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The problem of reconciling the frequentist and Bayesian evidence in testing statistical hypotheses has been extensively studied in
the literature. Most of the existing work considers cases without the nuisance parameters which is not the frequently encountered
situation since the presence of the nuisance parameters is very common in practice. In this paper, we consider the reconcilability
of the Bayesian evidence against the null hypothesis 𝐻

0
in terms of the posterior probability of 𝐻

0
being true and the frequentist

evidence against𝐻
0
in terms of the P value in testing normal means where the nuisance parameters are present.The reconcilability

of evidence can be obtained both for testing a normal mean and for the Behrens-Fisher problem.

1. Introduction

In the problem of testing a statistical hypothesis 𝐻
0
, a

frequentist may give evidence against 𝐻
0
by the observed

significance level, the 𝑃 value, while a Bayesian may give
it by the posterior probability that 𝐻

0
is true. Lindley [1]

illustrated the possible discrepancy between the Bayesian
and the frequentist evidence. The relationship of these two
measures of evidence is then extensively studied in the
literature. Pratt [2] revealed that the 𝑃 values are usually
approximately equal to the posterior probabilities in the one-
sided testing problems. Casella and Berger [3] considered
testing the one-sided hypothesis for a location parameter
and showed that the lower bounds of the posterior prob-
ability over some reasonable classes of priors are exactly
equal to the corresponding 𝑃 values in many cases. Some
important papers which deal with the reconcilability of
the Bayesian and frequentist evidence are Bartlett [4], Cox
[5], Shafer [6], Berger and Delampady [7], and Berger and
Sellke [8].

Although many researches have been carried out to
deal with the problem of reconciling the Bayesian and
frequentist evidence and some of them show that evidence
is reconcilable in several specific situations, most of the

existing work assumes that no other unknown parameters
are present except the parameters of interest. In fact, we
may be confronted with the nuisance parameters in various
situations. In the location-scale settings, for example, when
the location parameter is unknown, so is the scale parameter,
in general.

However, in significance testing of hypotheses with the
nuisance parameters, the classical 𝑃 values are typically not
available. Tsui and Weerahandi [9], considering testing the
one-sided hypothesis of the form

𝐻
0
: 𝜃 ≤ 𝑐 versus 𝐻

1
: 𝜃 > 𝑐, (1)

where 𝜃 is the parameter of interest and 𝑐 is a fixed constant,
introduced the concept of the generalized 𝑃 value, which
appears to be useful in situations where conventional fre-
quentist approaches do not provide useful solutions.

Tsui and Weerahandi [9] and some later relevant works
formulated the generalized 𝑃 values for many specific exam-
ples. Hannig et al. [10] provided a general method for
constructing the generalized 𝑃 value via fiducial inference.

In this paper, for the one-sided testing situations about
normal means where the nuisance parameters are present,
we study the reconcilability of the Bayesian evidence and
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the generalized 𝑃 value. It is shown that, under the con-
jugate class of prior distributions, the Bayesian evidence
and the generalized 𝑃 value are reconcilable both for the
problem of testing a normalmean and for the Behrens-Fisher
problem.

This paper is organized as follows. In Section 2, we
give the main results of the reconcilability of the 𝑃 value
and the Bayesian evidence in testing normal means. Some
conclusions and discussions are given in Section 3.

2. Main Results

In this section, we consider two testing problems inwhich the
nuisance parameters are present. When no efficient classical
frequentist evidence is available because of the presence of the
nuisance parameters, we formulate the frequentist evidence
by the generalized 𝑃 value.

2.1. One-Sample Normal Mean. Let 𝑋
1
, . . . , 𝑋

𝑛
be a random

sample from a normal population 𝑁(𝜇, 𝜎
2
), where both the

mean 𝜇 and the variance 𝜎
2 are unknown. Consider now

the following problem of testing the mean of a normal
distribution

𝐻
0
: 𝜇 ≤ 𝑐 versus 𝐻

1
: 𝜇 > 𝑐, (2)

where 𝑐 is a fixed constant.
For this testing problem, where the nuisance parameter is

present, we can still obtain the classical 𝑃 value as

𝑝 (𝑥) = 𝑃(𝑇
𝑛−1

≤
√𝑛 (𝑐 − 𝑥)

𝑠
) , (3)

where 𝑇
𝑛−1

is a 𝑡-variable with 𝑛 − 1 degrees of freedom and
𝑥 and 𝑠

2 stand for the observed sample mean and sample
variance, respectively.

To derive the Bayesian evidence, we need a prior for
the parameters. One reasonable and conventional class of
priors for 𝜇 and 𝜎

2 is the following conjugate class of prior
distributions 𝐺

𝑐
1

:

𝜇 | 𝜎
2
∼ 𝑁(𝜇

0
,
𝜎
2

𝜅
0

) ,
1

𝜎2
∼ Gamma(

]
0

2
,
]
0
𝜎
2

0

2
) ,

(4)

where the prior parameters (𝜇
0
, 𝜅
0
) can be interpreted as the

mean and sample size of the normal prior observations and
(𝜎
2

0
, ]
0
) the sample variance and sample size of the Gamma

prior observations.
Under (4) we have

𝜇 | 𝑥, 𝜎
2
∼ 𝑁(𝜇

𝑛
(𝑥) ,

𝜎
2

𝜅
𝑛

) ,

1

𝜎2
| 𝑥 ∼ Gamma(

]
𝑛

2
,
]
𝑛
𝜎
2

𝑛
(𝑥)

2
) ,

(5)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
, 𝜅
𝑛
= 𝜅
0
+ 𝑛, 𝜇

𝑛
(𝑥) = (𝜅

0
𝜇
0
+ 𝑛𝑥)/𝜅

𝑛
,

]
𝑛
= ]
0
+𝑛, and 𝜎2

𝑛
(𝑥) = []

0
𝜎
2

0
+(𝑛−1)𝑠

2
+𝜅
0
𝑛(𝑥−𝜇

0
)
2
/𝜅
𝑛
]/]
𝑛
.

Therefore, we can give the posterior density for (𝜇, 𝜎2) as

𝜋 (𝜇, 𝜎
2
| 𝑥) =

√𝜅
𝑛

√2𝜋𝜎

exp[−
𝜅
𝑛
(𝜇 − 𝜇

𝑛
(𝑥))
2

2
]

×

((]
𝑛
/2) 𝜎
2

𝑛
(𝑥))

]
𝑛
/2

Γ (]
𝑛
/2) 𝜎]

𝑛
+2

exp[−
]
𝑛
𝜎
2

𝑛
(𝑥)

2𝜎2
]

=
√𝜅
𝑛
((]
𝑛
/2) 𝜎
2

𝑛
(𝑥))

]
𝑛
/2

√2𝜋Γ (]
𝑛
/2) 𝜎]

𝑛
+3

× exp[−
𝜅
𝑛
(𝜇 − 𝜇

𝑛
(𝑥))
2
+ ]
𝑛
𝜎
2

𝑛
(𝑥)

2𝜎2
] .

(6)

Then the marginal posterior density for 𝜇 can be obtained by
integrating out 𝜎2 as

𝜋 (𝜇 | 𝑥) =
√𝜅
𝑛
((]
𝑛
/2) 𝜎
2

𝑛
(𝑥))
−1/2

Γ ((]
𝑛
+ 1) /2)

Γ (]
𝑛
/2)

× [1 +
𝜅
𝑛
(𝜇 − 𝜇

𝑛 (𝑥))
2

]
𝑛
𝜎2
𝑛
(𝑥)

]

−(]
𝑛
+1)/2

,

(7)

from which we know that

√𝜅
𝑛
(𝜇 − 𝜇

𝑛
(𝑥))

𝜎
𝑛
(𝑥)

∼ 𝑡 (]
𝑛
) . (8)

Consequently, the posterior probability of𝐻
0
being true is

𝑃 (𝐻
0
| 𝑥) = 𝑃(𝑇]

𝑛

≤ √
𝜅
𝑛

𝜎2
𝑛
(𝑥)

(𝑐 − 𝜇
𝑛
(𝑥))) , (9)

where 𝑇]
𝑛

is a 𝑡-variable with ]
𝑛
degrees of freedom. Notice

that if 𝜇
0
= 𝑐, we have

lim
𝜅
0
,𝜎
0
→0

𝑃 (𝐻
0
| 𝑥) = 𝑃(𝑇]

𝑛

≤ √
]
𝑛

𝑛 − 1

√𝑛 (𝑐 − 𝑥)

𝑠
) . (10)

Lemma 1. Let 𝑇 be a 𝑡-variable with 𝛼 degrees of freedom,
where 𝛼 is a positive real number. Then for 𝑅 = 𝑇/√𝛼 and
a fixed constant 𝑟, 𝑃(𝑅 ≤ 𝑟) is nonincreasing in 𝛼 if 𝑟 ≤ 0 and
is nondecreasing in 𝛼 if 𝑟 > 0.

Proof. Suppose that 𝑋 is a nonpositive random variable
obtained by the negative part of 𝑇; that is, the density of 𝑋
is

𝑓 (𝑥, 𝛼) =
2Γ ((𝛼 + 1) /2)

√𝛼𝜋Γ (𝛼/2)
(1 +

𝑥
2

𝛼
)

−(𝛼+1)/2

, 𝑥 ≤ 0. (11)
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Then the density of 𝑌 = 𝑋/√𝛼 is

𝑝 (𝑦, 𝛼) =
2Γ ((𝛼 + 1) /2)

√𝜋Γ (𝛼/2)
(1 + 𝑦

2
)
−(𝛼+1)/2

, 𝑦 ≤ 0. (12)

By Theorem 3.3.2 in Lehmann [11], for any fixed nonpositive
constant 𝑟, we have that 𝑃(𝑌 ≤ 𝑟) is nonincreasing in 𝛼

since it can be verified that the family of densities 𝑝(𝑦, 𝛼) has
monotone likelihood ratio in 𝑦. This implies that Lemma 1
holds for the case when 𝑟 ≤ 0 since 𝑃(𝑅 ≤ 𝑟) = 𝑃(𝑋 ≤ 𝑟)/2.
Since when 𝑟 > 0, we have 𝑃(𝑅 ≤ 𝑟) = 1/2 + 𝑃(0 ≤ 𝑅 ≤ 𝑟),
the proof for the latter case is completely analogous if we
introduce a nonnegative random variable obtained by the
positive part of 𝑇.

Now take 𝑟 = √𝑛(𝑐−𝑥)/(√𝑛 − 1𝑠). By Lemma 1, for 𝑟 ≤ 0,
we have

𝑃(

𝑇]
𝑛

√]
𝑛

≤ 𝑟) ≤ 𝑃(
𝑇
𝑛−1

√𝑛 − 1
≤ 𝑟)

= 𝑃(𝑇
𝑛−1

≤
√𝑛 (𝑐 − 𝑥)

𝑠
) .

(13)

Then comparing (3) and (10), for 𝜇
0

= 𝑐 and any fixed
nonnegative ]

0
, we have

lim
𝜅
0
,𝜎
0
→0

𝑃 (𝐻
0
| 𝑥) < 𝑝 (𝑥) , as 𝑝 (𝑥) < 1

2
, (14)

which implies that

inf
𝜋∈𝐺
𝑐1

𝑃 (𝐻
0
| 𝑥) < 𝑝 (𝑥) , as 𝑝 (𝑥) <

1

2
. (15)

The reconcilability of the Bayesian and frequentist evidence
is therefore obtained in this testing problem. We summarize
this as the following theorem.

Theorem 2. For testing the hypothesis of the form (2) under a
normal distribution 𝑁(𝜇, 𝜎

2
) with 𝜎

2 unknown, the Bayesian
and frequentist lines of evidence are reconcilable under the
conjugate class of priors (4).

2.2. Behrens-Fisher Problem. Now we turn to consider the
Behrens-Fisher problem. It is a classical testing situation in
which the nuisance parameters are present and no useful
pivotal quantities are available. Suppose that 𝑋

1
, . . . , 𝑋

𝑚

and 𝑌
1
, . . . , 𝑌

𝑛
are two independent random samples from

two normal populations 𝑁(𝜇
1
, 𝜎
2

1
) and 𝑁(𝜇

2
, 𝜎
2

2
), respec-

tively, where both 𝜎
2

1
and 𝜎

2

2
are completely unspeci-

fied. We are interested in testing the hypothesis of the
form

𝐻
0
: 𝜇
1
− 𝜇
2
≤ 𝑐 versus 𝐻

1
: 𝜇
1
− 𝜇
2
> 𝑐, (16)

where 𝑐 is a fixed constant.
In situations where the traditional frequentist approaches

fail to provide useful solutions, the conception of the general-
ized 𝑃 values introduced by Tsui andWeerahandi [9] appears
to be helpful in deriving the frequentist evidence for testing

a statistical hypothesis. For this specific problem of testing
hypothesis (16), we can give the generalized 𝑃 value as

𝑝 (𝑥) = 𝑃(𝑥 − 𝑦 −(
√𝑚 − 1𝑠

1
𝑈

√𝑚√𝜒
2

𝑚−1

−
√𝑛 − 1𝑠

2
𝑉

√𝑛√𝜒
2

𝑛−1

) ≤ 𝑐)

= 𝑃(
𝑠
2

√𝑛
𝑇
𝑛−1

−
𝑠
1

√𝑚
𝑇
𝑚−1

≤ 𝑐 − (𝑥 − 𝑦)) ,

(17)

where 𝑈 ∼ 𝑁(0, 1), 𝑉 ∼ 𝑁(0, 1), 𝜒2
𝑚−1

∼ 𝜒
2
(𝑚 − 1), 𝜒2

𝑛−1
∼

𝜒
2
(𝑛 − 1), 𝑇

𝑚−1
∼ 𝑡(𝑚 − 1), and 𝑇

𝑛−1
∼ 𝑡(𝑛 − 1).

In this problem, we consider the reconcilability of evi-
dence under the following conjugate class of prior distribu-
tions 𝐺

𝑐
2

:

𝜇
1
| 𝜎
2

1
∼ 𝑁(𝜇

01
,
𝜎
2

01

𝜅
01

) ,
1

𝜎
2

1

∼ Gamma(
]
01

2
,
]
01
𝜎
2

01

2
) ;

𝜇
2
| 𝜎
2

2
∼ 𝑁(𝜇

02
,
𝜎
2

02

𝜅
02

) ,
1

𝜎
2

2

∼ Gamma(
]
02

2
,
]
02
𝜎
2

02

2
) .

(18)

Under 𝐺
𝑐
2

, the posterior density of (𝜇
1
, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
) is

𝜋 (𝜇
1
, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
| 𝑥, 𝑦)

=

𝑓 (𝜇
1
, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦)

∫
∞

−∞
∫
∞

−∞
∫
∞

0
∫
∞

0
𝑓 (𝜇
1
, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦) 𝑑𝜎

2

1
𝑑𝜎
2

2
𝑑𝜇
1
𝑑𝜇
2

,

(19)

where

𝑓 (𝜇
1
, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦)

= (exp[−
Σ
𝑚

𝑖=1
(𝑥
𝑖
− 𝜇
1
)
2
+ 𝜅
01
(𝜇
1
− 𝜇
01
)
2
+ ]
01
𝜎
2

01

2𝜎
2

1

−
Σ
𝑛

𝑖=1
(𝑦
𝑖
− 𝜇
2
)
2
+ 𝜅
02
(𝜇
2
− 𝜇
02
)
2
+ ]
02
𝜎
2

02

2𝜎
2

2

])

× ((𝜎
2

1
)
(𝑚+]
01
+4)/2

(𝜎
2

2
)
(𝑛+]
02
+4)/2

)

−1

.

(20)

Let 𝜃 = 𝜇
1
− 𝜇
2
. Then the posterior density of (𝜃, 𝜇

2
, 𝜎
2

1
, 𝜎
2

2
) is

𝜋 (𝜃, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
| 𝑥, 𝑦)

=

𝑓 (𝜃, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦)

∫
∞

−∞
∫
∞

−∞
∫
∞

0
∫
∞

0
𝑓 (𝜇
1
, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦) 𝑑𝜎

2

1
𝑑𝜎
2

2
𝑑𝜇
1
𝑑𝜇
2

,

(21)
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where
𝑓 (𝜃, 𝜇

2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦)

=(exp[−
Σ
𝑚

𝑖=1
(𝑥
𝑖
− 𝜃 − 𝜇

2
)
2

+ 𝜅
01
(𝜃 + 𝜇

2
− 𝜇
01
)
2

+ ]
01
𝜎
2

01

2𝜎
2

1

−
Σ
𝑛

𝑖=1
(𝑦
𝑖
− 𝜇
2
)
2

+ 𝜅
02
(𝜇
2
− 𝜇
02
)
2

+ ]
02
𝜎
2

02

2𝜎
2

2

])

×((𝜎
2

1
)
(𝑚+]01+4)/2

(𝜎
2

2
)
(𝑛+]02+4)/2

)

−1

.

(22)

So that the posterior probability of𝐻
0
is

𝑃 (𝐻
0
| 𝑥)

=

∫
𝑐

−∞
∫
∞

−∞
∫
∞

0
∫
∞

0
𝑓 (𝜃, 𝜇

2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦) 𝑑𝜎

2

1
𝑑𝜎
2

2
𝑑𝜇
2
𝑑𝜃

∫
∞

−∞
∫
∞

−∞
∫
∞

0
∫
∞

0
𝑓 (𝜇
1
, 𝜇
2
, 𝜎
2

1
, 𝜎
2

2
, 𝑥, 𝑦) 𝑑𝜎

2

1
𝑑𝜎
2

2
𝑑𝜇
1
𝑑𝜇
2

.

(23)

It is straightforward to check that

lim
𝜅
01
,𝜅
02
,𝜎
01
,𝜎
02
→0

𝑃 (𝐻
0
| 𝑥)

=
Γ ((𝑚 + ]

01
+ 2) /2) Γ ((𝑛 + ]

02
+ 2) /2)

𝜋√(𝑚 − 1) (𝑛 − 1)Γ ((𝑚 + ]
01
+ 1) /2) Γ ((𝑛 + ]

02
+ 1) /2)

× ∫

∞

−∞

∫

∞

√𝑚(𝑥−𝑦−𝑐)/𝑠
1
+√𝑚𝑠

2
𝑟/𝑠
1

(1 +
𝑡
2

𝑚 − 1
)

(−𝑚−]
01
−2)/2

× (1 +
𝑟
2

𝑛 − 1
)

(−𝑛−]
02
−2)/2

𝑑𝑡 𝑑𝑟,

= 𝑃(𝑥 − 𝑦 −(
√𝑚 + ]

01
+ 1𝑠
1
𝑈

√𝑚 + ]
02
+ 2√𝜒

2

𝑚+]
01
+1

−
√𝑛 + ]

02
+ 1𝑠
2
𝑉

√𝑛 + ]
02
+ 2√𝜒

2

𝑚+]
01
+1

) ≤ 𝑐)

= 𝑃(
𝑠
2

√𝑛 + ]
02
+ 2

𝑇
𝑛+]
02
+1

−
𝑠
1

√𝑚 + ]
01
+ 2

𝑇
𝑚+]
01
+1

≤ 𝑐 − (𝑥 − 𝑦)) ,

(24)

where 𝑥 and 𝑦 are the observation of the sample mean𝑋 and
𝑌, respectively, 𝑠2

1
and 𝑠
2

2
are that of the sample variance 𝑆2

1

and 𝑆
2

2
respectively, 𝑈 ∼ 𝑁(0, 1), 𝑉 ∼ 𝑁(0, 1), 𝜒2

𝑚+]
01
+1

∼

𝜒
2
(𝑚 + ]

01
+ 1) and 𝜒2

𝑛+]
02
+1

∼ 𝜒
2
(𝑛 + ]

02
+ 1).

Now we prove an interesting result that, when 𝑚 and 𝑛

are sufficiently large, the frequentist and Bayesian lines of
evidence given respectively by (17) and (23) are reconcilable
for any fixed ]

01
and ]
02
under the prior class of 𝐺

𝑐
2

.

Theorem 3. As min{𝑚, 𝑛} → +∞, for any fixed 0 < ]
01
,

]
02
< ∞, we have

lim
𝜅
01
,𝜅
02
,𝜎
01
,𝜎
02
→0

𝑃 (𝐻
0
| 𝑥) < 𝑝 (𝑥) , 𝑎𝑠 𝑝 (𝑥) <

1

2
, (25)

which implies that

inf
𝜋∈𝐺
𝑐2

𝑃 (𝐻
0
| 𝑥) < 𝑝 (𝑥) , 𝑎𝑠 𝑝 (𝑥) <

1

2
. (26)

Proof. Let

𝐴
1
=
(𝑛 − 1) 𝑠

2

2

𝑛𝜒
2

𝑛−1

,

𝐵
1
=

(𝑛 + ]
02
+ 1) 𝑠
2

2

(𝑛 + ]
02
+ 2) 𝜒

2

𝑛+]
02
+1

.

(27)

(I) We first prove that, given 𝑠
2
, as 𝑛 is sufficiently large,

we have

𝐵
1

𝑑

< 𝐴
1
. (28)

In fact, for any 𝛾 > 0, as 𝑛 is sufficiently large,

𝑃 (𝐵
1
< 𝛾) = 𝑃(𝜒

2

𝑛+]
02
+1

>
(𝑛 + ]

02
+ 1) 𝑠
2

2

(𝑛 + ]
02
+ 2) 𝛾

) ,

= 𝑃(𝜒
2

𝑛+]
02
+1

>
(𝑛 − 1) 𝑠

2

2

𝑛𝛾
+ 𝜖 (𝑛, 𝛾)) ,

(29)

where 𝜖(𝑛, 𝛾) = (]
02
+2)𝑠
2

2
/[(𝑛+]

02
+2)𝑛𝛾] → 0, as 𝑛 → ∞.

On the other hand, we have

𝑃 (𝐴
1
< 𝛾) = 𝑃(𝜒

2

𝑛−1
>
(𝑛 − 1) 𝑠

2

2

𝑛𝛾
) . (30)

Since 𝜒2
𝑛+]
02
+1

𝑑

> 𝜒
2

𝑛−1
holds for any 𝑛, it follows that, as 𝑛 →

∞,

𝑃 (𝐵
1
< 𝛾) > 𝑃 (𝐴

1
< 𝛾) . (31)

That is,

𝐵
1

𝑑

< 𝐴
1
. (32)

Similarly, as𝑚 → +∞, we have

𝐵
2
:=

(𝑚 + ]
01
+ 1) 𝑠
2

1

(𝑚 + ]
01
+ 2) 𝜒

2

𝑚+]
01
+1

𝑑

<
(𝑚 − 1) 𝑠

2

1

𝑚𝜒
2

𝑚−1

:= 𝐴
2
. (33)

Therefore, we have

𝐵
1
+ 𝐵
2

𝑑

< 𝐴
1
+ 𝐴
2
. (34)

Consequently, we have

√𝐵
1
+ 𝐵
2

𝑑

< √𝐴
1
+ 𝐴
2
. (35)
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(II) We now show that the final conclusion holds. In fact,
if we let 𝐶(𝑥, 𝑦) = 𝑐 − (𝑥 − 𝑦), then

𝑝 (𝑥) = 𝑃(√𝐴
1
𝑉 − √𝐴

2
𝑈 ≤ 𝐶 (𝑥, 𝑦))

= 𝐸(𝑃(√𝐴
1
𝑉 − √𝐴

2
𝑈 ≤ 𝐶 (𝑥, 𝑦) | 𝐴

1
, 𝐴
2
))

= 𝐸(Φ(
𝐶 (𝑥, 𝑦)

√𝐴
1
+ 𝐴
2

)) ,

(36)

whereΦ(⋅) stands for the cumulative distribution function of
a standard normal distribution and the last equation is due to
the fact that 𝑈 and 𝑉 are independent normal distributions.

Similarly, for (24), we have

lim
𝜅
01
,𝜅
02
,𝜎
01
,𝜎
02
→0

𝑃 (𝐻
0
| 𝑥, 𝑦)

= 𝐸(𝑃(√𝐵
1
𝑉 − √𝐵

2
𝑈 ≤ 𝐶 (𝑥, 𝑦) | 𝐵

1
, 𝐵
2
))

= 𝐸(Φ(
𝐶 (𝑥, 𝑦)

√𝐵
1
+ 𝐵
2

)) .

(37)

Note that for each 𝐶(𝑥, 𝑦) in (−∞, 0), Φ(𝐶(𝑥, 𝑦)/𝑅) is
increasing in 𝑅 ∈ (0,∞). Therefore, by (35), we have

Φ(
𝐶 (𝑥, 𝑦)

√𝐵
1
+ 𝐵
2

)
𝑑

< Φ(
𝐶 (𝑥, 𝑦)

√𝐴
1
+ 𝐴
2

) , as 𝐶 (𝑥, 𝑦) < 0.

(38)

Consequently, we have

𝐸(Φ(
𝐶 (𝑥, 𝑦)

√𝐵
1
+ 𝐵
2

) < 𝐸(Φ(
𝐶 (𝑥, 𝑦)

√𝐴
1
+ 𝐴
2

))) ,

as 𝐶 (𝑥, 𝑦) < 0.

(39)

In addition, by the symmetry of the 𝑡-distribution, it
follows that 𝐶(𝑥, 𝑦) < 0 is equivalent to 𝑝(𝑥) < 1/2. There-
fore, by (36), (37), and (39), the conclusion of Theorem 3
holds.

The following theorem shows that, even for fixed𝑚 and 𝑛
with 2 < 𝑚, 𝑛 < ∞, we still obtain the reconcilability of the
frequentist and Bayesian evidence.

Theorem 4. As min{]
01
, ]
02
} → ∞, the conclusion of

Theorem 3 holds for any fixed 𝑚 and 𝑛 with 2 < 𝑚, 𝑛 < ∞;
that is,

inf
𝜋∈𝐺
𝑐2

𝑃 (𝐻
0
| 𝑥) < 𝑝 (𝑥) , 𝑎𝑠 𝑝 (𝑥) <

1

2
. (40)

Proof. We still adopt the notations of Theorem 3. We first
prove that, as ]

02
→ ∞,

𝐵
1

𝑑

< 𝐴
1
. (41)

By the proof of Theorem 3, we have

𝑃 (𝐵
1
< 𝛾) = 𝑃(𝜒

2

𝑛+]
02
+1

>
(𝑛 − 1) 𝑠

2

2

𝑛𝛾
+ 𝜖 (𝑛, 𝛾)) , (42)

where

𝜖 (𝑛, 𝛾) =
(]
02
+ 2) 𝑠
2

2

(𝑛 + ]
02
+ 2) 𝑛𝛾

. (43)

It is obvious that

sup
]
02

𝜖 (𝑛, 𝛾) = lim
]
02
→∞

𝜖 (𝑛, 𝛾) =
𝑠
2

2

𝑛𝛾
. (44)

Let 𝑓
𝑛
(𝑡) denote the density function of 𝜒2

𝑛
. Then it is easy

to see that 𝑓
𝑛
(𝑡) reaches the maximum at 𝑡 = 𝑛 − 2 and that

max
𝑡
𝑓
𝑛
(𝑡) = 𝑓

𝑛
(𝑛 − 2) → 0, as 𝑛 → ∞. Therefore, as ]

02
is

sufficiently large, it holds that

𝑃 (𝐵
1
< 𝛾) = 𝑃(𝜒

2

𝑛+]
02
+1

>
𝑠
2

2

𝛾
) + 𝜖 (]

02
)

= 𝑃 (𝐵
1
< 𝛾) + 𝜖 (]

02
)

(45)

for some 𝜖(]
02
) > 0, where 𝜖(]

02
) → 0, as ]

02
→ ∞, and

𝐵
1
= 𝑠
2

2
/𝜒
2

𝑛+]
02
+1
.

Therefore, for any fixed 𝑛 (2 < 𝑛 < ∞), as ]
02

→ ∞, we
have

𝑃 (𝐵
1
< 𝛾) = 𝑃(𝜒

2

𝑛+]
02
+1

>
𝑠
2

2

𝛾
)

= 𝑃(

𝜒
2

𝑛+]
02
+1

− (𝑛 + ]
02
+ 1)

√2 (𝑛 + ]
02
+ 1)

>
𝑠
2

2
/𝛾 − (𝑛 + ]

02
+ 1)

√2 (𝑛 + ]
02
+ 1)

)

= 1 − Φ(
𝑠
2

2
/𝛾 − (𝑛 + ]

02
+ 1)

√2 (𝑛 + ]
02
+ 1)

)

− 𝜖
1
(]
02
) → 1,

(46)

where 𝜖
1
(]
02
) → 0, as ]

02
→ ∞.

On the other hand, for any fixed 𝑛 (2 < 𝑛 < ∞) and 𝛾 ̸= 0,
we have

𝑃 (𝐴
1
< 𝛾) = 𝑃(𝜒

2

𝑛−1
>
(𝑛 − 1) 𝑠

2

2

𝑛𝛾
) ≤ 1 − 𝜖

0
, (47)

for some 𝜖
0
> 0. Therefore, as ]

02
→ ∞, by (46) and (47),

we have 𝑃(𝐵
1
< 𝛾) − 𝑃(𝐴

1
< 𝛾) > 0. Furthermore, by (45),

we have

𝑃 (𝐵
1
< 𝛾) > 𝑃 (𝐴

1
< 𝛾) . (48)
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Table 1: 𝑃 value and lim𝑃(𝐻
0
| 𝑥) for testing the Behrens-Fisher problem for different𝑚 and 𝑛.

𝑚 = 2, 𝑛 = 2

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.1165 0.1405 0.1785 0.1880 0.2330 0.3110 0.3850 0.4155 0.4745
lim𝑃(𝐻

0
| 𝑥) 0.0195 0.0420 0.0505 0.0705 0.1280 0.1945 0.3140 0.3770 0.4675

𝑚 = 5, 𝑛 = 5

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0385 0.0520 0.0760 0.0995 0.1405 0.2250 0.3460 0.3845 0.4705
lim𝑃(𝐻

0
| 𝑥) 0.0060 0.0195 0.0400 0.0465 0.0765 0.1630 0.2840 0.3640 0.4630

𝑚 = 1, 𝑛 = 8

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.1165 0.1405 0.1785 0.1880 0.2330 0.3110 0.3850 0.4155 0.4745
lim𝑃(𝐻

0
| 𝑥) 0.0195 0.0420 0.0505 0.0705 0.1280 0.1945 0.3140 0.3770 0.4675

𝑚 = 3, 𝑛 = 5

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0600 0.0755 0.1030 0.1360 0.1765 0.2615 0.3495 0.4355 0.4595
lim𝑃(𝐻

0
| 𝑥) 0.0070 0.0205 0.0405 0.0545 0.0845 0.1715 0.3005 0.3760 0.4670

𝑚 = 12, 𝑛 = 3

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0835 0.1130 0.1260 0.1585 0.2075 0.2975 0.3700 0.4245 0.4995
lim𝑃(𝐻

0
| 𝑥) 0.0185 0.0315 0.0515 0.0730 0.1025 0.1810 0.2905 0.3635 0.4585

Table 2: 𝑃 value and lim𝑃(𝐻
0
| 𝑥) for testing the Behrens-Fisher problem for different ]

01
and ]

02
.

]
01
= 0.5, ]

02
= 0.5

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0030 0.0080 0.0130 0.0240 0.0490 0.1310 0.2720 0.3495 0.4565
lim𝑃(𝐻

0
| 𝑥) 0.0010 0.0035 0.0060 0.0135 0.0280 0.1030 0.2245 0.3375 0.4410

]
01
= 2, ]

02
= 2

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0025 0.0045 0.0165 0.0270 0.0545 0.1130 0.2550 0.3480 0.4595
lim𝑃(𝐻

0
| 𝑥) 0.0005 0.0015 0.0050 0.0080 0.0245 0.1000 0.2125 0.3155 0.4345

]
01
= 0.2, ]

02
= 0.5

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0025 0.0085 0.0145 0.0295 0.0470 0.1225 0.2550 0.3400 0.4610
lim𝑃(𝐻

0
| 𝑥) 0.0015 0.0030 0.0045 0.0130 0.0275 0.1055 0.2215 0.3245 0.4455

]
01
= 0.5, ]

02
= 0.2

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0055 0.0070 0.0170 0.0265 0.0545 0.1215 0.2485 0.3535 0.4650
lim𝑃(𝐻

0
| 𝑥) 0.0010 0.0055 0.0070 0.0125 0.0440 0.1085 0.2500 0.3285 0.4300

]
01
= 5, ]

02
= 0.5

𝑐 − (𝑥 − 𝑦) −2.5000 −2.1000 −1.8000 −1.6000 −1.3000 −0.9000 −0.5000 −0.3000 −0.1000
𝑝(𝑥) 0.0025 0.0060 0.0150 0.0230 0.0570 0.1145 0.2645 0.3685 0.4460
lim𝑃(𝐻

0
| 𝑥) 0.0020 0.0025 0.0065 0.0095 0.0330 0.0890 0.2205 0.3105 0.4305

That is,

𝐵
1

𝑑

< 𝐴
1
. (49)

Similarly, for any fixed 𝑚 (2 < 𝑚 < ∞), as ]
01

→ ∞, we
have

𝐵
2

𝑑

< 𝐴
2
. (50)

Therefore, similar to Theorem 3, as min{]
01
, ]
02
} → ∞, for

any fixed𝑚 and 𝑛 with 2 < 𝑚, 𝑛 < ∞, we have

√𝐵
1
+ 𝐵
2

𝑑

< √𝐴
1
+ 𝐴
2
. (51)

The rest part of the proof is similar to that of (II) ofTheorem 3.
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The following simulation results show that even for small
and fixed values of 𝑚 and 𝑛 or ]

01
and ]

02
, the generalized

𝑃 value and Bayesian evidence for testing the Behrens-Fisher
problem are still reconcilable.

For fixed ]
01

= 0.5 and ]
02

= 1 and for 𝑠2
1
= 1 and

𝑠
2

2
= 4, taking different values of 𝑚 and 𝑛, some results of

comparing the 𝑃 value and lim
𝜅
01
,𝜅
02
,𝜎
01
,𝜎
02
→0

𝑃(𝐻
0
| 𝑥) are

listed in Table 1.
For fixed 𝑚 = 8 and 𝑛 = 10 and for 𝑠2

1
= 1 and 𝑠

2

2
= 4,

taking different values of ]
01

and ]
02
, we list some results of

comparing𝑃 value and lim
𝜅
01
,𝜅
02
,𝜎
01
,𝜎
02
→0

𝑃(𝐻
0
| 𝑥) in Table 2.

3. Conclusions

In the presence of the nuisance parameters, we study the
reconcilability of the𝑃 value and the Bayesian evidence in the
one-sided hypothesis testing problem about normal means.
For the problem of testing a normalmean where the nuisance
parameter is present, it is shown that the Bayesian and fre-
quentist lines of evidence are reconcilable. For the Behrens-
Fisher problem, it is illustrated that if the sample sizes𝑚 and
𝑛 tend to infinity, then for fixed prior parameters ]

01
and

]
02
, both lines of evidence are reconcilable. Furthermore, it

is illustrated that if the prior parameters ]
01

and ]
02

tend
to infinity, then for any fixed sample sizes 𝑚 and 𝑛, lines of
evidence are reconcilable. Simulation results show that even
for small and fixed values of sample sizes 𝑚 and 𝑛 or for
small values of prior parameters ]

01
and ]
02
, the reconcilable

conclusion of the Bayesian and frequentist evidence still
holds.

This provides another illustration of testing situation
where the Bayesian and frequentist evidence can be rec-
onciled and may therefore to some extent prevent people
from debasing or even dismissing 𝑃 values as evidence in
hypothesis testing problems. Furthermore, our results of the
reconcilability in the one-sided testing situations may help us
to come to the idea that maybe it is arbitrary to assert the
irreconcilability of the evidence in the two-sided (point or
interval) hypothesis testing problems and perhaps we should
be concernedmore about the appropriateness of themethods
we employ to tackle a two-sided hypothesis in both the
frequentist and the Bayesian frameworks.
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