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LIX, INRIA Futurs, École Polytechnique

31/08/2006, Pontevedra, Spain



Outline

1 Interactive proof / Automated theorem proving

2 Tarski’s axioms

3 Overview of the formalization

4 Degenerated cases

5 Comparison with related work



Interactive proof

• The proof assistants only check that the proof is correct.



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.

• / But it is a tedious task !



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.

• / But it is a tedious task !



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.

• / But it is a tedious task !

Automated proof

• The ATP generates the proof.



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.

• / But it is a tedious task !

Automated proof

• The ATP generates the proof.

• / Not every theorem can be proved automatically.



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.

• / But it is a tedious task !

Automated proof

• The ATP generates the proof.

• / Not every theorem can be proved automatically.

• , But in geometry there exists efficient methods.



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.

• / But it is a tedious task !

Automated proof

• The ATP generates the proof.

• / Not every theorem can be proved automatically.

• , But in geometry there exists efficient methods.



Interactive proof

• The proof assistants only check that the proof is correct.

• , Any proof can be formalized.

• , The proofs generated are very reliable.

• / But it is a tedious task !

Automated proof

• The ATP generates the proof.

• / Not every theorem can be proved automatically.

• , But in geometry there exists efficient methods.

My goal is to merge the two approaches.
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Motivations

• We need foundations to combine the different formal
developments.

Why Tarski’s axioms ?

• They are simple.

• They have good meta-mathematical properties.

• They can be generalized to different dimensions and
geometries.



The Coq proof assistant

• Interactive proof

• But some automation is available

• Intuitionist logic

• Proofs are performed using tactics
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To trust proofs verified by Coq you need to trust:

• The theory behind Coq

• The Coq kernel implementation

• The Objective Caml compiler

• Your hardware

• Your axioms



Tarski’s axioms

Points (no lines, no planes).

Two predicates :

• equidistance ≡

• betweeness β



Axioms

1 Reflexivity of equidistance

AB ≡ BA

2 Pseudo-transitivity of equidistance

AB ≡ PQ ∧ AB ≡ RS ⇒ PQ ≡ RS

3 Identity of equidistance

AB ≡ CC ⇒ A = B



4 Segment construction

∃X , β Q A X ∧ AX ≡ BC

b

Q
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b
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X



5 Five segments
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AB ≡ A′B ′ ∧ BC ≡ B ′C ′ ∧ AD ≡ A′D ′ ∧ BD ≡ B ′D ′
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51 Five segments (variant)

A 6= B ∧ B 6= C ∧ β A B C ∧ β A′ B ′ C ′∧

⇒ CD ≡ C ′D ′

AB ≡ A′B ′ ∧ BC ≡ B ′C ′ ∧ AD ≡ A′D ′ ∧ BD ≡ B ′D ′



6 Identity of betweeness

β A B A ⇒ A = B



7 Pasch (inner)

β A P C ∧ β B Q C ⇒ ∃X , β P X B ∧ β Q X A

71 Pasch (outer)

β A P C ∧ β Q C B ⇒ ∃X , β A X Q ∧ β B P X

72 Pasch (outer) (Variant)

β A P C ∧ β Q C B ⇒ ∃X , β A X Q ∧ β X P B

73 Pasch weak

β A T D ∧ β B D C ⇒ ∃X , Y , β A X B ∧ β A Y C ∧ β Y T X
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8(2) Dimension, lower bound 2

∃ABC ,¬β A B C ∧ ¬β B C A ∧ ¬β C A B

8(n) Dimension, lower bound n

∃ABCP1P2 . . .Pn−1,

∧
1≤i<j<n pi 6= pj∧∧n−1
i=2 AP1 ≡ APi ∧ BP1 ≡ BPi ∧ CP1 ≡ CPi∧

¬β A B C ∧ ¬β B C A ∧ ¬β C A B



9(n) Dimension, upper bound n

∧
1≤i<j≤n pi 6= pj∧

∧n
i=2

AP1 ≡ APi∧

BP1 ≡ BPi∧

CP1 ≡ CPi

⇒ β A B C ∨ β B C A ∨ β C A B



10 Euclid’s axiom

β A D T ∧ β B D C ∧ A 6= D ⇒ ∃X , Y β A B X ∧ β A C Y ∧ β X T Y
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11 Continuity

∃a,∀xy , (x ∈ X ∧ y ∈ Y ⇒ β a x y) ⇒ ∃b,∀xy , x ∈ X ∧ y ∈ Y ⇒ β x b y

Schema 11 Continuity (schema)

∃a,∀xy , (α ∧ β ⇒ β a x y) ⇒ ∃b,∀xy , α ∧ β ⇒ β x b y

where α and β are first order formulas, such that a,b and y do not
appear free in α and a,b and x do not appear free in β.



12 Reflexivity of β

β A B B

14 Symmetry of β

β A B C ⇒ β C B A

13 Compatibility with equality of β

A = B ⇒ β A B A

19 Compatibility with equality of ≡

A = B ⇒ AC ≡ BC



15 Transitivity (inner) of β

β A B D ∧ β B C D ⇒ β A B C

16 Transitivity (outer) of β

β A B C ∧ β B C D ∧ B 6= C ⇒ β A B D

b b b b

A B C D



17 Pseudo-transitivity (inner) of β

β A B D ∧ β A C D ⇒ β A B C ∨ β A C B

18 Pseudo-transitivity (outer) of β

β A B C ∧ β A B D ∧ A 6= B ⇒ β A C D ∨ β A D C

b b b××
A B CC D

b b b× ×
A B C CD

Axiom 17 Axiom 18



20 Unicity of the triangle construction

AC ≡ AC ′ ∧ BC ≡ BC ′∧

β A D B ∧ β A D ′ B ∧ β C D X∧

β C ′ D ′ X ∧ D 6= X ∧ D ′ 6= X

⇒ C = C ′

201 Unicity of the triangle construction (variant)

A 6= B∧

AC ≡ AC ′ ∧ BC ≡ BC ′∧

β B D C ′ ∧ (β A D C ∨ β A C D)
⇒ C = C ′

21 Existence of the triangle construction

AB ≡ A′B ′ ⇒ ∃CX ,
AC ≡ A′C ′ ∧ BC ≡ B ′C ′∧

β C X P ∧ (β A B X ∨ β B X A ∨ β X A B)



History

1940 1951 1959 1965 1983
[Tar67] [Tar51] [Tar59] [Gup65] [SST83]

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

51 51 → 5 5 5
6 6 6 6

72 72 → 71 71 → 7
8(2) 8(2) 8(2) 8(2) 8(2)

91(2) 91(2) → 9(2) 9(2) 9(2)
10 10 → 101 101 → 10
11 11 11 11 11
12 12
13
14 14
15 15 15 15
16 16
17 17
18 18 18
19
20 → 201

21 21

20 18 12 10 10
+ + + + +

1 schema 1 schema 1 schema 1 schema 1 schema



Formalization

W. Schwabhäuser
W. Szmielew
A. Tarski

Metamathematische Methoden in der Geometrie

Springer-Verlag 1983



Overview I

About 200 lemmas and 6000 lines of proofs and definitions.

The first chapter contains the axioms.

The second chapter contains some basic properties of equidistance
(noted Cong).

The third chapter contains some basic properties of the
betweeness predicate (noted Bet). In particular, it
contains the proofs of the axioms 12, 14 and 16.

The fourth chapters provides properties about Cong, Col and Bet.

The fifth chapter contains the proof of the transitivity of Bet and
the definition of a length comparison predicate. It
contains the proof of the axioms 17 and 18.

The sixth chapter defines the out predicate which says that a
point is not on a line, it is used to prove transitivity
properties for Col.



Overview II

The seventh chapter defines the midpoint and the symmetric
point and prove some properties.

The eighth chapter contains the definition of the predicate
“perpendicular”, and finally proves the existence of
the midpoint.



Two crucial lemmas

∀ABC , β A C B ∧ AC ≡ AB ⇒ C = B

b b b

A B C

∀ABDE , β A D B ∧ β A E B ∧ AD ≡ AE ⇒ D = E .

b bb b

A BD E
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About degenerated cases

• α-conversion / binders ≡ degenerated cases / geometry

• We need specialized tactics.

• It is simple but effective !

• Still, the axiom system is important.
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Comparison with other formalizations

• , There are fewer degenerated cases than in Hilbert’s axiom
system.

• , The axiom system is simpler.

• , It has good meta-mathematical properties.

• , Generalization to other dimensions is easy.

• / Lemma scheduling is more complicated.

• / It is not well adapted to teaching.



Comparison with ATP

• We can not use a decision procedure specialized in geometry.

• Problems which can be solved by at least one general purpose
ATP AND appear in my formalization have short proofs.

Examples
Lemma Coq proof Otter Vampire
symmetry of betweeness 6 lines 0s 0s
reflexivity of equidistance 2 lines 0s 0s
transitivity of equidistance 2 lines 0s 0s
existence of the midpoint 6000 lines timeout timeout



Future work

• The remaining chapters



Future work

• The remaining chapters

• Hilbert’s axioms



Future work

• The remaining chapters

• Hilbert’s axioms

• The axioms of Axioms and Hulls



Future work

• The remaining chapters

• Hilbert’s axioms

• The axioms of Axioms and Hulls

• Frédérique Guilhot’s axioms



Future work

• The remaining chapters

• Hilbert’s axioms

• The axioms of Axioms and Hulls

• Frédérique Guilhot’s axioms

• . . .



Future work

• The remaining chapters

• Hilbert’s axioms

• The axioms of Axioms and Hulls

• Frédérique Guilhot’s axioms

• . . .

• A treaty about constructive geometry



Future work

• The remaining chapters

• Hilbert’s axioms

• The axioms of Axioms and Hulls

• Frédérique Guilhot’s axioms

• . . .

• A treaty about constructive geometry



Future work

• The remaining chapters

• Hilbert’s axioms

• The axioms of Axioms and Hulls

• Frédérique Guilhot’s axioms

• . . .

• A treaty about constructive geometry

http://www.lix.polytechnique.fr/Labo/Julien.Narboux/tarski.html

http://www.lix.polytechnique.fr/Labo/Julien.Narboux/tarski.html


Christophe Dehlinger, Jean-François Dufourd, and Pascal
Schreck.
Higher-order intuitionistic formalization and proofs in Hilbert’s
elementary geometry.
In Automated Deduction in Geometry, pages 306–324, 2000.

Frédérique Guilhot.
Formalisation en coq et visualisation d’un cours de géométrie
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An example.

Gupta

A 6= B ∧ β A B C ∧ β A B D ⇒ β A C D ∨ β A D C

b b

b

b

b

b

b

b

A B

D C’

B’
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