be equally likely.

¹⁶ For details of this program see D. Lewis, 9. Duncan and M. Schultz, *Energy Reserve Planning Model*, Progress Report, Northwest Power Pool, Portland, Oregon, 1975.

:

our model. All other model components in Figure 5 will remain unchanged.

Costing model

The costing model calculates the unit cost to consumers (mills/kWh) of supplying a specified amount of electrical energy (kWh) associated with a given growth scenario. In several growth scenarios analysed, capacity adjustments involve a slowdown of construction in progress. Under current regulatory procedures, only a small portion of construction work in progress is included in the rate base, with the entire investment in new generating plant being included in the rate base starting with initial operation of plant. Consequently, the fixed cost of a plant, that is delayed so that it comes on-stream after 1988, will no longer appear in the 1988 rate base, but will show up as a higher cost in a later year. This would pose no problem in a multitarget year study. In a single target year study, however, the use of current rate making procedures would not adequately show the impact of delaying construction in progress. Therefore, our costing model creates an artificial rate base. This base in 1988 includes a portion of the fixed cost of generating plant, still under construction in 1988, in proportion to the fraction of the plant completed as of that year. vis-a-vis the extended construction schedule.

Demand model

A demand curve is a functional relationship between the amount of electrical energy consumption as a function of the selling price of the energy. The nature of the demand curve is as fundamental to the capacity expansion decision as the supply curve. Together they determine the market equilibrium and provide a measure of consumer welfare.

This study assumes the following relationship between the demand and price of electricity in the target year of 1988:

 $Q = KP^{e}$

where Q = quantity of electrical energy consumed in 1988 (10° kWh). P = price of electrical energy in 1988 (mills/kWh); e = short-term price elasticity of demand in 1988, ie, the percentage change in consumption for a unit percentage change in price; and K = a scaling constant.

Results

The above model is used to determine the impact of being over- and under-built assuming different load growth rates and growth scenarios. Other growth scenarios were also studied in order to assess the impact of deliberate 'over-build' and 'catch-up' strategies. Figure 6 displays the growth scenarios analysed in the base case.¹⁸ Identical scenarios were run for deliberate over-build cases (5.5%) and underbuild cases (2.5% and 3.5%). Each stop node in Figure 6 is defined by the load growth outcome and a generating mix that evolves as a consequence of the plant expansion programme undertaken in 1977 and adjusted appropriately. For each such stop node, the entire model, as depicted in Figure 5, is run to determine the expected market price of electricity in 1988. Furthermore, each of the cases

¹⁸ This case corresponds to the expansion plan currently being implemented in the PNW.

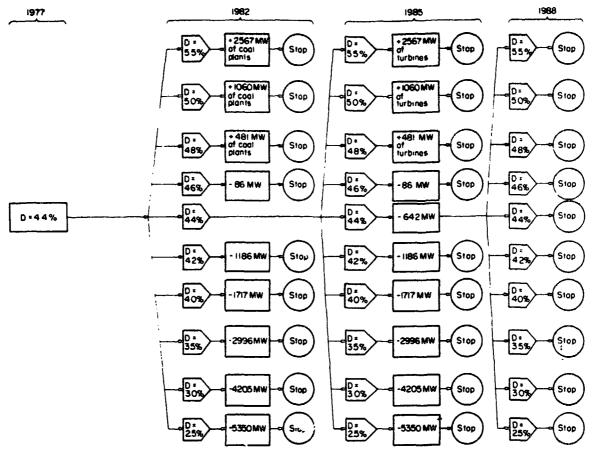


Figure 6. Alternative outcomes under the base case expansion plan. *D* is actual load growth outcome discovered in 1982, 1985 or 1988. Figures in rectangles show capacity adjustment which is necessary when actual load growth is known.

¹⁹ Such a comprehensive analysis is to be found in A.P. Sanghvi and D.R. Limaye, *Planning for Generation Capacity Expansion in the Pacific Northwest: A Decision Analysis of Over- and Under-Building*, Mathematica Report submitted to the Portland General Electric Company. Portland, Oregon, August, 1978.

²⁰ The static case is where true-load growth is only discovered in 1988. This implies that no intermediate capacity adjustments are made. was run under different assumptions about the capability of the PNW to import and expoil power. However, in this paper, we only report the results for the case of zero import and export capability, ie, the PNW region is treated in isolation. Furthermore, we report results only for growth scenarios where the true load growth outcome is discovered in the years 1985 and 1988. The presentation and analysis of results in all other scenarios and import-export capability combina^{+:}ons is beyond the scope of this paper.¹⁹

Figure 7 displays the decision tree for the scenarios where the true load growth outcome is discovered in 1985, ie three years prior to the target year of 1988. The information in Figure 7 is more compactly presented in the economic impact (payoff) matrix shown in Table 1. The comparable payoff matrix for the static case²⁰ is shown in Table 2. The planner has a choice of adopting a deliberate under-build strategy by building for a load growth of 2.5% or 3.5%, a deliberate over-build strategy by planning for load growth of 5.5%, or planning to match the load growth of 4.4%. In each case, one of four possible outcomes will result. The economic impact of the particular decision and outcome is measured by the expected price of electricity in 1988, as measured in current mills/k Wh.

As an example, if capacity expansion was planned for a load growth of 3.5% and the eventual outcome is 4.4%, then the cost is 56.3 mills if no capacity adjustments were made in the interim (Table 2). If, on the other hand, a capacity adjustment could be made in

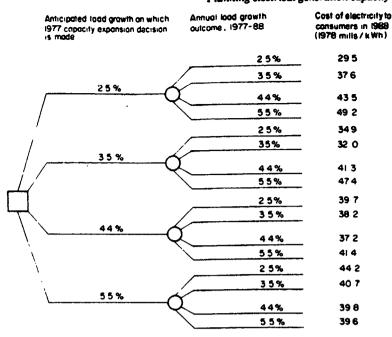


Figure 7. Decision tree of PNW capacity expansion and cost of electricity to consumer.

1985, then the cost is only 41.3 mills (Table 1). The higher costs in the former case stem from a combination of factors: the increased utilization of higher variable-cost generating equipment, and the economic cost of power shortfalls, valued at a dollar per kWh denied.²¹ The results in Tables 1 and 2 support the following conclusions:

- The expected costs of ending up under-built are significantly higher than being over-built. This is because the entries above the diagonal of either payoff matrix are larger than the corresponding entries symmetrically located below the diagonal. These differences are obviously less when capacity adjustments can be made to match load growth.
- Whereas adjustments in capacity can only be achieved at some (A) cost, the net impact is beneficial. This conclusion is supported by the fact that most off-diagonal entries in the matrix in Table 1 are smaller in magnitude than the corresponding entries in Table 2. If the load growth outcome were known a priori, then the optimal capacity expansion decision is to plan to match this growth. In the absence of capacity adjustments, however, capacity growth should be manned at about 0.4 to 0.5 percentage points higher than the known load growth outcome. This stems from the fact that in the capacity adjustment model. adjustments are made to match capacity and average annual load, with a reserve margin. The hydro shaping routine, however, works with seasonal loads. The loads in seasons 1 and 2 of each water year are higher than in the third season. Consequently, there can be mismatches of load and energy capacity in all three seasons, with the first two seasons requiring imports and the third season left over with surplus energy. Since imports are not permitted, any such shortfalls are priced at the outage cost of 1\$/kWh denied. A lower load growth of about 0.4-0.5% does away with the need for incurring these costs.

³¹ The general nature of the conclusions does not change when outage costs as low as 0.50 %kWh denied were used. Other results, using outage costs other than 1%kWh denied, are contained in A.P. Sanghvi and D.R. Limaye, op cit, Ref 18.

Table 1. Payoff matrix showing electricity casts in 1988, assuming a growth scenario in which load growth outcome is discovered in 1985 (1978 mills/kWh)

			Load grow	with outcome		
			2.5%	3.5%	4.4%	5.5%
Cepecity expansion decision	6	2.5%	29.5	37.6	43.5	49.2
)	3.5%	34.9	32.0	41.3	47.4
	<u> </u>	4.4%	39.7	38.2	37.2	41.4
	- (5.5%	44.2	40.7	39.8	39.6

Table 2. Payoff matrix showing electricity costs in 1988, assuming a growth scenario in which load growth is discovered in 1988 (1978 mills/kWh)

		Loed grow	wth outcome	Ð	
		2.5%	3.5%	4.4%	5.5%
– /-	(2.5%	29.5	54.5	123.5	226.2
Cepacity	3.5%	32.9	32.0	56.3	140.9
expansion	4.4%	40.1	37.1	37.2	71.1
decision	5.5%	46.5	42.3	39.5	39.6

Table 3. Payoff matrix together with associated load growth probabilities and expected electricity costs, assuming load growth outcome is discovered in 1985 (mills/kWh)

			Local g	rowth ou	teomo		:
			2.5%	3.5%	4.4%	5.5%	Expected electricity cost
. .	6	2.5%	29.5	37.6	43.5	49.2	43.1
Copacity	y	3.5%	34.9	32.0	41.3	47.4	40.7
oxpansion docision	<u>۲</u>	4.4%	39.7	38.2	37.2	41.4	38.6
	l	5.5%	44.2	40.7	39.8	39.6	40.2
			0.05	0.2	0.5	0.25	
			Proba	chility of	locd grow	ath outco	ome

Incorporating probabilities of load growth outcomes

Table 3 reproduces the matrix of Table 1 with additional information about probabilities of various load growth outcomes. These probabilities do not represent official forecasts. However this distribution has an expected value of 4.4% per year, the current 'high' forecast of load growth in the PNW, and is typical of the D^{H} type of distribution, discussed above. The expected costs of each decision alternative are displayed in the column to the right of Table 3. The decision that minimizes the expected cost is to expand at 4.4%. The information that is contained in Table 1 can also be used to shed light on the capacity expansion decision when one is faced with divergent probabilistic forecasts. Suppose that another group's forecast of the odds of the four load growth outcomes of 2.5%, 3.5%, 4.4%, and 5.5% is 0.6, 0.3, 0.08, and 0.02, respectively. Under this 'low growth' forecast, the expected costs of the four decision alternatives, in the presence of capacity adjustments, are 33.4, 34.8, 39.1, and 42.7 mills/kWh. In contrast with the 'high growth' forecast, under the 'low growth' forecast, the optimal expansion decision is to plan for a load growth of 2.5%. The question now arises as to which capacity expansion rate should be used. Figure 8 displays the alternatives and expected costs under each outcome. The maximin strategy is to expand at 4.4%. The minimal regret strategy is to expand at 2.5%.

^a Minimum of first row occurs at load growth cutcome of 2.1%. Minimum of second row occurs at load growth outcome of 3.1%. Minimum of third row occurs at load growth outcome of 4.1%. Minimum of fourth row occurs at load growth outcome of 5.0%. - 114 -

Planning electrical generation capacity

i

2. 51

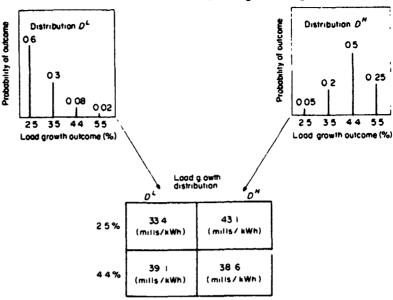


Figure 8. Capacity expansion decisions under diffurent probabilistic load growth forecasts and expected electricity costs.

Perhaps a more meaningful way to look at the decision problem is to compare the economic impacts of choosing the 2.5% expansion rate with the outcome being determined by distribution D^H and choosing the 4.4% rate with the outcome being determined by distribution D^L . Figure 8 shows that these costs are 43.1 mills/kWh and 39.1 mills/kWh respectively. Consequently, choosing the incorrect rate results in a cost of 4 mills/kWh. This translates, conservatively, to an expected saving in PNW consumers' electricity bills of approximately 600 million dollars in the year 1988.²² Under this criterion, the strategy is to expand at 4.4%.

A 'second order' expected value analysis can be performed on the 2 X 2 payoff matrix in Figure 8. However, this does not clarify the basic trade-offs further. Members of the regulatory body who accept or 'lean heavily' towards distribution D^- , will in all likelihood favour an expansion rate of 2.5%. By the same token, those who accept or lean heavily towards distribution D^H , will favour the 4.4% rate. The swing votes may lie with those members who truly cannot make up their minds about accepting D^L or D^H . Many of these members are likely to use the reasoning laid out in the previous paragraph and choose the 4.4% rate. Still other undecided members may assign²³ likelihoods to the occurrence of D^L and D^H . This immediately implies an unconditional distribution that lies 'between' D^L and D^H . Such distributions will favour a compromise solution, ie an expansion rate between 2.5% and 4.4%. Often, however, such 'compromise' solutions may not be feasible, since the basic decision – to grant or deny a permit for an additional plant – is discrete.

Conclusions

Without meaning to 'pass the buck', in the final analysis, the decision to accept one expansion rate over the other, rests with the regulatory body with the mandate to do so. Our decision analysis purposely falls short of recommending this final step, since the capacity expansion rate decision must also incorporate other socio-political

²² This estimate assumes that the 1988 consumption level will be at least 110 billion kWh.

²³ This could be in a fuzzy sense, and not necessarily involve specific values.

²⁴ The environmental impact of various strategies is reflected in the analysis to the extent that the costs of scrubbers, or other pollution abatement devices, mandated by legislative action, are reflected in fixed and variable costs of each generating plant. considerations. However, our analysis provides an objective assessment of the economic and environmental impacts of each decision alternative.²⁴ We believe that the methodology developed in this paper will prove useful to the final arbiters in making their decision. The decision analysis approach forces a logical basis and structure to an otherwise informal reasoning process. It provides an c⁴fective medium for communicating the reasoning that underlies the final recommendation. Assumptions that are generally hidden or fuzzy, are now forced into the open. Consequently, the real differences between the various interest groups can be identified. This fosters rational debate of the specific issues and differences, instead of vague rhetoric that only serves to charge the atmosphere further. Resolution of conflict is likely to be easier on such a platform.

ANNEX 6

.

R

ANNEX 6: EX-POST ANALYSIS OF ECONOMIC AND ELECTRIC SECTOR CORRELATION

It has been established in other research that the most important structural determinants of electricity growth in the commercial and industrial sector are level of economic activity, electricity price, and the price of electricity substitutes. In the residential sector, the key factors are growth in number of connections, and usage per customer, with the latter influenced by some measure of household income, electricity prices, prices of substitutes, and perhaps electrical appliance prices as well.¹ Often, data on sector specific measures of economic activity or income -- such as value added in manufacturing and commercial sectors and real disposable household income -- are not available. In such cases gross national (or domestic) product is often used as a proxy measure of income and economic activity in all the sectors and utilized in forecasting electricity sales. Whereas gross national product is not the sole determinant of electricity sales it nevertheless tends to be the most highly correlated independent variable.

Correlation is relevant to this study in one critical respect. If under certain conditions electricity requirements are highly correlated with the level of economic activity (GNP for example), then an important corollary exists: An accurate forecast of GNP is necessary for an accurate electricity demand forecast, providing there are no major structural shifts in the economy, and in the customer mix patterns, and relative prices for various energy sources that were prevalent historically.

This interdependence led us to re-explore the relationship between GNP and national electricity generation (in GWh). Specifically, we were interested in learning when the CNP-GWh correlation is strong and under what circumstances does it appear to be weak. Setting aside the problems of forecasting either variable, how good is the fit between actual GNP and actual power demand? In addition, we wish to discover conditions under which this correlation was higher or lower.

Glenn D. Westley, "Forecasting Electricity Demand: A General Approach and Case Study in the Dominican Republic", Project Analysis Paper No. 26, Inter-American Development Bank, (IDB), Washington, D.C., October 1984.

EX-POST ANALYSIS OF ECONOMIC AND ELECTRIC SECTOR CORRELATION

For this investigation, we regressed <u>actual</u> GNP in constant U.S. dollars (independent variable) against <u>actual</u> net generation in forty-two countries over the entire study horizon (1960-1985).² A total of 757 paired data points were included in the sample. Major findings are outlined below.

On a country-by-country basis, the overall correlation was high. Thirty-two of the fortytwo countries studied have a coefficient of determination (\mathbb{R}^2 measure of "goodness of fit") of better than 80 percent (Table A6-1).

On a regional basis, the performance was not evenly distributed. All of the weak correlations appeared in only two regions, with Africa having the highest percentage of low correlations.

Number of Countries	<u>Countries with R²<.80</u>	
in Sample	Total	Percent
11	5	45%
6	0	0%
9	0	0%
16	5	31%
	in Sample 11 6 9	11 5 6 0 9 0

Regions demonstrating the highest correlation between real GNP and GWh generation were also the best economic performers over the study horizon.

Region	Average Annual Regional GNP Growth Rate (1960-85)	<u>R</u> 2
Africa	3.1%	.26
Asia	5.0%	.88
Emena	5.6%	.83
LAC	3.6%	.49

² The analysis is restricted to GNP as the sole independent variable since data on electricity prices and prices for fuel substitutes was not available. A detailed analysis would focus not only on these additional variables but would seek to disaggregate demand by major sectors, and attempt to isolate key determinants of this demand, as for example, the number of connections and usage per connection in the residential sector.

The correlation is strongest among countries with the least economic volatility. Specifically, when the standard deviation of GNP is high, the correlation between GNP and GWh appears to be weak.

GNP Volatility	Number of <u>Countries in Sample</u>	
Std Dev < 1.5		.86
Std Dev 1.5 - 5.0		.41
Std Dev > 5.0		.23

In closing it should be re-emphasized that restricting the proceeding analysis to GNP as the sole independent variable, is likely to have resulted in overemphasizing its importance. Nevertheless, we expect that the general findings should hold up under a more detailed analysis which includes other key independent variables as well.

. -

Table A6-1

GNP-GWH Correlation by Country

Region/Country	Number of Years	R ²	
AFRICA			
Ethiopia	24	.87	
Ghana	21	.43	
Kenya	14	.98	
Liberia	20	.98	
Malawi	21	.93	
Nigeria	11	.02	
Sierra Leone	8	.43	
Sudan	14	.23	
Tanzania	16	.87	
Zambia	11	.10	
Zimbabwe	23	.94	
ASIA			
Bangladesh	13	.89	
India	12	.97	
Indonesia	20	.91	
Malaysia	14	.98	
Philippines	12	.81	
Sri Lanka	21	.99	
EMENA			
Cyprus	11	.99	
Jordan	16	.96	
Morocco	21	.94	
Pakistan	26	.99	
Portugal	21	.88	
Tunisia	21	.96	
Turkey	26	.96	
Yemen Arab Republic	14	.83	
Yugoslavia	26	.98	

.

- 123 -

Table A6-1 (Continued)

GNP-GWH Correlation by Country

Region/Country	Number of Years	R ²	
LAC		<u></u>	
Argentina	24	.72	
Brazil	20	.86	
Chile	19	.53	
Colombia	15	.96	
Costa Rica	18	.91	
Ecuador	21	.87	
El Salvador	12	.99	
Guatemala	15	.95	
Haiti	16	.89	
Honduras	22	.94	
Jamaica	17	.04	
Mexico	21	.94	
Nicaragua	16	.93	
Panama	24	.94	
Peru	15	.74	
Uruguay	25	.79	

.

ENERGY SERIES PAPERS

No.	1	Energy Issues in the Developing World, February 1988.
No.	2	Review of World Bank Lending for Electric Power, March 1988.
No.	3	Some Considerations in Collecting Data on Household Energy Consumption, March 1988.
No.	4	Improving Power System Efficiency in the Developing Countries through Performance Contracting, May 1988.
No.	5	Impact of Lower Oil Prices on Renewable Energy Technologies, May 1988.
No.	6	A Comparison of Lamps for Domestic Lighting in Developing Countries, June 1988.
No.	7	Recent World Bank Activities in Energy (Revised September 1988).
No.	8	A Visual Overview of the World Oil Markets, July 1988.
No.	9	Current International Gas Trades and Prices, November 1988.
No.	10	Promoting Investment for Natural Gas Exploration and Production in Developing Countries, January 1989.
No.	11	Technology Survey Report on Electric Power Systems, February 1989.
No.	12	Recent Developments in the U.S. Power Sector and Their Relevance for the Developing Countries, February 1989.
No.	13	Domestic Energy Pricing Policies, April 1989.
No.	14	Financing of the Energy Sector in Developing Countries, April 1989.
No.	15	The Future Role of Hydropower in Developing Countries, April 1989.
No.	16	Fuelwood Stumpage: Considerations for Developing Country Energy Planning, June 1989.
No.	17	Incorporating Risk and Uncertainty in Power System Planning, June 1989.
No.	18	Review and Evaluation of Historic Electricity Forecasting Experience (1960-1985)
Note	<u>.</u>	For extra copies of these papers please call Ms. Mary Fernandez on extension 33637.

.

INDUSTRY SERIES PAPERS

- No. 1 Japanese Direct Foreign Investment: Patterns and Implications for Developing Countries, February 1989.
- No. 2 Emerging Patterns of International Competition in Selected Industrial Product Groups, February 1989.
- No. 3 Changing Firm Boundaries: Analysis of Technology-Sharing Alliances, February 1989.
- No. 4 Technological Advance and Organizational Innovation in the Engineering Industry, March 1989.
- No. 5 The Role of Catalytic Agents in Entering International Markets, March 1989.
- No. 6 Overview of Japanese Industrial Technology Development, March 1989.
- No. 7 Reform of Ownership and Control Mechanisms in Hungary and China April 1989.
- No. 8 The Computer Industry in Industrialized Economies: Lessons for the Newly Industrializing, February 1989.
- No. 9 Institutions And Dynamic Comparative Advantage Electronics Industry in South Korea and Taiwan, June 1989.
- No. 10 New Environment for Intellectual Property, June 1989.
- No. 11 Managing Entry Into International Markets: Lessons From the East Asian Experience, June 1989
- No. 12 Impact of Technological Change on Industrial Prospects for the LDCs, June 1989
- Note: For extra copies of these papers please contact Ms. Wendy Young on extension 33618.

125