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ABSTRACT  

 

Global patterns of marine biodiversity and the potential impact of climate change 

 

 

Marine species are highly susceptible to climate change as demonstrated by several 

studies. However, most of these studies focus on few species or on restricted 

geographical areas. Within this context, the main goal of my dissertation is to 

characterize global patterns and forecast the effects of climate change on marine 

biodiversity. This work is the first macroecological approach to investigate the effects of 

climate change in the marine realm on key commercial marine groups, namely coastal 

lobsters (125 species), cephalopods (161 species) and small pelagic fish (103 species). 

Here I aimed to improve our understanding of how projected changes in species 

distribution might affect key marine species diversity, body size, assemblage 

composition, variations in catch, and finally infer on the potential impacts for fisheries 

worldwide. Using Ecological Niche Models (ENMs) the projected global diversity 

patterns of the analyzed species generally showed higher values in tropical areas and 

lower values in higher latitudes. Nonetheless, these patterns were projected to change 

significantly by the end of the century, with a general tendency of species tracking 

adequate habitat suitability to higher latitudes. The results obtained provide critical 

information to anticipate negative impacts of climate change on marine biodiversity and 

should be considered in future studies, as they highlight climate hot-spot areas or with 

highly vulnerable species. Ultimately, it is crucial to evaluate species adaptation 

potential and develop hybrid models that better can guide future political decisions on 

conservation and management measures. 

 

 

 

 

 

 

Keywords: Climate change; marine biodiversity; ecological niche modelling; 

macroecology; cephalopods; lobsters; small pelagic fishes.
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RESUMO 

 

Padrões globais da biodiversidade marinha e o potencial impacto das alterações 

climáticas 

 

As espécies marinhas são altamente suscetíveis às alterações climáticas, como 

demonstrado em numerosos estudos. Porém muitos desses estudos focam-se num 

número reduzido de espécies ou numa determinada área geográfica (local ou regional). 

Neste contexto, a presente dissertação tem como objetivo investigar os padrões globais 

de biodiversidade marinha e projetar como estes poderão estar modificados no final do 

século. Este trabalho constitui a primeira abordagem macroecológica que investiga, 

numa escala global, os impactos das alterações climáticas em taxa marinhos com alto 

interesse económico, como lagostas (125 espécies), cefalópodes (161 espécies) e 

pequenos peixes pelágicos (103 espécies). Os padrões globais de biodiversidade 

marinha para todos os taxa analisados mostram maior riqueza na zona dos trópicos e 

menor número de espécies nas maiores latitudes. No entanto, estes padrões podem 

sofrer modificações significativas até ao final do século verificando-se uma tendência 

generalizada das espécies migrarem para latitudes maiores de forma a encontrarem 

refúgio em áreas com boa adequação ambiental. Os modelos usados nesta tese 

(modelos de nicho ecológico) projetam alterações significativas na distribuição das 

espécies analisadas, com impactos profundos na riqueza e abundância em áreas vitais 

para a saúde dos oceanos e para as pescas, a longo prazo. Esta dissertação representa 

um contributo importante para o conhecimento dos padrões globais da biodiversidade 

nos oceanos futuros. Servindo os seus resultados para orientar estudos pormenorizados 

em áreas de risco elevado ou com espécies mais vulneráveis e informar a tomada de 

decisões com vista a proteção de espécies marinhas com elevado valor económico e 

ambiental. Contudo, atendendo aos efeitos das alterações climáticas já sentidos nos 

oceanos, é crucial avaliar a capacidade de adaptação destas espécies e encontrar 

modelos híbridos que melhor nos permitam orientar medidas de gestão e conservação 

futuras. 

 

Palavras-chave: Alterações climáticas; biodiversidade marinha; modelos de nicho 

ecológico; macroecologia; cefalópodes; lagostas; pequenos peixes pelágicos.



 

16 
 



Chapter 1 
 

17 
 

 

CHAPTER 1 
 

1. GENERAL INTRODUCTION 

 

1.1 Global changes 

1.1.1  Oceans 

1.2 Impacts of climate change on marine biota and 

ecosystems  

1.3 Fisheries in a changing ocean 

1.4 Ecological Niche Models 

1.5 Objectives and thesis outline 

1.6 References 

1.7 Supplementary material 

 
 

 
 



Chapter 1 
 

18 
 

1. GENERAL INTRODUCTION 

 

1.1 Global changes 

 

In the past the main drivers of global change were solar variation, plate tectonics, 

volcanism, proliferation and abatement of life, meteorite impact, resource depletion, 

changes in Earth's orbit around the sun and changes in the tilt of Earth on its axis (UNEP, 

1993). Presently, there is overwhelming evidence that the main drivers of global change 

are associated with the human population growth and consumption, energy use, land 

use changes, and pollution (Vitousek, 1994). Global emissions and the accumulation of 

carbon dioxide (CO2) in the atmosphere rose dramatically during the 20th century (Fig. 

1A). Since the industrial revolution fossil fuel combustion and industrial processes have 

released tons of carbon into the atmosphere and, at present, the value surpasses six 

billion metric tons per year (IPCC, 2013). Consequently, atmospheric CO2 concentrations 

have greatly increased from 280 ppm at pre-industrial levels to more than 400 ppm 

nowadays (NOAA, 2018). 

 

 

Fig. 1  A) Carbon dioxide concentration levels from previous 800 thousands of years until 
August 2018 [Source: NOAA (2018)]; B) projected surface temperature changes for the 
late 21st century  - temperatures are relative to the period 1850-2012; colors indicate 
different data sets [Source: IPCC (2014)]. 

 
Climate experts predict that future levels may reach 1000 ppm by the end of the century 

(IPCC, 2014) if anthropogenic emissions remain within the same rates. Carbon 

accumulation overloads the atmosphere, and the consequently trapped heat causes 

Earth to warm. The globally averaged combined land and ocean surface temperature 

A) B) 
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data show a linear warming trend of 0.85°C [0.65 to 1.06] over the period 1880 to 2012 

(Fig. 1B). The increasing CO2 concentrations in the atmosphere can remain in the 

atmosphere or can be absorbed by the terrestrial biosphere or by the oceans (Le Quéré 

et al., 2009). 

 

1.1.1 Oceans 

The global ocean regulates our climate and drives the weather, determining rainfall, 

droughts and floods. It also play a key role in mitigating climatic changes, sequestering 

heat and carbon from the atmosphere. The transport of heat, freshwater and dissolved 

gases by oceanic currents can have an important effect on regional climates, and the 

large-scale Meridional Overturning Circulation – MOC -, also referred to as thermohaline 

circulation (Fig. 2), is known to influence the climate on a global scale (Vellinga &  Wood, 

2002). Large-scale impacts of climate change on oceans are expected to include 

increases in sea surface temperature and mean global sea level, decreases in sea-ice 

cover, and changes in salinity, wave conditions, dissolved gases and overall ocean 

circulation (Brierley &  Kingsford, 2009). 

 

Fig.2 Meridional Overturning Circulation [Source: IPCC (2007)]. 

 

Changing climatic conditions and the increased freshwater influx in the polar regions 

have caused sea ice retreats from the coastline of Arctic countries from 150 km to 200 

km (Stendel et al., 2008). The loss of ice in the Polar Regions could lead to a sudden 

acceleration of global warming, as ice reflects radiation and heat from the sun back into 

space. The absence of sea ice combined with ocean warming will lead to more 

evaporation and rainfall occurring in these sensitive regions, which in turn will speed up 
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sea ice loss. Global analyses show long-term freshening in the subpolar latitudes and a 

salinification of shallower parts of the tropical and subtropical oceans, which is 

projected to intensify under climate change scenarios (Palmer et al., 2019- Fig.3 SSS). 

This could lead to significant changes in the atmospheric hydrological cycle over the 

oceans and in changes in global oceanic circulation. 

  

Furthermore, changes in the storage of heat and in the distribution of ocean salinity 

cause the ocean to expand or contract and hence change the sea level both regionally 

and globally. Global mean sea level rise is projected to continue during the 21st century, 

at a faster rate than observed from 1971 to 2010. Earth System Models (ESM) project a 

global rise in sea level for all RCP scenarios by the end of the 21st century, ranging from 

0.26 to 0.82 m (IPCC, 2014). By the end of the 21st century, it is projected that sea level 

will rise in more than about 95% of the ocean area, with about 70% of the coastlines 

worldwide projected to experience a sea level change within ±20% of the global mean 

(Mimura, 2013). 

 

Over  the last 200 years, the ocean has absorbed around a third of the CO2 produced by 

human activities and has absorbed over 90% of the extra heat trapped by the rising 

concentrations of atmospheric greenhouse gases (Gattuso et al., 2015). As a 

consequence of heat absorption from the atmosphere, oceans are becoming warmer, at 

a rate of approximately 0.1°C per decade, over the last decades. It is predicted that 

global mean surface temperature will increase between 1.1-6.4°C by the end of the 

century (Fig. 3 – SST), depending on the scenario used (IPCC, 2014). 

 

By absorbing CO2, the ocean are also becoming more acidic – at a faster rate than any 

other period in the past 65 million years. Since pre-industrial times, ocean’s pH has 

already dropped an average of 0.1 units (Dupont &  Pörtner, 2013), and it is predicted 

that this process will lead to an increase of 15% to 109% in ocean acidity (Fig. 3 – pH), 

according to the scenario, by end century (IPCC, 2014). 

 

The same physical processes that affect CO2 affect dissolved oxygen (O2) in the ocean, 

but O2 is not affected by changes in atmospheric concentration (Hinkle, 1994). Changes 

in oceanic O2 concentration occur due to the changes in the physical or biological 
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processes within the ocean, such as rate of renewal of thermocline waters, water 

formation, upwelling or biological export and respiration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig.3 Predicted changes between the baseline and the end-century period, according to 
IPCC most extreme scenarios (RCP 2.6 and 8.5) for the climatic variables used in this 
thesis: pH at surface (‘pH’, in mol H kg−1), sea surface salinity (‘SSS’), sea surface 
temperature (‘SST’, in °C), dissolved oxygen concentration at surface (‘O2’, in mol m−3). 
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Dissolved oxygen changes in the ocean thermocline has generally decreased since 1960, 

at a mean rate of 0.63 μmol kg–1 per decade (Stramma et al., 2012). This long-term 

deoxygenation trend  is consistent with the expectation that warmer waters can hold 

less dissolved oxygen (solubility effect), and that warming-induced stratification leads to 

a decrease in the transport of dissolved oxygen from surface to subsurface waters 

(stratification effect; for review see Breitburg et al., 2018 ; Fig. 3 - O2).  

 

Future ocean climate-related changes are expected to make organisms more 

susceptible to the impact of other pressures, such as overfishing, habitat destruction, 

and pollution. Climate change will challenge the marine biota across multiple levels of 

biological organization, from molecular to organismic level, and are predicted to elicit 

cascading effects on population, community and ecosystems dynamics (e.g. Beaugrand 

et al., 2015). When species persistence is affected by climate change-related conditions, 

organisms can respond by acclimatizing and adapting to new conditions, or by shifting 

their geographical distribution (Pecl et al., 2017). Changes in biodiversity may alter the 

community structure and possibly disrupt ecological interactions, enhancing the risk of 

species and ecosystems extinction (Camill, 2010).  

 

1.2 Impacts of climate change on marine biota and ecosystems 

 

For centuries, people have regarded the ocean as an inexhaustible source of food and a 

convenient dumping ground, often regarded too vast to be affected by anything we do. 

But in just a few decades, it became clear that the ocean has limits and that in many 

important parts of our seas the sustainability thresholds have been breached. The 

intensity of climate-related impacts varies with the interaction between climate-related 

hazards, with the vulnerability of the natural systems, with their ability to adapt and 

with the exposure to human impacts. Rising rates and magnitudes of warming and other 

changes in the climate system, accompanied by ocean acidification, increase the risk of 

severe, in some cases irreversible, detrimental impacts. Some risks are particularly 

relevant locally, while others are global (Fig. 4). The overall risks of future climate change 

impacts can be reduced by limiting the rate and magnitude of climate change, but the 

precise levels of climate change sufficient to trigger abrupt and irreversible change 

remain uncertain (IPCC, 2014). 
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Fig. 4 Global impacts attributed to climate change based on the available scientific 
literature since the IPCC Fourth Assessment Report (AR4 in 2007). Symbols indicate 
categories of attributed impacts, the relative contribution of climate change (major or 
minor) to the observed impact and confidence in attribution [Source: IPCC (2014)]. 

 

For example, ocean acidification reduces the ability of coral reefs to re-establish from 

disturbances such as bleaching, cyclones and crown-of-thorns starfish outbreaks. If 

current rates of temperature rise continue, the ocean will become too warm for coral 

reefs by 2050 (Hoegh-Guldberg et al., 2017). This would potentially mean a major 

disruption to at least 25 percent of the biodiversity in the ocean, as well as the loss of 

productive fisheries and significant impacts on industries such as tourism. The loss of 

reefs as a barrier would increase the exposure of coastal areas to waves and storm 

systems. 

  

Coastal systems and low-lying areas are also increasingly experiencing adverse impacts 

from sea level rise – submergence, coastal flooding, and coastal erosion. The loss of 

coastal ecosystems such as mangroves and seagrass beds increases vulnerability of 
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coastlines and people to the impacts of climate change. Many low-lying developing 

countries and small island states are expected to face severe impacts that, in many 

cases, could result in displacement of people, damage to ecosystems, and adaptation 

costs amounting to several percentage points of Gross Domestic Product (GDP) (UN-

OHRLLS, 2015). 

 

The best recorded climate-change-induced ecological consequences are changes in 

phenology, i.e., in timing of vegetation development (Menzel &  Fabian, 1999), in 

spawning date in frogs and toads (Beebee, 1995), return date of migrant birds (Hüppop 

&  Hüppop, 2003) and butterflies (Sparks et al., 2005), egg hatching date in insects 

(Visser &  Holleman, 2001), laying dates in birds (Crick et al., 1997), etc. And in range 

shifts, in the distribution of butterflies (Parmesan, 1999), breeding range (Thomas &  

Lennon, 1999) or overwintering range (Austin &  Rehfisch, 2005) of birds and in 

distributions of marine biodiversity (Cheung et al., 2009; Poloczanska et al., 2013), etc. 

Less widespread documented consequences of climate change are shifts in body size 

(Millien et al., 2006; Barange et al., 2010) and in changes in the strength of competition 

between species (e.g. Jiang &  Morin, 2004). 

 

There are several studies exploring latitudinal range shifts on marine species, as a 

response to environmental change (e.g. Perry et al., 2005; Mueter &  Litzow, 2008; Jones 

&  Cheung, 2014; Sunday et al., 2015) and/or depth range shifts (Dulvy et al., 2008). Such 

species responses may lead to local extinction and invasions, resulting in changes in the 

pattern of marine species distributions and richness. Local extinction refers to a species 

ceasing to exist in an area although it still exists elsewhere, while invasion refers to the 

expansion of a species into an area not previously occupied by it. Overall, changes in 

pattern of species richness may disrupt marine biodiversity and ecosystems, and impact 

commercial fisheries (e.g. Roessig et al., 2004; Ainsworth et al., 2011; Cheung et al., 

2013b; Lam et al., 2016). A review (Poloczanska et al., 2013) of recent literature on 

quantitative analysis of the effect of anthropogenic climate change on community 

assemblages or distributional range of marine fish and invertebrates shows that the 

majority of the reviewed papers focus on a regional scale or on limited taxa. The lack of 

large-scale studies that encompasses a wide array of marine species is in contrast to the 
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situation prevailing in the terrestrial realm. The climate change-related impacts on 

marine biodiversity are projected to be intensified in the future, differing geographically 

and among taxonomic groups (e.g. Harley et al., 2006; Mellin et al., 2012; Caputi et al., 

2013; Fernandes et al., 2017; FAO, 2018). Global perspectives on the impact of climate 

change on a wide range of marine species are vital to obtain a more complete picture of 

the climate change problem. 

 

1.3 Fisheries in a changing ocean 

 

One of the most direct impacts of climate change on marine ecosystem services is 

through fisheries. Given the significant increase in human population and demand for 

secure, sufficient and safe food supplies, it is critical to predict and anticipate the nature 

and magnitude of potential impacts of climate change on food production. Global 

marine fish landings are estimated officially at 80-85 million ton, with corresponding 

mean annual gross revenues around USD 100 billion annually (Swartz et al., 2012). 

Accounting for unreported catches, a recent study (Pauly &  Zeller, 2016) updated the 

likely “true” annual global catch to be about 130 million ton. The global fisheries sector 

supports the livelihoods of between 660 to 820 million people worldwide, directly or 

indirectly, which is about 10–12% of the world’s population (FAO, 2016). Fish also 

provides more than 2.9 billion people with 20% of their animal protein needs and is a 

crucial source of micronutrients (Golden, 2016). 

 

The consequences of fisheries collapse are complex. The ocean’s once abundant 

fisheries are increasingly unable to feed and provide livelihoods for the world’s rapidly 

expanding population. Average fish consumption per capita have been globally 

increasing from 9.9kg in the 1960s to 19.2kg in 2016 (FAO, 2016). Poor coastal 

communities who rely most directly on the ocean for food and livelihoods are 

particularly vulnerable – and often unfairly disadvantaged. Their vulnerability is a result 

of both their geographical location as well as their poverty situation. Being located at 

the waterfront, fishing and fish farming communities are exposed to climate related 

extreme events and natural hazards, such as hurricanes, cyclones, sea level rise, ocean 

acidification, floods and coastal erosion (Kalikoski et al., 2018). Hence, climate change 
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impacts could fundamentally alter the fishing industry in these communities (WWF, 

2015). 

 

Changes in ocean conditions are projected to beget shifts in the distribution range of 

marine species (e.g. Lam et al., 2016; Fernandes et al., 2017; Cheung et al., 2018; Lotze 

et al., 2019), changes in primary and secondary productivity, and shifts in timing of 

biological events  (Pörtner, 2014). Marine species are gradually moving away from the 

equator into cooler waters, and, as a result, species from warmer waters are replacing 

those traditionally caught in many fisheries worldwide. These shifts could have negative 

effects including loss of traditional fisheries, decreased in profits and jobs, conflicts over 

new fisheries that emerge because of distribution shifts, food security concerns and a 

large decrease in catch in the tropics (Fig. 5; Cheung et al., 2013a; Pinsky et al., 2018; 

Free et al., 2019). Sumaila and  Cheung (2010) estimated that the fishing sector may, 

globally, suffer from a $17–$41 billion loss in annual landed value, depending on the 

climate change severity, which may result in an annual loss in household income 

between $6 – $14 billion. They also reinforce the idea that the impacts to fishing sectors 

in developing countries are estimated to be 2–3 times higher than those for developed 

countries, under all the scenarios considered in the study. 

Fig. 5 Exclusive Economic Zones projected to contain one or more new fishery stocks by 
2100, using RCP 8.5 scenario [Source: Pinsky et al. (2018)]. 
 

Identifying responses to climate change is complicated by species interactions and 

multiple stressors. Major marine habitats and biodiversity hotspots are projected to 

encounter cumulative impact from changes in temperature, pH, oxygen and primary 
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production by the end of 21st century (Mora et al., 2013). Acidification and hypoxia are 

projected to reduce maximum catch potential (MCP) in both the North Atlantic and 

Northeast Pacific (Ainsworth et al., 2011; Cheung et al., 2011). The combined effects of 

the projected distributional shifts and changes in ocean productivity under climate 

change are expected to lead to changes in species composition (Beaugrand et al., 2015) 

hence in the global redistribution of MCP, with projected increases in MCP in high 

latitudinal regions and decreases in the tropics (Fig. 6). This further highlights high 

vulnerabilities in the economies of tropical coastal countries (Johnson &  Welch, 2010). 

 

Changes in O2 content, as well as warming, are projected to drive a global decrease of 

community-averaged maximum body size (Cheung et al., 2012), which may affect 

natural mortality rates and trophic interactions, and reduce yield-per-recruit and thus 

potential catch. Responses of exploited marine species and their fisheries may interact 

with other human stressors such as overfishing, exacerbating their impacts (e.g. 

Lindegren et al., 2010; Ainsworth et al., 2011).  

 

Resource overexploitation appears to be the single most important factor directly 

threatening the sustainability of many commercial fisheries in Organization for 

Economic Cooperation and Development (OECD) countries (OECD, 2017). 

Overexploitation increases the vulnerability of fisheries to climate variability because 

few fish are left in the stock to grow and multiply in a year of poor recruitment. On the 

other hand, chronic levels of pollution are known to reduce marine and freshwater fish 

fecundity (Kime, 1995), decrease freshwater supply (which exacerbates low dissolved-

oxygen concentrations), increase solid transport from erosion, and increase habitat 

fragmentation in inland waters (Carmignani &  Roy, 2017). Development of marine 

aquaculture may also be affected by a decreasing availability of sites with cool enough 

surface water temperature and by increased susceptibility to disease (FAO, 2018). 

 

Through species shifts climate change may also cause overlap of habitats of species 

targeted by fishing with habitat of threatened species, potentially increasing the 

chances of the latter being caught as bycatch (Jones et al., 2013). Moreover, differences 

in vulnerability and adaptive capacity of species to changing environmental and 
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ecosystem conditions will affect the response of fisheries to climate change (e.g. Griffith 

et al., 2011; Bell et al., 2013). Analyses of fish physiological response to climatic changes 

have shown significant detrimental, or even deleterious, effects (e.g. Rosa et al., 2014; 

Faleiro et al., 2016; Pimentel et al., 2016). Unfortunately, current knowledge appears to 

be limited mostly to single key species, abstracted from the wider ecosystem context 

that supports fisheries production. It is likely that extrapolation from these limited 

biological principles will provide only a bounded foresight, but understanding of how 

the projected changes will influence global fisheries is vital (Santos et al., 2016). 

 

Fig. 6 Mean change in projected maximum catch potential (MCP) of 280 Exclusive 
Economic Zones (EEZs) and mean change in projected maximum revenue potential 
(MRP) of 192 fishing nations by mid-century, under RCP 8.5 scenario [Source: Lam et al. 
(2016)]. 

 
 

1.4 Ecological Niche Models 

 

As climate change is increasingly affecting ocean physical and biogeochemical 

environment (Halpern et al., 2008; Crain et al., 2009; Hoegh-Guldberg &  Bruno, 2010; 

Pörtner, 2014), several studies have explored the projected impacts in marine 

biodiversity (e.g. Hoegh-Guldberg et al., 2008; Fisher et al., 2010; Hofstede et al., 2010; 

Hall et al., 2013; Gattuso et al., 2015; Frölicher et al., 2018). Within this context, 

statistical frameworks like Ecological Niche Models [ENMs - also known as Species 

Distribution Models (SDMs)], have received significant attention in the terrestrial realm 

and have been used for over two decades to project the potential effects of climate 

change on species distributions (e.g. Peterson et al., 2002; Araújo &  Rahbek, 2006; 
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Thuiller et al., 2011; Garcia et al., 2014). But despite their wide range of theoretical and 

applied questions in the terrestrial realm, marine‐based applications remain relatively 

limited (e.g. Cheung et al., 2009; Lasram et al., 2010; Pereira et al., 2010; Kaschner et 

al., 2011; Planque et al., 2011; Robinson et al., 2011; Albouy et al., 2012; Jones &  

Cheung, 2014; Robinson et al., 2017). 

 

ENMs simulate the distribution of species in geographical space relative to climate. They 

are correlative models that create statistical relationships between observed presences 

of a species with values of environmental variables at those sites (Fig. 7). These models 

have several uses, but can be used under future climatic conditions to obtain an 

estimate of how species ranges may shift with climate change. The typical output of 

ENMs is a map of a species’ potential range (or potential habitat), either in the present 

or in both the present and the future (for review in ENMs see Elith &  Leathwick, 2009; 

Araújo &  Peterson, 2012). 

 

 
 

Fig. 7 Ecological niche models for climate change projections schematic. 

 
Although the relationship between climate and species ranges is well established 

(Woodward &  Williams, 1987), as it is based on paleoecological studies (Webb &  

Bartlein, 1992), using ENMs to predict the impact of global warming on species 

distributions requires some assumptions and has several limitations (Elith &  Graham, 

2009). First, ENMs assume that species distributions is in equilibrium with the climate 

(i.e. species occupy all climatically suitable areas and are absent from all unsuitable 
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ones; Araújo &  Pearson, 2005). A second assumption is stationarity of the empirical 

relations defined between environmental conditions and species distributions. This is 

reasonable when predicting for conditions that have analogues in the historical record, 

but becomes less reliable for responses to extreme events or for the novel conditions 

expected under climate change (Williams et al., 2007). Third, caution is advised when 

interpreting ENM’s results, as the relationships inferred may not adequately describe 

the factors determining species distributions. Spatial data on species distributions 

reflect the realized rather than the fundamental ecological niche (Fig. 8; Araújo &  

Peterson, 2012). This realized niche implicitly reflects biotic interactions as competition, 

mutualism, predation and barriers to species dispersal, not only environmental 

conditions (sampling incompleteness (either in geographical or environmental space) 

may also contribute to this (Peterson, 2011). 

 

 
Fig. 8 Illustration of the relationship between the different distributional areas of a 
species in geographic and environmental space, and its modelled distribution and niche 
[Source: Araújo & Peterson (2012)]. 

 
Lastly, ENMs are a “static” approach to modelling a species distribution, as they typically 

do not take into account species ability to move on geographical space (dispersal or 

migration), or do so in simple ways – usually assuming “all or nothing” dispersal or 

migration into new suitable habitat, or limited dispersal to contiguous suitable habitat 

(Araújo &  Guisan, 2006; Heikkinen et al., 2006). Regardless of these limitations, ENMs 

use is widespread, with them being continually modified and improved to better cope 
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with methodological limitations  (Guisan et al., 2006; Araújo &  New, 2007; Nógues-

Bravo, 2009; Araújo &  Peterson, 2012; Fordham et al., 2012; Guisan et al., 2013; Garcia 

et al., 2014; Araújo et al., 2019). Offering a good solution for undertaking relatively rapid 

(and cheap) analysis over a large amount of species and/or geographical space. 

 

Despite ENMs many assumptions and the uncertainty associated with their projections, 

particularly in a climate change context, they present valuable tools with enormous 

outreach. Knowing the level of uncertainty in their outputs is important not only for 

managers to understand and manage the risk of actions, but also for scientists to focus 

their efforts in advancing ecological niche modelling. Following known 

recommendations on uncertainty reduction can help ENMs achieve a more realistic 

picture of the future impacts of climate change on biodiversity (Araújo et al., 2019). 

 

1.5 Objectives and thesis outline 

 

Given the urgent need for an understanding of the consequences of climate change on 

the world’s oceans, the main goal of this dissertation is to characterize global patterns 

and forecast the effects of climate change on marine biodiversity. Overall, I aimed to 

investigate the effects of projected climate changes, under different mitigation 

scenarios, on the distribution of key commercial marine species worldwide, namely 

coastal lobsters (125 species), cephalopods (161 species) and small pelagic fish (103 

species) species. I also aimed at improving understanding of how the projected changes 

in species distribution might impact important marine species diversity, body size, 

assemblage composition, variations in catch, and finally infer on the potential impacts 

for fisheries worldwide. The thesis is composed of five chapters and includes three 

scientific papers, one published and two submitted in peer‐reviewed international 

journals, which can be found from chapter 2 to 4.   

 

 Specifically, the main objectives of the chapters are presented below: 

1. Give an overview on climate change in marine environment and on Ecological 

Niche Models (Chapter 1); 

2.  Predict the impacts of climate change on coastal lobster distribution and possible 

effects on fisheries worldwide (Chapter 2); 
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3.  Evaluate the patterns of cephalopod coastal diversity and potential changes 

under climate change in richness, mean body size and assemblage composition 

(Chapter 3); 

4.    Analyse the impact of climate change in small pelagic fish species richness, catch 

potential and geographic range size (Chapter 4); 

5.  Resume the work presented in this thesis and give an outlook on future 

perspectives (Chapter 5). 
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2. CLIMATE CHANGE IMPACTS ON THE DISTRIBUTION OF 
COASTAL LOBSTERS  
 

 

2.1 Abstract 

 

Coastal lobsters support important fisheries all over the world, but there is evidence 

that climate-induced changes may jeopardize some stocks. Here we present the first 

global forecasts of changes in coastal lobster species distribution under climate change 

using an ensemble of ecological niche models (ENMs). Global changes in richness were 

projected for 125 coastal lobster species for the end of the century, using a stabilization 

scenario (4.5 RCP). We compared projected changes in diversity with lobster fisheries 

data and found that losses in suitable habitat for coastal lobster species were mainly 

projected in areas with high commercial fishing interest, with species projected to 

contract their climatic envelope between 40 and 100%. Higher losses of spiny lobsters 

are projected in the coasts of wider Caribbean/Brazil, eastern Africa and Indo-Pacific 

region, areas with several directed fisheries and aquacultures, while clawed lobsters are 

projected to shifts their envelope to northern latitudes likely affecting the North 

European, North American and Canadian fisheries. Fisheries represent an important 

resource for local and global economies and understanding how they might be affected 

by climate change scenarios is paramount when developing specific or regional 

management strategies. 
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2.2 Introduction 

 

Climate change, overfishing and habitat degradation are the main reasons for the drastic 

decline of marine populations over the last 30 years (WWF, 2015). According to the 

United Nations Food and Agriculture Organization (FAO), one billion people, mostly in 

developing countries, depend directly on fish as their primary protein source. Fishing 

and aquaculture assure the livelihoods of 12% of the world’s population, creating 

economic benefits of USD $2.8 trillion per year (FAO, 2016). Yet, more must be done to 

understand and prepare for the impacts that climate change will have on world fisheries 

and marine ecosystems. 

  

Coastal lobsters are a highly prized seafood delicacy all over the world and the crash of 

ground fish stocks prompted this industry to explode in some areas (Steneck & Wahle 

2013). World lobster trade more than doubled over the last 20 years, with the global 

trade and production of lobster products adding up to over USD $8.4 billion worldwide 

(33% of the global trade; FAO (2016)). Nevertheless, the long larval phase of lobsters, 

particularly spiny lobsters, makes them particularly vulnerable to climate variability 

(Wahle et al., 2015). Indeed, climate change effects have already been reported in 

several lobster stocks around the world mostly associated with ocean warming (e.g. 

Cockcroft et al., 2008; Pecl et al., 2009; Caputi et al., 2010; Pinsky et al., 2013; Wahle et 

al., 2015; Rheuban et al., 2017; Le Bris et al.,  2018). 

  

Ecological Niche Models (ENM) have been widely used to assess the impacts of climate 

change on biodiversity (e.g. Albouy et al., 2012; Jones & Chueng, 2015). These models 

combine distribution data of different species with environmental parameters to infer a 

specific bioclimatic envelope. Projecting this envelope under different climate scenarios 

allows an estimation of potential shifts in the habitat suitability of the species analysed 

(for review see Peterson et al. (2011)), allowing to infer on potential climate change 

impacts. 

  

In this study we provide the first global forecast of changes in coastal lobster species 

distribution projected under climate change. Using an ensemble of ENMs (Thuiller et al., 

2009), we projected changes in richness for 125 coastal lobster species to an end-
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century stabilization scenario. We then compared our results with lobster fisheries data 

(as a proxy for human dependency on the resource) to help inform local fisheries and 

management strategies. 

 

2.3 Methods 

 

2.3.1 Species data 

We obtained polygons of extent of occurrence (range filling) for 125 coastal lobster 

species from International Union for Conservation of Nature (IUCN, 2013) and converted 

them to presence point’s data in a worldwide 1º x 1º latitude/longitude grid using ArcGIS 

(ESRI, 2006). Four families of decapod crustaceans commonly referred to as “lobsters” 

and associated with (but not restricted to) the continental shelf (200 m depth limit), 

were included in this analysis: 10 clawed lobsters species (family Nephropidae); 38 spiny 

lobsters species (family Palinuridae); 68 slipper lobsters species (family Scyllaridae) and 

9 dwarf reef lobsters species (family Enoplometopodidae) (Supplementary material 

Table S01). To avoid statistical bias in ENM fitting, five species were excluded from the 

analyses (Jasus caveorum, Jasus paulensis, Jasus tristani, Panulirus marginatus, 

Palinurus barbarae) – corresponding to those with fewer than 20 records over the study 

area (Wisz et al., 2008). 

 

2.3.2 Climatic data 

We used 30-year averages of five climate variables (sea surface temperature, sea 

surface salinity, total chlorophyll mass concentration at surface (proxy for productivity), 

dissolved oxygen concentration at surface and ocean surface pH) from Earth System 

Models (ESM) developed for CMIP5. There were 21 ESM’s from 15 climate centres that 

modelled at least one of the variables analysed (Supplementary material Table S02). For 

each model and variable, we used the period 1976–2005 from the historical experiment, 

to establish the baseline period. And the period 2071–2100, to define our future 

scenario. A stabilization scenario was used in this study (Representative Concentration 

Pathway, RCP4.5), with CO2 concentrations projected to increase up to 650 ppm by 

2100 (Vuuren et al., 2011). This scenario was chosen as it’s the one that projected the 

raise in surface temperature by the end-century closer to the +1,5ºC increase targeted 
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by the Paris Agreement (UN, 2016), so we considered it the most realistic given the 

current status of international climate policy. 

 

Climate data were publicly available from the World Climate Research Programme 

(http://cmip-pcmdi.llnl.gov/cmip5/availability.html). Sea surface temperature and 

surface seawater salinity have monthly frequency while the other three variables have 

annual data. All parameters were interpolated to the 1ºx1° grid used for the species in 

ArcGIS (ESRI, 2006), prior to calculating multi-model yearly means (Mora et al., 2013). 

We estimated multi-model variability by calculating the standard deviation of model 

means among Earth System Models per variable and time period (Tebladi & Knutti, 

2007; Supplementary material Fig. S01). 

 

2.3.3 Ecological niche modelling 

In order to constrain algorithmic uncertainty associated with Ecological Niche Models 

(ENM’s) we implemented an ensemble forecasting method (Araújo & New 2007). 

Models were fitted using six different statistical techniques implemented in 

BioEnsembles (Diniz-Filho et al., 2009): (1) BIOCLIM, (2) Euclidean distance (EUC), (3) 

Generalized Linear Models (GLM), (4) Generalized Additive Models (GAM), (5) 

Multivariate Adaptive Regression Splines (MARS), (6) Maximum Entropy (Maxent). 

 

For each species, data were randomly partitioned into a calibration (70%) and a 

validation (30%) dataset, the procedure was repeated 5 times, maintaining the observed 

prevalence of species in each partition. For each species models optimal 

parameterization and fit evaluation were conducted using the True Skill Statistic (TSS) 

(Allouche et al., 2006). Weighted median consensus forecasts were computed (Marmion 

et al., 2009) and models performing poorly (with TSS values < 0.5) were excluded from 

the final ensemble (according to Landis & Koch, 1977 classification scheme). Consensus 

projections were built using 100% of the data, as data partitions have been shown to 

add significant uncertainty to forecasts (Araújo et al., 2009). The final ensembles used 

performed at excellent levels with a mean TSS for all species of 0.83±0.09. 

  

We restricted our analyses to the continental shelf (200 m depth limit), as species 

selected for the study are known to be strongly associated with this habitat (Phillips, 
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2013). Climate variables were only extracted for the superficial layer, as, given the 

coarse resolution of the climatic models used (Stock et al., 2011) and the restricted 

depth range under study, we assumed that surface and benthic waters are included.  

 

Once fitted the ecological niche models, species richness was computed for the baseline 

and future periods (for the whole coastal lobster assemblage and separately for its most 

relevant families—Fig. 1), summing the presences of species (per pixel) derived from a 

threshold of projected habitat suitability (HS). We then quantified the potential changes 

in species richness as the difference between future and baseline periods. Changes were 

also quantified for the genera with higher economic relevance within these families 

(Panulirus, Jasus, Homarus and Nephrops – Fig. 3), relating them with the global 

production per country for each genus (2016 data (ton); FAO (2016)). Data processing 

was performed using R (R Development Core Team, 2010) version 3.2.2. 

 

2.4 Results 

 

2.4.1 Present patterns in coastal lobster distribution 

Richness for coastal lobster species was projected to peak around 14º S (mean HS 49 ± 

11 species) and 9º N latitude (Fig. 1A - 37 ± 13 species) in the baseline period. When 

looking at the major coastal families, we find that spiny lobsters projected richness peak 

is around 18º S (13 ± 3 species), mostly due to diversity of the genera Jasus 

(Australia/New Zealand and South Africa areas) and Panulirus (Coral Triangle area), as 

well as around 9º N (11 ± 3 species), once again influenced by Panulirus species present 

on the wider Caribbean region (Fig. 1B). Clawed lobsters projected richness peaks 

around 17º S (3 ± 1 species), driven by the North Australian lobster diversity and 33º N 

(2 ± 1 species), mainly due to genera Homarus and Nephrops (Fig. 1C). 
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Fig. 1 Predicted species richness for A) coastal lobster species, B) spiny lobster and C) 
clawed lobster families, in the baseline and end-century periods according to the RCP 
4.5 scenario. Left panel shows mean species richness predicted per latitude for the 
baseline period (blue line) and end-century (red line) scenario.  
 

2.4.2 Projected changes in coastal lobster distribution 

Projected losses in diversity for coastal lobster species occurred mainly in the tropical 

zone (between 18º S and 20º N), with species projected to contract their range between 

40% and 100% (Fig. 2A). When looking at spiny lobsters (Fig. 2B), the main drivers of this 

trend, we project losses to be higher in the coasts of wider Caribbean region/Brazil, 

eastern Africa and Indo-Pacific area. As for clawed lobsters (Fig. 2C), our models project 

higher losses in the Mediterranean, East Africa and North Australia coasts. 
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Fig. 2 Predicted changes in species richness for A) coastal lobster assemblage, B) spiny 
lobster and C) clawed lobster families, between baseline and end-century periods, under 
the RCP 4.5 scenario. In land shades of grey represent coastal lobster* global capture 
production per country [* see table S01 for species used; 2016 data (ton)]. 
 

Projected losses for spiny lobsters are highly related with the changes projected for 

genus Panulirus (Fig. 3A, a very speciose genus - 50% of spiny lobster species). Despite 

being less diverse, genus Jasus is also predicted to experience significant losses 

(between 92-100% range contraction) in areas as south Africa (J. lalandii), south 

Australia and New Zealand (J. edwardsii) coasts (Fig. 3B). Regarding clawed lobsters, our 

models project a range contraction of about 71% for H. americanus, 44% for H. 
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gammarus and 58% for N. norvegicus, with all species projected to suffer a shift north 

and loss of HS in the southern range (Fig. 3 C-D). 

 

2.5 Discussion 

 

The projected pattern for higher diversity towards the tropics was strongly driven by the 

presence of diverse clades with tropical affinities (dwarf reef, slipper and some spiny 

lobster genera), but occurring at lower abundance when compared with the ones 

present in temperate waters [clawed and some spiny lobster genera; Phillips (2013)]. 

Our analyses provide a global picture of coastal lobster diversity and its distribution 

patterns. 

 

Projected losses in suitable habitat for coastal lobster species occurred mainly in the 

tropical zone, with species projected to contract their climate envelope between 40 and 

100%. Spiny lobsters higher losses are projected in the coasts of wider Caribbean 

region/Brazil, eastern Africa and Indo-Pacific area. These losses are driven by the 

projected changes for genus Panulirus and will likely have implications on the economy 

of affected countries. Since countries as Australia (4th world top lobster producer - 11 

230 ton (65% from capture of Australian Spiny Lobster (P. cygnus)) and Indonesia (5th 

world top producer - 10 264 ton (98% capture exclusively from Panulirus spp.)) are highly 

dependent on these resources. Brazil, Bahamas (P. argus) and Nigeria are also in the top 

10 world lobster producer capturing exclusively Panulirus spp (Fig. 3A; FAO (2016)). 

Despite being less diverse, genus Jasus is also predicted to experience significant range 

contractions in areas with profitable fisheries directed to this resource, as south Africa 

(J. lalandii), south Australia and New Zealand (J. edwardsii) coasts. On the other hand, 

farming of P. ornatus (70%) and P. homarus is blooming in the Indo-Pacific region 

[Indonesia, Vietnam, Malaysia and Philippines; Jones (2010)], revenuing USD $31 519 

millions in 2016 (FAO, 2016). So it is crucial that potential changes in habitat suitability 

are considered when designing regional studies for management of stocks, 

development of new aquaculture ventures and design of protected areas. 
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Fig. 3 Projected changes in species richness for the coastal lobster genera with 
commercial relevancy A) Panulirus, B) Jasus, C) Homarus and D) Nephrops) between the 
baseline and end-century periods, under RCP 4.5 scenario. In land shades of grey 
represent coastal lobster* global capture production per country [* see table S01 for 
species used; 2016 data (ton)]. 
 

Clawed lobsters are much less speciose, yet highly valuable, with only 3 species (H. 

americanus (52%), H. gammarus (3%) and N. norvegicus (19%)) being responsible for 

74% of all world lobster production (Phillips, 2013; FAO, 2016). Both genera are 

restricted to temperate waters in the Northern hemisphere and are targeted by large 

commercial fisheries. Our models project significant envelope contraction, with all 

species projected to undergo a shift north and loss of suitable habitat in the southern 

range (Fig. 3 C-D). The projected envelope shifts and loss of suitable habitat will likely 

affect the North European, North American and Canadian fisheries with the potential of 

adverse effects on coastal communities’ livelihood. Nevertheless recent studies using 

regional models with finer spatial resolution (Li et al., 2018) showed that the strength of 

temperature effects on species distribution varied spatially in the Gulf of Maine area. 

These local or specific particularities are challenging to capture in a global study and 

results presented here should be considered at the coarse scale they were produced. 

Also, it’s important to point out that even though our projections on habitat suitability 
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loss may seem contradictory with other studies (e.g. Cheung et al., 2009; Jones et al., 

2015), as they are projected not only for the tropics but also for higher latitudes 

(although with much less intensity). This can be easily explained by the use of climatic 

variables normally not included in other studies, as dissolved oxygen concentration at 

surface and ocean surface pH. It is long known that temperature is one of the climatic 

variable that better correlate with species distribution (Harley et al., 2006), but factors 

like ocean acidification have proof to be equally detrimental, especially for crustaceans 

like lobsters, as they depend on carbonate to build their shells (Taylor et al., 2015). In 

fact pH (and the interactions between the climatic variables) proved here to be a strong 

driver in coastal lobster species distribution and strongly influenced our projections, 

hence the loss of suitable habitat projected also at higher latitudes.    

 

Model assumptions and limitations call for careful interpretation of the projected 

changes in species richness. First, the presented results relate to potential changes in 

HS, which build on the realized niche of the species that may or may not fully occupy 

their fundamental niche (for review see Peterson et al., 2011). This means that the 

models can project potential losses in areas where the species does not occur at the 

present moment, but in terms of HS could potentially occur (e.g. Fig. 2D - potential loses 

are projected in the Mediterranean where N. norvegicus is not a coastal species). 

Second, as previously stated, the coarse resolution of the CMIP5 climate models limits 

the ability to predict finer processes affecting species distribution, such as stratification 

or variation in coastal currents that can significantly impact larval dispersal patterns 

(Caputi et al., 2013).  Recent high-resolution climate projections (Saba et al., 2016) show 

a bias in global climate model simulations, indicating greater warming than projected by 

coarse resolution climate projections in some areas. Third, our model does not consider 

the potential for rapid evolutionary adaptation (Hofman & Sgrò, 2011) or migrations to 

greater depths (Dulvy et al., 2008), which could help the species counter stressful 

climatic conditions. Despite these caveats, our results provide valuable inputs on the 

sensibility of different lobster species and geographical areas to climate change and 

guide when designing future assessments at a finer spatial or ecological scale (Caputi et 

al., 2013). 

 



Chapter 2 
 

52 
 

2.6 References 

 

Albouy C, Guilhaumon F, Leprieur F et al. (2012) Projected climate change and the 
changing biogeography of coastal Mediterranean fishes. Journal of 
Biogeography, 40: 534–547.  

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution 
models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied 
Ecology, 43: 1223-1232.  

Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends in 
Ecology and Evolution, 22: 42-47.  

Araújo MB, Thuiller W, Yoccoz NG (2009) Reopening the climate envelope reveals 
macroscale associations with climate in European birds. Proceedings of the 
National Academy of Sciences, 106: 45-46.  

Caputi N, Melville-Smith R, de Lestang S et al. (2010) The effect of climate change on the 
western rock lobster (Panulirus cygnus) fishery of Western Australia. Canadian 
Journal of Fisheries and Aquatic Sciences, 67:85-96.  

Caputi N, Lestang S, Frusher S, Wahle RA (2013) The Impact of Climate Change on 
Exploited Lobster Stocks. In: Phillips BF (Ed.) Lobsters: Biology, Management, 
Aquaculture and Fisheries. Wiley-Blackwell, UK, pp. 84-112. 

Cheung WWL, Lam VWY, Sarmiento JL et al. (2009) Projecting global marine biodiversity 
impacts under climate change scenarios. Fish and Fisheries, 10: 235-251.  

Cockcroft AC, van Zyl D, Hutchings L (2008) Large-scale changes in the spatial distribution 
of South African West Coast rock lobsters: an overview. African Journal of Marine 
Sciences, 30: 149-159.  

Diniz-Filho JAF, Bini LM, Rangel TF et al. (2009) Partitioning and mapping uncertainties 
in ensembles of forecasts of species turnover under climate change. Ecography, 
32: 897-906.  

Dulvy NK, Rogers SI, Jennings S et al. (2008) Climate change and deepening of the North 
Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied 
Ecology, 45: 1029-1039.  

ESRI (2006) ArcGIS. Environmental Systems Research Institute (ESRI), Redlands, CA. 
FAO (2016) Capture production 1950-2016. FishStat - Universal software for fishery 

statistical time series. 
http://www.fao.org/fishery/statistics/software/fishstatj/en (accessed 6 June 
2018). 

Harley CDG, Hughes AR, Hultgren KM et al. (2006) The impacts of climate change in 
coastal marine systems. Ecology Letters, 9: 228-241.  

Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature, 
470: 479–485.  

IUCN (2013) The IUCN Red List of Threatened Species. Version 2013-11. 
http://www.iucnredlist.org (accessed 12 November 2013). 

Jones CM (2010) Tropical rock lobster aquaculture development in Vietnam, Indonesia 
and Australia. Journal of Marine Biological Association of India, 52: 304-315. 

Jones MC, Cheung WWL (2015) Multi-model ensemble projections of climate change 
effects on global marine biodiversity. Ices Journal of Marine Science, 72: 741-752.  

Landis JR, Koch GG (1977) The Measurement of Observer Agreement for Categorical 
Data. Biometrics, 33: 159-174.  



Chapter 2 
 

53 
 

Le Bris A, Mills KE, Wahle RA et al. (2018) Climate vulnerability and resilience in fisheries. 
Proceedings of the National Academy of Sciences, 20: 1831-1836. 

Li B, Cao j, Guan L, Mazur M et al. (2015) Estimating spatial non-stationary 
environmental effects on the distribution of species: a case study from American 
lobster in the Gulf of Maine.  Ices Journal of Marine Science, 75: 1473-1482.  

Marmion M, Parviainen M, Luoto M et al. (2009) Evaluation of consensus methods in 
predictive species distribution modelling. Diversity and Distribution, 15: 59-69.  

Mora C, Wei CL, Rollo A et al. (2013) Biotic and Human Vulnerability to Projected 
Changes in Ocean Biogeochemistry over the 21st Century. Plos Biology, 11: 
e1001682.  

Pecl G, Frusher S, Gardner C et al. (2009) The east coast Tasmanian rock lobster fishery 
- vulnerability to climate change impacts and adaptation response options, 
Report to the Department of Climate Change, Australia. 

Peterson AT, Soberón J, Pearson RG et al. (2011) Ecological Niches and Geographic 
Distributions, Princeton University Press, New Jersey, USA. 

Phillips BF (2013) Lobsters: Biology, Management, Aquaculture and Fisheries. Wiley-
Blackwell, UK. 

Pinsky ML, Worm B, Fogarty MJ et al. (2013) Marine Taxa Track Local Climate Velocities. 
Science, 341: 1239-1242. 

R Development Core Team (2010) R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna, Austria 

Rheuban, JE, Kavanaugh, MT, Doney, SC (2017). Implications of future northwest 
Atlantic bottom temperatures on the American Lobster (Homarus americanus) 
fishery. Journal of Geophysical Research: Oceans, 122: 9387–9398.  

Saba VS, Griffies SM, Anderson WG et al. (2016) Enhanced warming of the Northwest 
Atlantic Ocean under climate change. Journal of Geophysical Research: Oceans, 
121: 118–132.  

Steneck RS, Wahle RA (2013) American lobster dynamics in a brave new ocean. Canadian 
Journal of Fisheries and Aquatic Sciences, 70: 1612-1624.  

Stock CA, Alexander MA, Bond NA et al. (2011) On the use of IPCC-class models to assess 
the impact of climate on Living Marine Resources. Progress in Oceanography, 88: 
1-27.  

Taylor JRA, Gilleard JM, Allem MC, Deheyn DD (2015) Effects of CO2-induced pH 
reduction on the exoskeleton structure and biophotonic properties of the shrimp 
Lysmata californica. Scientific  Reports, 5: 10608.  

Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate 
projections. Proceedings of the Royal Society A -Mathematical Sciences, 365: 
2053–2075.  

Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD - a platform for ensemble 
forecasting of species distributions. Ecography, 32: 369-373.  

UN (2016) Paris Agreement. United Nations, Paris, France, pp. 1-27. 
Vuuren DP, Edmonds J, Kainuma M et al. (2011) The representative concentration 

pathways: an overview. Climatic Change, 109: 5-31.  
Wahle RA, Dellinger L, Olszewski S, Jekielek P (2015) American lobster nurseries of 

southern New England receding in the face of climate change. Ices Journal of 
Marine Science, 72: 69-78.  

Wisz MS, Hijmans RJ, Li J et al. (2008) Effects of sample size on the performance of 
species distribution models. Diversity and Distribution, 14: 763-773.  



Chapter 2 
 

54 
 

WWF (2015) Living Blue Planet Report. Species, Habitats and Human Well-Being. Gland, 
Switzerland. 

 

 

 

 

 

  



Chapter 2 
 

55 
 

2.7  Supplementary material 

 

Table S01 List of the 125 coastal lobster species used in this study, with their group and 

bathymetric range (min and max depth). Species marked with # are commercial fishing 

targets and with + are aquaculture productions.  

SpId Species Family  Group MinDepth MaxDepth 

sp_ 1 Acantharctus ornatus Scyllaridae  Slipper 25 55 

sp_ 2 Acantharctus posteli Scyllaridae  Slipper 25 60 

sp_ 3 Antarctus mawsoni Scyllaridae  Slipper 80 540 

sp_ 4 Antipodarctus aoteanus Scyllaridae  Slipper 0 100 

sp_ 5 Arctides antipodarum Scyllaridae  Slipper 5 146 

sp_ 6 Arctides guineensis Scyllaridae  Slipper 0 400 

sp_ 7 Arctides regalis Scyllaridae  Slipper 5 50 

sp_ 8 Bathyarctus rubens Scyllaridae  Slipper 183 782 

sp_ 9 Biarctus pumilus Scyllaridae  Slipper 0 11 

sp_ 10 Biarctus sordidus Scyllaridae  Slipper 3 73 

sp_ 11 Biarctus vitiensis Scyllaridae  Slipper 6 48 

sp_ 12 Chelarctus aureus Scyllaridae  Slipper 100 200 

sp_ 13 Chelarctus cultrifer Scyllaridae  Slipper 124 300 

sp_ 14 Crenarctus bicuspidatus Scyllaridae  Slipper 2 108 

sp_ 15 Crenarctus crenatus Scyllaridae  Slipper 0 250 

sp_ 16 Eduarctus aesopius Scyllaridae  Slipper 16 33 

sp_ 17 Eduarctus lewinsohni Scyllaridae  Slipper 20 60 

sp_ 18 Eduarctus martensii Scyllaridae  Slipper 6 79 

sp_ 19 Eduarctus modestus Scyllaridae  Slipper 29 112 

sp_ 20 Eduarctus pyrrhonotus Scyllaridae  Slipper 33 71 

sp_ 21 Eduarctus reticulatus Scyllaridae  Slipper 33 72 

sp_ 22 Enoplometopus antillensis Enoplometopodidae  Dwarf Reef 5 201 

sp_ 23 Enoplometopus callistus Enoplometopodidae  Dwarf Reef 30 200 

sp_ 24 Enoplometopus crosnieri Enoplometopodidae  Dwarf Reef 80 120 

sp_ 25 Enoplometopus daumi Enoplometopodidae  Dwarf Reef 0 1 

sp_ 26 Enoplometopus debelius Enoplometopodidae  Dwarf Reef 12 25 

sp_ 27 Enoplometopus gracilipes Enoplometopodidae  Dwarf Reef 80 300 

sp_ 28 Enoplometopus holthuisi Enoplometopodidae  Dwarf Reef 20 80 

sp_ 29 Enoplometopus occidentalis Enoplometopodidae  Dwarf Reef 0 100 

sp_ 30 Enoplometopus voigtmanni Enoplometopodidae  Dwarf Reef 6 35 

sp_ 31 Evibacus princeps Scyllaridae  Slipper 2 90 

sp_ 32 Galearctus aurora Scyllaridae  Slipper 90 300 

sp_ 33 Galearctus kitanoviriosus Scyllaridae  Slipper 47 500 

sp_ 34 Galearctus timidus Scyllaridae  Slipper 80 390 

sp_ 35 Galearctus umbilicatus Scyllaridae  Slipper 70 230 

sp_ 36 Gibbularctus gibberosus Scyllaridae  Slipper 12 57 

sp_ 37 Homarinus capensis Nephropidae  Clawed 20 40 
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sp_ 38 Homarus americanus # Nephropidae  Clawed 4 480 

sp_ 39 Homarus gammarus # Nephropidae  Clawed 0 150 

sp_ 40 Ibacus alticrenatus Scyllaridae  Slipper 20 455 

sp_ 41 Ibacus brevipes Scyllaridae  Slipper 186 457 

sp_ 42 Ibacus brucei Scyllaridae  Slipper 90 183 

sp_ 43 Ibacus chacei Scyllaridae  Slipper 2 330 

sp_ 44 Ibacus ciliatus # Scyllaridae  Slipper 49 314 

sp_ 45 Ibacus novemdentatus Scyllaridae  Slipper 37 400 

sp_ 46 Ibacus peronii Scyllaridae  Slipper 40 250 

sp_ 47 Ibacus pubescens Scyllaridae  Slipper 150 391 

sp_ 48 Jasus edwardsii # Palinuridae  Spiny 5 200 

sp_ 49 Jasus frontalis # Palinuridae  Spiny 2 200 

sp_ 50 Jasus lalandii # Palinuridae  Spiny 0 46 

sp_ 51 Justitia longimana Palinuridae  Spiny 1 300 

sp_ 52 Linuparus trigonus Palinuridae  Spiny 30 318 

sp_ 53 Metanephrops challengeri # Nephropidae  Clawed 140 640 

sp_ 54 Metanephrops mozambicus# Nephropidae  Clawed 180 750 

sp_ 55 Metanephrops rubellus Nephropidae  Clawed 50 150 

sp_ 56 Metanephrops taiwanicus Nephropidae  Clawed 50 500 

sp_ 57 Metanephrops thomsoni Nephropidae  Clawed 50 500 

sp_ 58 Nephrops norvegicus # Nephropidae  Clawed 20 800 

sp_ 59 Nephropsis aculeata Nephropidae  Clawed 137 824 

sp_ 60 Nupalirus chani Palinuridae  Spiny 150 340 

sp_ 61 Nupalirus japonicus Palinuridae  Spiny 40 200 

sp_ 62 Nupalirus vericeli Palinuridae  Spiny 160 320 

sp_ 63 Palinurellus gundlachi Palinuridae  Spiny 2 35 

sp_ 64 Palinurellus wieneckii Palinuridae  Spiny 9 27 

sp_ 65 Palinurus charlestoni Palinuridae  Spiny 50 300 

sp_ 66 Palinurus delagoae # Palinuridae  Spiny 0 400 

sp_ 67 Palinurus elephas # Palinuridae  Spiny 5 160 

sp_ 68 Palinurus gilchristi # Palinuridae  Spiny 55 360 

sp_ 69 Palinurus mauritanicus # Palinuridae  Spiny 180 400 

sp_ 70 Palinustus mossambicus Palinuridae  Spiny 59 406 

sp_ 71 Palinustus truncatus Palinuridae  Spiny 120 298 

sp_ 72 Palinustus waguensis Palinuridae  Spiny 72 84 

sp_ 73 Panulirus argus # Palinuridae  Spiny 0 90 

sp_ 74 Panulirus cygnus # Palinuridae  Spiny 0 120 

sp_ 75 Panulirus echinatus Palinuridae  Spiny 0 35 

sp_ 76 Panulirus femoristriga Palinuridae  Spiny 0 20 

sp_ 77 Panulirus gracilis # Palinuridae  Spiny 0 18 

sp_ 78 Panulirus guttatus Palinuridae  Spiny 2 23 

sp_ 79 Panulirus homarus # + Palinuridae  Spiny 1 90 

sp_ 80 Panulirus inflatus Palinuridae  Spiny 0 30 

sp_ 81 Panulirus interruptus Palinuridae  Spiny 0 65 

sp_ 82 Panulirus japonicus Palinuridae  Spiny 1 15 
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sp_ 83 Panulirus laevicauda Palinuridae  Spiny 0 50 

sp_ 84 Panulirus longipes # Palinuridae  Spiny 1 18 

sp_ 85 Panulirus ornatus # + Palinuridae  Spiny 1 18 

sp_ 86 Panulirus pascuensis Palinuridae  Spiny 0 5 

sp_ 87 Panulirus penicillatus Palinuridae  Spiny 1 4 

sp_ 88 Panulirus polyphagus Palinuridae  Spiny 3 90 

sp_ 89 Panulirus regius Palinuridae  Spiny 1 40 

sp_ 90 Panulirus stimpsoni Palinuridae  Spiny 0 40 

sp_ 91 Panulirus versicolor Palinuridae  Spiny 1 15 

sp_ 92 Parribacus antarcticus Scyllaridae  Slipper 0 20 

sp_ 93 Parribacus caledonicus Scyllaridae  Slipper 0 6 

sp_ 94 Parribacus japonicus Scyllaridae  Slipper 1 20 

sp_ 95 Parribacus scarlatinus Scyllaridae  Slipper 0 20 

sp_ 96 Petrarctus brevicornis Scyllaridae  Slipper 60 150 

sp_ 97 Petrarctus demani Scyllaridae  Slipper 5 59 

sp_ 98 Petrarctus holthuisi Scyllaridae  Slipper 80 300 

sp_ 99 Petrarctus rugosus Scyllaridae  Slipper 20 200 

sp_ 100 Remiarctus bertholdii Scyllaridae  Slipper 15 150 

sp_ 101 Sagmariasus verreauxi Palinuridae  Spiny 0 155 

sp_ 102 Scammarctus batei Scyllaridae  Slipper 160 484 

sp_ 103 Scyllarides aequinoctialis Scyllaridae  Slipper 0 180 

sp_ 104 Scyllarides astori Scyllaridae  Slipper 10 50 

sp_ 105 Scyllarides deceptor Scyllaridae  Slipper 45 200 

sp_ 106 Scyllarides delfosi Scyllaridae  Slipper 2 91 

sp_ 107 Scyllarides elisabethae Scyllaridae  Slipper 37 380 

sp_ 108 Scyllarides haanii Scyllaridae  Slipper 10 135 

sp_ 109 Scyllarides herklotsii Scyllaridae  Slipper 10 300 

sp_ 110 Scyllarides latus # Scyllaridae  Slipper 4 100 

sp_ 111 Scyllarides nodifer Scyllaridae  Slipper 2 91 

sp_ 112 Scyllarides squammosus Scyllaridae  Slipper 20 80 

sp_ 113 Scyllarides tridacnophaga Scyllaridae  Slipper 5 112 

sp_ 114 Scyllarus americanus Scyllaridae  Slipper 5 21 

sp_ 115 Scyllarus arctus Scyllaridae  Slipper 4 50 

sp_ 116 Scyllarus caparti Scyllaridae  Slipper 25 55 

sp_ 117 Scyllarus depressus Scyllaridae  Slipper 29 422 

sp_ 118 Scyllarus paradoxus Scyllaridae  Slipper 22 29 

sp_ 119 Scyllarus planorbis Scyllaridae  Slipper 18 99 

sp_ 120 Scyllarus pygmaeus Scyllaridae  Slipper 5 100 

sp_ 121 Scyllarus subarctus Scyllaridae  Slipper 100 300 

sp_ 122 Thenus australiensis Scyllaridae  Slipper 9 85 

sp_ 123 Thenus indicus Scyllaridae  Slipper 10 30 

sp_ 124 Thenus orientalis # Scyllaridae  Slipper 8 100 

sp_ 125 Thenus parindicus Scyllaridae  Slipper 7 84 
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Table S02 The table shows the list of Earth System Models used for each variable 

analysed. We considered only models that provided the complete series of data from 

1860 to 2100 under the historical and RCP 4.5 experiment. The variables analysed 

included sea surface temperature (CMIP5 variable name ‘TOS’, in K (converted to ºC in 

this study)), sea surface salinity (‘SOS’, in psu), total chlorophyll mass concentration at 

surface (‘Chl’, in kg m−3), dissolved oxygen concentration at surface (‘O2’, in mol m−3) and 

pH at surface (‘pH’, in mol H kg−1). 

 

 

 

  

MODELLING CENTER COUNTRY MODEL Chl O2 pH SOS TOS

BCC-CSM1-1 x

BCC-CSM1-1-m x

CCCma Canada CanESM2 x x x x

  NCAR USA CCSM4 x x

NSF-DOE-NCAR USA CESM1(CAM5) x x

CNRM-CERFACS France CNRM-CM5 x x x x x

CSIRO-QCCCE Australia CSIRO-Mk3.6.0 x x

FIO China FIO-ESM x

NOAA GFDL USA GFDL-CM3 x x

GISS-E2-H x x

GISS-E2-R x x

HadGEM2-AO x x

HadGEM2-ES x x x x

IPSL France IPSL-CM5A-LR x x x x x

MIROC5 x x

MIROC-ESM x x x x

MIROC-ESM-CHEM x x x x

MPI-ESM-LR x x x x x

MPI-ESM-MR x x x x x

MRI Japan MRI-CGCM3 x

NCC Norway NorESM1-M x x

TOTAL MODELS 8 5 7 17 21

JapanMIROC

MPI-M Germany

ChinaBCC 

USANASA GISS

MOHC UK
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Fig. S01 Multi-model mean Standard Deviation across model means per scenario and 

time period as a measure of precision. 
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3. GLOBAL PATTERNS OF CEPHALOPOD COASTAL DIVERSITY 

UNDER CLIMATE CHANGE 
 

 

3.1 Abstract 

 

Coastal marine systems are currently being exposed to climate change at a much faster 

rate than many other ecosystem, with coastal species being exposed to several stressful 

factors. Cephalopod mollusks play a pivotal role in marine trophic webs, and most are 

‘keystone’ species owing to their influence on ecosystem dynamics. Here, we 

characterize the global patterns of coastal cephalopod diversity and present, for the first 

time, a global forecast of potential changes in richness, mean body size and assemblage 

composition (i.e., species replacement, nestedness, and combinations of both) for 161 

coastal cephalopod species under climate change, using an ensemble of ecological niche 

models (ENMs) for an end of the century mitigation scenario. We show that for the 

baseline period, coastal cephalopod diversity is higher in the Central Indo-Pacific area 

and that body size patterns follows the temperature-size rule, with larger animals 

occurring at higher latitudes. End-century projections of habitat suitability show a 

different picture, with 96% of cephalopod species predicted to experience range 

contraction and 15% completing losing their environmental space. Nestedness is 

projected to be the main driver of species compositional change. Maximum body size is 

projected to increase in 44% of the pixels and decrease in 37%. Regarding fisheries, the 

projected changes are more favorable to the countries at higher latitudes, although the 

search of refugia of smaller tropical species might potentially lead to a mitigation of the 

negative effects of climate change in these areas, as measured by the total capture (ton). 

Despite models limitation our findings reflect major climatic drivers of change and 

highlight the idea that even though cephalopod species seem good candidates to 

replace overexploited fish stocks in the near future, they may not have the 

environmental space to do so.  
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3.2 Introduction 

 

Climate change scenarios predict global sea surface temperature (SST) to rise globally 

throughout the 21st century (IPCC, 2013) and marine biota is expected to respond to 

this warming trend by shifting their geographical (Pinsky et al., 2013; Jones &  Cheung, 

2014) and bathymetric ranges (Dulvy et al., 2008). Coastal marine systems are currently 

being exposed to warming at a much faster rate than many other ecosystems (Harley et 

al., 2006) and as several species already live close to their thermal tolerance limits (Rosa 

et al., 2014), an increase in extinction rates of many marine organisms is expected 

(Lasram et al., 2010). 

  

Cephalopods are invertebrates known to play an important ecological role in marine 

trophic webs (both as prey and as predators) and are commonly defined as ‘keystone’ 

species owing to their strong influence on ecosystem dynamics (Rosa et al., 2013a, b). 

Thus, changes in cephalopod abundance can have a mixed impact on marine 

communities and fisheries, contributing to changes in their predators and prey 

abundance (André et al., 2010). In addition, given their short lifespans and rapid growth 

rates, cephalopods are expected to respond faster than other marine species to changes 

in environmental conditions, making them good indicators of environmental change 

(Pierce et al., 2010). It is also important to note that these mollusks are a significantly 

growing component of global fisheries, with landings increasing steadily from the 1950s 

to reach about four million tons annually over the last decade (Doubleday et al., 2016). 

 

Marine fisheries productivity is likely to be affected by the alteration of ocean conditions 

including water temperature, ocean currents and coastal upwelling, as a result of 

climate change (e.g. Lam et al., 2016; IPCC, 2014). Such changes in ocean conditions may 

affect primary productivity, species distribution, community and food web structure 

that have direct and indirect impacts on the goods and services provided by marine 

ecosystems, which will have direct implication for the welfare of human society (FAO, 

2018) 
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A central question in studies exploring the effects of climate change on biodiversity is 

how changes are going to be measured and characterized. We can assume that species 

respond individualistically to environmental changes and model distributions of 

individual species one at a time (Guissan & Thuiller, 2005). Or that the distribution of 

species can potentially be influenced by the distribution of other taxa, using community-

level modelling strategies instead (Gotelli et al., 2010). Beta diversity describe the extent 

of compositional change in the community between sites and also attempt to reveal the 

assembly mechanisms that drive these differences (Bishop et al., 2015). Most studies 

examine species temporal turnover (e.g. Hillebrand et al., 2010; Poloczanska et al., 

2013; ,Cheung et al., 2015; Pecl et al., 2017; Lotze et al., 2019) but frameworks exist to 

assess changes in species turnover both in time and space (e.g. Almeida-Neto et al., 

2011; Baselga, 2012). Species Temporal Turnover (STT) is a widely used metric to assess 

these changes in composition (e.g. Almeida-Neto et al., 2011; Baselga, 2012). However, 

as a measure of beta diversity equivalent to the Jaccard dissimilarity index (Anderson et 

al., 2011), it mixes two components in one metric: changes in assemblage composition 

caused by a process of species loss or gain (i.e., the nestedness component of beta 

diversity); and changes in assemblage composition caused by a process of species 

replacement (i.e. the pure turnover component of beta diversity). Following Baselga 

(2010,2012), Albouy et al. (2012a) proposed a strategy to fully apprehend the potential 

effects of climate change on species assemblages by analyzing changes in species 

richness and changes in species composition together, and highlighted a bivariate 

mapping strategy to picture simultaneously the spatio‐temporal trend of both 

processes. 

 

Beyond species composition, another important issue is how to account for functional 

and phenotypic differences in multispecies assemblages. Quantifying the distribution of 

traits in a community or the relative magnitude of species similarities can give us a good 

measure of the assemblage functional diversity (Cadotte et al., 2011). Body size is 

considered a fundamental species trait and a good indicator of ecosystem functioning 

because of its relationship to several functional traits such as growth, reproduction and 

mortality (Brown et al., 2004). Also body size is an easy and cheap way to translate 

several co-varying traits into a single one (Woodward et al., 2005). Commercial fishing 
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is known to constrain body size distributions of marine populations, as most fishing gear 

is size selective and targets preferentially large bodied organisms (Myers & Worm, 

2003). The increased temperatures associated with climate change are expected to 

disrupt large scale patterns in body size distributions (Sheridan & Bickford, 2011; Cheung 

et al., 2012) and ecosystem functioning (Fisher et al., 2010). Still the effect of climate 

change on marine populations is less studied than the effects of fishing, so large scale 

projections of climate mediated changes in body size distribution are urgent. 

  

In this study we provide the first forecast of global changes in coastal cephalopod 

species richness projected under climate change. Using an ensemble of ecological niche 

models (e.g. Diniz-Filho et al., 2009) we projected changes in habitat suitability for 161 

coastal cephalopod species to an end-century stabilization scenario. We then examined 

how spatial and temporal components of coastal cephalopod assemblage diversity are 

projected to change toward the end of the century. Lastly, we inferred the potential 

effects in body size distributions and its potential impacts in global cephalopod fisheries. 

 

3.3 Material and Methods 

 

3.3.1. Species and climate data 

We obtained polygons of extent of occurrence (range filling) for 161 coastal cephalopod 

species (79 cuttlefishes, 71 squids and 10 octopus species; see list of species in Table 

S01) from Food and Agriculture Organization of the United Nations (FAO) (Jereb 

&  Roper, 2005, 2010; Jereb et al., 2016) and converted them to presence points data in 

a 1º x 1º latitude/longitude grid using ArcGIS (ESRI, 2006). To avoid statistical bias in 

ENM fitting, 5 species were excluded from the analyses – corresponding to those with 

fewer than 20 records over the study area (Wisz et al., 2008). 

  

Patterns of marine species distribution are strongly influenced by bathymetry (Dambach 

&  Roedder, 2011), so in order to reduce false positives in the presence data we refined 

the extent of occurrence maps by clipping off areas with depths falling outside the 

bathymetric range of the species (Jereb &  Roper, 2005, 2010). The bathymetry of the 

ocean was obtained from ETOPO2 (2010) and resampled to a 1º x 1º latitude/longitude 

grid. We also restricted analyses to species associated with, but not restricted to, the 
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continental shelf (200 m depth limit), since they are more likely to be affected by climate 

change (Rosa et al., 2012b). 

  

We used 30-year averages of five climate variables (sea surface temperature, sea 

surface salinity, total chlorophyll mass concentration at surface, dissolved oxygen 

concentration at surface and ocean surface pH) from Earth System Models (ESM) 

developed for CMIP5. There were 21 ESM’s from 15 climate centres in 9 countries that 

modelled at least one of the variables analysed (Table S02). For each model and variable, 

we used the period 1976–2005 from the historical experiment, to establish the baseline 

period. And the period 2071–2100, to define our future scenarios. A stabilization 

scenario was used in this study (Representative Concentration Pathway, RCP4.5), with 

CO2 concentrations projected to increase up to 650 ppm by 2100 (Vuuren et al., 2011). 

This scenario was chosen as it’s the one that projected the raise in surface temperature 

by the end-century closer to the +1,5ºC increase targeted by the Paris 

Agreement  (Nations, 2016), so we considered it the most realistic at the present 

moment. 

  

Climate data were publicly available from the World Climate Research Programme 

(http://cmip-pcmdi.llnl.gov/cmip5/availability.html). Sea surface temperature and 

surface seawater salinity have monthly frequency while the other three variables have 

annual data. We only extracted the first layer (i.e., surface) for chlorophyll, dissolved 

oxygen, and pH. All parameters were interpolated into a common 1° by 1° grid prior to 

calculating multi-model means (Mora et al., 2013). We estimated multi-model variability 

by calculating the standard deviation of model means among Earth System Models per 

variable and time period (Figure S01). There are several methods to ensemble ESM’s, 

but average of several coupled climate models is usually found to agree better with 

observations than any single model (Tebaldi &  Knutti, 2007). 

  

To determine the extent of environmental differences between baseline and future 

climates a Multivariate Environmental Similarity Surfaces (MESS) analyse was 

performed, as proposed by Elith et al. (2010). For each cell, the degree of similarity 

between the new environments and those in the baseline period was computed 
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(negative values represent dissimilarity). As models are less reliable when predicting 

outside their domain (Barbosa et al., 2009), we have to carefully interpret the results for 

those areas. These calculations were performed using the modEvA R package [Figure 

S02 - Barbosa et al., 2014)]. 

  

To match the resolutions of species and climate data, all datasets were re-sampled in 

ArcGIS (ESRI, 2006) to the 1° grid used for species. Data processing and statistical 

analyses were performed using R software (R Development Core Team, 2010). 

 

3.3.2. Ecological niche models 

In order to constrain algorithmic uncertainty associated with Ecological Niche Models 

(ENM’s) we implemented an ensemble forecasting method (Araújo & New, 2007). 

Models were fitted using seven different modelling techniques implemented in 

BioEnsembles (Diniz-Filho et al., 2009): (1) BIOCLIM, (2) Genetic Algorithm for Rule-Set 

Prediction (GARP), (3) Generalized Linear Models (GLM), (4) Generalized Additive 

Models (GAM), (5) Multivariate Adaptive Regression Splines (MARS), (6) Maximum 

Entropy (Maxent), (7) Neural Network (NNET). 

  

For each species, data were randomly partitioned  into calibration (75%) and validation 

(25%) dataset, the procedure was repeated 5 times, maintaining the observed 

prevalence of species in each partition, and models for each species were fit and 

evaluated using the True Skill Statistic (TSS) (Allouche et al., 2006). Weighted median 

consensus forecasts were computed (Marmion et al., 2009) and models performing 

poorly (with TSS values ≤ 0.5) were excluded from the final ensemble (according to 

Landis & Koch, 1977 classification scheme). Consensus projections were built using 

100% of the data, as data partitions have been shown to add significant uncertainty to 

forecasts (Araújo et al., 2009). 

  

Using projected future climatic conditions we estimated changes in the geographic 

location of environmental niches for each species. We imposed some limitations to 

dispersal, as we considered unrealistic for a cephalopod species (or larvae) to move 

beyond important geographical barriers or disperse across major oceans to reach 
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climatically suitable areas. So we used an adapted version of Spalding et al. (2007) 

ecoregions and only allowed species to move to an adjacent realm between time 

periods (Figure S03 shows the realms used in this study). We also imposed bathymetric 

limitations so that species would not be allowed to colonise a cell if it fell outside the 

species’ bathymetric range (Albouy et al., 2012b). 

  

We calculated each species potential distributions for each time period, and calculated 

coastal cephalopod diversity by stacking individual distributional maps on the top of 

each other and infer species richness in each grid cell. We projected diversity for coastal 

cephalopods as a whole and individually for its three main groups - cuttlefishes, squids, 

octopuses. We then quantified the potential changes in cephalopod species richness as 

the difference between the future and the baseline period. 

 

Then, we analysed potential changes in cephalopod assemblage composition (species 

replacement vs. nestedness) between the two time periods. Using Species Temporal 

Turnover (SST; as described in Albouy et al., 2012a) and its decomposition, we chose 

Beta ratio (βratio) as a useful index to describe the relative contribution of each 

component (species replacement vs. nestedness) in the overall amount of STT. βratio 

values smaller than 0.5 indicate that species replacement is the main driver of STT, 

whereas values greater than 0.5 indicate that STT is mostly caused by nestedness (if 

βratio=1 - nestedness is the sole driver of STT; βratio=0 – only replacement explains 

STT). Here, we determined βratio as the ratio between the nestedness component of 

the Jaccard’s dissimilarity index (βjne) and Jaccard’s dissimilarity index (βjac) 

(Dobrovolski et al., 2011). 

  

We also project changes in the distribution of mean body size of assemblages using 

measurements of species maximum body size provided by FAO (Jereb &  Roper, 2005, 

2010; Jereb et al., 2016), by comparing current and projected future distributions of 

mean body size, under climate change. To limit the effect of extremely large body sizes 

and account for non-normal distributions we used the logarithm of body size and 

applied the geometric rather than the arithmetic mean (Fisher et al., 2010). Body size 

analyses were averaged at the level of Exclusive Economic Zones (EEZ), so they can relate 
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with the potential economic impacts of climate change on cephalopod fisheries 

(cephalopod global capture production per country (FAO, 2016) was used as proxy for 

countries dependency on resource). 

  

In addition, we quantified the potential effect of climate change on species range sizes 

by calculating the relative loss or gain (0.5 threshold in probability of occurrence) of the 

potential geographic ranges sizes (measured as number of cells occupied by a species) 

between the future and baseline period. 

 

3.4 Results 

 

3.4.1. Model prediction accuracy and environmental variables importance 

The predictive accuracy of the seven ENM´s used in this analyses was classified from 

‘fair’ to ‘excellent’ (according to Landis &  Koch, 1977 classification scheme), with a 

mean TSS criterion of 0.69±0.08. The model with the lowest TSS was GARP 

(TSS=0.45±0.34) and the highest TSS was obtained with GAM, with TSS=0.84±0.09. Final 

ensembles performed at ‘excellent’ levels with a TSS of 0.81±0.11. 

 

pH was the environmental variable responsible for an higher percentage (55%) of new 

environmental space, chlorophyll was 21% of the area, sea surface temperature was in 

13%, oxygen in 8% and sea surface salinity in 3%. 

 

3.4.2. Cephalopod hotspots and projected changes in richness 

The zeniths of coastal cephalopod diversity for the baseline period, were projected in 

the Western/Central Indo-Pacific area, with a mean richness of 39±15 species at 8ºN 

latitude and 38±13 species at 9.5º S (Fig. 1A). When looking at the major coastal 

cephalopod families, we project a cuttlefishes richness hotspot around 12º N (19±8 

species), in the Bay of Bengal area (Fig. 1C). Squids projected diversity peaks around 

7.5ºS (19±4 species), in the central Indo-Pacific (Fig. 1E). Finally, Octopus diversity 

zeniths are projected around 40ºN (3±2 species) in the Mediterranean Sea and around 

17ºN (2±1 species) on the wider Caribbean region (Fig. 1G). 
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Hotspots in the future scenario are projected to shift toward higher latitudes and 

present less diverse assemblages. Future coastal cephalopod richness zeniths are 

projected around 21ºN latitude (Fig. 1B; 13±11 species), at the Bay of Bengal and the 

China Sea area and around 18ºS (13±6 species) in the Madagascar coast area. This 

latitudinal patterns are driven mostly by the cuttlefishes (Fig. 1D; zeniths at 21ºN (5±6 

species) and 19.5ºS latitudes (4±3 species)) and squids (zeniths at 20ºN (8±5 species) 

and 18ºS latitudes (8±3 species)) diversity, despite this last group present a high diversity 

all throughout the Indo-Pacific area (Fig. 1F; zenith around 1ºS (8±5 species)). Octopus 

hotspots are projected to slightly shift North, but remaining in the same areas 

(Mediterranean Sea and Caribbean region), still they are projected to suffer a threefold 

decrease in richness (Fig. 1H). 

  

By the end-of-century, 69% of the continental shelf is predicted to experience some loss 

in adequate environmental niches, whereas only 12% is predicted to gain (Fig. 2 – right 

panels). Habitat loss for coastal cephalopods is predicted to occur mostly in the tropics, 

with peaks at 10.5ºS and 8ºN latitudes, with a mean loss up to 39±15 species. The gains 

in habitat are predicted only for the northern latitudes above 70ºN, but with much less 

intensity than losses (1±1 species). 

 

Under the future climate change scenario the potential geographic range sizes of coastal 

cephalopods are projected to decrease for 149 species (95%), of which 24 (15%) are 

projected to completely lose their suitable environmental space and increase only for 7 

species (5%). The same trend is true for the main groups within the cephalopod class, 

with the cuttlefishes shrinking their potential range in 95% of the species (with 15% 

projected to completely losing their suitable habitat), the squids in 96% of the species 

(of which 14% are projected to disappear) and in the octopuses 100% of the species are 

projected to reduce geographic range (with 30% projected to completely lose adequate 

environment). 

 

3.4.3. Projected changes in cephalopod composition 

Nestedness contributed more than replacement in explaining the temporal pattern of 

cephalopod turnover (Fig. 2B, mean βratio= 0.64±0.41). It was also the key contributor to the 

total amount of Species Temporal Turnover (STT) in 48% of cells (mean βratio= 0.95±0.13). 
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Predominant replacement was only verified in 32% of cells (mean βratio= 0.13±0.14). For the 

remaining cells in the continental shelf, the βratio was not calculated since there were no 

changes in predicted habitat suitability for all occurring species between periods. When looking 

at the latitudinal patterns of STT, replacement is more intense in the northern latitudes, above 

50ºN, with squids being the main driver of this pattern. In all the remaining latitudes nestedness 

is the main driver of turnover, with the highest values in the equatorial latitudes, driven both by 

cuttlefishes and squids patterns (Fig. 2 – left panels). 

Fig.1 Projected richness for the baseline and the end-of-century period, under IPCC AR5 
RCP4.5 scenario, for coastal cephalopods and its main groups (cuttlefishes (n=76), squids 
(n=69), octopuses (n=11)). 
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Fig. 2 Predicted changes in richness and composition between the baseline and the end-
of-century period, under IPCC AR5 RCP4.5 scenario, for the coastal cephalopods 
assemblages. Changes in diversity are quantified using delta richness (DRS) and changes 
in composition using the βratio index. 

 

3.4.4 Current patterns and projected changes in body size distributions 

Species body size patterns in the baseline scenario presents a general trend of higher 

values towards higher latitudes, with a maximum mean body size of 5.91±0.26 (log) cm 

around 53ºS. Our models project decrease in maximum mean body size to occur in 37% 
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of the globe, mainly in the higher latitudes above 50ºN, and to increase in 44%, mostly 

in the intermediate latitudes (between 50ºN and 30ºS). Some of the areas projected to 

suffer a reduction in maximum mean body size are located near countries with higher 

dependency on the resource (e.g. Russia, EUA, Chile, Italy). 

 

3.5 Discussion 

 

Here we provide a first attempt to understand the global patterns of cephalopod 

diversity within the neritic realm and explore changes projected to happen due to 

climate change. We show that the hotspot of coastal cephalopod richness is found in 

the Central Indo-Pacific region, particularly in the East China Sea and in the Eastern 

Philippines ecoregions (Fig. 1 – left panels). Given the limiting number of Octopus 

occurrence data obtained for this study (10 species), it might seem that this coastal 

cephalopods hotspot is driven mainly by the high diversity of squids and cuttlefish, 

nevertheless this may not be true as is known that many Octopus species are endemic 

in this region (Jereb et al., 2016). The Central Indo-pacific region is described as a 

biodiversity hotspot for many marine taxa (Roberts et al., 2002; Tittensor et al., 2010) 

and several authors have suggested different hypotheses, based on particularly rich 

environmental conditions or historical geological events, that might have promoted 

speciation processes and/or refuge in this area (Renema et al., 2008; Cowman 

&  Bellwood, 2013; Leprieur et al., 2016), explaining the high marine diversity found in 

the Central Indo-Pacific region. Our projections are in line with the results of a recent 

study (Rosa et al., 2019) exploring for the first time the global patterns of species 

richness in coastal cephalopods, showing that despite the lack of data for some groups 

(e.g. octopus) our models provide a good picture of the current global patterns. 

 

Regarding changes in cephalopod diversity, we found that projected losses of habitat 

suitability for species were more important within the tropical areas whereas gains were 

greater towards the poles (Fig. 2 – right panels). These findings are consistent with 

studies that revealed poleward shifts in species distribution within the 20th century (e.g. 

Burrows et al., 2011; Poloczanska et al., 2013), as well as predictions of shifts in the 21t 

century (e.g. Pereira et al., 2010; Jones &  Cheung, 2014). In the tropics, marine animals 

tend to have their critical thermal tolerances close to environmental temperature limits 
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(Tewksbury et al., 2008), making them highly sensitive to warmer temperatures. In 

terrestrial organisms, physiological adaptation to heat seems to be generally impaired 

(Araújo et al., 2013), although this patterns has not been fully explored in marine 

environments. Should the pattern be true for marine organisms, then moving to cooler 

habitats at higher latitudes would constitute the more viable adaptive strategy. Another 

alternative is for animals to seek deeper colder water in response to environmental 

warming (Dulvy et al., 2008) However, moving towards the deep ocean might be 

unsuitable for coastal cephalopods, since most of them are highly dependent on the 

complexity and diversity of neritic habitats for reproduction (Boyle &  Rodhouse, 2005). 

 

Fig. 3 A) Distribution of geometric mean body size (log) projected for the cephalopod 
group, in the baseline period. Lateral panel represents mean body size predicted for the 
baseline (blue line) and for future (red line) period. B) Net differences in geometric mean 
body size predicted between the two periods. In land Cephalopod Global Capture 
Production per Country [(ton); 2016 data – FAO (2016)]. 

 

The predicted range shifts in cephalopods distribution combined with the range 

contractions projected for most species will result in drastic changes in species 

composition. Our results point to nestedness being the main driver of cephalopod 
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turnover, with species replacement only predicted to occur in few areas (mainly in the 

higher latitudes – Fig. 2 left panels). These changes in species composition will result in 

a less diverse assemblage, as they are projected to occur mainly due to the loss of 

species, but it’s also vital to understand the degree of functional redundancy 

maintained, to better predict the consequences on ecosystem functioning and resilience 

(Albouy et al., 2012a). This is particularly important in coastal ecosystems since 

anthropogenic pressure may act in synergy with climate change intensifying local 

extinctions (Crain et al., 2009). 

  

The distribution of maximum body size observed in the baseline scenario is consistent 

with the temperature-size rule (Atkinson, 1994), with larger animals occurring at higher 

latitudes (and lower temperatures). Rosa et al. (2012a) already reported this pattern for 

the same taxonomic group in the Atlantic Ocean and here we observed it across the 

globe. According to model projections there is a tendency of slight increase in mean 

body size towards areas with higher losses in projected richness (Fig. 3), suggesting that 

these losses are affecting predominantly the smaller species (better represented in 

tropical latitudes). Which can mean good news for fisheries in these areas, as this 

tendency might potentially lead to a mitigation of the negative effects of climate change 

as measured by the total capture (ton). Whereat the higher latitudes the tendency 

seems to be contrary. Projected changes are more favourable to the countries at higher 

latitudes, since their fisheries are expected to benefit from the predicted poleward shifts 

in species richness. Despite projected gain in cephalopod diversity towards the poles, 

fisheries could need to adjust to the predicted reduction in mean body size. 

  

The effects of ecological change of cephalopod populations driven by overexploitation 

of fishery resources are still to be fully understood. Yet, one might argue that under the 

combined effects of intense fishing pressure and climate change, fish are likely to be 

poor competitors in relation to cephalopods since the latter display faster growth, 

higher reproductive rates, short life cycles and voracious opportunistic predatory habits 

(Rodhouse, 2008; Rosa et al., 2013a, b). Cephalopod biomass has not yet replaced fish 

biomass in the landings, but looking at the continuing growing trend (Doubleday et al., 

2016) this hypothesis has to be considered. However, within global climate change 
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context, our results show that there might not be suitable environmental space for 

cephalopods species to do so. However, our models do not consider the potential for 

rapid acclimation and adaptation (Munday, 2014), which could give cephalopods time 

and evolutionary opportunities to adapt to future changes. 

  

Given the increasing number of cross-factorial studies showing the deleterious 

interacting effects of ocean warming and acidification on the development and 

physiology of marine invertebrates (Portner, 2008; Findlay et al., 2010; Byrne 

&  Przeslawski, 2013), including cephalopods (Rosa et al., 2014), together with the 

availability of several new marine variables in the IPCC (2013), pH was included in our 

models. Which proved to have a great impact in species distribution, as pH was the 

climatic factor responsible for unsuitable environmental space in 55% of the times, 

whereas SST was only in 13%. This lead to more pessimistic results, in terms of range 

contraction due to loss of environmental space, when compare with other studies of 

these kind (e.g. Cheung et al., 2009; Poloczanska et al., 2013). Also our assumption of 

limited dispersal and the fact that ecological niche models only take climatic variables 

into account, when characterizing the habitat suitability, should be taken into 

considerations when interpreting the results. Furthermore, models predict potential 

niches not the actual distributions (see Peterson et al., 2011), so it is likely that many 

areas projected to be occupied in the present and in the future might actually not be. 

Nevertheless, the first order geographical tendencies of these projections reflect major 

climatic drivers of change thus being likely to be ecologically meaningful (Garcia et al., 

2015). 

  

The global scale and complexity of climate change impacts and the uncertainty in 

regional climate and earth system projections (Frölicher et al., 2016), calls for improved 

resolution of regional climate processes. Recent high resolution climate models have 

allowed to better resolve coastal processes and, in some cases, to reduce regional model 

biases (Saba et al., 2016), but more need to be done in the terms of data collection and 

in the integration of biotic processes in more refined models. The use of these data in a 

“hybrid” mechanistic- empirical approach (as proposed by Robinson et al., 2011) could 

give us more accurate predictions of what will happen in the ocean of tomorrow. 
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3.7  Supplementary material 

 

Table S01 List of the 161 costal cephalopod species used in this study (species marked 
with * were excluded from the analyses due to few records) with their bathymetric 
range (min and max depth) and maximum body size (cm). 

spID GroupId Sp name 
Range 

BodySize  
min max 

sp0 L Afrololigo mercatoris 0 50 640 

sp1 L Alloteuthis africana 20 100 937 

sp2 L Alloteuthis media 0 200 400 

sp3 L Alloteuthis subulata 50 500 50 

sp4 L Ancistroteuthis lichtensteini  0 250 300 

sp5 L Australiteuthis aldrichi  9 61 28 

sp6 S Austrorossia australis 131 665 63 

sp7 S Austrorossia bipapillata 0 240 57 

sp8 L Bathyteuthis abyssicola 100 4200 132 

sp9 L Berryteuthis magister  0 1500 205 

sp10 L Brachioteuthis picta 150 3000 184 

sp11 L Brachioteuthis riisei 50 3000 370 

sp12 O Cistopus indicus 0 50 180 

sp13 L Doryteuthis gahi 0 600 72 

sp14 L Doryteuthis opalescens 0 500 400 

sp15 L Doryteuthis pealeii 0 393 305 

sp16 L Doryteuthis plei 0 370 465 

sp17 L Doryteuthis roperi 50 300 118 

sp18 L Doryteuthis sanpaulensis 0 120 200 

sp19 L Doryteuthis surinamensis* 27 37 380 

sp20 O Eledone cirrosa 0 500 400 

sp21 O Eledone massyae 30 160 75 

sp22 O Eledone moschata 10 300 350 

sp23 S Euprymna berryi 0 107 50 

sp24 S Euprymna morsei 0 200 40 

sp25 S Euprymna tasmanica 0 200 40 

sp26 L Gonatopsis japonicus 0 1000 88 

sp27 L Gonatopsis octopedatus 0 2000 47 

sp28 L Heterololigo bleekeri  0 150 87 

sp29 S Heteroteuthis dispar 0 1588 25 

sp30 L Illex argentinus  80 400 150 

sp31 L Illex coindetii  0 1000 120 

sp32 L Illex illecebrosus  150 510 113 

sp33 L Illex oxygonius  50 550 230 

sp34 L Lepidoteuthis grimaldii 100 2000 120 

sp35 L Loligo forbesii 50 700 39 

sp36 L Loligo reynaudii 0 350 110 

sp37 L Loligo vulgaris 0 500 115 

sp38 L Loliolus affinis 13 15 26 

sp39 L Loliolus beka 0 50 20 

sp40 L Loliolus hardwickei 0 30 200 

sp41 L Loliolus japonica 1 10 394 

sp42 L Loliolus sumatrensis 10 50 422 

sp43 L Loliolus uyii 0 50 200 

sp44 L Lolliguncula argus 0 50 502 

sp45 L Lolliguncula brevis 0 50 270 

sp46 L Lolliguncula diomedeae 0 100 150 

sp47 L Lolliguncula panamensis 0 120 490 

sp48 L Martialia hyadesi  0 200 330 

sp49 S Metasepia pfefferi  3 86 60 
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sp50 S Metasepia tullbergi 20 100 70 

sp51 S Neorossia caroli 40 1744 83 

sp52 L Nototodarus gouldi  0 500 160 

sp53 L Nototodarus hawaiiensis 0 650 500 

sp54 L Nototodarus sloanii  0 500 140 

sp55 O Octopus aegina 30 120 100 

sp56 O Octopus burryi 100 200 70 

sp57 O Octopus conispadiceus 100 200 1500 

sp58 O Octopus maya 0 50 1300 

sp59 O Octopus tetricus 0 60 800 

sp60 O Octopus vulgaris 0 200 1200 

sp61 L Onykia carriboea 0 900 72 

sp62 L Onykia robusta  0 900 2300 

sp63 L Pickfordiateuthis bayeri 100 274 75 

sp64 L Pickfordiateuthis pulchella 0 20 22 

sp65 L Pickfordiateuthis vossi 0 150 170 

sp66 L Pyroteuthis margaritifera 75 800 90 

sp67 S Rondeletiola minor 76 496 23 

sp68 S Rossia macrosoma 32 899 85 

sp69 S Rossia pacifica 30 310 90 

sp70 O Scaeurgus unicirrhus 100 800 60 

sp71 S Semirossia equalis 130 260 50 

sp72 S Semirossia tenera 85 135 50 

sp73 S Sepia aculeata 0 60 230 

sp74 S Sepia andreana 0 50 120 

sp75 S Sepia apama 1 100 500 

sp76 S Sepia arabica 80 272 88 

sp77 S Sepia australis 45 345 85 

sp78 S Sepia bandensis 0 200 70 

sp79 S Sepia bertheloti 20 156 175 

sp80 S Sepia braggi  30 86 80 

sp81 S Sepia brevimana 10 100 110 

sp82 S Sepia cultrata 132 800 120 

sp83 S Sepia elegans 0 500 89 

sp84 S Sepia elobyana* 0 NA 53 

sp85 S Sepia esculenta 10 100 180 

sp86 S Sepia grahami 2 84 82 

sp87 S Sepia hedleyi 47 1092 108 

sp88 S Sepia hierredda * 0 50 500 

sp89 S Sepia kobiensis 0 200 90 

sp90 S Sepia latimanus 0 30 500 

sp91 S Sepia longipes 100 300 250 

sp92 S Sepia lorigera 100 300 250 

sp93 S Sepia lycidas 15 100 380 

sp94 S Sepia madokai 20 200 100 

sp95 S Sepia murrayi 0 106 41 

sp96 S Sepia officinalis 0 200 490 

sp97 S Sepia omani 50 210 100 

sp98 S Sepia opipara 83 184 150 

sp99 S Sepia orbignyana 15 570 120 

sp100 S Sepia papuensis 10 155 110 

sp101 S Sepia pharaonis 0 130 420 

sp102 S Sepia plangon 0 83 135 

sp103 S Sepia prabahari 0 100 130 

sp104 S Sepia prashadi 0 200 140 

sp105 S Sepia ramani 0 100 375 

sp106 S Sepia recurvirostra 10 140 170 

sp107 S Sepia rozella 5 183 140 

sp108 S Sepia savignyi 20 50 190 
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sp109 S Sepia smith* 33 138 140 

sp110 S Sepia stellifera 0 200 120 

sp111 S Sepia sulcata 150 404 97 

sp112 S Sepia trygonina 20 410 140 

sp113 S Sepia vermiculata 0 290 287 

sp114 S Sepia vietnamica 23 104 70 

sp115 S Sepia vossi 2 140 100 

sp116 S Sepia whitleyana 0 128 174 

sp117 S Sepia zanzibarica 20 125 200 

sp118 S Sepiadarium austrinum  0 200 30 

sp119 S Sepiadarium kochii  0 60 30 

sp120 S Sepiella inermis 0 40 125 

sp121 S Sepiella japonica 0 50 180 

sp122 S Sepiella ornata 20 150 100 

sp123 S Sepiella weberi 0 88 70 

sp124 S Sepietta neglecta 25 475 33 

sp125 S Sepietta obscura 27 376 30 

sp126 S Sepietta oweniana 8 1000 50 

sp127 S Sepiola affinis 15 150 25 

sp128 S Sepiola atlantica 0 200 21 

sp129 S Sepiola birostrata 0 100 22 

sp130 S Sepiola intermedia 8 100 28 

sp131 S Sepiola ligulata 44 380 25 

sp132 S Sepiola parva 0 200 10 

sp133 S Sepiola robusta 26 498 28 

sp134 S Sepiola rondeleti 0 450 60 

sp135 S Sepiola trirostrata 0 200 12,5 

sp136 S Sepiolina nipponensis 0 200 25 

sp137 L Sepioteuthis australis 10 70 70 

sp138 L Sepioteuthis lessoniana 0 100 430 

sp139 L Sepioteuthis sepioidea 0 20 175 

sp140 S Stoloteuthis leucoptera  160 700 18 

sp141 L Todarodes filippovae 0 1200 620 

sp142 L Todarodes pacificus 100 500 1000 

sp143 L Todarodes pusillus  50 500 74 

sp144 L Todarodes sagittatus 0 1000 340 

sp145 L Todaropsis eblanae  20 850 400 

sp146 L Uroteuthis arabica 0 200 379 

sp147 L Uroteuthis bartschi 50 200 350 

sp148 L Uroteuthis bengalensis 0 200 540 

sp149 L Uroteuthis chinensis  15 170 500 

sp150 L Uroteuthis duvaucelii 30 170 400 

sp151 L Uroteuthis edulis 30 200 420 

sp152 L Uroteuthis machelae  54 200 110 

sp153 L Uroteuthis noctiluca  0 50 90 

sp154 L Uroteuthis pickfordi* 0 175 420 

sp155 L Uroteuthis reesi 0 200 248 

sp156 L Uroteuthis robsoni  0 200 240 

sp157 L Uroteuthis sibogae 15 170 290 

sp158 L Uroteuthis singhalensis  30 120 100 

sp159 L Uroteuthis vossi  0 200 136 

sp160 L Watasenia scintillans 100 600 50 
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MODELLING CENTER COUNTRY MODEL Chl O2 pH SOS TOS

BCC-CSM1-1 x

BCC-CSM1-1-m x

CCCma Canada CanESM2 x x x x

  NCAR USA CCSM4 x x

NSF-DOE-NCAR USA CESM1(CAM5) x x

CNRM-CERFACS France CNRM-CM5 x x x x x

CSIRO-QCCCE Australia CSIRO-Mk3.6.0 x x

FIO China FIO-ESM x

NOAA GFDL USA GFDL-CM3 x x

GISS-E2-H x x

GISS-E2-R x x

HadGEM2-AO x x

HadGEM2-ES x x x x

IPSL France IPSL-CM5A-LR x x x x x

MIROC5 x x

MIROC-ESM x x x x

MIROC-ESM-CHEM x x x x

MPI-ESM-LR x x x x x

MPI-ESM-MR x x x x x

MRI Japan MRI-CGCM3 x

NCC Norway NorESM1-M x x

TOTAL MODELS 8 5 7 17 21

JapanMIROC

MPI-M Germany

ChinaBCC 

USANASA GISS

MOHC UK

Table S02 Table showing the list of models used for each variable analysed. We 
considered only models that provided the complete series of data from 1860 to 2100 
under the historical and RCP 4.5 experiments. The variables analysed included sea 
surface temperature (CMIP5 variable name ‘TOS’, in K (converted to ºC in this study)), 
sea surface salinity (‘SOS’, in psu), total chlorophyll mass concentration at surface (‘Chl’, 
in kg m−3), dissolved oxygen concentration at surface (‘O2’, in mol m−3) and pH at surface 
(‘pH’, in mol H kg−1). 
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Figure S01 Multi-model mean Standard Deviation across model means per scenario and 
time period as a measure of precision. 
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Figure S02 Multivariate Environmental Similarity Surfaces (MESS) analyses for RCP 4.5 
scenario. Cells shown in red indicate areas where at least one environmental variable 
value occurs outside the range of values in the baseline (training) period. 
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Figure S03 Biogeographic framework. The biogeographic regions used in this work were 
adapted from the Realms defined by Spalding et al. (2007). We created three extra 
realms to insure the biogeographical division of the Atlantic and Pacific Ocean (extras 
realms correspond to 1, 14 and 15). Legend: 1-Eastern Temperate Northern Pacific, 2-
Artic, 3- Eastern Temperate Northern Atlantic, 4-Western Temperate Northern Pacific, 
5-Eastern Tropical Atlantic, 6-Western Indo-Pacific, 7-Central Indo-Pacific, 8-Eastern 
Indo-Pacific, 9- Tropical Eastern Pacific, 10-Temperate South America, 11-Temperate 
Southern Africa, 12-Temperate Australasia, 13-Southern Ocean, 14-Western Temperate 
Northern Atlantic, 15- Western Tropical Atlantic. 
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4. GLOBAL DIVERSITY AND CATCH VARIATION OF SMALL PELAGIC 

FISHES IN THE END OF THE 21st CENTURY  
 

 

4.1 Abstract 

 

Small pelagic fishes (SPF, anchovies, herrings and sardines) support important fisheries 

all over the world, but their population dynamics is highly dependent on ocean/climate 

variability, which raises concern about their viability given ongoing climate change. Here 

we show that between 45% and 46% of the current habitat of SPF species could lose its 

suitability, under a range of mitigation scenarios, by the end of the century. In turn, 

catch potential was projected to decline 32% to 44%, under strong and moderate 

mitigation scenarios. Between 77-93% of the species were projected to shrink their 

geographic range and shift their mean latitudes poleward. Anchovies are the biggest 

losers in a future climate change scenario, with 51% of the species projected to fully lose 

their habitat suitability. Our results suggest major effects on fisheries worldwide and 

highlight the need for precautionary management that can easily adapt to projected 

changes.  
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4.2 Introduction 

 

Most upwelling regions share a characteristic ‘‘wasp-waist’’ structure, where the 

bottom (planktonic trophic levels) and top (apex and near-apex levels) of the food chain 

have high species diversity, while the intermediate trophic level is dominated by one or 

few small pelagic fish (SPF) species (Bakun et al., 2006). These species exert top-down 

control on their preys and bottom-up control on their predators and, therefore, 

dominate the trophic dynamics of these coastal ecosystems (Checkley et al., 2017). SPF 

support important fisheries all over the world and the economies of many coastal 

countries are highly dependent on them (Herrick et al., 2009). SPF such as anchovies, 

herrings and sardines represented about 20% of the total annual world fisheries catch 

in 2016 (FAO, 2016). Yet, evidence for the widespread effects of climate variability on 

SPF populations has accumulated over the last decades (Petingas et al., 2012; Chavez et 

al., 2003) and, though top-down removal of fish biomass can have a strong regulatory 

effect, their populations appear to be controlled mainly by bottom-up processes (Rosa 

et al., 2010). Therefore, it is expected that human-induced enhancement of CO2 

concentrations and rise of global mean temperature will dictate profound impacts on 

SPF distribution and abundance. 

 

4.3     Methods 

 

To estimate these impacts, we used an ensemble of 6 ecological niche models (Diniz-

Filho et al., 2009) and 21 earth system models (WCRP, 2010) to project, for the first time, 

changes in SPF richness, catch potential and geographic range size (comprising 47 

anchovies, 33 herrings and 23 sardines species) by the end-century. The two most 

extreme mitigation scenarios were used to access the range of possible outcomes under 

alternative scenarios: a strong mitigation (Representative Concentration Pathway, 

RCP2.6) and the business-as-usual (RCP8.5) scenarios (IPCC, 2013). After fitting the 

occurrence data to the different modelling techniques implemented in BioEnsembles 

(Diniz-Filho et al., 2009), we derived a consensus projection for each species potential 

distribution and calculated SPF richness (Fig. 1), by stacking individual distributional 

maps on top of each other, for both periods (Peterson et al., 2011). Catch potential was 

estimated by replacing a 30-year mean capture value for each commercial species (32 
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species) per FAO area accordingly in the presence/absence matrices (FAO, 2016). We 

then quantified the potential changes in SPF richness (and catch potential) as the 

difference between the projected richness (and catch potential) in the future (for both 

scenarios) and the baseline periods (Fig. 2). Moreover, the projected shifts in latitudinal 

position and abundance for the major species present in the “Small Pelagic and Climate 

Change program” (SPACC) regions - California (CC), Humboldt (HC), Benguela (BC) and 

Kuroshio-Oyashio (KC) Currents, and in the European Atlantic (EA) (Checkley et al., 

2012), were also investigated under both future scenarios (for detailed description see 

Supplementary material).  

Fig. 1 Projected richness and catch potential for small pelagic fishes for the baseline and 
end-of-century periods, under the RCP 2.6 and 8.5 scenarios. Acronyms represented in 
the first map indicate the location of SPACC regions: CC – California Current; HC – 
Humboldt Current; EA – European Atlantic; BC – Benguela Current; KC – Kuroshio-
Oyashio Current.  
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4.4 Results and Discussion 

 

Our major findings were that global patterns in SPF projected diversity were markedly 

distinct from the ones projected for catch potential. For the baseline period (Fig. 1; top 

panels), while total SPF richness was projected to be higher in the Indo-pacific and 

Caribbean regions, catch potential tended to be higher near the SPACC regions and in 

the North and Baltic Seas. Among SPF groups, sardines were projected to display higher 

diversity in the Indo-Pacific area (Fig. S01), whereas anchovies and herrings in the 

Caribbean region (Fig. S02 and S03, respectively). As for catch potential, herrings were 

projected to be more abundant at higher latitudes (especially North and Baltic Sea), 

while anchovies reach their maximum in the HC and KC currents, mostly due to the 

Peruvian anchoveta (Engraulis ringens) and Japonese anchovy (Engraulis japonicus) high 

numbers. Sardines projected catch potential was strongly influenced by the 

cosmopolitan pilchard Sardinops sagax and respective subspecies or lineages (abundant 

in Australia, CC, BC and KC) and the European pilchard (Sardina pilchardus) present in 

the Northern Atlantic, including Mediterranean Sea (Fig. S01 and S04).  

 

All these patterns changed significantly under the future scenarios, with major losses in 

richness projected around tropical latitudes, especially under RCP8.5 scenario (Fig. 1, 

lower panels; Fig. 2). SPF species richness was projected to decline in 44.5% of the total 

study area (% of cells losing species) in RCP2.6 scenario and 46.2% in the RCP8.5 

scenario. These losses were more pronounced in the Indo-Pacific area and Caribbean 

Sea. As for catch potential, the losses were projected in 32% of total area under RCP2.6 

and 44.1% under RCP8.5, especially over the equatorial latitudes and in the 

Mediterranean and North Seas.  

 

At species-level, almost all species were projected to contract their geographic range in 

future scenarios, with 8.7% of species projected to completely lose habitat suitability 

under RCP2.6 (5 herring and 3 anchovy species) and 43.5% in RCP8.5 (23 anchovy, 14 

herring and 3 sardine species). On average, SPF were projected to lose up to 77% of 

range size in RCP2.6 and 93% in RCP8.5 (Fig. 3A). Regarding catch potential this tendency 

continues, with a mean reduction of 16% in RCP2.6 and 52% in RCP8.5 on projected 
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catch potential (Fig. 3B). Anchovies are the biggest losers in a climate change scenario, 

with 51% of the species projected to fully lose suitable habitat (Fig. 3A).  

Fig. 2 Projected changes in richness and catch potential (log+1) for small pelagic fishes 
between the baseline and end-of-century periods, under the RCP 2.6 and 8.5 scenarios. 
Losses are represented in red and gains in blue. In land shades of grey represent small 
pelagic fishes* global capture production per country (* defined as the herrings, 
sardines, anchovies ISSCAAP div/group; 2016 data (ton)).  
 

In the worst case scenario (RCP8.5), pivotal species as the California (Engraulis mordax) 

or Japonese (Engraulis japonicus) anchovy and the Peruvian anchoveta [Engraulis 

ringens; world’s largest single-species fishery (FAO, 2016)] are projected to completely 

lose their suitable habitat (Fig. 4). Although such drastic projections call for cautious 

interpretation, as they may be linked to their current narrow geographic distribution, 

that leads to a confine projected environmental niche, which can result in an under 

estimation of suitable habitat available to these species. The few exceptions to this 

downward trend were the Atlantic and the Pacific herring projected to expand their 

geographic range and increase catch potential, under both scenarios (Fig. 4). Such trend 

is linked with the projected poleward shift of suitable habitat and can add value to the 

North European  fisheries, as this industry is heavily dependent on this resource [Atlantic 

herring is the top 3 in world captures (FAO, 2016)].  
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Fig. 3 A) Projected geographic range size variation (measured as the number of cells 

where the species is present) for small pelagic fishes (as sum of all species) and 

decomposed in the major groups (anchovies, herrings and sardines) for the baseline 

(green) and end-of-century periods, under the RCP 2.6 (blue) and 8.5 (red) scenarios. B) 

Variation in projected catch potential (log) for small pelagic fishes and decomposed in 

the major groups (anchovies, herrings and sardines) for the baseline (green) and end-

of-century periods, under the RCP 2.6 (blue) and 8.5 (red) scenarios.  

 

Overall our models project a significant reduction in the number of SPF species present 

by end- century. And a significant shift in the catch potential patterns in northern 

latitudes (higher than 50ºN; Fig. 2). Also we found significant relations between 

projected changes in richness and the Gross Domestic Product (GDP) per person of the 
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countries analysed (N=88 countries; p<0.005), with a tendency of higher losses occurring 

in countries with lower income (see Supplementary Figure S05). We anticipate this could 

have serious consequences for fisheries worldwide, especially in developing countries 

(Southeast Asia particularly), where the increasing demand for human consumption and 

mariculture have already reduced SPF resources to a precarious state (Herrick et al., 

2009).  

Fig. 4 A) Latitudinal shifts projected for the major SPF species (ANCHOVIES: Engraulis 
encrasicolus, Engraulis japonicus, Engraulis mordax, Engraulis ringens; HERRINGS: 
Clupea harengus, Clupea pallasii; SARDINES: Sardinops sagax, Sardina pilchardus), in the 
baseline (green) and end-of-century periods, under the RCP 2.6 (blue) and 8.5 (red) 
scenarios. B) Variation in projected catch potential (ton) for the major SPF species, in 
the baseline (green) and end-of-century periods, under RCP8.5 and RCP2.6. 
 

 

Poleward shifts to higher latitudes have already been observed for some SPF species 

(McLeod et al., 2012; Barange et al., 2009) and were projected to increase in future 

scenarios for several other marine taxa (e.g. Jones & Cheung, Barton et al., 2016; 
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Barange et al., 2018). As our results demonstrate, SPF may be particularly affected with 

the resulting assemblages being much less diverse and with narrower ranges of suitable 

habitat left to occupy. In addition, climate change will increase stress on the physiology 

of these resources, making the populations less resilient to unfavourable environmental 

conditions (Faleiro et al., 2016) and more vulnerable to excessive exploitation. 

 

Model assumptions and limitations call for careful interpretation of the projected 

responses to climate change (Chueng et al., 2016). First, the presented results are based 

on potential changes in habitat suitability, which relate to the realized niche of the 

species that may or may not be fully occupied (Peterson et al., 2012). Second, the coarse 

resolution of the CMIP5 climate models limits the ability to predict finer processes 

affecting species distribution, such as stratification or variation in coastal currents that 

can significantly impact larval dispersal patterns and other processes (Brochier et al., 

2013). Recent high-resolution climate projections (Saba et al., 2016) show a bias in 

global climate model simulations, indicating greater warming than projected by coarse 

resolution climate projections in some areas. Third, our model does not consider the 

potential for rapid acclimation and adaptation (Munday et al., 2014), which could give 

SPF time and evolutionary opportunities to adapt to future changes. Despite these 

reservations, we believe our results highlight the sensibility of different SPF species and 

geographical areas to climate change and point out where regional studies at a finer 

scale resolution are needed to inform management and political measures. 
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4.6  Supplementary material 

4.6.1 Online Methods 

 

Species data 

Small pelagic fishes species (SPF) used in this study were chosen based on several criteria: 

Clupeoidei suborder, strictly marine, maximum length of 50 cm and finally we restricted 

our analysis to sardines, anchovies or herrings. Witch left us with 113 species of SPF (see 

list in Supplemental Table S01).  

 

Occurrence locality records for selected species were downloaded from the Ocean 

Biogeographic Information System (OBIS) database via the Global Biodiversity 

Information Facility (GBIF) biodiversity information portal (http://www.gbif.org); data 

were quality controlled by removing duplicate records, data points which did not fall 

within the area covered by our environmental layers (e.g. terrestrial records) and records 

falling outside the bathymetric range of the species. The bathymetry of the ocean was 

obtained from ETOPO2 (ETOPO2, 2010) and resampled to a 1º x 1º latitude/longitude 

grid. The remaining records for each species were then compare against the range map 

for that species and records were removed, if outside the range map, using ArcGIS 9.3 

(ESRI, 2006).Information on geographic range, habitat and biology of SPF were compiled 

based on FishBase (http://www.fishbase.org/search.php), International Union for 

Conservation of Nature (IUCN) Red List of Threatened Species TM 

(http://www.iucnredlist.org/#) and Food and Agriculture Organization of the United 

Nations (FAO) Species Catalogue VOL.7 – Clupeoid Fishes of the world (Whitehead, 1985; 

Whitehead et al., 1988). 

 

To avoid statistical bias in ecological niche modelling (ENM) fitting, 21 species (market 

with * in Table S1) were excluded from the analyses – corresponding to those with fewer 

than 20 records over the study area (Wisz et al., 2008). 

 

Climatic data 

We used 30-year averages of five climate variables (sea surface temperature, sea surface 

salinity, total chlorophyll mass concentration at surface, dissolved oxygen concentration 



Chapter 4 
 

101 
 

at surface and ocean surface pH) from Earth System Models (ESM) developed for CMIP5. 

There were 21 ESM’s from 15 climate centres in 9 countries that modelled at least one of 

the variables analysed (Table S01). For each model and variable, we used the period 

1976–2005 from the historical experiment, to establish the baseline period. And the 

period 2071–2100, to define our future scenarios. The two most extreme mitigation 

scenarios were used to access the range of possible outcomes under alternative 

scenarios: a rapid CO2 mitigation (Representative Concentration Pathway, RCP2.6) and 

the business-as-usual (RCP8.5) scenarios (IPCC, 2013), with CO2 concentrations increase 

projected to vary between 421 and 936 ppm by 2100, respectively (Vuuren et al., 2011). 

 

Climate data were publicly available from the World Climate Research Programme 

(http://cmip-pcmdi.llnl.gov/cmip5/availability.html). Sea surface temperature and 

surface seawater salinity have monthly frequency while the other three variables have 

annual data. We only extracted the first layer (i.e. surface) for chlorophyll, dissolved 

oxygen, and pH. All parameters were interpolated into a common 1 by 1 grid prior to 

calculating multi-model means (Mora et al., 2013). We estimated multi-model variability 

by calculating the standard deviation of model means among Earth System Models per 

variable and time period (Figure S06). There are several methods to ensemble ESM’s, but 

average of several coupled climate models is usually found to agree better with 

observations than any single model (Tebaldi & Knutti, 2007).  

 

To match the resolutions of species and climate data, all datasets were re-sampled in 

ArcGIS9.3 (ESRI, 2006) to the 1° grid used for species. Data processing and statistical 

analyses were performed using R software (R, 2011). 

 

Ecological Niche Models 

In order to constrain algorithmic uncertainty associated with Ecological Niche Models 

(ENM’s) we implemented an ensemble forecasting method (Araújo & New 2007). Models 

were fitted using six different statistical techniques implemented in BioEnsembles (Diniz-

Filho et al., 2009): (1) BIOCLIM, (2) Euclidean distance (EUC), (3) Generalized Linear 

Models (GLM), (4) Generalized Additive Models (GAM), (5) Multivariate Adaptive 

Regression Splines (MARS), (6) Maximum Entropy (Maxent). 
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For each species, data were randomly partitioned into calibration (75%) and validation 

(25%) dataset, the procedure was repeated 5 times, maintaining the observed prevalence 

of species in each partition, and models for each species were fit and evaluated using the 

True Skill Statistic (TSS) (Allouche et al., 2006). Only the models that performed above 

‘good’ levels (TSS values > 0.7) were included in the final ensemble (Thuillier et al., 2019). 

Weighted median consensus forecasts were computed (Albouy et al., 2012) and used to 

build final projections, using 100% of the data, as data partitions have been shown to add 

significant uncertainty to forecasts (Araújo et al., 2009) (TSS for final ensemble performed 

at ‘excellent’ levels = 0.89±0.078).  

 

Using projected future climatic conditions we estimated changes in the geographic 

location of environmental niches for each species. We have restricted our analyses to the 

continental shelf (200 m depth limit) as small pelagic species are known to be strongly 

associated with coastal upwelling regions (Checkley et al., 2009). Also, we trimmed the 

projected climatic suitability for both periods, so a species was only allowed to move to 

an adjacent realm (fig. S06 shows the realms used in this study – adapted from Spalding 

et al., 2007). Even though several factors can contribute to a species not fulling occupying 

its potential niche (Colwell & Rangel, 2009), we considered unrealistic that a SPF (or SPF 

larvae) could move beyond important geographical barriers and disperse across major 

oceans (reason we added extra realms to Spalding et al. (2007) classification, dividing 

Atlantic and Pacific Ocean in Western and Eastern).  

 

Projected changes in richness and abundance of small pelagic fishes 

We determined each species potential distribution and calculated SPF richness (Fig. 1), by 

stacking individual distributional maps on top of each other, for both periods (Peterson et 

al., 2011). We then quantified the potential changes in SPF richness as the difference 

between the projected diversity in the future (for both scenarios) and the baseline 

periods (Fig. 2). To infer how SPF abundance might be affected by climate change we 

collected the global capture production [1985 - 2016 averaged data (FAO, 2016)] for all 

commercial species available [32 species market as # in table S01 (defined as the herrings 

(11), sardines (11), anchovies (10) ISSCAAP div/group and identified at species level)] by 
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FAO area and replaced accordingly in the 1° grid presence/absence matrix (all pixels inside 

a FAO area assume the 30 –year mean capture production for that area for each species). 

For future scenarios the mean capture production value of all FAO areas occupied by the 

species was used, as we don´t want to restrict species movement or have sufficient 

information on the fisheries trends. We then determined SPF overall catch potential 

through time (in tons), as a proxy for abundance (since catch data can be heavily 

influenced by fisheries regulations and market drivers), (Fig. 1) and quantified potential 

changes as mentioned for diversity (Fig. 2). Logarithmic transformation (log+1) was used 

in order to remove the effects of really high catch data and account for non-normal 

distribution and applied the geometric rather than the arithmetic mean (Fisher et al., 

2010). Since global capture production are derived from landing statistics it’s expected a 

bias towards countries with higher effort in SPF fisheries, nevertheless is relevant to have 

a picture of how catch potential of this group looks at a global scale and how climate 

change might be projected to alter it. Global capture production per country for SPF 

[defined as the herrings, sardines, anchovies ISSCAAP div/group; FAO (2016)] was used as 

a proxy for countries dependency on resource (Fig. 2 – In land shades of grey). The same 

analyse was performed for the groups used in this study (sardines, anchovies and 

herrings) at an individual scale (Fig. S03-S05). 

 

Variation in range size and abundance 

To quantify the potential effect of climate change on species range sizes we calculate the 

relative loss or gain of the potential geographic ranges sizes (measured as number of cells 

occupied by a species) between the baseline and future period, for SPF (as a sum of all 

species analysed) and for the major groups (sardines, anchovies and herrings; Fig. 3A). 

The same analyse was made for catch potential (Fig. 3B). We assessed the differences in 

mean range size through time using a Mann–Whitney-Wilcoxon Test for paired samples. 

 

Latitudinal shifts 

To predict the latitudinal shifts that major SPF species might undergo due to climate 

change, we analysed the principal sardines, anchovies and herrings species present in the 

Small Pelagic and Climate Change program (SPACC) regions21, namely California (CC), 

Humboldt (HC), Benguela (BC) and Kuroshio-Oyashio (KC) Currents, and in the European 
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Atlantic (EA). This was made by analysing the shift in mean latitude for each species and 

period (Fig. 4A).  

 

Regression 

To assess the relation between projected changes in richness and catch potential per 

country and relevant socio-economic metrics, a regression analyses was made with 

different metrics (total SPF capture production (ton), Gross Domestic Product/person 

($USD), population size (number of individuals) and fish consumption/person (g of 

protein)) and present the results of the significant relations (Fig. S05; socio-economic data 

from http://data.worldbank.org/). 

 

MESS analyse 

To determine the extent of environmental differences between baseline and future 

climates a Multivariate Environmental Similarity Surfaces (MESS) analyse was performed 

(Elith & Philips, 2010). For each cell, the degree of similarity between the new 

environments and those in the baseline period was computed (negative values represent 

dissimilarity), as models are less reliable when predicting outside their domain (Barbosa 

et al., 2009). These calculations were performed using the modEvA R package (Barbosa et 

al., 2016). Results are presented in fig. S08 and present in red the areas with higher 

uncertainty. 
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Fig. S01 Projected richness and catch potential for sardine species for the baseline and 
end-of-century periods, under the IPCC AR5 RCP 2.6 and 8.5 scenarios. 
  

CATCH POTENTIAL 
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Fig. S02 Projected richness and catch potential for anchovy species for the baseline and 
end-of-century periods, under the IPCC AR5 RCP 2.6 and 8.5 scenarios. 

CATCH POTENTIAL 
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Fig. S03 Projected diversity and abundance for herring species for the baseline and end-
of-century periods, under the IPCC AR5 RCP 2.6 and 8.5 scenarios. 

CATCH POTENTIAL 



Chapter 4 
 

108 
 

 
Fig. S04 Projected changes in richness and catch potential for small pelagic major groups 
(sardines, anchovies and herrings) between the baseline and end-of-century periods, 
under the IPCC AR5 RCP 2.6 and 8.5 scenarios.  
 

 

 

 

CHANGES IN CATCH POTENTIAL 
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Fig. S05 Relation between average changes in richness and Gross Domestic Product (GDP) 
per person for the countries with continental shelf (N=88 countries). The trend line for 
RCP2.6 is modelled with γ=844χ+28002 (r2=0.35, P<0.005) and trend line for RCP8.5 with 
y=649x+27963 (r2=0.35, P<0.005).   
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Fig. S06 Biogeographic regions used in this work [adapted from the realms proposed by 
Spalding et al. (2007)]. Three extra realms were included to insure the biogeographical 
division of the Atlantic and Pacific Ocean (extras realms correspond to 1, 14 and 15). 
Legend: 1-Eastern Temperate Northern Pacific, 2-Artic, 3- Eastern Temperate Northern 
Atlantic, 4-Western Temperate Northern Pacific, 5-Eastern Tropical Atlantic, 6-Western 
Indo-Pacific, 7-Central Indo-Pacific, 8-Eastern Indo-Pacific, 9- Tropical Eastern Pacific, 10-
Temperate South America, 11-Temperate Southern Africa, 12-Temperate Australasia, 13-
Southern Ocean, 14-Western Temperate Northern Atlantic, 15- Western Tropical Atlantic. 
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Fig. S07 Standard deviation across climatic model means per scenario and time period as 
a measure of variability in the multi-model ensemble of Earth System Models (ESM) used. 
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Fig. S08 Multivariate Environmental Similarity Surfaces (MESS) analyses for A) RCP 2.6 and 
B) RCP 8.5 scenarios. Cells shown in red indicate areas where at least one environmental 
variable value occurs outside the range of values in the baseline (training) period. 
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Table S01 List of species used for this study, the bathymetric range occupied by each 
species (Min and Max Depth in meters (m)), their standard body size (Bsize) in cm and the 
group they belong to. Species marked with (*) were excluded from the analysis due to 
few records and the species marked with (#) represent the ones with economic value and 
were included in the abundance analysis. 
 
 
 
 
 

id Species Min Max Bsize Group

sp_1 Amblygaster_clupeoides 0 50 17 sardine

sp_2 Amblygaster_leiogaster 0 50 23 sardine

sp_3 Amblygaster_sirm# 10 75 24 sardine

sp_4 Anchoa_analis* 1 2 10 anchovy

sp_5 Anchoa_argentivittata 0 50 12.5 anchovy

sp_6 Anchoa_cayorum* 0 10 11 anchovy

sp_7 Anchoa_chamensis* 0 50 6 anchovy

sp_8 Anchoa_colonensis 0 50 14 anchovy

sp_9 Anchoa_compressa 0 50 13.3 anchovy

sp_10 Anchoa_cubana 0 60 10 anchovy

sp_11 Anchoa_curta 0 50 8.9 anchovy

sp_12 Anchoa_delicatissima* 0 50 12 anchovy

sp_13 Anchoa_eigenmannia 0 50 8 anchovy

sp_14 Anchoa_exigua 0 50 7.5 anchovy

sp_15 Anchoa_helleri 0 50 8.5 anchovy

sp_16 Anchoa_hepsetus# 1 70 15.3 anchovy

sp_17 Anchoa_ischana 0 50 14 anchovy

sp_18 Anchoa_lamprotaenia 0 50 12 anchovy

sp_19 Anchoa_lucida 1 60 13.2 anchovy

sp_20 Anchoa_lyolepis 1 54 12 anchovy

sp_21 Anchoa_mitchilli 0 70 10 anchovy

sp_22 Anchoa_nasus# 0 142 17 anchovy

sp_23 Anchoa_parva 0 50 6 anchovy

sp_24 Anchoa_pectoralis* 1 22 6.8 anchovy

sp_25 Anchoa_spinifer 1 55 24 anchovy

sp_26 Anchoa_starksi 0 50 7.7 anchovy

sp_27 Anchoa_tricolor* 0 50 11.8 anchovy

sp_28 Anchoa_walkeri 0 50 14.5 anchovy

sp_29 Anchovia_clupeoides 0 50 30 anchovy

sp_30 Anchovia_macrolepidota 0 50 25 anchovy

sp_31 Anchoviella_brevirostris 1 50 9 anchovy

sp_32 Anchoviella_lepidentostole 1 50 11.6 anchovy

sp_33 Anchoviella_perfasciata 0 50 11 anchovy

sp_34 Cetengraulis_endutulus# 10 475 15 anchovy

sp_35 Cetengraulis_mysticetus# 0 32 22 anchovy

sp_36 Chirocentrodon_bleekerianus 20 60 11 herring

sp_37 Clupea_harengus# 0 364 45 herring

sp_38 Clupea_pallasii# 0 475 46 herring

sp_39 Dussumieria_acuta# 10 20 20 sardine

sp_40 Dussumieria_elopsoides# 0 50 20 sardine

sp_41 Encrasicholina_devisi 10 13 8 anchovy

sp_42 Encrasicholina_heteroloba 20 50 12 anchovy

sp_43 Encrasicholina_punctifer# 5 35 13 anchovy

sp_44 Encrasicholina_purpurea* 0 50 7.5 anchovy

sp_45 Engraulis_anchoita# 30 200 17 anchovy

sp_46 Engraulis_australis 31 70 15 anchovy

sp_47 Engraulis_capensis* 0 450 17 anchovy

sp_48 Engraulis_encrasicolus# 0 400 20 anchovy

sp_49 Engraulis_eurystole 124 282 15.5 anchovy

sp_50 Engraulis_japonicus# 0 400 18 anchovy

sp_51 Engraulis_mordax# 0 219 24.8 anchovy

sp_52 Engraulis_ringens# 3 80 20 anchovy
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sp_53 Etrumeus_teres# 0 125 33 herring

sp_54 Etrumeus_whiteheadi# 0 200 22 herring

sp_55 Harengula_clupeola# 0 50 15 herring

sp_56 Harengula_humeralis# 0 50 17.2 herring

sp_57 Harengula_jaguana# 0 22 15 herring

sp_58 Harengula_thrissina 0 50 8 herring

sp_59 Herklotsichthys_blackburni* 0 50 10.5 herring

sp_60 Herklotsichthys_castelnaui 0 50 14 herring

sp_61 Herklotsichthys_dispilonotus 0 50 8.5 herring

sp_62 Herklotsichthys_gotoi* 0 50 9 herring

sp_63 Herklotsichthys_koningsbergeri 0 50 13 herring

sp_64 Herklotsichthys_lippa 0 475 16 herring

sp_65 Herklotsichthys_lossei* 0 50 8 herring

sp_66 Herklotsichthys_punctatus 0 50 8.5 herring

sp_67 Herklotsichthys_quadrimaculatus# 1 13 14 herring

sp_68 Herklotsichthys_spilurus 0 50 8.5 herring

sp_69 Jenkinsia_kamprotaenia 0 50 7.5 herring

sp_70 Jenkinsia_majua 0 50 5.5 herring

sp_71 Jenkinsia_stolifera 0 50 4 herring

sp_72 Lile_stolifera 0 50 13 herring

sp_73 Opisthonema_berlangai* 0 50 26 herring

sp_74 Opisthonema_bulleri 0 50 19.6 herring

sp_75 Opisthonema_libertate# 0 100 25 herring

sp_76 Opisthonema_medirastre 0 50 22 herring

sp_77 Opisthonema_oglinum# 0 50 25 herring

sp_78 Pliosteostoma_lutipinnis 0 50 25 herring

sp_79 Sardina_pilchardus# 10 100 25 sardine

sp_80 Sardinella_albella 0 50 14 sardine

sp_81 Sardinella_aurita# 0 350 30 sardine

sp_82 Sardinella_brachysoma 0 50 13 sardine

sp_83 Sardinella_brasiliensis# 5 475 25 sardine

sp_84 Sardinella_frimbriata 0 50 13 sardine

sp_85 Sardinella_gibbosa# 10 70 17 sardine

sp_86 Sardinella_hualiensis* 0 50 12.5 sardine

sp_87 Sardinella_lemuru# 15 100 23 sardine

sp_88 Sardinella_longiceps# 20 200 23 sardine

sp_89 Sardinella_maderensis# 0 80 37.3 sardine

sp_90 Sardinella_marquesensis* 0 50 16 sardine

sp_91 Sardinella_melanura 0 50 15.2 sardine

sp_92 Sardinella_richardsoni* 0 50 12 sardine

sp_93 Sardinella_rouxi 0 50 16 sardine

sp_94 Sardinella_sindensis 0 50 17 sardine

sp_95 Sardinella_zunasi* 5 475 18 sardine

sp_96 Sardinops_sagax# 0 200 36 sardine

sp_97 Spratelloides_delicatulus 0 50 7 herring

sp_98 Spratelloides_gracillis# 10 475 10.5 herring

sp_99 Spratelloides_lewisi* 0 50 6 herring

sp_100 Spratelloides_robustus 0 50 12 herring

sp_101 Thryssa_aestuaria 0 50 13.8 anchovy

sp_102 Thryssa_baelama 0 50 16 anchovy

sp_103 Thryssa_brevicauda* 0 50 7.5 anchovy

sp_104 Thryssa_dayi* 0 50 21.5 anchovy

sp_105 Thryssa_dussumieri 0 50 11 anchovy

sp_106 Thryssa_encrasicholoides 0 50 10.7 anchovy

sp_107 Thryssa_hamiltonii 10 13 27 anchovy

sp_108 Thryssa_malabarica* 0 50 17.5 anchovy

sp_109 Thryssa_mystax 0 50 15.5 anchovy

sp_110 Thryssa_purava 0 50 15.5 anchovy

sp_111 Thryssa_setirostris 1 20 18 anchovy

sp_112 Thryssa_spinidens* 0 50 16.5 anchovy

sp_113 Thryssa_vitrirostris 0 50 20 anchovy



Chapter 4 
 

115 
 

MODELLING CENTER COUNTRY MODEL Chl O2 pH SOS TOS

BCC-CSM1-1 x

BCC-CSM1-1-m x

CCCma Canada CanESM2 x x x x

  NCAR USA CCSM4 x x

NSF-DOE-NCAR USA CESM1(CAM5) x x

CNRM-CERFACS France CNRM-CM5 x x x x x

CSIRO-QCCCE Australia CSIRO-Mk3.6.0 x x

FIO China FIO-ESM x

NOAA GFDL USA GFDL-CM3 x x

GISS-E2-H x x

GISS-E2-R x x

HadGEM2-AO x x

HadGEM2-ES x x x x

IPSL France IPSL-CM5A-LR x x x x x

MIROC5 x x

MIROC-ESM x x x x

MIROC-ESM-CHEM x x x x

MPI-ESM-LR x x x x x

MPI-ESM-MR x x x x x

MRI Japan MRI-CGCM3 x

NCC Norway NorESM1-M x x

TOTAL MODELS 8 5 7 17 21

JapanMIROC

MPI-M Germany

ChinaBCC 

USANASA GISS

MOHC UK

Table S02 Earth System Models used for each variable analysed. We considered only 

models that provided the complete series of data from 1860 to 2100 under the historical, 

RCP 2.6 and RCP 8.5 experiments. The variables analysed included sea surface 

temperature (CMIP5 variable name ‘TOS’, in K (converted to ºC in this study)), sea surface 

salinity (‘SOS’, in psu), total chlorophyll mass concentration at surface (‘Chl’, in kg m−3), 

dissolved oxygen concentration at surface (‘O2’, in mol m−3) and pH at surface (‘pH’, in 

mol H kg−1). 
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5. FINAL REMARKS AND FUTURE PERSPECTIVES 
 

5.1 Final remarks 

 

The main goal of this thesis was to characterize global patterns and forecast the effects 

of climate change on marine biodiversity. Overall, the work presented here provides: i) 

a comprehensive overview on climate change in marine environment; ii) an unique 

application of Ecological Niche Models in marine realm; iii) an overview of marine global 

patterns of diversity; iv) an insight in how predicted climate change may impact marine 

biodiversity at a global scale; v) an outlook of critical areas for global fisheries that 

require closer attention on climate change scenario. 

 

Chapter 2 explores the impacts of climate change on coastal lobster distribution and 

possible effects on fisheries world-wide. This study shows that potential losses in 

richness for lobster species were mainly projected in areas with high commercial fishing 

interest, with species projected to contract their range between 40% and 100%, in 

response to climate change. Spiny lobsters higher losses were projected in the coasts of 

wider Caribbean region/Brazil, eastern Africa and Indo-Pacific area, areas with several 

directed fisheries and aquacultures. While clawed lobsters were projected to shifts their 

range to northern latitudes likely affecting the North European, North American and 

Canadian fisheries. Lobsters represent an important resource for local and global 

economies, so understanding how they might be affected by climate change scenarios 

is paramount for developing specific or regional studies. 

 

The patterns of cephalopod coastal diversity and potential changes under climate 

change in richness, mean body size and assemblage composition were evaluated in 

Chapter 3. This study presents an end-century scenario with 96% of cephalopod species 

predicted to experience range contraction and 15% completing losing their 

environmental space. Nestedness was projected to be the main driver of species 

compositional change and no significative differences in projected maximum body size 

were found. Fisheries in countries at higher latitudes might benefit from the projected 

shifts, although the search of refugia of smaller tropical species might potentially lead 

to a mitigation of the negative effects of climate change in these areas. These findings 
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reflect major climatic drivers of change and highlight the idea that even though 

cephalopod species seem good candidates to replace overexploited fish stocks in the 

near future, they may not have the environmental space to do so.  

 

In chapter 4 the impacts of climate change in small pelagic fish species (SPF) richness, 

catch potential and geographic range size was analyzed.  The study shows that between 

45% and 46% of the current habitat of SPF species could lose its suitability, under a range 

of mitigation scenarios, by the end of the century. In turn, catch potential was projected 

to decline 32% to 44%, under strong and moderate mitigation scenarios. Between 77-

93% of the species were projected to shrink their geographic range and shift their mean 

latitudes poleward. Given the ecological importance of SPF species (anchovies, herrings 

and sardines) and that the economies of many coastal countries are highly dependent 

on them, presented results highlight the need for precautionary management that can 

easily adapt to projected changes. 

 

The results obtained have broad implications and provide critical information to 

anticipate negative impacts of climate change on marine biodiversity. Providing global 

assessments that can be taken into account when orienting local or specific fragilities of 

marine biodiversity to climate. Nevertheless, geographic and taxonomic responses to 

climate change are highly variable and several key aspects on the distribution of 

biodiversity in the oceans of tomorrow remain to be addressed. 

 

5.2 Future Perspectives 

 

Research of climate change impacts in marine biodiversity is still lagging behind that 

made in terrestrial environment. To guide the scope of future studies addressing the 

responses of species to changing ocean conditions several factor should be taken into 

account. 

 

Recent advances in observational data collection and access to large marine 

environmental databases provide an improved foundation for statistical ecological niche 

models. But do not address structural uncertainties in models that arise from 

incomplete understanding of species interactions and physiological thresholds. This 
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level of knowledge would instead require a shift from reliance on correlations between 

marine species and their environment, toward models that more clearly establish 

functional relationships with the physical and biological underpinnings of habitat 

utilization. These relationships could yield the development of process-based models, 

rooted in ecological understanding (Palacios et al., 2013; Koenigstein et al., 2016); or 

mechanist models, based on physiological understanding (Kearney &  Porter, 2009; 

Kearney et al., 2010; Enriquez‐Urzelai et al., 2019); or food web models, based on 

biological knowledge (Gravel et al., 2013; Albouy et al., 2019). Or better yet, hybrid 

models that incorporate a range of ecological, physiological and biological information 

to define the fundamental niche of the species models are aimed for. 

 

The coarse resolution of CMIP5 climate models limit the ability to predict finer processes 

affecting species distribution, such as stratification or variation in coastal currents that 

can significantly impact larval dispersal patterns and other processes.  Recent high-

resolution climate projections (Saba et al., 2016) or dynamical downscaling of CMIP5 

(McSweeney et al., 2014) show promising results when applied in regional studies and 

can contribute to reduce uncertainty in ENMs projections. 

 

Fisheries face a serious new challenge as climate change drives marine animals to shift 

their geographical range to new territories, crossing national and other political 

boundaries in the coming decades and creating the potential for conflict over newly 

shared resources (Pinsky et al., 2018). But fisheries data is subjected to high uncertainty 

due to unreported catches, discards, geographical bias on catches report, among other 

things. So recent improvements in spatial allocation procedures that allow a 

reconstruction of catch data (from 1950 to 2010) for all countries in the world, can 

widely assist the debate about the role of fisheries in a global framework as well as in 

national food security settings (Zeller et al., 2016).  

 

Potential for adaptation to new forthcoming conditions is also something lagging in 

climate change research, as already stated by Darwin (1859) “It is not the strongest of 

the species that survives, nor the most intelligent that survives. It is the one that is the 

most adaptable to change”. Predicting the effects of climate change on marine 

populations depends not only on assessing the effects of climate stressors on 
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performance, but also on the potential for adaptation through genetic changes 

(Munday, 2014). 

 

Future efforts will be focus on addressing these topics as a way to improve species 

distribution models projections, to guide regional studies and advise actions to help 

endangered and commercially important marine species to adapt to the threat of 

climate change. Yet, it is inevitable not to be aware and to think that further efforts to 

reduce global anthropogenic CO2 emissions by nations could help to perpetuate and 

preserve species persistence in tomorrow’s ocean.
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