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Preface to the Second Edition

We are in a golden age of the study of subterranean biology. �irty-�ve years 
ago, when one of us (DCC) wrote a book on the biology of caves, it was easy 
to read and discuss all the non-taxonomic literature on cave biology written 
in English. Today, there are well over 200 papers per year published on 
the biology of subterranean habitats. �irty-�ve years ago, for American 
speleobiologists, but much less so for European biologists, speleobiology meant 
the biology of caves. �ere was scarcely any recognition or awareness of non-
cave subterranean environments among American speleobiologists. �e 
scope of speleobiology has expanded to include those subterranean1 habitats 
whose inhabitants include blind, depigmented species with compensatory 
increases in other sensory structures. In fact, there has been so much 
research on these non-cave subterranean habitats, that �ve years ago we 
wrote a book devoted to these habitats that are very close to the Earth’s sur-
face—Shallow Subterranean Habitats: Ecology, Evolution, and Conservation.

Since the publication of the �rst edition, a number of books on various aspects 
of speleobiology have been published, including general treatments by Romero 
(2009) and Fenolio (2016), a book on the microbiology of caves (Engel 2016), 
four! books on cave�sh—Keene et al. (2016), Trajano et al. (2010), Wilkens 
and Strecker (2017), and Zhao and Zhang (2009), and a second edition of the 
Encyclopedia of Caves (White and Culver 2012). In  addition, there have been 
more than 1000 research papers on speleobiology published since the �rst 
edition of this book.

Our strategy in the second edition has been to update information in the 
�rst edition, while still focusing on a relatively small number of well-studied 
cases. We have replaced some of the case studies from the �rst edition but 
have not changed others just because there have been more recent publications 
on the topic. �e growth of information has, of course, not been uniform 
across subdisciplines. Phylogeography, biodiversity, and evo-devo have in 
particular experienced a growth spurt. All in all, we have added approxi-
mately 125 references published since the �rst edition.

1 We use subterranean in the sense of organisms living in natural spaces. �e word subter-
ranean is also frequently applied to organisms that create their own spaces—especially mam-
mals such as mole rats, termites, and plant roots. �e word hypogean is sometimes used in the 
sense we use subterranean, but its use is uncommon, and we use enough uncommon words as 
it is. �ere are many precedents for the way we use the word, such as the International Society 
for Subterranean Biology and its journal Subterranean Biology.



We hope that this book is accessible to a wide variety of readers. We have 
assumed no training in biology beyond a standard university year-long 
course, and we have tried to make the geological and chemical incursions 
self-contained. An extensive glossary should help the readers through any 
terminological rough spots.

We have organized this book around what seem to us to be the major 
research areas and research questions in the �eld. To provide a context for 
these questions, we review the di�erent subterranean environments (Chapter 1), 
what the energy sources are for subterranean environments given that the 
main energy source in surface environments— photosynthesis—is missing 
(Chapter  2), and the main inhabitants of these underground domains 
(Chapter 3). �e research areas that we focus on are as follows:
• How are subterranean ecosystems de�ned and organized, and how in par-

ticular does organic carbon move through the system (Chapter 4)?
• How do species interact and how do these interactions, such as compe-

tition and predation, organize and constrain subterranean communities 
(Chapter 5)?

• How did subterranean organisms evolve the bizarre morphology of 
elongated appendages, no pigment, and no eyes (Chapter 6)?

• What is the evolutionary and biogeographical history of subterranean 
species? Are they in old, relic lineages (Chapter 7)? How does their distri-
bution relate to past geological events?

• What is the pattern of diversity of subterranean faunas over the face of the 
Earth (Chapter 8)?

We close by ‘putting the pieces together’ and examining some representative 
and exemplary subterranean communities (Chapter 9), and how to conserve 
and protect them (Chapter 10).

With the exception of Chapters 1–3, where we have attempted to provide a 
comprehensive geographical and taxonomic review of the basics, we have 
focused on a few particularly well-studied cases. Although we have provided 
case studies from throughout the world, readers from Africa, South America, 
and Asia will no doubt �nd a North American and European bias. Of this we 
are certainly guilty, but in part this bias is because of longer traditions of study 
of subterranean life in Europe and North America. We have added several 
case studies from Asia and South America. We have provided an extensive 
bibliography and hope that interested readers will pursue the subjects fur-
ther. Where English language articles are available, we have highlighted 
them, but we also have not hesitated to include particularly important or 
unique papers in other languages.

A cautionary word about place names. Many species are limited to a single 
cave, well, or under�ow of a brook, and, if for no other reason, this makes it 
important to accurately give place names. �roughout the book we have 
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identi�ed the country and state or province in which a site is located. We 
have, whenever possible, retained the spelling of the local language. Translation 
runs the risk of confusing anyone trying to identify a particular cave or site, 
and also runs the risk of repeating the word cave in di�erent languages, as in 
Postojnska jama Cave (Postojna Cave Cave). Postojnska jama already has 
names in three languages (Slovene, Italian, and German) and there is no 
need to add a fourth. A list of sites mentioned in the text is provided.

Even to us, the �eld of subterranean biology seems especially burdened with 
obscure terminology. While there is a temptation to ignore it as much as 
possible, it is widespread in the literature and some of it is even useful. We 
have de�ned many terms in the text when we �rst use them, and have 
included an extensive glossary to aid readers.

Besides the fascination of their bizarre morphology (which cannot really be 
overrated), there are two main reasons for biologists to be interested in sub-
terranean faunas. One is numerical. Nearly all rivers and streams have an 
underlying alluvial system in which its residents never encounter light. 
Approximately 15 per cent of the Earth’s land surface is honeycombed with 
caves and springs, part of a landscape called karst that is moulded by the 
forces of dissolution rather than erosion of rock and sediment. In countries 
such as Cuba and Slovenia, this is the predominant landform.

But there is a more profound reason for biologists to study subterranean 
biology. Subterranean species can serve as model systems for several 
 important biological questions. As far as we can determine, it was Poulson 
and White (1969) who �rst made this notion explicit but it is implicit in the 
writings of many subterranean biologists. �is is a recurring theme through-
out this book, and we list just some of the possibilities here:
 • Subterranean ecosystems can serve as models of carbon (rather than 

nitrogen and phosphorus) limited ecosystems and ones where most inputs 
are physically separated from the community itself.

 • Subterranean communities can serve as a model of species interactions 
because the number of species is small enough that all pairwise  interactions 
can be analysed and then combined into a community-wide synthesis.

 • �e universal feature of loss of structures (regressive evolution) is espe-
cially obvious in subterranean animals, with a clear basis that in turn can 
allow for detailed studies of adaptation.

 • �e possibilities of dispersal of subterranean species are highly con-
strained and so the species (and lineages) can serve as models for vicariant 
biogeography.

 • �e highly restricted ranges and specialized environmental requirements 
can serve as a model for the protection of rare and endangered species.

Whatever reasons you have for reading this book, we hope it leads you to a 
fascination with subterranean biology, one that lasts a lifetime.
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 • Sotano de las Golandrinas

Montenegro
 • Dormitor National Park

Papua New Guinea
 • Kavakuna Matali system
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 • Bohol Island caves
 • Montalban caves
 • Taninthayri caves

Portugal
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Romania
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• Baradla/Domica
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• Pivka River
• Planinska jama
• Postojna–Planina Cave System
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• Cueva del Felipe Reventón (Canary Islands)
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United States
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 • Limrock Cave (Alabama)
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 • Lower Potomac (District of Columbia)
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Plate 1  Photo of the karst landscape of Halong Bay, Vietnam. Karst landscapes take many differ-
ent shapes and forms in different regions. Among the most spectacular are the towers 
and pinnacles of Halong Bay, a UNESCO World Heritage site. The remaining limestone is 
slowly being dissolved away. See page 5 in text.

Plate 2  Photo of Pivka River sinking at the entrance to Postojnska jama, Slovenia. Photo by 
M. Petric,̌ used with permission. See page 11 in text.

Plate 3  Photo of Unica Spring, the resurgence of the Postojna–Planina Cave System, Slovenia. 
Photo by M. Blatnik, used with permission. See page 12 in text.



Plate 4  Photograph of the authors at a hypotelminorheic site at Scotts Run Park, near Washington, 
DC, USA. Photo by W.K. Jones, with permission. See page 18 in text.

Plate 5  Main trunk passage in Lower Kane Cave, Wyoming, USA. White, �lamentous microbial 
mats dominated by sulfur-oxidizing bacteria are present in shallow sul�dic water, begin-
ning at the lower right corner (water �ows from the lower right to upper left). The micro-
bial mat extends for approximately 20 m with an average thickness of 5 cm. From Engel 
(2012). Photo by A.S. Engel, with permission. See page 26 in text.

Plate 6  Photograph of drip water in Organ Cave, West Virginia, USA which percolates into the 
cave from the epikarst. Photo by H.H. Hobbs III, with permission. See page 31 in text.



Plate 7  Dead raccoon at the base (10 m depth) of Sunnyday Pit, West Virginia, USA. Photo by 
H.H. Hobbs, with permission. See page 37 in text.

Plate 8  Roots of Metrosideros polymorpha coming through the ceiling of Lanikai Cave, Hawai’i. 
Photo by H. Hoch, with permission. See page 40 in text.

Plate 9  Photo of the remipede Lasionectes 
entrichoma showing male and 
female reproductive systems, ven-
tral view. Photo by D.  Williams 
and J. Yager, with permission. See 
page 57 in text.

Plate 10  Photograph of Proteus anguinus. 
Photo by G.  Aljancǐc,̌ with per-
mission. See page 71 in text.



Plate 11  Schematic representation of microbial sulfur, carbon, and nitrogen cycling in Peştera 
Movile, Romania. Evidence for metabolic pathways comes from functional gene analyses. 
From Kumaresan et al. (2014). Used with permission of Walter de Gruyter GmBH. See 
page 93 in text.
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Plate 12  Concentration of cave-crickets, Ceuthophilus stygius, on the ceiling of Dogwood Cave, 
Hart Co., Kentucky, USA. Photo by H. H. Hobbs, with permission. See page 101 in text.



Plate 13  Typical (A) Proteus anguinus anguinus and the pigmented, eyed subspecies (B) Proteus 
anguinus parkelj. Photographs by G. Aljancǐc,̌ with permission. See page 121 in text.
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Plate 14  Molecular phylogeny of Amblyopsidae, based on Niemiller et al. (2012b). Used with 
 permission of John Wiley and Sons Inc. See page 125 in text.



Plate 15  Eye development and degeneration in Astyanax mexicanus. Diagram showing the timing 
of eye growth and development in surface �sh (top) and eye degeneration in cave�sh 
(bottom). Drawing by W. Jeffery, with permission. See page 139 in text.
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Plate 16  The relationship between the catecholamine and melanin synthesis pathways in Astyanax
cave�sh. In albino cave�sh, a mutated oca2 gene (white box with XXX) affects the �rst step 
of the pathway prior to tyrosinase function and prevents melanin synthesis. The defect 
caused by oca2 loss of function can be rescued by exogenous L-DOPA. Solid lines: steps that 
occur in surface �sh and in cave�sh after L-DOPA rescue of melanogenesis. Dashed lines: 
steps that are absent in cave�sh. From Bilandžija et al. (2013). See page 142 in text.



Plate 17  Dating of the most recent common ancestors with 95 percent HPD (highest posterior 
density), and graphical representation of the biogeographical scenario of Leopoldamys 
neilli according to four time periods A, B, C, and D. The four maps depict the hypothetical 
of L. neilli ancestral population (mid grey), western (mauve), central (yellow), northern 
(light blue), and northeastern (red) groups and the locations of barriers (black lines) lead-
ing to three vicariant events. From Latinne et al. (2012). See page 177 in text.
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Plate 18  Map of species richness patterns of European stygobionts. A. Species richness of 10 000 
km2 cells. B. Relationship between the cell average of species richness per 0.09´  latitudinal 
band and latitude. Black horizontal bars and boxes show the median and interquartile 
range, respectively, for latitudinal bands. The maximum length of each whisker is 1.5 
times the interquartile range and open circles represent outliers. The thick red line is the 
�t of generalized additive model to the averages of latitudinal bands. From Zagmajster 
et al. (2014). See page 200 in text.



Plate 19  Pie chart of relative contributions of different combinations of drivers of species richness 
to the explained variance. H is historical climate stability, E is productive energy, and S is 
spatial heterogeneity. Data from Eme et al. (2014). See page 200 in text.
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Plate 20  Iron-ore mine (N5, Serra Norte, Carajás, Brazil) showing the location of caves coloured by their 
classi�cation. Caves with maximum relevance have at least one rare troglobiont; caves with 
high relevance have at least one troglobiont. From Jaffé et al. (2018). See page 215 in text.

Plate 21  Gate at the entrance to Fisher 
Cave, Missouri, USA, designed to 
allow unimpeded access for bats. 
Photo by H.  Hobbs III, with per-
mission. See page 234 in text.

Plate 22  Channelized Trebišnija water-
course in Popovo polje, Bosnia & 
Herzegovina in 2005. Photograph 
by M.  Zagmajster, with permis-
sion. See page 237 in text.



1.1 Introduction

Beneath the surface of the earth are many spaces and cavities. �ese spaces 
can be very large—some cave chambers such as the Sarawak Chamber, with 
an area of over 21 000 000 m3 in Lubang Nasib Bagus (Good Luck Cave) in 
Sarawak, Malaysia (Waltham  2004) can easily accommodate the world’s 
largest aircra�. �ey can also be very small, such as the spaces between 
grains of sand on a beach. �ese spaces can be air-�lled, water-�lled, or even 
�lled with petroleum. All of these spaces share one very important physical 
property—the complete absence of sunlight. �is is a darkness that is darker 
than any darkness humans normally encounter, a darkness to which our 
eyes cannot acclimate no matter how long one waits. �ere are some habitats 
that are dark and yet have some light. �e ocean abyss is nearly without light 
but many organisms of the abyss, such as the well-known angler �sh,  produce 
their own light with the help of microbes (Fenolio 2016). In  addition, the heat 
of deep sea vents is high enough that light is emitted (Van Dover 2000). In 
subterranean habitats, with very rare exceptions, this does not happen. �e 
most notable exception is that of glow-worms (actually fungus-gnat larvae) 
in a few caves in Australia and New Zealand (Broadley and Stringer 2001). 
But even in these special cases, organisms cannot use light to �nd their way 
about, to �nd food, to �nd mates, and so on.

Taken together, the water-�lled and air-�lled cavities are quite common, 
perhaps more common than surface habitats. Over 94 per cent of the world’s 
unfrozen freshwater is stored underground, compared with only 3.6 per cent 
found in lakes and reservoirs, with the rest in soil, rivers, and the atmos-
phere (Heath 1982). Heath estimates that there are 521 000 km3 of subsurface 
spaces and cavities in the soils and bedrock of the United States, and most of 
these contain water. Whitman et al. (1998) indicate that between 6 per cent 
and 40 per cent of the total prokaryotic (organisms with no nuclear mem-
brane such as Bacteria) biomass on the planet may be in the terrestrial sub-
surface. �e number of caves is also large—for example the Karst Research 
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Fig. 1.1  Global distribution of major outcrops of primary cave-bearing (carbonate) rocks, shown in black. Not included in the �gure are areas of vol-
canic rock with lava tubes. Impure or discontinuous carbonate regions are in grey. Map by P.W. Williams, used with permission.
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Institute of Slovenia has records of more than 12 000 caves in a country with 
an area of about 20  000 km2. More than 100  000 caves are known from 
Europe, and nearly 50 000 are known from the United States (Culver and 
Pipan 2013). All of the continents except Antarctica have caves, as do most 
countries. A map (Fig. 1.1) of cave regions shows that North America and 
Eurasia are especially rich in cave-bearing rocks.

�e absence of light has profound e�ects on the organisms living in such habi-
tats. Eyes and the visual apparatus in general have no function there. �ere are 
no photons to capture; therefore, no increase in visual acuity will have any 
bene�t to the organisms exclusively living in darkness. Food-�nding, mate-
�nding, and avoidance of competitors and predators all must be accomplished 
without vision. As is discussed in more detail in Chapter 7, this is a profound 
barrier that surface-dwelling animals must overcome to successfully colonize 
subsurface habitats. �e absence of light means an absence of both photosyn-
thesis and primary producers (plants, algae, and some bacteria). In some rare 
but very interesting cases, microorganisms can obtain energy from the chem-
ical bonds of inorganic molecules (Engel 2012), but most subsurface commu-
nities rely on food transported in from the surface. �is will be taken up in 
detail in Chapter 2, and we just note in this chapter that the general absence of 
autotrophy means the amount and  variety of resources are usually reduced.

For all subsurface habitats, the amplitude of variation of environmental 
parameters, especially temperature, is much less than that of the surface habi-
tats. �is reduction in amplitude is especially noticeable in regions where 
variation in surface temperatures is extreme. In Kartchner Caverns, Arizona, 
USA, the daily average temperature on the surface varies by more than 17°C, 
whereas temperatures within the cave vary less than 1°C (Fig. 1.2) (Cigna 2002). 
�e range of variation in most spots in Kartchner Caverns was around 1 per 
cent or 2 per cent of the surface variation. Nevertheless, in Kartchner Caverns, 
as in nearly all subterranean habitats, there is still an annual temperature cycle. 
With the possible exception of groundwater aquifers at depths of hundreds of 
metres, there are no truly constant subsurface environments. In many older 
references (e.g., Poulson 1963, Vandel 1964), environmental constancy is over-
emphasized. With the availability of better monitoring devices, especially ones 
taking multiple measurements, environmental variability can be detected. 
Other parameters besides temperature vary, including air currents, water 
levels, and the amount of food brought into caves. �e pulse of spring �ooding 
may be an important cue for reproduction for many cave animals (Hawes 1939). 
It varies in amplitude, predictability, and seasonality in di�erent caves, but 
shows the general lack of constancy of the subterranean environment.

Traditionally, subsurface habitats are divided into large cavities (caves) and 
small cavities (interstitial habitats) (Botosaneanu  1986). We follow this 
 division but add a third category—shallow subterranean habitats, which �t 
uneasily into the traditional dichotomy (Culver and Pipan 2008a, 2014).



4 BIOLOGY OF CAVES

1.2 Caves

Caves are more di�cult to de�ne that one might expect. Geologists (e.g., 
White  1988) o�en de�ne caves as natural openings large enough to admit 
a  human being, but this is not an especially useful biological de�nition. 
A more useful de�nition is a natural opening in solid rock with areas of com-
plete darkness, and larger than a few millimetres in diameter. �e �rst 
criterion excludes spaces among sands, gravels, and stones because they are 
not openings in solid rock. �e second criterion excludes some geographical 
features that are sometimes called caves, such as rock shelters and natural 
tunnels, which have no zone of complete darkness. �e third is a more tech-
nical restriction which eliminates very tiny tubes that are too small to have 
turbulent water �ow. Eventually, many of these tiny tubes will develop into 
caves but below this critical diameter processes of enlargement and  dissolution 
are very slow indeed, taking up to hundreds of thousands of years (Dreybrodt 
et al. 2005, Ford and Williams 2007, Audra and Palmer 2015).

1.2.1 Caves formed by dissolution of rocks

Landscapes in which the primary agent moulding the landscape is dissolution 
rather than erosion are called karst landscapes (Fig. 1.3). �at is, the features 
of karst landscape (caves, sinkholes, springs, blind valleys, and the like) 
result from the action of the hollowing out of rocks by weak acids rather 
than by erosion, volcanic activity, earthquakes, and so on. Caves are the 
most biologically interesting part of this landscape, but there are karst 
landscapes with very few caves (the extreme northern Shenandoah Valley in 
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Fig. 1.2  Temperature pro�les from Kartchner Caverns, Arizona, USA. Sampling began on 1 January 
1996 and continued for 5 years. Solid line is a sinusoidal �t of the data. Time (in days) is 
shown on the x-axis and temperature (oC) is shown on the y-axis. From Cigna (2002). 
Used with permission of Karst Research Institute ZRC SAZU.


