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Abstract 

Currently, cleaner fish are one of the most widely used sea lice control strategies in Atlantic 

salmon aquaculture. Two species are currently being farmed in North Atlantic countries, ballan 

wrasse (Labrus bergylta) and lumpfish (Cyclopterus lumpus), and the sector in most countries 

is rapidly expanding towards self-sufficiency. The species are very different both in terms of 

their biology and life histories and, consequently, production and husbandry methods must be 

tailored to each species. There are numerous health challenges currently experienced in both 

species, with bacterial and parasitic diseases being the most prevalent, and cohabitation with 

salmon may increase the risk of disease. Good husbandry and routine health monitoring are 

essential, although treatment is often required when disease outbreaks occur. Ballan wrasse 

and lumpfish are both proven to be effective salmon delousers, although delousing efficacy can 

be variable in farmed fish; the provision of suitable habitat and acclimation to net-pen 

conditions may encourage natural behaviours, including delousing, and the use of operational 

welfare indicators can highlight potential welfare issues. Cleaner fish research is progressing 

rapidly, although much of the basic knowledge regarding the species’ biology remains 

unknown. The simultaneous domestication of two new marine aquaculture species is a 

significant challenge demanding sustained effort and funding over a prolonged period of time. 

Research must focus on enhancing the robustness of the farmed stocks and increasing hatchery 

outputs to meet the urgent demands from the salmon sector and protect wild stocks from 

overfishing. 

  



1. Introduction 

The greatest disease challenge currently limiting production within the global Atlantic salmon 

industry is infection by caligid sea lice. Along with causing significant physical and 

biochemical damage, including skin lesions, loss of protective skin function leading to risk of 

secondary infections, osmoregulatory imbalance, immunosuppression and increased stress1,2, 

there are significant economic impacts due to production losses and treatment costs. The global 

economic impact of sea lice was estimated at £700 million in 2015, with costs likely to have 

continued to rise since then.3 In terms of the production losses, Abolofia et al.4 estimated that 

sea lice infection typically results in up to a 16% reduction in production biomass, which 

translates approximately to a 9% loss in farm revenues. Driven by environmental and welfare 

concerns, and economic pressures, many new innovative strategies for pest control in salmon 

farming have been developed over recent years, including lice removal technologies using 

brushes or water jets (e.g. hydrolicer), novel bath treatments using warm water (thermolicer) 

or fresh water, physical barrier technologies (e.g. snorkel cages and lice skirts), light regimes 

to manipulate salmon swimming behaviour and passive lice control using laser technology 

(Stingray, Stingray Marine Solutions) (reviewed in Holan et al.5). Other methods are in 

development, including new chemotherapeutants, vaccines, feed additives and selective 

breeding. Since 2010, one of the most widely adopted alternative pest control strategies is the 

use of cleaner fish as a biological control. While not a novel method with the first proof-of-

principle reported in the early 1990s6, 7, the expansion of farmed cleaner fish production has 

led to the emergence of a new sector with new production challenges, including the health and 

welfare management of these new aquaculture species. 

Prior to circa 2011, all cleaner fish deployed in salmon sea cages were wild caught wrasse 

species from the family Labridae, including cuckoo (Labrus mixtus), ballan (Labrus bergylta), 

corkwing (Symphodus melops), goldsinny (Ctenolabrus rupestris) and rockcook (Centrolabrus 



exoletus). Based on farm experience, there was a preference towards the deployment of ballan, 

goldsinny and corkwing wrasse, driven primarily by stock availability8 and enhanced delousing 

performance.9,10 The level of exploitation in Norway (where the longest record of catch and 

deployment exists) provides an insight into the scale of application, where the use of wild 

wrasse increased from 1.7 million fish in 2008 to 20 million in 2016.11 However, such 

increasing demands for cleaner fish due to the recent industry expansion together with 

increasing sea lice pressures and biosecurity concerns, has led to the farming of cleaner fish to 

control the quality and health of deployed animals and ensure the environmental sustainability 

of this pest management strategy. To this end, two species are currently being farmed in North 

Atlantic countries (UK, Ireland, Norway, Iceland and Faroe Islands)12, ballan wrasse (reviewed 

in Davie et al.13 & Lekva & Grotan14) and lumpfish (Cyclopterus lumpus) (reviewed in Powell 

et al.15). Despite farming being in its infancy with the first farmed ballan wrasse deployed in 

salmon pens in 2013 in Scotland16, the sector in most countries is rapidly expanding towards 

self-sufficiency. In Norway, 17.2 million (46%) of the 37.4 million cleaner fish deployed in 

2016 were of farmed origin, comprising 15.9 million lumpfish and 1.3 million ballan wrasse.11 

In comparison, UK farmed cleaner fish production in 2016 was 1.9 million lumpfish and 

118,000 ballan wrasse, which was 68% of the total cleaner fish deployed.17 Annually, these 

numbers are increasing significantly, primarily driven by lumpfish production as they are 

proving to be the least challenging in terms of hatchery production. 

This paper provides a comparative overview of the scientific knowledge and industry practices 

regarding the biology and deployment of cleaner fish with an emphasis on the health challenges 

and welfare of both species. 

 

 

 



1. Overview of cleaner fish production  

Although being used for a common purpose, ballan wrasse and lumpfish are quite distinct, both 

in terms of their biology, ecology and life histories (Table 1). This can be beneficial as each 

species can be used for sea lice control under different conditions, with each having its own 

biological niche in the net-pen environment, but it also means that production and husbandry 

methods must be tailored to each species.  

Ballan wrasse are protogynous hermaphrodites18,19 with a complex hierarchy and a highly 

skewed sex ratio, which makes broodstock management challenging.20 The spawning window 

is naturally in April–June21 but this can be extended in captivity using environmental 

manipulation.13 Due to their long generation time (reaching puberty at ~6 years for females and 

12 years for males19), current hatchery production is exclusively from wild-caught broodstock, 

although F1 stocks are now being retained by commercial hatcheries to act as future potential 

broodstock. Ballan wrasse typically require 18 months to reach their deployment size of 40–

50g22, which includes a two-month live feeds period with weaning to formulated feeds being 

completed by about 70–90 days post hatch depending on hatchery protocols (Fig. 1). Research 

is ongoing to optimise the species’ growth potential primarily through environmental and 

nutritional manipulations with the objective being to shorten the production period to reduce 

costs, optimise the use of hatchery and nursery facilities and increase overall productivity. The 

primary focus is on improving understanding of nutritional requirements and digestive 

physiology, especially given their agastric digestive system.23 As in most other non-

domesticated marine fish species, larviculture can be challenging with high mortalities during 

the early larval stages, primarily during first feeding and weaning. There are also anecdotal 

reports of deformities in juveniles, primarily jaw and spinal pathologies, which could reduce 

their delousing efficacy. However, there remains no clear data, nor has the aetiology for such 

conditions been identified, though, as with other marine species, it is most likely multifactorial. 



Farmed lumpfish are currently produced from wild-caught broodstock, which are culled and 

the gametes stripped for artificial fertilisation.24 Due to the increased biosecurity risk associated 

with wild broodstock, a post-mortem health screening is recommended, and only egg masses 

from clean parents should be used for production. Natural spawning in captivity is possible25, 

although quality is generally poorer than in egg masses produced using artificial fertilisation15. 

Given the well-established supply chains for mature adults from caviar fisheries26, wild fish 

remain the favoured source of broodstock. The production cycle for lumpfish is nearly 60% 

shorter (5–7 months to a deployment size of around 20g) than in ballan wrasse (Fig. 1), which 

is one of the main drivers for the increased focus on the production of this species in Ireland, 

UK, Norway, Faroes, Iceland & Canada. The rapid growth rate of lumpfish (SGR 1.5–3.5% 

per day27) brings with it challenges in production management, primarily due to a conflict 

between ensuring effective vaccination strategies while maintaining size grades desired for 

deployment. However, it is anticipated that closed-life-cycle management will be viable given 

the species’ short generation time15, which should enable the selective improvement of traits 

of interest (e.g. slower growth, enhanced delousing and disease resistance). 



Table 1. Natural range, population dynamics and reproductive traits in wild ballan wrasse and lumpfish. 

 

 Ballan wrasse Lumpfish 

Natural range East-Atlantic coasts (Morocco – Trondheim and Iceland).18  Widely distributed in North Atlantic (Hudson Bay – Bermuda, 

Greenland, Iceland – Iberian Peninsula).28 

Natural habitat  Rocky reefs.18 Bentho-pelagic.29 

Home range High site fidelity.30,31 Extensive migrations between feeding and breeding grounds.32,33 

Status of wild 

stocks 

Least concern on IUCN Red List34, although not assessed 

since 2010. 

Near threatened on the IUCN Red List35. Decrease in some 

spawning stocks in recent decades, may be overexploited.36 

Population 

genetics 

Two predominant genetic clades (Scandinavian & Celtic) 

based on mitochondrial haplotypes.37 

Three distinct populations based on microsatellite markers: Maine-

Canada-Greenland, Iceland-Norway and Baltic Sea.36 

Gender system Protogynous hermaphroditic resulting in highly skewed sex 

ratio.19,38 

Gonochoristic.39 

Natural diet and 

digestive system 

Omnivorous, primarily hard-shelled crustaceans e.g. 

decapods, isopods and molluscs19; substrate grazers.9 Agastric 

digestive system.23 

Larger planktonic organisms (harpaticoids, amphipods, isopods). 

Sea lice regularly ingested.29,40,41 Stomach present. 

Fecundity 105–154 eggs/g per season in 650–950 g fish21; ~100 eggs/g 

per spawning in 500 g fish.42  

Wild Greenland lumpfish potential fecundity of 49–60 eggs/g for 2 

kg fish, increasing with latitude43, and mean of 61 eggs/g for 2 kg 

fish from Gulf of St Lawrence.44 

IUCN, International Union for Conservation of Nature. 

 

 

 



 

 

Figure 1. Typical commercial production timelines for ballan wrasse and lumpfish. DD = degree days, DPH = days post-hatch. Image credits: 

A. Brooker, C, Gutiérrez, A. Chalaris, T. Cavrois, J. C. Navarro.  



2. Cage management: cleaner fish behaviour, welfare and re-use 

2.1 Behaviour and delousing efficiency 

Ballan wrasse and lumpfish are omnivorous, opportunistic feeders, and they are both proven to 

be effective salmon delousers.45,46,47 However, it remains unknown whether they predate sea 

lice on salmon or other hosts in the wild. The natural diet of the two species is quite distinct 

and reflective of their different environmental preferences (Table 1). Cleaner fish mutualism is 

widely recognised in tropical-reef-dwelling wrasse48,49, so cleaning behaviour may be innate, 

in the Labridae at least. In tank studies, farmed ballan wrasse naïve to both salmon and sea lice  

reduced sea lice prevalence from 12 to less than 0.5 adult lice per salmon after 60 h even when 

supplementary food (crushed mussels) was available.45 Furthermore, Skiftesvik et al.50 found 

that farmed wrasse were as effective as wild wrasse at delousing in cage studies. Imsland et 

al.51 reported that lumpfish in experimental net pens maintained sea lice levels significantly 

lower than in controls, although there was evidence of variable performance that may be related 

to genetics or animal size. All studies have found that both species preferentially predate larger, 

motile lice stages, although chalimus stages can also be predated.52  

Lumpfish are deployed at a smaller size than ballan wrasse (15–30g vs. 40–50g) as their 

broader cross-section prevents their escape from net pens at these sizes (Table 2). Small 

lumpfish (20–30g) are thought to be more effective delousers than larger lumpfish (>75g)53, 

but more research is required to confirm this. Conversely, delousing was found to be more 

rapid in larger ballan wrasse (~75g) than smaller fish (~23g), although there is an increased 

risk of aggressive behaviour leading to salmon injuries when deploying larger wrasse during 

the first year of seawater production.45 

Stocking rates are generally higher for lumpfish than for ballan wrasse. Treasurer54, Skiftesvik 

et al.50 and Leclercq et al.45 recommended a stocking ratio of 5% wrasse:salmon, whereas 

Imsland et al.47,51,55 used stocking ratios of 10% and 15% for lumpfish. Anecdotal evidence 



from the Scottish and Norwegian salmon industries indicate that stocking ratios of 

approximately 5% for ballan wrasse and 8–10% for lumpfish are widely used. 

Strict biofouling control and salmon mortality removal is important when using ballan wrasse, 

as these alternative food sources can preclude delousing.9,50 These practices are considered less 

important for lumpfish, which may benefit from the alternative food sources46, and indeed, the 

Faroese aquaculture industry promotes net biofouling to reduce the effects of strong coastal 

currents in the net pens.56 

Water temperature is an important consideration for both ballan wrasse and lumpfish as it 

dictates their deployment windows. The ballan wrasse is a temperate species and tends to have 

slower swimming and foraging activity at temperatures below 10°C57, and below 6°C they 

enter into a state of torpor30 (Table 2). In contrast, lumpfish continue to feed at 4°C27, but 

industry reports suggest that they prefer lower temperatures and are more prone to disease at 

higher temperatures (>10°C). Consequently, wrasse are best deployed in the spring/summer 

when water temperatures are rising, while lumpfish are best deployed in the autumn/winter 

when water temperatures are dropping (Table 2). 

Ballan wrasse and lumpfish are diurnal species; they are active during the day, when they are 

likely to exhibit delousing behavior, and rest at night.30,58,59 Lumpfish tend to swim at shallower 

depths than ballan wrasse, which adjusted their swimming depth according to the time of day 

in commercial net-pen trials59 (Table 2). The species’ differences in temperature preferences 

and behaviour suggest that a combined wrasse/lumpfish deployment strategy may prove to be 

more effective than a single-species approach. 

 

2.2 Husbandry practices  

Good health and welfare can be promoted through good husbandry practices, and while many 

improvements in cleaner-fish husbandry have already been made, including transportation, 



acclimation, supplementary feeding, hides and substrates, many more will come as new 

knowledge becomes available.60 In the wild, ballan wrasse inhabit coastal reefs, preferring the 

cover of rocks or kelp19, and tend to be territorial with relatively small home ranges and limited 

migrations.31 They are diurnally active and nocturnally quiescent, sheltering overnight in rocky 

crevices.30,31,61 Wild lumpfish have an offshore, semi-pelagic lifestyle and are often associated 

with floating seaweed.32,40,62  

Despite their different lifestyles, the habitat requirements of both ballan wrasse and lumpfish 

can be met through the use of artificial substrates, or hides (Table 2). These provide shelter for 

ballan wrasse, particularly during the night, although the net-pen corners and sides are preferred 

locations for ballan wrasse at any time of the day or night.59 Imsland et al.55 found that while 

lumpfish spent much of the daytime foraging, they were usually found resting within or under 

floating weed when not feeding, and at night they tended to aggregate on smooth substrates 

using their abdominal suckers.58 Various hide configurations are produced commercially, but 

they are typically made from strips of plastic attached to ropes to form strands of artificial kelp 

with the addition of rigid plastic substrates for lumpfish to adhere to.58 Continued research into 

hide types, colours and locations in the net pen may yield further enhancements.  

Sea lice levels in commercial salmon net pens are maintained as low as possible. In the UK, 

for example, the Aquaculture and Fisheries (Scotland) Act 2007 sets a treatment threshold of 

0.5–1 adult female lice per fish. These low lice levels are inadequate to sustain a population of 

cleaner fish, and although both wrasse and lumpfish are known to graze on biofouling in net 

pens9,46,47, supplementary feeding is essential to maintain the condition and welfare of the 

cleaner fish.50,63 Several feed manufacturers now produce pelleted diets for ballan wrasse and 

lumpfish, and these can be delivered by hand or automatic feeders into the hides or near the 

pen edges, which allows feeding behaviour to be monitored. Typical feeding rates are 2% of 

the fish biomass every other day.60 As ballan wrasse are predominantly substrate grazers, their 



condition can be better maintained using agar-based feed blocks placed within small feeder 

shelters away from the main hides.63 The use of this water-stable feed is becoming more 

widespread and has also being trialled for lumpfish.64 

The acclimation of hatchery reared cleaner fish to the net-pen conditions is likely to be 

beneficial in reducing stress and encouraging natural behaviours (including delousing). For 

example, retaining ballan wrasse in a small conditioning pen containing hides and agar feed 

within the main net pen for several weeks before release has been reported to improve 

deployment success.60 

 

2.3 Welfare 

As cleaner fish are produced for their delousing behaviour as a pest management strategy rather 

than any physical characteristics, good welfare is essential to promote their natural behaviours. 

For any new species in aquaculture, it is important to develop indicators to define and monitor 

welfare. 

The development and standardisation of best management practices (e.g. RSPCA cleaner fish 

welfare standards65) and routine health checks are essential to minimise disease and maintain 

a good welfare status. To monitor health and welfare both in hatcheries and following 

deployment at sea, operational welfare indicators (OWI) must be defined for each cleaner fish 

species, and these should be based on preferred environmental conditions, physical and 

physiological status or behaviour.66 Mortalities are a definitive indicator of poor health and 

welfare, and they should be recorded along with condition and growth rates. Fulton’s condition 

index67,68 can be used for both species to indicate general animal condition. However, it should 

be noted that given their rotund body form, the typical ranges recorded for lumpfish (e.g. 4–

4.555) are much higher than in most other teleosts. Nonetheless, datasets have confirmed that 



the species follows an isometric growth pattern so the method is valid69 (A. Davie, unpublished 

data). 

In many fish species, fin damage can be a result of aggression and a sign of stress70, and these 

injuries can be a portal for bacterial and fungal infections. Fin damage indices have been 

developed for both wrasse71 and lumpfish (S. Rey, unpublished data) and could easily be 

implemented as a physical OWI. Elevated blood glucose and lactate is a sign of stress and can 

be measured using handheld meters, and this method has been validated for ballan wrasse.72 

Other physiological parameters could be used (e.g. hepatosomatic index73 or liver-colour 

scoring index56), although they require sacrificial sampling. Behaviour can also be used to 

assess animal welfare.74,75 Environmental, dietary and social preferences can be determined by 

choice tests or place preference tests, and routine monitoring of behaviour at salmon farms may 

be achieved by visually observing and recording behaviour at the surface or underwater using 

video cameras, or more quantitative techniques could involve sonar or acoustic tagging of 

sentinel cleaner fish.59 

 

2.4 Re-use and end use 

Cleaner fish trained in salmon delousing are a valuable resource, and once a production cycle 

is finished, the capture and redeployment or breeding of these fish could be considered to be 

an efficient use of this resource. However, biosecurity issues may prevent their reuse, and this 

practice may not be permitted in some countries. While reuse may be an option for wrasse, the 

rapid growth rates of lumpfish and their tendency to be poor delousers and aggressive when 

mature53 precludes their reuse.  

For cleaner fish that can no longer be used as delousers there are several possibilities for their 

end use if they are harvested appropriately. As availability increases, there is increasing interest 

from the retail sector for both species, including the use of ballan wrasse for sashimi (Cornwall 



Good Seafood Guide76); there is an emerging market for whole and filleted lumpfish, especially 

in Asia, and exports to China bring in more than €18 million per year to the Icelandic 

economy.77 However, further research is required to develop this market, and public perception 

may be an issue due to its unusual appearance.78 A further market opportunity for lumpfish 

could be the production of lumpfish roe from mature captive females as a sustainable 

alternative to wild fisheries26, although this would require the development of additional 

rearing facilities to ongrow the fish once they had exceeded their effective delousing size. 

Finally, biliverdin, a compound responsible for the blue coloration of ballan wrasse and 

lumpfish79 has several potential applications in research, medicine and biotechnology, 

including fluorescence microscopy and as a storage medium for transplant organs. While large 

quantities could potentially be extracted from cultured ballan wrasse blood80, the cost of 

extraction compared to other sources must be further studied. 



Table 2. Comparison of deployment and husbandry practices for farmed ballan wrasse and lumpfish in salmon sea pens (with a focus on UK 

production). 

 

 Ballan wrasse Lumpfish 

Deployment 

window 

Spring/summer with increasing water temperature. Late autumn/winter with decreasing water temperature. 

Transportation Fish starved 24 h prior transport via road in tanks with hides 

present, then secondary transport via boat to net-pen site. 

Fish starved 24 h before transport via road in tanks with hides present, 

then secondary transport via boat to net-pen site. High-stress periods 

are loading, handling, secondary transport.81 

Deployment size At least 40–50g to prevent escape through net mesh.54 Larger 

wrasse may be more effective delousers.45 

Typically 15–30 g81 (R. Hawkins, Marine Harvest Scotland, pers. 

comm., 2017). Ineffective delousers when mature (400–500g, 14–16 

months55). 

Stocking rate 5% of salmon number.45,50,54 10% of salmon number.47,51,55 

Use of hides and 

substrates 

Plastic fake kelp; various configurations available 

commercially, e.g. curtain, lantern, float frame. 

Plastic fake kelp and smooth, flat surfaces for resting; various 

configurations available commercially. 

Feeding 

behaviour 

Will not feed below 6°C, winter dormancy.57,82,83 Will feed as low as 4°C.27 

 

Swimming 

Activity 

Slower than lumpfish, prefers edges and corners.59 Higher activity rates than ballan wrasse. Covers whole pen area.59 

Active foraging during day, aggregate on smooth surfaces at night.58 

Buoyancy Physoclistic; rapid pressure changes should be avoided.84,85 

Observations of swim bladder over-inflation in hatcheries 

and net pens. 

No swim bladder, but near-neutral buoyancy due to cartilaginous 

skeleton, extensive sub-cutaneous jelly and loose-fibred muscles.86 

Recapture  Un-baited creels are commonly used to sample or recapture. Hides or habituation to feeding sites are preferred. 

 

 



3. Health challenges, prevalence and management 

3.1 Primary diseases during production 

There are numerous health challenges currently experienced in both farmed ballan wrasse and 

lumpfish, and this is a top priority area for research. 

 

3.1.1 Bacterial diseases  

Bacterial diseases are currently the primary challenge in both species. Secondary bacterial 

infections by opportunistic pathogens may be triggered by poor husbandry or water quality in 

the hatchery/nursery, handling during vaccination, nutritional imbalance, stress or cannibalism 

(common in early stage lumpfish in hatcheries).40 

Atypical strains of the bacterium Aeromonas salmonicida are the aetiological agent of atypical 

furunculosis, affecting both ballan wrasse and lumpfish when water temperatures exceed 

13°C.87 It is the most frequent cause of bacterial disease outbreaks in both species resulting in 

considerable economic losses as a commercial vaccine is not currently available. The bacterium 

is classified into subtypes (A-layer types) by the virulence array protein gene, vapA. Ballan 

wrasse are more susceptible to subtype V in Scotland and both V and VI in Norway, while 

lumpfish appear to be susceptible only to subtype VI.88,89 Outbreaks have occurred in 

hatcheries and at cage sites, although asymptomatic fish can also be positive. Disease 

progression is chronic, and high mortalities have been recorded.87 Affected fish show external 

ulcers on the skin and fins, granulomas in the internal organs and fluid accumulation in the 

abdominal region (Fig. 2a–d). 

Vibriosis in cleaner fish is caused by Vibrio anguillarum, V. ordalii and V. splendidus. 

Pathology is similar for both species with external lesions (ulcers, oedema and haemorrhages), 

enlargement of the caudal peduncle due to fluid retention and necrosis of internal organs (Fig. 

2e). While lumpfish are susceptible to both species, only Vibrio anguillarum has been isolated 



from wild ballan wrasse to date, with up to 60% mortality in 50g fish injected with the 

bacterium.90,91 Other Vibrio spp. have been isolated from cleaner fish but their pathogenicity is 

unclear.89 Birkbeck and Treasurer92 demonstrated that V. splendidus and V. ichthyoenteri are 

part of the natural microbiota of wrasse, and hence, Vibrio spp. may be opportunistic, causing 

disease only if the immune system is suppressed. 

Pasteurella sp. and other pathogens, such as Pseudomonas anguilliseptica, Tenacibaculum 

maritimum, Moritella viscosa and Piscirickettsia salmonis, have been reported as primary 

pathogens causing Pasteurellosis in lumpfish.93,94,95,96,97,98,99,100,101 Symptoms of Pasteurella 

infections commonly include skin lesions as white patches around the eyes, tail rot and bleeding 

in the gills, the base of the fins and tail99 (Fig. 2f), although similar symptoms have been 

observed in other bacterial infections, e.g. skin ulcers and tail rot in Tenacibaculum maritimum 

infections in lumpfish in Norway.100 

In Norway, epitheliocystis has also been observed in ballan wrasse, which is an intracellular 

bacterial disease caused by Candidatus sp. Similichlamydia labri. nov. and affects the 

secondary lamellae of the gills.102  

 

3.1.2 Parasitic diseases  

The ubiquitous Neoparamoeba perurans, the causative agent of Amoebic Gill Disease (AGD), 

has been reported as a natural infection in both ballan wrasse and lumpfish, and experimental 

infection has been successful in lumpfish cohabiting with infected salmon.103 Primary 

histopathology shows pale patches at the bases of gill filaments, hyperplasia of epithelial cells 

and fusion of gill lamellae103,104 (Fig. 2g,h). Low-to-moderate mortalities in hatcheries and cage 

sites have been reported due to AGD. 



 

Figure 2. Clinical signs of bacterial and parasitic diseases in lumpfish and ballan wrasse: (a) 

external ulcer indicative of atypical Aeromonas salmonicida in lumpfish; (b) multifocal 

granulomas in lumpfish kidney characteristic of atypical A. salmonicida; (c) external ulcer 

indicative of atypical A. salmonicida in ballan wrasse; (d) multifocal granulomas in ballan 

wrasse liver characteristic of atypical A. salmonicida; (e) decolouration and enlargement of the 

caudal peduncle symptomatic of Vibrio spp. in lumpfish.; (f) skin lesions as white patches 

around the eyes symptomatic of Pasteurella sp. in lumpfish.; (h) amoebic gill disease in ballan 

wrasse resulting in pale plaques on the gills; and (g) amoebic gill disease in lumpfish resulting 

in pale plaques on the gills. Image credits: C. Gutiérrez, L. Sheriff, G. Ramírez-Paredes. 

 

 



The microsporidian Nucleospora cyclopteri has been reported in wild lumpfish with 25% of 

fish showing chronic clinical signs, such as pale and uniformly enlarged kidneys (renomegaly), 

exophthalmia and skin lesions.105 Horizontal transmission is confirmed, although vertical 

transmission may also occur due to the close association of spores with eggs. All wild lumpfish 

used as broodstock for commercial production must be tested for N. cyclopteri as there is no 

effective treatment available. Reports on farmed Norwegian lumpfish, have found co-

infections of N. cyclopteri and Kudoa islandica.106 The microsporidian Tetramicra brevifilum 

has recently been reported in lumpfish broodstock causing lethargy, anorexia, exophthalmia, 

severe bloating like ascites, vacuolisation and white nodules in most of the internal organs, 

while skeletal muscle liquefaction and microsporian xenomas were observed in the skin, 

internal organs, gills and eyes.107 

Other ciliates, such as Trichodina sp. and Uronema-like species, have been reported as 

incidental findings on the skin or gills of lumpfish. Heavy infections may lead to mortalities if 

unattended.15 

 

3.1.3 Viral diseases 

Viral haemorrhagic septicaemia (VHS) is a notifiable disease in Scotland and has been reported 

in wild-caught cleaner fish from Shetland.108,109,110 It has not been found in farmed ballan 

wrasse, but was isolated in Icelandic lumpfish for the first time in 2015.111 Interestingly, 

lumpfish infected with VHS were more susceptible to the Infectious Pancreatic Necrosis (IPN) 

virus (another notifiable disease) during experimental infections.94 

In a recent cardiomyopathy syndrome (CMS) event at a salmon farm in Ireland, ballan wrasse 

tested positive for low levels of piscine myocarditis virus (PMCV).112 Only small numbers of 

fish were tested and the histopathology was inconclusive. However, ballan wrasse are known 

to be susceptible to the virus and can be potential carriers. 



A recently discovered lumpfish flavivirus (fam. Flavoviridae) has been associated with 

moderate-to-high mortality in farmed lumpfish in Norway with the virus present in most tissues 

but elevated in liver and kidney, although it has also been detected in lumpfish with no clinical 

signs.113 Clinical signs are anaemia, pale gills, liver inflammation and necrosis and 

inflammation of the abdomen, and it is recommended that all wild-caught lumpfish broodstock 

are tested for the pathogen using RT-PCR, with monitoring and regular screening during the 

production cycle.113 

 

3.1.4 Fungal diseases 

Systemic fungal infections in adult lumpfish by Exophiala spp. have been reported from marine 

hatcheries and seawater sites causing dark lesions in the skin, gills and internal organs, such as 

liver, kidney and musculature.15 However, the source of the infection has not been identified, 

and treatments with bronopol, formalin and even itraconazole have not been 100% successful. 

 

3.2 Prevalence and management 

3.2.1 Prevalence 

Bacterial diseases may lead to mass mortality, especially in the lumpfish. A survey conducted 

in Norway in 2013 reported 48% mortality among the stocked cleaner fish population, with 

75% caused by bacterial infections.90 Similar findings were reported in autumn/late summer 

2015, when bacterial agents were confirmed in nearly 80% of case materials, and atypical 

furunculosis and vibriosis were the most common causes of mortality in cleaner fish.114  

AGD is prevalent in hatcheries where water quality is poor and sand-filtered water is not used 

(flow-through hatcheries) or when recirculation systems are topped up. Some evidence 

suggests that UV irradiation or ozonisation is inadequate to kill free-living amoeba, and in 

some cases amoeba-forming pseudocysts can pass through the system and be re-activated.115   



 

3.2.2 Management 

Following deployment, the survival of cleaner fish is often poor in net pens cohabiting with 

Atlantic salmon, and there are concerns regarding the welfare of wild and farmed cleaner 

fish.116 Good husbandry, such as the provision of hides, clean nets and supplementary 

feeding63, and routine health monitoring are essential.  

AGD can be controlled using hydrogen peroxide, which significantly reduces the numbers of 

amoebae present in the gills (C. Gutiérrez, personal communication). In Atlantic salmon, 

freshwater bathing significantly reduces the presence of amoebae and mucoid patches on 

gills117; the treatment is effective for lumpfish and is used where possible118, but it is not used 

for ballan wrasse due to their low freshwater tolerance. Freshwater is preferred to hydrogen 

peroxide as clearance rates are higher, and hydrogen peroxide can cause mortalities if gills are 

compromised (CG, pers. obs.). In hatchery trials, 15 ppt brackish water over three days 

achieved 100% clearance of AGD in ballan wrasse (P. Featherstone, Marine Harvest Scotland, 

pers. comm., 2017), although further investigation of this treatment for wrasse in sea pens is 

required.  

Authorised antimicrobial treatments (e.g. oxytetracycline or florfenicol) are used in net pens to 

control clinical outbreaks when required. While broad-spectrum antibiotics are effective 

against most bacteria, significantly improving survival rates, some bacterial diseases, such as 

pasteurellosis, are often recurrent requiring longer and more frequent treatments, which 

highlights the importance of disease prevention through good welfare and nutrition, the 

reduction of stress and the use of effective vaccines.  

 

 

 



3.2.3 Vaccination  

As mortality events in cleaner fish are often associated with bacterial diseases, vaccination is 

key to improve their health and welfare, improve survival and reduce the use of antimicrobials. 

Further development of vaccines for cleaner fish and improved vaccination strategies are 

required, and rapid progress has recently been made in this area. 

Due to the lack of commercial (broad spectrum) vaccines available for ballan wrasse, the use 

of autogenous vaccines has increased as new pathogens are regularly isolated from clinical 

outbreaks. Autogenous vaccines currently available in Scotland (Ridgeway Biologicals Ltd.) 

and Norway are aqueous-based dip vaccines and oil-based injection vaccines, which are 

regularly reviewed based on emergent diseases in cleaner fish to meet the needs of the industry. 

Under experimental conditions, for instance, polyvalent autogenous vaccines against atypical 

Aeromonas salmonicida using a homologous strain were found to be protective for ballan 

wrasse with a relative percent survival (RPS) of 79% and 91% at LD50 and LD60.
119 Several 

vaccines are available for lumpfish including an injection vaccine against atypical Aeromonas 

salmonicida (A-layer type VI) and Listonella anguillarum (syn. Vibrio anguillarum) serotype 

O1 and O2a antigens supplied by Pharmaq (Zoetis) and an autogenous vaccine against 

Aeromonas salmonicida and Vibrio salmonicida supplied by Vaxxinova Norway AS. In a 

recent trial, fish vaccinated against atypical Aeromonas salmonicida showed high levels of 

specific antibodies, providing 73% and 60% RPS in monovalent and trivalent vaccines, 

respectively, providing strong evidence that the optimisation of vaccines will improve the 

immunity of cleaner fish to specific diseases.120  

 

3.3 Cohabitation 

As both wild-caught and farmed cleaner fish are used for the control of sea lice in salmon net 

pens, the culture intensification of these species may lead to the emergence of novel diseases. 



Farmed cleaner fish are usually tested for atypical A. salmonicida, Vibrio, Pasteurella 

(lumpfish) and AGD before they are transferred to sea pens, but this is not always the case for 

wild-caught wrasse, and their introduction to net pens should always be risk-assessed. 

Farmed salmon are fully vaccinated and protected against the majority of significant bacterial 

pathogens and viruses, including typical Aeromonas salmonicida, Vibrio salmonicida and 

some viruses, such as IPN and PD.121,122,123 However, cleaner fish may act as reservoirs/carriers 

for other potential pathogens, e.g. Moritella viscosa, Piscirickettsia salmonis, Tenacibaculum 

maritimum or possibly notifiable diseases, such as VHS. 

AGD affects salmon124, ballan wrasse104 and lumpfish103, and cohabitation is likely to increase 

the risk of disease outbreaks as histopathological changes are consistent in all three species. 

Furthermore, it is believed that cleaner fish may act as asymptomatic carriers, which poses a 

threat to cohabiting salmon.103 Although 3-day brackish water treatments have proven to be 

effective in wrasse, it is logistically impossible to carry out these treatments in commercial net 

pens. Commercial trials have shown that cleaner fish (particularly lumpfish, but also ballan 

wrasse) can carry high numbers of amoebae compared to salmon despite being asymptomatic, 

and cleaner fish are often positive for AGD using molecular methods long after salmon are 

negative following freshwater bath/hydrogen peroxide treatments (CG, unpublished data). As 

AGD appears to develop more slowly in cleaner fish than salmon, they should be screened 

using RT-PCR (not scored) for AGD before they are deployed with salmon.103 

While Lepeophtheirus salmonis only infects salmonids, both salmonids and cleaner fish are 

susceptible to infection by Caligus elongatus, and motile stages of C. elongatus can move 

between farmed salmonids and wild fish, especially when water temperatures are high.1  

VHS has caused high mortalities in both wild wrasse109 and lumpfish.111 Therefore, more 

research on how cleaner fish can act as reservoirs of notifiable pathogens is required to mitigate 

the risks of cohabiting with salmon. Ballan wrasse (and corkwing wrasse, Symphodus melops) 



are susceptible to PMCV, and although they may not develop clinical CMS, they can pose a 

significant biosecurity risk to salmon, especially if re-used or moved between sites or pens.112 

Lumpfish are carriers of Piscirickettsia salmonis, and it is present at most sites where they are 

deployed101, which may increase infection pressure on Atlantic salmon, so it is important that 

both species are treated synchronously. 

 

4. Knowledge gaps and challenges  

Cleaner fish farming is still in its infancy, and while research is progressing rapidly with strong 

scientific communities in the UK and Norway collaborating together, much of the basic 

knowledge regarding the species’ biology, their environmental and nutritional requirements, 

their social and delousing behaviour, and their immune functions remains unknown or poorly 

described. The simultaneous domestication of two new marine aquaculture species is a 

significant challenge that demands sustained effort and funding over a prolonged period of 

time. Research must focus on enhancing the robustness of the farmed stocks (better survival in 

the hatchery, reduced prevalence of malformations and a disease-free status) and increasing 

hatchery outputs to meet the urgent demands from the salmon sector and to protect wild stocks 

from overfishing. As there are no selective breeding programmes for cleaner fish to date, 

current research is focusing on improved larval and juvenile performance through better 

microbial management, tailored environmental conditions and husbandry, and optimised diets 

(including live feeds, enrichment, weaning and grower diets that meet the species’ nutritional 

requirements, optimise growth potential in ballan wrasse and limit growth in lumpfish). Health 

management is a critical priority as disease outbreaks throughout all life stages are responsible 

for significant losses in both species. Research is required to characterise immune function in 

these species, and then develop polyvalent vaccines against the most virulent bacteria (e.g. 

atypical furunculosis, Vibrio, Pasteurella) while monitoring for the emergence of new diseases.  



Obviously, promoting welfare and delousing behaviour post-deployment are essential. This 

requires a better understanding of cleaner fish behaviour in captivity including cohabitation of 

different cleaner fish species and stocks, the development of acclimation and/or conditioning 

protocols for farmed stocks to cope quickly and reliably with the transfer from sheltered land-

based hatchery systems to dynamic, open sea pens, and the development of indicators to 

monitor their welfare. Last but not least, there should be a major focus on domesticating the 

species by closing the life cycles, establishing breeding programs and identifying genomic 

markers for relevant traits (especially gender, growth, delousing behaviour and disease 

resistance/robustness) that can be actively selected, and studying population genetics in wild 

cleaner fish stocks across the North Atlantic region and the potential implications of 

translocation.  

While many scientific knowledge gaps and production bottlenecks remain, impressive progress 

has been made over the past decade. The success of this innovative and unique pest 

management strategy will require the fast-tracking of the domestication process over the next 

few years to ensure its sustainability and reliability and support ambitions for the expansion of 

the global salmon industry.   
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