

Applied Research Center Florida International University

Rate of Uranium Release from **Calcium Meta-Autunite: Effect Bicarbonate Solutions on the** Dissolution

Presenter: Dr. Yelena Katsenovich (FIU-ARC) **Co-authors: Dr. Ravi Gudavalli (FIU-ARC)** Dr. Leonel Lagos (FIU-ARC) Dr. Dawn Wellman (PNNL)

Session 087, 14218

- Introduction
- Materials & Methods
 - Autunite Specimens
 - SPFT
 - Quantification of Dissolution Rate
 - Groundwater Modeling
- Results & Discussion
- Conclusions

Introduction

- DOE Hanford Site groundwater plume is contaminated with uranium
- A total of 58,967 kg of uranium was release due to leakages from underground storage tanks
- Injection of soluble sodium polyphosphate proved to be effective remediation solution
 - Polyphosphate forms insoluble uranyl-phosphate mineral, autunite, X₁₋₂[(UO₂)(PO₄)]₂₋₁• nH₂O
 - In Ca- rich environments, Ca replaces Na and the exchange takes place rapidly into Ca-autunite

- Carbonate is a major ion in the groundwater at Hanford Site (1.2-2.71mM)
- Uranyl ion (UO₂⁺²) forms soluble uranyl-carbonate complexes, making uranium mobile
- Major uranyl-carbonate complexes are UO₂(CO₃)₂-2 and UO₂(CO₃)₃-4
- Previous research on uranium release from the dissolution of autunite is limited to pH and temperature

- Quantify the rate of uranium release from autunite in following conditions
 - Bicarbonate: 0.5-3.0 mM
 - pH: 7-11
 - Temperature: 23 90°C

Materials and Methods

- Natural Ca-autunite was obtained from Excalibur Mineral Corporation
- Characterized via ICO-OES, ICP-MS, XRD, SEM-EDS and confirmed to be 99% pure (Wellman et al., 2006)
- Sample size: 75 to 150 μm
- Surface area: 0.88 m² g⁻¹

Florida International University

Single-Pass Flow-Through (SPFT)

- SPFT experiments were designed to measure forward rate under tightly controlled conditions.
- 0.25 grams of autunite
- 0.5-3.0 mM of HCO₃⁻ and 0.01 M TRIS
- HNO₃ and LiOH
- KPA and ICP-OES

Dissolution Rate Quantification

$$R_i = (C_i - C_{ib}) \frac{q}{f_i S}$$

- R_i = normalized dissolution rate for element *i* (mol m⁻² s⁻¹)
- $q = flow rate (L d^{-1})$
- C_i = concentration of component *i* in the effluent (g L⁻¹)
- C_{ib} = mean background concentration of component *i* (g L⁻¹)
- f_i = mass fraction of the element in the metal (dimensionless)
- S = surface area of the sample (m²)

Groundwater Modeling

- Steady state concentrations were used to identify predominant uranium species
- Visual MINTEQ 3.0 was used for speciation modeling
- Thermodynamic database was updated with
 - Nuclear Energy Agency's thermodynamic database for uranium (Guillaumont et al., 2003)
 - calcium-uranyl-carbonate complexes (Dong and Brooks, 2006)
 - becquerelite (Gorman-Lewis et al. 2008)

Results

- Influence of bicarbonate on the dissolution of Caautunite was experimentally determined using log (r) = log (k) + η log [HCO₃⁻]
 - r is dissolution rate, k is intrinsic rate constant and η is power law coefficient
- Non-linear regression was performed at each temperature, slope of rate vs concentration provided power law coefficient

• Dissolution showed strong influence on pH

	Ca-autunite					
рН	η	k (mol m ⁻² s ⁻¹)	Increase compared to pH 7			
7	0.50 ± 0.12	1.09 x 10 ⁻⁰⁹	-			
8	0.52 ± 0.10	3.15 x 10 ⁻⁰⁹	17			
9	0.79 ± 0.08	5.60 x 10 ⁻⁰⁸	65			
10	1.09 ± 0.11	1.58 x 10 ⁻⁰⁶	392			
11	0.94 ± 0.06	6.99 x 10 ⁻⁰⁷	434			

Results - Geochemical Modeling

pH	HCO ₃ - (M)	Schoepite	β- UO ₂ (OH),	Hydroxya patite	β- Ca ₃ (PO ₄) ₂	Ca ₃ (PO ₄) ₂ (am2)	Ca ₃ (PO ₄) ₂ (am1)	$Ca_{4}H(PO)$ $_{4})_{3}\cdot 3H_{2}O($	(UO2)3(P O4)2(s)
				•				<u>s)</u>	
7	0.0005	0.057	-0.173						2.904
	0.001	-0.179	-0.409						2.275
	0.002	-0.528	-0.757						1.856
	0.003	-0.758	-0.988						1.587
8	0.0005	0.335	0.106	-0.942					0.98
	0.001	0.011	-0.219	0.575					0.5
	0.002	-0.471	-0.7	2.898					-0.232
	0.003	-0.741	-0.971	3.275					-0.378
9	0.0005	0.586	0.356	6.386	-0.69	-1.526	-4.285	-3.248	-1.078
	0.001	0.361	0.132	6.915	-0.323	-1.16	-3.918	-2.678	-1.261
	0.002	0.034	-0.196	8.487	0.669	-0.168	-2.926	-1.275	-1.757
	0.003	-0.584	-0.814	8.716	0.845	0.008	-2.75	-0.975	-3.227
10	0.0005	0.652	0.422	14.551	3.928	3.091	0.333	2.44	-3.695
	0.001	0.607	0.377	13.598	3.376	2.539	-0.219	1.737	-3.63
	0.002	0.344	0.114	12.11	2.512	1.675	-1.083	0.632	-4.136
	0.003	-0.991	-1.221	11.935	2.393	1.557	-1.202	0.453	-8.272
11	0.0005	0.265	0.035	15.229	3.923	3.087	0.328	1.749	-8.966
	0.001	0.215	-0.015	14.877	3.717	2.88	0.122	1.482	-9.068
	0.002	0.055	-0.175	14.381	3.431	2.594	-0.164	1.118	-9.437
	0.003	-0.333	-0.563	14.155	3.284	2.447	-0.311	0.903	-10.717

- Predominant species
 - $-UO_2(CO_3)_3^{-4}$
 - $-H_2PO_4^{-2}$
 - Ca^{2+} (рн 7), CaUO₂(CO₃)₃⁻² (рн 8-10), CaPO₄ (рн 11)

 $Ca[(UO_{2})(PO_{4})]_{2}xH_{2}O + HCO_{3}^{-} \rightarrow UO_{2}(CO_{3})_{3}^{-4} + Ca(UO_{2})(CO_{3})_{3}^{-2} + HPO_{4}^{-2} + Ca^{+2} + xH_{2}O$

$$Ca[(UO_{2})(PO_{4})]_{2}xH_{2}O + CO_{3}^{-} \rightarrow UO_{2}(CO_{3})_{3}^{-4} + HPO_{4}^{-2} + CaPO_{4}^{-} + xH_{2}O$$

Florida International University

0.5

Describes the nature of the reaction, < 20 kJ/mol surface dif [HCO3-] (mM) on

1.0

2.0

3.0

1)

- pH has not
- 21.87 26.39 27.72 7 26.00 Modified T \bullet 20.72 15.57 13.95 8 22.41 $\ln r =$ 13.07 8.95 9 2.63 7.32
- Average ac 10 8.17 16.68 15.05 15.17
- Rate contr 11 11.39 10.19 12.23 11.78
 - Surface bond-breaking @ pH 7
 - Rate limiting mass transfer @ pH >=8

Results - Activation Energy

Results - Pseudo Equilibrium and Enthalpy

$$r = K_g \left[HCO_3^{-} \right]$$
$$\Delta H = -RT \ln K_g$$

ъЦ	Ca-autunite			
рп	Kg	ΔH		
7	0.65	28.58		
8	0.79	11.83		
9	4.20	11.90		
10	25.97	15.88		
11	27.75	13.84		

- Reaction is slow at low pH and significantly fast at high pH
- Enthalpy data is not significant to justify the uranium release mechanism but correlates to the intrinsic rate (k)

Results - 3D

- Power law coefficient is 0.5-1.0, no finite dependency on temperature
- Dissolution is slower at pH 7 and faster at pH 8 and beyond
- Dissolution data indicate low concentration of bicarbonate can impact the stability of autunite
- Data is being incorporated into modeling at Hanford Site

Acknowledgements

- Funding for this research was provided by US DOE Contract: DE- EM0000598
- Department of Energy office of Environmental Management (DOE-EM)
- Pacific Northwest National Laboratory for their support