Mechanical Theorem Proving in Tarski's Geometry.

Julien Narboux
under the supervision of
Hugo Herbelin

LIX, INRIA Futurs, École Polytechnique

31/08/2006, Pontevedra, Spain

Outline

(1) Interactive proof / Automated theorem proving
(2) Tarski's axioms
(3) Overview of the formalization
(4) Degenerated cases
(5) Comparison with related work

Interactive proof

- The proof assistants only check that the proof is correct.

Interactive proof

- The proof assistants only check that the proof is correct.
- Any proof can be formalized.

Interactive proof

- The proof assistants only check that the proof is correct.
- : Any proof can be formalized.
- () The proofs generated are very reliable.

Interactive proof

- The proof assistants only check that the proof is correct.
- : Any proof can be formalized.
- () The proofs generated are very reliable.
- ${ }^{(2)}$ But it is a tedious task!

Interactive proof

- The proof assistants only check that the proof is correct.
- : Any proof can be formalized.
- () The proofs generated are very reliable.
- ${ }^{(2)}$ But it is a tedious task!

Interactive proof

- The proof assistants only check that the proof is correct.
- Any proof can be formalized.
- () The proofs generated are very reliable.
- © But it is a tedious task!

Automated proof

- The ATP generates the proof.

Interactive proof

- The proof assistants only check that the proof is correct.
- Any proof can be formalized.
- () The proofs generated are very reliable.
- © But it is a tedious task!

Automated proof

- The ATP generates the proof.
- ${ }^{(2)}$ Not every theorem can be proved automatically.

Interactive proof

- The proof assistants only check that the proof is correct.
- © Any proof can be formalized.
- () The proofs generated are very reliable.
- © But it is a tedious task!

Automated proof

- The ATP generates the proof.
- (2) Not every theorem can be proved automatically.
- © But in geometry there exists efficient methods.

Interactive proof

- The proof assistants only check that the proof is correct.
- © Any proof can be formalized.
- () The proofs generated are very reliable.
- © But it is a tedious task!

Automated proof

- The ATP generates the proof.
- (2) Not every theorem can be proved automatically.
- © But in geometry there exists efficient methods.

Interactive proof

- The proof assistants only check that the proof is correct.
- © Any proof can be formalized.
- () The proofs generated are very reliable.
- © But it is a tedious task!

Automated proof

- The ATP generates the proof.
- ${ }^{(2)}$ Not every theorem can be proved automatically.
- © But in geometry there exists efficient methods.

My goal is to merge the two approaches.

Related Work

Formalization of geometry

- Gilles Khan (Coq) [Kah95]

Related Work

Formalization of geometry

- Gilles Khan (Coq) [Kah95]
- Christophe Dehlinger, Jean-François Dufourd and Pascal Schreck (Coq) [DDS00]

Related Work

Formalization of geometry

- Gilles Khan (Coq) [Kah95]
- Christophe Dehlinger, Jean-François Dufourd and Pascal Schreck (Coq) [DDS00]
- Laura Meikle and Jacques Fleuriot (Isabelle) [MF03]

Related Work

Formalization of geometry

- Gilles Khan (Coq) [Kah95]
- Christophe Dehlinger, Jean-François Dufourd and Pascal Schreck (Coq) [DDS00]
- Laura Meikle and Jacques Fleuriot (Isabelle) [MF03]
- Frédérique Guilhot (Coq) [Gui05]

Related Work

Formalization of geometry

- Gilles Khan (Coq) [Kah95]
- Christophe Dehlinger, Jean-François Dufourd and Pascal Schreck (Coq) [DDS00]
- Laura Meikle and Jacques Fleuriot (Isabelle) [MF03]
- Frédérique Guilhot (Coq) [Gui05]
- Julien Narboux (Coq) [Nar04]

Related Work

Formalization of geometry

- Gilles Khan (Coq) [Kah95]
- Christophe Dehlinger, Jean-François Dufourd and Pascal Schreck (Coq) [DDS00]
- Laura Meikle and Jacques Fleuriot (Isabelle) [MF03]
- Frédérique Guilhot (Coq) [Gui05]
- Julien Narboux (Coq) [Nar04]

Related Work

Formalization of geometry

- Gilles Khan (Coq) [Kah95]
- Christophe Dehlinger, Jean-François Dufourd and Pascal Schreck (Coq) [DDS00]
- Laura Meikle and Jacques Fleuriot (Isabelle) [MF03]
- Frédérique Guilhot (Coq) [Gui05]
- Julien Narboux (Coq) [Nar04]

Tarski's axioms

- Art Quaife (Otter)[Qua89]

Motivations

- We need foundations to combine the different formal developments.

Motivations

- We need foundations to combine the different formal developments.

Why Tarski's axioms ?

- They are simple.

Motivations

- We need foundations to combine the different formal developments.

Why Tarski's axioms ?

- They are simple.
- They have good meta-mathematical properties.

Motivations

- We need foundations to combine the different formal developments.

Why Tarski's axioms ?

- They are simple.
- They have good meta-mathematical properties.
- They can be generalized to different dimensions and geometries.

The Coq proof assistant

- Interactive proof
- But some automation is available
- Intuitionist logic
- Proofs are performed using tactics

To trust proofs verified by Coq you need to trust:

- The theory behind Coq

To trust proofs verified by Coq you need to trust:

- The theory behind Coq
- The Coq kernel implementation

To trust proofs verified by Coq you need to trust:

- The theory behind Coq
- The Coq kernel implementation
- The Objective Caml compiler

To trust proofs verified by Coq you need to trust:

- The theory behind Coq
- The Coq kernel implementation
- The Objective Caml compiler
- Your hardware

To trust proofs verified by Coq you need to trust:

- The theory behind Coq
- The Coq kernel implementation
- The Objective Caml compiler
- Your hardware
- Your axioms

Tarski's axioms

Points (no lines, no planes).

Two predicates :

- equidistance \equiv
- betweeness β

1 Reflexivity of equidistance

$$
A B \equiv B A
$$

2 Pseudo-transitivity of equidistance

$$
A B \equiv P Q \wedge A B \equiv R S \Rightarrow P Q \equiv R S
$$

3 Identity of equidistance

$$
A B \equiv C C \Rightarrow A=B
$$

4 Segment construction

$$
\exists X, \beta Q A X \wedge A X \equiv B C
$$

5 Five segments
$A \neq B \wedge \beta A B C \wedge \beta A^{\prime} B^{\prime} C^{\prime} \wedge$

$$
\Rightarrow C D \equiv C^{\prime} D^{\prime}
$$

$A B \equiv A^{\prime} B^{\prime} \wedge B C \equiv B^{\prime} C^{\prime} \wedge A D \equiv A^{\prime} D^{\prime} \wedge B D \equiv B^{\prime} D^{\prime}$

5_{1} Five segments (variant)

$$
\begin{aligned}
& A \neq B \wedge B \neq C \wedge \beta A B C \wedge \beta A^{\prime} B^{\prime} C^{\prime} \wedge \\
& A B \equiv A^{\prime} B^{\prime} \wedge B C \equiv B^{\prime} C^{\prime} \wedge A D \equiv A^{\prime} D^{\prime} \wedge B D \equiv B^{\prime} D^{\prime}
\end{aligned} \quad \Rightarrow C D \equiv C^{\prime} D^{\prime}
$$

6 Identity of betweeness
$\beta A B A \Rightarrow A=B$

7 Pasch (inner)

$$
\beta A P C \wedge \beta B Q C \Rightarrow \exists X, \beta P X B \wedge \beta Q X A
$$

7_{1} Pasch (outer)

$$
\beta A P C \wedge \beta Q C B \Rightarrow \exists X, \beta A X Q \wedge \beta B P X
$$

7_{2} Pasch (outer) (Variant)

$$
\beta A P \subset \wedge \beta Q \subset B \Rightarrow \exists X, \beta A X Q \wedge \beta X P B
$$

7_{3} Pasch weak

$$
\beta A T D \wedge \beta B D C \Rightarrow \exists X, Y, \beta A X B \wedge \beta A Y C \wedge \beta Y T X
$$

Inner

Outer

Weak

8(2) Dimension, lower bound 2

$$
\exists A B C, \neg \beta A B C \wedge \neg \beta B \subset A \wedge \neg \beta \subset A B
$$

8(n) Dimension, lower bound n

$$
\begin{array}{ll}
\exists A B C P_{1} P_{2} \ldots P_{n-1}, & \bigwedge_{1 \leq i<j<n} p_{i} \neq p_{j} \wedge \\
\bigwedge_{i=2}^{n=1} A P_{1} \equiv A P_{i} \wedge B P_{1} \equiv B P_{i} \wedge C P_{1} \equiv C P_{i} \wedge \\
& \neg \beta A B C \wedge \neg \beta B C A \wedge \neg \beta C A B
\end{array}
$$

$9(n)$ Dimension, upper bound n

$$
\begin{array}{rl}
\bigwedge_{1 \leq i<j \leq n} p_{i} \neq p_{j} \wedge \\
& A P_{1} \equiv A P_{i} \wedge \\
\bigwedge_{i=2}^{n} & B P_{1} \equiv B P_{i} \wedge \\
& C P_{1} \equiv C P_{i}
\end{array} \Rightarrow \beta A B C \vee \beta B C A \vee \beta C A B
$$

10 Euclid's axiom

$\beta A D T \wedge \beta B D C \wedge A \neq D \Rightarrow \exists X, Y \beta A B X \wedge \beta A C Y \wedge \beta X T Y$

11 Continuity

$\exists a, \forall x y,(x \in X \wedge y \in Y \Rightarrow \beta a x y) \Rightarrow \exists b, \forall x y, x \in X \wedge y \in Y \Rightarrow \beta x b y$

Schema 11 Continuity (schema)

$$
\exists a, \forall x y,(\alpha \wedge \beta \Rightarrow \beta a x y) \Rightarrow \exists b, \forall x y, \alpha \wedge \beta \Rightarrow \beta x b y
$$

where α and β are first order formulas, such that a, b and y do not appear free in α and a, b and x do not appear free in β.

12 Reflexivity of β

$\beta A B B$

14 Symmetry of β

$$
\beta A B C \Rightarrow \beta C B A
$$

13 Compatibility with equality of β

$$
A=B \Rightarrow \beta A B A
$$

19 Compatibility with equality of \equiv

$$
A=B \Rightarrow A C \equiv B C
$$

15 Transitivity (inner) of β

$$
\beta A B D \wedge \beta B C D \Rightarrow \beta A B C
$$

16 Transitivity (outer) of β

$$
\beta A B C \wedge \beta B C D \wedge B \neq C \Rightarrow \beta A B D
$$

17 Pseudo-transitivity (inner) of β

$$
\beta A B D \wedge \beta A C D \Rightarrow \beta A B C \vee \beta A C B
$$

18 Pseudo-transitivity (outer) of β

$$
\beta A B C \wedge \beta A B D \wedge A \neq B \Rightarrow \beta A C D \vee \beta A D C
$$

Axiom 17

Axiom 18

20 Unicity of the triangle construction

$$
\begin{aligned}
& A C \equiv A C^{\prime} \wedge B C \equiv B C^{\prime} \wedge \\
& \beta A D B \wedge \beta A D^{\prime} B \wedge \beta C D X \wedge \Rightarrow C=C^{\prime} \\
& \beta C^{\prime} D^{\prime} X \wedge D \neq X \wedge D^{\prime} \neq X
\end{aligned}
$$

20_{1} Unicity of the triangle construction (variant)

$$
\begin{aligned}
& A \neq B \wedge \\
& A C \equiv A C^{\prime} \wedge B C \equiv B C^{\prime} \wedge \\
& \beta B D C^{\prime} \wedge(\beta A D C \vee \beta A C D)
\end{aligned} \Rightarrow C=C^{\prime}
$$

21 Existence of the triangle construction

$$
A B \equiv A^{\prime} B^{\prime} \Rightarrow \exists C X, \begin{aligned}
& A C \equiv A^{\prime} C^{\prime} \wedge B C \equiv B^{\prime} C^{\prime} \wedge \\
& \beta C X P \wedge(\beta A B X \vee \beta B X A \vee \beta X A B)
\end{aligned}
$$

History

1940	1951			
[Tar67]	1959 [Tar51]	1965 [Tar59]	1983 [Gup65]	[SST83]
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
51	5_{1}	$\rightarrow 5$	5	5
6	6	6		6
72	72	$\rightarrow 7_{1}$	7_{1}	$\rightarrow 7$
$8(2)$	$8(2)$	$8(2)$	$8(2)$	$8(2)$
$9(2)$	$9_{1}(2)$	$\rightarrow 9(2)$	$9(2)$	$9(2)$
10	10	$\rightarrow 10_{1}$	10_{1}	$\rightarrow 10$
11	11	11	11	11
12	12			
13				
14	14			15
15	15	15		
16	16			
17	17		18	
18	18			
19				
20	$\rightarrow 20_{1}$			
21	21		12	10

Formalization

W. Schwabhäuser
W. Szmielew
A. Tarski

Metamathematische Methoden in der Geometrie

Springer-Verlag 1983

Overview I

About 200 lemmas and 6000 lines of proofs and definitions.
The first chapter contains the axioms.
The second chapter contains some basic properties of equidistance (noted Cong).
The third chapter contains some basic properties of the betweeness predicate (noted Bet). In particular, it contains the proofs of the axioms 12,14 and 16.
The fourth chapters provides properties about Cong, Col and Bet.
The fifth chapter contains the proof of the transitivity of Bet and the definition of a length comparison predicate. It contains the proof of the axioms 17 and 18.
The sixth chapter defines the out predicate which says that a point is not on a line, it is used to prove transitivity properties for Col.

Overview II

The seventh chapter defines the midpoint and the symmetric point and prove some properties.
The eighth chapter contains the definition of the predicate "perpendicular", and finally proves the existence of the midpoint.

Two crucial lemmas

$\forall A B C, \beta A C B \wedge A C \equiv A B \Rightarrow C=B$

$\forall A B D E, \beta A D B \wedge \beta A E B \wedge A D \equiv A E \Rightarrow D=E$.

About degenerated cases

- α-conversion / binders \equiv degenerated cases / geometry

About degenerated cases

- α-conversion / binders \equiv degenerated cases / geometry
- We need specialized tactics.

About degenerated cases

- α-conversion / binders \equiv degenerated cases / geometry
- We need specialized tactics.
- It is simple but effective !

About degenerated cases

- α-conversion / binders \equiv degenerated cases / geometry
- We need specialized tactics.
- It is simple but effective !
- Still, the axiom system is important.

Comparison with other formalizations

- () There are fewer degenerated cases than in Hilbert's axiom system.

Comparison with other formalizations

- ${ }^{\text {() } \text { There are fewer degenerated cases than in Hilbert's axiom }}$ system.
- © The axiom system is simpler.

Comparison with other formalizations

- © There are fewer degenerated cases than in Hilbert's axiom system.
- © The axiom system is simpler.
- () It has good meta-mathematical properties.

Comparison with other formalizations

- © There are fewer degenerated cases than in Hilbert's axiom system.
- © The axiom system is simpler.
- () It has good meta-mathematical properties.
- () Generalization to other dimensions is easy.

Comparison with other formalizations

- () There are fewer degenerated cases than in Hilbert's axiom system.
- © The axiom system is simpler.
- () It has good meta-mathematical properties.
- () Generalization to other dimensions is easy.
- () Lemma scheduling is more complicated.

Comparison with other formalizations

- () There are fewer degenerated cases than in Hilbert's axiom system.
- © The axiom system is simpler.
- () It has good meta-mathematical properties.
- () Generalization to other dimensions is easy.
- () Lemma scheduling is more complicated.
- () It is not well adapted to teaching.

Comparison with ATP

- We can not use a decision procedure specialized in geometry.
- Problems which can be solved by at least one general purpose ATP AND appear in my formalization have short proofs.

Examples

Lemma	Coq proof	Otter	Vampire
symmetry of betweeness	6 lines	0 s	0 s
reflexivity of equidistance	2 lines	0 s	0 s
transitivity of equidistance	2 lines	0 s	0 s
existence of the midpoint	6000 lines	timeout	timeout

Future work

- The remaining chapters

Future work

- The remaining chapters
- Hilbert's axioms

Future work

- The remaining chapters
- Hilbert's axioms
- The axioms of Axioms and Hulls

Future work

- The remaining chapters
- Hilbert's axioms
- The axioms of Axioms and Hulls
- Frédérique Guilhot's axioms

Future work

- The remaining chapters
- Hilbert's axioms
- The axioms of Axioms and Hulls
- Frédérique Guilhot's axioms

Future work

- The remaining chapters
- Hilbert's axioms
- The axioms of Axioms and Hulls
- Frédérique Guilhot's axioms
- A treaty about constructive geometry

Future work

- The remaining chapters
- Hilbert's axioms
- The axioms of Axioms and Hulls
- Frédérique Guilhot's axioms
- A treaty about constructive geometry

Future work

- The remaining chapters
- Hilbert's axioms
- The axioms of Axioms and Hulls
- Frédérique Guilhot's axioms
- A treaty about constructive geometry
http://www.lix.polytechnique.fr/Labo/Julien.Narboux/tarski.html
(ind Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck.
Higher-order intuitionistic formalization and proofs in Hilbert's elementary geometry.
In Automated Deduction in Geometry, pages 306-324, 2000.
Frédérique Guilhot.
Formalisation en coq et visualisation d'un cours de géométrie pour le lycée.
Revue des Sciences et Technologies de I'Information,
Technique et Science Informatiques, Langages applicatifs, 24:1113-1138, 2005.
Lavoisier.
围 Haragauri Narayan Gupta.
Contributions to the axiomatic foundations of geometry. PhD thesis, University of California, Berkley, 1965.

固 Gilles Kahn.
Constructive geometry according to Jan von Plato.
Coq contribution, 1995.
Coq V5.10.
(i) Laura Meikle and Jacques Fleuriot.

Formalizing Hilbert's Grundlagen in Isabelle/Isar.
In Theorem Proving in Higher Order Logics, pages 319-334,
2003.
© Julien Narboux.
A decision procedure for geometry in Coq.
In Slind Konrad, Bunker Annett, and Gopalakrishnan Ganesh, editors, Proceedings of TPHOLs'2004, volume 3223 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

P Art Quaife.
Automated development of tarski's geometry. Journal of Automated Reasoning, 5(1):97-118, 1989.
© Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, 1983.

圊 Alfred Tarski.
A decision method for elementary algebra and geometry. University of California Press, 1951.

圊 Alfred Tarski.
What is elementary geometry?
In P. Suppes L. Henkin and A. Tarski, editors, The axiomatic Method, with special reference to Geometry and Physics, pages 16-29, Amsterdam, 1959. North-Holland.

R Alfred Tarski.
The completeness of elementary algebra and geometry, 1967.

An example.

Gupta

$$
A \neq B \wedge \beta A B C \wedge \beta A B D \Rightarrow \beta A C D \vee \beta A D C
$$

