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This article presents a method for hardware trojan detection in integrated circuits. Unsupervised deep learn-
ing is used to classify wide field-of-view (4 × 4 mm2), high spatial resolution magnetic field images taken
using a Quantum Diamond Microscope (QDM). QDM magnetic imaging is enhanced using quantum control
techniques and improved diamond material to increase magnetic field sensitivity by a factor of 4 and measure-
ment speed by a factor of 16 over previous demonstrations. These upgrades facilitate the first demonstration
of QDM magnetic field measurement for hardware trojan detection. Unsupervised convolutional neural net-
works and clustering are used to infer trojan presence from unlabeled data sets of 600 × 600 pixel magnetic
field images without human bias. This analysis is shown to be more accurate than principal component analy-
sis for distinguishing between field programmable gate arrays configured with trojan-free and trojan-inserted
logic. This framework is tested on a set of scalable trojans that we developed and measured with the QDM.
Scalable and TrustHub trojans are detectable down to a minimum trojan trigger size of 0.5% of the total logic.
The trojan detection framework can be used for golden-chip-free detection, since knowledge of the chips’
identities is only used to evaluate detection accuracy.
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1 INTRODUCTION

Security is a necessary parameter of microelectronic technology development due to the harmful
effects an attacker can have on a system’s operation. One possible attack is hardware trojan inser-
tion, consisting of adding malicious circuitry during a step in the supply chain cycle to provide
unintended functionality, such as information leakage, denial of service, or behavior modification
[5, 7]. Hardware trojans at the integrated circuit (IC) level cannot be inserted once a chip is
fabricated and packaged. However, if a trojan is detected later in the supply chain, then the entire
batch of chips needs to be discarded. Firmware patches are possible in some cases, but this is not
a guaranteed fix, since it is possible a backdoor has already been established [5, 34].

With the pervasiveness of ICs in almost every device and system, hardware trojans have
emerged as an increasingly likely and dangerous vulnerability. This threat is compounded by most
equipment requiring at least some commercial circuits, the design of many circuit blocks being out-
sourced, and the fabrication and packaging of chips by third parties.

Reliable and efficient detection of hardware trojans is consequently imperative. Many methods
leverage nondestructive functional testing [7, 8]. However, trojans will remain undetected if func-
tional testing inputs and conditions do not match trigger conditions. Other destructive methods
successively scan layers of the circuit and match to the layout to detect any deviation. However,
these cannot be applied to every fabricated chip, and a clever attacker may only insert the trojan
in a subset of a batch.

In this work, we introduce a new, non-destructive method of detecting trojans, shown in the
system block diagram in Figure 1.

1.1 Threat Model

Hardware trojans can be inserted during the design, fabrication, or packaging stages. Trojans
added during the design stage can be discovered through careful analysis of the netlist or GDS
data [11]. However, trojans inserted during the fabrication stage are much more difficult to detect.
Every chip produced by the foundry is untrusted, and there is no golden version to compare against.
Furthermore, if the financial benefit of a trojan attack outweighs the cost of having multiple masks
(e.g., the trojan will leak bank account information or interfere with military operations), then a
foundry may only insert the trojan into a subset of a batch of chips. The motivation for this is pro-
vided in Figure 2. In this case, it is not enough to destructively analyze a few chips and conclude
that the entire batch is trojan-free.

The threat model for this work is an attacker at the foundry inserting trojans during the fabri-
cation of a submitted chip design, similar to the cases proposed in References [1, 21]. Reference
[21] shows the possibility of adding harmful trojans directly to IC mask layout files with very little
time or knowledge of the original circuit. The foundry does not need to keep track of which chips
are HT-inserted; rather, an attack could later automatedly be manifested in all of the HT-inserted
chips, without any manual trigger necessary.

In this threat model, trojans added during the fabrication stage can only cause minimal changes
in placement and routing. In this case, major changes as with those done with CAD tool algorithms
cannot be done, since the attacker risks breaking the normal operation of the circuit with too many
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Fig. 1. Scalable trojan-free circuits and trojans are designed at the register transfer level (RTL). They are

placed and routed for the field programmable gate array (FPGA) implementation. The Quantum Diamond

Microscope (QDM) is used for electromagnetic (EM) side-channel measurements of the FPGA. The convo-

lutional neural network (CNN) autoencoder analyzes the measurements and creates a small set of latent

variables, which are then clustered for trojan detection.

Fig. 2. Example scenario of trojan insertion into bank login smart cards by a bad actor at the foundry, where

a batch of at least 100 chips is being produced. By inserting a trojan only into a small subset of chips with

a separate mask, the attacker has a high probability of evading detection through standard tests. Even with

a small percentage of counterfeit-able chips, the potential monetary gain for the attacker can be significant,

especially with a large bank.

changes. Thus, most useful trojans will only involve the addition of a small footprint trigger and
payload, such as a comparator or a few registers, where the payload becomes active when a rare
trigger condition is met. We focus on the detection of these trojans in digital integrated circuits,
with a small trigger circuit insertion. To allow for quick turnaround time between trojan design and
detection, we use trojans defined at the register transfer level (RTL) of a field programmable

gate array (FPGA) as a proxy.
We do not consider trojans with no addition or removal of logic, and only minor changes in

routing, since these do not have the potential for complex attacks that would not be evident in
functional tests. Analog circuit-based trojans, doping level trojans [4], and similar non-digital at-
tacks are out of the scope of this work as well.

In the final part of the threat model, we assume that once the original designers receive the
dies, they are able to run any functional or side-channel tests on all of the chips. Furthermore, the
designers have all necessary GPU or high performance computing capabilities, and are not limited
in what algorithms can be used to analyze side-channel measurement data. In addition, they may
perform destructive analysis for full layout comparison on a very small subset of chips.

1.2 Contributions

This article improves upon existing developments in hardware trojan detection by introducing a
new sensing modality to the field, the Quantum Diamond Microscope (QDM), which has a wide
field-of-view (∼millimeters) and is able to measure vector magnetic fields at a much finer spatial
resolution (∼microns) compared to the traditional electromagnetic (EM) field probe. In addition,
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the QDM provides a quantitative measurement of the circuit activity, compared to thermal imaging
or other similar techniques. In summary, the main contributions of this work are

• Demonstrating the first use of the QDM for trojan detection and improving the QDM setup
(from Reference [33]) to achieve better spatial resolution and faster measurements via im-
proved magnetic field sensitivity.
• Reliably detecting small footprint hardware trojans with machine learning (ML) on high

spatial resolution magnetic field measurements taken with the QDM. The detection ability
with deep learning is shown to be higher than with the traditional principal component

analysis (PCA).
• Performing automated trojan detection using unlabeled datasets with clustering algorithms.
• Developing a set of base trojan-free circuits and scalable trojan benchmarks for better eval-

uation of trojan detection ability and limits.

2 BACKGROUND

2.1 Hardware Trojan Detection

Prior research on nondestructive methods for hardware trojan detection spans functional testing,
side-channel testing, and use of localized detection circuitry within the die. Functional testing can
find trojans that are activated with small triggers, which are likely to be hit, and that have an
obvious impact on the chip. Unfortunately, this testing may miss many trojans, since attackers
can design the trojan to evade detection through simplistic tests [7, 36].

Side-channel testing allows for detection of trojans that are not activated during the test time. By
measuring side channels such as power or EM radiation of a test chip and a golden circuit, trojan
ICs can be detected [2, 22]. The usefulness of side-channel detection is limited by the sensor’s
ability to detect potentially small trigger activity in the IC. We can improve detection ability of
this method by increasing the sensitivity of the measurement tool [5], for example, by using a
QDM instead of a field probe.

Furthermore, many side-channel-based trojan detection methods require comparison to a
golden circuit [2]. However, a golden circuit is not always available. Thus, we must develop meth-
ods of analysis that can detect the presence of abnormal chip behavior even in the absence of a
golden circuit, for example, with clustering algorithms.

Prior results also suggest that localizing measurements to small regions of the IC helps with
trojan detection [13, 26]. These methods add circuitry such as ring oscillators or sleep transistors
in the die itself. The results of adding this additional circuitry are then measured by external side-
channel probes. However, an attacker can modify the circuitry placed for sensitivity analysis and
cancel the designer’s protection. Thus, localized detection in small regions of the IC should be
achieved from a measurement technique external to the die. With a standard EM field probe, the
low spatial resolution from the cross section limits localization. This limitation can be overcome
with more advanced magnetic field imaging with the QDM.

2.2 Machine Learning (ML) Analysis Methods

Previous EM-side-channel-based hardware trojan detection methods use a near-field EM probe
stepped over an IC to record localized EM traces during circuit operation. The measurements are
then compared between the golden circuit and test circuit using correlation analysis or PCA to
detect trojans [2, 15, 23, 30]. Automated detection with PCA has also been explored using backscat-
tering side channels [24] and for netlist data [11]. However, PCA cannot capture many complex
or nonlinear dependencies in physical measurement data, especially as dimensionality increases
with spatial resolution.
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Table 1. Comparison Between Different Methods of Side-channel Detection

Power EM Probe QDM [33]

Spatial Resolution None 60 μm [12] 5–10 μm
Sensitivity Limited by number of

bits in oscilloscope
Limited by number of bits in
oscilloscope

Noise floor ∼0.1 μA

Time Resolution Limited by oscilloscope
sampling frequency

Limited by oscilloscope sampling
frequency, Probe bandwidth 1.5
MHz up to 6 GHz [12]

Limited by averaging
period for desired SNR

Field-of-View N/A Single-point Measurement 3.7 mm × 3.7 mm

There have been some works considering more complex ML methods, including support vector
machines and neural networks [16, 21, 35]. These works generally use supervised learning with
the assumption that all of the training data is labeled as trojan-free or trojan-inserted. However,
the designer who receives chips from an untrusted foundry will not be given a list of which ICs
were attacked, and the specific trojans that were inserted. Thus, the designer will not have any
knowledge of what labels to provide for different chips when training. For this reason, unsuper-
vised learning with label-free training data is required, and a basic classifier algorithm cannot be
used.

2.3 Quantum Diamond Microscope (QDM)

The QDM provides vector magnetic field imaging with high spatial resolution (∼microns) over a
wide field-of-view (∼millimeters), and can be used for side-channel measurements. The QDM uses
internal quantum transitions of optically active nitrogen vacancy (NV) centers in a diamond chip
placed above an IC to measure circuit activity due to differential current flows in the IC. Zeeman
splitting causes NV energy levels to differ based on the spatially-varying magnetic fields created
by currents in the IC. The magnetic field distribution from the IC is determined by measuring
the NV fluorescence contrast for different microwave frequencies with a camera [18], essentially
providing a sensitive, high-resolution optical image of the local vector magnetic fields produced
by the active IC.

The QDM simultaneously measures over a wide field-of-view of the silicon die, generating, in
the current measurements, 600 × 600 pixel magnetic field images, where each pixel is approxi-
mately 6μm. This is done with a diamond of approximate size 4 mm × 4 mm × 0.5 mm that has
NVs located only at the surface of the diamond chip (depth of few microns). The QDM provides a
high spatial resolution magnetic image on the order of a few microns. The setup is currently opti-
mized for monitoring static magnetic fields and the magnetic signal is averaged for 1 to 5 minutes
to simultaneously obtain sufficient SNR for all ∼4×105 pixels in the field-of-view. New techniques
have demonstrated the ability to perform real time magnetic imaging over a wide field-of-view
at kHz frame rates [32]; these capabilities will be applied to ICs in future work. Table 1 compares
the QDM sensor used in the present study to other side-channel detection methods. The QDM pro-
vides value over traditional EM [2, 15] or power [6] side-channel techniques through simultaneous
imaging with high spatial resolution over a wide field-of-view. Furthermore, we envision the use
of the QDM + machine learning as a complementary method to existing hardware trojan detec-
tion methods. In particular, one could combine measurements from multiple methods to represent
various facets of the data, e.g., combined high spatial resolution and wide field-of-view with the
QDM and high temporal resolution with a near field probe. We plan to explore this multi-modal
approach in future work.

The QDM+ML method has previously demonstrated imaging of ring oscillators in an FPGA,
with small numbers of ring oscillators detected within a wide field-of-view [33]. However, the
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Fig. 3. (a) Flowchart of relevant communication and protocols for the QDM magnetic imaging experiments.

(b) Schematic of experimental components for the QDM experiments. The NV diamond is placed directly on

an FPGA. Excitation from a 532 nm shines at a shallow angle and the resultant red fluorescence is collected

onto a CMOS camera. The NVs are controlled through the application of external microwaves and a DC bias

field.

setup must be optimized for trojan detection, since well-designed trojans are expected to have less
switching activity and lower currents than a ring oscillator.

To the best of our knowledge, this is the first example of hardware trojan detection where the
spatial structure from physical measurements is preserved during the ML process and where un-
supervised deep learning and clustering are used for unbiased analysis.

3 EXPERIMENTAL SETUP

3.1 QDM Setup

The experimental setup in Figure 3 is a modified version of that in Reference [33] (photos of the
setup are in Appendix C). The QDM employs a ∼4 mm by 4 mm by 0.5 mm diamond substrate
with a 1.7-μm-thick N-doped, isotopically purified (99.995 % 12C) layer on the top surface with
[15N ]= 17 ppm and [NV ] = 2 ppm. The NV-layer is illuminated with 1 W of 532 nm excitation
laser light spread out over a 5 mm by 5 mm beam spot, encompassing the entire diamond, using
total internal reflection to limit exposure of the IC to green light. The green illumination is used
to both initialize the NV centers into a well defined spin state (ms = 0 in the ground state) and to
readout the spin state through the spin-state dependent fluorescence contrast, a process known as
optically detected magnetic resonance (ODMR) [3, 31].

A pair of permanent SmCo magnets is used to apply a static bias magnetic field of B0 = (BX , BY ,
BZ ) = (2.0, 1.6, 0.7) mT to lift the degeneracy of the four NV crystallographic axes and enable the
probing of a fixed crystallographic axis through controlled microwave (MW) driving. A wound
copper wire loop (5 mm in diameter) is used to apply a ∼10 μT driving MW field near 2.87 GHz,
which resonantly drives the NV spin state from the ms = 0 to the ms = −1 or the ms = 0 to
the ms = +1 spin state. In contrast to the setup in Reference [33], a double-balanced mixer is
used to generate sidebands, which create two MW tones separated by 3.05 MHz to simultaneously
drive the hyperfine spin transitions of the NVs [32]. This hyperfine driving technique improves
the fluorescence resonance contrast and minimizes the range of MW frequencies needed to fully
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address a resonance feature, speeding up a given measurement sequence. More detail about the
experimental components and measurement protocols can be found in References [32, 33].

The MW sweeping is synchronized with frame acquisition of the camera and state control of
the external FPGA under test. The resultant NV fluorescence resonances are fit pixel by pixel to
Lorentzian curves. The resonance positions of the lower transition (ms = 0 to the ms = −1) and
upper transition (ms = 0 to the ms = +1) are used to extract the time-averaged magnetic field
and temperature over a given measurement cycle. The improved diamond substrate and hyperfine
driving technique employed in this work enhance the ODMR contrast and thus the magnetic field
sensitivity of the QDM by a factor of ∼4, enabling an increase in measurement speed by a factor of
∼16 (or an increased measurement SNR for a fixed measurement duration), compared to previous
QDM IC demonstrations [33].

3.2 FPGA Setup

An FPGA is used to model trojans that are added during the fabrication of an IC [2, 22, 23, 30]. This
provides a fast turnaround time between trojan design and trojan detection tests, with the process
shown in Figure 1. For trojan insertion during mask generation and fabrication, there is limited
ability to move existing logic while ensuring expected basic functionality. Thus, additional trojan
logic mostly consists of extra interconnect and logic within filler cells [21, 36].

The FPGA used is the Xilinx Artix-7 XC7A100T. The chip is decapsulated to minimize the dis-
tance between the NV centers and the silicon die, which improves spatial resolution of QDM mag-
netic images. The present work is an early stage demonstration of the applications of the QDM+ML
method to hardware trojan detection. Future efforts will include extensions of our approach to in-
tact FPGA samples. Note that prior work with the QDM+ML method has shown the ability to
measure and characterize circuit activity noninvasively, with only slight reduction in accuracy
compared to invasive measurements [33]. We expect that similar results will hold for applications
of the QDM+ML method to hardware trojan detection.

To ensure the FPGA trojan is a close model to a hardware trojan in a fully custom IC, we use
Vivado [37] to lock the placement and routing of the trojan-free circuit logic. Trojan logic is sub-
sequently added in any surrounding regions with the constraint that the original logic not move.
In addition, extraneous logic in the relevant FPGA field-of-view such as the analog-to-digital con-
verter and the sensors are turned off.

The top metal layer(s) of the FPGA contain the power distribution network. Depending on which
portions of the die consume more power, the power grid traces in certain locations will carry more
current than others. These spatially distributed current carrying wires create a spatially varying
magnetic field distribution above the chip, which can be measured using the QDM. This provides a
“heatmap” image of the magnetic fields, with the field magnitudes at different measurement points.

When a trojan is inserted into a circuit, there are additions of logic or changes in the wiring.
These cause differences in the spatial current distribution, and thus in the magnetic field. This can
be measured in the QDM as imaging anomalies from the magnetic field of the trojan-free circuit.
An example of this is shown in Figure 4.

This same method is not expected to be limited to FPGA trojan detection, and should be ap-
plicable to the general case of application-specific integrated circuit (ASIC) trojan detection.
These must also have additional logic added in filler cells and/or changes to wiring. Furthermore,
ASICs have a similar structure to FPGAs, with the power grid distribution in the top metal layers.
Thus, it is expected that trojans will cause changes in the top metal layer current distributions
and resulting magnetic fields in ASICs (as with the FPGA). In fact, there is a likelihood of ASICs
having a greater change from trojan insertion than FPGAs, due to the additional leakage current
from extra logic added. We plan to apply the QDM+ML technique to ASICs in future work.
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Fig. 4. An representative example of how the QDM is able to image trojans is shown for the power grid

layout in (a). Trojan logic causes additional current to flow through existing power grid traces, and may lead

to the additional utilization of other top metal layer traces (b). This translates to differences in the magnetic

field distribution over time (c). When an average of the magnetic field at different spatial locations is taken,

there are differences in the trojan-free and trojan-inserted configurations (d).

4 DESIGN OF SCALABLE TROJANS

4.1 Motivation

A set of scalable trojans is developed to evaluate QDM+ML trojan detection. Evaluation of the
detection method for trojans of diminishing scale provides a quantitative measure of detection
success rather than a binary result given with benchmarks such as TrustHub [28], studied later in
this article. The TrustHub benchmarks contain quite large trojans that most approaches in the liter-
ature are already able to detect. In addition, the Advanced Encryption Standard (AES) switch-
ing activity and logic (from the most commonly tested TrustHub benchmark) is more complex,
increasing the difficulty of interpreting physical measurements.

Additionally, scalable circuits are the building blocks of most other circuits, and are simple
enough for basic estimations of the relative magnetic fields that will result. With the scalable
trojans designed here, it becomes easy to relate the FPGA RTL to the physical logic, the expected
relative currents, and the resulting magnetic fields. Furthermore, these simpler circuits are quite
localized, and allow us to test the abilities of the QDM, which has high spatial resolution. In addi-
tion, with these scalable trojans, we can look at the effects of not just trojan size but also trojan
switching frequency, which is not generally considered in prior literature.

These scalable trojans are used to model the triggers of hardware trojans. If the triggers can be
detected, then an additional payload to induce a malicious impact on the circuit will only make
detection easier, since there is more logic [2]. Thus, by not including payloads in the scalable trojan
tests, we can model the case when the trojan is not activated.
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Fig. 5. Block diagram of comparator trojan.

The trojans in this work are chosen to cover a wide range of possible trojan designs. A practical
trojan trigger design will require combinational or sequential logic. The comparator trojan is cho-
sen as a general case of combinational logic and the shift register trojan is chosen as a general case
of sequential logic. The counter trojan is used for a combination of both logic types. Furthermore,
since the QDM+ML method is a novel tool for integrated circuits, the scalable trojans allow us to
evaluate the sensitivity to a wide variety of common circuit components and logic.

4.2 Trojan-free Circuit and Trojan Design

4.2.1 Trojan-free Circuits. One major portion of the scalable trojan tests is the baseline trojan-
free circuit, which represents normal operation of the IC. The two types of baseline circuits used
for this study are a counter and linear feedback shift register (LFSR). The first trojan-free
circuit evaluated is a counter. The dynamic current, and thus magnetic field, are proportional to
the switching activity as a first order approximation. The counter outputs have a regular switching
activity that can be estimated mathematically from the bit position. Thus, if the counter output
of the baseline circuit is used as input for the trojan, the expected detectability of a trojan from a
magnetic field measurement can be estimated. In contrast to other base circuits, the counter allows
for easy testing of the dependence of detectability on trojan switching frequency. Multiplying or
dividing the trojan input signals’ frequencies by factors of 2 is equivalent to using more or less
significant bits of the counter. In this work, a 200 bit counter trojan-free circuit is used.

The other type of trojan-free circuit used is a LFSR. The LFSR, which is used for pseudo-
random number generation in some applications, has somewhat random switching activity. If
the state (shift register bits) is used as input for the trojan, then all the bits chosen are approx-
imately equivalent in terms of the switching frequency. This is a good model for what inputs
from a cryptographic circuit such as AES or RSA might look like. A 167 bit LFSR is used in this
article.

4.2.2 Comparator Trojan. One of the scalable trojans used is a comparator, shown in Figure 5.
Comparators can be used in trojan triggers such as those that check for a set of bits of the key
in a cryptographic circuit to match a certain value before they start to leak information through
a covert channel [5, 7]. The comparator uses purely combinational logic, and is constructed with
only LUTs in the FPGA. The comparator trojan building block used in this work has inputs from
four different bits of the base code count, and checks if all the bits equal 1.

4.2.3 Shift Register Trojan. Another trojan type that is used in this study is the shift register,
shown in Figure 6. The shift register portion of the trojan models sequential logic, which is con-
structed with successive registers in the FPGA. In addition, some combinational logic is used to
accumulate the shift register output similarly to the comparator trojan. A shift register can be used
in trojan triggers that check for a time sequence of values of a state bit to match a certain value
before they start leaking information [7]. This work uses a four bit shift register, with a one bit
input from the base code counter. This trojan building block outputs a 1 if the input bit is 1 over
four consecutive clocks.
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Fig. 6. Block diagram of shift register trojan.

Fig. 7. Block diagram of counter trojan.

4.2.4 Counter Trojan. The final trojan type used for the scalable tests is a counter, shown in
Figure 7. This models a trojan that uses sequential and combinational logic for the counting op-
eration, as well as combinational logic to accumulate values similarly to the comparator trojan. A
possible scenario for a trojan with counter logic is where a count is kept of the number of times a
bit of the state is set [5, 7]. Once the count reaches a certain value, information starts leaking from
the chip. This type of logic can also be used for a trigger that waits for a certain amount of time
(counting on the clock signal) before enabling the malicious operation. This work uses a four bit
counter building block, which counts up each time the input bit from the base code state is 1. This
trojan building block outputs a 1 when the count is all 1s, and then resets to a zero count on the
next clock.

4.3 Construction of Tests

The scalable trojan test logic is created by constructing FPGA bitfiles with a base circuit of a size
and type as well as a trojan, as seen in Figure 8. These trojans consist of one or more of the
trojan building blocks described in the previous section. Each of the building blocks has its inputs
connected to different state bits of the base circuit. For example, an 8 bit counter trojan has eight
individual 4 bit counters, each counting the number of ones in a different bit of the base circuit
count. The different trojans have different types and ratios of LUT and Register FPGA components,
as well as different switching activity, which affect their magnetic field magnitudes.

As mentioned in the Experimental Setup above, placement and routing is locked between the
trojan-free and trojan-inserted FPGA Tests. The base code and trojan for the tests are localized
within a constrained region of the FPGA, or pblock, to simulate the shorter distance an attacker
might want between a trojan and the original logic.

5 ANALYSIS METHODS

5.1 Principal Component Analysis (PCA)

PCA of QDM data is evaluated here in comparison to convolutional neural networks (CNNs)

to distinguish between trojan-free and trojan-inserted side-channel measurements [14, 25]. PCA
uses a linear map for dimensionality reduction, which captures the maximum variation between
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Fig. 8. Block diagram of trojan-free circuit and trojan logic.

the training samples. In this case, the first four components are chosen, since this captures at least
50% of the explained variance during fitting. Additionally, inspection of the principal components
shows that power-grid type information is only contained in the first few principal components,
and this is also consistent with prior work using PCA for analysis of QDM data from IC imaging
[33].

PCA reduces the dimensionality of the image data, and clustering is then applied as described
in the next section to automatically decide whether the test chip contains a trojan.

5.2 Clustering

Density-based clustering using SciKit Learn’s DBSCAN function [25] is used for unbiased determi-
nation of whether each data point is trojan-free or trojan-inserted once dimensionality reduction
is completed. Compared to other methods such as K-means clustering, density-based clustering
allows for an arbitrary number of clusters, so that the algorithm can be used without knowing
whether there will only be one cluster (chips are of the same type) or multiple (two or more chip
types exist). The eps value, or maximum distance between data points in the same cluster, is chosen
based on the algorithm in References [19, 27]. This method automatedly calculates the maximum
distance by finding the distances to the two nearest neighbors of each data point, and finding the
point of maximum curvature, or the knee, when plotting these distances.

5.3 CNN Autoencoder

A CNN autoencoder [9] is used to improve detection accuracy over the PCA method. The CNN
is a deep learning technique generally used for image classification tasks that preserves spatial
relationships in the data by convolving a filter with an image in each layer.

An autoencoder is used for unsupervised learning, since only unlabeled data is present and it
is not known in advance whether each chip is trojan-inserted or not. The autoencoder takes the
measured images as inputs and performs training to maximize accuracy of image reconstruction.
The autoencoder convolution, pooling, and fully connected layers reduce the data to a small set
of latent variables before attempting to reconstruct the higher-dimensional original images. Thus,
any major differences in the images must be represented in the lower-dimensional data to be able
to re-create the original image. By applying clustering to the low-dimensional data as was done
for PCA-based analysis, trojan-free and trojan-inserted data can be distinguished.

CNNs have been shown to outperform other techniques in the ML image analysis space [17].
CNNs have less dependence on feature engineering than other ML techniques and can generally
lead to smaller networks that have comparable performance to fully connected neural networks.
Furthermore, the convolutional layers preserve the 2D structure of the images and the spatial
relationships between magnetic fields from different wires [20]. In contrast, PCA flattens the image
data to a 1D list where the information on relative positions is ignored. The use of a Rectified Linear
Unit (ReLU) activation function between layers in CNNs introduces an element of nonlinearity that
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Fig. 9. Process used for training and testing the CNN autoencoder. At intervals of 100–200K epochs, training

is stopped if clustering the latent variables transformed from training and validation data is split into two or

more clusters. This is because the model has detected a trojan inserted in the test chip, and further training

will only find finer-grain distinctions. Once the model training is done, the performance is evaluated on the

test dataset.

can better model complex relationships in the data compared to PCA. In addition, some simpler
techniques used for classification-based learning such as support vector machines cannot be used
for trojan detection, since they require knowledge of trojan-inserted chips for training data.

Compared to previous work, we expect that the CNNs will be particularly useful for detec-
tion with QDM magnetic field measurements, which have a high degree of spatial information
compared to other EM side-channel techniques. While it is expected that these qualities of CNN
autoencoders will likely lead to higher accuracy compared to PCA, there are other tradeoffs for
training and inference time as well as computational requirements that might necessitate PCA. In
these cases, a lower detection accuracy will result; we quantify this difference in Sections 6 and 7.
Furthermore, in cases of very simple datasets where PCA itself is able to perform with high accu-
racy, using CNNs may not be worth the additional computational cost.

Figure 9 shows the process used for training. After autoencoder training is complete, cluster-
ing can be applied to the low-dimensional data for the test measurements to distinguish between
trojan-free and trojan-inserted data.

5.4 Golden-chip-free Methodology

The detection method in this work is a golden-chip-free method, as in Reference [24]. The unsu-
pervised machine learning and clustering methods do not require any labeled training data. When
a golden circuit is not available to compare against, a large number of chips will be measured and
the data will be analyzed with the autoencoder and clustering framework. If there are n resulting
clusters, then n chips (one from each cluster) will be selected and reverse engineered to compare
against the layout with methods such as [10]. If a trojan is found in a chip, then we can assume
that all the chips that were part of the same cluster have a trojan inserted. However, if a trojan is
not found in a chip, then all of the chips that were part of the same cluster are similarly trojan-free.

If a golden circuit is available, then unsupervised or partially supervised machine learning must
still be used. While labeled training data is available for the trojan-free circuit in this case, it would
not be present for any trojan-inserted circuit—it is impossible to predict what specific trojan an
attacker may insert. However, the destructive analysis of selected chips from each cluster is not
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Fig. 10. QDM magnetic field images for example datasets analyzed in later sections. The images show the

average of 80 measurements, and a high pass filter is applied. The bottom row shows the difference between

QDM images for the test chip and one trojan-free (TF) circuit.

necessary, and it is enough to check whether all the chips lie in the same cluster as the golden
circuit.

In the following results, we compare QDM magnetic field measurements of the trojan-inserted
circuits with the corresponding original circuits. The detection framework does not use any knowl-
edge of whether each measurement is of a trojan-inserted or trojan-free chip, and is thus a golden-
circuit-free methodology. This information is only used when evaluating the accuracy of our trojan
detection method.

6 RESULTS

6.1 QDM Images

QDM magnetic imaging is used to measure magnetic side-channel information from the different
trojan configurations. Most of the features in the imaged magnetic fields correspond to varying
currents in the top metal layer power distribution network, which lies directly below the diamond
(see Figure 3). Each test configuration has 80 measurements taken to allow for analysis using ML
methods. Base measurements of the chip with no switching logic are also taken interleaved with
these measurements to account for environmental perturbations. These 20 measurements are sub-
tracted from the test configuration measurements to only study RTL-dependent variations. For
example, Figure 10 shows the magnetic field measurements for two trojan-free chips and two
counter trojan-inserted test chips. It can be seen that the magnetic field measurements for the
two trojan-free chips are quite similar. In contrast, for the trojan-inserted chips, there is additional
current in the power grid, which results in larger magnetic fields and substantially different field
patterns. These results can be seen effectively in the images showing the difference between the
magnetic field measurements of the trojan test chip and trojan-free chip. Furthermore, the differ-
ence is greater for the larger counter trojan, as expected.

6.2 Usage of Clustering Method

In the practical detection scenario, the key information would be the cluster maps for each set
of data, which are indicative of how many chips there might be, and allow for more careful fur-
ther analysis of an example chip from each cluster. An example of clustering with multiple chip
configurations is shown in Figure 11. The algorithm, described in Section 5.2, separates the data
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Fig. 11. Example of practical clustering with four different chips measured.

into three clusters. Here, we choose the distance between clusters and variance for each cluster
as a metric of evaluating how many different chip types might be present. We can see that the
minimum distance between distinct clusters is more than three times as much as the largest clus-
ter’s standard deviation. This suggests that there are three types of chips, so we would perform
destructive analysis on one chip from each of the three clusters, and compare against the layout.
These results match with the original configurations, where the blue cluster consists of data from
two trojan-free configurations, and the green and pink clusters correspond to the small and large
counter trojan, respectively, shown in Figure 10.

In Section 6.3 and future sections, we use a method of combining data into two clusters to
quantify the false positives and negatives, which provides a simple figure of merit that can be
compared between dimensionality reduction algorithms and different trojans.

6.3 Accuracy Calculation

The knowledge of whether each test chip is trojan-free or trojan-inserted is only used to calculate
the accuracy of our detection framework. The clustering method described in Section 5.2 splits all
of the measurement data points into one or more groups (clusters). These clusters are combined
to only have one or two different consolidated groups, since we only compare measurements from
two chips at a time in this work. If the majority of data points in a certain cluster are from chip
1, then the entire cluster is assigned to chip 1. The same is done for chip 2 clusters. Based on this,
all the data points are in either one or two groups. If we only have one group, then we assign that
group to be trojan-free.

Based on this consolidated grouping, we can calculate the trojan detection accuracy. If the test
chip is actually trojan-free, then the number of false positives is the number of measurements
that belong to a cluster only containing one of the chips. If the test chip is trojan-free, then false
negatives do not apply.

If the test chip is actually trojan-inserted, then the number of false positives is the number of
trojan-free chip measurements in a group assigned to the test chip. Similarly, the number of false
negatives is the number of test chip measurements in a group assigned to the trojan-free chip.

A schematic example of the cluster consolidation and false positive/negative calculation is
shown in Figure 12.

6.4 Preprocessing

We average successive measurements of each test configuration to improve the SNR of the mag-
netic field data. Figure 13 shows that averaging every two successive measurements yields the
best results in terms of accuracy, number of data points categorized as noise during clustering,
and the total data set size for machine learning. With the selected level of averaging of every two
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Fig. 12. Schematic of the method of combining clusters to calculate accuracy is shown for illustrative data.

(a) The clustering algorithm separates the data into three groups. (b) For accuracy calculation, we consolidate

two of the clusters as described in section 6.3. The number of false positives in this example is 2/11 = 18% and

the number of false negatives is 3/16 = 19%. Two data points (outside of dashed ellipses) are classified as noise.

Fig. 13. Characterizing the tradeoff between various levels of averaging with PCA on the scalable trojan

benchmarks.

successive measurements, there are 80 images in the data set: 40 for the test chip (either trojan-
free or trojan-inserted) and 40 for the trojan-free circuit. A high pass spatial filter is also used to
filter out RTL independent activity of low spatial variation, and to increase the contribution of the
magnetic fields from power traces that have sharp spatial changes. Since the scalable trojans are
smaller and more localized to one region of the FPGA, only the bottom 58% of the field-of-view
(348 × 600 pixels) is used in the dataset.

6.5 Example Results

The result of applying the CNN and density-based clustering to data from several test chips
(Figure 10) is shown in Figure 14. Each dataset is plotted along the two components that allow
for best visualization of that specific dataset and its clustering. However, the clustering algorithm
itself uses all four dimensions of the CNN latent variable components in its calculations. Figure 14
only shows the results for the test data (33% of the total data). No trojan is detected in the case of
the trojan-free test chip (c). Trojans are detected in the cases of the large and small counter trojan
test chips (a and b).

As discussed in the next section, the accuracy of the CNN autoencoder is higher than that of
PCA.

6.6 Trojan Parameters

The scalable trojan tests evaluate the detection limits and strengths of the QDM+ML method. We
consider the effect of low-power trojans by scaling each type of hardware trojan down in size and
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Fig. 14. Successful classification of QDM data for test chips is achieved by applying density-based clustering

to CNN latent variables for (a) Trojan-free circuit vs. Large Trojan test chip, (b) Trojan-free circuit vs. Small

Trojan test chip, and (c) Trojan-free circuit vs. another Trojan-free test chip. Any points outside a group are

a result of noise.

Table 2. PCA vs. CNN Average Figures of Merit for Scalable Benchmarks

False Positives (FP), False Negatives (FN), Accuracy, and Noise

Method Trojans FP FN Accuracy Noise
CNN Large 0.4/16 = 2.4% 1.1/11 = 9.8% 23.5/27 = 87.2% 7.4%
PCA Large 0/40 = 0% 19.8/40 = 49.6% 56.3/80 = 70.4% 4.8%
CNN All 0.3/16 = 1.6% 4.1/11 = 36.8% 20.8/27 = 76.9% 4.8%
PCA All 3.9/40 = 9.8% 18.2/40 = 45.4% 53.1/80 = 66.4% 4.1%

frequency, to lower the power consumption. Detection is then attempted for each of these versions
of the trojan. Smaller triggers (1 or 2 bit triggers) are expected to be more difficult to detect due
to the small currents. However, a practical trojan trigger would likely require more circuitry for
an effective attack. The decrease in accuracy with smaller trojan sizes is seen to be the case in
Table 2, where the larger trojan triggers are detected with 87% accuracy, compared to 76.9% for all
trojans. If necessary, then we could average over longer times to improve the SNR and detection
accuracy. Table 2 also shows that on average, CNN outperforms PCA with high spatial resolution
QDM measurements by over 15% on average.

The accuracies for the individual scalable trojan tests are shown in Appendix A.1. The large
trojans from Table 2 are marked with an asterisk.

7 TRUSTHUB TROJAN DETECTION

7.1 Motivation

The standard test for trojan detection in the existing literature is the TrustHub benchmark set
[28, 29]. Performance of the CNN detection framework using QDM imaging data is evaluated
using the TrustHub trojan dataset to compare to existing methods. This also demonstrates that
QDM imaging with CNN trojan identification works for trojans representative of more complex
attacks. This is especially true for trojans in cryptographic circuits that are particularly harmful
and tempting from an attacker’s point of view.

The TrustHub AES benchmarks with inserted trojans are selected for evaluation in this study.
These contain a base circuit performing AES encryptions with trojans inserted that leak the key
or cause a denial of service. Some of the trojans are always on, whereas others have a trigger that
checks for a predefined state or plaintext input [28, 29].

7.2 FPGA Setup

The plaintext and key inputs to the AES base circuit are generated by two 128 bit LFSRs on
the FPGA outside of the diamond field-of-view. These allow for consistent control of the circuit
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Table 3. Descriptions and Sizes of the AES TrustHub Trojan Benchmarks Evaluated in This Work

Benchmark Description Payload Primitive Count Trigger Primitive Count Trigger Size (%)
AES-T100 Always on, leak AES key with

CDMA covert channel
84 Reg, 9 LUT N/A N/A

AES-T300 Always on, leak intermediate
states

64 Reg, 26 LUT N/A N/A

AES-T500 Triggered on sequence of
plaintext, reduce battery life
(dos)

128 Reg 1 Reg, 179 LUT, 44 Carry 1.9%

AES-T700 Triggered on plaintext value, leak
AES key with CDMA covert
channel

84 Reg, 9 LUT 1 Reg, 43 LUT, 11 Carry 0.5%

AES-T1400 Triggered on plaintext sequence,
leak intermediate states

64 Reg, 32 LUT 1 Reg, 179 LUT, 44 Carry 1.9%

activity between the trojan-free circuit and trojan-inserted circuits. The placement and rout-
ing of the base circuit logic is kept constant between the trojan-free and trojan-inserted con-
figurations to minimize differences. Constraints are also added to preserve relevant trojan logic
that would be removed in synthesis or other optimizations, since we are modeling an attacker
adding trojans at the foundry stage. The TrustHub trojan benchmarks tested are listed in
Table 3 [28, 29]. Since the payloads of three of the trojans (500, 700, and 1,400) are never acti-
vated, the trigger primitive count as a percentage of the AES base logic primitive count is also
given.

7.3 QDM Measurements and Analysis

The QDM measurement setup is the same as for the scalable trojans. As before, 80 magnetic field
measurements are collected for each benchmark.

The PCA and CNN autoencoder with clustering methods are applied to the TrustHub side-
channel QDM image data set. Since the magnitudes of current and thus magnetic field are much
larger than those of the scalable trojans, no high pass filtering or averaging is necessary to in-
crease SNR. For the larger TrustHub trojans, the entire QDM field-of-view (600 × 600 pixels) is
used, and the image data is normalized due to the larger spread in magnetic field magnitudes. Due
to the larger magnetic signatures, the autoencoder is simplified to just one convolutional layer
and smaller fully connected layers, and the model is only trained for 1,000 epochs. To allow for
accurate comparison, the initial weights are randomly seeded for all the trojan test analyses.

7.4 Results

The CNN autoencoder is able to successfully determine that there is no trojan when considering
a trojan-free test chip, and also that the trojans from Table 3 are present in the trojan-inserted test
chips. This is true even in the case of AES-T700, where the trojan trigger (only actively switching
circuitry) is not in the diamond field-of-view, since the QDM still images power delivery to the
circuitry as well as the data and clock interconnect to the trigger logic.

The average accuracies using PCA and CNN are shown in Table 4. The average accuracy does
not include the AES-T700 benchmark, which has the trojan trigger outside of the diamond field-
of-view. In this demonstration, the diamond location is fixed to a set field-of-view. However, a
practical setup to be pursued in future work would stitch together a larger field-of-view through
multiple QDM measurements across the chip or scale up the field-of-view with a larger dia-
mond to cover the entire chip in a single image. Results for the individual benchmarks are in
Appendix A.2.
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Table 4. PCA vs. CNN Average Figures of Merit for TrustHub Benchmarks

Method FP FN Accuracy Noise
CNN 0.8/24 = 3% 0.6/30 = 2% 47.2/54 = 87% 10%
PCA 2.6/80 = 3% 17.2/80 = 22% 134.8/160 = 84% 3%

8 DISCUSSION

Comparison between the CNN and PCA (prior work) methods in the previous sections shows that
the deep learning is beneficial for trojan detection accuracy. In addition, the QDM measurement
framework offers unique advantages over existing methods and provides opportunities to utilize
previously inaccessible measurement regimes. High resolution and wide field-of-view imaging of
the spatially distributed DC magnetic field associated with power delivery provides novel insights
into the characteristics of the device under test. For example, high-frequency electromagnetic fields
can be shielded and suppressed due to the skin depth of common metals and spatially distributed
thermal effects can be hidden through simple coatings. However, the low frequency magnetic fields
detected by the QDM are challenging to shield or distort and require high permeability of ferrous
materials to distort the local magnetic field and distort the characteristic magnetic fingerprints of
power delivery and resource distribution.

The attacker can attempt to insert HTs such that the layouts with and without trojan are spatially
similar, thus attempting to reduce the benefit of the high spatial resolution imaging of the QDM
over standard near field probe methods. However, when we take into account different switching
activity, component sizing, and necessary variations in metal layer routing for the inserted trojan,
it is difficult to have the exact same currents and magnetic signatures in both cases, especially
given the full-magnetic vector sensing capabilities of the QDM. It might be possible to imitate one
component of the magnetic field through interference of local magnetic fields, but it is challeng-
ing to hide all components of the magnetic field of a HT. The greatest tool an attacker has for
hiding the trojan from the QDM is increasing stand-off distance of the package and thus blurring
out the characteristic features of the magnetic field. The sensitivity of the current QDM is far from
the theoretical limits of performance and great strides are being made to push down the measure-
ment noise floor. As the sensitivity of the QDM increases, there are fewer avenues to hide HTs
in the noise of the measurements with drawing small currents, interfering local magnetic fields,
or increasing standoff distance of the chip. Having identical magnetic fields across all of these un-
known parameters while also creating a trojan that can perform something malicious is a difficult
task for an attacker in the limited time at the foundry and the steady improvement of the QDM
makes this an even more challenging task.

Additionally, we perform a quantitative comparison of our QDM method with standard EM
field probe-based detection [15]. To limit the differences between detection results to that of
just the measurement method, we also apply the same Euclidean distance golden-chip-based
method described in Reference [15]. Both works perform detection of the AES-based TrustHub
trojans [28], with the Euclidean distances for the TrustHub trojans, calculated according to the
method outlined in Reference [15], shown in Table 5. While there is not exact overlap in the tro-
jan benchmarks evaluated by the two methods, many of the benchmarks are quite similar, dif-
fering only in the PRNG initialization or plaintext comparison for triggering the trojan. As de-
scribed in previous sections, we consider detection of trojans where the payload is not activated
during the detection process. However, Reference [15] only attempts to detect trojans that are
pre-activated, and notes that detecting un-activated trojans would require a very high detection
resolution.
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Table 5. Comparison of QDM (left, this work) and EM Field Probe (right, Reference [15]) Detection

Methods Using Euclidean Distance

Benchmark Normalized Euclidean Dist.
AES 1
AES-T100 1.50
AES-T300 6.41
AES-T500 3.88
AES-T700 1.04
(outside FOV)
AES-T1400 1.48

Benchmark Normalized Euclidean Dist.
AES 1
AES-T100 1.88
AES-T200 1.69
AES-T400 1.64
AES-T700 2.56
AES-T800 1.57
AES-T900 4.81
AES-T1000 2.88
AES-T1100 1.86
AES-T1200 4.54
AES-T1600 2.64
AES-T1700 2.93

We are able to achieve this higher detection resolution with the QDM, and detect un-activated
TrustHub hardware trojans with the same Euclidean distance algorithm. While the variation of
the distances is higher in our work, this is likely due to the larger environmental perturbations, as
well as a lack of optimized spatial pre-processing in computing these distances, such as the wavelet
denoising used by Reference [15] for time-series data.

In addition, a comparison of qualitative and quantitative parameters of prior work to this study
are provided in Table 6. Importantly, the QDM method is unique in its ability to provide wide
field-of-view trojan detection with a golden-chip-free methodology. We emphasize that this is
not a perfect comparison, since the TrustHub trojan implementations are not identical across the
different works, due to different synthesis tools as well as FPGA architectures (as seen in comparing
the number of LUTs and Registers in our results and prior works). However, these results are a
clear quantitative indication that the QDM has benefits over preexisting methods. Future work
will include optimized implementations of standard EM probe test setups for direct comparison.
This will allow for side by side comparison of the measurement capabilities.

In summary, we find that the QDM + CNN framework can detect TrustHub trojan triggers
effectively, with a minimum size of 0.5% of the total logic primitive count as defined in Table 3. We
expect the sensitivity of the QDM will improve further with ongoing experimental improvements,
allowing for detection of even smaller trojans in the future.

9 CONCLUSION

In this work, we demonstrated the first usage of high spatial resolution and wide field-of-view
magnetic field measurements using the Quantum Diamond Microscope (QDM) for hardware
trojan detection. We also showed that this side-channel data can be used for trojan detection
through a convolutional neural network (CNN) and clustering analysis for unsupervised deep
learning.

An initial result of these measurements is that there is more DC current leakage of information
from integrated circuits (ICs) than initially expected, as represented by patterns of magnetic fields
induced by the currents, which pass out of ICs largely undisturbed. This DC leakage would be
difficult to see in global power measurements due to other ongoing activity and is not observable
in inductive techniques, like EM probes, because the induced signal is small and vanishing at low
frequencies.
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Table 6. Comparison to Prior work

Metric This Work [35] [6] [24] [15] [2] [11]
Type Side Side Side Side Side Side Post

Channel Channel Channel Channel Channel Channel RTL
Data Collection QDM Thermal Power Backscattering NF Probe NF Probe Netlist
Golden Reference No Yes No No Simulated Yes Yes
Needed Spectra

Analysis CNN + Cluster INN Cluster Cluster EU T-Test PCA
DUT Artix-7 130nm Sim Kintex-7 Cyclone V Spartan-6 Virtex-II N/A
Instantaneous 3.7 × 3.7 mm Full Chip Single Single Single Single Point N/A
FOV & Resolution 600 × 600 pixels 20 × 20 pixels Point Point Point 17 × 21 grid

Test Logic TrustHub AES w/ TrustHub TrustHub TrustHub AES-128 w/ TrustHub
AES BM sequential HT AES BM AES BM AES BM comparator HT BM

Result 87% 98.2% 88.75% 100% EU > Visual 96%
Accuracy Accuracy Accuracy Accuracy Threshold comparison Accuracy
3% FP for all HTs shows HTs 3% FP
2% FN 58% FN

(NF = Near Field, BM = Benchmark, EU = Euclidean Distance).

The present work on FPGA-based hardware trojans can easily be extended to custom integrated
circuits that have a similar fabricated structure. One major difference is that FPGAs can be repro-
grammed to express both trojan-free circuits and many trojan-inserted circuits with a single chip.
However, many circuits of interest are ASICs, where a trojan-free circuit will be a different physical
component from a trojan-inserted circuit.

In addition, it is important to test the efficacy of the QDM+ML trojan detection method with
respect to process variation, for example, with multiple FPGA test chips. This will be addressed in a
future study. Future improvements of the QDM setup include enhanced magnetic field sensitivity,
faster measurement speed, and increased field-of-view. Measurements are currently limited by the
photoelectron-per-second capacity of the cameras, which scales as pixel well depth × number of
pixels × sampling rate. Improved cameras such as lock-in cameras [32], brighter diamonds, and
higher collection efficiency will further improve measurement performance.
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APPENDICES

A INDIVIDUAL TROJAN ACCURACIES

A.1 Scalable Trojans

Table 7 shows PCA and CNN performance on QDM data sets in terms of false positives and false
negatives for each individual scalable trojan test from Section 6.6.

Table 7. False Positive (FP) and False Negative (FN) Values for Scalable Trojan Detection Using PCA and

CNN Analyses of QDM Magnetic Imaging Data

Trojan-free Circuit Trojan in Test Chip PCA FP PCA FN CNN FP CNN FN

200 bit counter None* 0% N/A 0% N/A
167 bit LFSR None* 0% N/A 0% N/A
200 bit counter 8 bit counter* 0% 0% 0% 0%
200 bit counter 4 bit counter* 0% 100% 0% 0%
200 bit counter 2 bit counter 55% 0% 0% 100%
200 bit counter 1 bit counter 0% 63% 0% 64%
200 bit counter 8 bit shift register* 0% 0% 0% 0%
200 bit counter 4 bit shift register* 0% 0% 0% 0%
200 bit counter 2 bit shift register 70% 0% 0% 91%
200 bit counter 1 bit shift register 0% 55% 0% 100%
200 bit counter 32 bit comparator 70% 0% 0% 64%
200 bit counter 16 bit comparator 0% 65% 0% 100%
200 bit counter 8 bit counter (1/2 frequency)* 0% 0% 0% 9%
200 bit counter 8 bit shift register (1/2 frequency)* 0% 60% 0% 0%
200 bit counter 8 bit shift register (1/4 frequency) 0% 80% 0% 91%
167 bit LFSR 8 bit counter* 0% 100% 0% 0%
167 bit LFSR 4 bit counter* 0% 100% 0% 0%
167 bit LFSR 4 bit shift register* 0% 85% 0% 100%
167 bit LFSR 80 bit comparator* 0% 100% 0% 9%
167 bit LFSR 32 bit comparator* 0% 100% 31% 9%

A.2 TrustHub Trojans

Table 8 shows PCA and CNN performance on QDM data sets in terms of false positives and false
negatives for each individual TrustHub trojan test from Section 7.4.

Table 8. False Positive and False Negative Values for TrustHub Trojan Detection using PCA and CNN

Analyses of QDM Magnetic Imaging Data

Trojan-free Circuit Trojan in Test Chip PCA FP PCA FN CNN FP CNN FN

AES None 16% N/A 0% N/A
AES AES-T100 0% 0% 8% 3%
AES AES-T300 0% 8% 0% 7%
AES AES-T500 0% 100% 0% 0%
AES AES-T700 (outside FOV) 0% 99% 13% 27%
AES AES-T1400 0% 0% 8% 0%
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B NEURAL NETWORK ARCHITECTURES

B.1 Scalable Trojans

The CNN layer architecture used in Section 5.3 to detect scalable trojans is shown in Figure 15.

Fig. 15. Block diagram of the CNN autoencoder architecture used for scalable trojan detection. Training is

done to minimize error between the original image and the reconstruction. The low-dimensional features are

used as inputs to the clustering algorithm for trojan detection. The Max-pooling layers are used to reduce

spatial dimensions and avoid overfitting.

B.2 TrustHub Trojans

The CNN layer architecture used in Section 7.3 to detect TrustHub trojans is shown in Figure 16.

Fig. 16. Block diagram of the simplified CNN autoencoder architecture for TrustHub trojan detection.
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C QUANTUM DIAMOND MICROSCOPE EXPERIMENTAL SETUP (FIGURE 17)

Fig. 17. (a) Complete optical setup of QDM; (b) development board with diamond placed over field-of-view

in decapsulated FPGA. Diamond, microwave loop, laser, and camera positioned above the FPGA for ODMR

measurements.

D TROJAN PSEUDOCODE FOR COMPARATOR, SHIFT REGISTER, AND COUNTER

BUILDING BLOCKS

D.1 Comparator Trojan Building Block

Require: in (4 bits from base code), enable
trigger← ((enable == “1”) AND (in == “1111”))

D.2 Shift Register Trojan Building Block

Require: in (1 bit from base code), clock, reset, enable
if rising edge clock then

if reset or not enable then

shift_reg← 0
end if

shift_reg[3:1]← shift_reg[2:0]
shift_reg[0]← in

end if

trigger← (shift_reg == “1111”)

D.3 Counter Trojan Building Block

Require: in (1 bit from base code), clock, reset, enable
if rising edge clock then

if reset or not enable then

count← 0
end if

if in = “1” then

count← count + 1
end if

end if

trigger← (count == “1111”)
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