
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Modular road graph editor for VRUT
(Virtual Reality Universal Toolkit)

Daniel Aschermann

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
January 2023

ii

Acknowledgements
Many thanks to Doc. Ing. Jiří Bittner,

Ph.D. for patience, helpfulness and guid-
ance in this work. Further many thanks
to Mgr. Antonín Míšek, Ph.D. and Ing.
Jaroslav Sloup for help with the devel-
opment and to my family for the great
support.

Declaration
I declare that I developed the master’s
thesis entitled Modular road graph editor
for VRUT independently and have listed
all the used literature.

In Prague, 10. January 2023

...........................
signature

v

Abstract
Today’s technology moves unstoppably
forward and the autonomous car indus-
tries have a large share. The car industry
is focused on traffic simulation’s evolution
as it is a safe way to test both the car and
the driver. This master’s thesis describes
possible approaches in traffic simulations
and the creation of road networks in order
to make autonomous cars drive them. For
road network creation in this thesis, we
use a block solution that divides complex
traffic problems in order to create a road
network. The thesis focuses on studying
methods for traffic network representation
and implementation of such a module in
the Virtual Reality Universal Toolkit en-
gine. The main goal was to develop an
interactive tool for road network creation
and deformation. Problems like junctions
and road graph definition have been re-
solved and implemented in the solution.
Implementation is tested by creating six
different sample road networks with pa-
rameters and using the procedure listed.
All scenes differ in size, complexity and
whether the deformation was used or not.

Keywords: VRUT (Virtual Reality
Universal Toolkit), Road Graph, Traffic
Simulation, GUI (Graphical User
Interface), MTS (Mobile Traffic System),
Deformation

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.

Abstrakt
Dnešní technologie se stále rozvíjí a au-
tonomní mobilní průmysl má na vývoji
velký podíl. Automobilový průmysl se za-
měřuje na vývoj simulace provozu, pro-
tože se jedná o bezpečný způsob testo-
vání jak vozu, tak i řidiče. Tato diplomová
práce popisuje možné přístupy v doprav-
ních simulacích a vytváření silničních sítí
tak, aby je autonomní vozy mohly řídit.
Pro tvorbu silniční sítě v této práci pou-
žíváme blokové řešení, které rozmělňuje
složité dopravní problémy za účelem vy-
tvoření silniční sítě. Práce se zaměřuje na
studii metod pro reprezentaci dopravní
sítě a implementaci modulu v aplikaci Vir-
tual Reality Universal Toolkit. Hlavním cí-
lem bylo vyvinout interaktivní nástroj pro
tvorbu a deformaci silniční sítě. Problémy
jako křižovatky a definice silničního grafu
byly vyřešeny a implementovány do řešení.
Implementace byla testována vytvořením
šesti různých vzorových silničních sítí s
parametry a použitím uvedeného postupu.
Všechny scény se liší velikostí, složitostí a
tím, zda byla či nebyla použita deformace.

Klíčová slova: VRUT (Virtual Reality
Universal Toolkit), Road Graph, Traffic
Simulation, GUI (Graphical User
Interface), MTS (Mobile Traffic System),
Deformace

Překlad názvu: Modulární editor
silniční sítě pro VRUT
(Virtual Reality Universal Toolkit)

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Assignment 2
1.3 Work structure 2
2 Road and map navigation system
representation 3
2.1 Other traffic editors 3
2.2 ASAM OpenDRIVE 5
2.3 EasyRoads (Unity) 6
2.4 Mobile Traffic System (Unity) . . . 7
3 Introduction to VRUT 2.0 11
3.1 Building and compilation of VRUT

2.0 . 12
3.2 How does VRUT 2.0 work? 12
3.3 User Interface 13
3.4 Other modules in VRUT 14

3.4.1 Module Navigation 14
3.4.2 SceneGraph module 14
3.4.3 Module Traffic 15
3.4.4 Module VehicleSimulator 15

3.5 Traffic representation 16
3.5.1 Nodes . 16
3.5.2 Connections 17
3.5.3 Junctions 17

4 Concept design 19
4.1 General idea 19
4.2 Implementation motivation 19
4.3 Module design suggestion 20
4.4 Vegetation generator 21
4.5 Adapting blocks 21

4.5.1 Cage based deformations 21
4.5.2 By curve deformation 23
4.5.3 Bézier curve definition 23

4.5.3.1 Bézier segments continuity 24
4.5.4 Euler spiral 25

4.6 Procedural visual details
generation . 26

5 Implementation description 29
5.1 Module basic

properties/functionality 29
5.2 GUI . 30

5.2.1 Resizable GUI 31
5.2.2 GUI parameters update 32
5.2.3 Save/Load blocks 32
5.2.4 Map background 32

5.2.5 Graph generation 33
5.3 Events handling 33
5.4 Blocks properties 33

5.4.1 Block definition 34
5.4.1.1 Block model creation 34
5.4.1.2 Block nodes layout 35
5.4.1.3 Block interconnections

definition . 37
5.4.1.4 Connection points 38
5.4.1.5 Blocks XML parser 38

5.4.2 Block selection 39
5.4.3 Blocks positioning 39

5.4.3.1 Grid and magnetic block
placing . 41

5.4.4 Blocks parameter set 42
5.4.5 Block insertion/deletion 43
5.4.6 Copy/paste block 43
5.4.7 Block deformation 44

5.4.7.1 Curve deformation
application 44

5.4.7.2 Curvature limitations 45
5.4.7.3 Normals fitting 45
5.4.7.4 Bézier C2 continuity 47
5.4.7.5 Euler spiral 47
5.4.7.6 Inner node repositioning . 48

5.5 Graph generation 49
5.5.1 Traffic node pairing 49
5.5.2 Node’s direction selection . . . 49
5.5.3 Traffic module 51
5.5.4 Traffic display properties

settings . 51
5.6 Variable block’s size 51
6 Testing and results 53
6.1 Testing . 53
6.2 Results . 54
6.3 Manual . 64
7 Discussion 65
7.1 Problems during the

implementation 65
7.1.1 Block junctions definition . . . 65
7.1.2 Vehicle’s falling through the

road . 65
7.1.3 Geometry instancing 65

7.2 Development at
DigiteqAutomotive 66

7.3 Implications for further research 66

vii

7.3.1 Realistic blocks 66
7.3.2 Any block deformation 66
7.3.3 Traffic graph depiction 66
7.3.4 Saving deformed blocks 67

8 Conclusion 69
Bibliography 71

viii

Figures
2.1 Blocks creation along the

predefined curve by thesis of Pudova
[10]. 3

2.2 Gui of RoadGraphEditor module
by thesis of Kolínský [9]. 4

2.3 Elements of road definition from
project OpenDrive [2]. 5

2.4 Example of a junction in project
OpenDrive [2]. 5

2.5 Traffic creation example by
EasyRoads [23]. 6

2.6 Highway creation result example
by EasyRoads [23]. 6

2.7 Traffic system menu by Gley
Mobile Traffic System [24]. 7

2.8 Intersection example generation by
Mobile Traffic System [24]. 7

2.9 Taffic node selection and its menu
for parameter settings by Mobile
Traffic System [24]. 8

2.10 Nodes generated by traffic system
according to EasyRoads by Mobile
Traffic System [24]. 8

2.11 Selected nodes predecessors,
neighbors, and other lanes nodes by
Mobile Traffic System [24]. 9

3.1 VRUT 2.0 - working space
example. 11

3.2 CMAKE sample of modules offer. 12
3.3 VRUT - user interface description;
1 - basic scene operation commands;
2 - available modules; 3 - scene graph
module; 4 - LOG & Console; 5 -
kernel parameters. 14

3.4 Traffic module’s GUI, with graph,
nodes and edges displayed. 15

3.5 VehicleSimulator module’s gui
depicting in-scene vehicles and their
parameters. 16

3.6 Dalnice_new sample scene, traffic
nodes generated by the texture
parameters. 18

4.1 Module’s blocks design idea
(Blender). 20

4.2 Example of a way to generate the
road’s environment by thesis of
Pudova [10] (Rhino). 21

4.3 Cage based deformation example
by Cage based deformations: a survey
of Nieto and Susin [3]. 22

4.4 Curve based deformation usage
proposal. 23

4.5 Example of Bézier curve from
Quadratic and Cubic Bézier Curves
[22]. 24

4.6 A double-end Euler spiral by
MATHEMATICS Euler spiral [25]. 25

4.7 Euler spiral demo example by
Euler spiral [21]. 26

4.8 Example of the modular
environment generation from the
thesis of Mikushina [7]. 27

5.1 GUI of RoadEditor module. 30
5.2 Resizable GUI examples. 31
5.3 Subpart of GUI that handles

saving/loading of the blocks and
traffic graph generation/deletion. . 32

5.4 Subpart of GUI that handles
loading a background map on the
Baseplane. 33

5.5 Blocks’ geometry (Blender). 34
5.6 Traffic block template layout;

nodes, forward/backward edges and
junctions; Left - T-cross block, Right
- intersection block. 35

5.7 Road graph traffic definition, Left -
straight block, Right - intersection
block. 37

37figure.5.85.9 Block selection;
wireframe, deformation arrows and
block’s nodes. 39

5.10 Smart fitting feature, Top -
feature is off in the GUI, Bottom -
feature is on; T-cross block being
inserted. 41

5.11 Straight block’s geometry
instances. 43

5.12 Vertex reposition based on the
curve formation approach
description. 44

ix

5.13 Block deformations; the first row
with only the offset applied, the
second row with the curve normal
vector applied. 45

5.14 Block curvature flexibility
limitation. 45

5.15 Inserted block’s normals fitting;
Left - before insertion; Right - after. 46

5.16 Connection point
repositioning→fitting neighbour
block normals; using magnetic
feature. 46

5.17 Comparison of C1 (top) and C2

(bottom) Bézier continuity. 47
5.18 Blocks’ Bézier curve based

deformation (each block defined by a
4 control point Bézier curve). 48

5.19 Traffic graph interconnection
approach description. 49

5.20 Interconnecting lane direction
definition description. 50

5.21 Generated road graph with
block’s traffic interconnections. . . . 50

5.22 Block’s interconnection with size
disparity. 52

6.1 Testing blocks with initial
pre-saved blocks in red rectangles
Vehicles would spawn on these blocks
and begin their journey to the
neighbor block. 53

6.2 Simple oval test result. 54
6.3 Simple test with junction blocks

result. 54
6.4 Middle sized scene with all block

types. 55
6.5 Close look to the middle sized

scene junction. 55
6.6 Large scene with all block types. 56
6.7 Small scene with straight block

deformation. 59
6.8 Large scene with block

deformation. 60

6.9 Scene creation using map
background; Top - mere map
background; Bottom - traffic network
composed using RoadEditor module
along the map background’s roads. 62

6.10 RoadEditor module’s resulting
scenes driven by vehicles using
VehicleSimulator module. 63

x

Tables
6.1 Resulting scenes in numbers.

Numbers were generated using the
module Optimize which shows all
scene parameters. 61

6.2 Number of lines of each file type. 64
6.3 RoadEditor module control

manual. 64

xi

Chapter 1
Introduction

This chapter contains the concise introduction of the assignment and its re-
quired research and implementation of this project. The chapter also consists
of a slight description of all the remaining chapters.

Today’s car industry is enormously branched and is directed towards au-
tonomous cars in general. Even though these cars might be already capable
of driving us wherever we want even better, faster and safer than we could,
mankind is not yet ready for such a leap.

Therefore, car industries started working on a smoother transition between
man-driven and autonomous vehicles and began developing software and en-
gines that simulate real traffic situations for testing human and autonomous
cars.

To maximally simulate and imitate any traffic situation, multiple ways do
exist to create such an environment. There are some standards for defining
such situations, however, every company has its approach.

In Škoda AUTO company there is an engine that uses a traffic network for
such cases and is greatly variable enabling any road situation simulation.

1.1 Motivation

Currently, there is a large progression in the automotive industry. I started
working at DigiteqAutomotive, which is Škoda Auto’s daughter company. In
UXLab department where I work, we design simulations for both VR and
physical cockpit simulators to test onboard computers’ UI. In addition, I have
been developing a GeometryEditor module for VRUT as my bachelor thesis.
All this together gave me the motivation and sufficient knowledge to develop
RoadEditor module for VRUT.

1

1. Introduction ...
1.2 Assignment

The aim of this project is to study the methods used for traffic network rep-
resentation in map and navigation systems. Furthermore, we map used data
structures and related attributes requisite for description enabling effective
traffic simulation using these data.

We design an interactive editor that enables users to compose a traffic net
using pre-prepared blocks (modules) that represent important parts of the
traffic net. These blocks will represent road segments of a given number of
traffic lanes, different types of intersections, roundabouts, or highway exits.
Furthermore, we model fundamental geometry models of these blocks and re-
lated traffic net components. We design a way of deformation transformation
application for interactive curvature adaptation. We also map the possibility
of improving the resulting models’ realism using procedural visual details
generated for prepared blocks.

In the Virtual Reality Universal Toolkit system (VRUT), we implement a
user-friendly editor that enables intuitive traffic net composition using blocks
described above, their easy connecting and deformation. Finally, we test
editor functionality by creating at least three different traffic nets.

1.3 Work structure

This thesis focuses on other tools that are being developed in the automotive
industry for creating driving simulators. A portion of this research is used
for the RoadEditor module development for VRUT.

The Chapter 2 maps all other already implemented tools and modules
used for road graphs creations and editions including ways of possible traffic
representations in VRUT and other engines.

Afterwards, Chapter 3 introduces VRUT 2.0 and highlights some relevant
information and modules in the road edition spectrum.

Chapter 4 discusses the idea and possible implementation of the RoadEditor
module. It is a brief and decent presumption of how the RoadEditor will
work. As for any kind of development, this chapter serves as a concept by
which the RoadEditor module itself is inspired.

Chapter 5 describes in detail every part of the implementation and its
purpose and usage. There are also already some possible future improvements
mentioned as it is related to some of the topics.

In the end, Chapter 6 sums up all the work that has been done and
presents a couple of results in the form of traffic networks generated using
the RoadEditor module.

Finally, Chapter 7 discusses about the problems during the implementation
and possible improvements and Chapter 8 gives a conclusion focusing on the
development of the module and discusses possible future for the module and
its improvements.

2

Chapter 2
Road and map navigation system
representation

This chapter briefly introduces the problem and how it is approached in other
software and modules.

2.1 Other traffic editors

There are many tools used to create and edit traffic networks for simulation
purposes. The result of most of these is the same, however the way of building
such a network differs. Some of these are based on the idea of the blocks
whereas the other are based on a user-defined curve along which the blocks
are then generated as is shown in Figure 2.1.

Figure 2.1: Blocks creation along the predefined curve by thesis of Pudova [10].

VRUT contains an implemented module that allows users to create and
edit traffic networks. This module is mostly used for node segment editions,
although its use is not very interactive.

Most of the operations and adjustments that a user is capable of doing using
this module are limited to not very user-friendly looking GUI, nevertheless
they function properly, so the module serves its purpose with a good way of
use.

3

2. Road and map navigation system representation
To summarize, some more interactive ways of editing road graphs would

improve user experience during such actions as creating and editing the road
graph. The GUI of the road graph editor is shown in Figure 2.2.

Figure 2.2: Gui of RoadGraphEditor module by thesis of Kolínský [9].

4

..................................... 2.2. ASAM OpenDRIVE

2.2 ASAM OpenDRIVE

OpenDRIVE [2] is a standardized format for describing road networks in
XML syntax, with the purpose of facilitating data exchange between different
driving simulators. It provides a road network description that can be used
to develop and validate Advanced Driver Assistance Systems (ADAS) and
AD features.

The structure consists of nodes that have the capability to incorporate
data defined by the user, allowing for specialization while maintaining in-
teroperability. ASAM OpenDRIVE can be used to construct road networks
by connecting individual road sections and can be complemented by other
standards for static 3D roadside objects and dynamic content.
Composition of a road network defined by OpenDRIVE is shown in Figure 2.3.

Figure 2.3: Elements of road definition from project OpenDrive [2].

Junctions in ASAM OpenDRIVE are represented by <junction> elements
and connecting roads by <connection> elements. There are rules for common
junctions that apply to clarify ambiguities in linking roads. In Figure 2.4 is
shown a complex six-lane junction example.

Figure 2.4: Example of a junction in project OpenDrive [2].

5

2. Road and map navigation system representation
2.3 EasyRoads (Unity)

EasyRoads is a plugin for Unity that allows users to interactively create any
road network including multilane highways and any type of junctions.

The EasyRoads plugin also offers the user to generate surroundings and
vegetation. The plugin has multiple tools such as brushes and objects to
place on the predefined plane. The package is really advanced and offers
an enormous number of road types, side objects, vegetation and more. In
Figure 2.5 is an example of a road creation. The user creates a new road by
clicking on the plane with Alt pressed. Road shape is based on a spline curve
and deforms the road shape by pre-clicked control points and interpolation
between them.

Figure 2.5: Traffic creation example by EasyRoads [23].

With more work and scene editing, results with the EasyRoads plugin
get to perfection. Naturally, the vegetation and environment give the result-
ing models authenticity, however bridges, tunnels, crash barriers and other
objects like signs have their contribution as well. Example of a scene with
highway, vegetation and surroundings created by EasyRoads plugin is shown
in Figure 2.6.

Figure 2.6: Highway creation result example by EasyRoads [23].

6

.................................2.4. Mobile Traffic System (Unity)

2.4 Mobile Traffic System (Unity)

MTS (Mobile Traffic System) is an Extension Asset for Unity that lets users
generate and simulate traffic systems. It is pretty simple to use and easy to
learn within hours. The main advantage of this plugin is that it can generate
traffic nodes according to EasyRoads predefined roads. In case a certain
junction or interconnection is not defined in MTS, the user can add new
nodes or adjust the position of any traffic node that is already generated
interactively.

The plugin offers multiple scene setups and allows multiple options for
traffic density, grid layout, system layers, etc. Although there are already
many options, the plugin is not complete. Because of that, further extensions
are being developed. There will be further information about this section
later in the Discussion section. In Figure 2.7 is shown MTS plugin’s menu
for the traffic node adjustments and initial scene parameters setting.

Figure 2.7: Traffic system menu by Gley Mobile Traffic System [24].

Unlike the RoadGraph module in VRUT, Mobile Traffic System depicts
traffic nodes in real-time and lets the user edit the network interactively.
Cars then simply follow by MTS predefined roads like in VRUT (shown in
Figure 2.8).

Figure 2.8: Intersection example generation by Mobile Traffic System [24].

7

2. Road and map navigation system representation
Nodes can be selected and their parameters can be easily set in the Inspector

window (Figure 2.9). There are parameters like max speed, neighbors and
previous nodes, allowed cars, give way, spawn prioritization, and other lanes
nodes.

Figure 2.9: Taffic node selection and its menu for parameter settings by Mobile
Traffic System [24].

In Figure 2.10 are depicted generated nodes along the highway. Although
the highway using EasyRoads has to be correctly defined, the road width,
speed limit, etc. are converted to the MTS-generated network.

The density of the nodes can also be defined in the modules window as the
interconnection between neighbor lanes that are called other lane.

Figure 2.10: Nodes generated by traffic system according to EasyRoads by
Mobile Traffic System [24].

When a node is selected, the module depicts previous nodes, following nodes,
and other lanes nodes. These can be interactively redefined for special cases
or whilst interconnecting two different road types. Examples of interactive
node selection in MTS are both in Figure 2.9 and Figure 2.11.

8

.................................2.4. Mobile Traffic System (Unity)

Figure 2.11: Selected nodes predecessors, neighbors, and other lanes nodes by
Mobile Traffic System [24].

9

10

Chapter 3
Introduction to VRUT 2.0

VRUT1 is application for visualization and editation of 3D data created by
Škoda Auto and with participation of other universities and companies.

Figure 3.1: VRUT 2.0 - working space example.

The project VRUT 2.0 originated in cooperation with the Department of
Computer Graphics and Interaction of CTU FEL with Škoda Auto. The
essence of the application stems from the rendering of graphics data and
support for modules. The modules extend the functionality of the main
application with relative independence on it.

The abbreviation VRUT stands for Virtual Reality Universal Toolkit.

1Virtual Reality Universal Toolkit

11

3. Introduction to VRUT 2.0
3.1 Building and compilation of VRUT 2.0

VRUT application can be compiled using CMAKE and requires CUDA,
GLEW, ODE, and Vulkan libraries for default compilation. VRUT offers
various modules to include in the compilation.

Figure 3.2: CMAKE sample of modules offer.

3.2 How does VRUT 2.0 work?

Main and permanently running part of VRUT is Kernel, which represents the
essential part of the application. The Kernel provides resources and events
to running modules of the application and these can then communicate with
the Kernel simultaneously.

Each module then represents different functionality of the application. This
project deals with road creation and edition. Other modules are almost
indispensable to use not only along with Road Editor, whose implementation
is the aim of this project, but in any standalone scene rendered in VRUT
2.0, such as Light Editor, Scene Graph and one of many render modules as
Vulkan.

12

..3.3. User Interface

3.3 User Interface

User Interface (UI) in VRUT 2.0 is easily editable and adaptable. We can
choose our layout to create the most satisfactory and friendly interface.

To increase ease of work with VRUT 2.0, users can edit their autoexec.cfg
scripts as some of the initial engine operations can be automated. Below you
can see the script that is used for testing the Road Editor module.

However, RoadEditor module needs to be run also with traffic.cfg script
to have several predefined parameters and the user can easily add it as a
parameter. This script starts the traffic module and sets all the necessary
parameters to display the traffic network.

1setloglevel all <- sets the log level
2

3runmodule Tesselator
4setparam Tesselator.autoTessellation "All scenes"
5

6setparam IOVrml.importLines 0
7setparam IOVrut.saveToOneFile 1
8

9runmodule JSScripting
10#setparam JSScripting.scriptPath "driving.js"
11setparam JSScripting.scriptPath "traffic.js"
12<- sets the modules script for testing RoadEditor
13

14#setparam JSScripting.scriptPath "C:/VRUT_data/skoda_menu.js"
15setparam JSScripting.runScript 1
16

17runmodule CarHW
18runmodule RoadEditor
19

20runmodule Navigation
21

22setparam Navigation.nearPlane 500
23setparam Navigation.farPlane 3000000
24setparam Navigation.FOV 70
25

26runmodule VRender
27usemodule VRender
28

29importscene "..\data\RoadEditor\RoadEditor_test.vrut"
30<- imports initial scene
31#runmodule RoadEditor
32#runmodule LightEditor
33

34renderscene 0
35

36setparam Navigation.nearPlane 500 <- sets the Navigation module parameters
37setparam Navigation.farPlane 3000000
38setparam Navigation.FOV 60
39

40#fit 0

Listing 3.1: VRUT module parameters and scene setup.

13

3. Introduction to VRUT 2.0

Figure 3.3: VRUT - user interface description; 1 - basic scene operation com-
mands; 2 - available modules; 3 - scene graph module; 4 - LOG & Console;
5 - kernel parameters.

3.4 Other modules in VRUT

As VRUT software is still evolving, the independence of modules is advanta-
geous. The number of modules is enormous.

3.4.1 Module Navigation

Module Navigation allows the user to move in the scene and to set camera
parameters. The user needs only a mouse to use the navigation module as the
right mouse button moves the camera along the plane given by the camera
direction vector and the left mouse button rotates the camera about the given
pivot. The module offers numerous settings such as FOV (Field of View),
rotation/zoom speed, and far/near plane.

3.4.2 SceneGraph module

SceneGraph module shows the given scene’s hierarchy and lets the user do
numerous operations on each node and each node type, light, camera, and
empty scene node included.

User can move nodes in the hierarchy, delete them and insert new ones,
some basic geometry shapes included.

14

................................... 3.4. Other modules in VRUT

3.4.3 Module Traffic

As there are many operations over the traffic network and its nodes, module
Traffic allows the user to load and also export desired graph and its scene.

Such operations also include different parameter settings over nodes spline
interpolation, the vehicle control, graph segments displaying and car addi-
tion/deletion/parameters settings. The Traffic module also offers to display
traffic nodes, which comes in hand while debugging generated networks, which
helped during RoadEditor module development. Figure 3.4 shows the Traffic
modules GUI.

Figure 3.4: Traffic module’s GUI, with graph, nodes and edges displayed.

3.4.4 Module VehicleSimulator

VRUT modules are independent and for each functionality, there is a module
that provides special functionality. For simulation, there is a VehicleSimulator
module that holds the vehicle pool and drives them along the traffic networks.
The module also offers multiple parameter settings both for vehicles and the
simulation itself.

VehicleSimulator module requires the definition of both traffic network and
world file using XML. The traffic network file defining the road graph will be
further mentioned later in the section 3.5 as the definition is more complex.
On the other hand, the world definition is pretty simple, as the main node has
to be defined correctly, the user-driven vehicle’s initial position and objects
that should be ignored by traffic collision can be defined. World definition
also offers to define physics type. Figure 3.5 shows the VehicleSimulator
module’s GUI while active in the scene.

15

3. Introduction to VRUT 2.0

Figure 3.5: VehicleSimulator module’s gui depicting in-scene vehicles and their
parameters.

3.5 Traffic representation

In VRUT, the traffic network that is used for autonomous vehicles is based
on RoadGraph. Such representation has numerous rules and the definition of
any complex kind of traffic network might be difficult.

3.5.1 Nodes

Nodes that autonomous vehicles use for defining their path have multiple
parameters. Lanes consist of numerous nodes and also have parameters to
set up. Road consists of lanes and has only id and type parameters. An
abbreviated lane sample is shown bellow in the code snippet.

1<lane id="1" nodes="3053" type="0" level="3" o="2">
2<node id="3054" x="-3.87186" y="-21.014" z="1" sl="120"
3w="3.6" r="6736.26" r2="10000" vmax="120"/>
4<node id="3055" x="-3.86275" y="-46.0168" z="1" sl="-1"
5w="3.6" r="3.12145e+007" r2="10000" vmax="120"/>
6<node id="3056" x="-3.85366" y="-71.0196" z="0.999999"
7sl="-1" w="3.6" r="3.34467e+006" r2="10000" vmax="120"/>

8<node id="3057" x="-3.84473" y="-96.0995" z="0.999999"
9sl="90" w="3.6" r="6269.86" r2="10000" vmax="120"/>
10...
11<node id="6104" x="-4.29727" y="48.045" z="1" sl="-1"
12w="3.6" r="896.586" r2="907.247" vmax="120"/>
13<node id="6105" x="-3.91807" y="22.9697" z="1"
14sl="-1" w="3.6" r="1566.33" r2="2023.84" vmax="120"/>
15<node id="6106" x="-3.94037" y="-2.10726" z="1"
16sl="-1" w="3.7" r="4873.21" r2="10000" vmax="120"/>
17</lane>

16

.................................... 3.5. Traffic representation

3.5.2 Connections

For the vehicles to understand the traffic network structure, the sequences
and connections between each node have to be determined. Sequences,
interconnections and connections have to be defined so the vehicle can decide
to overtake, slow down, speed up, stay in the lane, turn right/left, etc. A
short connections sample is shown below in the code snippet.

1<connections>
2<sequence from="1" to="4" dir="2" closed="0" />
3<sequence from="5" to="8" dir="3" closed="0" />
4<connectiongroup>
5<connection from="17" to="8" type="1" />
6<connection from="18" to="10" type="1" />
7<connection from="10" to="18" type="0" />
8<connection from="16" to="1" type="1" />
9</connectiongroup>
10</connections>

3.5.3 Junctions

To implement an intersection or any type of junction, a junction tag has to
be used. In order to define a junction, path consisting of nodes has to be first
defined, and furthermore source node and its successor have to be assigned.
Thereafter user can define priority if required.

1<junction name="T-cross" id="0">
2<path id="0" nodes="2" type="11">
3<node id="0" x="2.75" y="0.65" z="1.7" sl="30" w="3.6"/>

4<node id="1" x="-0.65" y="-2.75" z="1.7" sl="30" w="3.6
"/>

5</path>
6<laneLink road="1" lane="1" node="9">
7<successor road="1" lane="1" node="6" path="0" />
8</laneLink>
9<priority road="1" lane="1" node="9">
10<check road="1" lane="1" node="2" />
11<check road="1" lane="1" node="7" />
12</priority>
13</junction>

17

3. Introduction to VRUT 2.0
An example of a road graph generated in VRUT is in scene dalnice_new

and is depicted in Figure 3.6. The scene is modeled by real road and the
graph there is automatically generated along the road textures.

Figure 3.6: Dalnice_new sample scene, traffic nodes generated by the texture
parameters.

18

Chapter 4
Concept design

4.1 General idea

The main purpose of the RoadEditor module implementation is to simplify
traffic net creation and edition. There were already numerous modules
implemented primarily in the previous VRUT version, for example Editor
silniční sítě v systému VRUT1 [9]. This work is focused on the traffic network
edition, especially its nodes parameters such as road width, speed, etc.

This module implementation is however focused on a more creative way of
designing and generating whole new traffic networks using simple blocks that
anyone can use and simply create any kind of network.

Future of such a module could even have a block creation tool implemented
and might offer user-friendly interface that allows the creation of custom
blocks such as special intersections and road situations. In that case, the
hardest part of the implementation would probably rest in traffic nodes
connections generation as it is defined using .xml files in VRUT.

4.2 Implementation motivation

The ideal way of using the RoadEditor module would be a real-time rendering
of traffic network along users blocks positioning, however, such functionality
is not yet implemented so for the concept idea I decided to implement a
simplified way of the network creation.

However, besides all the parameters that could be set to all the nodes and
segments, this module should remain simple and easy to learn to use for any
user.

Another important feature would also be a custom block creation, which
would be possible with sufficient knowledge of the traffic network representa-
tion and also a bit of RoadEditor source code itself.

1Road networks editor in system VRUT

19

4. Concept design..
4.3 Module design suggestion

Bald and easy proposal of how the module should work was made in Blender
(shown in Figure 4.1) as it is a really easy-to-use modeling tool.

Blender mainly served as a modeling tool for blocks used in the RoadEditor
module, however, it was also ideal for inventing the core idea of the module’s
modular approach.

Figure 4.1: Module’s blocks design idea (Blender).

20

.....................................4.4. Vegetation generator

4.4 Vegetation generator

Best ways to improve results from such an implementation would be for
example including some surroundings, fields, villages, gas stations, etc.

There are many ways of achieving such an improvement to enrich the
experience, for example by implementing some cities and village generators
or an environment with certain biodiversity. Such a solution is for example
implemented in the thesis by Pudova [10] (example shown in Figure 4.2).

Figure 4.2: Example of a way to generate the road’s environment
by thesis of Pudova [10] (Rhino).

4.5 Adapting blocks

As the implementation went further, numerous other ideas came up. Most of
them did stick to the thesis assignment, some were a bit off the grid.

Even though the block solution is appropriate for short testing road sections,
it would also come in handy if some kind of block modification would be
included in order to adjust the network by a template that would match a
real-world network.

4.5.1 Cage based deformations

Cage based deformations [3] are flexible tools for mesh deformation in ge-
ometry modeling and computer animation. They allow for easy control of
complex models by deforming a cage surrounding the object. Barycentric
coordinates, MVC (Mean value coordinates), HC (Harmonic coordinates),
and GC (Green coordinates) are methods used in cage based deformations,
each with its advantages and disadvantages. MVC is the best for value
interpolation, HC is suitable for character articulation, and GC is the best
approach for general-purpose in character articulation. Regarding individual
approaches, bellow are simple descriptions of each approach.

21

4. Concept design..
. Barycentric Coordinates given for point P inside a triangle with vertices

A,B and C are given by:

λ1 = A1(A1 + B1 + C1) (4.1)
λ2 = B1(A1 + B1 + C1) (4.2)
λ3 = C1(A1 + B1 + C1) (4.3)
P = (λ1, λ2, λ3) (4.4)

where A1, B1 and C1 represent the areas of the triangles formed by the
point P and the corresponding vertices..Mean value coordinates for point P are computed as follows:

λi = cotαi + cotβi∑
(cotαj + cotβj) (4.5)

where αi and βi are the angles between the edge connecting P to the
i-th vertex and the two adjacent edges.. Harmonic coordinates for a point P inside a polygon can be obtained
by solving a Laplace equation with Dirichlet boundary conditions. The
exact formulas are complex and depend on the specific polygon and its
triangulation..Green coordinates are a generalization of harmonic coordinates and
provide a way to interpolate positions inside a polygonal cage. The
exact formulas for Green coordinates are also complex and depend on
the specific polygon and its triangulation.

These methods are further compared and described in Cage based defor-
mations: a survey of Nieto and Susin [3]. In Figure 4.3 is an example of cage
based deformation used on a complex model.

Figure 4.3: Cage based deformation example by Cage based deformations: a
survey of Nieto and Susin [3].

22

.......................................4.5. Adapting blocks

4.5.2 By curve deformation

Another and perhaps easier way to implement the block deformation would
be by the predefined curve. This approach would facilitate slight block
deformations, but larger deformations would not be as seamless as with the
cage based deformation. New blocks of similar shape would not require their
instance creation and rely on already defined block deformation. One of the
disadvantages of curve based deformation is that the vegetation and block’s
surroundings can not be tagged or marked to not have the deformation applied
and so the vegetation would have to be generated later with either a different
module or with some kind of procedural approach.

Figure 4.4: Curve based deformation usage proposal.

In Figure 4.4 are two proposed approaches for the block deformation by the
curve. Both are based on the Bézier curve where there is one curve defined
and vertices and nodes along the curve are assigned to its closest point.

4.5.3 Bézier curve definition

In this section are described three Bézier curve [22] types, there is however
an infinite number of definitions as the curve can be defined by n control
points (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.).. Linear is a simple line between two points.

B(t) = P0 + t(P1 − P0) = (1 − t)P0 + tP1, 0 ≤ t ≤ 1 (4.6)

.Quadratic is a curve traced by an interpolant of points on two linear
Bézier curves.

B(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2, 0 ≤ t ≤ 1. (4.7)

23

4. Concept design..
. Cubic is defined by 4 points, starting at P0 towards P1 and arriving at P3

from the direction of P2. Can be an affine combination of two quadratic
Bézier curves.

B(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3, 0 ≤ t ≤ 1.
(4.8)

In Figure 4.5 is an example of cubic curve bending based on its control points’
positions.

Figure 4.5: Example of Bézier curve from Quadratic and Cubic Bézier Curves
[22].

4.5.3.1 Bézier segments continuity

In order to connect multiple Bézier segments, certain rules apply for different
levels of continuity. An example is given for two segments, each with three
control points ((V0, V1, V2), (W0, W1, W2)). For each continuity Cn, continuity
Cn−1 rules apply and one more is added.

. For the continuity C0, it is required that the segments meet at the same
point, the shared point is then simply resolved:

W0 = V2 (4.9)

. For the continuity C1, C0 rules have to be fulfilled and the neighboring
control points have to be mirrors of each other:

W1 = 2V2 − V1 (4.10)

. For the continuity C2, C1 rules have to be fulfilled and acceleration
continuity is constrained, but we lose the local control of such segment:

W2 = 4(V3 − V2) + V1 (4.11)

24

.......................................4.5. Adapting blocks

4.5.4 Euler spiral

Euler spiral [25] is a type of curve used to define road curvature for smooth
driving. It’s also known as Clothoid or Cornu spiral, with linearly changing
curvature along its length.

Euler spirals have applications in diffraction computations, railway and
highway engineering, and photonic integrated circuits. They have a geometry
that begins with zero curvature and increases linearly until meeting a circular
curve, where its curvature becomes equal to that of the circular curve. It’s
compared with Biarc, which is formed from two circular arcs. For the Euler
spiral definition is used an expression of a Fresnel integral.

S(z) =
∫ z

0
sin(πt2

2)dt (4.12)

C(z) =
∫ z

0
cos(πt2

2)dt (4.13)

Fresnel integrals are also used to simulate light diffraction, wave interference
effects and to model the way light bends and changes direction as it passes
through objects such as lenses or water droplets.

A double-ended Euler spiral continues to converge to the points marked in
Figure 4.6, where parameter t tends to positive or negative infinity.

Figure 4.6: A double-end Euler spiral by MATHEMATICS Euler spiral [25].

25

4. Concept design..
Such an example of a clothoid is depicted in Figure 4.7. The example is

depicted in comparison with Biarc which is a smooth curve formed from two
circular arcs.

Figure 4.7: Euler spiral demo example by Euler spiral [21].

4.6 Procedural visual details generation

There are several methods to increase the road experience. One of them is
essentially the topic of this thesis, as the traffic simulation provides drivers
with more interaction and realism. Another way of improving the experience
is by enriching the environment. Signs, trees, vegetation, barriers, villages,
cities and more can rapidly increase the quality of the resulting scene. There
may be both manual and automatic approaches. For the manual approaches,
there are several tools like EasyRoads in Figure 2.5 to facilitate the generation.
It provides the creator with several types of brushes and lets him draw into
the scene with parameters like randomization, road propagation and terrain
adaptation.

For the automatic generation there are also several approaches. Respecting
the road curvature and creating only so-called islands of forests, vegetation
and villages increase the experience however such an approach does not
provide the scene with much detail. To furnish the scene with more detail,
terrain and vegetation can be generated along the curve. Such an approach
even provides us with sign generation. Such automation could be used for
the procedural generation of houses by the modular environment planning as
is in the thesis of Mikushina [7] (example shown in Figure 4.8).

26

.............................. 4.6. Procedural visual details generation

Figure 4.8: Example of the modular environment generation from the thesis of
Mikushina [7].

This approach can provide us with city blocks as it basically generates
Potemkin villages. In addition, as only the front side of these houses could
be generated, such a method would not be computationally demanding.

27

28

Chapter 5
Implementation description

This chapter focuses specifically on module implementation and all its con-
stituent parts. All specific implementation sections are described in this
chapter, starting from its particular coding and way of implementation, lead-
ing to their general idea and purpose.

The development of this module was at first focused only on fulfilling
project conditions. These conditions were then modified and extended for
the master thesis assignment.

The module’s implementation consists of .js, .css, .html, but mostly C++.
There are two classes implemented - RoadEditor and RoadBlock. Class Road-
Block is used as an instance of all the blocks data, it stores all the block’s
parameters, its traffic network information and geometry. It also provides
methods for modifying most of its properties. RoadEditor class handles the
mouse and keyboard interactions.

5.1 Module basic properties/functionality

As mentioned in Chapter 4, the basic idea of RoadEditor module was to
implement user-friendly interface for any traffic network creation. Such
implementation requires dealing with specifics from proper GUI to usable
and applicable in-scene interaction with all the module elements such as
adjustable traffic parameters, block positioning and deformation. As we dive
deeper we start dealing with traffic parsers and road graph creation that the
autonomous cars use to drive the predefined roads.

29

5. Implementation description...................................
5.2 GUI

Modules GUI (Figure 5.1) is implemented in files roadeditor.html, roadedi-
tor.css and roadeditor.js and lets the user to easily select any of the predefined
blocks to insert them in a scene with preset parameters.

In addition, there is an option for the BlockSize and PlaneSize definitions
that define inserted block’s size and in-scene plane size.

Figure 5.1: GUI of RoadEditor module.

Blocks images are samples of given blocks and are implemented as simple
radio buttons. Module then offers numerous other options to be set, there are
many parameters to be set for each traffic nodes and segments, most of these
may be pre-defined in the block template traffic file, however, they could be
modified while inserting a new block.

Some of the basic properties implemented are Overtaking, Max Speed and
Road Width. All the GUI parameters’ changes then get to be handled in
function ProcessParameter.

1ProcessParameter(const std::string ¶mName,
2const std::string ¶meters);

Listing 5.1: ProcessParameter function header.

The module GUI is depicted in Figure 5.1 and is further described in
subsections below.

30

.. 5.2. GUI

5.2.1 Resizable GUI

As the module enables custom block creation, there is blocks.txt file that lists
blocks currently used by the RoadEditor module. Modules GUI block types
menu is based on this file and the GUI resizes based on the blocks number, it
depicts blocksCount % 6 lines and expands the Road block type section in
the GUI by the value (shown in Figure 5.2).

Figure 5.2: Resizable GUI examples.

31

5. Implementation description...................................
5.2.2 GUI parameters update

To register GUI messages and more complex interactions than reading values
from checkboxes and textboxes, further implementations have to take place.
At initialization, it is loading the block’s template names. During the pro-
gram’s execution, it is popping up the folder window for the file selection to
load the blocks parameters that were previously saved.

1void RoadEditor::LoadBlocksGUI() {
2CefRefPtr<CefBrowser> cefBrowser = GetCefBrowser();
3if (cefBrowser) {
4CefRefPtr<CefProcessMessage> addMsg =
5CefProcessMessage::Create("initializeBlocks");
6CefRefPtr<CefListValue> argsList = addMsg->

GetArgumentList();
7argsList->SetSize(templates_names.size());
8for (int i = 0; i < templates_names.size(); i++)
9argsList->SetString(i, templates_names[i]);
10cefBrowser->GetMainFrame()->SendProcessMessage(

PID_RENDERER, addMsg);
11}
12}

Listing 5.2: Road Editor blocks GUI update at initialization.

5.2.3 Save/Load blocks

Saving and loading scenes is one of the most desired feature for nearly any
software. RoadEditor module handles saving by storing each block’s tag/name
and its transformation matrix in a .xml file.

Button Load then just loads blocks as its type new instances, places them
in the scene by their assigned transformation matrix and pushes all the
in-scene blocks to the vector storing all the in-scene blocks (see Figure 5.3).

Figure 5.3: Subpart of GUI that handles saving/loading of the blocks and traffic
graph generation/deletion.

5.2.4 Map background

There is also an option for setting the Baseplane’s texture (see Figure 5.4)
to a certain map in order to adjust the traffic network exactly by a given
template. In the GUI, user can easily set the texture and load it. Afterwards,
using block deformations and other module tools to adjust the network’s

32

.......................................5.3. Events handling

shape, the user creates the desired network. Usage of the map background is
shown in section 6.2.

Figure 5.4: Subpart of GUI that handles loading a background map on the
Baseplane.

5.2.5 Graph generation

The generation of graph GUI’s part is shown in Figure 5.3. It takes all
in-scene blocks traffic definitions and merges them by certain rules into one
file that defines the scene’s road graph. The detailed graph generation and
how it is achieved is described later in Block interconnection definition section
subsubsection 5.4.1.3.

In addition the graph nodes of in-scene blocks can be rendered by checking
Traffic nodes option in the GUI.

5.3 Events handling

Events by each module get to be handled in function processEvent(Event*
evt). However, all the event listeners have to be first registered in the module
constructor.

1REGISTER_LISTENER(Event::EVT_INPUT_KEY);
2REGISTER_LISTENER(Event::EVT_SCENE_NODES_SELECTED);
3REGISTER_LISTENER(Event::EVT_INPUT_MOUSE);
4REGISTER_LISTENER(Event::EVT_IO_SCENE_IMPORT_DONE);
5REGISTER_LISTENER(Event::EVT_RENDER_SCENE_DONE);

Listing 5.3: Events

Yet only a couple of events get to be registered by the RoadEditor module.
Events from key input, mouse input and parameters set are in use, however
event listener for EVT_PARAM_SET does not have to be registered by the
module in the constructor as other events.

5.4 Blocks properties

At the moment there are seven default block types in the module, their
geometry is simple and yet for testing purposes, however wider collection and
the possibility of custom block designing would eliminate any limitation.

Block types that the RoadEditor module yet offers are so-called: TCROSS,
STRAIGHT, STRAIGHTLONG, STRAIGHTDETAILED, TURN,
INTERSECTION and ROUND.

All these blocks are completely defined and can be used for scene creation
right away.

33

5. Implementation description...................................
5.4.1 Block definition

Definition of a custom block requires three files: block_name.obj, block_name-
traffic.xml and block_name.png. After creating all these files, the new block’s
name has to be added to blocks.txt file in order to load the block at module’s
initialization and to display it in the module’s GUI. Afterward, the traffic file
is required during the road graph generation.

5.4.1.1 Block model creation

Block’s geometry was created using Blender as it is easy to use tool. The .obj
format is required as other formats like .fbx were not imported correctly as
VRUT was having problems with the definition of the materials.

Blocks were evolving over time (see Figure 5.5) as there were problems
with several things like z-fighting and cars falling off the road.

In addition there are some data read from the road’s surface texture in
order to determine the vehicle’s relative position to the road lane and so
certain textures have to be properly mapped onto the block model.

Furthermore, vehicles were sometimes falling off the road and so the block’s
geometry had to be extended with a causeway in order to allow vehicles to
get back on the road.

Figure 5.5: Blocks’ geometry (Blender).

34

...................................... 5.4. Blocks properties

5.4.1.2 Block nodes layout

Each block’s traffic file is defined in .xml. The rules and parameters for
network definition were mentioned in Traffic representation section 3.5.

I first designed blocks by drawing as is depicted in Figure 5.6. The such
layout was helpful for the block design, both for the nodes’ positions and
their interconnections for both sequence and junction.

Figure 5.6: Traffic block template layout; nodes, forward/backward edges and
junctions; Left - T-cross block, Right - intersection block.

35

5. Implementation description...................................
The traffic’s definition is only within the spectrum of a small network

that will be interconnected with other blocks based on the connectionpoints
definition.

1<?xml version="1.0" encoding="UTF-8"?>
2<xml>
3<roadgraph version="1.2" />
4<road id="1" type="2">
5<lane id="1" nodes="4" type="0" level="3" o="0"

nodeidoffset="1">
6<node id="0" x="1.8" y="-15" z="1.7" o="3" navevt="0" sl=

"10" w="3.74"/>
7<node id="1" x="1.8" y="-5" z="1.7" o="3" navevt="0" sl="

10" w="3.74"/>
8<node id="2" x="1.8" y="5" z="1.7" o="3" navevt="0" sl="

10" w="3.74"/>
9<node id="3" x="1.8" y="15" z="1.7" o="3" navevt="0" sl="

10" w="3.74"/>
10</lane>
11<lane id="1" nodes="4" type="0" level="3" o="0"

nodeidoffset="1">
12<node id="4" x="-1.8" y="-15" z="1.7" o="3" navevt="0" sl

="10" w="3.74"/>
13<node id="5" x="-1.8" y="-5" z="1.7" o="3" navevt="0" sl=

"10" w="3.74"/>
14<node id="6" x="-1.8" y="5" z="1.7" o="3" navevt="0" sl="

10" w="3.74"/>
15<node id="7" x="-1.8" y="15" z="1.7" o="3" navevt="0" sl=

"10" w="3.74"/>
16</lane>
17</road>
18<attributes>
19<speedlimit from="1" to="8" value="30" />
20<vmax from="1" to="8" value="30" />
21<vdop from="1" to="8" value="30" />
22</attributes>
23<connections>
24<sequence from="1" to="4" dir="2" closed="0" />
25<sequence from="5" to="8" dir="3" closed="0" />
26</connections>
27<connectionpoints>
28<node id="3,7" x="0" y="0.5" z="0"/>
29<node id="0,4" x="0" y="-0.5" z="0"/>
30</connectionpoints>
31</xml>

Listing 5.4: Straight block .xml definition.

36

...................................... 5.4. Blocks properties

Such block definition is depicted in Figure 5.7 on the left. More complex
blocks do take up to 200 lines of XML code in order to be precisely defined.
As for the junctions definition, there has to be path, lanelink and priority
defined.

Figure 5.7: Road graph traffic definition, Left - straight block, Right - intersection
block.

5.4.1.3 Block interconnections definition

The edge traffic nodes for the block’s interconnection are referred to by the
called connectionpoints tag. The connection points are generated at the
block initialization and have node traffic IDs assigned. The connection points
are assigned to each other while inserting blocks into the scene (see Figure 5.8).

Figure 5.8: Connection points assigned to other blocks - triple size; free CPs1still
active to be magnetized to.

When two blocks interconnect, the connection points assigned to each other
set the local scale to triple size in order to be still visible and possible to click
at. In the case of two straight blocks interconnection, the rendered CP has a
special utilization which is further described in subsection 5.4.7.

1Connection points.

37

5. Implementation description...................................
5.4.1.4 Connection points

The connection points have more use than just interconnecting block’s traffic
networks, they are also used for the magnetic feature in order to facilitate
the user placing the blocks next to each other. In addition, they are used for
block deformation which is mentioned in subsection 5.4.7.

5.4.1.5 Blocks XML parser

In order to the road graph generation, the block’s traffic definition has to be
parsed first. For such purpose, there are structs predefined in the RoadBlock
class that hold this information, there are structs defined for nodes, lanes,
roads, attributes, sequences, connections, connection groups, paths, successors,
lanelinks, checks, priorities and junctions. The parser and the node definition
have been applied from the Traffic module, which is implemented in the
VRUT engine and is used for operating with the traffic network.

1struct node {
2traffic_node_id id;
3Vector3 pos; // node position in space
4std::string name; // node name used for navigation
5unsigned short roadID; ///< road number (0...65535)
6unsigned char roadType; ///< road type (highway, 1st class,

2nd class, ...) - see RoadNodeRoadType enum
7char laneID; ///< lane number (-127...127, 0 = right lane,

1 left lane, -1 right exit, ...)
8unsigned char laneType; ///< lane type (straight lane,

exit lane, entrance lane, ...) - see RoadNodeLaneType
9unsigned char level; ///< autonomous driving level - see

RoadNodeDrivingLevel enum
10int navigationEvent = 0; ///< navigation event (like turn

left, turn right, begin of exit lane, ...)
11float speedLimit; // in km/h
12int overtakable = -1; // does lane allow overtaking
13bool spawnable; // does node allow spawn?
14float width; // width of the traffic lane
15float radius; // radius of the curve in this lane in meters
16float radius2;
17float vmax; // speed limit [km/h]
18float vdop; // speed limit for turn drive [km/h]
19float vprof[numSpeedProfiles]; // speed profiles
20node(){}
21node(int id, Vector3 pos, int navevt) : pos(pos), id(id),

navigationEvent(navevt) {}
22node* Clone() const {return new node(*this);}
23};

Listing 5.5: Road graph node’s structure; all parameters defining the node.

38

...................................... 5.4. Blocks properties

5.4.2 Block selection

At the scenes initialization or the RoadEditor module instance creation, all
the necessary nodes, objects and materials including roadblocks are imported
into the scene. Block selection is by default set to None, nevertheless as soon
as the user picks any other block from the modules GUI, the selected block
appears at the cursor ray intersection with the Plane position. The plane
is the only object pre-imported in the prepared scene and its size can be
changed using GUI.

When block None is selected, user can click on any in-scene block and enter
edit mode, in which the blocks wireframe appears, traffic nodes are depicted
and vectors for block deformation crop up (see Figure 5.9).

Figure 5.9: Block selection; wireframe, deformation arrows and block’s nodes.

5.4.3 Blocks positioning

The left mouse button is used to insert copy of selected block at a given
position and the right mouse button is used to rotate the block in CW (clock-
wise) direction by 90 degrees. Slight rotation changes can be also achieved by
keys O_KEY (5 degrees to the left) and P_KEY (5 degrees to the right).

All the inserted blocks are added to ignore list for ray-cast that is used to
detect the intersection point to place the selected block.

The positioning is implemented in function CalculateBlocksPosition() and
its algebraic approach looks as follows.

First, the connection point’s translation has to be calculated. Both for the
in-scene block and for the one that is being inserted.

MinsceneCPlocal
= MinsceneCPglobal

× M−1
insceneBlockglobal

(5.1)

MselectedCPlocal
= MselectedCPglobal

× M−1
selectedCPglobal

(5.2)

Furthermore, if the dot product of these two vectors is less than zero, which
means they are opposite (facing each other), the in-scene connection point
does satisfy the requirements for interconnection.

MinsceneCPlocal
.vec · MselectedCPlocal

.vec < 0 (5.3)

39

5. Implementation description...................................
The resulting block’s transformation matrix is then computed in the following
way:

Mresult = Medit_rot × M−1
selectedCPlocal

× MinsceneCPglobal
(5.4)

In addition in the case of Smart fitting checked the Medit_rot is slightly
adjusted in order to fit the magnetized CP’s normal. First, as the dot product
gives us only a positive angle value, we have to compute the sign:

avec = MrotZ90deg × CPnormal (5.5)
bvec = Medit_rot × shift (5.6)

sign =
{

−1 (avec · bvec) > 0
1 (avec · bvec) ≤ 0

(5.7)

Then the angle has to be computed using the sign value:

angle = sign × acos(CPnormal · bvec)
CPnormal.length × bvec.length

(5.8)

Furthermore, Medit_rot matrix has to be modified by the precomputed angle
offset:

Medit_rot = Medit_rot × MrotZ_angle (5.9)

The smart fitting feature for magnetic placing (see subsubsection 5.4.3.1) is
shown in Figure 5.10.

40

...................................... 5.4. Blocks properties

Figure 5.10: Smart fitting feature, Top - feature is off in the GUI, Bottom -
feature is on; T-cross block being inserted.

5.4.3.1 Grid and magnetic block placing

Blocks positioning is either based on a grid, that is defined by the first inserted
block, where the cursors intersection position is rounded or it can be changed
by TAB_KEY to magnetic which makes the inserted block stick to in-scene
block’s connection points, when in certain distance.

Computing the block’s transformation matrix for the grid feature is based
on the grid value and simply rounds it depending on it.

41

5. Implementation description...................................
1if (!magnetic) {
2transMat = editMAT * Matrix::Translation(Vector3(gridVal *
3round((infoRay.intersection.x - magnetShift.x) /

gridVal) + magnetShift.x,
4gridVal * round((infoRay.intersection.y - magnetShift.y)

/ gridVal)
5+ magnetShift.y, infoRay.intersection.z) + Vector3(0, 0,

1000));
6}

Listing 5.6: Grid feature code.

To determine the closest node, the following code is used. In addition, the
distance limit can be set, so the magnetic feature works only at a certain
distance from each connection point.

1RoadBlock::connection_point* RoadEditor::getClosestNode(
2Vector3 cursor, long long int limit = MAXLONGLONG) {
3RoadBlock::connection_point* cp_res = nullptr;
4for (auto b : blocks) {
5if (!b || (selectedBlock && selectedBlock->id == b->id

)) continue;
6for (auto cp : b->cps) {
7if (cp->friendcp != nullptr)
8continue;
9Vector3 cp_pos = scene->GetWorldTransMatrix(cp->

id).ExtractTranslation();
10float curs_cp_dist = sqrtf(pow(cursor.x - cp_pos.

x, 2) + pow(cursor.y - cp_pos.y, 2));
11if (curs_cp_dist < limit) {
12limit = curs_cp_dist;
13LOGWARNING(std::to_string(limit));
14cp_res = cp;
15}
16}
17}
18return cp_res;
19}

Listing 5.7: Magnetic feature code.

In addition when the smart fitting option is checked the block’s rotation is
slightly adjusted in order to fit the magnetized connection point normal.

5.4.4 Blocks parameter set

As it is in the section 5.2 depicted, parameters that are available to set on
for each block are Overtaking, Max speed and Road width. These parameters

42

...................................... 5.4. Blocks properties

are in most cases already set in the predefined block’s traffic .xml file, but
can be overwritten by these values.

Overtaking would just set inserted block’s nodes o value to true. Max
speed is in the range from 0 to 200 and the step is set to 10. Road widths
range is from 0m to 5m and the step is set to 0,001 m, also the default value
is set to 3,74 m as it is the standard road width.

5.4.5 Block insertion/deletion

As the left mouse button inserts a copy of the block at the cursor intersection
position, also another already inserted block can be selected and deleted using
DEL_KEY.

5.4.6 Copy/paste block

Copying blocks was a bit challenging task, because of the block deformation
feature. As the block deformation affects the instantiated geometry, new mesh
has to be generated and added to the scene. In Figure 5.11 are numerous
blocks with the same instance but different deformation.

Figure 5.11: Straight block’s geometry instances.

43

5. Implementation description...................................
5.4.7 Block deformation

When a certain block is selected, the wireframe of its geometry is rendered
and two red arrows appear at its connection points. By selecting either any
of the connection points or newly rendered red arrows, user can modify the
shape of the selected block.

The block’s deformation is based on a predefined Bézier curve. The
deformation does affect both block mesh’s vertices and traffic nodes.

5.4.7.1 Curve deformation application

At initialization is defined each block vertex of the geometry and traffic node’s
distance from the initial line, which leads from one connection point to its
opposing one. While editing the block, the new position of both vertex and
traffic node is defined based on the curve’s normal and its previous distance
from the curve as is in Figure 5.12.

Figure 5.12: Vertex reposition based on the curve formation approach descrip-
tion.

In Figure 5.13 are depicted blocks before and after deformation. In the first
row, vertices and traffic nodes are highlighted, however, such an approach was
computationally demanding and only the traffic nodes get to be highlighted. In
addition, the first deformation was shifting nodes after curve redefinition in the
same direction vector as was loaded during the blocks initialization, however,
the second deformation does shift traffic nodes and vertices perpendicular to
the tangent of the curve.

The second approach retains the width of the road, however, a large curve
contortion deforms the block’s geometry in a way that some gaps might
appear. In such cases, the creation of a new block with geometry that would
be closer to the desired shape would be recommended.

44

...................................... 5.4. Blocks properties

Figure 5.13: Block deformations; the first row with only the offset applied, the
second row with the curve normal vector applied.

5.4.7.2 Curvature limitations

As mentioned in subsubsection 5.4.7.1, some limitations to the curve defor-
mation solution appear, an example of an edge case is shown in Figure 5.14.

Figure 5.14: Block curvature flexibility limitation.

5.4.7.3 Normals fitting

In order to facilitate any kind of road creation, there is a checkbox in the
GUI for fitting the block’s normals. If a block gets to be inserted next to any
in-scene block’s connection point, it is repositioned (in block edit mode), and
the curve parameters of these connection points are set to the inverse value
of the in-scene connection point’s normal value (see Figure 5.15).

45

5. Implementation description...................................

Figure 5.15: Inserted block’s normals fitting; Left - before insertion; Right - after.

This feature allows users to create almost any shape of the road. It creates
the road scene according to a template or real traffic situation. Intercon-
nection of two separately created traffic networks is even easier with normal
fitting feature.

The magnetic feature can be turned on/off by pressing TAB during con-
nection point repositioning. The connection point that is being repositioned
is either connecting to the closest connection point in a scene or just staying
on the cursor’s ray intersection position.

Such behavior is depicted in Figure 5.16.

Figure 5.16: Connection point repositioning→fitting neighbour block normals;
using magnetic feature.

46

...................................... 5.4. Blocks properties

5.4.7.4 Bézier C2 continuity

In addition there is an option for the block C2 Bézier continuity fitting. While
checked with Smart fitting at the same time the deformation of the block
adjusts the way it retains C2 continuity with the magnetized block as is
shown in Figure 5.17.

Figure 5.17: Comparison of C1 (top) and C2 (bottom) Bézier continuity.

5.4.7.5 Euler spiral

As mentioned in the Chapter 4, the Euler spiral is the best solution for the
road curvature definition.

However, while implementing the Euler spiral block deformation into the
module, several problems appeared. Firstly, the definition is computationally
demanding because of the Fresnel integral, so it does not fit the implemented
interactive solution. Secondly and more importantly, the implemented library
(EulerSpiral (clothoid) [16]) that was desired to use, did not allow the point-
to-point definition, which is required for this solution.

47

5. Implementation description...................................
5.4.7.6 Inner node repositioning

This section draws from the subsubsection 4.5.3.1 and postulates Bézier C2

continuity defining formulas. There are two possibilities for the infrastructure’s
inner node deformation, as there is an option for both C1 and C2 continuity.

For the C1 continuity the solution is easy and the neighbor control points
just have to retain mirrored. So the two neighbor control points just retain
the initial shift which can be also edited whilst selecting a certain block on a
segment and adjusting its curvature using in-scene red arrows.

Figure 5.18: Blocks’ Bézier curve based deformation (each block defined by a 4
control point Bézier curve).

However, for the C2 continuity the position definition of side control points
is dependent on each other. See the mathematical formulation below and
Figure 5.18, the mathematical formulation is given by the C2 Bézier segments
continuity described in subsubsection 4.5.3.1:

W2 = 4(V3 − V2) + V1 (5.10)
V1 = 4(W0 − W1) + W2 (5.11)
W2 = 4(V3 − V2) + 4(W0 − W1) + W2 (5.12)
0 = 4(V3 − V2) + 4(W0 − W1) (5.13)

Which is true however does not define either W2 or V1. So a solution depen-
dent on another definition had to be made in order to allow the inner node
reposition while C2 continuity is required. The W2 point is also dependent on
its neighbor block U0−3. Although there does not have to be always present
block defining such formulation so virtual control point (in this case) U1 gets
to be defined and both W2 and V1 are defined symmetrically.

W2 = 4(V3 − V2) + V1 (5.14)
W2 = 2U0 − U1 (5.15)
V1 = 2U0 − U1 − 4(V3 − V2) (5.16)

V1 = 4(W0 − W1) + W2 (5.17)
V1 = 2X3 − X2 (5.18)
W2 = 2X3 − X2 − 4(W0 − W1) (5.19)

48

...................................... 5.5. Graph generation

5.5 Graph generation

In GUI there is Generate graph button that generates a road graph of the
in-scene blocks. Two important actions have to take place.

The first one is elementary and just increases each block traffic node’s IDs
as it generates a graph from the block’s subgraphs that would have the same
ID. This action has to be applied for all the structures that refer to these
nodes, which applies for e.g. sequences, junction’s lanelinks and more.

The second action might be more complicated as it interconnects block’s
traffic nodes in order to make the traffic network continuous.

5.5.1 Traffic node pairing

The first operation is finding the right traffic node’s pairs. This is solved in a
way that all the possible connections get to be generated, and the one that
has the minimal distance over all connections is selected (see Figure 5.19).

Figure 5.19: Traffic graph interconnection approach description.

5.5.2 Node’s direction selection

At this point the direction in which a certain lane is going has to be defined.
Such information is already stored in particular lanes, however, there are
more options on how to interconnect nodes (sequences, interconnections,
connections). However, going through structures and figuring out the correct
direction might be more complicated and less reliable. An algebraic approach
has been selected for the such a problem as is shown in Figure 5.20. The
traffic nodes are already paired and only the direction has to be determined.
Each pair’s node is rotated around the certain connection point’s traffic nodes
center by 90 degrees.

49

5. Implementation description...................................

Figure 5.20: Interconnecting lane direction definition description.

In case the resulting vector’s dot product with its pair is positive, the
previously rotated traffic node is the source; in the other case, it is the sink
and the from node is switched with the to node. Type 0 is the forward edge
and type 1 is the backward edge. The generation of such interconnection is
shown in Listing 5.8.

1ss<<"\<connection from\=\""<<from->id+1<<"\"to\=\""<<to->id+1<<
"\"type\=\""<<0<<"\" \/\>"<<std::endl;

2ss<<"\<connection from\=\""<<to->id+1<<"\"to\=\""<<from->id+1<<
"\"type\=\""<<1<<"\" \/\>"<<std::endl;

Listing 5.8: Connections defining direction.

In Figure 5.21 is a small sample of the resulting network interconnections.
These interconnections and their correct definitions were tested with the
VehicleSimulator module with dozens of cars in-scene.

Figure 5.21: Generated road graph with block’s traffic interconnections.

50

..................................... 5.6. Variable block’s size

5.5.3 Traffic module

To render generated traffic network, the traffic module is required. It has
to be run with given parameters like the .xml file that is generated by the
RoadEditor module and world .xml file where physics and car’s initial position
can be defined including the main scene node that the collisions are computed
with. The main node is called "hlavní" in all the VRUT scenes.

5.5.4 Traffic display properties settings

The easiest way to test the generated network by the RoadEditor module is
to set up a special case for that as is defined below and was inspired by a
straight segment case already defined in the traffic.js file.

1case ’test2’:
2CAR_COUNT = 9;
3trackFile = "../data/RoadEditor/RoadEditor_test1.vrut";
4carPositions = [
5[4193.14, -8459.2, 1.5, -1.2],
6[-15, -161.8, 1.5, 0.5],
7[-15, -121.8, 1.5, 0.5],
8[-15, -78.2, 1.5, 0.5],
9[-5, -38.2, 1.5, 0.5],
10[-15, -1.8, 1.5, 0.5],
11[-15, 38.2, 1.5, 0.5],
12[-5, 81.8, 1.5, -0.5],
13[15, 121.8, 1.5, 0.5],
14[-3.85366, -71.0196, 1.5, -1.5]
15]
16carPositions[0] = [81.323, 5.763, 1.275, 0];
17// node for the in-scene vehicles collision detection
18worldNodeName = "hlavni";
19trackCFGFile = "../data/RoadEditor/RoadEditor.xml";
20trafficGraphFile = "../data/RoadEditor/roadGraph-traffic_1.xml"
21updateParamValue("VehicleSimulator", "swapLanes", "1");
22updateParamValue("VehicleSimulator", "sceneUnits", "1000");
23updateParamValue("Navigation", "FOV", "75");
24updateParamValue("Navigation", "nearPlane", "500");
25updateParamValue("Navigation", "farPlane", "5000000");
26break;

Some of the parameters do not need to be set, however, it is easier to script
some of them to simplify the workflow and so some of the parameters like
displaying the nodes and their segments can be instantly marked checked
with proper usage of the traffic.js script.

5.6 Variable block’s size

As the block’s size is variable and can be set at the bottom of the GUI,
this option is yet not fully supported as it only scales the geometry and
transforms the traffic nodes according to its block’s size. Magnetic feature
and interconnection generation are not affected, however, the roads might

51

5. Implementation description...................................
become undrivable as the height of two different-sized blocks could differ as
well as is shown in Figure 5.22.

Figure 5.22: Block’s interconnection with size disparity.

52

Chapter 6
Testing and results

This chapter is focused on the way of testing and the results of the RoadEditor
module. First, the ways of both blocks testing during the block creation
and whole road graph generation testing are explained. Afterwards, multiple
scenes generated by the RoadEditor module are tested and evaluated.

6.1 Testing

Module testing was initially focused on the correct traffic generation, so only
a traffic module that depicts the road graph network was required. Further,
as the road graph generation was handled, testing began also with the Vehi-
cleSimulator module, which simulates the traffic.

For such testing, it is necessary for the vehicles to define their initial posi-
tions, because of that, also an initial simple scene with a couple of straight
blocks has been pre-saved (see Figure 6.1), so there is no need to redefine the
vehicle’s initial position every time the road graph gets to be generated by
RoadEditor module. This approach was useful for testing any new kind of
block as the user can see any undesired behavior right away.

Figure 6.1: Testing blocks with initial pre-saved blocks in red rectangles Vehicles
would spawn on these blocks and begin their journey to the neighbor block.

These initial blocks are used in some of the testing scenes in result sec-
tion 6.2.

53

6. Testing and results
6.2 Results

Testing of the module was made on six different tracks. As there was also
block deformation implemented, there were more scenes created in order to
test as many traffic situations as possible.

First very simple scene is just an oval (Figure 6.2), which proves the
by module generated graphs are compatible with both Traffic and VehicleS-
imulator module.

Figure 6.2: Simple oval test result.

Second scene (Figure 6.3) is more complicated as there are already multiple
junctions in it. Block types TCROSS and INTERSECTION are used
here for junctions testing.

Figure 6.3: Simple test with junction blocks result.

54

...6.2. Results

The next scene is larger and has also some ROUND block types (round-
abouts) included (see Figure 6.4). This scene could simulate a small city or
a housing estate. With some houses, vegetation and more complex block
geometry, this scene might be representing real traffic situations for any kind
of testing.

Figure 6.4: Middle sized scene with all block types.

Close look to one of the junctions and its generated road graph and
interconnections in the middle sized scene is depicted in Figure 6.5.

Figure 6.5: Close look to the middle sized scene junction.

55

6. Testing and results
The Last scene without block deformation is just larger and has all block

types included (see Figure 6.6).

Figure 6.6: Large scene with all block types.

Such scene generates over twelve thousand lines of xml code and so the
example below is reduced in Output sample Listing 6.1.

1<?xml version="1.0" encoding="UTF-8"?>
2<xml>
3<roadgraph version="1.2" />
4<!--Tcross block-->
5<road id="9" type="5">
6<lane id="1" nodes="4" type="0" level="3" o="3"

nodeidoffset="1">
7<node id="64" x="-38.2" y="105" z="0.5" w="3.74" sl=

"20" navevt="2"/>
8<node id="65" x="-38.2" y="115" z="0.5" w="3.74" sl=

"20"/>
9<node id="66" x="-38.2" y="125" z="0.5" w="3.74" sl=

"20"/>
10<node id="67" x="-38.2" y="135" z="0.5" w="3.74" sl=

"20" navevt="9"/>
11</lane>
12...
13<lane id="1" nodes="1" type="6" level="3" o="3"

nodeidoffset="1">

56

...6.2. Results

14<node id="80" x="-41.4" y="125" z="0.5" w="3.74" sl=
"20" navevt="5"/>

15</lane>
16</road>
17...
18<!--straightLong block-->
19<road id="243" type="2">
20<lane id="1" nodes="8" type="0" level="3" o="0"

nodeidoffset="1">
21<node id="2838" x="398.201" y="174.999" z="0.5" w="

3.74" o="3"/>
22...
23<node id="2845" x="398.201" y="104.999" z="0.5" w="

3.74" o="3"/>
24</lane>
25<lane id="1" nodes="8" type="0" level="3" o="0"

nodeidoffset="1">
26<node id="2846" x="401.801" y="174.999" z="0.5" w="

3.74" o="3"/>
27...
28<node id="2853" x="401.801" y="104.999" z="0.5" w="

3.74" o="3"/>
29</lane>
30</road>
31<attributes>
32<speedlimit from="1" to="8" value="30"/>
33<vmax from="1" to="8" value="30"/>
34...
35<vmax from="2839" to="2846" value="30"/>
36<vdop from="2839" to="2846" value="30"/>
37</attributes>
38<connections>
39<connectiongroup>
40<connection from="81" to="72" type="1" />
41<connection from="82" to="74" type="1" />
42...
43<connection from="2813" to="2814" type="1" />
44<connection from="2814" to="2813" type="0" />
45</connectiongroup>
46<junction name="T-cross 0" id="0">
47<path id="0" nodes="2" type="11">
48<node id="0" x="-37.25" y="120.65" z="0.5" w="

3.6" sl="30"/>
49<node id="1" x="-40.65" y="117.25" z="0.5" w="

3.6" sl="30"/>
50</path>

57

6. Testing and results
51...
52<priority road="9" lane="1" node="81">
53<check road="9" lane="1" node="66"/>
54<check road="9" lane="1" node="79"/>
55</priority>
56</junction>
57...
58<junction name="T-cross 72" id="72">
59<path id="0" nodes="2" type="11">
60<node id="0" x="397.251" y="79.349" z="0.5" w="

3.6" sl="30"/>
61<node id="1" x="400.651" y="82.749" z="0.5" w="

3.6" sl="30"/>
62</path>
63...
64<laneLink road="240" lane="1" node="2811">
65<successor road="240" lane="1" node="2810" path=

"5" />
66</laneLink>
67</junction>
68<!-- Block’s INTERCONNECTIONS -->
69<connectiongroup>
70<connection from="4" to="672" type="0" />
71<connection from="672" to="4" type="1" />
72...
73<connection from="2830" to="2820" type="0" />
74<connection from="2820" to="2830" type="1" />
75</connectiongroup>
76<!-- Block’s SEQUENCES -->
77<sequence from="1" to="4" dir="2" closed="0" />
78<sequence from="5" to="8" dir="3" closed="0" />
79...
80<sequence from="2839" to="2846" dir="2" closed="0"

/>
81<sequence from="2847" to="2854" dir="3" closed="0"

/>
82</connections>
83</xml>

Listing 6.1: Generated road graph by RoadEditor module; originally 12 041 lines.

58

...6.2. Results

In Figure 6.7 are initial default blocks with a short section created from
deformed straight blocks also using fitting normals feature and magnetic
feature while repositioning connection point to make the road continuous.

Figure 6.7: Small scene with straight block deformation.

59

6. Testing and results
In Figure 6.8 is an example of the possibility to create any kind of network,

eventually according to a given template. The fitting normals feature was
used only for straight blocks as it should be not desired for the other blocks
to respect such a feature.

Figure 6.8: Large scene with block deformation.

These scenes are bellow in Table 6.1 depicted in numbers. All scenes have
been tested both in debug and release configuration. The scene size correlates
with the fps, and the fps drop rapidly with depicting traffic nodes using the
Traffic module.

60

...6.2. Results

Scene Oval Junctions Middle Large Small_def Large_defname

Scene
preview

Scene 146 356 1470 1964 292 760nodes

Blocks 18 44 182 243 36 94count

Road 0,90 2,55 10,70 14,30 1,80 5,55length(km)

Junctions 0 18 39 72 14 21count

Deformation NO NO NO NO YES YESapplied

Polygons 123 310 1320 1762 280 689count

Nodes 136 668 2720 3688 510 1238count

Edge 136 610 2562 3342 460 1120count

Cars 8 10 10 10 10 10count

FPS 551 510 367 380 492 447
(debug) (29.2) (24.6) (14.0) (14.5) (22.5) (22.2)

Creation 0,58 1,58 3,17 5,42 1,75 6,34time (min)

Table 6.1: Resulting scenes in numbers. Numbers were generated using the
module Optimize which shows all scene parameters.

61

6. Testing and results
Lastly, in Figure 6.9 is an example of road network creation using map

template from Geoportal maps [27]. The yellow spheres in the picture are
just a visualization of the block connections that can be easily turned off in
the module’s GUI.

Figure 6.9: Scene creation using map background; Top - mere map background;
Bottom - traffic network composed using RoadEditor module along the map
background’s roads.

62

...6.2. Results

The RoadEditor module was tested with the VehicleSimulator module that
simulates the traffic behavior over the generated network. Figure 6.10 shows
cars driven by VehicleSimulator over by-RoadEditor-generated networks.

Figure 6.10: RoadEditor module’s resulting scenes driven by vehicles using
VehicleSimulator module.

The implementation consisted of numerous files and the number of lines of

63

6. Testing and results
each file type is depicted in Table 6.2.

File_type lines(∼)
CPP 3899
HTML 203
JSS 78
CS 66
XML 649
OVERALL 4917

Table 6.2: Number of lines of each file type.

6.3 Manual

In order to control the module the user should be familiar with the module
manual that stays in Table 6.3. The module controlling should be intuitive
and easy to learn.

Input Function
MOUSE

Left mouse button block insertion, block selection, when None block selected
→ enter blockEditMode, selected block’s CP or arrow selection

Right mouse button selected block rotation clockwise by 90 degrees
Mouse movement selected block positioning in scene
(inserting blocks) (grid or magnetic mode)
Mouse movement repositioning selected connection point

(editing CPs)
Mouse movement setting Bézier curve parameters, defines direction
(editing arrows) and length of the arrow defining control point
KEYBOARD

Del selected block deletion
Tab switch between magnetic and grid insertion mode
O slight rotation of the selected block CCW by 10 degrees
P slight rotation of the selected block CW by 10 degrees

Ctrl+C copy selected block
Ctrl+V paste copied block at cursor’s position

Table 6.3: RoadEditor module control manual.

64

Chapter 7
Discussion

7.1 Problems during the implementation

During the implementation I was facing several problems that are worth
mentioning. These are listed here with their solutions.

7.1.1 Block junctions definition

As the problem was subdivided into several small pieces, junctions like inter-
sections and t-cross junctions had to be solved. Traffic representation was
more complex with the incomplete documentation of the roadgraph in the
system VRUT. Even with an example of an intersection given from already
operational road graphs, the definition was complicated. With pieces of
advice from Ing. Jaroslav Sloup I implemented these blocks using junction
tags for each junction’s lane, which finally worked.

7.1.2 Vehicle’s falling through the road

One of the largest problem with an easy solution was that the cars spawned
in the scene using the VehicleSimulator module were falling through the road
and did not collide with any in-scene object at all. The problem here was
that there has to be a main scene node defined in the RoadGraph.xml, which
immediately made the simulation work.

7.1.3 Geometry instancing

Next problem that has been dealt with during the implementation was during
block copy implementation. As there has been block deformation feature
implemented, the block’s original geometry has been deformed and so have
all its instances. In order to resolve such a problem, there has to be a new
geometry instance created during any new block’s deformation.

65

7. Discussion ..
7.2 Development at DigiteqAutomotive

As I work at DigiteqAuomotive (DQ) company, the development there has
been a great help and inspiration for the RoadEditor module implementation.
As the problem does not differ mostly, the representation of the network and
approach we use there have been advantageous.

The above-mentioned Mobile Traffic System (MTS) is developed and ex-
tended in DQ and the RoadEditor module is and can be further inspired by
such a solution.

Furthermore, the DQ company, more concretely the VXLab, department is
more focused on infotainment and its distraction during driving. We develop
simulations and hardware to test the on-board UI (User Interface) of the
built-in display

7.3 Implications for further research

This section deals with a couple of ideas for further implementation and high-
lights its pros, cons, difficulty of the implementation and all the requirements
for such a solution.

7.3.1 Realistic blocks

One of the first module extensions could be a realistic block’s geometry
creation as it would improve the quality of road scenes created using the
RoadEditor module. This solution could be used on already created blocks
and update only the block’s geometry. However, for a better resulting scene
experience, the continuity of the block’s geometry and textures would have to
be solved, including road stripes and road surrounding geometry like barriers.

7.3.2 Any block deformation

As it is possible to deform any kind of block, the feature is yet implemented
to support primarily straight blocks. Further implementation by either using
Cage box deformation or extending the Bézier curve deformation might be
the solution.

7.3.3 Traffic graph depiction

As for a solution yet implemented, in case the user wants to see the whole
graph created by the RoadEditor module, the user needs to use the Traffic
module for such a depiction. Some elementary ways of rendering such nodes
might be predefined in the RoadEditor module in order to make it independent
on the Traffic editor during building the traffic network.

Certainly for further use of the created traffic network and simulation, the
Traffic module is required.

66

................................7.3. Implications for further research

7.3.4 Saving deformed blocks

As the saving of blocks yet saves only the block’s names and transformation
matrix, it does not save the instance of newly deformed geometry. This could
be either approached the hard way, where we save all the geometry vertices’
positions. A better approach would be by creating a new instance of a block
and adding it to the block templates by exporting the block’s geometry and
its traffic nodes to a new .xml file.

67

68

Chapter 8
Conclusion

This work is focused on studying methods used for traffic network repre-
sentation in map and navigation systems. The goal was to implement an
interactive editor that enables users to compose a traffic network using pre-
pared blocks that represent important parts of the traffic network. First, I
analyzed methods in other traffic editors and engines and their representa-
tions. Furthermore, VRUT, an application for the visualization and edition
of 3D data was analyzed and introduced. Next, the concept design and
block deformation approach were analyzed. Gained knowledge was used
for the implementation procedure and module development. Based on this
concept, the implementation in the system VRUT took place. Results were
demonstrated on scenes representing distinct traffic networks.

During the implementation, it was emphasized to design a module that
would be intuitive, interactive and easy to use. Blocks parameterization and
deformation were described and demonstrated on sample examples. Module
control was introduced and possible further module implications were pro-
posed. Furthermore, six different scenes with both deformed and undeformed
blocks representing traffic networks were created and tested with the help of
other modules.

69

70

Bibliography

[1] Paden, B., Čáp, M., Yong, S. Z., Yershov, D., & Frazzoli, E. A survey
of motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on intelligent vehicles, 1(1), 33-55, 2016.

[2] Projekt OpenDrive. http://www.opendrive.org/

[3] Jesús R. Nieto, Antonio Susín. Cage based deformations: a survey. Uni-
versity of the Balearic Islands, 2013.

[4] David Tichý. Simulátor jízdy městem. Diplomová práce ČVUT FEL, 2006.

[5] Václav Kyba. Modulární 3D prohlížeč. Diplomová práce ČVUT FEL, 2008.

[6] Jaroslav Minařík. Simulace okolních dopravních dějů. Diplomová práce
ČVUT FEL, 2014.

[7] Alena Mikushina. Tvorba modulárních 3D komponent pro videohry,
Bakalářská práce ČVUT FEL, 2020.

[8] Daniel Aschermann. Editor geometrie v systému VRUT, Bakalářská práce
ČVUT FEL, 2020.

[9] Vojtěch Kolínský. Editor silniční sítě v systému Virtual Reality Universal
Toolkit, Bakalářská práce ČVUT FEL, 2020.

[10] Klára Pudová. Automated creation of traffic in scenarios for driving
simulators, Diplomová práce ČVUT FD, 2019.

[11] Karan Singh, Eugene Fiume. Wires: A Geometric Deformation Tech-
nique, SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, 1998.

[12] Jaume Barceló. Fundamentals of Traffic Simulation, Dept. Statistics &
Operations Research, Universitat Politècnica de Catalunya, Barcelona,
Spain, 2010.

[13] Hans-Thomas Fritszsche. A model for traffic simulation, Daimler-Benz
AG 1994.

71

8. Conclusion..
[14] G. Kotusevski and K. A. Hawick. A Review of Traffic Simulation Software,

Computer Science Institute of Information & Mathematical Sciences
Massey University at Albany, Auckland, New Zealand, 2009.

[15] J. Montagnat, H. Delingette and N. Ayache. A review of deformable
surfaces: topology, geometry and deformation, INRIA, 2004 route des
Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France, 2001.

[16] EulerSpiral (clothoid). https://github.com/CoffeeKumazaki/euler_spiral/

[17] Nicolas Marechal, Eric Galin, Adrien Peytavie, N Maréchal, Eric Guérin.
Procedural Generation of Roads, Computer Graphics Forum, 2010, 2, 29,
pp.429-438.

[18] Tiago Boelter Mizdal, Cesar Tadeu Pozzer. Procedural Content Genera-
tion of Villages and Road System on Arbitrary Terrains, XVII SBGames,
2018.

[19] Quadratic and Cubic Bézier Curves. http://www.e-cartouche.ch/

[20] Matthew Guzdial, Duri Long, Christopher Cassion, Abhishek Das. Visual
Procedural Content Generation with an Artificial Abstract Artist, College
of Computing, Georgia Institute of Technology, Atlanta, GA 30308 USA,
2018.

[21] Euler spiral. https://en.wikipedia.org/wiki/Euler_spiral

[22] Bézier curve. https://en.wikipedia.org/wiki/Bézier_curve

[23] EasyRoads3D Pro v3. https://assetstore.unity.com/packages/tools/terrain/easyroads3d-
pro-v3-469

[24] Mobile Traffic System. https://assetstore.unity.com/packages/tools/ai/mobile-
traffic-system-194888

[25] MATHEMATICS Euler spiral. https://math.stackexchange.com/questions/3791546/how-
many-points-are-needed-to-uniquely-define-an-euler-spiral

[26] Bézier C2 continuity. http://www.linkeova.cz/vyuka/pg_pgs/public/pgr_skripta.pdf

[27] Geoportal maps. https://www.geoportalpraha.cz/cs/mapy/mapove-
aplikace

72

	Introduction
	Motivation
	Assignment
	Work structure

	Road and map navigation system representation
	Other traffic editors
	ASAM OpenDRIVE
	EasyRoads (Unity)
	Mobile Traffic System (Unity)

	Introduction to VRUT 2.0
	Building and compilation of VRUT 2.0
	How does VRUT 2.0 work?
	User Interface
	Other modules in VRUT
	Module Navigation
	SceneGraph module
	Module Traffic
	Module VehicleSimulator

	Traffic representation
	Nodes
	Connections
	Junctions

	Concept design
	General idea
	Implementation motivation
	Module design suggestion
	Vegetation generator
	Adapting blocks
	Cage based deformations
	By curve deformation
	Bézier curve definition
	Bézier segments continuity

	Euler spiral

	Procedural visual details generation

	Implementation description
	Module basic properties/functionality
	GUI
	Resizable GUI
	GUI parameters update
	Save/Load blocks
	Map background
	Graph generation

	Events handling
	Blocks properties
	Block definition
	Block model creation
	Block nodes layout
	Block interconnections definition
	Connection points
	Blocks XML parser

	Block selection
	Blocks positioning
	Grid and magnetic block placing

	Blocks parameter set
	Block insertion/deletion
	Copy/paste block
	Block deformation
	Curve deformation application
	Curvature limitations
	Normals fitting
	Bézier C2 continuity
	Euler spiral
	Inner node repositioning

	Graph generation
	Traffic node pairing
	Node's direction selection
	Traffic module
	Traffic display properties settings

	Variable block's size

	Testing and results
	Testing
	Results
	Manual

	Discussion
	Problems during the implementation
	Block junctions definition
	Vehicle's falling through the road
	Geometry instancing

	Development at DigiteqAutomotive
	Implications for further research
	Realistic blocks
	Any block deformation
	Traffic graph depiction
	Saving deformed blocks

	Conclusion
	Bibliography

