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Abstract

Detecting dense subnetworks (communities)
and evaluating them are practically impor-
tant for finding similar vertices in a network.
Although Newman’s modularity is widely
used for evaluating network division, it is
for unipartite networks composed of only one
vertex type. As the attempts for evaluating
divisions of bipartite networks, Guimera and
Barber propose bipartite modularities. The
author proposes another bipartite modular-
ity that allows one-to-many correspondence
of communities of different vertex types.

1. Introduction

Analysis of networked data attracts many researchers
from computer science, physics, and sociology. Several
relations in real-world can be represented as bipartite
networks composed of two types of vertices, such as
paper-author networks and event-attendee networks.
Extracting communities from such bipartite networks
and evaluating their qualities are practically important
for understanding real-world networks.

Newman’s modularity(Newman & Girvan, 2004) is
widely used for evaluating the quality of divisions
of unipartite networks, although Fortunato (Fortu-
nato & Barthelemy, 2007) claims resolution limits of
modularity-based division methods. Modularity is a
scalar value that measures the density of edges in-
side communities as compared to edges between com-
munities. As for bipartite networks, Guimera et al.
(Guimera et al., 2007) and Barber (Barber, 2007) pro-
pose bipartite modularities. However, these are not
appropriate for practical applications. Guimera’s bi-
partite modularity focuses on the connectivity of only
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one vertex type, and Barber’s bipartite modularity is
based on an assumption that there is one-to-one cor-
respondence between communities of different vertex
types. The author proposes another bipartite mod-
ularity that allows one-to-many correspondence be-
tween communities of different vertex types (Murata,
2009). Preliminary experimental results using the
above bipartite modularities are shown.

2. Previous Modularities

2.1. Newman’s Modularity

Let us consider a particular division of a network into
k communities. M is the number of edges in a net-
work, V is a set of all vertices in the network, and Vl

and Vm are the communities. A(i, j) is an adjacency
matrix of the network. We can define elm, the frac-
tion of all edges in the network that connect vertices
in community l to vertices in community m as follows:

elm =
1

2M

∑
i∈Vl

∑
j∈Vm

A(i, j)

We further define a k × k symmetric matrix E com-
posed of eij as its (i, j) element, and its row sums ai:

ai =
∑

j

eij =
1

2M

∑
i∈Vl

∑
j∈V

A(i, j)

In a network in which edges fall between vertices with-
out regard for the communities they belong to, we
would have eij = aiaj . Modularity Q is defined as
follows:

Q =
∑

i

(eii − a2
i )

2.2. Guimera’s Bipartite Modularity

Guimera’s bipartite modularity is defined as the cu-
mulative deviation from the random expectation of the
number of the communities of vertex type Y in which
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two vertices of type X are expected to be together:

MB =
NM∑
s=1

{ ∑
i ̸=j∈s cij∑

a ma(ma − 1)
−

∑
i ̸=j∈s titj

(
∑

a ma)2
}

where s is a community of vertex type X, NM is the
number of community of type X, a is a community
of vertex type Y, ma is the number of edges that are
connected to the vertices in community a, cij is the
number of communities of vertex type Y in which ver-
tices i and j are connected, and ti and tj are total
number of communities of type Y to which vertices i
and j are connected, respectively.

Two vertex types are not symmetrical in the above def-
inition. Guimera’s bipartite modularity focus on the
connectivities of only one vertex type (via the vertices
of the other type). Connectivities of the other vertex
type (M ′

B) can be defined by swapping s and a in the
formula of MB .

2.3. Barber’s Bipartite Modularity

Modularity is a deviation from null model, and bi-
partite networks have specific constraints that should
be reflected in the null model. Barber (Barber, 2007)
takes the constraints into consideration and formalizes
bipartite modularity. Since there is no edge between
the vertices of same type, the adjacency matrix of a
bipartite network is as follows

A =
[

0p×p Ãp×q

(ÃT)q×p 0q×q

]
,

where 0i×j is the all-zero matrix with i rows and j
columns. Probabilities in the null model that an edge
exists between vertices i and j are represented as fol-
lows:

P =
[

0p×p P̃p×q

(P̃T)q×p 0q×q

]
,

Barber’s bipartite modularity is defined as follows:

Q =
1
m

p∑
i=1

q∑
j=1

(Ãij − P̃ij)δ(gi, gj+p).

where gi is the community that vertex i is assigned to,
and δij is the Kronecker’s delta. This definition im-
plicitly indicates that the numbers of communities of
both types are equal. The weaknesses of Barber’s bi-
partite modularity are: 1) the number of communities
have to be searched in advance, and 2) the numbers of
communities of both vertex types have to be equal.

3. Our New Bipartite Modularity

Let us suppose that communities of papers and com-
munities of authors are detected from a paper-author

network. If there is one-to-one correspondence be-
tween a paper community and an author community,
it shows that the topics of the papers attract only lim-
ited authors (Figure 1). On the other hand, if there is
one-to-many correspondence between a paper commu-
nity and author communities, it shows that the topics
of the papers attract several communities of authors
(Figure 2).

Figure 1. One-to-One Correspondence

Figure 2. One-to-Many Correspondence

The constraint of one-to-one correspondence between
communities of both types is removed in our definition
of bipartite modularity. Let us suppose that M is the
number of edges in a bipartite network, and V is a set
of all vertices in the bipartite network. Consider a par-
ticular division of the bipartite network into X-vertex
communities and Y-vertex communities. A(i, j) is an
adjacency matrix of the network whose (i, j) element
is equal to 1 if vertices i and j are connected, and is
equal to 0 otherwise.

Under the condition that the vertices of Vl and Vm are
different types we can define elm (the fraction of all
edges that connect vertices in Vl to vertices in Vm) and
ai (its row sums) just the same as those in section 2.1.

elm =
1

2M

∑
i∈Vl

∑
j∈Vm

A(i, j)

ai =
∑

j

eij =
1

2M

∑
i∈Vl

∑
j∈V

A(i, j)

As in the case of unipartite networks, if edge connec-
tions are made at random, we would have eij = aiaj .
Our new bipartite modularity QB is defined as fol-
lows:

QB =
∑

i

(eij − aiaj), j = argmax
k

(eik)
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Newman’s modularity measures the fraction of the
edges in the network that connect vertices within the
same community minus the expected value of the same
quantity in a network with the same community divi-
sions but random connection between vertices. Our
new bipartite modularity measures the fraction of the
edges in the bipartite network that connect vertices of
the corresponding X-vertex communities and Y-vertex
communities minus the expected value of the same
quantity with random connections between X-vertices
and Y-vertices.

4. Experiments

As an example for comparing different bipartite mod-
ularities, southern women dataset is used. Davis et al.
(Davis et al., 1941) collected the data around Missis-
sippi during the 1930s as part of an extensive study
of class and race in the Deep South. The dataset
describes the participation of 18 women in 14 social
events. The women and social events constitute a bi-
partite network whose vertices are women and social
events, and whose edges are the participation in the
events.

Experiments of network divisions by the follow-
ing strategies are performed : (1) optimization of
Guimera’s bipartite modularity (MB), (2) optimiza-
tion of Guimera’s bipartite modularity for the other
vertex type (M ′

B), and (3) optimization of our new bi-
partite modularity (QB). In addition, (4) results of
Barber’s BRIM algorithm are also discussed later.

As an initial state of the network division, each
woman/event is assigned to its own community. Then
greedy searches for the optimization of bipartite mod-
ularities ((1), (2), (3)) are performed by merging a pair
of women/event communities. The results of network
divisions by the above strategies are shown in Table 1.
Each row of the Table shows the number of discov-
ered communities, values of MB , M ′

B , and QB , respec-
tively. Each column shows the strategies (1), (2), and
(3), respectively. Although communities are surely ob-
tained with strategy (1), its division is good only for
Guimera’s bipartite modularity for one vertex type.
Strategy (2) does not work for network division. We
performed an additional experiment that combines the
strategies (1) and (2), but its result is not better than
the result of strategy (1). The result of strategy (3)
shows that the obtained network division is good for
QB , of course, and also for M ′

B , although its MB value
is worse than the result of strategy (1). This means
that our new bipartite modularity is appropriate for
obtaining good network divisions from the viewpoint
of connectivities of both vertex types, as well as the

Table 1. Communities from Southern Women Network

(1) (2) (3)
number of communities 13 32 4
MB 0.140 0.000 0.0025
M ′

B -0.00797 0.000 0.0109
QB 0.354 0.138 0.575

degree of correspondence between the communities of
different types, which is our main objective.

According to Barber’s paper, strategy (4) (optimiza-
tion of Barber’s bipartite modularity) results in the
discovery of coarse division composed of only two com-
munities. However, the division is obtained as the re-
sults of 500,000 trials from random community assign-
ment as its initial state.

5. Conclusion

A new bipartite modularity for community extrac-
tion from bipartite networks is proposed in this pa-
per. Each bipartite modularity is based on different
assumption on the communities in bipartite networks.
Our bipartite modularity is for communities of one-
to-many correspondence, and it is more flexible than
other bipartite modularities.
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